
3D Point Cloud Completion from 2.5D Data

Teun Buijs
Supervisor(s): Kees Kroep, Dr. RangaRao Venkatesha Prasad 

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of
Technology,

In Partial Fulfilment of the Requirements
For the Bachlor of Computer Science and Engineering



Abstract— The tactile internet can be described
as the next step of the internet. It can empower
people, adding physical interactions to what nor-
mally is just an audiovisual experience. It how-
ever does need ultra-low latency. A solution to
having delays can be found in environment sim-
ulation. This paper describes a way to find the
correct shape of objects within the observed envi-
ronment. There already are AI-based approaches,
but the problem is that they are not transparent
in how they work. Hence the research question in
this paper: Is it possible to create a 3D point cloud
completion algorithm from 2.5D data, without re-
sorting to the use of AI? A three-step approach
was chosen: dividing the scene, reconstructing its
objects, and turning everything into meshes. The
focus was on the reconstruction. The basic princi-
ple used is that of symmetry. The main conclu-
sions are that this approach can work, but only
for relatively simple objects. And whereas the re-
sults are easier to understand, the logic-based ap-
proach is slower and less accurate than existing
approaches.

1 Introduction
Transport costs both time and money, scaling with
distance. Bringing a surgeon to the other side of the
world for an operation or sending an astronaut to a
satellite for repairs is very expensive. Therefore alter-
natives that allow circumvention of transport are be-
ing researched. Such as ways to empower people by
adding physical interactions to what would normally
allow only audiovisual experience.

One of the alternatives is called remote piloting or
remote operation. This is the act of having a pilot
perform tasks through a robotic replacement that has
been positioned at the site of operation. To achieve
a necessary level of precision the robot has to give
haptic feedback on the environment to the pilot. To
facilitate the necessary response speed the concept of
tactile internet is introduced.

Tactile internet can be described as the next step
of the internet [8]. It describes an internet that has
to have ultra-low latency (1-10ms) with close to no
errors. This is important due to the effects of a de-
lay in remote work [2]. Using the fastest informa-
tion transferring medium, light, response times can
be measured in milliseconds. Even this is not enough.
Going by the speeds as posted by NASA, the ping for
halfway across the earth would take around 0.13 s or
130ms [1]. Based on manual testing, it has been con-
cluded that even a response time of 5ms can lead to
potentially disastrous results.

A solution to having such delays can be found in
the world of environment simulation. By simulating
the robot’s environment, physics calculations can be

Figure 1: An example of a use case of tactile internet.
A robotic hand is mimicking the movements of the
operator’s hand, giving sense feedback of the object
it is holding. [5]

made locally. This allows for the data transfer delay
problem to be exchanged with a simulation accuracy
problem. To obtain a simulation that mimics the en-
vironment of the robot, the robot needs to detect its
surrounding features.

Accurately perceiving the environment comes with
its own pitfalls. Getting the correct shape, mass,
and texture of each object in the observed scene has
complications with measuring these properties in un-
known scenarios. Finding the correct mass and tex-
ture is out of scope for this research, and will not be
discussed further.

Finding the correct shape of objects within the ob-
served environment mostly has trouble with occlu-
sion, parts that are blocked from sight. The Kinect
can take images with an added depth element, allow-
ing for the formation of point clouds. Point clouds
are sets of 3D points, that can show the shape of ob-
jects. A Kinect cannot see the backside of an object,
nor can it see whatever is blocked from sight by the
object. This means that the pictures it can take are not
truly 3D, but rather 2.5D.

An accurate simulation needs fully 3D objects for
any realistic interaction to take place. Point clouds are
also hard to use within simulations. That is why the
research shall handle turning 2.5D point clouds into
3D meshes.

This work is an attempt at answering the following
questions:

1. How to reconstruct obscured sections of objects
in 2.5D data without the use of machine learn-
ing?

2. How to reconstruct occluded sections of objects
in 2.5D data without the use of machine learn-
ing?

3. How to lessen the effect of noise when recon-
structing a point cloud?

This paper proposes a method of reconstructing 3D
point clouds from 2.5D data via the use of symme-
try and mirroring. This technique works primarily



for simple objects, and will likely not have accurate
results for asymmetrical objects or objects that have
certain properties entirely hidden from view.

A quick overview of the structure of this paper. Ex-
isting works to combat the same problem are found in
section 2. Section 3 covers the thought process that
was followed during the research process. Section
4 explains how the algorithm works. An overview
of the results obtained and the evaluated performance
is given in section 5. Discussed in section 6 are the
ethics and reproducibility of the study. Section 7 con-
tains branches of possible research that may be done.
Section 8 contains the conclusion of this paper.

2 Related Works
There are little to no papers to be found linking tactile
internet and point cloud reconstruction. The follow-
ing subsections will present these subjects concerning
teleoperations separately.

2.1 Tactile Internet
Tactile internet can assist with the evolution of tele-
operation, though there are still some challenges to
be completed before true teleoperation can be a real-
ity [6]. One of these challenges is the impossibility
of tactile internet’s promise of 1ms round-trip delay
when considering large distances. Currently, there is
very little research that can be found that tries to solve
this. This paper is an attempt to rectify that using a
simulation-based approach.

2.2 Point Cloud Reconstruction
For a simulation-based teleoperation approach to
work, accurate simulations based on real-life data
need to be created. A lot of research has been done
on the subjects that make up this problem, though
they seem to be split into two different types. The
first type of research into reconstructing point clouds
is based on machine learning approaches, while the
second type seems to be more interested in patching
up holes in a point cloud.

The amount of advancements made in AI-based de-
velopment is not a small figure. Its contribution to the
point cloud reconstruction scene can be seen. Exam-
ples of this can be found in 3D-RecGAN++’s devel-
opment by Yang et al., the work by Xu et al., and
3D-R2N2 by Choy et al. [12][11][3]. The problem
with AI-based approaches is that they are not trans-
parent in how they work. It is practically impossible
to understand how an AI has generated its solution,
which complicates improving and debugging it.

While not as popular as machine learning, logical
approaches can be found that pursue the solution to
a similar problem, patching up holes in point clouds.
For this paper, the most notable work is that of Cui,

Zhang, and Wang who created a hole repairing algo-
rithm based on the notion of symmetry [4]. It is no-
table because the algorithm described here also makes
use of symmetry.

3 Methodology
The initial goal for this work was acquiring a 3D mesh
from images taken by a depth camera without resort-
ing to machine learning. This could then be used
to allow for the sense of touch to be simulated real
time, instead of relying on a feedback channel from a
robotic apparatus.

To accomplish this task the research would be di-
vided into multiple steps. It was decided that a three-
way divide would be the best way to move forward.
This resulted in the steps of; dividing the scene, re-
constructing its objects, and turning everything into
meshes.

Of these three priority would be given to the second
step, reconstruction, due to it being the most vital part
of the resulting algorithm. Due to its complicated na-
ture, there was little time for work on the other steps.

An example of a separation algorithm was pro-
vided by the Point Cloud Library (PCL) and was sup-
posed to be a placeholder until the time came to find a
more suitable version [10]. The chronological limita-
tions of this project ensured that this time would not
come to pass.

To create a robust point cloud 3D reconstruction
algorithm, the concept of symmetry in objects was
utilized. The reason symmetry was chosen was that
it was believed that humans unconsciously applied
a similar process to identify the unseen side of un-
known objects. Symmetry is a common occurrence in
nature and the man-made, which might help explain
the human identification process [9]. Mirroring ob-
jects through their symmetries is nonetheless a com-
plicated task in itself. That is why this step was also
divided into multiple sub-steps.

To find a symmetry plane in an object, the corners
of an object had to be found first. By taking a point
in the middle of these corners, and adding a vector in
the direction of one of the corners you get a possible
symmetry plane.

Finding the corners of an object had some compli-
cations. The techniques found in previous works did
not perform well under the constraints of this project.
Therefore a new technique was devised to accomplish
this task.

This new technique operated by removing the
edges of an object, including the corners, until only
the planes remained. After separating the planes,
which was done using another of PCL’s methods, the
corners would be found. Many corner-finding algo-
rithms were thought up, only to be discarded when
they didn’t work, until a solution was found that



worked well most of the time. This solution was
used for a few weeks until it was deemed unsatisfac-
tory. The final solution didn’t find corners in the point
cloud, instead it made them.

After using the corners to create potential mirrors
of the object and by comparing the mirrored points to
the original points of the object, the accuracy of the
symmetry plane could be calculated. Only the sym-
metry planes with high accuracy should be used, to
not generate features where there should be none.

The complete point cloud could now be turned into
a mesh. Again, because of the limitations put on this
project, the viable solution would be to form a naive
mesh.

4 Implementation
To help with the clarity of processing, the algorithm
was developed in two different parts. Each part will
be explained in the subsections below.

4.1 Step 1: Separation
The first step to turning a 2.5D scene into a 3D scene
is the separation of objects. It helps with focusing
on the objects themselves, ensuring that outside inter-
ference in the reconstruction step is minimized. By
handling each object independently, prioritizing ob-
jects that are more likely to be interacted with is also
possible. This could allow for a slight performance
boost.

Separating the scene into different objects would
also help with dealing with occlusion. By ignoring
the objects in front of the object, each hole in the ob-
ject can be handled as missing data. These could then
be patched using the same technique that was used for
the unseen side of objects.

The separation itself was done using Rusu’s work
on PCL [10].

4.2 Step 2: Reconstruction
The reconstruction of an object is the most com-
plicated part of the algorithm. The basic principle
used here is that of symmetry. By mirroring the ob-
ject through symmetry planes, an estimation could be
made of the unseen parts of the object.

To find the symmetry planes, the defining features
of the object first have to be identified. For most ob-
jects, the defining feature can be found in the corners
of said object. By taking two close corners, a poten-
tial symmetry plane can be created. After mirroring
the object in this potential symmetry plane, the accu-
racy could be calculated. Should the accuracy satisfy
the requirements set for the objects in the scene, the
symmetry plane is considered real and further testing
can be done.

As most point clouds are filled with noise, PCL’s
voxelization algorithm initially processes the point

(a) Input (b) Identified Planes

(c) Mirrors (d) Final Product

Figure 2: A simple rectangular object is simple to re-
construct when 3 of its sides are observed.

cloud. This reduces the noise and the number of
points in the resulting point cloud without losing
much detail.

To find the corners of an object, a custom technique
was created. First the planes of the object needed to
be found. To find the planes of an object, it removes
all the edges of the object.

The edges are found by using PCL’s normal gener-
ation, and finding which points have normal vectors
that differ from those around them. The difference
was calculated by summing the dot products of the
point’s normal vector and its nearest k points. A value
of 16 for k gave satisfactory results and was thus used.
The algorithm marked all points that had an average
normal dot product of 0.97 or higher as a non-edge.

After the planes are found, the planes must be sep-
arated. This is so that the corner finding algorithm
finds the corners of each plane. This separation was
done using PCL’s RANSAC method, with a distance
threshold of 0.015 [10]. Figure 2b is an example of
an object that has its edges removed and its planes
separated.

The corner generating algorithm generated corners
by finding the intersection line of each combination
of planes. Each plane then has every point mapped
onto this intersection line. The points on the intersec-
tion line that are furthest apart are then chosen to be
the corners of the plane. This means that per unique
combination of planes there are 4 corner points.

Using these corners to generate possible symmetry
planes, mirrors are made through them. An exam-
ple of mirroring can be found in figure 2c, which has
three mirrors. The accuracy of these mirrors is cal-
culated using the Hausdorff Distance. This algorithm
sums up the distances of all the mirrored points and
their nearest original points.

When mirroring there is a possibility for the re-
sult to have multiple similar mirrors. This clutters



the eventual object and is undesirable. To combat
this, each mirror is compared to a previously gener-
ated mirror. If the calculated difference is less than
0.001 it means that the mirrors are too similar, so it
doesn’t apply the new mirror.

Errors during mirroring can occur, usually this hap-
pens when the algorithm tries to mirror though a sym-
metry plane that is not present in the object. As such,
an acceptance threshold is applied that removes all
planes that do not have a Hausdorff score of less than
this threshold.

To obtain the final product, all the mirrors that
comply with the preset standards are added to the in-
put point cloud. This point cloud is then voxelized
with a voxel size that is double the size of the initial
voxelization.

5 Results
The examples used in this paper were initially created
as objects in the open-source 3D modelling software
Blender then processed into point clouds in the open-
source point cloud processing software CloudCom-
pare.

There are three parameters that can be changed to
influence the outcome of the algorithm. These are
voxel size, noise, and mirroring acceptance score. To
obtain the results from figure 2 the voxel size was 0.1
and the mirroring acceptance score was 2.0.

To apply parameter changes, a custom point cloud
visualizer was developed that would allow for param-
eters to be changed on the fly. The only influence this
had on the eventual algorithm is the assistance with
which it was created. The figures of point clouds in
this paper are taken from this visualizer.

5.1 Shapes
To display the results of this algorithm on different
simple objects, the figures 2, 3, 4, and 5 give an
overview of what can be expected of the different
stages of the algorithm.

5.2 Noise
Noise is an ever occurring problem when images are
taken. This is no different for depth cameras. To
test the effect of noise on the algorithm, a noise gen-
erator was implemented. This noise generator pro-
vides a bit of Gaussian noise to each point in the in-
put point cloud. It takes as an input a value for the
spread. The noise value generated is a value that has
a 10% chance of being equal to or greater that this
input noise value.

As can be seen in figure 6, noise can have a sub-
stantial effect on the algorithms final product. The
voxelization of the input point cloud does help negate
a portion of the noise, but when the noise value is

(a) Input (b) Identified Planes

(c) Mirrors (d) Final Product

Figure 3: A pyramid is shown here as an example of
an object that has triangular planes instead of rectan-
gular planes.

(a) Input (b) Identified Planes

(c) Mirrors (d) Final Product

Figure 4: A cylinder has a round body, which means
it has lots of potential symmetry planes. While the al-
gorithm makes a few errors, the human eye can recog-
nise the cylindrical shape.



(a) Input (b) Identified Planes

(c) Mirrors (d) Final Product

Figure 5: This simple house shows the working of the
algorithm on a more complex object than a rectangle
or a pyramid.

(a) Input (b) Added Noise

(c) Final Product

Figure 6: Even a bit of noise can have a vast negative
impact on the algorithm’s performance.

greater than or equal to the voxel size the algorithm’s
performance takes a serious hit.

5.3 Discussion
The results of this research show that the more com-
plex an object gets, the more planes an object gets,
and the more difficult it is to give an accurate re-
construction of such an object. When the amount of
planes of an object is around 10 the time it takes to
compute the final product is much higher than accept-
able.

Compared to other works that make use of AI, this
work’s results might seem unsatisfactory. Machine
learning allows for more complex objects to be recon-
structed in less time. The importance of this work lies
not with the limitations of its work, but rather with
what it represents. By not using machine learning to
compute the unobserved side of objects, this method
shows that even without machine learning it is possi-
ble to reconstruct a 3D point cloud from a 2.5D ob-
ject.

The algorithm is simple to understand, and alter-
ations may allow for a better performance. With time
it may be able to outperform AI-based approaches.
This time is far off though, as the quality of these
other approaches is still improving as well.

6 Responsible Research
As no direct collaboration has taken place during the
process of this research, no data has been obtained
from sources that are not listed in this paper. All re-
sponsibility for the integrity of this paper falls to the
author.

The results of this paper are rather basic, as the
amount of nuance that is necessary for 3D object re-
construction is difficult for an algorithm to keep track
of. The shapes that were chosen to represent the re-
sults of this work may not give a full representation
of what might be encountered in the application of
the algorithm.

While this tool may be used for less ethical ends,
military drones, for example, it is not unique in its
work. As has been shown in section 2, there are al-
ready machine learning algorithms that can produce
similar results.

The methodology explains the thought process be-
hind the design decisions of the algorithm, while
the implementation describes how the algorithm pro-
cesses a 2.5D point cloud into a 3D point cloud. The
results explain how the examples in the figures were
obtained. These sections should hold enough infor-
mation to allow for the reproduction of this research.

7 Future Work
While the accomplishments of the algorithm work
well for most simple shapes, some mirrors can cover



parts of the object that are visible to the camera. This
can have adverse effects on the algorithm’s eventual
use, for that is not what it is supposed to do. A filter
should be designed that either removes the mirrors or
the points of the mirrors that block the view of the
input object.

The algorithm currently has little that allows for the
generation of an object’s lower plane. Depth cameras
cannot see the bottom of an object, which means it’s
paramount for an algorithm to be able to reconstruct
this. The current untested idea is to map all of the
object’s points onto the plane that the object rests on,
though this will not work if there is little surface area
to work with.

There have been troubles with getting real-life ex-
amples to work with the plane detection algorithm.
An attempt was made at creating an algorithm that
would help combat this, but it didn’t succeed. While
it is not certain, it is suspected that the problem either
lies with PCL’s normal estimation or with the plane
detection algorithm itself.

There has also been research performed on updat-
ing point clouds with new information [7]. This can
be useful for the algorithm for it would help to remove
mistakes.

8 Conclusion
This work was primarily meant as an experiment into
the possibility of 3D object recreation without the use
of an AI-based approach. An algorithm was devel-
oped using the principles of symmetry. This algo-
rithm has achieved the goal of reconstructing sim-
ple shapes, including compensation for partially ob-
structed objects.

However, more complicated shapes are made up of
more difficult geometry which makes them more dif-
ficult to calculate. The noise that a depth camera gen-
erates can also have a large negative impact on the
performance of the proposed algorithm.

Several improvements have been proposed and can
be implemented to obtain further insights into the
working of such algorithm-based approaches. Still,
the current progress of AI-based techniques vastly
outperforms the performance of the algorithm-based
approach.

References
[1] How "fast" is the speed of light.

https://www.grc.nasa.gov/www/
k-12/Numbers/Math/Mathematical_
Thinking/how_fast_is_the_speed.
htm. Accessed: 2022-05-23.

[2] Alejandro Alvarez-Aguirre, Henk Nijmeijer,
Toshiki Oguchi, and Kotaro Kojima. Remote
control of a mobile robot subject to a communi-
cation delay. In ICINCO, 2010.

[3] Christopher B. Choy, Danfei Xu, JunYoung
Gwak, Kevin Chen, and Silvio Savarese. 3d-
r2n2: A unified approach for single and multi-
view 3d object reconstruction, 2016.

[4] Linyan Cui, Guolong Zhang, and Jinshen Wang.
Hole repairing algorithm for 3d point cloud
model of symmetrical objects grasped by the
manipulator. Sensors, 21, 2021.

[5] Vineet Gokhale, Kees Kroep, Vijay S. Rao,
Joseph Verburg, and Ramesh Yechangunja.
Tixt: An extensible testbed for tactile internet
communication. IEEE Internet of Things Mag-
azine, 3(1):32–37, 2020.

[6] Vineet Gokhale, Kees Kroep, Vijay S. Rao,
Joseph Verburg, and Ramesh Yechangunja.
Tixt: An extensible testbed for tactile internet
communication. IEEE Internet of Things Mag-
azine, 3, 2020.

[7] Olaf Kähler, Victor A. Prisacariu, and David W.
Murray. Real-Time Large-Scale Dense 3D Re-
construction with Loop Closure, volume 9912
LNCS. 2016.

[8] Nattakorn Promwongsa, Amin Ebrahimzadeh,
Diala Naboulsi, Somayeh Kianpisheh, Fatna
Belqasmi, Roch Glitho, Noel Crespi, and Omar
Alfandi. A comprehensive survey of the tac-
tile internet: State-of-the-art and research direc-
tions. IEEE Communications Surveys Tutorials,
PP, 4 2020.

[9] Joe Rosen. Symmetry at the foundation of sci-
ence and nature. Symmetry, 1, 2009.

[10] Radu Bogdan Rusu and Steve Cousins. 3D is
here: Point Cloud Library (PCL). In IEEE Inter-
national Conference on Robotics and Automa-
tion (ICRA), Shanghai, China, May 9-13 2011.
IEEE.

[11] Jiamin Xu, Weiwei Xu, Yin Yang, Zhigang
Deng, and Hujun Bao. Online global nonâ-
rigid registration for 3d object reconstruction
using consumerâlevel depth cameras. Computer
Graphics Forum, 37:1–12, 10 2018.

[12] Bo Yang, Stefano Rosa, Andrew Markham, Niki
Trigoni, and Hongkai Wen. Dense 3d object re-
construction from a single depth view. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 41:2820–2834, 12 2019.


