
Delft Center for Systems and Control

Conjugate Dynamic Program-
ming

Rodopoulos Charalampos

M
as

te
ro

fS
cie

nc
e

Th
es

is

Conjugate Dynamic Programming

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Rodopoulos Charalampos

November 25, 2021

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

In decision making problems, the ability to compute the optimal solution can pose a serious
challenge. Dynamic Programming (DP) aims to provide a framework to deal with a category
of such problems, namely ones that involve sequential decision making. By dividing the
original control problem into sub problems and solving it backwards in time, from the end
of the time horizon to the start, the method can compute a map of optimal solutions with
respect to the initial condition. In order to divide the original problem into subproblems the
DP method takes advantage of the principle of optimality, which states that a sub-solution of
the optimal solution should be the optimal solution for the equivalent subproblem. In control
systems, where the state and decision spaces are continuous, the original DP framework can
be intractable due to the size of the discretization needed to simulate the continuous space.
Therefore, efficient approximations are needed to solve such problems. One promising method
is called Conjugate Dynamic Programming (CDP). The CDP algorithm is able to transform
the original framework and solve problems in the conjugate domain providing a computational
advantage over the standard method. In this work, we aim to improve and extend the setting
under which the CDP algorithm operates, thus providing a more concrete advantage over
standard method . In that regard, we will extract the optimal control actions from within
the CDP algorithm, eliminating the need for solving an extra optimization problem for their
computation. In addition, we will introduce a different interpolation technique that can
outperform the current one, in certain scenarios, thus granting the user more choice when
solving a decision making problem.

Master of Science Thesis Rodopoulos Charalampos

ii

Rodopoulos Charalampos Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1

2 Theoretical Prerequisites 3
2-1 Legendre-Fenchel transform and LLT algorithm 3
2-2 Conjugate Dynamic Programming . 4

2-2-1 Original DP framework . 4
2-2-2 CDP algorithm . 5

3 Analytical Results 7
3-1 Kuhn triangulation as an interpolation method 7

3-1-1 Method outline and example in 2D . 7
3-1-2 Convex extension of a convex extensible function 10

3-2 Extraction of optimal control input . 13
3-2-1 Theoretical Framework . 13
3-2-2 Example of SISO system . 14

4 Simulation Results 17
4-1 Kuhn triangulation versus LERP . 17
4-2 Extraction of optimal control input . 20

4-2-1 Effects of discretization on extraction of optimal pairs 20
4-2-2 1D example . 22
4-2-3 2D example . 28

5 Conclusions and Future Research 33
5-1 Conclusions . 33
5-2 Future Research . 34

Master of Science Thesis Rodopoulos Charalampos

iv Table of Contents

A CDP Algorithms 35

Bibliography 37

Rodopoulos Charalampos Master of Science Thesis

List of Figures

2-1 Settings of CDP algorithm [1] . 6

3-1 Random query point and closest grid hypercube around it. 8
3-2 Translated coordinate system so that the hypercube around the query point is the

unit hypercube . 9
3-3 Plot of continuous function in 3D space. 11
3-4 Scatter plot from data interpolated with Kuhn’s triangulation. 12

4-1 Error between cost-to-go functions calculated with interpolation methods and the
benchmark. 19

4-2 Optimal pairs for the two discretizations and the analytical solution (top) and
percentage of error each pair for the two discretizations differs from the analytical
solution (bottom). 21

4-3 Percentage of error of conjugate function computed with LLT with respect to the
analytically available conjugate function. 22

4-4 Absolute error of one step ahead optimal control inputs against the benchmark
averaged over 100 initial conditions. 24

4-5 Number of invalid trajectories at each step in the horizon for the one step ahead
predictions. 25

4-6 Average aggregate cost at each step for the control inputs calculated by the 3
different methods. 26

4-7 Trajectory error for each step averaged over 100 initial positions. 27
4-8 Number of invalid trajectories at each step in the horizon. 28
4-9 Number of invalid trajectories at each step in the horizon. 29
4-10 Absolute error of one step ahead optimal control inputs against the benchmark

averaged over 100 initial conditions. 30
4-11 Number of invalid trajectories at each step in the horizon for the multistep imple-

mentation. 31
4-12 Average aggregate cost at each step for the control inputs calculated by the 3

different methods. 31
4-13 Trajectory error for each step averaged over 100 initial positions. 32

Master of Science Thesis Rodopoulos Charalampos

vi List of Figures

Rodopoulos Charalampos Master of Science Thesis

List of Tables

4-1 Comparison between Kuhn triangulation and LERP as interpolation techniques. . 18

Master of Science Thesis Rodopoulos Charalampos

viii List of Tables

Rodopoulos Charalampos Master of Science Thesis

Acknowledgements

The current thesis would not have been possible without my daily supervisors A. Sharifi
Kolarijani and G.F. Max . Your feedback throughout this process was invaluable and allowed
me to learn and grow as a person. Also a big thank you to my supervisor Dr. P. Mohajerin
Esfahani for always being available when needed and for giving me the opportunity to work
on such a challenging and rewarding problem.

To all my friends here in Delft, for all the good times we had together and for the fun inside
and outside our studies. Also to my friends in Greece, who even though they were not here
physically, they were always available when I needed someone to speak to.

Delft, University of Technology Rodopoulos Charalampos
November 25, 2021

Master of Science Thesis Rodopoulos Charalampos

x Acknowledgements

Rodopoulos Charalampos Master of Science Thesis

Chapter 1

Introduction

The motivation behind this work lies on solving the Dynamic Programming (DP) problem by
expanding on the work of [1]. Dynamic Programming aims to solve the Bellman equation,

Jt(xt) = min
ut
{Ct(xt, ut) + Jt+1(xt+1)}, (1-1)

by computing the optimal cost-to-go functions Jt backwards in time, given the running cost
Ct(xt, ut) of choosing an action ut at a given state xt, and the cost to go Jt+1(xt+1). at the
next step t + 1.

At the core of the DP formulation lies the principle of optimality introduced by Bellman [2].
By this we divide the original control problem into sub-problems which are simpler to solve.
What makes the formulation of the DP problem attractive is that many interesting real world
applications can be modeled and subsequently solved using DP. Some of these can be found
in fields such as finance [3], power systems and the peak shaving problem [4, 5, 6, 7], as well
as optimal control [8, 9], and inventory routing [10].

The ability to solve complex problems like the ones mentioned above in a computationally effi-
cient manner marks the main point of this thesis. Approximating the cost-to-go function, also
knows as value function, is the main interest behind solving the subclass of problems known
as Approximate Dynamic Programming (ADP). The approximation is needed in problems
where the computation of the exact cost-to-go function is impossible or requires an extremely
large amount of resources . This can include problems in continuous spaces, where a sharp
discretization would lead to the problem being intractable. An extensive overview of the
theory and methods on how to solve such problems can be found in [11, 12, 13]. Popular
methods include Q-Learning [14] and Temporal Difference (TD) Learning [15]. Furthermore,
in [16], a method based on linear programming is proposed. The method tries to fit a lin-
ear combination of predetermined functions to approximate the cost-to-go function. Lastly,
in [17, 18] a method is developed to compute max-plus linear approximations of the value
function within a dictionary of functions. The necessity for ADP and generally more efficient
ways to solve the DP problem stem from its biggest drawback, its high computational cost

Master of Science Thesis Rodopoulos Charalampos

2 Introduction

when dealing with high dimensional state and action spaces, otherwise known as the curse of
dimensionality [2]. In [1] an algorithm was developed, which exploits the Legendre-Fenchel
transform [19],

F ∗(s) = sup
x∈X
{⟨x, s⟩+ F (x)}, ∀s ∈ S ⊆ IRN , (1-2)

in order to solve the DP equation (1-1). In equation (1-2), F denotes a function with domain
X ⊆ IRn and codomain IR, while F ∗ denotes its conjugate function with domain S ⊆ IRn and
codomain IR. In equation 1-2 ⟨x, s⟩ denotes the inner product between the two variables s
and x. In that regard, a linear time algorithm for computing the discrete Legendre transform
[20], has been used for transforming the original problem and solving it in the conjugate do-
main. This has resulted in a more efficient implementation than solving the Bellman equation
explicitly, which involves minimizing over the action space for any given state. Specifics on
how the proposed algorithms in [1] work will be given in Chapter 2.

Contributions. The aim of this project is to improve the setting under which the Legendre-
Fenchel transform can be used to solve the DP problem. In that regard, during this thesis
we will aim to improve the computational aspect of working in the conjugate domain thus
providing a more concrete advantage over traditional methods. More specifically, one key
improvement revolves around extracting the optimal control action from within the CDP
algorithm [1]. In the current implementation, in order to obtain the optimal control action,
a minimization problem is solved during the forward stage of the algorithm, thus adding to
the total computational cost. By leveraging the powers and capabilities of the LLT algorithm
[20], we can extract the optimal control action during the backwards iteration at little to no
extra computational cost, thus gaining an overall computational advantage. Furthermore,
we aim to improve on other computational aspects of the algorithm by employing, possibly
more efficient methods of interpolation/extrapolation without greatly affecting the overall
computational cost of the algorithm.

Thesis organization. The current report is organized as follows. In Chapter 2, some theory
that will be used throughout the thesis will be presented. This includes a short introduction
into the CDP algorithm. In Chapter 3, we show theoretical results regarding the topics
tackled in the present thesis. These include the theory behind extracting the optimal control
input from within the CDP algorithm, and whether Kuhn triangulation can interpolate to a
convex function, given that the discrete set of points are convex extensible. In Chapter 4,
we present the numerical simulations and results associated with the theory of Chapter 3. In
Chapter 5, we discuss the results and provide possible future research avenues.

Rodopoulos Charalampos Master of Science Thesis

Chapter 2

Theoretical Prerequisites

In this Chapter we will present some theoretical prerequisites that will be used throughout
the thesis and are necessary for the reader to understand the following Chapters.

2-1 Legendre-Fenchel transform and LLT algorithm

The Legendre-Fenchel transform and the ability to compute it in linear time via the LLT
algorithm [20] allows the CDP algorithm to outperform standard methods in computing the
solution to DP problem. For completeness’ sake, we briefly present the workings of the LLT
algorithm. For more information regarding LLT the reader can refer to [20].

In equation (1-2), we presented the Legendre-Fenchel transform in continuous primal and
dual spaces. The LLT algorithm computes the conjugation via an approximation, by dis-
cretizing the primal X and dual S spaces of equation (1-2). The discrete Legendre transform
is presented in equation (2-1). The spaces Xd, Sd ⊂ IRn are both discrete.

F d∗(s) = max
x∈Xd

{⟨x, s⟩+ F d(x)}, ∀s ∈ Sd. (2-1)

The superscript d, as in F d, stands for a discrete function with a finite domain, while the
subscript d stands for a discrete (finite) set.

For the univariate case, in order to compute the conjugate function F d∗(s), the algorithm
takes the pairs of points in primal space,

{(x1, F d(x1)), (x2, F d(x2)), ..., (xn, F d(xn))}, (2-2)

and computes a convex hull of the function F d if it is not convex. This can be done in linear
time. Then the following slopes are computed:

ci := F d(xi+1)− F d(xi)
xi+1 − xi

. (2-3)

Master of Science Thesis Rodopoulos Charalampos

4 Theoretical Prerequisites

Since the function is convex these slopes are in ascending order. Given the points of interest
in the dual space S := {s1, s2, ..., sm}, Lemma 3 of [20] proves that we can compute the
conjugate function in the following manner:

(i) If ci−1 < si < ci, F d∗(si) = sixi − F d(xi)

(ii) If ci = si, F d∗(si) = sixi − F d(xi) or F d∗(si) = sixi+1 − F d(xi+1).

In the case we are dealing with multivariate functions, the discrete Legendre transform reads

F d∗(s1, s2) = max
x1∈Xd1

[
s1x1 + max

x2∈Xd2
[s2x2 − F d(x1, x2)]

]
, ∀(s1, s2) ∈ Sd1 × Sd2

,

with primal domain Xd = Xd1 × Xd2 ⊂ IR2 and dual domain Sd = Sd1 × Sd2 ⊂ IR2. This
procedure is essentially a factorization which casts the original multivariate function as uni-
variate ones and transforms these using the univariate method above. The algorithm for the
two dimensional case will involve computing the intermediate function

F d
s2(x1) = max

x2∈Xd2
[s2x2 − F d(x1, x2)], ∀s2 ∈ Sd2, (2-4)

and then computing the conjugate function

F d∗(s1, s2) = max
x1∈Xd1

[s1x1 − (−F d
s2(x1))], ∀s1 ∈ Sd1. (2-5)

This procedure can be generalised in higher dimensions.

2-2 Conjugate Dynamic Programming

2-2-1 Original DP framework

In [1], two novel algorithms are developed, in order to solve the DP in the conjugate domain.
Below we present the transformation of the original DP problem to its equivalent in the
conjugate domain and a short introduction into the two settings in the paper. We start with
the discrete system:

xt+1 = f(xt, ut), t = 0, 1, ..., T − 1, (2-6)

where f : IRn× IRm → IRn denotes the dynamics. The system is constrained in the input and
state as follows:

xt ∈ X ⊂ IRn, t ∈ {0, 1, ..., T}, (2-7)
ut ∈ U ⊂ IRm, t ∈ {0, 1, ..., T − 1}. (2-8)

Rodopoulos Charalampos Master of Science Thesis

2-2 Conjugate Dynamic Programming 5

The stage and terminal cost functions are Ct : X × U → ĪR and CT : X → IR, where ĪR
represents the extension of the real numbers to include +∞. The reason for that is that if
the state constraint is violated then the cost for that stage becomes +∞.

The DP formulation for this problem reads:

Jt(xt) = min
ut
{C(xt, ut) + Jt+1(xt+1) : (2− 6)− (2− 8)}, xt ∈ X, (2-9)

Solving (2-9) backwards in time, we obtain the optimal cost-to-go functions as well as the
control laws that will result in those functions. In order to solve such a problem, we need to
iterate over all x ∈ X and u ∈ U . When dealing with continuous spaces in X and U this
procedure is intractable. Thus we need to approximate the solution by discretizing the state
and input spaces. The discrete DP (d-DP) formulation reads:

Jd
t (xt) = min

ut
{C(xt, ut) + J̄d

t+1(xt+1)}, xt ∈ Xd ⊂ X, ut ∈ Ud ⊂ U. (2-10)

The function J̄d
t+1 denotes the extension of the discretized cost-to-go function Jd

t+1. Since we
are dealing with discrete spaces and only have access to the function values in a finite set of
points the extension is needed to compute points outside of the given discrete domain.

For the remainder of this thesis every time we mention d-DP, we are referring to a brute
force solution of the DP problem over the input and state spaces. In particular, by having
finite discrete spaces, we can iterate over all x ∈ Xd and u ∈ Ud in order to find the optimal
solution. The discrete spaces employed throughout this thesis are all grid like. This is done
in order to take advantage of the speed up in computing the conjugate function using the
LLT algorithm (see Remark 5 in [20]).

2-2-2 CDP algorithm

From the original DP formulation, we can create an equivalent problem in the dual domain. In
[1], two different settings are presented for solving the DP problem in the conjugate domain.
Below we will present the requirements that need to be met so that the appropriate setting
can be used. For setting 1 of the CDP algorithm we need:

(i) Input-affine dynamics, f(x, u) = fs(x) + fi(x)u.

(ii) The sets X and U are compact and convex. Additionally, for every x ∈ X, the set of
admissible inputs is non empty.

(iii) The stage cost is jointly convex in the state and input variable with a compact effective
domain. The terminal cost needs to be also convex.

For the second setting we need the requirements described in setting 1 as well as:

(i) The input dynamics fi need to be state-independent. That means fi(·) = B ∈ IRn×m.

Master of Science Thesis Rodopoulos Charalampos

6 Theoretical Prerequisites

(ii) The stage cost is separable in the state and input variables. That means Ct(x, u) =
Cs(x) + Ci(u), Cs : X → IR and Ci : U → IR.

If a problem meets the above requirements then we can transform the original DP. In Figure
2-1, we present the alternate route of solving the DP problem for the two settings of the CDP
algorithm developed in [1].

(a) Setting 1 [1] (b) Setting 2 [1]

Figure 2-1: Settings of CDP algorithm [1]

The current Settings of the CDP algorithm compute the cost-to-go functions backwards in
time via the alternate path presented in the figure. As it stands, none of the alternative
paths compute the optimal control laws for a given step of the control problem. In order to
acquire these laws the algorithm solves an additional minimization problem, for each step in
the horizon, during the forward phase of the DP problem. The minimization problem is the
following:

u∗
t = arg min

ut∈Ud

{C(xt, ut) + J̄d
t+1(xt+1)}.

One of the contributions of the current thesis involves extracting the optimal control laws from
the alternate path of the CDP algorithm and thus eliminating the minimization problems of
presented above.

Rodopoulos Charalampos Master of Science Thesis

Chapter 3

Analytical Results

In this Chapter, we will be presenting the preliminary results regarding the problems tackled
in the present thesis. This chapter is structured as follows: firstly, we will explore whether
Kuhn’s triangulation can create a convex extension out of a convex extensible set of discrete
points. The reason why preserving convexity is important, is that the CDP algorithm is
essentially blind to non convexity. This means that if the cost-to-go function Jt is non convex,
we will be introducing an error by approximating the function by its convex envelope. In the
case of a convex cost-to-go function this error disappears. In addition, we will present the
proof regarding the extraction of the optimal control input from within the CDP algorithm
and present the calculations followed in a one dimensional example.

3-1 Kuhn triangulation as an interpolation method

3-1-1 Method outline and example in 2D

Using Kuhn’s triangulation as an interpolation technique was originally presented in [21, 22].
Below we will present an outline of how the method works for completeness. This method
is based on splitting the unit hypercube around the query point into simplexes. Then, by
finding the simplex that contains our query point, we use a linear combination of the vertices
of that simplex. The outline of the method is:

• First we need to translate and scale our coordinate system so that the cube around our
query point becomes the unit hypercube. The new coordinates of the query point are
(x′

1, ..., x′
d), where d is the number of dimensions of the space.

• Next we must employ a sorting algorithm in order to sort the coordinates of the trans-
lated query point. This will be used to identify the simplex in which the point lies.

Master of Science Thesis Rodopoulos Charalampos

8 Analytical Results

• From the identified simplex, we use the coordinates of its vertices in order to create
linear combinations of the query point’s coordinates.

• After finding the coefficients from the previous step, we can use them as weights for the
sum of the function values at each vertex.

In Figure 3-1, we present the random query point (x1q, x2q) and the hypercube around it,
which in two dimensions is a square.

Figure 3-1: Random query point and closest grid hypercube around it.

The first step involves translating and scaling the coordinate system in order for the hypercube
around the query point to be the unit hypercube. For any point inside or on the perimeter
of the hypercube we can use the following translation.

x1p_new = F (x1p) = (x1p − x11)/(x12 − x11), x11 ≤ x1p ≤ x12 (3-1)
x2p_new = G(x2p) = (x2p − x21)/(x22 − x21), x21 ≤ x2p ≤ x22, (3-2)

where p denotes any point inside or on the perimeter of the hypercube. The results of the
above procedure lead to the new coordinate system of Figure 3-2.

Using equations (3-1)-(3-2) the new coordinates of our query point become:

x1q_new = (x1q − x11)/(x12 − x11) (3-3)
x2q_new = (x2q − x21)/(x22 − x21). (3-4)

Next, we will divide the hypercube in d! simplexes. The coordinates of the points inside each
simplex have to satisfy the following equation.

0 ≤ xr(1) ≤ xr(2) ≤ ... ≤ xr(d) ≤ 1,

Rodopoulos Charalampos Master of Science Thesis

3-1 Kuhn triangulation as an interpolation method 9

Figure 3-2: Translated coordinate system so that the hypercube around the query point is the
unit hypercube

where r represents a possible permutation of (1, 2, 3, ..., d).

In our example, we will separate the square in triangles (2D simplexes) by drawing the
diagonal of the square connecting the origin (0, 0) to the following vertex (1, 1). In two
dimensions this procedure creates two triangles which can be seen in Figure 3-2. The lower
triangle in the figure is described by the equation x2 ≤ x1, while the upper triangle is described
by the equation x1 ≤ x2. Next, the procedure requires that we use a sorting algorithm to sort
the coordinates of the new query point. The sorting procedure is the most important step of
the algorithm. It will allow us to easily identify the simplex inside which the point lies and
its corresponding vertices. We know that every simplex inside the hypercube will have two
known vertices in (0, 0, 0, ...) and (1, 1, 1, ...). Thus we only need to identify d−1 points, where
d is the dimension we are working with. An easy way to identify the simplex requires using
the dimension on which the sorted coordinates lie. We start with a matrix of size (d + 1)× d
filled with zeros. Then starting from the largest coordinate we fill the appropriate column
with 1’s for d rows. Then we move onto the next coordinate where we fill the appropriate
column with 1 for d-1 rows. The procedure continues to the smallest coordinate where we
fill the appropriate column with 1 for one row. Every row of the matrix will represent the
coordinates of the vertices of each simplex. The procedure for the 2D case can be seen below.
We start from the matrix filled with 0:

0 0
0 0
0 0

 (3-5)

Since in our example the coordinate of the first dimension is larger that that of the second
we will fill the first column with 1s for the first two rows. This leads to

Master of Science Thesis Rodopoulos Charalampos

10 Analytical Results

1 0
1 0
0 0

 . (3-6)

Then we move on to the second largest dimension, and last in our example, x2. We will fill
the second column of the matrix with 1s for one row. The final result can be seen below

1 1
1 0
0 0

 . (3-7)

If the query point lied in the upper triangle, the coordinate of the second dimension would
have been bigger and following the same procedure we would first fill the second column with
1s for two rows and then the first column with 1 for one row. Every row of that matrix
represents a vertex of the simplex the query point lies inside of. Comparing the matrix in
equation (3-7) and the Figure 3-2 we can see that the coordinates of the vertices of the simplex
have been identified correctly.

Having acquired the vertices of the simplex, we can now express the coordinates of the query
point as a linear combination of the coordinates of each vertex. By solving the following
system of equations.

1 1 1
0 1 1
0 0 1


a1

a2
a3

 =

 1
x1qnew

x2qnew

 . (3-8)

Upon solving the preceding equation we obtain the coefficients a1, a2, a3. Then, we can now
compute the function value at the query point as follows:

F (x1q, x2q) = a1F (x11, x21) + a2F (x12, x21) + a3F (x12, x22). (3-9)

Essentially the function value at the query point is calculated as a linear combination of the
function values at the vertices of the simplex, based on the proximity of the query point to
the vertices themselves.

3-1-2 Convex extension of a convex extensible function

Definition 3-1.1. A discrete function F d : Xd → ĪR is said to be convex extensible when
there exists a continuous convex function F : IRn → ĪR where ∀x ∈ Xd the following holds
F (x) = F d(x).

The CDP algorithms in settings 1 and 2 both work with discrete functions evaluated at a
grid-like discrete set of points. At certain steps, it is necessary to evaluate these functions at
points outside of the available points. Thus, we need a interpolation technique. Assuming
we start from a convex extensible set of points, we would like this technique to identify a
continuous convex function that satisfies the definition of convex extensibility listed above.

Rodopoulos Charalampos Master of Science Thesis

3-1 Kuhn triangulation as an interpolation method 11

The theoretical framework that aims to describe the extension of convexity properties in
discrete functions is called Discrete Convex Analysis [23, 24, 25].

Unfortunately, convex extensibility is not a sufficient condition for Kuhn triangulation to lead
to a convex extension for a discrete function. We will show that by presenting the following
example. Assume the continuous function

f(x1, x2) = max(x1 − 3x2,−2x1 + 3x2). (3-10)

The above function is convex as the maximum of two affine functions. In Figure 3-3, we
present the function plotted in 3D space.

Figure 3-3: Plot of continuous function in 3D space.

We now assume the following discretization of the domain of the function. The function value
at these points only, is assumed to be known. The discrete function is as follows:

fd(x1, x2) = max(x1 − 3x2,−2x1 + 3x2), x1, x2 ∈ X1
d = [0, 2, 4, 6, ..., 20]2. (3-11)

We will be using Kuhn triangulation to interpolate the function value at the point xq =
(x1, x2) = (2, 1). The continuous function value at this point is f(2, 1) = −1. The points
around our query point are xll = [0, 0], xlr = [2, 0], xul = [0, 2], xur = [2, 2]. We transform
these points so that xll = [0, 0] and xur = [2, 2] become the opposite corners of the unit
square. Now our points are: xll = [0, 0], xlr = [1, 0], xul = [0, 1], xur = [1, 1]. Our query point
xq lies in the 2D simplex created by the points xll = [0, 0],xlr = [1, 0] and xur = [1, 1]. Our
point xq is the following linear combination of the simplex’s corners:

xq =
[
a1 a2 a3

]  xll

xlr

xur

 =
[
0 0.5 0.5

]  xll

xlr

xur

 . (3-12)

Master of Science Thesis Rodopoulos Charalampos

12 Analytical Results

(a) Angle 1. (b) Angle 2.

Figure 3-4: Scatter plot from data interpolated with Kuhn’s triangulation.

We then use these coefficients to calculate the value of the function at our query point:

f̄d(xq) =
[
0 0.5 0.5

]  fd(xll)
fd(xlr)
fd(xur)

 = 0 · f(xll) + 0.5 · f(xlr) + 0.5 · f(xur)⇒

f̄d(xq) = 0 · 0 + 0.5 · 2 + 0.5 · 2 = 2.

The notation f̄d indicates extending the discrete function to points outside its domain.

It is evident that the two values are not the same. Thus the method fails to recover the
original convex function. Since there can be more than one convex function fitting a set
of convex extensible points we need to investigate this possibility as well. If we use Kuhn
triangulation to extend the discrete function of equation (3-11) to the following domain

X2
d = [0, 1, 2, 3, ..., 20]× [0, 1, 2, 3, ..., 20]

we obtain the result shown in Figure 3-4. The new domain X2
d consists of the original points

in the domain X1
d , for which we have the functions values available, and the points on which

we used Kuhn triangulation to extend the original discrete function.

What we can observe in Figure 3-4 is that the extended discrete function presents this region
where the function values form a non convex area. The method fails because the original
discretization is not dense enough to capture the direction of the discretization in every
square of the domain. Thus, in the example presented, the true function value of the query
point lies below the function values of both points used to compute it. Although the method
cannot guarantee the extended function will also be convex extensible, it is important to check
whether the method provides a more accurate result when extending a discrete function than
the method currently used in the CDP algorithm, namely multilinear interpolation (LERP).

Rodopoulos Charalampos Master of Science Thesis

3-2 Extraction of optimal control input 13

3-2 Extraction of optimal control input

In [1], the proposed algorithms only return the cost-to-go functions but not the optimal
control actions that will lead to those cost-to-go functions. For that reason, an additional
minimization problem has to be solved in order to acquire the optimal control laws. In order
to avoid the extra computational cost of the minimization problem, we will inquire whether
optimal control laws can be extracted from within the CDP algorithm. This idea is based on
the fact that the LLT algorithm [20] allows us to keep the optimal pairs between the primal
and dual domains. This should allow us to find a relationship between the current state x
and the optimal input u that will minimize the one step cost function.

3-2-1 Theoretical Framework

Lemma 3-2.1. For the Settings in the CDP algorithm we can extract the optimal control
action by employing the optimal pairs in the conjugation steps as follows.

y∗(x) = arg max
y
{⟨y, fs(x)⟩ − ϕx(y)}, (3-13)

u∗(y) = arg max
u

[
⟨−fT

i (x)y∗, u⟩ − C(x, u)
]

. (3-14)

Proof. Following the proof of Appendix B.2.1 of [1], we start from the reformulated DP prob-
lem.

We know
ϕx(y) = C∗

x(−fT
i (x)y) + J∗(y), (3-15)

and

T̂ [J](x) = ϕ∗(fs(x)) = max
y

max
u
{⟨y, fs(x)⟩ − ⟨−fT

i (x)y, u⟩+ C(x, u)− J∗(y)}.

We define
L1(x, u, y) := ⟨y, fs(x)⟩ − ⟨−fT

i (x)y, u⟩+ C(x, u)− J∗(y).

Then,

L2(x, y) = L1(x, u∗(y), y) = ⟨y, fs(x)⟩ − ⟨−fT
i (x)y, u∗⟩+ C(x, u∗)− J∗(y)

(3−14)= ⟨y, fs(x)⟩ − C∗
x(−fT

i (x)y)− J∗(y)
(3−15)= ⟨y, fs(x)⟩ − ϕx(y).

Finally,

L3(x) = L2(x, y∗(x)) = ⟨y∗, fs(x)⟩ − ϕx(y∗)
(3−13)= ϕ∗(fs(x)).

We have proven that
T̂ [J](x) = L1(x, u∗, y∗),

using the mappings in equations (3-13)-(3-14)

Master of Science Thesis Rodopoulos Charalampos

14 Analytical Results

The procedure to obtain the optimal control input from the current state is outlined below

1. From the current state x compute fs(x).

2. Find the optimal dual variable y from fs(x), using eq. (3-13).

3. Compute −fT
i (x)y.

4. Find the optimal input variable u from −fT
i (x)y, using eq. (3-14).

3-2-2 Example of SISO system

Below we will present the procedure outlined above in a SISO system that can be solved
analytically. The time horizon will be one step (T = 1). The procedure can be extended to
longer than one step horizons. In Chapter 4, we will also present results from simulations in
more complex systems.

We assume the following system

xt+1 = 2xt + ut (3-16)
Ct(xt, ut) = x2

t + u2
t (3-17)

CT = x2
T . (3-18)

For this system, we first compute the conjugate of the stage cost with respect to the input
variable u as follows.

C∗(y) = max
u
{⟨y, u⟩ − C(x, u)} = max

u
{yu− x2 − (u)2} = y2

4
− x2.

Next we compute the conjugate of the cost-to-go function at the terminal step which is the
terminal cost CT . Since we are only solving for one step, from here onwards, we will not use
the subscript t to indicate the step of the horizon.

J∗(y) = C∗
T (y) = max

x
{⟨y, x⟩ − CT (x)}

= max
x
{yx− x2} = y2

4
.

We can now form the function in (3-15) and then compute the optimal pairs between the
primal state and the dual state variables.

y∗(x) = arg max
y
{⟨fs(x), y⟩ − C∗

x(−fT
i (x)y)− J∗(y)}

= arg max
y
{2xy − y2

4
+ x2 − y2

4
}

= 2x.

(3-19)

Rodopoulos Charalampos Master of Science Thesis

3-2 Extraction of optimal control input 15

Next, we will compute the optimal pair between the input variable u and the dual state
variable y.

u∗(y) = arg max
u
{⟨−fT

i (x)y, u⟩ − C(x, u)}

= arg max
u
{−yu− x2 − u2}

= −y

2
.

(3-20)

By combining the optimal pairs acquired in (3-19) and (3-20), we end up with the optimal
control law

u∗(x) = u∗(y(x)) = −y(x)
2

= −x. (3-21)

On the other hand, by solving the original DP formulation analytically we would get

u∗(x) = arg min
u
{C(x, u) + J(xT)}

= arg min
u
{x2 + u2 + x2

T }

= arg min
u
{x2 + u2 + (2x + u)2}

= arg min
u
{x2 + u2 + 4x2 + u2 + 4xu}

= arg min
u
{5x2 + 2u2 + 4xu}

= −x.

(3-22)

As we can see, the optimal control law obtained in both cases is exactly the same. A few
further remarks regarding the proposed way of extracting the optimal control input. The
analytical procedure outlined above is being computed with all spaces being continuous. That
means that whatever the optimal pairings are, we know that the space contains them and we
can extract them without error. The conjugations in the CDP algorithm are performed over
discrete spaces with the LLT algorithm. As input to the LLT algorithm, we need to provide
both the primal and dual grids. Since we have no way of knowing the optimal pairing between
the two grids beforehand, the choice of the two grids will affect the result of the conjugation.
The difference this will have in the real world simulations will be examined in Chapter 4.

Master of Science Thesis Rodopoulos Charalampos

16 Analytical Results

Rodopoulos Charalampos Master of Science Thesis

Chapter 4

Simulation Results

In this chapter, we will present the simulation results regarding the various topics tackled in
this thesis. Firstly, we will present the difference between using Kuhn triangulation as an
interpolation technique and multilinear interpolation (LERP). Then, we will use the theory
presented in the previous chapter to extract the optimal control input from within the CDP
algorithm.

4-1 Kuhn triangulation versus LERP

In this section, we will present the results of using Kuhn triangulation versus LERP as an
interpolation technique. The interpolation techniques will be tested on line 6 of Setting 2 of
the CDP algorithm in order to calculate ϕ̄d∗d [1, p. 19]. For the reader’s convenience the
algorithms of [1] are included in the appendix of the current thesis. For both techniques we
will calculate the optimal cost-to-go functions Jt, that will be used to extract the optimal
control inputs via a minimization. We will calculate the cost-to-go function for a horizon of
T = 10 for the following system.

xt+1 =
[
−0.5 2

1 3

]
xt +

[
1 0.5
1 1

]
ut (4-1)

Ct(xt, ut) = ||xt||22 + e|ut1| + e|ut2| − 2 (4-2)
CT = ||xT ||22 (4-3)

The system is constrained as follows

xt ∈ [−1, 1]2 (4-4)
ut ∈ [−2, 2]2 (4-5)

Master of Science Thesis Rodopoulos Charalampos

18 Simulation Results

For our testing, the system is discretized in 11, 21 and 41 points in each dimension of the
state and input grids. In Table 4-1, we will present the performance of the two interpolation
techniques with respect to the overall cost of the trajectory that was generated from the
control inputs obtained from the cost-to-go functions. These control actions were generated
for a total of 100 initial conditions. In more detail, we present the interpolation technique
used, the discretization of the state and input grid, the percentage of cases each interpolation
technique outperforms the other, and the average cost improvement in those cases.

Table 4-1: Comparison between Kuhn triangulation and LERP as interpolation techniques.

Method & Discretization C.I w.r.t other method (% of cases)1 Avg Cost Improvement
Kuhn triangulation - 11 17 0.5080

LERP - 11 17 0.7140
Kuhn triangulation - 21 15 0.3097

LERP - 21 17 0.2959
Kuhn triangulation - 41 11 0.0840

LERP - 41 15 0.1461

As we can see each, interpolation technique outperforms the other in about 15% of the cases
and that number does not change considerably when increasing the discretization. Further-
more, the average cost improvement ranges from 0.08− 0.71 which translates to a percentage
improvement of 1.5 − 8%. This improvement, although important in the sparser grids, does
not translate to any algorithm being the superior over the other. In about two thirds of
the cases the algorithms performed exactly the same, which can be attributed to the sparse
discretisation of the input grid in the sparser cases. The two methods could be computing
different values for the control input but since the discretization is not dense enough, the
difference is lost in the end result. In the more dense cases, the dense descritization of the
state grid is leading to smaller errors and thus the methods perform similarly. Another reason
why the two algorithms perform similarly is that when the query point, we are trying to com-
pute the function value for, lies on or very close to the grid lines, then Kuhn’s triangulation
becomes the same as linear interpolation.

For the sake of completeness in Figure 4-1, we present the error of the cost-to-go functions
obtained from the two interpolation methods versus our benchmark cost-to-go function for
different discretizations for the first step in the horizon. The benchmark cost-to-go function
was computed using a high density d-DP solution. As is evident from the figure, both methods
perform very similarly to each other, which supports the comparison presented in Table 4-1.
Also, as the discretization becomes more dense, the methods approach the benchmark which
is something to be expected.

Overall, it is evident that the two methods perform very close to one another, and any small
advantage one has over the other could be due to the different cost-to-go functions and not a
clear advantage of one method.

1This column depicts the percentage of cases one method outperforms the other for the same discretization.

Rodopoulos Charalampos Master of Science Thesis

4-1 Kuhn triangulation versus LERP 19

(a) Discretization of 11 points. (b) Discretization of 21 points.

(c) Discretization of 41 points.

Figure 4-1: Error between cost-to-go functions calculated with interpolation methods and the
benchmark.

Master of Science Thesis Rodopoulos Charalampos

20 Simulation Results

4-2 Extraction of optimal control input

As we mentioned in Chapter 3, although theoretically the extraction of the optimal control
input can be achieved, there are factors that could influence the result like the choice of the
dual state grid. In Chapter 3, we extracted the optimal pairs analytically in the continuous
domain. Since the CDP algorithm is working in the discrete domain and since we need to
specify both the primal and dual grids before the conjugation, it is likely that the theoretical
optimal pairs are not contained in the specified grids. In that case, the LLT algorithm will
return a set of sub-optimal optimizers between the primal and dual grid. These pairs will
then introduce an error in the control action we will compute. In the current version of the
CDP algorithm the control inputs are computed by solving a minimization problem during
the forward iteration of the DP problem. In the next sections, we will compare these with
the control inputs obtained from our proposed method.

4-2-1 Effects of discretization on extraction of optimal pairs

As we mentioned already, extracting the optimal pairs between the primal and dual domain
during the conjugation could be affected by the chosen grids. For our example, we will use
the following function to perform the conjugation on.

f(x1, x2) = x2
1 + x2

2, x1, x2 ∈ IR, (4-6)

for which we can analytically compute the conjugate function

f∗(s1, s2) = s2
1
4

+ s2
2
4

, (4-7)

with the optimizer between the primal and dual domains being

x∗
1(s1) = arg max

x1
{⟨x1, s1⟩+ fx2(x1)} = s1

2
, (4-8)

x∗
2(s2) = arg max

x2
{⟨x2, s2⟩+ fx1(x2)} = s2

2
. (4-9)

Now consider the following discretization of the function above.

fd(x1, x2) = x2
1 + x2

2, (4-10)
(x1, x2) ∈ {−4,−3.6,−3.2,−2.8, ..., 2.8, 3.2, 3.6, 4}2. (4-11)

In order to perform the conjugation via the LLT, we will choose two different grids for the
dual domain.

(s1, s2) ∈ Sopt = {−8,−7.2,−6.4, ..., 6.4, 7.2, 8}2, (4-12)
(s1, s2) ∈ Ssubopt = {−11,−9.9,−8.8, ..., 8.8, 9.9, 11}2. (4-13)

Rodopoulos Charalampos Master of Science Thesis

4-2 Extraction of optimal control input 21

-4 -3 -2 -1 0 1 2 3 4

-10

-5

0

5

10

-15 -10 -5 0 5 10 15
-30

-20

-10

0

10

%
 E

rr
o
r

(a) First dimension.

-4 -3 -2 -1 0 1 2 3 4

-10

-5

0

5

10

-15 -10 -5 0 5 10 15
-30

-20

-10

0

10

%
 E

rr
o
r

(b) Second dimension.

Figure 4-2: Optimal pairs for the two discretizations and the analytical solution (top) and per-
centage of error each pair for the two discretizations differs from the analytical solution (bottom).

All the chosen grids contain 21 equidistant points in every dimension. The reason we chose the
two above discretizations of the dual domain is that the first one is the optimal discretization
based on the analytical result in equations (4-8) and (4-9), while the second contains a larger
space that given the same number of points should not contain all the optimal pairs. In Figure
4-2, we plot the pairs obtained from each discretization on top of the optimizer mappings
we obtained in equations (4-8)-(4-9), as well as the percentage each pair differs from its
analytically calculated optimal. Given that we calculate the error as a percentage of the
optimal value, we must note that in the case of the pair being (0, 0), both times the algorithm
has identified the pair correctly and we set the error manually to zero. As we can observe
from the figure, when the dual grid is chosen to be exactly the optimal of the primal grid, LLT
computes the optimal pairs without error. In the case of the sub-optimal grid we can see that
the error in the sub-optimal pairs can reach 30% of the optimal value. In our case this can
lead to sub-optimal control inputs that will increase the overall cost for a trajectory. The LLT
algorithm, in higher than one dimensions, employs a factorization scheme (see Section 2.1).
This means that in order to extract the control input in the second dimension, we need the
pair from the first dimension. This could introduce an additional error in the control inputs
of the dimensions following the first. A higher discretization of the space could potentially
lead to better results, since a denser grid is more likely to contain the points needed for the
optimal pairs. Given that we are using the LLT algorithm to solve a DP problem, we must
consider the curse of dimensionality. A dense grid in high dimensions could lead to large
time requirements for computing the solution, or even make the problem intractable. To
summarize, the first important result that we should keep in mind is that the choice of the
dual grid can greatly affect our ability to extract the optimal pairs.

In the CDP algorithm’s current state, the optimal pairs of the conjugations are not employed.
In every call to the LLT algorithm only the conjugate function is needed, in order to compute
the cost-to-go functions. These functions are later used to extract the control inputs via a
minimization problem. It is important to see how a sub-optimal discretization can affect the
values of the conjugate function, since the function is used as an alternative to extract the
optimal control inputs. In Figure 4-3, we plot how much the conjugate functions differ from
the analytically available result in equation (4-7) for the two discretization mentioned above.

Master of Science Thesis Rodopoulos Charalampos

22 Simulation Results

(a) Side view of the error. (b) Top view of the error.

Figure 4-3: Percentage of error of conjugate function computed with LLT with respect to the
analytically available conjugate function.

Again, as these Figures represent the percentage of error, in the case of (0, 0), the function
value was correctly identified and thus the error was set to zero.

The function values when the discretization is optimal, match the ones from the analytical
result. For the sub-optimal discretization we can see that the function values can be off by
up to 8%. This result means, that in this case, and for the same sub-optimal choice for the
dual grid, the conjugate function is closer to the analytically available conjugate, than the
conjugation optimizers are to the analytically available optimizer. Since the current method
of extracting the control inputs in the CDP algorithm, employs only the conjugate functions,
it could be that it will lead to a smaller error compared to our proposed method which employs
the conjugate pairs.

This will be tested also, in the following section on two different systems, a 1D and a 2D.

4-2-2 1D example

Firstly, we will apply the procedure to the model described below. The dynamics is given by:

xt+1 = 2xt + ut,

The system is constrained as follows:

−1 ≤ xt ≤ 1, (4-14)
−2 ≤ ut ≤ 2. (4-15)

The stage and terminal costs are:

Ct = x2
t + e|ut|, (4-16)

CT = x2
T . (4-17)

Rodopoulos Charalampos Master of Science Thesis

4-2 Extraction of optimal control input 23

We will solve the DP problem and obtain the optimal control inputs via 3 different methods
for a time horizon of T = 10. First is the procedure using the optimal conjugation pairs
described in the previous Chapter. Then the procedure that the CDP currently uses, which
is the minimization of the cost-to-go function during the forward iteration of the DP problem.
Lastly, for our benchmark we will use the d-DP solution from a high density discretized grid
(81 points in each dimension). .

In Figure 4-4, we present for each step in the horizon the absolute error between the control
input obtained from the two methods and the benchmark, averaged out over 100 initial
conditions. For the sake of comparing the two methods fairly, at each step we start from the
same initial condition. That means that the starting state in each step is the same for all
methods. At each step we assume that xt is the same for both methods and we calculate
u∗(xt) with the proposed method, the forward minimization and the d-DP solution. The areas
filled with color depict the area where 80% of the samples lie. The initial conditions were
selected randomly from a uniform distribution over the interval [−1, 1]. The reason we used
a uniform distribution is that we wanted to include as much of the state space as possible
so as the performance of the methods is not influenced by parts of the state space where
one method could outperform the other. The subfigures present how the error changes for
different discretizations of the input and state space. The proposed method could not control
all the initial conditions at each step, so in the figure we present only those conditions that
were able to be controlled. In Figure 4-5, we present the number of initial conditions that
could not be controlled at each step. Note that we add the initial conditions that were not
controlled at the previous steps to the current one.

As we can see, in the Figure 4-4 the methods perform extremely well. As we increase the dis-
cretization of the state and input spaces both errors are decreasing reaching very satisfactory
levels. The difference between the errors seems to be decreasing with a higher discretization,
which should be expected with more dense grids. Since we start from the same initial con-
ditions spanning the entire state space x we can see that both methods perform similarly at
each step. This is expected as for the first few steps the cost-to-go functions are the same for
each method, which should in turn give us the same results for the control inputs.

Since we are working with a time horizon of T = 10, it is important to check how the methods
perform over the entire horizon and how sub-optimal control actions computed by each method
can affect the next steps of the horizon. For that reason, in Figure 4-6, we present the cost-
to-go at every step when using the control actions we obtained above from each method and
the benchmark. The costs are again averaged over the 100 initial conditions and at every
step the cost is accumulated over the previous time steps. The filled areas represent the area
inside which 80% of the our costs for the current step lie. The proposed method was not
able to control all initial conditions, with a number of trajectories breaking the constraints.
For that reason in the Figures 4-6 and 4-7 we have only included the trajectories that did
not violate the constraints. In Figure 4-8, we present the number of invalid trajectories, for
the proposed method, at each step of the horizon for different discretizations. Note that at
each step we accumulate the number of trajectories over time. As we can see in the sparse
discretization the proposed method cannot control all trajectories. The reason being that the
extraction of the optimal conjugation pairs with that discretization of the state and input
spaces, is not possible, leading to higher errors. Both the forward minimization method and
the benchmark were able to control all trajectories without violating the constraints.

Master of Science Thesis Rodopoulos Charalampos

24 Simulation Results

1 2 3 4 5 6 7 8 9 10
Horizon step

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

E
rr

or

Forward minimization
Conjugate pairs

(a) Discretization of 11 points.

1 2 3 4 5 6 7 8 9 10
Horizon step

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

E
rr

or

Forward minimization
Conjugate pairs

(b) Discretization of 21 points.

1 2 3 4 5 6 7 8 9 10
Horizon step

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

E
rr

or

Forward minimization
Conjugate pairs

(c) Discretization of 41 points.

Figure 4-4: Absolute error of one step ahead optimal control inputs against the benchmark
averaged over 100 initial conditions.

Rodopoulos Charalampos Master of Science Thesis

4-2 Extraction of optimal control input 25

1 2 3 4 5 6 7 8 9 10
Horizon step

0

5

10

15

20

25

#
of

In
va

li
d

T
ra

je
ct

or
ie
s

11 points
21 points
41 points

Figure 4-5: Number of invalid trajectories at each step in the horizon for the one step ahead
predictions.

In Figure 4-6, the forward minimization method outperforms the conjugation pairs by a
considerable amount. The difference between the two decreases as the grid becomes more
dense. The difference between the two methods can be attributed to a snowballing effect of
the errors at each step. As the proposed method computes slighty worse control inputs at
each step, new sub-optimal states will be reached by the system. These sub-optimal states
will then lead to larger inputs in order to be controlled and thus a propagation effect is created
where each choice of control input affects the cost at later stages, since its effect needs to be
mitigated. That is the reason why the cost in the case of the conjugate pairs keeps increasing,
or takes longer to reach a steady state than the other two cases.

Lastly, we present in Figure 4-7 the absolute error of the trajectory of the system when con-
trolled by the actions obtained by each method versus the benchmark averaged over the 100
initial conditions. Even though the snowballing effect described above will heavily influence
the following figure, we think its important to include it since these are the "optimal" trajec-
tories the methods were able to compute, for the given horizon. The error is indicative of the
methods’ multi-step performance and thus an important result in the comparison between
the two methods.

In the figure, we observe a similar relation to the previous plots, where the forward minimiza-
tion control inputs outperform the control inputs from the conjugate pairs, and the difference
becomes smaller as we increase the discretization. There is one more interesting aspect we
need to discuss in these plots. In the last step of the horizon, the error of the trajectories
is increasing. This could be explained because as we get closer to the horizon and the state
remains within the constraints, it is no longer optimal to incur large control inputs on the
system, as it would lead to higher costs overall. So the system is left to drift, in a sense.
Given the dynamics being unstable, without control the sub-optimal state computed by the
two methods will drift faster than the optimal state computed by the benchmark. This lead
to the increase of the overall error. This can also be backed up by the results in Figure 4-8
where only at the last step we have uncontrollable states.

Master of Science Thesis Rodopoulos Charalampos

26 Simulation Results

1 2 3 4 5 6 7 8 9 10
Horizon step

0

1

2

3

4

5

6

7

8

9

10

C
os

t

Forward minimization
Conjugate pairs
Benchmark DP

(a) Discretization of 11 points.

1 2 3 4 5 6 7 8 9 10
Horizon step

0

1

2

3

4

5

6

7

8

9

10

C
os

t

Forward minimization
Conjugate pairs
Benchmark DP

(b) Discretization of 21 points.

1 2 3 4 5 6 7 8 9 10
Horizon step

0

1

2

3

4

5

6

7

8

9

10

C
os

t

Forward minimization
Conjugate pairs
Benchmark DP

(c) Discretization of 41 points.

Figure 4-6: Average aggregate cost at each step for the control inputs calculated by the 3
different methods.

Rodopoulos Charalampos Master of Science Thesis

4-2 Extraction of optimal control input 27

1 2 3 4 5 6 7 8 9 10
Horizon step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

E
rr

or

Forward minimization
Conjugate pairs

(a) Discretization of 11 points.

1 2 3 4 5 6 7 8 9 10
Horizon step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

E
rr

or

Forward minimization
Conjugate pairs

(b) Discretization of 21 points.

1 2 3 4 5 6 7 8 9 10
Horizon step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

E
rr

or

Forward minimization
Conjugate pairs

(c) Discretization of 41 points.

Figure 4-7: Trajectory error for each step averaged over 100 initial positions.

Master of Science Thesis Rodopoulos Charalampos

28 Simulation Results

1 2 3 4 5 6 7 8 9 10
Horizon step

0

2

4

6

8

10

12

14

16

18

20

#
of

In
va

li
d

T
ra

je
ct

or
ie
s

11 points
21 points
41 points

Figure 4-8: Number of invalid trajectories at each step in the horizon.

4-2-3 2D example

In this section, we will be presenting the same plots for a 2-state, 2-input system. The system
is described by the Equations (4-1)-(4-5).

We will be solving for a finite time horizon of T = 10. Again, the control actions are computed
with the the proposed method, the current method implemented in the CDP algorithm and
our benchmark, which is a high density d-DP solution. We will test the performance of
the methods against each other and the benchmark. The results are averaged over 100
initial conditions. The proposed method was not able to control the system for each initial
condition. In Figure 4-9, we present the accumulating number of trajectories that violated
the constraints for different discretizations. The reason why the method failed is most likely
that the chosen grids introduced an error big enough in part of the space, that the optimal
control inputs could not be identified anymore. This can be backed up by the fact that as
the discretization becomes more dense the number of uncontrollable trajectories diminish.
Also important that again at the last step the number of uncontrollable trajectories increase
which could be explained by the fact that the system does not want to incur large control
inputs, leading to some uncontrollable states. Compared to the 1D case, where we had fewer
uncontrollable trajectories in the one step ahead predictions, it is important to note, that as
the systems become more complex, a higher discretization is needed for the proposed method
to be able to perform well. Both the forward minimization method and our benchmark were
able to control all trajectories for all discretizations.

In Figure 4-10, we present the absolute error between the two methods and our benchmark,
for the one step ahead control input, averaged over the initial conditions. We assume at each
step the starting state to be the optimal one, so that we compare the two methods fairly. The
highlighted regions represent the space in which 80% of the data points for each step lie.

Similarly to the 1D example the proposed method performs worse than the current one and
the difference becomes smaller as we increase the discretization. Even in the denser grids, the
proposed method performs two times worse than the current method. This can be attributed
to the larger error of extracting the conjugate pairs compared to the cojugate function that
was discussed in a previous section.

Rodopoulos Charalampos Master of Science Thesis

4-2 Extraction of optimal control input 29

1 2 3 4 5 6 7 8 9 10
Horizon step

0

10

20

30

40

50

60

70

80

90

100

#
of

In
va

li
d

T
ra

je
ct

or
ie
s

11 points
21 points
41 points

Figure 4-9: Number of invalid trajectories at each step in the horizon.

As is the case in the 1D system, we will also present the methods’ performance over the
entire time horizon. Again the proposed method failed to control all of the trajectories
without violating the constraints. In Figure 4-11, we present the accumulated number of
trajectories that broke the constraint, at each step, for different discretizations. For the
smallest discretization of 11 points, 90% of the total initial conditions could not be controlled
by the algorithm. As the discretization increases, the number of invalid trajectories declines
steeply. This result clearly emphasizes the need for increasing the discretization of the grid,
or finding a better way of choosing the dual grid during the conjugation. For the remaining
plots, we will be including only the valid trajectories for the proposed method. Both the
forward minimization method and the benchmark were able to control all initial conditions
without violating the constraint.

In Figure 4-12, we present the accumulating cost of the three methods at each step averaged
over the initial conditions. Additionally, in Figure 4-13, we present the absolute error of
the corresponding trajectories resulting from applying the control inputs we calculated from
each method. The results of these plots, are mostly unchanged from what we observed in
the 1D example. Two things need to be mentioned. The error of the trajectory seems to be
increasing for both methods early in the horizon. For more complex systems, we can observe
that the effect of sub-optimal control inputs creates a larger snowballing effect in the states
as the trajectories drift further from the optimal one earlier than the 1D case. The second
observation is the performance of the proposed method in the smallest discretization. In
Figure 4-13a, even when including only the trajectories that didn’t violate the constraints,
the method barely manages to control them. The error for the method is hovering around
0.25 which is enormous given that the state space spans the interval [−1, 1]. The much bigger
errors, result in high control inputs in an effort to control the system which results to the
almost 5 times bigger average total cost of the trajectories over the other methods. The
sparse discretization coupled with a sub-optimal choice for the dual grid makes the proposed
method essentially impractical.

Master of Science Thesis Rodopoulos Charalampos

30 Simulation Results

Input 1

2 4 6 8 10
Horizon step

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
v
er

ag
e

E
rr

o
r

Forward minimization
Conjugate pairs

Input 2

2 4 6 8 10
Horizon step

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
v
er

ag
e

E
rr

o
r

Forward minimization
Conjugate pairs

(a) Discretization of 11 points.

Input 1

2 4 6 8 10
Horizon step

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
v
er

ag
e

E
rr

o
r

Forward minimization
Conjugate pairs

Input 2

2 4 6 8 10
Horizon step

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
v
er

ag
e

E
rr

o
r

Forward minimization
Conjugate pairs

(b) Discretization of 21 points.
Input 1

2 4 6 8 10
Horizon step

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

E
rr

or

Forward minimization
Conjugate pairs

Input 2

2 4 6 8 10
Horizon step

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

E
rr

or

Forward minimization
Conjugate pairs

(c) Discretization of 41 points.

Figure 4-10: Absolute error of one step ahead optimal control inputs against the benchmark
averaged over 100 initial conditions.

Rodopoulos Charalampos Master of Science Thesis

4-2 Extraction of optimal control input 31

1 2 3 4 5 6 7 8 9 10
Horizon step

0

10

20

30

40

50

60

70

80

90

100

#
of

In
va

li
d

T
ra

je
ct

or
ie
s

11 points
21 points
41 points

Figure 4-11: Number of invalid trajectories at each step in the horizon for the multistep imple-
mentation.

1 2 3 4 5 6 7 8 9 10 11
Horizon step

0

5

10

15

20

25

30

35

C
os

t

Forward minimization
Conjugate pairs
Benchmark DP

(a) Discretization of 11 points.

1 2 3 4 5 6 7 8 9 10 11
Horizon step

0

5

10

15

20

25

30

35

C
os

t

Forward minimization
Conjugate pairs
Benchmark DP

(b) Discretization of 21 points.

1 2 3 4 5 6 7 8 9 10 11
Horizon step

0

5

10

15

20

25

30

35

C
os

t

Forward minimization
Conjugate pairs
Benchmark DP

(c) Discretization of 41 points.

Figure 4-12: Average aggregate cost at each step for the control inputs calculated by the 3
different methods.

Master of Science Thesis Rodopoulos Charalampos

32 Simulation Results

state 1

2 4 6 8 10
Horizon step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
er

a
g
e

E
rr

o
r

Forward minimization
Conjugate pairs

state 2

2 4 6 8 10
Horizon step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
er

a
g
e

E
rr

o
r

Forward minimization
Conjugate pairs

(a) Discretization of 11 points.

state 1

2 4 6 8 10
Horizon step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
er

a
g
e

E
rr

o
r

Forward minimization
Conjugate pairs

state 2

2 4 6 8 10
Horizon step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
er

a
g
e

E
rr

o
r

Forward minimization
Conjugate pairs

(b) Discretization of 21 points.
state 1

2 4 6 8 10
Horizon step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
er

ag
e

E
rr

or

Forward minimization
Conjugate pairs

state 2

2 4 6 8 10
Horizon step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
er

ag
e

E
rr

or

Forward minimization
Conjugate pairs

(c) Discretization of 41 points.

Figure 4-13: Trajectory error for each step averaged over 100 initial positions.

Rodopoulos Charalampos Master of Science Thesis

Chapter 5

Conclusions and Future Research

In this final chapter of the thesis, we will shortly discuss the work conducted and shortcomings
of the proposed methods as well as try to provide any willing reader with a few research
directions in order to improve the overall CDP algorithm.

5-1 Conclusions

In this thesis, several improvements of the algorithms proposed in [1] were developed. Starting,
we considered the application of Kuhn’s triangulation as an interpolation technique. The goal
here was twofold: First, check whether we can preserve convexity in a convex extensible set
of discrete points. We proved that it is not possible to do that every time. Second, we
tested the method against the current interpolation method used by CDP, LERP, in order
to see whether one method outperforms the other. A more accurate representation of the
cost-to-go function will lead to smaller errors in the optimal control input and thus smaller
costs for the trajectory of the system. In our testing, the two methods performed similarly
with one outperforming the other in about 15% of the total cases. The difference between
the two methods became smaller as the grid we used became more dense. Overall, the use
of a different interpolation technique will provide the algorithm with more versatility as the
user can choose between the two and use the best performing one for their specific use case.

Lastly, we considered the extraction of the optimal control input from within the CDP algo-
rithm. To achieve that, we employed the conjugation’s optimal pairs in order to create the
optimal control law u = u∗(y∗(x)), where our optimal control input u is a function of the dual
variable y, which in turn is a function of our current state x. We showed that extraction of
the optimal control input is indeed feasible when dealing with continuous spaces, but depends
highly on the discretization of the dual grid, when the spaces we are working with are discrete.
Since we need to choose the dual grid before actually performing the conjugation, the actual
optimal pairs may not be within that grid and thus we introduce an error creating a sub-
optimal set of pairs. We showed in our example that for the same discretization of the dual
grid, the error introduced by the sub-optimal pairs is larger than the error of the conjugate

Master of Science Thesis Rodopoulos Charalampos

34 Conclusions and Future Research

function itself. This is extremely important since the conjugate functions computed in [1]
are currently used in order to extract the optimal control sequence. So for sub-optimal grids
the current method employed by the CDP should outperform the proposed method. Another
important observation is that for the same grid size, the error of the dual pairs is much larger
outside the border of the optimal dual grid than inside it. This can be explained since every
point outside the border of the optimal dual grid gets assigned to the same point in the primal
grid, thus allowing the error to increase the further away we go. By having a larger dual grid
than required the points outside the optimal dual grid are not useful and thus we make the
effective region of the space more sparse, resulting in worse results when extracting the op-
timizer mappings. In our simulations, the same behaviour was again evident. The proposed
method performed slighty worse than the current method for the one step ahead predictions
of the control input. For the entire horizon the cost of the proposed method was much worse
due to the accumulating error of the multistep implementation. By increasing the density of
the grid, we observed that the both methods performed better and also closer to each other.
Since both methods can theoretically extract the optimal control sequence, by increasing the
grid closer to its continuous limit, the error between the two methods should shrink. To sum
up, as it currently stands, the proposed method should not be used in the CDP algorithm,
since the error it introduces is larger than the current method’s, especially in smaller grids.
Improving the selection of the dual grids during the conjugation steps of the algorithm could
lead to significant improvements which could make the proposed method more advantageous,
should that happen.

5-2 Future Research

Several improvements could be carried out in the works presented in the current thesis. These
suggestions are pertaining to the work conducted during this thesis. For further research ideas
one could read the relevant section of the original CDP paper.

Identification of system matrices. One possible research idea to extend the capabilities
of the original algorithms is to introduce an identification technique that is able to gener-
ate a model. Since the original algorithms are model based, by employing an identification
technique we can solve a larger number of problems, not necessarily model based. Espe-
cially important is the identification when dealing with noisy data, as the performance of the
algorithm depends on the accuracy of the model.

Preserving Convexity. As neither the current method, LERP, nor the proposed one,
Kuhn triangulation, can preserve convexity when extending a convex extensible set of points,
further research is required in finding a computationally efficient interpolation method that
could guarantee that.

Choosing the dual grid. As mentioned above the choice of the dual grid greatly impacts
the error of the proposed method for extracting the optimal control input. By choosing
more fitting grids the proposed method could result in significantly lower errors, which could
make the method more attractive than the currently used one since its computational load is
effectively non existent.

Rodopoulos Charalampos Master of Science Thesis

Appendix A

CDP Algorithms

In this appendix we present the CDP algorithms that were developed in [1].

Setting 1

Algorithm 1 Implementation of the d-CDP operator for Setting 1 [1]
Input: dynamics Fs : Rn → Rn, Fi : Rn → Rnxm; cost-to-go (at t+1) J : XgwR; conjugate

of stage cost C∗
x : XgxRm → R

Output: cost-to-go (at t) T̂ [J](x) : Xg → R
1: construct the grid Yg;
2: use LLT to compute Jd∗ : Yg → R;
3: for each x ∈ Xg do
4: ϕx(y)← C∗

x(−Fi(x) + Jd∗(y)) for y ∈ Yg

5: T̂ [J](x)← maxy∈Yg{⟨Fs(x), y⟩ − phix(y)}
6: end for

Master of Science Thesis Rodopoulos Charalampos

36 CDP Algorithms

Setting 2

Algorithm 2 Implementation of the d-CDP operator for Setting 2 [1]
Input: dynamics Fs : Rn → Rn, B :∈ Rnxm; cost-to-go (at t+1) J : Xg → R; stage cost

(state) Cs(x) : XgxRn → R; conjugate of stage cost (input) C∗
i : Rm → R; grid Zg ⊂ R

Output: cost-to-go (at t) T̂ m
d [J](x) : Xg → R

1: construct the grid Yg;
2: use LLT to compute Jd∗ : Yg → R from J : Xg → R;
3: ϕ(y)← C∗

i (−BT y) + JJd∗(y) for y ∈ Yg

4: use LLT to compute ϕd∗ : Zg → R from ϕ : Yg → R
5: for each x ∈ Xg do
6: use LERP to compute ϕd∗d(Fs(x)) from ϕd∗ : Zg → R
7: T̂ m

d [J](x)← Cs(x) + ϕd∗d(Fs(x))
8: end for

Rodopoulos Charalampos Master of Science Thesis

Bibliography

[1] M. A. S. Kolarijani and P. M. Esfahani, “Fast approximate dynamic programming for
input-affine dynamics,” 2021.

[2] R. E. Bellman, Dynamic Programming. USA: Dover Publications, Inc., 2003.

[3] M. B. Haugh and L. Kogan, “Chapter 22 duality theory and approximate dynamic pro-
gramming for pricing american options and portfolio optimization,” in Financial Engi-
neering (J. R. Birge and V. Linetsky, eds.), vol. 15 of Handbooks in Operations Research
and Management Science, pp. 925–948, Elsevier, 2007.

[4] M. Uddin, M. Romlie, M. Abdullah, S. Abd Halim, A. Bakar, and T. Kwang, “A review
on peak load shaving strategies,” Renewable and Sustainable Energy Reviews, vol. 82,
pp. 3323–3332, 11 2017.

[5] A. Oudalov, R. Cherkaoui, and A. Beguin, “Sizing and optimal operation of battery
energy storage system for peak shaving application,” in 2007 IEEE Lausanne Power
Tech, pp. 621–625, 2007.

[6] Q. Wei, G. Shi, R. Song, and Y. Liu, “Adaptive dynamic programming-based optimal
control scheme for energy storage systems with solar renewable energy,” IEEE Transac-
tions on Industrial Electronics, vol. 64, no. 7, pp. 5468–5478, 2017.

[7] R. Martins, H. C. Hesse, J. Jungbauer, T. Vorbuchner, and P. Musilek, “Optimal compo-
nent sizing for peak shaving in battery energy storage system for industrial applications,”
Energies, vol. 11, no. 8, 2018.

[8] F. Borrelli, M. Baoti, A. Bemporad, and M. Morari, “Dynamic programming for con-
strained optimal control of discrete-time linear hybrid systems,” Automatica, vol. 41,
no. 10, pp. 1709–1721, 2005.

[9] Q. Wei, D. Liu, and H. Lin, “Value iteration adaptive dynamic programming for optimal
control of discrete-time nonlinear systems,” IEEE Transactions on Cybernetics, vol. 46,
no. 3, pp. 840–853, 2016.

Master of Science Thesis Rodopoulos Charalampos

38 Bibliography

[10] A. Kleywegt, V. Nori, and M. Savelsbergh, “Dynamic programming approximations for
a stochastic inventory routing problem,” Transportation Science, vol. 38, pp. 42–70, 02
2004.

[11] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming, vol. 27. 01 1996.

[12] D. Bertsekas, Dynamic programming and optimal control: Volume I, vol. 1. Athena
scientific, 2012.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[14] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292,
1992.

[15] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning with function
approximation,” IEEE transactions on automatic control, vol. 42, no. 5, pp. 674–690,
1997.

[16] B. V. R. D.P. de Farias, “The linear programming approach to approximate dynamic
programming,” Operations Research, vol. 51, no. 6, pp. 850–865, 2003.

[17] F. Bach, “Max-plus matching pursuit for deterministic markov decision processes,” 2019.

[18] E. Berthier and F. Bach, “Max-plus linear approximations for deterministic continuous-
state markov decision processes,” IEEE Control Systems Letters, vol. 4, no. 3, pp. 767–
772, 2020.

[19] R. T. ROCKAFELLAR, Convex Analysis. Princeton University Press, 1970.

[20] Y. Lucet, “Faster than the Fast Legendre Transform, the Linear-time Legendre Trans-
form,” Numerical Algorithms, vol. 16, pp. 171–185, Mar. 1997.

[21] S. Davies, “Multidimensional triangulation and interpolation for reinforcement learning,”
in Advances in Neural Information Processing Systems (M. C. Mozer, M. Jordan, and
T. Petsche, eds.), vol. 9, MIT Press, 1997.

[22] D. W. Moore, Simplicial Mesh Generation with Applications. PhD thesis, USA, 1992.
UMI Order No. GAX93-00795.

[23] K. Murota, “Discrete convex analysis,” Mathematical Programming, vol. 83, no. 1,
pp. 313–371, 1998.

[24] K. Murota, Recent Developments in Discrete Convex Analysis, pp. 219–260. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009.

[25] K. Murota, Discrete Convex Analysis: Monographs on Discrete Mathematics and Appli-
cations 10. USA: Society for Industrial and Applied Mathematics, 2003.

Rodopoulos Charalampos Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Theoretical Prerequisites
	Legendre-Fenchel transform and LLT algorithm
	Conjugate Dynamic Programming
	Original DP framework
	CDP algorithm

	Analytical Results
	Kuhn triangulation as an interpolation method
	Method outline and example in 2D
	Convex extension of a convex extensible function

	Extraction of optimal control input
	Theoretical Framework
	Example of SISO system

	Simulation Results
	Kuhn triangulation versus LERP
	Extraction of optimal control input
	Effects of discretization on extraction of optimal pairs
	1D example
	2D example

	Conclusions and Future Research
	Conclusions
	Future Research

	Appendices
	CDP Algorithms

	Back Matter
	Bibliography

