IMProvince embodied
LLMFZgents
capabilities through
collaboration

Baptiste Colle

Improving embodied
LLM agents
capabilities through
collaboration

by

Baptiste Colle

Student Name Student Number
Baptiste Colle 5056756

Daily supervisor: C. Raman

Thesis advisor: M. Reinders

Project Duration: September 2023 - June 2024

Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft

Cover: Minecraft wallpaper by Mojang under CC BY-NC 2.0 (Modified)
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

o]
TUDelft

Al — Artificial Intelligence

BDI - Belief-Desire-Intention

DAG - Directed Acyclic Graph

FN — False Negative

FP — False Positive

LLM - Large Language Model
LoRA — Low-Rank Adaptation

NLP — Natural Language Processing
NN — Neural Network

QA — Question Answering

RAG - Retrieval-Augmented Generation
RL — Reinforcement Learning

TN — True Negative

ToM — Theory of Mind

TP — True Positive

Acronyms

contents

1 Abstract
2 Introduction

1
2
Related work 5
3.1 Minecraft as a learning environment 5
3.2 Largelanguagemodels 5
3.3 LLM-basedagents 6

4 Methodology 10
4.1 Design goals and EnvironmentUpdates 11
4.2 Collaborative Voyager Agent Architecture, 11
4.3 Difference between Voyager and our Collaborative Voyager 16

5 Experiments 19
51 ExperimentSetup e 19
5.2 Experiment 0: Fine-Tuning as a Solution to the Performance Problem of Open-Source

LLMs Instead of Collaboration 23
5.3 Experiment 1: Collaboration Improves Weak Agent Performance 24
5.4 Experiment 2: Learning from Mistakes - Post-Collaboration In-Distribution Task 26
5.5 Experiment 3: Post Collaboration Out-of-Distribution Task 26
5.6 Summary e e 28

6 Discussion 29
6.1 Insights learned about the field of LLM-agents 29
6.2 KeyFindings e 30
6.3 Limitationofourresearch 32
6.4 Future work L 32

7 Conclusion 34

References 35

A Logbook of agent failures 39
A1 Examplesoffailures: e 40

A.1.1 Lack of instruction following / internal consistency 40
A.1.2 Hallucinate answersto QA L 41
A.1.3 Example of hallucinatedsuccess 41
A.1.4 Comparison between open-source LLMand GPT 41
B Agent prompts 43
C Agents execution time 44

11

Abstract

The emergence of Language Language Models (LLMs)-based agents represents a significant advance-
ment in artificial intelligence (Al), offering new possibilities for complex problem-solving and interaction
within a virtual environment. Our work is based on the Voyager paper [1], which is a state-of-the-art
LLM-based agent for Minecraft. However, this system suffers from some significant limitations, such
as its reliance on closed-source LLMs and lack of social awareness. Indeed, current open-source
LLMs often fail to match closed-source ones in the agent setting, leaving research reliant on third-party
closed-source technology [1][2]. This gap highlights the need for alternative strategies to enhance LLM
performance without the high costs associated with fine-tuning. To address these challenges, we pro-
pose the Collaborative Voyager, a new architecture designed to enable agent collaboration and social
awareness using open-source LLMs. Inspired by the social intelligence hypothesis, which suggests
that intelligence emerges from social interactions, we propose collaboration as an alternative learning
paradigm for LLMs. This alternative learning paradigm could potentially supplement the expensive
fine-tuning currently needed to bridge the performance gap between open-source and closed-source
models in the agent setting [2]. Our approach involves developing a framework that allows agents to
communicate, understand, and learn from each other, enabling them to correct errors and adapt to new
tasks dynamically. By using a memory module, our agent is able to remember interactions and learn
from them in order to accomplish a task that it was previously unable to do on its own. Through various
experiments, we demonstrate that collaboration significantly enhances the performance of LLM agents
in both task completion and adaptability, addressing issues like hallucinations. This study provides in-
sights into developing more sophisticated, adaptable Al systems capable of dynamic interactions and
problem-solving. These findings have potential applications extending beyond Minecraft and virtual
environments to fields such as robotics, where collaboration and social awareness are crucial.

Introduction

Voyager (previous method) Collaborative Voyager (our method)
©
(o)
Lack 0
collaborative
capabilities
Voyager Collaborative Voyager Collaborator

Task failure ‘ x Task sucess ‘ J

Figure 1: Method overview

The emergence of multi-agent systems and language learning models (LLMs) represents a signif-
icant advancement in artificial intelligence, offering new possibilities for complex problem-solving and
interaction within virtual environments. Minecraft, a large open-world video game, is an ideal platform
for studying these phenomena due to its complex, dynamic nature and requirement for strategic plan-
ning and execution. Historically, integrating LLMs into gaming environments like Minecraft has paved
the way for innovative research in Al, exploring the boundaries of agent collaboration and autonomous
problem-solving.

Problem Statement Current research in LLM-based agents often relies on closed-source LLM, such
as GPT4. This makes the development of those agents costly and limited. We believe this makes
current research exposed to a dependence on third-party private entities. Research has been done to
close the gap with the closed-source model, but this is mainly done on text assistant tasks instead of
the agent setting, where an LLM is expected to take some actions in a world. The agent setting is more
difficult for LLMs to perform as it is outside their training data and is then out-of-distribution as they are
not trained to be an action agent.

These problems are especially pronounced in specialized contexts such as Minecraft. The gap be-
tween the capabilities of open-source LLMs and their proprietary counterparts, such as GPT-4, further
exacerbates this challenge, revealing a critical area for improvement. Indeed, current open-source
LLM often struggles in an embodied environment compared to their closed-source counterpart [1] [2].

2

During our research, we discovered that open-source LLM cannot accomplish even the simplest task
in Minecraft. Wang et al. (2003) [2] propose fine-tuning as a potential way to bridge the performance
gap between open and closed-source LLM. However, this remains costly and requires a lot of data that
may not be freely accessible.

Research Objectives and Questions At the heart of this research is the social intelligence hypoth-
esis, which posits that intelligence emerges through social interaction within embodied settings [3].
Therefore, we believe that LLM could also learn from interaction and collaboration with others. This
hypothesis aligns with the theoretical underpinnings of cognitive development and agent-based mod-
eling, providing a solid foundation for investigating collaborative learning and adaptation in Al agents.
Another problem with LLMs is still their limited collaboration capability and social intelligence. Research
has shown that by using perspective taking, LLM can understand social cues [4] [5]. Furthermore, there
have historically been theories of cognitive development that state that intelligence emerges through
embodiment interacting with a social setting Vygotsky [6].

This study seeks to explore how collaborative interactions, grounded in social intelligence and
perspective-taking, can enhance the capabilities of Al agents beyond what is achievable through tradi-
tional fine-tuning methods. By advancing our understanding of multi-agent collaboration, this research
aims to contribute to the development of Al systems that are not only more effective in specific tasks
but are also socially aware.

This research aims to bridge the knowledge gap concerning Al agent collaboration in Minecraft,
focusing on enhancing agent capabilities through perspective-taking, especially in the open-source
LLM domain. The primary research question that guides this investigation is: How can collaboration
improve the problem-solving abilities of LLM-powered agents?

Hypothesis Driving the Research The research is driven by several hypotheses aimed at exploring
different facets of agent performance and collaboration:

+ Collaboration Hypothesis: Direct collaborator interaction and guidance will significantly correct
and enhance the problem-solving capabilities of Al agents.

» Adaptive Learning Hypothesis: Al agents can learn from collaborator interventions and adapt
to new tasks more effectively, indicating a form of learning and behavioral adaptation.

To investigate our research question and hypothesis, we developed a new method based on the
Voyager paper [1], which is a state-of-the art LLM-based agent for Minecraft, however, it suffers from
severe limitation. Indeed, as we explore in our experiment chapter 5, Voyager cannot function without
a closed-source LLM, even on the simplest tasks. Furthermore, it cannot collaborate or backtrack from
a wrong reasoning. Therefore, the agent’s success is left to the quality of the underlying LLM, with
no way of learning from others. This limits the final performance of the agent to the underlying LLM
model, making open-source LLM fail in the Minecraft domain. Our work, therefore, extends the Voyager
agent with social awareness in order to allow open-source LLM to compete with closed-source models.

In this work, we introduce our own socially aware LLM-based agent for Minecraft, the Collaborative
Voyager. The behavioral difference between our new agent, Collaborative Voyager, and the original
Voyager can be seen in Figure 1. Indeed, the original Voyager is limited by its internal capability, but
our agents can dynamically learn from others to achieve tasks that it was unable to do on its own.

By exploring alternative training methods such as collaboration, this study aims to contribute to de-
veloping more sophisticated, adaptable Al agents capable of complex interactions and problem-solving
in dynamic environments. Relying on collaboration as a training paradigm instead of fine-tuning, which
is data and compute intensive, should reduce the barrier of entry to training LLM agents. We want to
determine how collaboration can improve the problem-solving abilities of LLM-powered agents within
Minecraft. This involves developing a framework that enables Al agents to dynamically understand
and integrate collaborator feedback, thus improving their performance in complex tasks. Our primary
objective is to investigate how the insights gained during social interaction could correct and improve
the performance of Al agents in Minecraft over time.

The knowledge gained from exploring Al collaboration and adaptive learning in virtual environments
can inform the development of Al systems in areas such as robotics, where understanding social be-
havior is crucial. The research employs a mixed-methods approach, incorporating quantitative experi-
ments to assess the impact of collaboration on agent performance and qualitative analysis to explore
the dynamics of this collaboration. Experiments are designed to test hypotheses related to context
adaptation, social intelligence, and perspective-taking among Al agents in Minecraft.

The introduction outlines the research background, problem statement, objectives, and theoreti-
cal framework, setting the stage for the inquiry. The related work chapter provides a comprehensive
overview of existing research on multi-agent systems, LLMs agents, and their application in embodied
environments, establishing the context for the study. Our methodology chapter details the experimental
design and methodologies employed to investigate the research questions. Our experiments chapter
presents the findings from the experiments conducted, analyzing the impact of collaboration on agent
performance in Minecraft. The discussion chapter interprets the results, discusses their implications for
Al research, agent collaboration, and the broader field of Al technology, and outlines future research
directions. The thesis concludes with a summary of the key findings and encapsulates the research
journey.

This research has significant practical implications beyond the realm of Minecraft. Improvements in
multi-agent collaboration within this game can lead to advancements in cooperative problem-solving.
Understanding the dynamics of agent collaboration could lead to the development of versatile social
agents capable of identifying and complementing the weaknesses of their collaborators, thus enhanc-
ing overall efficiency and effectiveness. The expected outcome of this research is a deeper under-
standing of the dynamics involved in collaboration. Insights gained from this study could pave the way
for developing multipurpose socially aware agents adept at recognizing and augmenting each other’s
weaknesses.

Related work

3.1. Minecraft as a learning environment

Minecraft, with its intricate and dynamic environment, presents a perfect sandbox for Al agents. Its
nonstationary nature, coupled with high-dimensional and open-ended landscapes, offers a realistic
and challenging setting for Al development. Unlike environments with predefined reward functions,
Minecraft is a large open-world environment with no predefined precise goal. Due to its partial observ-
ability nature, collaboration in Minecraft is particularly difficult. A notable aspect of Minecraft is the
complex dependency trees required to craft items, which introduces long-term dependency challenges
that are often unmet by current Al models. For example, the success rate in crafting a diamond pickaxe,
a task with multiple substeps and dependencies, is significantly lower in Al agents compared to human
players [2]. This gap highlights the limitations of current models in managing long-term dependencies
and complex skill trees.

Minecraft has been a long-standard benchmark in agent development in the RL community. Malmo
[7], a yearly competition in Minecraft, focuses on specific tasks in Minecraft instead of a general-purpose
agent benchmark. Minecraft is a multiplayer game; therefore, collaboration is an integral component of
the gameplay experience. Malmo, for example, releases particular challenges in which collaboration
between different agents is evaluated. Narayan-Chen et al. (2019) [8] created a dataset to explore
the dynamic of creating a 3D structure with multiple participants. However, current research on collab-
oration in Minecraft is still limited [9]. This enables Minecraft to be a suitable sandbox for evaluating
general reasoning and collaboration of agents.

In addition, Minecraft’s considerable player base enables the gathering of a large amount of data
for training [10] [11]. This provides rich resources for Al training, further emphasizing its suitability as
an Al development platform.

RL-based Agents in Minecraft The Malmo system has served as a benchmark for reinforcement
learning (RL) agents. These agents typically focus on small, specific tasks. However, their effective-
ness diminishes in Minecraft's open world, where more complex tasks are encountered. This limitation
is primarily due to the vast and varied environment that Minecraft offers, where traditional RL methods
struggle to scale and manage long-term dependencies.

To address these challenges, current methods have shifted towards imitation learning, using large-
scale pretraining on human demonstrations, as highlighted in VPT [12] and further explored in the
Minedojo project [10]. Miniclip from Minedojo trains a model based on videos to act as a reward function,
allowing the development of an RL-based system on top of such methods. These methods allow the
bootstrapping of RL systems to work in Minecraft's open world.

3.2. Large language models

Large Language Models (LLMs) have emerged as a pivotal breakthrough in the field of artificial intel-
ligence, offering unprecedented capabilities in natural language processing (NLP) generation. They
are based on the transformer architecture introduced by [13], which enables these models to handle

3.3. LLM-based agents 6

long-range dependencies in text. LLMs are pre-trained on a vast corpus of text data, allowing them to
generate coherent, contextually relevant text across a wide range of tasks without task-specific training
[14].

Prompting Techniques Due to the rise of LLM, prompt engineering has emerged as a new subfield of
NLP. Comparisons between foundational LLMs and domain-specific LLMs, like in the medical domain
[15], have shown that the proper prompting techniques can enable foundational models to outperform
domain-specific ones. This is achieved by unlocking and effectively utilizing the extensive information
stored in the foundational models’ weights. This approach demonstrates that, with strategic prompt-
ing, foundational LLMs can be adapted to a wide range of tasks and environments, rivaling or even
surpassing the performance of more specialized models [16].

To further improve the performance of LLMs, advanced prompting techniques are used. Techniques
such as self-reflection [17], chain of thought [18], or tree of thoughts prompting [19] allow LLMs to criti-
cally evaluate and refine their responses. This introspection is similar to human cognitive processes of
reflection and reconsideration, particularly valuable in scenarios where initial responses may require fur-
ther development or adjustment. These advanced prompting techniques improve the decision-making
process of LLM and, therefore, their performance on specific tasks.

Adding Knowledge to an LLM Retrieval-Augmented Generation (RAG) [20] is a prompting tech-
nique that combines the powers of retrieval-based and Al models to allow language generation to be
grounded in facts. This methodology works by first retrieving relevant information from an extensive
database or corpus and then feeding this information into a Al model to produce more informed and
accurate outputs. The retrieval component allows the system to access a vast array of information on
a wide variety of topics, enhancing the model’s ability to generate responses that are both relevant and
factually accurate.

Fine-tuning refers to the process of adjusting the parameters of a pre-trained model on a new,
typically smaller, dataset to tailor the model to specific tasks or improve its performance on particu-
lar domains. This approach leverages the general knowledge learned by the model during its initial
training on large datasets and applies it to more specialized tasks. By adjusting the model to focus
on the features most relevant to the specific tasks, fine-tuning helps to achieve higher accuracy and
performance without the need to train a model from scratch [21]. LoRA (Low-Rank Adaptation) [22]
is a fine-tuning method that uses a low-rank matrix to update the weights of a model. This drastically
reduces the number of trainable parameters, making the fine-tuning process cheaper and faster.

There is still an open debate on which technique, RAG or fine-tuning, is most relevant for a given
situation. This is why we used both in our work to explore the difference between them better [23].

Social Reasoning in LLM Theory of Mind (TOM), the capability to attribute mental states to others,
is also a significant consideration in LLM systems. By understanding and predicting the intentions,
beliefs, and emotions of other agents, an LLM can better navigate interactions and collaborate. This
understanding is crucial for effective communication and joint problem-solving. BigToM [5] proposes
a method to evaluate the performance of LLM on ToM tasks. Wilf et al. (2023) [4] further show that
perspective-taking improves the capability of LLM on ToM tasks. Indeed, understanding and developing
these aspects in Al agents could lead to even more nuanced and sophisticated interactions, both among
Al agents themselves and between Al agents and human collaborators.

The concept of majority voting is another effective method in multi-agent LLM systems [24]. Here,
different agents offer different perspectives on the same problem, and a consensus is reached through
a voting mechanism. This approach ensures that the final decision or solution is well-rounded and
considers multiple facets of the problem at hand.

3.3. LLM-based agents

LLM-based agents utilize an LLM to solve complex tasks. The LLM acts in the world by integrating
with different external components, often through APIs. In constructing LLM agents, the LLM acts as
the controller managing the sequence of operations required to fulfill tasks or respond to user requests.
LLM agents can generally be broken down into a profile, memory, planning, and action module [26]. The
profile determines the system’s behavior, setting a persona for the LLM agents and providing context

3.3. LLM-based agents 7

{Language Reasoning} Embodied Reasoning} { Social Reasoning 1

1 1 |
l

Agent
Model Planning
Belief

World

Language model
—_— Goal

model
Backend Abstraction

Figure 2: LLM agents architecture recreated from NeurlPS tutorial [25]

for its responses. Memory enables the agents to retain relevant experiences, often coupled with a
retrieval system to enhance decision-making. Based on this knowledge, the LLM formulates a course
of action, and its textual outputs are then translated into actions. Figure 2 from Hu et Shu (2023) shows
an example of a breakdown of LLM agents. As this field is quite new, there are multiple representations
and definitions of the components of an LLM-based agent. Hu et Shu (2023) focuses on the intersection
between world models and LLM-adjacent [27]. This thesis investigates the social reasoning capability
of LLM-based agents in an embodied world (Minecraft), which is still an under-researched area.

Embodiment Embodiment theory suggests that the physical form of an Al system plays a critical
role in its ability to learn and adapt to its environment. According to Pfeifer et al. (2007) [28], the
physical body of a robot can influence its cognitive processes, arguing that intelligence emerges in the
interaction between a brain, a body, and the environment. This perspective highlights the importance of
sensorimotor experiences in the development of cognitive abilities, suggesting that embodied Al could
lead to more adaptive and context-aware systems.

Furthermore, the concept of embodiment is closely linked to the idea of situated cognition, which
posits that cognition is fundamentally influenced by the physical and social context in which it occurs.
Suchman (1987) [29] emphasizes the role of the environment in shaping the actions and decisions of
intelligent agents, suggesting that Al systems need to be embedded in their operational contexts to
achieve higher levels of intelligence and autonomy.

Continual Learning Continual learning is a crucial aspect of artificial intelligence that enables models
to learn continuously, adapting to new information without forgetting previous knowledge. This process
contrasts with traditional machine learning models, which are typically trained on a fixed dataset and
can struggle with new or evolving data. Continual learning for LLM remains an open challenge [30]
[31].

A key challenge in continual learning is catastrophic forgetting, where the model forgets previously
learned information upon learning new data. Various strategies have been developed to mitigate this,
such as Synthetic Experience Replay [32], which generates synthetic data mimicking past experiences
to maintain model performance. This technique allows the model to rehearse old tasks while learning
new ones, thus preserving its ability to perform previously learned tasks.

Another innovative approach is Reflexion, which integrates verbal reinforcement learning into lan-
guage agents [17]. In Reflexion, the language model integrates verbal feedback, enabling it to refine its
subsequent answers. This method enhances the model’s adaptability and decision-making capabilities
by allowing it to learn from its mistakes and successes continuously. This also mimics human learning,
where verbal feedback is an important part of the learning process.

LLM-based Agents in Minecraft We will now focus on LLM agents in the videogame domain, namely
Minecraft. As there is a discrepancy between LLM textual output and the game’s expectation of

3.3. LLM-based agents 8

keyboard-based input, the current LLM-based systems need to bridge this gap. One approach is to
use code to interact with the Minecraft world. This approach was explored by Voyager [1] and Jarvis
[2]. The LLM agent is asked directly to produce code that can then be used to control the agent in the
game. An alternative is GITM [33], which uses a neural network controller to map the text output from
LLM to keyboard and mouse movements.

Another approach for agents in Minecraft is to extend current RL systems with insights from LLM.
For example, Plan4MC [34] uses an LLM to construct a skill graph of the different actions learned from
RL exploration. Deckard [35] uses an LLM to create an abstract world model (DAG), which is then
verified with traditional RL techniques.

Multi LLM Based-Agents System The social intelligence hypothesis [3] postulates that collaboration
and social dynamics have contributed to the development of human intelligence. This theory suggests
that the complexities of social life, rather than environmental challenges alone, have been the main
driving force behind the evolution of higher intelligence.

We have seen similar dynamics with LLM agents. By introducing more agents, multi-LLM agents’
systems are often able to outperform their individual counterparts [36] [37]. MetaGPT [36] explores the
idea of using different personas in role-playing to achieve better LLM performance compared to single-
agent systems. By simulating different viewpoints, these agents can collectively analyze a problem
more holistically, leading to more robust solutions. Adopting multiple personas allows an LLM to view a
problem from different perspectives, mimicking the human ability to consider various viewpoints. This
often leads to more effective problem-solving. In the realm of conversational Al, extending LLMs to
interact with multiple participants poses unique challenges, namely when to talk. Wei et al. (2023) [38]
delve into this, focusing on research into turn-taking dynamics and determining when agents should
interject or respond in a multiparty conversation.

Social Reasoning in LLM Agents We discussed previously social reasoning in LLM. However, there
is currently a large gap in the agent settings for socially aware LLM. Most work focuses on ToM capability
in text settings, as described previously. There is some work that focuses on agents cooperating while
being socially aware, but this is still done in a text setting [24]. Furthermore, we found few works
investigating LLM in a collaborative embodied setting [39]. We believe there is still a lot to be learned
about social reasoning in LLM agents and that embodiment is critical to test more advanced forms of
collaboration. Our thesis focuses on this, which we believe is yet still an under-explored part of the
current literature.

The Voyager architecture Our work is primarily based on the Voyager paper [1] and is an extension
of it. Voyager is an LLM-based Minecraft agent that uses GPT-4 to create code that interacts with the
world. We chose it because, at the start of the thesis, it was the state-of-the-art agent for Minecraft.
Today, it remains one of the best-performing architectures for LLM-based agents in Minecraft.

Figure 3 illustrates the architecture of the Voyager agent. The agents use an actor-critic method
reminiscent of the RL method to act in the world. At each time step, the agent will generate a code
to act in the world. The subsequent world state information is then fed to a critic module that will
create a critique on how the code generated could be improved if necessary until the task succeed.
The actor prompt is also extended with skills and a self-question-answer module that allows the code
generation to be more grounded and accurate. The self-question answering module is similar to a chain
of thoughts, where instead of directly generating the code, the agent will first generate QAs (question-
answer) about Minecraft. An example of such QA is “Where do you find dirt in Minecraft? You can find
dirt in the following biomes: ...”. Those QAs are then used to inform code generation. The skills module
refers to the Minecraft Crafting Skills Tree. The skill library is a repository that stores executable code
snippets representing specific actions or sequences of actions. These skills are designed to be reusable
and combinable, allowing the actor to construct complex behaviors from simpler ones. The skill library
grows incrementally as the agent explores and learns, enabling it to handle increasingly sophisticated
tasks over time. This component is crucial to mitigating the effects of catastrophic forgetting, a common
challenge in continual learning systems.

The iterative prompting mechanism proposed by Voyager allows the agent to refine its action plans
through a feedback loop that incorporates environment feedback, execution errors, and self-verification.
This mechanism allows Voyager to adjust its strategies based on direct interaction with the Minecraft

3.3. LLM-based agents 9

Code Game state
Current Voyager framework

Ti+1
Self Question
Answering
Actor Critic
RAG
]
-—’ Skills
L
Critic

Figure 3: Voyager architecture

environment, learning from successes and failures alike. The iterative nature of this process ensures

that the agent can overcome obstacles and improve its performance incrementally, leading to lifelong
learning.

The Voyager does suffer from some notable limitations. We believe the most important shortcom-
ings of the agent are:

+ Hallucinations

* Reliance on closed-source LLMs
» Lack of world representation

* Not socially aware

— Lack the ability to receive communication
— Cannot learn from interaction

Voyager generates incorrect action codes or proposes unachievable tasks (e.g., crafting non-existent
items in Minecraft). Those are LLM “hallucinations.” Some examples of those failure cases can be seen
in our Appendix A, where we analyzed the most common error in the Voyager agent’s reasoning.

The Voyager architecture relies on closed-source LLM to power its agent. Indeed, as stated by
the author of the paper, “VOYAGER requires the quantum leap in code generation quality from GPT-4,
which open-source LLMs cannot provide”. This makes the cost of Voyager high and makes the system
reliable on a third-party proprietary technology that is beyond our control. We are trying with this thesis
to close the gap between closed-source and open-source LLM. Right now, open-source LLMs are too
weak to power the Voyager framework, as we will later quantify in our experiment chapter 5.

The current Voyager framework lacks any type of world model and only relies on skills to generate
deeper knowledge about Minecraft. We believe that by introducing a world model we can allow the
agents to better understand its environment and its beliefs about it.

Lastly, the Voyager agent works in isolation; it is not socially aware. It cannot receive a message
from another entity or integrate knowledge from a collaborator. Inspired by the social intelligence hy-
pothesis, our work will investigate whether collaboration can improve a weak LLM (open-source), clos-
ing the gap with its proprietary counterparts (closed-source LLM).

Methodology

(]
W Social Experience Memo
T ’
- Self Question . . .
= > Answering Interaction (€—— Chatting with a human
- T
- —P skl
- | oo Task

Critic

N
6 Percept Beliefs] (Desires]
T
k—J > Adapted from the BigTom Paper
3(</> (— Actor
| J

T_i+1 Code to interact with
environment

Figure 4: Architecture of our Collaborative Voyager agent

Collaborative Voyager

In this chapter, we will discuss the core of our method. We will describe the architecture of our pro-
posed collaborative agent as seen in Figure 4. This chapter will explain step by step the composition
of this architecture and the design choices that we made. The different parts of the architecture will
be explained individually, and we will finally explain in section 4.3 how they all fit together to create a
socially aware Minecraft agent inspired by Voyager. Those changes were made in order to enable us
to study our research question and, more generally, the subject of agent collaboration.

Selection of Open-Source LLMs Our initial step was to identify a suitable open-source LLM that
could potentially replace GPT-4 for our purposes. Given our initial lack of benchmark, this involved

10

41. Design goals and Environment Updates 1

empirical testing of several models. Through this process, we identified Open-Orca [40] as the most
promising candidate, based on its performance on the open LLM leaderboard from Hugging Face and
its compatibility with system prompts. This is a fine-tuned model of Mistral 7B [41]. Furthermore, Mistral-
based models offer a longer context window and lower parameter count, which is crucial for real-time
inference, especially in a setting such as Minecraft.

4.1. Design goals and Environment Updates
We identified four objectives that would make the Voyager agent more socially aware:

1. Ability to receive messages
2. Ability to represent and internalize those communications

* Ground the LLM reasoning in the theory of mind framework to allow perspective-taking.

3. Ability to interpret its communication
4. Ability to learn from interactions

Our method aims to offer elements that allow the Voyager framework to be extended so that it can
now collaborate and be socially aware.

Multi-agent Sandbox The Voyager paper did not provide any way of creating concurrent agents in
Minecraft. As our research initially aimed to investigate agent collaboration, we needed to modify the
framework to enable the creation of an arbitrary amount of agents. We made extensive modifications
to the Voyager sandbox to allow multi-agent interactions.

The step was not trivial, as the whole codebase revolved around a NodedS server that could only
control a single agent. We refactored the code to allow the server to create and manage multiple agents
in parallel. We modified the framework to track the state of multiple agents and allow the agents access
to the state of the other agents, such as which task they are currently doing.

Now that we have a sandbox that allows the creation and management of multiple agents, we need
to make our agents capable of collaboration.

4.2. Collaborative Voyager Agent Architecture

Our research develops a collaboration framework on top of the Voyager agent, aiming to demonstrate
that augmenting current LLM systems with collaboration can significantly improve performance. This
framework involves several key components:

» Chat Module

* Interaction LLM

» World and Partner Perspectives Representation
+ Distilled Memory and Snapshots

Chat Module To collaborate, our agent needs the “ability to receive messages” as outlined in Section
4.1. Minecraft contains an in-game chat. We decided to rely on it to allow agents to collaborate. This
mimics human players who also use the Minecraft chat function to communicate and organize them-
selves. The original Voyager does not have this capability and is only a solo agent. Our Collaborative
Voyager thus needs to be able to communicate with its different collaborators.

We expanded the Voyager framework to include an asynchronous messaging system, allowing
agents to exchange words and incorporate our collaborator feedback into their belief system to be
used in subsequent actions. This communication channel is essential for adjusting Al behaviors based
on real-time chat messages, ensuring that the agents’ actions are continuously refined in response
to collaborative interactions. This modification was crucial to facilitate real-time interaction between
collaborators. To implement this feature, we used the Mineflayer API to extract Minecraft chat data.
Moreover, we executed this process in a multi-threaded manner to avoid blocking the agent execution,
ensuring that it can perform its tasks while simultaneously listening and incorporating collaborator feed-
back. However, now that we have a way to communicate, we are still lacking a way to represent our

4.2. Collaborative Voyager Agent Architecture 12

Step 1
[Desires ‘] [Percept {?J
You do not need
any tools to Human
collect dirt .
e Capability:
- I need pickaxe to mine . + Access to belief
dizg (internal state of the
agent)
« Can communicate with
the agent
Actor
Step 2

Step3 Task success

‘ Desires ‘ l IPercept .::i':,} |

Beliefs:
-1 do not need any tools

v

to collect dirt

Actor

Figure 5: An example of collaboration

world model and how to act in the world. Indeed, we want our system to be able to represent perspec-
tives in the theory of mind framework to enable collaboration.

BigToM World and Partner Perspectives Representation Now that we have a chat system, the
question of how we represent and internalize those discussions remains open. Thus, we need our
agent to have the “ability to represent and internalize those communications” as outlined in section 4.1.

To represent the internal beliefs of the agents, we chose BigToM as it offers a way to ground LLM
reasoning for our Collaborative Voyager. Indeed, it proposes a framework based on the theory of mind
that allows agents’ beliefs to be updated through collaborative experiences. We chose this template as
it was inspired by our own human reasoning and aligned with the classical belief-desire-intention (BDI)
model originally proposed in the 90s [42].

The original Voyager lacks any way to represent the agent’s world model. Indeed, the original Voy-
ager did not create a world model; instead, it relies purely on skills that can be composed. Furthermore,
as identified in the Voyager shortcomings in Appendix A, the system cannot backtrack wrong reasoning
and thus cannot correct itself. For example, by wrongly assuming that the system needs a shovel to
pick up dirt, all subsequent codes will include this information even if the system is told this information
is erroneous. Thus, our Collaborative Voyager needs to be able to correct wrong assumptions

We need to give a world model to the LLM. Our objective grounds LLM into the theory of mind, which
aligns with our social intelligence hypothesis. This offers a way to represent the agent’s beliefs of the

4.2. Collaborative Voyager Agent Architecture 13

Actor

Code:
* javascript
async function getDirtBlock(bot) {

¥

Figure 6: BigToM template explained

world formally and allows the agent to take perspective. Indeed, we also represent the other agents’
beliefs to enrich our world understanding and better collaborate. We let an LLM fill out the BigToM
template mapping free-form text to a graph.

The introduction of the BigToM causal template allows agents to form a structured representation
of their environment, encapsulating their beliefs, desires, perceptions, and intended actions within a
unified framework grounded in the theory of mind. The BigToM template empowers agents with the
ability to reason about their surroundings and the outcomes of their actions more effectively, mirroring
human ToM capability.

Figure 6 shows an example of the BigToM template at step t. The task from the Voyager paper
forms the desire for what the agents aim to achieve. Perception is information that agents get around
the world from its different sensors (the Minecraft API). The perception and the code critic also done
in the original Voyager paper create a set of beliefs. These beliefs are in a free-form text format. The
beliefs and desires are then fed to the action agent that will output the Minecraft code. The agents also
create a BigToM template for the other collaborators.

Explanation of the template:

* Desire: The task the LLM wants to accomplish, for example, getting dirt.
» Beliefs: The system’s beliefs about the world, such as how to do a task or why a code execution
failed.

* Percept:

— This is the state of the game, how the system senses the world.

— Extracted through the Minecraft API.

— Examples of data: inventory, nearby blocks, execution errors of the code, critical actions on
code perception.

» Actor: Module that acts on the world environment. An LLM that takes the beliefs and desires
and outputs code that results in embodied actions.

The actor module acts on the world environment by producing code snippets. The actor module’s
LLM takes the beliefs and desires and output code that results in embodied actions thanks to the Mine-
flayer API. The actions are taken based on the BigToM template. After the code execution, the agent
updates its beliefs. As we will see in the interaction LLM section 4.2, beliefs are also updated through

4.2. Collaborative Voyager Agent Architecture 14

collaboration. Those constant, up-to-date beliefs about the world guide the agent in subsequent ac-

tions.
/ \) X
Beliefs Task Related beliefs

- Personal (same as original Voyager paper)
Task rel. liefe - Memory (distilled knowledge memory)
Personal: _ J
Question: How to get 1 block of dirt in Minecraft?
Answer: To get 1 block of dirt in Minecraft, you can ... Vs DY

From memory: Interaction related beliefs
Question: What method should i use for a collecting task (beliefs learned during interaction)
Answer: Use findBlocks and mineBlock method only

Interaction related beliefs:
Question: Should | use a tool to mine dirt? Ve Y
Answer: No you should not use tools to mine dirt, but you can mine it

directly Partner perspective related beliefs

(we keep a BDI inspired model of each partner)

Partner Per: ives rel liefs:
N J

Partner 1: (nested recursive structure {desire} {percepts} {beliefs}
{actions})

Perception rel. liefs: Perception related beliefs
1. My health is at 20/20 and hunger at 20/20, suggesting | am in good (what we can beliefs based on our sensors

physical condition for the moment.
. J

Figure 7: Beliefs breakdown

Figure 7 shows how beliefs are organized in more detail. Due to the architecture of the RAG system,
we store all long-term information in the form of QAs. The memory module section will explain how this
information is queried and stored to enable learning. We divide the beliefs into four categories: 1)
task related beliefs 2) interaction related beliefs 3) partner perspective beliefs, 4) perception related
beliefs. The task related beliefs are based on the original Voyager paper, where the LLM uses self-
reflection to define how it should approach the task. The memory served to store long-term insights
learned through play. We introduce the interaction beliefs based on the message received in the chat
while the agents are attempting the task. Perceptions-related beliefs are beliefs directly related to the
sensory information received via the Minecraft API and the code critic. We also represent the partners’
perspectives by keeping a BigToM representation of each partner. We keep for each collaboration
a partner perspective that is similar to the agent's own BigToM template. Thus our representation
contains a nested template for each collaborator in order to determine the intention of the agents and
their views on the world. This is done so that the collaboration is done with a mental representation of
the other agents in the environment.

To summarize, by using BigToM, we can formalize the system’s beliefs and allow them to be up-
dated constantly. We now have a representation for the agent of its world through our BigToM-inspired
causal template and a way for the agents to receive communication through our chat module. However,
we are currently missing the link between the communication received through the chat and our world
representation.

Interaction LLM Now that we have added the ability to communicate and represent the agent’s in-
ternal world state, we are missing the link on how to internalize and integrate the communication into
the BigToM template. We therefore need our agent to have the “ability to interpret its communication”
as outlined in section 4.1. Our interaction LLM relies on the chat module previously described. It takes
a collaborator’'s message and updates the beliefs to better align with the collaborator. The interaction
LLM module modifies the causal template as shown in Figure 8. This makes the beliefs more grounded,
thanks to perspective-taking.

The interaction LLM component is tasked with processing the insights gained from the Chat Module
and integrating them into the agent’s decision-making process. Examples of prompts that are used can
be found in Appendix B. By modifying the BigToM causal template based on collaborative feedback,
this module ensures that the agents’ internal models reflect the nuanced understanding and strategic

4.2. Collaborative Voyager Agent Architecture 15

T

Collaborator intent old Beliefs:

-1 do not need any tools
to collect dirt 0ld Beliefs
What are you doing, \ J

you should no start *
crafting a pickaxe to
collect dirt?

——| Interaction LLM

Updated
Updated Beliefs: Beliefs
-1 do not need any tools

to collect dirt

Collaborator \)

Figure 8: Interaction LLM usage

adjustments shared by collaborators.

Persistent snapshot of the BigToM template To offer better visibility into our agent’s inner work-
ings and enable its learning capability. We record every BigToM intermediate template. This can be
equated to the recording of each cognitive phase the agent traverses during task execution. Our final
collaborative agent does not use this system to inform future task execution due to the limited context
window of the agent.

The current system does not integrate this memory for subsequent calls. Indeed, our LLM context is
limited to 8000 tokens. However, newer LLMs could include those snapshots to inform future decisions.
Those snapshots enable the reconstruction of the whole cognitive reasoning of the LLM, including
the actions taken and the consequences of those actions. We believe this is useful for driving future
development in the direction of LLM which can learn and reason on top of their own mistakes. To still
fit the insights learned during playing, we need to condense those findings into a distilled knowledge
that saves the most important aspect of the system.

)
Current Beliefs:

Desires - I do not need any tools
to collect dirt
~

How do you collect dirt? l
g: Where dirt can be

— found?

-y —> . . —| Interaction LLM

[~ a: Dirt can be found in

RAG the savanna biome

Updated Beliefs:
- I do not need any tools
to collect dirt
- dirt can be found in the

savanna biome
Figure 9: RAG retrieval

Distilled Knowledge Memory To finally complete our Collaborative Voyager agent, we need it to
have the “ability to learn from interactions” as outlined in section 4.1. We implemented a Retrieval-
Augmented Generation (RAG) system that enables the agent to learn how to solve issues previously
addressed through collaboration over time. This distilled knowledge memory allows us to inject insights
learned during collaboration into the LLM prompt.

4.3. Difference between Voyager and our Collaborative Voyager 16

Incorporating learning and memory into the Collaborative Voyager Framework, the Interaction Mem-
ory component enables Al agents to retain and utilize the knowledge acquired through collaboration
over time. Using a Retrieval-Augmented Generation (RAG) system, this component allows agents to
build upon previous collaborative experiences, progressively enhancing their performance and problem-
solving capabilities. This aspect of the framework not only facilitates immediate improvements in task
execution but also contributes to the agents’ long-term adaptive learning and behavioral evolution, re-
flecting the Adaptive Learning Hypothesis proposed in this thesis.

After task success:

Beliefs (that were added
through collaboration):

Generated QA:
q: What tools are needed

- I do not need any tools Interaction LLM
to collect dirt

Stored for long
term memory
in database

RAG

Figure 10: RAG adding

Figure 10 shows how new information is added to the memory. The beliefs are transformed into
QAs as this is the format expected by the RAG system. We then add those QAs to the RAG. Lastly, with
our interaction with LLM, we filtered down the answers that were retrieved. To remove duplicates and
select the relevant QA. You can find the relevant prompt in Appendix B. This memory, therefore, informs
future code snippet generation to be more grounded thanks to the collaborator insights gained during
previous play sessions. This distilled knowledge is then retrieved on-demand to inform the behavior of
the agent.

4.3. Difference between Voyager and our Collaborative Voyager

Game state . Chatting with a human
Code 9

Ti+1

Self Question

Answering
Actor Critic
RAG
skills
T

Critic

T_i+1

Code to interact with
environment

Voyager (previous method) Collaborative Voyager (our method)

Figure 11: Architectures of Voyager and our Collaborative Voyager

Figure 11 shows that we performed a complete refactoring of the Voyager agent to make him socially
aware and able to collaborate. In Section 4.1, we defined four objectives that would make a Voyager
agent socially aware: 1) the ability to receive messages, 2) the ability to represent and internalize those
communications, 3) the ability to interpret its communication, 4) the ability to learn from interactions.

Figure 12 shows in detail the different elements of our method. By introducing the following modules,
we created a socially aware Voyager:

4.3. Difference between Voyager and our Collaborative Voyager 17

T_i+1

- Self Question X 1 . . I
— Pl answering Interaction (€= Chatting with a human
I I
F-——-
-
-——P skl
- I . Task

Critic

~N

Percept

|
|
Desires 1
:
|
|
< />| €&—— Actor 1
1
|
|
|
|

> Adapted from the BigTom Paper

Code to interact with
environment

L

Figure 12: Collaborative Voyager architecture in detail

. Chat module: (in blue) it gave the Voyager the ability to receive external communication. In the

form of chat messages via the Minecraft in-app chat

BigToM world representation: (in purple) As the agents need to work with others and be able
to represent the world in a socially aware context, we rely on the BigToM template to save the
agent’s internal state. We adjusted this template to the specifics of the Minecraft setting. This
allowed us to represent the agent world model and its beliefs about its collaborators while being
grounded in the theory of mind literature.

Interaction LLM: (in green) To fill out the BigToM template and internalize the communication
the agent receives, we use an LLM. Furthermore, the latter is also responsible for transforming
the communication into QAs for the memory component that we introduced.

Social experience memory: (in red) To learn from interaction, we added a memory component
based on Voyager's RAG system for its skill library. We store the insights learned from communi-
cation during play in our memory. This is then used to enrich the LLM prompt of the agents, such
as, for example, allowing the code generation to be more grounded.

The Collaborative Voyager Framework presents an approach to enhancing LLM-powered agents’
capabilities through human collaboration. This allowed us to investigate how our research question

“How

can collaboration improve the problem-solving abilities of LLM-powered agents?”

Figure 13 shows the system in action. Firstly, the agent has a false belief. The collaborator has

some

insight on how to fix the bad behavior of the weak agent. The collaborator then talks to the agent

to give it some advice on potential solutions. Thanks to the interaction LLM, the feedback is internalized,
and the previously false belief is corrected. This collaborative insight then leads to the task’s success.

The a
tasks

gent will finally save this insight into his memory and retrieve it when needed to accomplish future
more effectively. You can also see in figure 14 the agent working on the dirt task in Minecraft

with the associated chat open where the collaborator communicates with the agent; in this picture, the
collaborator is me.

4.3. Difference between Voyager and our Collaborative Voyager 18

Voyager (previous method)

Step 1

Beliefs:
- need pickaxe to mine
dirt

False belief

Step N Task success

& x

Step 2

‘l

Getting a pickaxe is a
much more complex task
than just getting dirt. Thus
the agents fail the task by
overcomplicating it

Collaborative Voyager

Step 1

~ @

Collaboration

You do not need
any tools to
collect dirt

Beliefs:
- I need pickaxe to mine |
dirt

False belief

Step 2 Step 3 Task success

Beliefs:
-1 do not need any tools
o collect dirt

v

v

Corrected belief

Figure 13: Example of a wrong belief fixed through collaboration

Figure 14: The agent working on getting dirt while talking to a collaborator

Experiments

Desire ‘ Deswe Deswe De5|re

= |
= —
—
(©) (.\ 5 E i.\
o—(o—d
Experiment O Experiment 1 Experiment 2 Experiment 3
Fine-tuning as a way to increase Agents through collaboration can Insight from collaboration can be Insights that were learned through
performance perform tasks that they are internalized and the agent can collaboration can also affect the
unable to perform without it now perform the task alone performance of adjacent tasks

Figure 15: Overviews of the experiments

This chapter details the experimental phase of our research, aimed at testing our hypotheses re-
lated to enhancing Al agent capabilities in Minecraft. Initially motivated by the limitations of open-source
LLMs in executing basic tasks within the Voyager framework, our exploration took us through several
stages of fine-tuning and method adjustments. Figure 15 shows the four experiments that we will con-
duce to validate the hypothesis that collaboration could significantly improve single-agent performance,
potentially laying the groundwork for more advanced socially aware agents.

5.1. Experiment Setup

Figure 16 shows the setup of a single run of an experiment. This is then repeated 15 times to obtain
more robust data. In this example, the agent is tasked with “collecting dirt.” We let the agent attempt
the task by generating a code snippet that interacts with the world. The bot has five attempts to do
so before considering the task a failure. Additionally, we introduce a timeout for the task attempt of
10 minutes. Indeed, sometimes, the agent creates infinite loops in his code snippet; by introducing
a timeout, we can capture those task failures. We stop when the bot thinks that it has managed to
perform the task. This figure is an example of one run; we do 15 independent runs to then measure
the performance on the task in a statistically significant way. In the spirit of open science, each run is
associated with a log that saves the entire state of the agents at any time step. In addition, the code is
accessible in our GitHub repository. Lastly, all the experiment data were saved into a single file so that
our analysis could be reproduced.

Before we discuss the different metrics we will measure, we must distinguish between agent per-
ception and the real-world state. Indeed, agents may mistakenly assume that they completed a task
when they did not. This difference is related to LLM hallucination problems.

Figure 17 shows how we collect metrics. Indeed, after the agent is done with its task, we check
the game state, which serves as ground truth. With the game state, we can directly check the agent’s

19

https://github.com/baptistecolle/baptiste_thesis

5.1. Experiment Setup 20

Task: collect ‘

Desires Task done J
based on agent perception
Actor —» Task failed ‘ x

if >5 retries,
or spend >10min on task

A
C’ ——>»Task not done

Generate code to interact
with environment

retry 5 times

Figure 16: Detailed example of one run of the agent for an experiment

agentthlnks
Task: collect @ ‘
inits mventory
/‘ v
Taskdone R - - - - - - - - - > Yes

Desires ‘ /
N
Minecraft Game State No L.
N\ M x False Positive
(o) Check with code if agent

° has dirt in its inventory. Hallucinated task success
Actor Task failed RN — - _ _ _ Ground true data
if >5 retries J False Negative
>10 min /
_____ ' HaIIucmated task failure
. N
Minecraft Game State No .
N x True Negative

Figure 17: Example of one run of the agent for an experiment with the associated collected metrics

True Positive

based on agent perception

inventory to determine if its perception is correct. To give a full example, the agent may think it has
successfully executed the task and got dirt, but when we check its inventory, it is empty. Thus, we
have a false positive. We also called this the “hallucinated task success” as the agent wrongly believes
that it managed to succeed at the task when it did not. The false negative, called the “hallucinated task
failure,” is when the agent thinks that it failed at the task when it has, on the contrary, succeeded at it
and has dirt in its inventory.

Figure 18 shows the confusion matrix for the agent. The thought bubble represents what the agent
thinks about the world. In its hands is depicted what the agent has in its inventory. We use the Minecraft
API to get the agent’s inventory. This gives us a confusion matrix about the attempted task.

Evaluation Metrics Our evaluation framework focuses on several metrics to assess the effectiveness
of our methodology.

» True Positive (TP): Reflects the proportion of correctly identified positive instances. How often
did the agents get dirt out of 15 runs while thinking they had dirt?

» False Positive (FP): Measures the rate of incorrect identifications. How often did the agents not

5.1. Experiment Setup 21

Prediction

Actual
Positive

Negative

Figure 18: Confusion matrix

get dirt out of 15 runs while thinking they got dirt?

» False Negative (FN): Indicates incorrectly classified as negative instances. How often do the
agents get dirt out of 15 runs while thinking they did not get dirt?

» True Negative (TN): Represents the instances correctly identified as negative. How often did the
agents not get dirt out of 15 runs while thinking they did not get dirt?

» Task Success (TP+FN): Quantifies the overall tasks performed, including true positives and false
negatives. How often do the agents get dirt out of 15 runs?

» Average Time to Success: Provides insight into the average duration taken to achieve successful
outcomes. The average time to complete a task successfully (TP + FN).

» Average Time per Round: Evaluates the average time expended per iteration or round of task
completion. The average task completion time (TP + FP + FN + TN).

Expected Outcomes To understand the impact of collaboration, we tested our Collaborative Voyager
agent on different tasks with and without collaboration. This intervention includes providing strategic ad-
vice, correcting errors, and offering creative solutions through the chat module. The intervention group
included agents who received feedback through the Chat Module. We also introduce a control group:
the original Voyager architecture, ensuring that any performance improvements can be attributed to

5.1. Experiment Setup 22

the introduction of our method. The baseline is established using Al agents that did not receive any
form of interaction.

Baseline (with no collaboration) Firstly, we wanted to compare our new Collaborative Voyager
setup with the original Voyager architecture, checking that our new method does not lead to any perfor-
mance loss or gain. We compare both architectures with three models. GPT-4 from OpenAl [43] and
Mistral [41], Mixtral [44] from Mistral Al. We evaluated the model’'s performance on the dirt collection
task and judged the task’s success by checking the agent inventory for dirt.

(o) o,
100 - 100% 100%
80 A
[0} 4 I TP + FN
S 60
e [True Positive
ﬁ False Negative
o [True Negative
=}
»n 40 1 [False Positive
27% 27%
20 A
7%
0 - T T 0%
Voyager GPT Voyager Voyager Collaborative Collaborative Collaborative
Mistral Mixtral Voyager GPT Voyager Voyager
Mistral Mixtral

Figure 19: Comparison of Voyager and Collaborative Voyager with a selection of LLM

Results Figure 19 shows that the performance of both architectures is similar when no collaboration is
done. Thus, we test our Collaborative Voyager without any type of collaboration and thus only evaluate
the performance in a solo setting. We let the agent perform the collect dirt task 15 times to obtain
our results and then computed the task’s success. We can see that the performance of both systems
is globally similar. The only notable difference is that Mistral performs better with Voyager than our
Collaborative Voyager (7% vs. 0%). This means that one of the 15 trials was successful. We can
attribute this difference to the small number of runs and that with more runs the performance of both
would also match. Therefore, we can conclude that the performance of Voyager and Collaborative
Voyager are similar in the absence of collaboration.

The following experiments are designed to provide information on how collaboration can enhance
the capabilities of Al agents in complex environments. We want to investigate task completion times,
success rates, and reduced error rates with and without collaboration. By carefully following this ex-
tended experiment setup, the research aims to provide a comprehensive understanding of the potential
for collaboration to improve Al agent performance in Minecraft, thereby offering broader implications
for developing collaborative Al systems in various domains.

5.2. Experiment 0: Fine-Tuning as a Solution to the Performance Problem of Open-Source LLMs
Instead of Collaboration 23

5.2. Experiment 0: Fine-Tuning as a Solution to the Performance

Problem of Open-Source LLMs Instead of Collaboration

In this experiment, we explored the potential of fine-tuning to enhance the capabilities of our Mistral-
powered agent within the Minecraft environment. Our initial assumption proposed that fine-tuning could
be a straightforward and effective strategy to enable an agent to perform basic tasks in Minecraft, such
as collecting dirt. To test this assumption, we conducted two distinct rounds of fine-tuning, each utiliz-
ing different data sources aimed at augmenting the agent’s performance. The fine-tuning was done
on Mistral instead of Mixtral, as the new model was only available after our fine-tuning experiment had
already started. To perform our fine-tuning, we used LoRA [22] as this provided a cheap and fast way
to tailor our base LLM for the Minecraft domain.

Fine-Tuning v1: GPT Voyager Execution Logs For the first version of our fine-tuning, we used
execution logs [45] from a GPT-4 powered Voyager agent to train our model. These logs contain
the different text inputs used during runs of Voyager agents and the GPT-4 responses to them. Our
objective was to transfer some of the GPT’s capabilities from the Voyager domain to our Mistral model.
By fine-tuning with these logs, we could improve Mistral’s performance in a niche domain such as
Minecraft with examples of correct reasoning done by GPT. This approach was motivated by the belief
that the GPT-powered Voyager’s experiences, encapsulated in the logs, could provide valuable insights
and strategies for navigating the game world more effectively.

Fine-Tuning v2: Incorporating Wiki Data and Mineflayer APl Documentation Inthe second round
of fine-tuning, we expanded our data sources to include information from the Minecraft Wiki [10] and
the Mineflayer APl documentation [46]. This was done to directly integrate comprehensive Minecraft
knowledge and Minecraft programming interfaces into Mistral’s knowledge base. By doing so, we aim
to equip the agent with a richer understanding of the game’s mechanics and a more nuanced ability to
interact with the game world through the Mineflayer API.

100
80 1
9 60 - I TP+ FN
+J
o [True Positive
§ False Negative
o [True Negative
=} -
a 40 [False Positive
20 A1
7% -|
0 _II] 0% 0% 0% 0% 0%
Voyager Voyager Voyager Collaborative Collaborative Collaborative
Mistral finetuned vO finetuned v1 Voyager Voyager Voyager
Mistral finetuned vO finetuned v1

Figure 20: Comparison of the performance of Voyager and Collaborative Voyager after fine-tuning

5.3. Experiment 1: Collaboration Improves Weak Agent Performance 24

Results Figure 20 shows that the fine-tuning did not allow the agent to perform the task. We see
that fine-tuning even decreases performance, with the default Mistral achieving to get dirt once out
of 15 runs. As displayed in our Appendix C table 2, we also notice that the fine-tuning process intro-
duces a lot more timeout than the default Mistral for the v2 of fine-tuning. We believe this is due to
the lengthy nature of text on the Wiki or Mineflayer codebase, which makes the model less succinct in
its answer. Furthermore, another criticism of the v2 version is that pretraining is done after the model
has been fine-tuned. Thus, the model is catastrophically forgetting the instruction tuning part of its
training. This suggests that these new data sources have detracted from the model’s efficiency, lead-
ing to less concise and effective decision-making. This approach may have inadvertently diminished
the instruction-tuning capability due to the fine-tuning process, further contributing to the lackluster per-
formance. However, we show a qualitative decrease in Minecraft facts-related hallucination, with the
model better able to answer questions about the Minecraft world and how to achieve certain tasks.
There was, however, still a lot of hallucination on the Mineflayer code; this could be attributed to the
small usage of this library globally, making it difficult to produce quality and complex code due to the
lack of complex and real-world examples.

The results did not align with our expectations. Ultimately, we decided to continue our research
with the default Mixtral configuration rather than the fine-tuned versions, as they did not provide any
benefits. Thus, our approach to fine-tuning was insufficient to bridge the performance gap compared
to the GPT-4 model.

5.3. Experiment 1: Collaboration Improves Weak Agent Performance

This is the main experiment of our research. We investigated whether collaboration can help a weak
LLM agent become stronger. We define a weak LLM as an LLM struggling with nuanced tasks and
performing significantly below state-of-the-art models. In our case, this represents our open-source
LLM that is not able to match the performance of GPT in the Voyager framework. Our goal is to de-
termine whether collaboration can address the limitations of weak Al agents in performing basic tasks
in Minecraft. To do so, we conducted a series of 15 runs that focused on a simple resource collection
task: collecting dirt. This experiment compared the agent’s performance with and without collaboration.
During each run, another collaborator is present to help the agent that we are testing.

We have two types of collaborators.

» Collaborative Voyager Agent: We spawn two instances of our Collaborative Voyager agent,
where they must help each other to solve the task. We expect those two agents to collaborate
to solve the task better. Indeed, they both have perspective-taking capabilities; thus, they can
relate to and help their collaborator.

* Human Collaborator: We also used a human collaborator to determine if a stronger collaborator
could elicit an increase in performance in our weak agent. Humans are also social creatures and
thus can help each other in need. Therefore, they represent what the future of a socially aware
Al collaborator could achieve. This is a first step to demonstrate the feasibility of our method.

Results Figure 21 shows that our multiple Collaborative Voyager setup failed to increase perfor-
mance. However, partnerships with humans show that collaboration can improve a weak LLM. We
see that performance with human collaboration is much better than the baseline, where Al collabora-
tion did not improve performance.

We believe that the inability of the multiple Collaborative Voyager setup to increase performance
is due to the reduced social capability of LLM compared to humans. Indeed, the current LLMs do
not match human social intelligence and often fail in ToM tasks for the time being. LLMs are not
trained in cooperative settings and do not yet know how to collaborate fully. Indeed, we have seen
that current open-source LLMs already struggle in embodied environments; thus, collaborating in such
environments is difficult for them. Due to lack of time, we were not able to do a full study on why
the multi-agent setup failed to perform. Other potential reasons could be that the agents do not know
when to intervene, as discussed later in our future work section 6.4. Furthermore, current LLMs are
not trained to be an embodied collaboration, so this is an out-of-distribution task that would require

5.3. Experiment 1: Collaboration Improves Weak Agent Performance 25

100
87%

80 4
2 60 I TP + FN
c [True Positive
§ False Negative
o [True Negative
=
a 40) [False Positive

27% 26%
20 4
0- |_|
Collaborative 2 x Collaborative Collaborative
Voyager Voyager Voyager + Human

Figure 21: Comparison of Collaborative VVoyager’s performance in the presence of a collaborator

further investigation. Indeed, current insights are highly vague and general, preferring correctness
over actionable insights.

One interesting result that can be seen in table 3 is that the multiple collaborative Voyager setup
spends less time per task than the other setups: 88 seconds compared to 227 seconds and 209 sec-
onds. for the solo Collaborative Voyager and the Collaborative Voyager and Human setup, respectively.
As the performance of the multiple collaborative setup is not better than the baseline and the number
of false negatives is higher, it could mean that both agents wrongly agree precipitately that the task has
failed when it did not. This could be another reason why the multiple collaborative Voyager setup fails
to improve performance.

As human collaboration is effective, we can rely on humans to demonstrate the feasibility of our
method and show that a good collaborator can help a weak agent while LLM catches up to human
capability. However, one notable restriction that will be further elaborated in our discussion section is
that only one human collaborator was tested. | was the only one to play with the system, as the goal
was to do a feasibility study to determine if collaboration could improve performance. We believe this
still shows that weak embodied LLMs can learn how to improve their abilities in the presence of a good
collaborator.

This experiment underscores the potential of collaboration to compensate for Al agents’ shortcom-
ings. The improvement suggests that real-time collaboration can significantly refine Al agents’ decision-
making processes, even without advanced fine-tuning. We, therefore, have demonstrated the feasibility
of our method. In fact, with collaboration, we could guide the agent to collect dirt when it was previously
unable to do it on its own.

Example of Collaboration Appendix A details all the common errors the agent commits while solving
a task. However, through collaboration, we can guide the agent so that it can complete its task. These
are examples of human guidance messages that were sent to the agent.

1. Guide the agent to make the most simple plan: We tell the agent to avoid equipping tools for mining
and to directly mine blocks without using tools. This prevents the agent from not being able to
complete a task because it makes it unnecessarily complicated

— Chat message sent: “Do not try to equip any tools. Just try to mine the block directly.”

5.4. Experiment 2: Learning from Mistakes - Post-Collaboration In-Distribution Task 26

— Explanation: Tools are not required for mining dirt and grass blocks, allowing the agent to focus
on the mining action instead of crafting an unnecessary tool first.

2. Simplify the function code: Design the function as simple as possible, avoiding unnecessary com-
plexity.

— Chat message sent: “Make function as simple as possible”
— Explanation: A streamlined function reduces the risk of errors and improves the agent’s perfor-
mance by focusing only on the essential needed actions.

3. How to use specific methods and fix coding issues: The code critic is quite vague. The agent is
often confused about how to fix a given problem.

— Chat message sent: “bot.dig method only take a single argument.”
— Explanation: Due to a lack of knowledge in the Mineflayer API, the agent does not know how
to fix the code even after being given the runtime error.

4. Focus on specific methods: By focusing the agents on certain methods, we can limit the search
space and guide the agent.

— Chat message sent: “use findBlocks and mineBlock method only”

— Explanation: A lot of potential code can mine a block of dirt, but most are over-complex. We
can help the agent focus on the right and easiest way to solve the problem, making the agent
more robust.

5.4. Experiment 2: Learning from Mistakes - Post-Collaboration In-

Distribution Task

In this section, we test how well our agents could learn from collaboration. We compare three different
settings:

* No-Collaboration Agent: Represents the agent’s state that did not collaborate.

* Live Collaborative Agent: Reflects the agent’s state during active, real-time collaboration with
a human.

» Post-Collaborative Agent: Indicates the agent’s state after the collaboration has occurred while
suing the memory module.

Again, we did 15 runs of the agents with the task of collecting dirt and assessing the success rate.

Results In figure 22, we see that having distilled knowledge from collaboration increases perfor-
mance. Indeed, we see that without collaboration, the agent can rarely perform the task (27%). This
is in sharp contrast to the agents that have collaborated. The performance of the post-collaborative
agent is better than the live interaction one (93% vs 87%)). This was surprising; the live interaction
performed worse than expected. | expected the runs with a human to improve, given that mistakes
can be corrected in real-time. However, | believe that memory ultimately performs better because the
beliefs in memory are validated, and the system knows how to use them as they previously led to task
success. This contrasts with the live human guidance provided, where LLM may be unsure how to in-
terpret the messages. This experiment shows that Al agents can learn from collaboration and improve
their performance in subsequent runs.

5.5. Experiment 3: Post Collaboration Out-of-Distribution Task

In this experiment, we want to investigate whether collaborating on a task can improve the performance
of an adjacent task. Indeed, our agents have been trained to collect dirt via collaboration. We deter-
mined that it can indeed learn insights that allow it to now collect dirt on its own. We decided to compare
whether the agent’s post-collaboration on the dirt task is better than a pre-collaboration agent on gath-
ering wood. Indeed, both tasks are similar; they do not require any tools and are gathering resources
tasks.

Our two different agents are:

5.5. Experiment 3: Post Collaboration Out-of-Distribution Task 27

100

93%
87%
80 A
2 60 m TP + FN
)
e _ [True Positive
ﬁ False Negative
o [True Negative
>
»n 40~] [False Positive
27%
20 A
0 - ||_| ID
Collaborative Voyager Collaborative Voyager + Collaborative Voyager
Human with distilled memory
Figure 22: Comparison of Collaborative VVoyager’s performance with the distilled knowledge memory enabled

* No-Collaboration Agent: Represents the agent’s state that did not collaborate.

» Post-Collaboration Agent: Indicates the agent’s state after the collaboration has occurred. The
agent collaborated on the task of collecting dirt but is now evaluated on the task of gathering
wood.

100
80 A

L 60 TP + FN

e [True Positive

o,
§ 50% False Negative
o [True Negative
@ 404 [False Positive
204 20%
0 | | |

T T
Collaborative Voyager Collaborative Voyager with distilled
memory (trained on dirt task)

Figure 23: Comparison the Collaborative Voyager’s performance on out-of-distribution tasks (collecting wood)

5.6. Summary 28

Results Figure 23 shows that the agent that has collaborated on an adjacent task now performs
better. This shows that collaboration insights can be transferred between tasks, creating emergent
capability. The insights learned from one task can be applied to other settings. We see a performance
improvement from 20% to 50% success rate.

By collaborating on a task (collecting dirt), the agent is now better at other tasks, such as (collecting
wood). Of course, this is still limited, as we did not compute the performance across various collecting
tasks due to time constraints. We leave this for future research.

However, we note that the performance of the post-collaboration agent on task “wood” (out-of-
distribution) is relatively lower than with the post-collaboration agent on task “dirt” (in-distribution) (87%
vs. 50%). The tasks are essentially the same except that in one, the target is “dirt,” and in the other, it
is “wood.” This could be due to the format of the beliefs in the QA system being too rigid to generalize
to examples involving “wood.” Also, for future work, it would be interesting to collaborate on more tasks
and then measure the performance on out-of-distribution tasks as a function of the number of different
collaborative tasks that the agent has participated in.

5.6. Summary

Our goal was to investigate long-term behavioral changes in Al agents subjected to collaboration inter-
ventions, assessing their ability to adapt to new tasks and challenges. We saw that an agent that has
collaborated now performs better on the task it collaborated on and other adjacent tasks.

We observed behavioral changes and improvements in performance over time. The agents ex-
hibited significant behavioral adaptation and consistent performance improvement, demonstrating a
greater ability to execute tasks more effectively in the long term.

These results indicate the potential of collaboration not only for immediate performance enhance-
ment but also to induce long-term behavioral changes in Al agents. This opens new avenues for the
development of Al systems that can adapt and excel in a wide range of tasks through social interac-
tion. This suggests a promising avenue for improving Al performance through socially aware agents,
highlighting the potential for more sophisticated learning mechanisms in Al systems.

Discussion

With our method, we showed that collaboration enables agents to fix their wrong beliefs about the world
in which they are in. This demonstrates the feasibility of an alternative training method that helps with
bridging the performance gap between open-source and closed-source LLM. Using a memory module
can help our socially aware agents remember, leading to lifelong learning. This impacts the long-term
behavior of the agents and enables them to do tasks that they were not able to achieve on their own.

6.1. Insights learned about the field of LLM-agents

During our thesis, we extensively investigated the field of LLM agents. Therefore, we can comment on
the limitations of current methods and exciting new developments.

Callfor aBenchmark on Minecraft There is a lack of standardized benchmarks for Minecraft. Malmo
[47]is the most comprehensive Minecraft benchmark out there, and it has been in development for more
than five years. The number of tasks that are evaluated is limited, and it does not try to assess the
general performance of an agent compared in an open-ended setting. Furthermore, Malmo lacks any
global leaderboard.

Reflection on the Current State of LLM-agents There is a significant performance difference gap
between GPT4 and open-source LLM for Minecraft agents [2] [1]. To close that gap, the Jarvis paper
investigates fine-tuning as a way to add Minecraft-specific knowledge to open-source LLMs. We tried
this approach with our fine-tuning experiment in section 5.2 but were unable to replicate those results.

Additionally, both closed-source and open-source models suffer from a lack of grounding in em-
bodied environments. They were trained to be text models, but not actors in an environment [48] [49].
However, their performance is remarkable, as LLM-powered agents are evaluated on out-of-distribution
tasks (being an LLM-based agent). Errors are more pronounced in niche settings such as Minecraft,
where specialized knowledge is essential, making LLM-based models unable to perform at a human
level.

Furthermore, the current limitation of LLMs makes this problem worse, such as imperfect planning
abilities [50]. In addition, they tend to hallucinate, especially in out-of-distribution domains, where they
generate responses that are not just incorrect but often irrelevant or nonsensical [51]. LLM do not
always know what they do not know; they usually prefer to answer a question and give confidently a
wrong answer [52]. This is particularly problematic in Minecraft as it is a niche topic, therefore factual
errors accumulate, making the model unable to perform simple tasks. Open-source LLM suffers further
from poorer performance in agent settings due to their more limited training datasets compared to
closed-source LLM such as GPT4 [2] [53]. Another limitation of LLM-based agents is the speed of the
LLM. In my opinion, LLM inference is still too slow for real-world embodiment. Indeed, Voyager and
Collaborative Voyager take minutes to achieve tasks that take seconds for humans to do.

29

6.2. Key Findings 30

Core Issues Surrounding Embodied Agents’ Collaboration After having studied this subject for
my thesis, | believe that some of the core issues surrounding making embodied agents truly collabora-
tive are:

* Understanding and Reasoning Capability: One primary challenge is developing agents that
can effectively understand and integrate information from their environment and other agents.
This involves not only processing external inputs but also contextualizing them within the given
task and the current state and objectives of the agent. This requires a high level of reasoning,
namely in a multi-agent system where those agents need to coordinate.

» Social Awareness: Effective collaboration is based on the ability of the agents to communicate
and understand each other’s intentions, capabilities, and actions. For agents, this means not
only deciphering messages from other agents but also clearly expressing their intentions and
needs. We believe that a truly collaborative agent must have a profound social understanding
and capacity.

+ Adaptability and Learning Capability: Agents must dynamically adapt to new information,
strategies, and environmental changes. Collaboration is often dynamic, with partners chang-
ing and objectives evolving. In addition, agents need to learn from successful and unsuccessful
interactions to improve their collaborative efforts continuously.

By focusing on these strategies, the research and development of embodied agents can progress
toward creating more autonomous, efficient, and collaborative systems capable of functioning in com-
plex multi-agent environments. This approach not only advances the field of embodied Al but also
paves the way for broader applications where dynamic collaboration is critical.

6.2. Key Findings

The following key findings were identified during our research and experiments:

» Open-source agents LLM fails to match closed-source LLMs in Minecraft
» The role of perspective-taking in agent setting

* Memory plays an important role in driving performance

+ Collaboration as an alternative learning strategy

Open-source agents LLM fails to match closed-source LLMs in Minecraft Before delving into
the details of our results, we wish to share our experiences with open-source LLMs within the Voyager
framework. As the related work mentions, Jarvis [2] demonstrates that open-source LLMs perform
significantly worse than GPT in embodied environments. This is also confirmed in our baseline ex-
periment in section 5.1. Anecdotally, getting grass was a much more complicated task than planned.
This is one of the simplest tasks that a novice player can achieve in a couple of minutes of gameplay
with Minecraft, but open-source LLMs cannot perform this task consistently. Collecting dirt is one of
the simplest tasks in Minecraft. Indeed, collecting dirt does not require any tools, and dirt is found
everywhere. However, when replacing GPT with other open-source LLMs, we found ourselves unable
to even collect dirt, suggesting a profound performance gap. Our initial objective was not focused on
collecting dirt, but this task became such a challenging endeavor that we decided to delve deeper into
how to enable an open-source agent to accomplish it.

We employed numerous techniques and eventually identified a method that allowed the agent to
collect dirt successfully. This performance gain was achieved through collaboration.

The role of perspective-taking in agent setting Creating socially aware agents that understand
their participants is crucial for effective collaboration. In multi-agent environments, where agents must
work together, the ability to take perspectives is particularly important. Integrating this ability into Al
agents can significantly enhance their problem-solving capabilities. By grounding the world state into
the BDI framework [42], as demonstrated through the use of BigToM, agents can better understand their
collaborators. This framework allows agents to form structured representations of their environment
and create an always-evolving world model. The ability to internalize and act on the perspectives of
others enables them to learn from each other. Al systems are then not only more effective in specific
tasks but also capable of adaptation and continual learning through social interactions.

6.2. Key Findings 31

Memory plays an important role in driving performance Memory is a critical factor in enhancing
the performance of Al agents, particularly given the current limitations of LLM context length and the im-
possibility of infinite memory. Using RAG techniques allows agents to select and retrieve relevant facts
and information from past collaborations, facilitating learning from mistakes. Post-collaboration agents
often perform better in subsequent tasks due to the retention of distilled knowledge from previous inter-
actions, underscoring the importance of memory and experience in Al learning processes. Furthermore,
our experiment on real-time collaboration has shown that immediate human feedback can sometimes
be less effective than pre-validated memory. This finding suggests that validated knowledge provides
more consistent performance improvements, as agents can rely on previously successful strategies and
corrections. Thus, incorporating robust memory mechanisms into Al systems is essential for achieving
continuous learning and long-term adaptability.

Collaboration as an alternative learning strategy Collaboration serves as a promising alternative
training strategy for Al agents, offering several advantages over traditional fine-tuning methods. Our ex-
periments collectively indicate that collaborative learning can significantly enhance performance without
the need for retraining. Through collaboration, agents can continually learn and adapt, extracting valu-
able insights from their partners. This process not only improves their ability to solve immediate tasks
but also enables better out-of-distribution generalization. For instance, collaboration led to improved
performance in tasks that were similar but not identical to those initially trained on, demonstrating the
potential for collaborative learning to enhance the versatility and adaptability of Al agents. Overall,
leveraging collaboration as a training strategy can foster more robust and flexible Al systems capable
of continuous improvement and effective handling of diverse and unforeseen tasks.

Review of our Hypothesis The two hypotheses that we postulated in our work are:

» Collaboration Hypothesis: Direct collaborator interaction and guidance will significantly correct
and enhance the problem-solving capabilities of Al agents.

» Adaptive Learning Hypothesis: Al agents can learn from collaborator interventions and adapt
to new tasks more effectively, indicating a form of learning and behavioral adaptation.

Due to the limited time, we could not test the full extent of our method on both hypotheses. Therefore,
we reduced the potential range of tasks to only collecting blocks, and we focused on collecting dirt and
wood as they are some of the most common tasks in Minecraft.

Our experiment 2, “Collaboration Improves Weak Agent Performance,” as seen in Section 5.3, aims
to answer our “Collaboration Hypothesis.” By collaborating, our weak agents increase their success
rate on the dirt-collecting task; therefore, it shows that, indeed, with a collaborator, a weak agent can
improve. By using the BigToM causal template, our agent can better understand and interpret its
environment and the mental states of other agents, which enhances collaboration.

Both our experiments 3 and 4, “Learning from Mistakes - Post-Collaboration in-distribution,” and
“Post collaboration out-of-distribution Capability,” respectively, intend to answer our second hypothe-
sis: “Adaptive Learning Hypothesis.” We saw that by having a memory module, the agent can now do a
task on its own that it was not able to do previously, thanks to the insights learned during collaboration.
Furthermore, those insights were applicable to adjacent tasks. This shows that the collaboration leads
to long-term behavioral changes in the agent, validating our second hypothesis.

Initially, we believed that fine-tuning on Minecraft specific data would be able to close the gap be-
tween open-source and closed-source LLM in the Voyager framework. However, this was unsuccess-
ful.

Our experiments reveal the significant impact of Al collaboration on improving single-agent perfor-
mance in Minecraft, addressing the initial limitations of open-source LLMs. These findings not only
validate our hypothesis but also illustrate the potential for collaboration to enable continual learning in
LLM.

How Our Methods Answer The Research Question Ourresearch question is How can collaboration
improve the problem-solving abilities of LLM-powered agents? as stated in our section 2.

Our method shows that by using the messages from the Minecraft chat to change the internal beliefs
of an agent, we can improve its performance. We added to the agent the ability to receive, represent,

6.3. Limitation of our research 32

internalize, and interpret its communication in order to learn from interactions as seen in Section 4.1.
This made our Voyager socially aware. With those new capabilities, our Collaborative Voyager can
leverage free-form text from other collaborators to learn and be better at problem-solving.

Later work could focus on more complex task solving, such as multiple-step processes such as
building a house or exploring caves in Minecraft. We concentrate on atomic tasks that a human player
can achieve in less than a minute in Minecraft; therefore, it would be interesting to test more complex
setups. Furthermore, current LLMs are extremely slow; thus, running our system takes multiple minutes
to do simple tasks that a human Minecraft player can do in seconds. We hope that future work on
inference speed could solve those issues and enable the tackling of more complex tasks.

Implication of Socially Aware Als The implications of our research extend beyond Minecraft, offer-
ing insights into the broader field of Al. By demonstrating the effectiveness of collaboration in overcom-
ing the limitations of current Al models, our work suggests a promising direction for future research and
development in Al systems designed for complex, dynamic tasks. In terms of future directions, this
research lays the groundwork for exploring more sophisticated models of interaction and developing
more socially aware Als.

6.3. Limitation of our research

While providing valuable insights into the dynamics of collaboration in Minecraft, this study is subject to
several limitations that should be considered when interpreting the results due to time and computing
constraints.

Single Human Participant First, collaboration with a human was done with a single participant, the
researcher. This is not ideal, as | have a more profound knowledge of the system than an external
participant. Furthermore, it would be better to have a sample of humans playing with the system to
provide various and diverse collaborative feedback to the agent. A solution to this problem would be
to use crowd workers to interact with the system.

Limited Number and Type of Tasks Used to Evaluate Performance We only tested our agents on
two tasks: collecting dirt or wood. This is not ideal as it does not give us a holistic view of the different
learning dynamics of the agent. Furthermore, it makes our claims weaker, as we were only able to
validate our hypothesis on a tiny subset of tasks that Minecraft offers, thus reducing the statistical
significance of our results. Furthermore, the tasks tested with our agents are not sufficiently diverse.
We only consider collecting resources tasks. In addition, those tasks are atomic in Minecraft, as they
are the most straightforward set of tasks in Minecraft. Therefore, we did not study the composability
aspect of the original Voyager paper. However, this choice is motivated by the current state of open-
source LLM. Open-source LLM in the Voyager framework fails at the simplest task (collecting dirt).
Thus, we managed at least to improve the performance of this with our method.

Impact of Contradicting Beliefs Our study lacks a study on the impact of contradicting beliefs. The
insights of the collaboration could contradict each other. Thus, beliefs could negatively influence each
other. This problem is further exacerbated if we have multiple collaborators. For example, “try to make
your code as simple as possible” and “make sure your code covers as many edge cases as possible”
are valuable beliefs. In our work, we provide all relevant insights to the LLM and let him decide which
to apply. However, we can imagine that certain contradictory beliefs could negatively influence task
performance and that the LLM does not know how to deal with them. It would be interesting to study
this phenomenon in more detail in future work.

6.4. Future work

In the development of our Collaborative Voyager agent, several essential software engineering prac-
tices have been employed to ensure that the system is not only robust and effective in its current state
but also designed to accommodate future advancements and challenges. These practices are crucial
in facilitating future work and allowing the agent to adapt and evolve without necessitating significant

6.4. Future work 33

redesigns. We wanted to enable subsequent improvements without the need for fundamental changes
to the agent itself.

» Modularity and Flexibility: The agent’s architecture is designed to be highly modular. This modu-
larity allows individual components of the agent, like memory modules, to be updated or replaced
independently as advancements in Al are developed. It ensures that the system is adaptable and
extensible, facilitating the incorporation of new features without extensive reworking.

» Use of Feature Toggles: We used feature toggles to manage the introduction of new functionalities
and experimental features without affecting the core operation of the agent. This technique allows
us to enable or disable features dynamically, making ablation studies easier.

» Documentation: We documented our new components, allowing future developers to understand
our rational design and the inner workings of each component.

The original Voyager codebase is large, so we left it as intact as possible. We, therefore, only apply
the discussed principles to the modifications we did to the original architecture.

The findings of this thesis open several promising avenues for further research into collaboration
in Minecraft and similar embodied environments. To extend current knowledge and overcome the
limitations identified in this study, future research can be directed in the following areas:

Removing Access to Internal Belief The current system allows the collaborator to access the agent’s
internal beliefs. This is not ideal as this is privileged information that is not typically accessible, for exam-
ple, in human-human collaboration. We do not necessarily know the internal state of a partner when
collaborating with him. A solution to this problem is to have two-way communication with the agent.
Thus, it could ask us for help and give us the necessary information to help him find a solution. This
would also allow the agent to communicate with its collaborator to understand the intent better. Due to
time constraints, we were unable to implement this.

Training of Better Collaborator Our experiment showed that humans can provide good insight to
induce weak agents. Our current setup relies on the human as a collaborator in a manner similar to a
Wizard of Oz experiment. We have collected interactions with the human. Thus, it would theoretically
be possible to train an Al to imitate a human collaborator, removing our Wizard of Oz setup. This would
show that Al can help them autonomously, laying the groundwork for more complex socially aware
multi-agent systems. This would also require studying “when to intervene,” as this remains an open
challenge in agent settings. Indeed, current research only evaluates this challenge in a conversation
setting which does not require any action coordination [38]

Dynamics in Larger Group Size of Collaborator The agents only have one collaborator in our
research. Further work could analyze the impact on the number of participants and agent performance.
For example, one can imagine that having a single collaborator allows for deeper collaboration; this is
in comparison with having a multitude of collaborators, where you can see a diversity of points of view.
This mimics the human learning paradigm; for example, is it better to learn from a private tutor who
knows their student deeply or from an ensemble of teachers?

Adversarial Settings In our work, we assume a non-adversarial setting. However, in real life, bad
actors can deceive agents. It would be interesting for our Collaborative Voyager not directly to trust its
collaborator but have a trust system to ensure that a collaborator has good intentions. Furthermore,
our setup is fully collaborative; it would be interesting to test a more complex group dynamic, such
as a competitive setting, where the agents have different objectives and do not wish to share all their
knowledge fully.

Conclusion

This thesis offers a comprehensive exploration of the potential for improving the problem-solving capa-
bilities of open-source LLM-powered agents through collaboration, specifically within the dynamic and
challenging environment of Minecraft. Indeed, current open-source LLMs fail to match their closed-
source counterpart. Therefore, we offer collaboration as an alternative learning method that would
allow us to close this gap. We covered the current literature, experimental validations, and the develop-
ment of novel methodologies to address collaboration challenges to create more socially aware agents.

Our primary research objective was to determine whether and how collaborative interactions be-
tween agents could enhance their ability to perform tasks. The results obtained from a series of de-
signed experiments provide compelling evidence that collaboration significantly enhances the capa-
bilities of LLM-powered agents. These findings emphasise the importance of social interaction in the
cognitive development of Al systems, resonating with the social intelligence hypothesis, which propose
that intelligence does not arise in isolation but through complex social interactions.

Through the introduction of our Collaborative Voyager architecture, we demonstrated that agents
could improve their task performance and adaptability by leveraging real-time interactions with peers.
This architecture allowed the agent to dynamically adjust its strategy based on the insights of collab-
orators. Furthermore, those new insights are saved, enabling our weak agents to become stronger
over time. By enabling agents to conceptualize and internalize the perspectives of their collaborators,
through the use of the BigToM template, we witnessed an improvement in how these agents navigated
the Minecraft environment, suggesting that the ability to “think” from another’s point of view can be
crucial for complex problem-solving tasks.

However, this research also illuminated several limitations and challenges. The number and type of
tasks evaluated limits the effectiveness and the study of collaboration. Additionally, while collaborative
efforts did improve agent performance in controlled settings, scaling these results to more long-term
horizon problems remains a challenge. Furthermore, the thesis outlines several avenues for further re-
search. Expanding the diversity and number of collaborative interactions, extending the complexity of
tasks, and training more socially aware LLM could provide deeper insights into the scalable application
of collaborative Al. Furthermore, exploring adversarial settings where agents must collaborate under
competitive pressures could reveal new dimensions of agents’ behaviors and strategy developments.

In conclusion, this thesis contributes to a deeper understanding of the potential of Al systems to
develop and operate within socially interactive frameworks. The implications of this research extend
beyond the realms of Minecraft, offering valuable insights for the development of Al applications in
areas such as robotics, where collaboration is key. We want Al systems that are not only intelligent
and adaptive but also capable of working alongside humans to tackle the complex challenges of the
real world.

34

(1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

References

Guanzhi Wang et al. Voyager: An Open-Ended Embodied Agent with Large Language Models.
arXiv:2305.16291 [cs]. May 2023. DOI: 10 .48550/arXiv.2305.16291. URL: http://arxiv.
org/abs/2305.16291 (visited on 09/25/2023).

Zihao Wang et al. JARVIS-1: Open-World Multi-task Agents with Memory-Augmented Multimodal
Language Models. arXiv:2311.05997 [cs]. Nov. 2023. DOI: 10.48550/arXiv.2311.05997. URL:
http://arxiv.org/abs/2311.05997 (visited on 12/04/2023).

Social Intelligence Hypothesis - an overview | ScienceDirect Topics. URL: https://www.science
direct.com/topics/psychology/social-intelligence-hypothesis (visited on 04/16/2024).

Alex Wilf et al. Think Twice: Perspective-Taking Improves Large Language Models’ Theory-of-
Mind Capabilities. arXiv:2311.10227 [cs]. Nov. 2023. DOI: 10.48550/arXiv.2311.10227. URL:
http://arxiv.org/abs/2311.10227 (visited on 04/17/2024).

Kanishk Gandhi et al. Understanding Social Reasoning in Language Models with Language Mod-
els. arXiv:2306.15448 [cs]. Dec. 2023. DOI: 10.48550/arXiv.2306.15448. URL: http://arxiv.
org/abs/2306.15448 (visited on 04/17/2024).

Melisa Moore. “Vygotsky’s Cognitive Development Theory”. en. In: Encyclopedia of Child Be-
havior and Development. Ed. by Sam Goldstein and Jack A. Naglieri. Boston, MA: Springer US,
2011, pp. 1549-1550. ISBN: 978-0-387-79061-9. DOI: 10.1007/978-0-387-79061-9 _3054.
URL: https://doi.org/10.1007/978-0-387-79061-9_3054 (visited on 04/16/2024).

Alyssa Hughes. Presenting the winners of the Project Malmo Collaborative Al Challenge. en-US.
June 2017. URL: https://www.microsoft.com/en-us/research/blog/malmo-collaborative-
ai-challenge-winners/ (visited on 12/04/2023).

Anjali Narayan-Chen, Prashant Jayannavar, and Julia Hockenmaier. “Collaborative Dialogue in
Minecraft”. In: Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Ed. by Anna Korhonen, David Traum, and Lluis Marquez. Florence, Italy: Association
for Computational Linguistics, July 2019, pp. 5405-5415. DOI: 10.18653/v1/P19-1537. URL:
https://aclanthology.org/P19-1537 (visited on 12/04/2023).

Danielle D. Potts, Kate MacFarlane, and Lynne Hall. “Support Rather Than Assault— Cooperative
Agents in Minecraft”. In: BCS Learning & Development, July 2021, pp. 133-138. DOI: 10.14236/
ewic/HCI2021.13. URL: https://www.scienceopen.com/hosted-document?doi=10.14236/
ewic/HCI2021.13 (visited on 12/04/2023).

Linxi Fan et al. MineDojo Internet Knowledge Base (Wiki). June 2022. DOI: 10.5281/ZENODO .
6640448. URL: https://zenodo.org/record/6640448 (visited on 05/13/2024).

Stephanie Milani et al. BEDD: The MineRL BASALT Evaluation and Demonstrations Dataset for
Training and Benchmarking Agents that Solve Fuzzy Tasks. arXiv:2312.02405 [cs]. Dec. 2023.
DOI: 10.48550/arXiv.2312.02405. URL: http://arxiv. org/abs/2312. 02405 (visited on
02/19/2024).

Bowen Baker et al. Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online
Videos. arXiv:2206.11795 [cs]. June 2022. DOI: 10 . 48550/ arXiv . 2206 . 11795. URL: http:
//arxiv.org/abs/2206.11795 (visited on 12/06/2023).

Ashish Vaswani et al. Attention Is All You Need. arXiv:1706.03762 [cs]. Aug. 2023. DOI: 10.
48550/arXiv.1706.03762. URL: http://arxiv.org/abs/1706.03762 (visited on 04/16/2024).

Tom B. Brown et al. Language Models are Few-Shot Learners. arXiv:2005.14165 [cs]. July 2020.
DOI: 10.48550/arXiv.2005 . 14165. URL: http://arxiv. org/abs /2005 . 14165 (visited on
06/15/2023).

35

https://doi.org/10.48550/arXiv.2305.16291
http://arxiv.org/abs/2305.16291
http://arxiv.org/abs/2305.16291
https://doi.org/10.48550/arXiv.2311.05997
http://arxiv.org/abs/2311.05997
https://www.sciencedirect.com/topics/psychology/social-intelligence-hypothesis
https://www.sciencedirect.com/topics/psychology/social-intelligence-hypothesis
https://doi.org/10.48550/arXiv.2311.10227
http://arxiv.org/abs/2311.10227
https://doi.org/10.48550/arXiv.2306.15448
http://arxiv.org/abs/2306.15448
http://arxiv.org/abs/2306.15448
https://doi.org/10.1007/978-0-387-79061-9_3054
https://doi.org/10.1007/978-0-387-79061-9_3054
https://www.microsoft.com/en-us/research/blog/malmo-collaborative-ai-challenge-winners/
https://www.microsoft.com/en-us/research/blog/malmo-collaborative-ai-challenge-winners/
https://doi.org/10.18653/v1/P19-1537
https://aclanthology.org/P19-1537
https://doi.org/10.14236/ewic/HCI2021.13
https://doi.org/10.14236/ewic/HCI2021.13
https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/HCI2021.13
https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/HCI2021.13
https://doi.org/10.5281/ZENODO.6640448
https://doi.org/10.5281/ZENODO.6640448
https://zenodo.org/record/6640448
https://doi.org/10.48550/arXiv.2312.02405
http://arxiv.org/abs/2312.02405
https://doi.org/10.48550/arXiv.2206.11795
http://arxiv.org/abs/2206.11795
http://arxiv.org/abs/2206.11795
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.2005.14165
http://arxiv.org/abs/2005.14165

References 36

[15] Harsha Nori et al. Can Generalist Foundation Models Outcompete Special-Purpose Tuning?
Case Study in Medicine. arXiv:2311.16452 [cs]. Nov. 2023. DOI: 10.48550/arXiv.2311.16452.
URL: http://arxiv.org/abs/2311.16452 (visited on 12/04/2023).

[16] Jenish Maharjan et al. OpenMedLM: Prompt engineering can out-perform fine-tuning in medical
question-answering with open-source large language models. arXiv:2402.19371 [cs]. Feb. 2024.
DOIl: 10.48550/arXiv.2402.19371. URL: http://arxiv.org/abs/2402.19371 (visited on
04/16/2024).

[17] Noah Shinn et al. Reflexion: Language Agents with Verbal Reinforcement Learning. arXiv:2303.11366
[cs]. Oct. 2023. DOI: 10.48550/arXiv.2303.11366. URL: http://arxiv.org/abs/2303.11366
(visited on 01/22/2024).

[18] Jason Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. arXiv:2201.11903
[cs]. Jan. 2023. DOI: 10.48550/arXiv.2201.11903. URL: http://arxiv.org/abs/2201.11903
(visited on 04/17/2024).

[19] Shunyu Yao et al. Tree of Thoughts: Deliberate Problem Solving with Large Language Models.
arXiv:2305.10601 [cs]. Dec. 2023. DOI: 10.48550/arXiv.2305.10601. URL: http://arxiv.
org/abs/2305.10601 (visited on 04/17/2024).

[20] Patrick Lewis et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. arXiv:2005.11401
[cs]. Apr. 2021. DOI: 10.48550/arXiv.2005.11401. URL: http://arxiv.org/abs/2005.11401
(visited on 04/17/2024).

[21] Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-tuning for Text Classifi-
cation. arXiv:1801.06146 [cs, stat]. May 2018. DOI: 10.48550/arXiv.1801.06146. URL: http:
//arxiv.org/abs/1801.06146 (visited on 04/17/2024).

[22] Edward J. Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. arXiv:2106.09685
[cs]. Oct. 2021. DOI: 10.48550/arXiv.2106.09685. URL: http://arxiv.org/abs/2106.09685
(visited on 04/17/2024).

[23] Angels Balaguer et al. RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture.
arXiv:2401.08406 [cs]. Jan. 2024. DOI: 10.48550/arXiv.2401.08406. URL: http://arxiv.org/
abs/2401.08406 (visited on 04/17/2024).

[24] Jintian Zhang, Xin Xu, and Shumin Deng. Exploring Collaboration Mechanisms for LLM Agents:
A Social Psychology View. arXiv:2310.02124 [cs]. Oct. 2023. DOI: 10.48550/arXiv.2310.02124.
URL: http://arxiv.org/abs/2310.02124 (visited on 01/05/2024).

[25] NeurlPS 2023 Tutorial. en-GB. URL: https : //sites . google . com/ view /neurips2023law
(visited on 05/15/2024).

[26] LeiWangetal. A Survey on Large Language Model based Autonomous Agents. arXiv:2308.11432
[cs]. Sept. 2023. DOI: 10.48550/arXiv.2308.11432. URL: http://arxiv.org/abs/2308.11432
(visited on 10/25/2023).

[27] Jiannan Xiang et al. Language Models Meet World Models: Embodied Experiences Enhance
Language Models. en. arXiv:2305.10626 [cs]. Oct. 2023. URL: http://arxiv.org/abs/2305.
10626 (visited on 05/15/2024).

[28] How the Body Shapes the Way We Think. en-US. URL: https://mitpress.mit.edu/97802625
37421 /how-the-body-shapes-the-way-we-think/ (visited on 04/17/2024).

[29] Lucy A Suchman. “PLANS AND SITUATED ACTIONS:” en. In: (). URL: http://bitsavers.
trailing-edge.com/pdf/xerox/parc/techReports/ISL-6_Plans_and_Situated_Actions.
pdf.

[30] Tongtong Wu et al. Continual Learning for Large Language Models: A Survey. arXiv:2402.01364
[cs]. Feb. 2024. DOI: 10.48550/arXiv.2402.01364. URL: http://arxiv.org/abs/2402.01364
(visited on 05/15/2024).

[31] Cagatay Yildiz et al. Investigating Continual Pretraining in Large Language Models: Insights and
Implications. arXiv:2402.17400 [cs]. Feb. 2024. DOI: 10.48550/arXiv.2402.17400. URL: http:
//arxiv.org/abs/2402.17400 (visited on 05/15/2024).

https://doi.org/10.48550/arXiv.2311.16452
http://arxiv.org/abs/2311.16452
https://doi.org/10.48550/arXiv.2402.19371
http://arxiv.org/abs/2402.19371
https://doi.org/10.48550/arXiv.2303.11366
http://arxiv.org/abs/2303.11366
https://doi.org/10.48550/arXiv.2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.48550/arXiv.2305.10601
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
https://doi.org/10.48550/arXiv.2005.11401
http://arxiv.org/abs/2005.11401
https://doi.org/10.48550/arXiv.1801.06146
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
https://doi.org/10.48550/arXiv.2106.09685
http://arxiv.org/abs/2106.09685
https://doi.org/10.48550/arXiv.2401.08406
http://arxiv.org/abs/2401.08406
http://arxiv.org/abs/2401.08406
https://doi.org/10.48550/arXiv.2310.02124
http://arxiv.org/abs/2310.02124
https://sites.google.com/view/neurips2023law
https://doi.org/10.48550/arXiv.2308.11432
http://arxiv.org/abs/2308.11432
http://arxiv.org/abs/2305.10626
http://arxiv.org/abs/2305.10626
https://mitpress.mit.edu/9780262537421/how-the-body-shapes-the-way-we-think/
https://mitpress.mit.edu/9780262537421/how-the-body-shapes-the-way-we-think/
http://bitsavers.trailing-edge.com/pdf/xerox/parc/techReports/ISL-6_Plans_and_Situated_Actions.pdf
http://bitsavers.trailing-edge.com/pdf/xerox/parc/techReports/ISL-6_Plans_and_Situated_Actions.pdf
http://bitsavers.trailing-edge.com/pdf/xerox/parc/techReports/ISL-6_Plans_and_Situated_Actions.pdf
https://doi.org/10.48550/arXiv.2402.01364
http://arxiv.org/abs/2402.01364
https://doi.org/10.48550/arXiv.2402.17400
http://arxiv.org/abs/2402.17400
http://arxiv.org/abs/2402.17400

References 37

[32] Cong Lu et al. Synthetic Experience Replay. arXiv:2303.06614 [cs, stat]. Oct. 2023. DOI: 10.
48550/arXiv.2303.06614. URL: http://arxiv.org/abs/2303.06614 (visited on 05/15/2024).

[33] Xizhou Zhu et al. Ghost in the Minecraft: Generally Capable Agents for Open-World Environments
via Large Language Models with Text-based Knowledge and Memory. arXiv:2305.17144 [cs].
June 2023. DOI: 10.48550/arXiv.2305.17144. URL: http://arxiv.org/abs/2305. 17144
(visited on 12/06/2023).

[34] Haoqi Yuan et al. Plan4MC: Skill Reinforcement Learning and Planning for Open-World Minecraft
Tasks. arXiv:2303.16563 [cs]. Mar. 2023. DOI: 10.48550/arXiv.2303.16563. URL: http://
arxiv.org/abs/2303.16563 (visited on 12/04/2023).

[35] Kolby Nottingham et al. Do Embodied Agents Dream of Pixelated Sheep: Embodied Decision
Making using Language Guided World Modelling. arXiv:2301.12050 [cs]. Apr. 2023. DOI: 10.
48550/arXiv.2301.12050. URL: http://arxiv.org/abs/2301.12050 (visited on 12/04/2023).

[36] SiruiHong et al. MetaGPT: Meta Programming for Multi-Agent Collaborative Framework. arXiv:2308.00352
[cs]. Aug. 2023. DOI: 10.48550/arXiv.2308.00352. URL: http://arxiv.org/abs/2308.00352
(visited on 10/12/2023).

[37] Yashar Talebirad and Amirhossein Nadiri. Multi-Agent Collaboration: Harnessing the Power of
Intelligent LLM Agents. arXiv:2306.03314 [cs]. June 2023. DOI: 10.48550/arXiv.2306.03314.
URL: http://arxiv.org/abs/2306.03314 (visited on 04/17/2024).

[38] Jimmy Wei et al. Multi-Party Chat: Conversational Agents in Group Settings with Humans and
Models. arXiv:2304.13835 [cs]. June 2023. DOI: 10.48550/arXiv . 2304 . 13835. URL: http:
//arxiv.org/abs/2304.13835 (visited on 01/05/2024).

[39] Xudong Guo etal. Embodied LLM Agents Learn to Cooperate in Organized Teams. arXiv:2403.12482
[cs]. Mar. 2024. DOI: 10.48550/arXiv.2403.12482. URL: http://arxiv.org/abs/2403. 12482
(visited on 05/15/2024).

[40] Open-Orca/Mistral-7B-OpenOrca - Hugging Face. Oct. 2023. URL: https://huggingface.co/
Open-0Orca/Mistral-7B-OpenOrca (visited on 04/22/2024).

[41] mistralai/Mistral-7B-v0.1 - Hugging Face. URL: https://huggingface.co/mistralai/Mistral-
7B-v0.1 (visited on 04/22/2024).

[42] Anand S. Rao and Michael P. Georgeff. “Modeling rational agents within a BDI-architecture”. In:
Proceedings of the Second International Conference on Principles of Knowledge Representation
and Reasoning. KR'91. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Apr. 1991,
pp. 473—484. ISBN: 978-1-55860-165-9. (Visited on 05/15/2024).

[43] GPT-4.en-US. URL: https://openai .com/gpt-4 (visited on 04/22/2024).

[44] mistralai/Mixtral-8x7B-Instruct-v0.1 - Hugging Face. URL: https://huggingface.co/mistrala
i/Mixtral-8x7B-Instruct-v0.1 (visited on 04/22/2024).

[45] swen128/Voyager_checkpoint: Trained checkpoint and tracing log for Voyager. URL: https://
github.com/swenl128/Voyager_checkpoint (visited on 04/17/2024).

[46] PrismarineJS/mineflayer. original-date: 2011-01-23T09:41:55Z. May 2024. URL: https://gith
ub.com/PrismarineJS/mineflayer (visited on 05/13/2024).

[47] Project Malmo. en-US. URL: https://www.microsoft.com/en-us/research/project/projec
t-malmo/ (visited on 04/22/2024).

[48] Yijun Yang et al. Embodied Multi-Modal Agent trained by an LLM from a Parallel TextWorld.
arXiv:2311.16714 [cs]. Mar. 2024. DOI: 10.48550/arXiv.2311.16714. URL: http://arxiv.
org/abs/2311.16714 (visited on 04/22/2024).

[49] Weihao Tan et al. “True Knowledge Comes from Practice: Aligning Large Language Models with
Embodied Environments via Reinforcement Learning”. en. In: Oct. 2023. URL: https://openre
view.net/forum?id=hILVmJ4Uvu (visited on 04/22/2024).

[50] Karthik Valmeekam et al. “Large Language Models Still Can’t Plan (A Benchmark for LLMs on
Planning and Reasoning about Change)”. en. In: (). URL: https://openreview.net/pdf7id=
wUU-7XTL5X0.

https://doi.org/10.48550/arXiv.2303.06614
https://doi.org/10.48550/arXiv.2303.06614
http://arxiv.org/abs/2303.06614
https://doi.org/10.48550/arXiv.2305.17144
http://arxiv.org/abs/2305.17144
https://doi.org/10.48550/arXiv.2303.16563
http://arxiv.org/abs/2303.16563
http://arxiv.org/abs/2303.16563
https://doi.org/10.48550/arXiv.2301.12050
https://doi.org/10.48550/arXiv.2301.12050
http://arxiv.org/abs/2301.12050
https://doi.org/10.48550/arXiv.2308.00352
http://arxiv.org/abs/2308.00352
https://doi.org/10.48550/arXiv.2306.03314
http://arxiv.org/abs/2306.03314
https://doi.org/10.48550/arXiv.2304.13835
http://arxiv.org/abs/2304.13835
http://arxiv.org/abs/2304.13835
https://doi.org/10.48550/arXiv.2403.12482
http://arxiv.org/abs/2403.12482
https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://openai.com/gpt-4
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://github.com/swen128/Voyager_checkpoint
https://github.com/swen128/Voyager_checkpoint
https://github.com/PrismarineJS/mineflayer
https://github.com/PrismarineJS/mineflayer
https://www.microsoft.com/en-us/research/project/project-malmo/
https://www.microsoft.com/en-us/research/project/project-malmo/
https://doi.org/10.48550/arXiv.2311.16714
http://arxiv.org/abs/2311.16714
http://arxiv.org/abs/2311.16714
https://openreview.net/forum?id=hILVmJ4Uvu
https://openreview.net/forum?id=hILVmJ4Uvu
https://openreview.net/pdf?id=wUU-7XTL5XO
https://openreview.net/pdf?id=wUU-7XTL5XO

References 38

[51] Jia-Yu Yao et al. LLM Lies: Hallucinations are not Bugs, but Features as Adversarial Examples.
arXiv:2310.01469 [cs]. Oct. 2023. DOI: 10.48550/arXiv.2310.01469. URL: http://arxiv.org/
abs/2310.01469 (visited on 04/16/2024).

[52] Zhangyue Yin et al. “Do Large Language Models Know What They Don’t Know?” In: Findings
of the Association for Computational Linguistics: ACL 2023. Ed. by Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki. Toronto, Canada: Association for Computational Linguistics, July
2023, pp. 8653-8665. DOI: 10.18653/v1/2023.findings-acl.551. URL: https://aclanthol
ogy.org/2023.findings-acl.551 (visited on 04/22/2024).

[53] Toufique Ahmed et al. Studying LLM Performance on Closed- and Open-source Data. arXiv:2402.15100
[cs]. Feb. 2024. DOI: 10.48550/arXiv.2402.15100. URL: http://arxiv.org/abs/2402.15100
(visited on 04/16/2024).

https://doi.org/10.48550/arXiv.2310.01469
http://arxiv.org/abs/2310.01469
http://arxiv.org/abs/2310.01469
https://doi.org/10.18653/v1/2023.findings-acl.551
https://aclanthology.org/2023.findings-acl.551
https://aclanthology.org/2023.findings-acl.551
https://doi.org/10.48550/arXiv.2402.15100
http://arxiv.org/abs/2402.15100

Logbook of agent failures

This appendix presents the key findings from developing and testing the Voyager and Collaborative
Voyager systems. We analyze failure cases from our experiments that have informed our understanding
of these learning models. These failures, as revealing as successes, offer insights into the limitations
and potential enhancements of our Al agents. By documenting these missteps, we aim to contribute to
Al research, improving the resilience and flexibility of language model agents in complex environments.

- No reasoning
backtracking

Game state
- Lack of world

knowledge leads to
wrong answers to
the QA

Self Question
Answering

Actor Critic

- Erroneous code
- Not following task
direction

- Can hallucinate
task success
- Unhelpful critic

Task

Figure 24: Voyager architecture shortcomings

Figure 24 illustrates several common errors encountered by the original Voyager agent, reflecting
fundamental limitations in its operational logic and decision-making process:

1. Lack of World Knowledge Leads to Wrong Answers to QA: This error arises when the agent
does not possess sufficient contextual information or specific domain knowledge, leading to in-
correct or irrelevant answers during question-answering tasks. This is especially a problem in the
Minecraft domain.

2. No Reasoning Backtracking: The agent’s inability to re-evaluate or reverse its previous reason-
ing steps when faced with new information or errors leads to persistent mistakes. For example,

when an agent thinks it needs a shovel to get dirt, it cannot backtrack this insight even if it realizes
it is wrong.

39

A.l. Examples of failures: 40

3. Erroneous Code: The actor model often produces erroneous code that is sometimes non-sensical,
for example, by adding hallucinate intermediary steps.

4. Not Following Task Direction: This error occurs when the agent misinterprets or disregards the
instructions, leading to actions that do not align with the set objectives. For example, instead of
doing the given task, the agent will decide to do another random task.

5. Can Hallucinate Task Success: The agent may incorrectly conclude that a task has been com-
pleted successfully or misinterpret the state of the environment. This is detailed more in our
section 5.1

6. Unhelpful Critic: When the feedback mechanism does not provide constructive or accurate
guidance, the agent’s learning and adjustment processes are impeded. The critic module is also
plagued by random hallucinations, making the guidance process unreliable.

A.l. Examples of failures:
Hallucination

(a) Functions
This is not a function... bad usage of the API.
Solution: We tried fine-tuning with Mineflayer API, did not help qualitatively. An alternative
would be RAG.

(b) Lack of Minecraft understanding in QA
Grass and dirt are equivalent. For example, in the context of Minecraft, an open-source LLM
might erroneously interpret grass and dirt as two different concepts when they are essentially
the same. This reflects a fundamental misunderstanding of the game’s elements. Solution:
We tried fine-tuning with Minecraft Wiki did not help qualitatively. An alternative would be
RAG.

Previous erroneous context makes the LLM weaker

» Bad previous context

— Example: trying to tell the bot to use hand to pick up dirt. However, because the previous

code used a shovel, the agent cannot reset itself to use a hand.
— Solution: allow interaction agent to clean context and restart task with latest reflections.
— Literature: similar examples in literature are backtracking a wrong path in a reflection

tree [19].

A.1.1. Lack of instruction following / internal consistency

AgentO **Action Agent ai message**

Explain: The task is to get a dirt or grass block in Minecraft. The bot has provided
information about its surroundings, including the biome, time of day, and nearby blocks
and entities. However, the code does not complete the task as it is missing steps.
Specifically, it does not mine the dirt or grass block using the appropriate tool (hand)
or check if the inventory has the required item before attempting to mine.

Plan: To complete the task, we will first check if the bot has the required items in its
inventory. If it does not have a diamond pickaxe or an iron pickaxe, we will craft one
using the appropriate materials. Then, we will use the pickaxe to mine the nearest dirt
or grass block.

Code:
ST Tjsx
// helper functions (only if needed, try to avoid them)

// main function after the helper functions

async function getDirtOrGrassBlock(bot) {
// Check inventory for required items
const diamondPickaxe = bot.inventory.find((item) => item.name === "diamond_pickaxe");
const ironPickaxe = bot.inventory.find((item) => item.name === "iron_pickaxe");

if (!diamondPickaxe && !ironPickaxe) {

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

N N

A.l. Examples of failures: 41

// Craft diamond or iron pickaxe if not found in inventory

const diamondOre = bot.inventory.find((item) => item.name === "diamond_ore");
const ironOre = bot.inventory.find((item) => item.name === "iron_ore");
if (diamondOre || ironOre) {
await bot.craftItem(diamondOre, ironOre);
} else {
console.error("Insufficient items in inventory to craft pickaxe.");
return;
}

}

// Mine nearest dirt or grass block

const targetBlock = bot.findBlocks(dirt, grass).find((block) => {
const distance = Math.sqrt(Math.abs(bot.position.x - block.x));
return distance < 32;

s

if (targetBlock) {
await bot.mineBlock(targetBlock);
} else {
console.error ("Could not find any dirt or grass blocks nearby.");
}
}

Listing A.1: Lack of instruction following
This snippets demonstrate random explore until you find a dirt block. However, the dirt block is already
next to the player. Furthermore, there is an infinite loop because the generated Al code is buggy.
Overcomplicated code makes failure easier.

A.1.2. Hallucinate answers to QA

AgentO **x*x*xAction Agent ai message***x*

Explain: The task is to get a dirt or grass block in Minecraft. The code provides the
necessary steps to achieve this task, including finding a nearby deepslate_iron_ore block
and mining 5 of them using a diamond pickaxe, and then exploring the area to find a
deepslate_lapis_ore block and mining it with an iron pickaxe.

Listing A.2: QA hallucination
Example of hallucination. There is no link between finding a deepslate iron ore block and getting dirt.

A.1.3. Example of hallucinated success

x*xxCritic Agent ai message*x*x*
{
"reasoning": "You want to get a dirt block. Since you are in the savanna biome, there is
grass and grass_block nearby. You can successfully dig it up using your bare hands.",
"success": true,
"Critique": nn
}

Listing A.3: Critic Agent Al message
The agent did not accomplish the task but hallucinated the fact that he did

A.1.4. Comparison between open-source LLM and GPT

The benefit of GPT is that it is straight to the point, with no extra necessary logic, less hallucination, etc.
Compared to the open-source LLM, it hallucinates a random position in the world where there is dirt
(-17, 71, 134). This is non-sensical.

1
2

o o A W

20
21
22
23
24
25
26
27

A.l. Examples of failures:

42

Listing A.4: Open source LLM answer

AgentO **x*x*xAction Agent ai message***x*

Explain: To get a dirt block in Minecraft,
you can use the “bot.dig ™ method
without any tools. The method takes
one argument, the block type, and
returns the block if it's
successfully mined, or "null”
otherwise. In this case, we check if
the player has the necessary items (
dirt) in their inventory, and then
mine for a dirt block at coordinates
(-17, 71, 134). If the block is not
found, we throw an error message.

Plan:

1. Check if the player has the necessary
items in their inventory.

2. Mine for a dirt block at coordinates
(-17, 71, 134) using “bot.dig".

3. Add the dirt block to the player's
inventory if it's successfully mined.

Code:
T javascript
async function getDirtBlock(bot) {
// Check if player has necessary items
if (!bot.inventory.contains('dirt')) {
await collectNecessaryItems(bot);

}

// Mine for dirt block

const dirt = await bot.dig('dirt',
-17, 71, 134);

if ('dirt) {
throw 'Failed to mine dirt block';

}

// Add dirt block to inventory
bot.inventory.add('dirt');
}
Note: I've used collectNecessarylItems as a
helper function, you can replace it
with your own implementation or omit

it if you don't need it.

20
21
22
23
24
25
26

27
28

29

Listing A.5: GPT4 answer

Plan:

1) Check the bot's inventory to see if it
already has a dirt block. If it does,
the

2) If the bot does not have a dirt block,
find the position of a nearby dirt
block.

3) Mine the dirt block using the
mineBlock ™ function.

4) Confirm that the dirt block has been
added to the bot's inventory.

Code:
T javascript
async function getOneDirtBlock(bot) {
// Step 1: Check if the bot already
has a dirt block in its inventory
const dirtBlock = bot.inventory.
findInventoryItem(mcData.
itemsByName.dirt.id);
if (dirtBlock) {
bot.chat ("I already have a dirt
block.");
return;

}

// Step 2: Find the position of a
nearby dirt block
const dirtPosition = bot.findBlock({
matching: mcData.blocksByName.dirt
.id,
maxDistance: 32

s

// Step 3: Mine the dirt block

if (dirtPosition) {
await mineBlock(bot, "dirt", 1);
bot.chat ("1 dirt block obtained.")

} else {
bot.chat ("Could not find a dirt
block nearby.");

Figure 25: Comparison of open-source vs closed-source LLM quality

Agent prompts

This appendix offers a collection of prompts for the Collaborative Voyager agent, which powers our
agent to facilitate Al interaction and collaboration. This catalog serves as a reference for replicating
our experiments. The showcased prompts also provide insights into design considerations and com-
munication strategies for socially aware Al systems.

Create Perception Beliefs

Listing B.1: Create a list of beliefs based on sensory data

1 Prompt: You are a Minecraft agent. Create a list of beliefs from your sensory perception. I
will provide data from your sensor, and you will need to make a list of beliefs.

Check Context Based on Beliefs

Listing B.2: Evaluate if the Al-generated context is correct or erroneous

1 Prompt: You are a Minecraft agent. You have a generated context created by an AI. The goal is
to evaluate if the context is correct or erroneous. You receive a list of beliefs in the
form of questions and answers that are assumed to be accurate. Flag the context as

incorrect if you find a contradiction with the beliefs. Respond with True or False to
indicate if the context is correct.

Transform Message into QA

Listing B.3: Transform a received message into a QA format

1 Prompt: You are a Minecraft agent. Your goal is to transform a message received in the chat
into a QA (question and answer). I will provide you with examples of QA and one message
that needs to be transformed into a QA.

Update Context if It Is Wrong

Listing B.4: Provide an answer based on a set of given beliefs

1 Prompt: You are a Minecraft agent. Your goal is to answer the provided question based on a
set of beliefs. You receive a list of beliefs in the form of questions and answers that
are assumed to be correct. Answer the question at the end based on the provided beliefs.
Start your answer with "Answer: ". If you don't know the answer, respond with "Answer:
Unknown".

Filtering after RAG Retrieval

Listing B.5: Output a list of selected candidate QAs that are most relevant to the task

1 Prompt: Your task is to output a list of selected candidate QAs most relevant to the task.
Format this list as a LaTeX appendix.

43

Agents execution time

This appendix provides time measurements captured during the execution of our experiments. Each ta-
ble is associated with the experiments described in the chapter 5: experiment. All times are in seconds;
the setup is the same as the experiments. N/A signify that the model did not achieve any success dur-
ing the run. Success is once again defined as TP and FN. The most noticeable trends were explained
in the main body, but we left the rest of the measurements for completeness.

Model Average Time to Success Average Time per Round
Voyager GPT 132 132
Voyager Mistral 84 219
Voyager Mixtral 66 216
Collaborative Voyager GPT 144 144
Collaborative Voyager Mistral N/A 252
Collaborative Voyager Mixtral 126 227

Note: All times are specified in seconds.

Table 1: Experiment 0: Comparison of Voyager and Collaborative Voyager execution time with a selection of LLM

Model Average Time to Success Average Time per Round
Voyager Mistral 84 219
Voyager finetuned v0 N/A 308
Voyager finetuned v1 N/A 600
Collaborative Voyager Mistral N/A 252
Collaborative Voyager finetuned vO NA 263
Collaborative Voyager finetuned v1 NA 600

Note: All times are specified in seconds.

Table 2: Experiment 1: Comparison of the execution time of Voyager and Collaborative Voyager after fine-tuning

44

45

Model Average Time to Success Average Time per Round
Collaborative Voyager 126 227
2 x Collaborative Voyager 89 88
Collaborative Voyager + Human 176 209

Note: All times are specified in seconds.

Table 3: Experiment 2: Comparison of Collaborative Voyager’s execution time in the presence of a collaborator

Model Average Time to Success Average Time per Round
Collaborative Voyager 126 227
Collaborative Voyager + Human 176 209
Collaborative Voyager with distilled memory 125 179

Note: All times are specified in seconds.

Table 4: Experiment 3: Comparison of Collaborative Voyager’s execution time with the distilled knowledge memory enabled

Model Average Time to Success Average Time per Round
Collaborative Voyager 119 247
Collaborative Voyager with distilled 149 284

memory (trained on dirt task)

Note: All times are specified in seconds.

Table 5: Experiment 4: Comparison the Collaborative Voyager’s execution time on out-of-distribution tasks (collecting wood)

	Abstract
	Introduction
	Related work
	Minecraft as a learning environment
	Large language models
	LLM-based agents

	Methodology
	Design goals and Environment Updates
	Collaborative Voyager Agent Architecture
	Difference between Voyager and our Collaborative Voyager

	Experiments
	Experiment Setup
	Experiment 0: Fine-Tuning as a Solution to the Performance Problem of Open-Source LLMs Instead of Collaboration
	Experiment 1: Collaboration Improves Weak Agent Performance
	Experiment 2: Learning from Mistakes - Post-Collaboration In-Distribution Task
	Experiment 3: Post Collaboration Out-of-Distribution Task
	Summary

	Discussion
	Insights learned about the field of LLM-agents
	Key Findings
	Limitation of our research
	Future work

	Conclusion
	References
	Logbook of agent failures
	Examples of failures:
	Lack of instruction following / internal consistency
	Hallucinate answers to QA
	Example of hallucinated success
	Comparison between open-source LLM and GPT

	Agent prompts
	Agents execution time

