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werktuigkundig ingenieur

geboren te Enschede



Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. C.W. Scherer
Prof. ir. O.H. Bosgra

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. C.W. Scherer Technische Universiteit Delft, promotor
Prof. ir. O.H. Bosgra Technische Universiteit Delft, promotor
Prof. dr. ir. C. Roos Technische Universiteit Delft
Prof. dr. ir. M. Steinbuch Technische Universiteit Eindhoven
Prof. dr. L. Vandenberghe University of California at Los Angeles
Prof. dr. A. Packard University of California at Berkely
Dr. ir. M. van de Wal Philips Applied Technologies Mechatronics Department

Reservelid:
Prof. dr. ir. A. van Keulen Technische Universiteit Delft

The research reported in this thesis is part of the research program of the Dutch Institute
of Systems and Control (DISC). The author has successfully completed the educational
program of the Graduate School DISC.

This research is supported by Philips Applied Technologies Mechatronics Department in
Eindhoven, the Netherlands.

ISBN-10: 90-9021294-9
ISBN-13: 978-90-9021294-4

Copyright c© 2006 by C.W.J. Hol
All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, includ-
ing photocopying, recording or by any information storage and retrieval system, without
written permission from Camile Wilbert José Hol.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Accurate positioning of servo-systems

Due to the ever increasing demands on throughput and the miniaturization of electronic
devices, the performance requirements of several industrial servo-systems have become
tighter and tighter. Examples include the positioning devices used in lithography systems
for the production of Integrated Circuits (ICs). In 1965 Moore [134] observed that the
number of transistors per square inch doubled every year. He conjectured that the expo-
nential growth would continue in the future. Although recently Moore’s prediction turns
out to be too optimistic, the complexity of ICs is fast approaching a (presumed to be)
fundamental boundary induced by physical limits [130].

This rapid development implies the need for ongoing research in IC production tech-
nology. Within a few years the patterns on the ICs will reach a size that cannot be etched
any more with visible light (400-700 nm) and one must resort to ultraviolet light. A pro-
totype of a wafer scanner using ultraviolet light is currently developed at Philips Applied
Technologies in Eindhoven, the Netherlands. One of the most important servo-systems
within this system is the wafer stage. This device positions a silicon disc, the wafer, under
a system of lenses or mirrors and the reticle, as illustrated in Figures 1.1. The reticle
contains an enlarged image of the pattern to be etched.

This image is projected onto the wafer by a refractive optical system. On top of the
wafer a polymer coating is present that reacts to the light. The exposed pattern is removed
with a solvent in a different machine. This process is repeated several times, since the IC
consists of multiple (typically 20) layers on top of each other. To guarantee that the right
vertical interconnections are made on the chip, it is crucial that the layers are positioned
accurately. Furthermore, the blurring of the projected image has to be prevented. These
objectives can only be achieved if very tight requirements on the motion of the wafer stage
are satisfied during the exposure to the light; the required positioning accuracy is in the
order of magnitude of nanometers. (A nanometer is 10−9 meters.)

1.1.2 Control system architecture

Combined feedforward and feedback controllers are used to achieve these performance
requirements as shown in Figure 1.2. In this figure FF and K denote the feedforward
and feedback controllers, respectively. G is the wafer stage or any other servo-system.
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Figure 1.2: Feedback and feedforward controller configuration

The signals r, e, u and y are the reference signal, error signal, manipulated variable and
measured variable, respectively. The feedforward is mainly used for trajectory following. It
can also compensate for vibrations in the system induced by acceleration and deceleration
of the wafer, or for repetitive disturbances. The feedback controller typically stabilizes the
closed-loop system and rejects non-deterministic disturbances.

1.1.3 Controller design by tuning

The focus of this thesis is on the design of the feedback controller. Nowadays, for each of
the six physical degrees of freedom (i.e. the three translations in x, y and z directions
in Figure 1.1 and three rotations), a Single-Input-Single Output (SISO) controller is
applied. It usually consists of a Proportional Integral Derivative (PID) Controller combined
with a few notches. These controllers are computationally cheap, such that they can be
implemented with high sampling rates on a real-time processor. Furthermore they are
relatively easy to tune by engineers with basic control knowledge. The six SISO controllers
can be considered as a single 6×6 Multiple-Input-Multiple-Ouput (MIMO) controller with
only nonzero elements on the diagonal. The requirement on the controller to be a diagonal
augmentation of PID controllers with a few notches is an example of a constraint on the
controller structure.

Interaction between the physical degrees of freedom becomes important around the
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desired bandwidth of the wafer stages that are currently under development. So, it is
expected that the servo performance of these devices can be improved if this interaction
is explicitly taken into account in the design of the controller. A systematic approach to
take interaction into account in PID design is, however, lacking and compensating for it
by tuning is very difficult even for the experienced control engineer. The direct tuning of a
multivariable controller with dynamics on the off-diagonal elements is even more complex.

1.1.4 Controller design by H2- and H∞-synthesis

Model-based controller design by H2- or H∞-optimization provides the control engineer
with a systematic procedure for the design of multivariable controllers. In this approach
a dynamic model of the system is connected with frequency domain filters to enforce a
desired shape of the closed-loop frequency responses. These frequency domain filters or
frequency weights can be specified by the control designer. The interconnection of the open-
loop system with these shaping filters is, under certain assumptions, called the generalized
plant. After selecting the weights, a controller is computed that minimizes the H2- or
H∞-norm of the weighted closed-loop transfer functions. Although designing frequency
weights that result in a good controller is not easy, it is substantially easier than direct
tuning of a multivariable controller.

It has been known since the 1960’s that the H2-optimal controllers can be designed
through the solution of two quadratic matrix equations, i.e. Riccati equations. In 1989
[50] it was derived how the H∞-optimal (or more precisely suboptimal) controller can
be computed by solving two Riccati equations together with a coupling condition. The
resulting H2- or H∞-optimal controllers are multivariable transfer functions with McMillan
degree equal to that of the model of the generalized plant, where the McMillan degree is
the minimal length of the state vector of all state-space representations of the model.

1.1.5 Controller structure

The output of H2 and H∞-synthesis is an unstructured controller, i.e. a controller with
McMillan degree equal to that of the generalized plant and dynamics in all multivariable
transfer function entries. These unstructured controllers have practical drawbacks. First
of all, they are difficult to re-tune on-site and often require modification of the controller
software for their implementation. This provides motivation to enforce, for instance, a PID
structure on the controller with a few notches, possibly restricted to the diagonal elements
of the controller.

A second disadvantage of unstructured controllers is their large computation time in
real-time implementation. If the model of the system has many modes, the high McMillan
degree of the resulting unstructured controller implies that computation of the controller
output is expensive, which possibly results in time delays. At very high sampling rates
unstructured controllers are not even implementable due to the limited on-line computa-
tion time. To solve these problems, the control engineer would like the controller to have
a certain a priori fixed maximal McMillan degree. Finally, to avoid drifting of controller
states when the control loop is (temporarily) open, it is often desired that the controller is
asymptotically stable.

Summarizing, the control engineer often wants to enforce one or more of the following
structural controller constraints:
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• PID structure with a few notches

• bounds on the McMillan degree of the controller

• diagonal structure and

• stability of the controller itself.

This list is not claimed to be complete and is just an illustration for the need of controller
structure in practice.

1.2 Problem formulation

The inability to enforce structure on the controller is one of the main disadvantages of H2-
and H∞-optimal control design and one of the main obstacles for a wide-spread application
of model-based control in industry. The focus in this thesis is on H∞-optimal synthesis,
although many of the results are also applicable to H2-optimal control. This brings us to
the topic of this thesis:

The aim of this thesis is to provide tools for the design of model-based H∞-optimal
controllers with structural constraints

A more precise problem statement is given at the end of Chapter 2, which contains the
necessary theoretical background for this. The structural constraint that we consider are
any, or a combination, of the ones listed (with bullets) above. Particular emphasis will be
put on the bound on the McMillan degree of the controller, due to its practical importance.

1.3 Outline

The outline of this thesis is as follows. Chapter 2 is a tutorial on the theoretical background
that is the fundament for the remainder of this thesis. First of all, the structured controller
synthesis problem will be precisely formulated in that chapter. Secondly, we will describe
how the unstructured H∞-suboptimal controller can be computed by convex optimization.
Finally, the chapter provides the necessary background on optimization with Linear Matrix
Inequalities (LMIs) and Bilinear Matrix Inequalities (BMIs) and contains a discussion of
known complexity-results for the structured controller synthesis problem. On the basis
of the material discussed in this chapter we present a more precise formulation of the
structured H∞-optimal synthesis problem considered in this thesis.

The structural controller design has been an active research area since the 1970s. In
Chapter 3 it will become clear that the structured synthesis problem can be approached by
techniques of a very different nature. Since we cannot discuss all methods in detail, we will
only describe some recent techniques that are relevant for our purposes. References to other
methods are provided. This chapter is concluded with a description of the contributions
of this research work to the recent literature.

Global optimality certificates for H∞-optimal controllers can be computed using the
results of Chapter 4. These certificates result from a sequence of LMI relaxations whose
optimal values converge from below to the closed-loop H∞-norm of the optimal struc-
tured controller. The relaxations are based on a Sum-Of-Squares (SOS) decompositions
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of matrix-valued polynomials. As one of the key results we show that the optimal value
of any polynomial semi-definite program is equal to the optimal value of a certain dual
problem that involves SOS polynomials. It is explained how LMI relaxations of these latter
problems can be obtained in a straightforward fashion. The method is illustrated on static
output feedback controller design examples of McMillan degree 4.

In Chapter 5 we show that lower bounds on the optimal controller performance can
also be computed by solving a robust analysis problem. This result allows us to apply
any robust analysis technique to the structured controller design problem. We choose
relaxations based on the full block S-procedure and on SOS decompositions. Both tech-
niques generate sequences of LMI relaxations, whose number of variables and constraints
grow only bi-quadratically in the McMillan degree of the generalized plant. Furthermore
both sequences are guaranteed to converge to the closed-loop H∞-norm of the optimal
structured controller. Based on these results, we are able to compute useful lower bounds
for practically relevant control problems, as illustrated on a control problem for an active
suspension system with a generalized plant of McMillan degree 27.

In Chapter 6 SOS relaxations are employed to solve robust analysis problems. We
extend the relaxation results for polynomial semi-definite programs presented in Chapter
4, by showing that the significantly larger class of robust semi-definite programs are also
equivalent to certain dual problems that involve SOS polynomials, in the sense that their
optimal values are the same. As a consequence, guarantees for robust performance can be
obtained by solving LMI relaxations of these dual problems. The conservatism in these
tests is guaranteed to reduce to zero, if the number of variables in the LMIs is allowed to
grow.

In Chapter 7 we present the Interior Point algorithm to solve an optimization problem
with BMIs. The second-order local optimality conditions for the BMI optimization problem
are also presented in this chapter. The algorithm is applied to design a controller for an
active suspension system. The generalized plant has McMillan degree 27. The closed-loop
H∞-norm of the resulting controller is much smaller than that of two alternative methods
from the literature. The experimental results on the suspension system illustrate that the
method can be applied to controller design in practice.

The sufficient 2nd-order local optimality conditions as derived in Chapter 7 will never
be satisfied, due to the inherent over-parametrization in a state-space controller. We
analyze this effect in Chapter 8 for fixed-order H∞-optimal synthesis using BMIs. We
present a novel parametrization for which the sufficient conditions can be satisfied and, at
the same time, covers all controllers of at most the given McMillan degree.

Finally, in Chapter 9 we present the design of SISO and 3 × 3 MIMO fixed-order con-
trollers for a wafer stage prototype using three synthesis algorithms: the Simplex method,
the XK-iteration as discussed in Chapter 3, and the Interior Point algorithm presented
in Chapter 7. The steps towards this design will be discussed, i.e. the identification,
the model reduction and the four-block H∞ design. The results illustrate that the algo-
rithms presented in this thesis can compute well-performing controllers for a very recently
developed high-precision servo-system, with very tight (i.e. 5nm) requirements on the
positioning accuracy. The experimental results show that the optimized fixed-order con-
troller has much better time-domain performance than a controller obtained by frequency
weighted balanced reduction of a full-order controller.

Concluding remarks and suggestions for further research are given in Chapter 10.
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Chapter 2

Background and problem definition

In this chapter we present some theoretical background that is required for the remainder
of this thesis. We do this by means of a step-by-step explanation of the problem considered
in this thesis: the synthesis of optimal model-based controllers with a priori structure. We
start in Section 2.1 by describing the feedback-loop with the generalized-plant framework.
This is a well-known flexible way to model the interconnection of the physical system and
the controller. The objective of the designer is to close the loop with a controller for which
the closed-loop plant has a certain desirable behaviour.

These desired properties of the closed-loop system are for instance well-posedness, sta-
bility and a bound on the so-called H∞-norm of the closed-loop transfer function, as
formulated in Section 2.2. We confine ourselves to H∞-optimal controller design and only
briefly address optimal controller synthesis based on other criteria, such as H2-optimal and
multi-objective control. The synthesis of an unstructured controller can be performed by
optimization with Linear Matrix Inequalities (LMIs), as will be explained in Section 2.3.
Under certain hypothesis on the system zeros, these LMIs can be converted into Riccati
equations and a coupling condition.

For on-line implementation of the controller some specific structure is often required.
Such structural constraints on the controller are motivated by practical issues as discussed
in Section 2.4. These additional constraints make the synthesis problem significantly
harder. The reason for this is that problems with Bilinear Matrix Inequalities (BMIs)
are in general much harder to solve than problems with LMIs. An efficient numerical so-
lution of LMI problems is briefly addressed in Section 2.5, together with some additional
background on optimization. Finally, complexity results on structural controller synthesis
are briefly discussed in Section 2.6. Although most of the material is standard, this chapter
contains a derivation of the H∞ Riccati equations from the LMI conditions, which to the
best of our knowledge, has not been presented in the literature.

Notation The notation is fairly standard. To avoid unnecessary sub- or superscripts we
use throughout the thesis the symbol x for the state variable as well as for an optimization
variable. For similar reasons y denotes either the measured signal or another optimization
variable. Which of the two objects is meant can always be extracted from the context. We
use In to denote the identity matrix in R

n×n and often simply write I, if the number of
columns/rows is clear from the context.
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2.1 Systems and their interconnection

2.1.1 Generalized plant

It is common practice to express a control problem with the so-called generalized plant
framework as shown in Figure 2.1. This is a very flexible framework to model inter-
connection of the controller, the system and possibly additional weighting functions, see
e.g. [168, 214]. In the set-up of Figure 2.1 w, u z and y are continuous time-signals, i.e.
Lebesgue measurable functions mapping [0,∞) ⊂ R to R

m1 , R
m2 , R

p1 and R
p2 respectively.

We use the energy of the signals to measure their ‘magnitude’. Let Ln
2 [0,∞) denote the

vector space of Lebesgue integrable functions x mapping [0,∞) to R
n such that

∫ ∞

0

x(t)Tx(t)dt

is finite. Since irrelevant for our purposes, we avoid technicalities on sets of measure zero
and refer the reader to e.g. [36] or [161] for more details on this issue. We equip Ln

2 [0,∞)
with the norm

‖x‖2 :=

√
∫ ∞

0

x(t)Tx(t)dt. (2.1)

This norm represents the ‘energy’ of the signal. The superscript n of Ln
2 [0,∞) is called

the spatial dimension. We will also need the function space Ln
2 (−∞, 0] which is defined

analogously [74, 214]. If the domain is [0,∞) we will usually write L2 instead of Ln
2 [0,∞)

to simplify notation, where we also omit the spatial dimension n.
The space L2 is too restrictive to describe all signals of interest, since we also consider

unstable systems. We therefore introduce a class of signals that have finite energy over any
finite interval. For this purpose we define the truncation operator Pτ for τ ≥ 0 on vector
valued functions by

(Pτx) (t) :=

{
x(t), 0 ≤ t ≤ τ

0, t > τ
,

where x : [0,∞) → R
m is an arbitrary m-dimensional signal. The extended L2-space is

defined by

L2e[0,∞) := {x : [0,∞) → R
m| x is Lebesgue measurable and PTx ∈ L2[0,∞) for all T ≥ 0}

The signals in Figure 2.1 have the following interpretation. The generalized disturbance
signal w represents all signals that affect the system from the environment. These are for
instance disturbance and reference signals or weighted versions thereof. The generalized
performance z is the collection of signals that are considered to be important for the closed-
loop performance. z usually includes error signals and the controller outputs. The input
signal u, also referred to as control signal or manipulated variable, can be adjusted by the
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Figure 2.2: Four-block controller set-up

controller. The input to the controller is the vector y of measured signals.

The plant P (as well as all other dynamical systems considered in this thesis) is assumed
to be a Linear Time-Invariant (LTI) dynamical system that admits a state space represen-
tation i.e. a mapping from an initial state x0 ∈ R

n and input signals w ∈ Lm1
2e and u ∈ Lm2

2e

into output signals z ∈ Lp1

2e and y ∈ Lp2

2e, uniquely described by the equations





ẋ
z
y



 =





A B1 B2

C1 D11 D12

C2 D21 D22









x
w
u



 , x(0) = x0 ∈ R
n, (2.2)

for some matrices A ∈ R
n×n, Bi ∈ R

n×mi , Cj ∈ R
pi×n and Dij ∈ R

pi×mi i, j = 1, 2.
Except for Section 2.2.3 where we define internal stability, we assume in this thesis that
all dynamical systems have zero initial state x0 = 0. Under this assumption the output
vector

(
zT yT

)
is uniquely determined by the input vector

(
wT uT

)
.

We only consider LTI controllers in this thesis. Let the controller K admit the state-
space representation

(
ẋK

u

)

=

(
AK BK

CK DK

)(
xK

y

)

, xK(0) = xK,0 ∈ R
nc , (2.3)

for some matrices AK ∈ R
nc×nc , BK ∈ R

nc×p2 , CK ∈ R
m2×nc and DK ∈ R

m2×p2 . xK,0 is the
initial state of the controller, which is assumed to be zero as well.

Example 2.1 An example of an interconnection structure that is often used for controller
synthesis is shown in Figure 2.2, where K is the controller, G is the controlled system
and V1, V2, W1 and W2 are weighting filters. This so-called four-block controller design
problem will be used in Chapters 7 and 9 for controller design.

2.1.2 Transfer functions

Consider a system with a state-space description

(
ẋ
y

)

=

(
A B
C D

)(
x
u

)

,

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and D ∈ R

p×m. The transfer function G : C →
C

p×m of this system is given by

G(s) := D + C(sI − A)−1B. (2.4)
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If the number of inputs m or outputs p is larger than one, we also use the terminology
transfer matrix . G(s) is well-defined for all s ∈ C for which the matrix (sI −A) is invert-
ible. For some transfer function G, suppose that n ∈ N is the minimal dimension of A to
describe it by (2.4). Then G has McMillan degree n [183]. The McMillan degree is often
called the order in literature, and we will also use this terminology. The corresponding
quadruple (A,B,C,D) is called a minimal realization of G. The transfer function of a
state space system is always proper [74], which means that limω→∞G(jω) exists. We write
this limit as G(∞).

The transfer functions of the systems P and K are denoted by P and K, respectively.
If the closed-loop system is well-posed (as will be defined in Section 2.2.1), the closed-loop
transfer function is given by the lower Linear Fractional Transformation (LFT):

Fl(P,K) := P11 + P12K(I − P22K)−1P21. (2.5)

Example 2.2 (Example 2.1 continued.) Let Vi and Wi i = 1, 2 be the transfer functions
of the shaping filters Vi and Wi i = 1, 2 respectively in Figure 2.2. The transfer function
of the plant of this interconnection is

P =





−W1V1 −W1GV2 −W1G
0 0 W2

−V1 −GV2 −G



 .

If I +G(∞)K(∞) is invertible, the closed-loop transfer function is:

Fl(P,K) = −
(
W1SV1 W1SGV2

W2KSV1 W2KSGV2

)

, (2.6)

where S = (I + GK)−1. Four closed-loop transfer function matrices appear in (2.6): the
sensitivity S, process sensitivity SG, the control sensitivity KS and KSG.

The tuning of weighting filters in the generalized plant is certainly not trivial, although
simpler than direct tuning of multi-variable controllers as mentioned in Chapter 1. In
Chapters 7 and 9 the designs of these weights are presented for an active suspension
system and a wafer stage respectively. For now let us assume them to be given, such that
P is a fixed system with a state-space representation.

2.2 Closed-loop requirements

The control design problem examined in this thesis is to find a state-space controller K

such that

• the interconnection is well-posed,

• the closed loop is stable,

• the H∞- or H2-norm of the closed-loop is minimized and

• the controller has a certain structure.

The first two requirements are natural, in the sense that a controller that is to be imple-
mented in practice almost always satisfies them. The third condition is used to enforce a
certain desired behavior on the closed-loop. These three requirements will be explained
and motivated in the following sections. The discussion of structural controller constraints
is postponed to Section 2.4.
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2.2.1 Well-posedness

As a first requirement, the closed-loop system must be well-posed, which means that for
all initial conditions x(0) ∈ R

n and xk(0) ∈ R
nc and all disturbance signals w ∈ L2 the

equations (2.2) and (2.3) have a unique solution. The closed-loop system is well-posed if
I −D22DK is nonsingular [52]. The interconnection in 2.1 of the transfer functions P and
K is well-posed if

(
I −K(∞)

−P22(∞) I

)

is nonsingular [168].
Note that the system is obviously well-posed ifD22 = 0, which is often true for controller

synthesis for mechanical servo-systems, as will be argued in the next section.

2.2.2 Direct Feedtrough term D22

The right lower part of the plant P22 usually corresponds to the model of the physical
system. In the four-block settings for the active suspension system in Section 7.4 and
the wafer stage in Chapter 9 this is indeed the case. A mechanical servo-system is often
controlled with a position measurement, which is fed back to the drives that apply a force
on the system. Due to the rigid-body dynamics these systems usually have roll-off at high
frequencies, which implies that the direct feed-through of the model of the system is zero.
Hence for the proposed four-block set-up (and practically for all other H∞ or H2 designs
for positioning systems), the direct feed-through matrix satisfies D22 = 0. To simplify the
presentation throughout this thesis, we therefore assume D22 = 0, and give at relevant
places the necessary remarks about the consequences of this assumption.

Assumption 2.3 The direct feed-through term in P from u to y is zero, i.e. D22 = 0.

In case D22 6= 0 we can modify the generalized plant set-up such that this assumption
is satisfied. To this purpose consider the interconnection in Figure 2.1. Observe that the
closed loop interconnection in terms of P and K is the same as in Figure 2.3. The plant
P̃ has state-space description





ẋ
z
ỹ



 =





A B1 B2

C1 D11 D12

C2 D21 0









x
w
ũ



 x(0) = x0
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which has the desired zero direct-feedthrough from ũ to ỹ. Suppose now we have designed a
controller AK̃ , BK̃ , CK̃ , DK̃ for plant P̃ with state-space representation (2.7). It is derived
in Appendix A.1 that under the hypothesis that Q := I + DK̃D22 is nonsingular, the
controller K in Figure 2.3 is given by

(
AK BK

CK DK

)

=

(
AK̃ −BK̃D22Q

−1CK̃ BK̃ −BK̃D22Q
−1DK̃

Q−1CK̃ Q−1DK̃

)

. (2.7)

If Q is singular, we can always perturb the controller K̃ such that I+DK̃D22 becomes non-
singular. For small enough perturbations internal stability and H∞-performance bounds on
the closed-loop system are preserved. This is true since the set of internally stabilizing con-
trollers parameterized with state-space quadruple (AK , BK , CKDK) and satisfying a strict
upper bound on the H∞ performance, is open. This implies preservation of stability and
H∞-performance bounds, since the closed-loop eigenvalues and the closed-loop H∞-norm
depend continuously on (AK , BK , CKDK). The precise definitions of internal stability and
H∞-performance bounds on the closed-loop are given in the next two sections, respectively.

2.2.3 Stability

We require the closed-loop system to be stable.

Closed-loop stability in terms of a state-space description

The state space realization of the closed-loop in Figure 2.1 follows from (2.2) and (2.3).
Using the definitions





Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 0



 :=









A 0 B1 0 B2

0 0 0 I 0
C1 0 D11 0 D12

0 I 0 0 0
C2 0 D21 0 0









and

K :=

(
AK BK

CK DK

)

,

we can compactly describe the closed-loop matrices as:

(
Acl(K) Bcl(K)
Ccl(K) Dcl(K)

)

:=

(
Â B̂1

Ĉ1 D̂11

)

+

(
B̂2

D̂12

)

K
(

Ĉ2 D̂21

)
. (2.8)

By augmenting the controller state to the plant state as in xcl =
(
xT xT

K

)T
, a state-space

representation of the closed-loop system is then given by
(
ẋcl

z

)

=

(
Acl(K) Bcl(K)
Ccl(K) Dcl(K)

)(
xcl

w

)

.

Remark. Observe that K in (2.8) is a matrix in R
(nc+m1)×(nc×p2). So, by augmenting

the controller state to the plant state the dynamic controller synthesis problem is con-
verted into a static controller synthesis or Static Output Feedback (SOF) problem.
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The closed loop system is internally stable if for any pair of initial conditions x0 ∈ R
n,

xK ∈ R
nc and zero disturbance w(t) = 0 for all t ≥ 0, the closed-loop state xcl :=

(
xT xT

K

)T
converges to zero, i.e. limt→∞ xcl(t) = 0. Closed-loop internal stability is

equivalent to Acl being Hurwitz , i.e. all the eigenvalues of Acl are in the left-half plane
C

− [183]. Lyapunov’s stability theorem for LTI systems provides a necessary and sufficient
condition in terms of linear matrix inequalities for Acl(K) (for fixed K) to be Hurwitz:
there exists X ∈ Sn+nc such that

X ≻ 0 and AT
cl(K)X +XAcl(K) ≺ 0 (2.9)

where Sn+nc denotes the subspace of symmetric matrices in R
(n+nc)×(n+nc). If F is sym-

metric then F ≻ 0 (F � 0) denotes that F is positive definite (positive semi-definite), i.e.
xTFx > 0 (xTFx ≥ 0) for all x 6= 0. F ≻ G should be read as

F ∈ Sn, G ∈ Sn and F −G ≻ 0.

The condition (2.9) is indeed a linear matrix inequality (LMI), which will be described in
more detail in Section 2.5.1.

We assume in the rest of this thesis that the pairs A,B2 and A,C2 are stabilizable and
detectable respectively, i.e.

(
A− sI B2

)
and

(
A− sI
C2

)

have full row rank and full column rank respectively for all s ∈ C
0 ∪ C

+.

Assumption 2.4 (A,B2) and (A,C2) are stabilizable and detectable respectively.

There exists at least one controller K that internally stabilizes the closed-loop if and only if
this assumption holds true. If P satisfies this property, we call it a generalized plant [168].

Stability in terms of transfer functions

A transfer matrix G is said to be stable if its poles are in the open left-half-plane. If the
A-matrix of a state-space realization is Hurwitz, then the corresponding transfer matrix is
stable. On the other hand, every minimal realization of a stable transfer function has a
Hurwitz A-matrix. There exists a simple condition [168] for internal stability of the closed
loop if P with transfer function P is a generalized plant, and K is a transfer function for
K. Under these conditions internal stability is equivalent to the condition:

(
I −K

−P22 I

)

has a proper and stable inverse.

2.2.4 Performance

H∞ performance

A commonly used performance criterion for optimal controller design is the H∞-norm of
the closed-loop transfer function from w to z in Figure 2.1. The H∞-norm of a transfer
function is the worst-case energy gain (as more precisely formulated in the sequel). The
importance of H∞ controller optimization stems from the possibility to compute robust
controllers with it, i.e. controllers that are stable and satisfy the performance specification

13



for a whole set of system models. These robust stability and performance guarantees are
based on the small-gain theorem, Theorem 2.5 in this section. A more detailed examination
on robust performance and stability analysis is presented in Chapter 6.

The closed-loop H∞-norm is also a convenient performance requirement for loop-shaping,
since it enables to suppress undesirable large spikes in the transfer functions of the closed-
loop system. This is not possible with the same ease if, for instance, the H2-norm is used.

Consider a state-space system (A,B,C,D), where A ∈ R
n×n is Hurwitz and D ∈ R

p×m. Its
transfer function G(s) = D + C(sI − A)−1B belongs to the function space Hp×m

∞ , defined
as the vector space of functions F : C

+ → C
p×m, that

• are analytic in C
+ and

• are norm-bounded on C
+, i.e. sups∈C+ σ̄(G(s)) <∞,

where C
+ denotes the open right-half plane and σ̄(A) denotes the maximum singular value

of the matrix A. In this definition and the remainder of this thesis we omit technicalities
with sets of measure zero, as has also been mentioned on page 8. Furthermore, we will omit
the dimensions m and p and write H∞ instead of Hp×m

∞ for notational brevity (assuming
no confusion arises as a result). The H∞-norm of an element F ∈ H∞ is

‖F‖∞ := sup
s∈C+

σ̄ (F (s))

By the Maximum Modulus Principle (as for instance described in [183]) we know that this
norm is determined by the values of F on the imaginary axis:

‖F‖∞ = sup
ω∈R

σ̄ (F (jω)) . (2.10)

A stable transfer function G given by (2.4) belongs to the subspace of H∞ of real-rational,
stable and proper transfer functions, denoted by RH∞. In this thesis we will also use the
space RL∞ of real-rational, proper transfer functions that are bounded on the imaginary
axis. Note that RH∞ ⊂ RL∞. The H∞-norm of G ∈ RH∞ with G(s) = D+C(sI−A)−1B
is the worst-case energy gain [176]:

‖G‖∞ = sup
w∈Lm

2 , w 6=0, x(0)=0, ẋ=Ax+Bw, z=Cx+Dw

‖z‖2

‖w‖2

,

where ‖ · ‖2 denotes the L2-norm of a signal, as defined in (2.1). Minimizing the H∞-
norm of the closed-loop system thus implies minimizing the amplification of the worst-case
generalized disturbance signal w. A more important technical reason for using the H∞-
norm is the small-gain theorem. This theorem provides a sufficient condition for I + G
to have a stable and proper inverse, which is one of the fundamental theorems for robust
control theory:

Theorem 2.5 (Small Gain Theorem.) If G ∈ RH∞ and ‖G‖∞ < 1 then (I +G) has an
inverse (I +G)−1 ∈ RH∞.

Proof. See e.g. [52,214].
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Bounded-Real Lemma

The H∞-norm of a transfer function in RH∞ can be computed by LMI optimization using
the Bounded Real Lemma (BRL) which is also known as the Kalman-Yakubovich-Popov
(KYP) Lemma.

Lemma 2.6 (Bounded Real Lemma) Consider the state-space quadruple (A,B,C,D). Then
A is Hurwitz and ‖D+C(sI−A)−1B‖∞ < γ if and only if there exists X ∈ Sn with X ≻ 0
and 



ATX +XA XB CT

BTX −γI DT

C D −γI



 ≺ 0 (2.11)

Proof. See for instance [52].

This is an important result in systems theory, that links a condition in the frequency
domain to a finite dimensional LMI condition. If A is Hurwitz, the frequency domain
condition is equivalent to the dissipation condition:

there exists ǫ > 0 such that

∫ ∞

0

z(t)T z(t) − (γ2 − ǫ)w(t)Tw(t)dt ≤ 0 for all w ∈ L2.

where the responses x(t) and z(t) for t ∈ [0,∞) are governed by ẋ = Ax + Bw and
z = Cx + Dw respectively with x(0) = 0 as initial condition. The equivalence of the
frequency domain inequality and dissipativity follows from Parseval’s relation [116, 214]
between energy in the frequency and time domain. The Bounded-Realness property of a
system is a special case of ‘dissipativity of a linear system with quadratic supply functions’
[176], which has an LMI characterization that generalizes the one in Lemma 2.6.

Riccati Inequality

Inequality (2.11) is equivalent to a Riccati inequality together with a bound on the norm
of the matrix D. To show this, we need the following Schur complement lemma, which
will also be of use in the remainder of the thesis.

Lemma 2.7 (Schur lemma)
(

Q S
ST R

)

≻ 0 (2.12)

if and only if
Q ≻ 0 and R− STQ−1S ≻ 0. (2.13)

Proof. (2.12) obviously implies Q ≻ 0. Hence we can perform the congruence transfor-
mation

(
I 0

−STQ−1 I

)(
Q S
ST R

)(
I −Q−1S
0 I

)

=

(
Q 0
0 R− STQ−1S

)

(2.14)

Since the inertia of a symmetric matrix is invariant under congruence transformation [94],
(2.12) implies

(
Q 0
0 R− STQ−1S

)

≻ 0, (2.15)
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such that (2.13) follows. On the other hand, (2.13) implies (2.15), and using the inverse
congruence transformation we conclude that (2.12) holds true.

Let us define R as

R := γ2I −DTD. (2.16)

By taking a Schur complement of (2.11) twice we infer that

there exists an X ≻ 0 satisfying (2.11)

if and only if R ≻ 0 and there exists an X ≻ 0 with

(A+BR−1DTC)TX+X(A+BR−1DTC)+XBR−1BTX+CT (I+DR−1DT )C ≺ 0. (2.17)

Furthermore, if R ≻ 0 and A is Hurwitz, the Riccati Inequality (2.17) has a solution X ≻ 0
if and only if [168,214,203] the Hamiltonian matrix

H :=

(
A+BR−1DTC BR−1BT

−CT (I +DR−1DT )C −(A+BR−1DTC)T

)

(2.18)

has no eigenvalues on the imaginary axis. The preceding arguments are summarized in the
following lemma.

Lemma 2.8 Let A be Hurwitz and R be defined by (2.16), then the following conditions
are equivalent:

• ‖D + C(sI − A)−1B‖∞ < γ,

• R ≻ 0 and H in (2.18) has no eigenvalues on the imaginary axis,

• R ≻ 0 and (2.17) has a solution X ≻ 0.

Proof. Direct consequence of results in e.g. [168] or [214].

The lemma implies that we can verify if ‖D + C(sI − A)−1B‖∞ < γ by computation
of ‖D‖ and an eigenvalue computation of the Hamiltonian matrix H. This allows us to
compute the H∞-norm by bisection on γ and Schur decompositions of H, instead of LMI
optimization. The bisection can be replaced by another one-dimensional search method
presented in [31], that is often more efficient. This latter method is used for several nu-
merical examples presented in this thesis.

Since computing the H∞-norm with Riccati equations is in general computationally more
efficient and reliable than LMI optimization, it is used for H∞-norm computations in soft-
ware packages like the Matlab Control Toolbox [7] and Slicot [14].
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2.3 LMI solution for full order unstructured H∞ syn-

thesis

2.3.1 Transformation to convex problem

This section presents the LMI approach to full order H∞-optimal controller synthesis prob-
lem [99, 64, 176]. For a generalized plant with transfer function P the goal is to compute
a controller transfer function K, such that the closed loop is internally stable and the H∞

norm of the closed-loop ‖Fl(P,K)‖∞ given by (2.5) is minimized:

γopt := infimum ‖Fl(P,K)‖∞
subject to

(
I −P22

−K I

)−1

∈ RH∞

.

Verifying existence and (if it exists) constructing the optimal controller is often complicated
[165,164,188]. In practice it suffices to compute almost-optimal controllers.

The full order H∞-optimal controller synthesis problem is equivalent to an LMI prob-
lem. We will show this equivalence using some algebraic manipulations and two lemma’s:
the Bounded Real-Lemma and the Projection Lemma. Furthermore we will show that,
under additional assumptions on P, the LMI conditions reduce to the well-known Riccati
equations [49].

The closed loop transfer function from w to z is given by

Fl(P,K)(s) = Dcl(K) + Ccl(K)(sI − Acl(K))−1Bcl(K).

where Acl(K), Bcl(K), Ccl(K) and Dcl(K) are as in (2.8). If we apply the Bounded Real
Lemma, we observe that the closed-loop system is stable and has H∞-norm smaller than
γ if and only if there exists an Xcl ∈ Sn+nc with Xcl ≻ 0 and

Q(Xcl) + Φ̂(Xcl)
TKΨ + ΨTKT Φ̂(Xcl) ≺ 0 (2.19)

where

Q(Xcl) :=





ÂTXcl +XclÂ XclB̂1 ĈT
1

B̂T
1 Xcl −γI D̂T

11

Ĉ1 D̂11 −γI



 ,

Φ̂(Xcl) :=
(

B̂T
2 Xcl 0 D̂T

12

)
and Ψ :=

(

Ĉ2 D̂21 0
)
. Inequality (2.19) is a so-called

Bilinear Matrix Inequality (BMI), since there is a bilinear coupling between the unknown
variablesXcl andK. Optimization problems with BMI constraints are in general difficult to
solve, see Section 2.5.8. Fortunately we can eliminate this bilinear coupling by a projection,
which is based on the following lemma.

Lemma 2.9 (Projection Lemma) Suppose B ∈ R
n×m, C ∈ R

p×n, Q ∈ Sn are given and
let (BT )⊥ and C⊥ denote arbitrary matrices whose columns are bases for Ker(BT ) :=
{x ∈ R

n : BTx = 0} and Ker(C) respectively. Then there exists a K ∈ R
m×p such that

Q+BKC + CTKTBT ≺ 0 if and only if

(
(BT )⊥

)T
Q(BT )⊥ ≺ 0 and (C⊥)TQC⊥ ≺ 0.
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Proof. See for instance [176].

Let the columns of the matrices Φ̂(Xcl)⊥ and Ψ⊥ be arbitrary bases for Ker(Φ̂(Xcl)⊥)
and Ker(Ψ) respectively. Then the lemma implies that (2.19) is equivalent to

(

Φ̂(Xcl)⊥

)T

Q(Xcl)Φ̂(Xcl)⊥ ≺ 0 (2.20)

and
ΨT

⊥Q(Xcl)Ψ⊥ ≺ 0. (2.21)

We stress that the matrices Φ̂(Xcl)⊥ and Ψ⊥ can be arbitrary in the equations above, as
long as their columns are bases for Ker(Φ̂(Xcl)⊥) and Ker(Ψ) respectively.

Inequality (2.20) is a complicated condition to use in optimization, since Ker(Φ̂(Xcl)⊥)
depends on Xcl. To get rid of this dependence observe that, since Xcl is nonsingular, the
columns of V are a basis for the kernel of Φ̂(Xcl) if and only if the columns of





Xcl 0 0
0 Im1 0
0 0 Ip1



V

are a basis for the kernel of Φ :=
(

B̂T
2 0 D̂T

12

)
. Hence, if the columns of Φ⊥ are an

arbitrary basis matrix for Ker(Φ) we can choose Φ̂(Xcl)⊥ in (2.20) to be equal to





X−1
cl 0 0
0 Im1 0
0 0 Ip1



Φ⊥.

This results in the following condition that is equivalent to (2.20), again irrespective of the
choice of the basis Φ⊥:

(Φ⊥)T





X−1
cl 0 0
0 Im1 0
0 0 Ip1



Q





X−1
cl 0 0
0 Im1 0
0 0 Ip1



Φ⊥ =

= (Φ⊥)T





X−1
cl Â

T + ÂX−1
cl B̂1 X−1

cl Ĉ
T
1

B̂T
1 −γIm1 D̂T

11

Ĉ1X
−1
cl D̂11 −γIp1



Φ⊥ ≺ 0. (2.22)

Let us partition Xcl ∈ Sn+nc into

Xcl =

(
X U

UT X̂

)

, (2.23)

where X ∈ Sn and define

Ycl :=

(
Y V

V T Ŷ

)

:= X−1
cl , (2.24)

with Y ∈ Sn.
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If the columns of N =
(
NT

1 NT
2

)T
are an arbitrary basis of Ker

((
C2 D21

))
, then

(2.21) is equivalent to

(
N 0
0 Ip1

)T





ATX +XA XB1 CT
1

BT
1 X −γIm1 DT

11

C1 D11 −γIp1





(
N 0
0 Ip1

)

≺ 0. (2.25)

This follows from a congruence transformation of (2.25) and the fact that the kernel of
Ψ is the image of







N1 0
0 0
N2 0
0 Im1






.

Analogously, for arbitrary matrices Φ⊥ and M =
(
MT

1 MT
2

)T
whose columns are bases

of the kernels of Φ and
(
BT

2 DT
12

)
respectively, (2.22) is equivalent to

(
M 0
0 Im1

)T





Y AT + AY Y CT
1 B1

C1Y −γI D11

BT
1 DT

11 −γI





(
M 0
0 Im1

)

≺ 0. (2.26)

The last step towards the LMI formulation of the full-order controller synthesis problem
is to express Xcl ≻ 0 in terms of the following constraints on X and Y :

(
X In
In Y

)

� 0 (2.27)

and

Rank

(
X In
In Y

)

≤ n+ nc. (2.28)

This is subject of the following lemma.

Lemma 2.10 For X ∈ Sn and Y ∈ Sn, there exist U ∈ R
n×nc, V ∈ R

n×nc and X̂ ∈ Snc,
Ŷ ∈ Snc such that Xcl ∈ Sn+nc defined by (2.23) satisfies

Xcl ≻ 0 and (2.24)

if and only if
(2.27) and (2.28)

hold true.

Proof. The proof is inspired by the book [52], which contains this lemma. See for
instance also [166]. Let (2.27) and (2.28) hold true. (2.27) implies X ≻ 0 and Y ≻ 0, as
follows from the following argument. Since obviously X � 0 and Y � 0, we only need to
show that X and Y are nonsingular. To arrive at a contradiction suppose Y y = 0 for some
y 6= 0. Then for α > 1

2
‖X‖ we infer

(
−y
αy

)T (
X In
In Y

)(
−y
αy

)

= yTXy−2αyTy = yTXy−2αyTy ≤ ‖y‖(‖X‖−2α) < 0,
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which contradicts (2.27). Hence Y is nonsingular and thus Y ≻ 0. A similar argument
reveals that X ≻ 0. Since Y ≻ 0 we can use the following Schur-complement identity

(
X In
In Y

)

=

(
In 0
Y −1 In

)T (
X − Y −1 0

0 Y

)(
In 0
Y −1 In

)

, (2.29)

which implies

Rank

(
X In
In Y

)

= Rank(Y ) + Rank(X − Y −1) = n+ Rank(X − Y −1).

Together with (2.28), this implies Rank(X − Y −1) ≤ nc. Hence, there exists a U ∈ R
n×nc

with X − Y −1 = UUT . For any particular choice of U and X̂ = Inc the following choice of
Xcl will do the job:

Xcl =

(
X U
UT Inc

)

∈ Sn+nc . (2.30)

Indeed, since X ≻ 0 and X − UUT = Y −1 ≻ 0, we infer from the Schur lemma that
Xcl ≻ 0. Furthermore, (2.24) holds true for V = −Y U and Ŷ = UTY U + Inc .

To prove the converse, assume that Xcl ∈ Sn+nc satisfies Xcl ≻ 0. Then X, Y and Ŷ
defined by (2.23) and (2.24) satisfy X ≻ 0 and Y ≻ 0 and

(
X In
In Y

)

=

(
In Y
0 V T

)T (
X U

UT X̂

)(
In Y
0 V T

)

=

=

(
In Y
0 V T

)T

Xcl

(
In Y
0 V T

)

� 0,

where we exploited the identity

(
X U

UT X̂

)(
Y V

V T Ŷ

)

= In+nc (2.31)

in the first equality. Since Y ≻ 0 the Schur complement relationship (2.29) holds true such
that

Rank

(
X In
In Y

)

= Rank(Y ) + Rank(X − Y −1) = Rank(Y ) + Rank(UV T ) ≤ n+ nc,

where the most right equality follows since X −Y −1 = −UV TY −1, which is a consequence
of the left upper part of (2.31). Since U ∈ R

n×nc we infer Rank
(
UV T

)
≤ nc and finally

conclude

Rank

(
X In
In Y

)

≤ n+ nc.

This completes the proof.

For full-order synthesis nc = n and (2.28) is trivially satisfied. Concluding this section,
conditions (2.25), (2.26) and (2.27) are LMI conditions that are equivalent to the existence
of a stabilizing full order controller with closed-loop H∞-norm smaller than γ. Minimizing
γ over these constraints (i.e. over (2.25), (2.26) and (2.27)) is an LMI problem.
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2.3.2 Controller reconstruction

After having solved forX and Y , a corresponding closed-loop matrixXcl can be constructed
using (2.30) in Lemma 2.10 for some U satisfying

UUT = X − Y −1 � 0.

Since any such Xcl renders (2.20) and (2.21) satisfied, Lemma 2.9 implies that there exists
a K such that (2.19) holds true. Computing such a controller for fixed Xcl is an LMI
feasibility problem. The controller can also be computed directly in terms of Xcl and Ycl

and the state-space matrices of the plant, see e.g. [168]. Since the number of rows/columns
of X̂ = Inc equals that of AK by construction, the procedure yields a controller of order at
most nc. We have therefore shown the “if” part of the following theorem.

Theorem 2.11 There exists a stabilizing controller of McMillan degree nc with closed-
loop H∞ performance smaller than γ, if and only if there exists X and Y satisfying (2.25),
(2.26), (2.27) and Rank(X − Y −1) ≤ nc.

Proof. To prove the “only if” part, assume that there exists a stabilizing controller with
transfer function K of McMillan degree of at most nc with Fl(P,K) < γ. Then there
exists a realization with AK ∈ R

nc×nc , such that Acl ∈ R
(n+nc)×(n+nc). The BRL hence

implies the existence of an Xcl ∈ Sn+nc Xcl ≻ 0 satisfying (2.19). Lemma 2.10 and the
projection lemma imply the existence of X and Y that satisfy (2.25), (2.26), (2.27) and
Rank(X − Y −1) ≤ nc.

The above construction of a full-order controller is insightful, but not the best approach
for numerical computations. Firstly, the choice X̂ = Ir is usually not the best way to
construct the closed-loop matrix Xcl, see [176] for some practically useful suggestions to
improve the accuracy of the numerical computation. Secondly, for systems of order > 50
the current state-of-the-art LMI solvers are either too slow or too inaccurate to compute
feasible X and Y of (2.25), (2.26), (2.27) with high enough accuracy1 for the construction
of a controller that satisfies the performance and stability requirements. Therefore, we
derive the solutions in terms of Riccati inequalities in the next section.

2.3.3 Solution in terms of Riccati inequalities

In our experience full-order controllers for high-order systems can be better computed
through the solution of two Riccati equations and a coupling condition. To derive these
equations, we first transform the LMIs into Algebraic Riccati Inequalities (ARIs) under
the following simplifying assumptions

D11 = 0, DT
12

(
C1 D12

)
=
(

0 Im2

)
(2.32)

and

D21

(
BT

1 DT
21

)
=
(

0 Ip2

)
. (2.33)

1It is beyond the scope of the thesis to quantify when the accuracy is high enough. The reader is
referred to [72] for the effects of round-off errors on elementary matrix manipulations.
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Remark D11 = 0 makes the open-loop transfer function P11 strictly proper, which
implies that there is no direct feed-through from w to z if the loop in Figure 2.1 is open.
The most right condition in (2.32) can be interpreted as saying that the plant output C1x
and the weight D21 on the control effort are orthogonal, and all the control channels affect
the system performances directly. Condition (2.32) implies that the system disturbances
that drive the dynamics are orthogonal to the measurement noise, and furthermore that
the noise channels w affect all the system measurements y [52].

The assumptions (2.32) and (2.33) imply that N and M in (2.25) and (2.26) can be chosen
as

N =
(
C2 D21

)

⊥
=

(
In 0

−DT
21C2 (D21)⊥

)

and

M =
(
BT

2 DT
12

)

⊥
=

(
In 0

−D12B
T
2 (DT

12)⊥

)

,

where we can assume that the columns of (D21)⊥ and (DT
12)⊥ are orthonormal bases for

the kernels of D21 and DT
12 respectively, which implies that ((D21)⊥)T (D21)⊥ = Ik and

(
(DT

12)⊥
)T

(DT
12)⊥ = Il, where k = m1 − p2 ≥ 0 and l = p1 −m2 ≥ 0 are the dimensions of

the kernels of (D21)⊥ and (DT
12)⊥ respectively. With this N (2.25) simplifies to





ATX +XA−XB1D
T
21C2 − CT

2 D21B
T
1 X − γCT

2 D21D
T
21C2 (∗) CT

1

((D21)⊥)T BT
1 X + γ ((D21)⊥)T DT

21C2 −γ ((D21)⊥)T (D21)⊥ 0
C1 0 −γIm1



=

=





ATX +XA− γCT
2 C2 XB1(D21)⊥ CT

1

((D21)⊥)T BT
1 X −γ ((D21)⊥)T (D21)⊥ 0

C1 0 −γIm1



 =

=





ATX +XA− γCT
2 C2 XB1(D21)⊥ CT

1

((D21)⊥)T BT
1 X −γIk 0

C1 0 −γIm1



 ≺ 0,

where (∗) denotes an element which is implied by symmetry. Taking a Schur complement
twice implies that this inequality is equivalent to γ > 0 and

ATX +XA− γCT
2 C2 +

1

γ
CT

1 C1 + γXB1(D21)⊥ ((D21)⊥)T BT
1 X ≺ 0. (2.34)

Since D21B
T
1 = 0 and

(
D21

((D21)⊥)T

)
(
DT

21 (D21)⊥
)

=

(
Ip2 0
0 Ik

)

= Im1 ,

we conclude

B1(D21)⊥ ((D21)⊥)T BT
1 = B1(D21)⊥ ((D21)⊥)T BT

1 +B1D
T
21D21B

T
1 =

= B1

(
D21

((D21)⊥)T

)
(
DT

21 (D21)⊥
)
BT

1 = B1B
T
1 ,
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such that (2.34) is equivalent to

ATX +XA− γCT
2 C2 +

1

γ
CT

1 C1 + γXB1B
T
1 X ≺ 0.

Finally substituting X̃ := 1
γ
X and dividing by γ yields

AT X̃ + X̃A− CT
2 C2 +

1

γ2
CT

1 C1 + X̃B1B
T
1 X̃ ≺ 0. (2.35)

Similarly it can be derived that for Ỹ := 1
γ
Y , (2.26) is equivalent to γ > 0 and

AỸ + Ỹ A−B2B
T
2 +

1

γ2
B1B

T
1 + Ỹ CT

1 C1Ỹ ≺ 0. (2.36)

If we choose P := X̃−1 and Q := Ỹ −1 and left and right multiply (2.35) and (2.36) by
X̃−1 and Ỹ −1 respectively, we obtain the standard indefinite Riccati inequalities for H∞

synthesis:

AP + PAT + P (
1

γ2
CT

1 C1 − CT
2 C2)P +B1B

T
1 ≺ 0, (2.37)

ATQ+QA+Q(
1

γ2
B1B

T
1 −B2B

T
2 )Q+ CT

1 C1 ≺ 0. (2.38)

Furthermore we observe that the coupling condition (2.27) can be equivalently written in
terms of P and Q as follows

Lemma 2.12 Let γ > 0 be arbitrary. Then

(
X I
I Y

)

� 0 (2.39)

is equivalent to

P ≻ 0, Q ≻ 0, ρsp(PQ) ≤ γ2, (2.40)

where P := γX−1 and Q := γY −1 and ρsp(A) denotes the spectral radius of the matrix A.

Proof. Adopted from [168]. The inequality (2.39) is equivalent to X ≻ 0, Y ≻ 0,
Y −X−1 � 0 (Schur) which is nothing but

X ≻ 0, Y ≻ 0, I −R−TX−1R−1 � 0, (2.41)

where R is is any factor of Y , i.e. Y = RTR. Since the nonzero spectrum of AB and
BA coincide for arbitrary matrices A and B of appropriate dimensions [94], (2.41) can be
rewritten as (2.40), where P := γX−1 and Q := γY −1.

The inequalities (2.37), (2.38), P ≻ 0 and Q ≻ 0 are strict. Hence, if ρsp(PQ) = γ2,
we can always slightly perturb P and Q such that ρsp(PQ) < γ2. We have summarized
the preceding results in the following lemma.
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Lemma 2.13 Suppose the assumptions (2.32) and (2.33) hold true and let γ > 0. Then
there exist X and Y satisfying (2.25), (2.26) and (2.27) if and only if there exist P , Q
satisfying (2.37) and (2.38) with

P ≻ 0, Q ≻ 0, ρsp(PQ) < γ2, (2.42)

Proof. The equivalence follows directly from the preceding arguments.

2.3.4 Solution in terms of Riccati equations

The following result relates the solutions of the Riccati inequality and equation.

Theorem 2.14 Consider the Riccati inequality

XA+ ATX +Q+XRX ≺ 0 (2.43)

for symmetric Q and R, R � 0 and (A,R) is controllable. Then (2.43) has a symmetric
solution XARI if and only if

XA+ ATX +Q+XRX = 0

has an anti-stabilizing solution Xas, i.e. −A − RXas is Hurwitz. If one and hence both
these conditions are satisfied, then XARI � Xas

Proof. See [168]

Using this theorem we can replace the Riccati inequalities in a straightforward fashion
by algebraic Riccati Equations, under the following additional hypothesis on the state-space
representation of P:

(A,B1) is stabilizable and (A,C1) is detectable. (2.44)

Lemma 2.15 Assume (2.44) holds true. The inequality (2.37) has a positive definite
solution PARI ≻ 0 if and only if the algebraic Riccati equation

AP + PAT + P (
1

γ2
CT

1 C1 − CT
2 C2)P +B1B

T
1 = 0 (2.45)

has a stabilizing solution Pst � 0 (i.e. with A+Pst(
1
γ2C

T
1 C1 −CT

2 C2) Hurwitz). If one and
hence both these conditions are satisfied, then PARI � Pst.

Proof. Without loss of generality, we can assume that the state-space realization of the
plant (possibly after a similarity transformation) admits the following partitioning





A B1

C1 0
C2 D21



 =







A11 A12 B11

0 A22 0
C11 C12 0
C21 C22 D21






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for some matrices Aij, B11, Cij, i, j = 1, 2 of appropriate size such that A11 is square and
(A11, B11) is controllable. Note that A22 is Hurwitz since (A,B1) is stabilisable by (2.44).

Let PARI ≻ 0 be a solution of (2.37). Observe that X∗ := P−1
ARI ≻ 0 satisfies

ATX∗ +X∗A− CT
2 C2 +

1

γ2
CT

1 C1 +X∗B1B
T
1 X∗ ≺ 0. (2.46)

Let us partition X∗ according to A as

X∗ =

(
X11 X12

X21 X22

)

and observe that X11 ≻ 0. Consider the left upper block of (2.46), i.e.:

(
I 0

)
(

X∗A+ ATX∗ + (
1

γ2
CT

1 C1 − CT
2 C2) +X∗B1B

T
1 X∗

)(
I
0

)

=

X11A11 + AT
11X11 + (

1

γ2
CT

11C11 − CT
21C21) +X11B11B

T
11X11 ≺ 0 (2.47)

Since (A11, B11) and hence (A11, B11B
T
11) are controllable, we conclude from (2.47) and

Theorem 2.14 that the ARE

XA11 + AT
11X + (

1

γ2
CT

11C11 − CT
21C21) +XB11B

T
11X = 0 (2.48)

has an anti-stabilizing solution Xas � X11 ≻ 0, i.e. with Λ := −A11 −B11B
T
11Xas Hurwitz.

This implies that P11 := X−1
as satisfies

A11P11 + P11A
T
11 + P11(

1

γ2
CT

11C11 − CT
21C21)P11 +B11B

T
11 = 0. (2.49)

and furthermore A11 + P11(
1
γ2C

T
11C11 − CT

21C21) is Hurwitz since

(

A11 + P11(
1

γ2
CT

11C11 − CT
21C21)

)T

= AT
11 + (

1

γ2
CT

11C11 − CT
21C21)P11 =

=

(

AT
11Xas + (

1

γ2
CT

11C11 − CT
21C21)

)

P11 =
(
−XasA11 −XasB11B

T
11Xas

)
P11 =

= Xas

(
−A11 −B11B

T
11Xas

)
P11 = P−1

11 ΛP11.

If we choose

Pst :=

(
P11 0
0 0

)

� 0

we observe that

A+ Pst(
1

γ2
CT

1 C1 − CT
2 C2) =

=

(
A11 + P11(

1
γ2C

T
11C11 − CT

21C21) A12 + P11(
1
γ2C

T
11C12 − CT

21C22)

0 A22

)
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is Hurwitz, since A11 + P11(
1
γ2C

T
11C11 − CT

21C21) and A22 are both Hurwitz. Furthermore

APst + PstA
T + Pst(

1

γ2
CT

1 C1 − CT
2 C2)Pst +B1B

T
1 =

=

(
A11P11 + P11A

T
11 + P11(

1
γ2C

T
1 C1 − CT

2 C2)P11 +B11B
T
11 0

0 0

)

= 0

such that indeed Pst is a stabilizing solution to (2.45). Finally we infer

Pst =

(
X−1

as 0
0 0

)

�
(
X−1

11 0
0 0

)

� PARI,

where the utmost right inequality follows from a Schur complement, PARI ≻ 0 and

X11 =
(
I 0

)
P−1

ARI

(
I
0

)

.

This finishes one direction of the proof.

Now let us assume that Pst � 0 is a stabilizing solution to (2.45). To simplify notation
we define V := ( 1

γ2C
T
1 C1 − CT

2 C2). Since A+ PstV is Hurwitz, the Lyapunov equation

(A+ PstV )Y + Y (A+ PstV )T = −I (2.50)

has a positive definite solution Y ≻ 0. We infer that Pǫ := Pst + ǫY satisfies

APǫ + PǫA
T + PǫV Pǫ +B1B

T
1 =

= APst + PstA
T + PstV Pst +B1B

T
1

︸ ︷︷ ︸

=0 by (2.45)

+ǫ(A+ PstV )Y + ǫY (A+ PstV )T + ǫ2Y V Y =

= −ǫI + ǫ2Y V Y.

We can always choose ǫ∗ > 0 small enough such that −ǫ∗I + ǫ2∗Y V Y ≺ 0. For such an
ǫ∗ > 0, Pǫ∗ is a positive definite solution to (2.37) that satisfies Pǫ∗ � Pst.

This result implies that we can replace the ARIs by AREs, which brings us to the
solution of the full-order H∞-optimal synthesis problem in terms of two Riccati equations
and a coupling condition, also called the DGKF solution named by the authors of [50]:
Doyle, Glover, Khargonekar and Francis.

Theorem 2.16 Suppose (2.32), (2.33) and (2.44) are satisfied and γ > 0. Then the
following hold true:
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(i.) there exists a stabilizing controller K such that ‖Fl(P,K)‖∞ < γ if and only if the
Riccati equations

AX +XAT +X(
1

γ2
CT

1 C1 − CT
2 C2)X +B1B

T
1 = 0 (2.51)

and

ATY + Y A+ Y (
1

γ2
B1B

T
1 −B2B

T
2 )Y + CT

1 C1 = 0 (2.52)

have solutions XARE ∈ Sn, YARE ∈ Sn satisfying XARE � 0, YARE � 0 and
ρsp(XAREYARE) < γ2, and such that

A+XARE

(
1

γ2
CT

1 C1 − CT
2 C2

)

and A+

(
1

γ2
BT

1 B1 −BT
2 B2

)

YARE are Hurwitz.

(2.53)

(ii.) If XARE and YARE satisfy all conditions above, then the set of all stabilizing controllers
K ∈ RL∞ satisfying ‖Fl(P,K)‖∞ < γ is given by

K := {Fl(J,Q), Q ∈ RH∞, ‖Q‖∞ < γ}

where J(s) = DJ + CJ(sI − AJ)−1BJ with

(
AJ BJ

CJ DJ

)

:=





AARE −ZL ZB2

F 0 I
−C2 I 0



 ,

F := −BT
2 YARE, L := −XAREC

T
2 , Z := (I − 1

γ2XAREYARE)−1 and

AARE := A+
1

γ2
B1B

T
1 YARE +B2F + ZLC2

Proof. We only give the proof of (i.) and refer the reader to [49] for the proof of (ii.).
Suppose there exists an admissable controller, i.e. a controller that stabilizes the closed
loop and such that ‖Fl(P,K)‖∞ < γ. Theorem 2.11 for nc = n together with Lemma 2.13
imply that there exist P and Q satisfying (2.37), (2.38) and (2.42). By Lemma 2.15 we
conclude that there exist solutions XARE and YARE to (2.51) and (2.52), respectively, with
P � XARE � 0 and Q � YARE � 0 and such that (2.53) holds true. Since P � XARE and
Q � YARE we conclude ρsp(XAREYARE) ≤ ρsp(PQ) < γ2.

On the other hand, suppose that XARE and YARE satisfy the conditions in (i.). If we
define V := 1

γ2C
T
1 C1 −CT

2 C2 and W = 1
γ2B1B

T
1 −B2B

T
2 , we observe that A+XAREV and

A+WYARE are stable. Hence the Lyapunov equations

(A+XAREV )S + S (A+XAREV )T = −I (2.54)

and

T (A+WYARE) + (A+WYARE)T T = −I (2.55)
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have positive-definite solutions S ≻ 0 and T ≻ 0, respectively. We infer that Pǫ :=
XARE + ǫS satisfies

APǫ + PǫA
T + PǫV Pǫ +B1B

T
1 =

= AXARE +XAREA
T +XAREV XARE +B1B

T
1

︸ ︷︷ ︸

=0 by (2.51)

+ǫ(A+XAREV )S+ǫS(A+XAREV )T +ǫ2SV S =

= −ǫI + ǫ2SV S.

Similarly, with Qǫ := YARE + ǫT we conclude that

ATQǫ +QǫA+QǫWQǫ + CT
1 C1 =

= ATYARE + YAREA+ YAREWYARE + CT
1 C1

︸ ︷︷ ︸

=0 by (2.52)

+ǫT (A+WYARE)+ǫ(A+WYARE)TT+ǫ2TWT =

= −ǫI + ǫ2TWT.

Note that this construction is almost identical to that in the proof of Lemma 2.15. Fur-
thermore we infer

ρsp(PǫQǫ) = ρsp ((XARE + ǫS)(YARE + ǫT ))

Now, we can always choose ǫ∗ > 0 small enough such that

−ǫ∗I + ǫ2∗SV S ≺ 0, −ǫ∗I + ǫ2∗TWT ≺ 0 and ρsp(PǫQǫ) < γ2.

For such an ǫ∗ > 0, Pǫ∗ and Qǫ∗ are solutions to (2.37) and (2.38) that satisfy (2.42).
Finally, Lemma 2.13 and Theorem 2.11 now directly imply that an admissable controller
exists.

The theorem parameterizes all stabilizing controllers that satisfy a bound on the closed-
loop H∞-performance. If any of the conditions (2.32), (2.33) or (2.44) is violated, the
solution of the H∞-optimal control problem in terms of algebraic Riccati equations is more
involved, see [164,188,214].

Remark. The controller design methods in this section can not be applied if we want
to enforce structural constraints on the controller, as discussed in Section 2.4.

2.3.5 H2 optimal control

We briefly address H2 synthesis, where we restrict ourselves to static output feedback. The
problem is to compute a stabilizing controller such that the closed-loop transfer function
is proper and minimizes its H2-norm. The H2-norm of a real-rational, strictly proper and
stable transfer function G with minimal realization (A,B,C, 0) is defined as

‖G‖2 :=

√

1

2π
Trace

∫ ∞

−∞

G(jω)∗G(jω)dω

The norm can be computed in terms of the state-space realization by

‖G‖2 =
√

Trace(CPCT )

28



where P is the unique solution to the Lyapunov equation

AP + PAT +BBT = 0.

The H2-norm has an interpretation in terms of the energy of the output signal for a
sequence of unit impulses at the input. The response to a unit impulse of the ith input is

zi(t) = CeAtBei,

where ei is the ith standard unit vector of R
m1 . The H2-norm equals the sum of the energy

of all impulse responses [176]:

‖G‖2 =
m∑

i=1

‖zi‖2
2 = Trace

∫ ∞

0

(CeAtB)TCeAtBdt

The static H2-optimal control problem can be formulated as follows:

infimize Trace(Ccl(K)PCcl(K)T )
subject to Acl(K)P + PAcl(K)T +Bcl(K)Bcl(K)T ≺ 0

Dcl(K) = 0 and P ≻ 0

where the closed loop state-space matrices (Acl(K), Bcl(K), Ccl(K), Dcl(K)) are given by
(2.8).

2.4 Controller structure

For several practical reasons the control designer may be interested in a controller with a
certain structure. In this section we discuss three practical reasons for structural constraints
on controllers:

• simplifying on-site tuning

• reducing computational delays

• strong stabilization.

2.4.1 Simplifying on-site tuning

Re-tuning of controllers is often necessary due to changes in the dynamic behavior due to
wear, shipment of the servo-system, small modifications to the system or changing envi-
ronmental conditions such as temperature changes and changing floor vibration spectra.
To make the controller tuning process accessible for people without a background in ad-
vanced control, it is required that the there is a clear interpretation of the controller’s
building blocks in terms of gains, frequencies and damping ratio’s of poles and zeros. The
controller can then be tuned by direct modification of its parameters without redoing the
H∞-optimal optimization. An example of a controller with transparent structure is a
diagonal augmentation of PID loops with notches.

A structured controller can often be described using a state-space description

(AK(p), BK(p), CK(p), DK(p)) (2.56)
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with affine2 dependence on p. As an example we consider the diagonal augmentation of
a SISO PID controller with a notch filter, which is a typical control structure for a servo
system with one degree of freedom. The transfer function of such a controller is for instance
given by [61]:

K = KPIDKnotch,

where

KPID(s) :=

(

p1 + p2
1

s
+ p3

τs

τs+ 1

)

(2.57)

is the transfer function for a PID controller, where p1 > 0, p2 > 0 p3 > 0. Furthermore let
the transfer function for the notch filter Knotch(s) be given by

Knotch(s) :=
s2 + 2ωzζzs+ ω2

z

s2 + 2ωpζps+ ω2
p

,

with ωz > 0, ωp > 0, ζz > 0 and ζp > 0. By defining a = 2ωzζz, b = ω2
z , c = 2ωpζp and

d = ω2
p, we construct a single vector p of controller parameters defined by

p :=
(
p1 p2 p3

1
τ

a b c d
)
.

The notch filter Knotch admits the state-space representation (AN(p), BN(p), CN(p), DN(p))
with

(
AN(p) BN(p)
CN(p) DN(p)

)

:=





0 1 0
−d −c 1
b− d a− c 1



 .

The PID controller KPID admits the following realization

(
AK(p) BK(p)
CK(p) DK(p)

)

:=





0 0 1
0 − 1

τ
1
τ

p2 −p3 p1 + p3



 .

The series connection of these systems is

(
AK(p) BK(p)
CK(p) DK(p)

)

:=









0 0 0 0 1
0 −1/τ 0 0 1/τ
0 0 0 1 0
p2 −p3 −d −c p1 + p3

p2 −p3 b− d a− c p1 + p3









Observe that AK(p), BK(p), CK(p), and DK(p) are indeed affine in p.

2.4.2 Reducing computational delays

Real-time implementation of a discrete-time state-space controller represented by

(AK,d, BK,d, CK,d, DK,d)

implies that matrix-vector products must be computed by the processor. At every sample
time the current state xK,d must be multiplied by AK,d and CK,d. Furthermore, measure-
ment y must be multiplied by BK,d and DK,d. These operations require computation time,

2This affine dependence is exploited for several structured controller synthesis techniques, see e.g.
Section 3.2.2 and Chapter 5.
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which results in a time delay. Large time delays usually limit the closed-loop bandwidth
that can be achieved. To achieve high control performance it is therefore important to
keep the real-time computational effort small. This motivates to compute controllers with
small McMillan degree.

Remark. To reduce the number of scalar multiplications, one might use a controller state-
space realization with sparse system matrices, such as the controllable canonical forms for
SISO systems, or the (‘numerically less sensitive’) parametrization with a tri-diagonal AK-
matrix [127]. Still, the number of scalar multiplication and addition operations may be
large.

2.4.3 Strong stabilization

Most controllers for mechanical systems are not asymptotically stable. Indeed often integral
action is required to eliminate steady-state off-set and this gives a pole at s = 0. To prevent
that the controller states start ‘drifting’ when the controller is (temporarily) disconnected
from the plant it is often desirable that the remaining controller poles are in the open
left-half plane C

−. The design of a stabilizing controller that is itself stable is called strong
stabilization in the literature, see e.g. [48] and for some recent development in this field [42].
Stability of the controller can be enforced by adding the following additional requirement
to (2.19)

AT
KXK +XKAK ≺ 0 and XK ≻ 0 (2.58)

which is itself a bilinear matrix inequality in XK and AK . Although strong stabilization is
not the main focus of this thesis, strongly stabilizing controllers can be computed with the
methods developed in Chapters 4 and 7. Since (2.58) is a BMI of similar type as (2.19),
it can easily be added to the problem, which can be solved by the algorithms in those
chapters. This also holds true for multi-objective controller design problems [212,167,173].

2.4.4 Consequences of constraints on controller structure

If any of the above structural constraints is added to the full-order controller synthesis
problem, the procedure to transform the problem into an LMI problem as described in
Section 2.3 breaks down. In particular it has been pointed out in Theorem 2.11 that a
controller with a certain order r can only be computed if Rank(X − Y −1) ≤ r. This rank
condition is non-convex.

Similarly, if the PID-structure or diagonal structure as described in Section 2.4.1 is
required, the projection in Section 2.3 breaks down, since in the Projection Lemma, Lemma
2.9, we can not guarantee that the solution K has an a priori given structure. Finally the
approach is not feasible for strong stabilization, since (2.58) together with (2.19) can not
simultaneously be projected, since (to the best of our knowledge) no such projections in
analogue of Lemma 2.10 exist.

As will be explained in Section 2.6, the existence of generally applicable LMI solutions
to controller synthesis problems with these kind of constraints seems unlikely. However
we would like to stress that no proof of non-existence is known. Only in specific cases a
transformation into LMIs is known, for which some important examples will be given in
Section 2.7.
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2.5 Optimization with matrix inequalities

For a generalized plant as in (2.2) and a structured controller K(p) parameterized by
p ∈ R

lc , the closed-loop matrices are

(
Acl(p) Bcl(p)
Ccl(p) Dcl(p)

)

:=

(
Â B̂1

Ĉ1 D̂11

)

+

(
B̂2

D̂21

)

K(p)
(

Ĉ2 D̂12

)
. (2.59)

As follows from Section 2.3, the H∞-optimal structured controller synthesis problem can
be formulated as the BMI optimization problem

infimize γ
subject to X ≻ 0





Acl(p)
TX +XAcl(p) XBcl(p) Ccl(p)

T

Bcl(p)
TXcl −γI Dcl(p)

T

Ccl(p) Dcl(p) −γI



 ≺ 0

We have seen in Section 2.3 that the full-order control problem can be formulated as an
LMI problem. It is therefore not surprising that optimization with LMIs and BMIs plays
an important role in this thesis. In this section we will discuss these problems in more
detail.

2.5.1 Linear Matrix Inequalities

An LMI is an inequality

F (x) := F0 + F1x1 + . . .+ Fmxm ≺ 0 (2.60)

where Fi ∈ SN , i = 0, 1, . . . ,m are data matrices and x ∈ R
m is the unknown optimization

variable (which should not be confused with the state vector in the previous sections).
Inequality (2.60) is a convex constraint, by which we mean that the feasible set G := {x ∈
R

m : F (x) ≺ 0} is convex. (See [155] for a definition of convex sets.) This follows from
affinity of F and convexity of the set of symmetric positive semi-definite N ×N matrices.
This set is referred to as the positive semi-definite cone. A cone in a vector space V [155]
is a set C ⊂ V that is closed under multiplication by a positive scalar, i.e.

x ∈ C ⇒ λx ∈ C for all λ > 0.

Optimization over constraints that restrict matrices to the semi-definite cone is referred to
as Semi-Definite Programming (SDP)

As a consequence, the LMI optimization problem

inf
F (x)≺0

cTx (2.61)

is convex. Let popt be the optimal value of (2.61), where we use the convention that
popt = ∞ if the problem is infeasible, i.e. if G = {x ∈ R

m : F (x) ≺ 0} is empty.
Furthermore we write popt = −∞ if (2.61) is unbounded, i.e. if cTx can be made arbitrarily
small by choosing a suitable x ∈ G.

Convex optimization problems have the nice property that a local optimum (if it exists)
is also a global optimum.
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Remark. The reader is referred to the book [29] for more details on convex optimization.
Furthermore, in [26] convex optimization is applied to a very wide range of controller syn-
thesis problems. For application of convex optimization to other application areas like trust
topology design or combinatorial optimization the book [9] is recommended. The applica-
tion of LMI optimization to control problems in particular is described in [27] and [176].

2.5.2 LMI optimization

The ellipsoid algorithm is an optimization method for LMI problems that provides an
almost optimal solution or an infeasibility certificate in polynomial time, if we know that
the feasible region G = {x ∈ R

m : F (x) ≺ 0} is contained in a ball of radius ρ:

G ⊂ {x ∈ R
m| ‖x‖ < ρ}.

Finding a solution in polynomial time roughly means that the number of basic arithmetic
operations that is required to compute the solution is a polynomial function of the size of
the data matrices of the problem, i.e. in m and N for (2.61). The reader is referred to [9]
for the precise statements and for a proof of the polynomial complexity of the ellipsoid
algorithm.

In spite of this guaranteed bound on the efficiency, the performance of the ellipsoid
algorithm is not very fast in practice [9, 27].

The so-called Interior Point methods, first developed for linear programming, turn out
to be much faster in practice, while at the same time have guaranteed polynomial-time
bounds on the numerical complexity (see e.g. [157]). They solve a sequence of ‘simple’
problems to get a solution to the original more ‘difficult’ problem. The difficult problem
is the minimization of the unconstrained non-smooth function

ψ(x) :=

{
cTx for all x ∈ R

m with F (x) ≺ 0
∞ otherwise

(2.62)

which is obviously equivalent to (2.61). The sequence of subproblems that are solved
are the unconstrained minimization of a so-called barrier function φ(x, µ). For the LMI
problems as in (2.61) often the following barrier function is used:3

φ(x, µ) :=

{
cT x
µ

− log(det(F (x))) for all x ∈ R
m with F (x) ≺ 0

∞ otherwise
,

where µ is the so-called barrier parameter . It is not hard to show that this barrier function
satisfies the following properties for all µ > 0:

• φ(x, µ) = ∞ if F (x) is not negative definite,

• limk→∞ φ(xk, µ) = ∞ for every sequence xk ∈ G, k = 1, 2, . . . with a limit on the
boundary of G,

• φ(x, µ) is self-concordant, i.e. for all x ∈ G, µ > 0 and h ∈ R
n,

y(t) := φ(x+ th, µ) satisfies [y′′′(0)]
2 ≤ 4y′′(0)3,

3see Figure 7.1 on page 116 for an example of a barrier function.
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where G = {x ∈ R
m : F (x) ≺ 0}. These properties are crucial in the proof for polynomial

complexity of the IP algorithm for general convex problems and in particular for LMI
problems, as described in the book by Nesterov and Nemirovskii [137], see also [29], [9]
and [103]. A conceptional algorithm of an Interior Point method is

1. given x0 ∈ G, µ0 > 0 large enough, k = 0 and α > 1

2. find an approximate minimizer x∗ of φ(x, µk), with Newton’s method and line search,
starting at x = xk

3. set µk+1 = µk

α
, xk+1 = x∗, k = k + 1 and go to step 2

Note that for small µk the minimum in Step 2 can be efficiently computed if the initial
point xk is not too far away (in some specific norm [103]) from a sub-optimal solution.
This is the fundamental reason for the need to carefully decrease µ. For µ ↓ 0, φ(·, µ)
converges (point-wise) to ψ in (2.62), which illustrates that the subproblems to be solved
are simpler (i.e. smooth) estimates of the original ‘difficult problem’. The reader is referred
to [209] and [156] for Interior-Point optimization for Linear Programs and to [205] for a
recent collection of texts on Semi-Definite Programming.

2.5.3 Lagrange duality of LMI problems

The LMI minimization problem (2.61) is related to a certain maximization problem, which
is referred to by the Lagrange dual problem:

max
S�0 and ci+〈S,Fi〉=0 for all i=1,...,n

〈S, F0〉, (2.63)

with optimal value dopt, where 〈·, ·〉 is the standard inner product on the set of symmetric
matrices defined as 〈A,B〉 := Trace(AB). Recall that the optimal value of the primal
problem (2.61) is popt. Weak duality implies popt ≥ dopt and always holds true. If these
optimal values are actually equal (i.e. popt = dopt), then we say that strong duality holds.

Slater’s constraint qualification is a condition that implies strong duality, see e.g. [29].
For the LMI problem in (2.61), Slater’s conditions reads as follows:

there exists an x with F (x) ≺ 0.

Since the constraints in (2.61) are strict, Slater’s condition reduces in this case to
feasibility of the primal problem (2.61). The concept of duality is very important in op-
timization and in particular in optimization for control, as will become clear in the later
chapters of this thesis. In [196] and [6] some existing results in control theory such as the
Bounded-Real Lemma are (re-)proven using duality theory.

Remark. For the problem of infimizing γ subject to (2.25), (2.26) and (2.27), Slater’s
condition is satisfied if Assumption 2.4 holds true, i.e. if P is a generalised plant. Indeed if
P is a generalised plant, there exists a full-order stabilizing controller K ∈ R

(n+m2)×(n+p2).
By Lyapunov’s theorem there hence exists an Xcl ∈ S2n with Xcl ≻ 0 such that

AT
cl(K)Xcl +XclAcl(K) ≺ 0. (2.64)
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Let X and Y be defined through (2.23) and (2.24) and let the columns of
(
NT

1 NT
2

)T

and
(
MT

1 MT
2

)T
be arbitrary bases of the kernels of

(
C2 D21

)
and

(
BT

2 DT
12

)
,

respectively. (2.64) implies that

NT
(
X(A+B2DKC2) + UBKC2 + (A+B2DKC2)

TX + (UBKC2)
T
)
N =

= NT (XA+ ATX)N ≺ 0.

A similar argument reveals that MT (AY +Y AT )M ≺ 0. Hence by choosing γ large enough,
(2.25) and (2.26) are satisfied. Since (2.27) holds true, we can slightly perturb X and Y
such that (2.25) and (2.26) are still satisfied and

(
X I
I Y

)

≻ 0.

Hence, Slater’s condition is indeed satisfied.

2.5.4 Lagrange duality for general SDPs

LMI dualization is actually a special case of Lagrange dualization for general SDPs of the
form infx∈Rm, G(x)�0 f(x) where f : R

m → R and G : R
m → SN are arbitrary scalar and

matrix-valued functions respectively. Using weak Lagrange duality we can construct lower
bounds on the optimal value popt of this problem. Indeed, for an arbitrary S ≻ 0 the
optimal value popt := infx∈Rm, G(x)�0 f(x) is bounded below by the infimum over x ∈ R

m

of the Lagrangian defined by

L(x, S) := f(x) + Trace(STG(x)).

This follows since for all S � 0

popt := inf
x∈Rm, G(x)�0

f(x) ≥ inf
x∈Rm, G(x)�0

f(x) + Trace(STG(x)) ≥

≥ inf
x∈Rm

f(x) + Trace(STG(x)) = inf
x∈Rm

L(x, S).

If G and f are convex and {x ∈ R
m|G(x) ≺ 0} is nonempty, then strong duality holds

true [29]:
popt = max

S�0
inf

x∈Rm
L(x, S). (2.65)

2.5.5 Optimality

In this section we consider the nonstrict version of (2.61), i.e. infG(x)�0 f(x). For com-
pleteness we give the definition of an optimal value of this problem. popt is the optimal
value if

• f(x) ≥ popt for all {x | G(x) � 0} and

• for every ǫ > 0 there exists an x∗ such that G(x∗) � 0 and f(x∗) < popt + ǫ.

An xopt ∈ R
m is globally optimal for the SDP infG(x)�0 f(x) if it is feasible (i.e. G(xopt) � 0)

and f(xopt) = popt. An xopt ∈ R
m is locally optimal if there exists a ρ > 0 and a ball around

xopt with radius ρ, i.e. Bρ := {x ∈ R
n| ‖xopt − x‖ ≤ ρ}, such that xopt is globally optimal

for infG(x)�0,x∈Bρ
f(x). In Section 4.5.6 we will derive conditions for global optimality for

polynomial semi-definite programs in general and the structured H∞-optimal controller
synthesis problem in particular. Additionally, we derive computationally less demanding
conditions for local optimality of these problems in Section 7.3.
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2.5.6 S-procedure

An important application of Lagrange duality is the S-procedure [211], which is an impor-
tant tool for robustness analysis. See [109] for some historical remarks. The S-procedure
gives a sufficient condition for a quadratic polynomial f0(x) to be nonnegative on a set
G := {x ∈ R

m : fi(x) ≤ 0, i = 1, . . . , p}, where fi, i = 1, . . . , p are also quadratic. Any
finite set of quadratic polynomials fi, i = 0, 1, . . . , p can always be written as

fi(x) =

(
1
x

)T (
ri sT

i

si Qi

)(
1
x

)

(2.66)

for some ri ∈ R, si ∈ R
n and Qi ∈ Sm, i = 0, 1, . . . , p.

Lemma 2.17 (S-procedure) Let quadratic polynomials fi be given as in (2.66) for some
ri ∈ R, si ∈ R

n and Qi ∈ Sm, i = 1, . . . , p. Let G := {x ∈ R
m : fi(x) ≤ 0, i = 1, . . . , p}.

If

∃λi ≥ 0, i = 1, . . . , p, such that

(
r0 sT

0

s0 Q0

)

+

p
∑

i=1

λi

(
ri sT

i

si Qi

)

� 0 (2.67)

then
f0(x) ≥ 0 for all x ∈ G. (2.68)

The converse (i.e. ( (2.68)⇒(2.67)) holds true if p = 1 and the following constraint
qualification is satisfied:

{x ∈ R
m : f1(x) < 0} is nonempty.

Furthermore, the converse ( (2.68)⇒(2.67)) holds true for p ≥ 1, if

{x ∈ R
m : fi(x) < 0, i = 1, . . . , p} is nonempty (2.69)

and Qi � 0, i = 0, 1, . . . , p.

Proof. See e.g. [172].

Remark. If Qi � 0, i = 0, 1, . . . , p then all fi, i = 1, . . . , p are convex quadratic func-
tions. Lemma 2.17 is just the standard strong Lagrange duality result for convex quadratic
optimization problems. The surprising fact is that in the non-convex case the sufficient
condition is also necessary for p = 1.

2.5.7 Full block S-procedure

A nontrivial extension of the S-procedure is its full-block version, independently proved
by [98] and [170]. This result has far-reaching consequences for robust controller analysis
and is the basis for many relaxation schemes, see e.g. [171,172] and the references therein.

Typically in robust analysis the objective is to verify that a certain system property
such as stability or L2 performance is satisfied, if the system varies in a certain set of
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Figure 2.4: Generalized plant interconnection structure for robust analysis

systems parameterized by a so-called “uncertain” parameter. The generalized-plant set-up
for robustness analysis as depicted in Figure 2.4 is often used for this purpose, where δ is the
uncertain parameter, ∆(δ) is an affine function of the uncertainty δ and the performance
channel is from w to z. Note that Figures 2.4 and 2.1 can be combined for robust controller
synthesis. Suppose

H(p) =

(
A B

C(p) D(p)

)

,

for some matrices A, B, affine functions C(p) and D(p) and auxiliary variable p ∈ R
N.

Many robust analysis problems can be reformulated as the search for a p ∈ R
N such that

the map from w to z given by the upper LFT Fu(∆(δ), H(p)) = D(p) + C(p)∆(δ)(I −
A∆(δ))−1B satisfies the following quadratic performance criterion

(
I

Fu(∆(δ), H(p))

)T

Q

(
I

Fu(∆(δ), H(p))

)

≺ 0 (2.70)

for some symmetric matrix Q and for all δ varying in some compact set δ ⊂ R
d.

Theorem 2.18 Let the uncertain parameter δ be varying in the set δ ⊂ R
d and let p ∈ R

N

be fixed. If δ is compact and I −A∆(δ) is nonsingular for all δ ∈ δ then (2.70) holds true
for all δ ∈ δ if and only if there exists a multiplier P satisfying

(
∆(δ)
I

)T

P

(
∆(δ)
I

)

≻ 0 for all δ ∈ δ (2.71)

and
(
I 0
A B

)T

P

(
I 0
A B

)

+

(
0 I

C(p) D(p)

)T

Q

(
0 I

C(p) D(p)

)

≺ 0. (2.72)

Proof. See [170] or [98].

Remark. If δ is not compact, the S-procedure is not necessarily lossless. For certain
simple uncertainty block structures, losslessness can still be shown [172].

2.5.8 Bilinear Matrix Inequalities

A bilinear matrix inequality is an inequality of the form

F (x, y) := F0 + F1x1 + . . .+ Fmxm +G1y1 + . . .+Gnyn +
m∑

i=1

n∑

j=1

Hijxiyj � 0, (2.73)
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where Fi, Gj and Hij, i = 1, . . . ,m, j = 1, . . . ,m are symmetric matrices of the same
size. The seemingly innocent difference with the LMI in (2.60) is the reason for a huge
difference between LMI and BMI optimization problems: the first are convex problems
and the second are not necessarily convex. It has been shown in [191] that some instances
of BMI problems are NP-hard (Nondeterministic Polynomial) in the sense of [9]. This will
be further addressed in the next section.

We will present an Interior Point method and sum-of-squares relaxations for BMI op-
timization in Chapters 4 and 7. Other approaches to solve BMI problems are for instance
sequential LMI optimization as discussed in Section 3.2 and the Branch and Bound method
discussed in Section 3.3.

In Section 2.3 we have seen that the fixed-order control problem can either be written as
a BMI problem or an LMI problem with a rank constraint. It is interesting to mention that
these two latter problems are intimately related, in the sense that any BMI problem can
be equivalently formulated as an LMI problem with a rank constraint and vice versa [132].

2.6 Complexity of the structured synthesis problem

We will use in this section the terms polynomial-time and NP-hard, and refer the reader
to [9] for an explanation of these concepts.

For simplicity, we consider the static output-feedback stabilization problem: given ma-
trices A ∈ R

n×n, B ∈ R
n×m and C ∈ R

p×n determine whether there exists a matrix
K ∈ R

m×p such that A + BKC is Hurwitz. The complexity of this problem is still open.
More precisely, it is still unknown whether there exists an algorithm that solves any in-
stance of this problem in polynomial-time.

Blondel and Tsitsiklis [20] have shown that this control problem is NP-hard if the
coefficients of the controller K are constrained to lie in pre-specified intervals. See e.g.
[21] for a definition of NP-hardness and a survey on computational complexity results in
control. Blondel and Tsitsiklis conjecture that the SOF problem is also NP-hard if the
extra constraints are removed. To date, however, no such result is known.

Another result on the negative side, that supports to some extent the conjecture that
the SOF problem is NP-hard, is due to Fu and Luo [63]. They show that for all n ∈ N there
exist affine mappings F : Sn → Sn and G : Sn → Sn, such that verifying the feasibility of

F (X) ≺ 0, G(Y ) = 0 and XY = In (2.74)

is also NP-hard. The existence of a static output feedback stabilization problem is equiva-
lent to (2.74) for some affine F and G. Finally, as mentioned in the previous section, Toker
and Özbay [191] proved that some instances of BMI problems are NP-hard.

A result on the positive side is the yet unpublished work of Mesbahi [131], who claims
to have found an SDP algorithm for the static output feedback problem.

2.7 Structured synthesis under additional hypotheses

Under additional hypothesis the fixed-order H∞-optimal controller synthesis problem sim-
plifies significantly and can be solved by convex optimization. We discuss in the sequel
two such situations.

38



State Feedback

For the state-feedback problem, the structured controller synthesis problem is easily solved.

State feedback corresponds to C2 = I and D21 = 0. We can then choose N =

(
0
Im2

)

such that (2.25) reduces to
(

−γI DT
11

D11 −γI

)

≺ 0.

Since this equation is implied by (2.25), (2.26) becomes redundant. Hence for any feasible
X we can always choose Y = X−1, which implies from Lemma 2.10 that the sub-optimal
state feedback controller can always be chosen as a static matrix. More precisely, if there
exists a dynamic state-feedback controller with closed-loop H∞-norm smaller than γ, we
can always find a static feedback with the same performance bound.

Block-diagonal control

Let us consider the important problem of synthesis of a block-diagonal controller
(
y1

y2

)

=

(
F 0
0 G

)(
u1

u2

)

with dynamic G ∈ RL∞
m2×p2 and static F ∈ R

m3×p3 for the plant P with suitable parti-
tioning as in

P =





P11 P12 P13

P21 P22 P23

P31 P32 P33



 ,

where Pij ∈ RL∞
pi×mj i, j = 1, 2, 3. Under the additional hypothesis that P23, P32 and P33

are identically zero, the structured controller synthesis problem can be solved by convex
optimization. The reader is referred to [169] for the details.

2.8 Problem statement of this thesis work

We are now in the position to formulate the problem of this thesis more precisely. As
has been clarified in the previous sections, the structured H∞-optimal control problem is
a very hard optimization problem. For this reason we need to extend the existing theory
on optimization for controller synthesis to be able to develop suitable algorithms to solve
this problem. We embed these new theoretical results into novel algorithms for controller
optimization, as well as for computation of optimality certificates of controllers.

Starting point will be the static output-feedback H∞-optimal control problem in terms
of BMIs:

infimize γ

subject to B(γ,X,K) := −





Acl(K)TX +XAcl(K) XBcl(K) Ccl(K)T

Bcl(K)TXcl −γI Dcl(K)T

Ccl(K) Dcl(K) −γI



 ≻ 0

X ≻ 0
(2.75)

where (Acl(K), Bcl(K), Ccl(K), Dcl(K)) are defined in (2.8). We choose this formulation
for the following reasons
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• it is very flexible, in the sense that almost all of the relevant structured H∞-optimal
controller synthesis problems can be molded into this format

• the constraints are smooth in the decision variables X, K and γ, which is a desirable
property for the development of optimization algorithms for this problem

• the constraints are quadratic in the decision variables, such that relaxation schemes
for matrix-valued polynomial optimization, as are developed in this thesis, can be
applied.

The ultimate goal is to find a globally optimal solution controller, or stated otherwise,
a controller for which a global optimality certificate can be found. The performance of
such a controller can definitely not be improved by any other controller of the same struc-
ture. Global optimality allows, therefore, to decide that some of the structural constraints
must be relaxed to reach the desired performance. With local search methods, without
global optimality certificates, such a decision can never be made with certainty. One of the
topics of this thesis is therefore the development of algorithms to compute global optimality
certificates.

For systems with large McMillan degree, e.g. 30 and larger, global controller optimiza-
tion seems not feasible with the current computer power. For these kind of systems local
controller optimization techniques have therefore been developed in this thesis work. The
aim is then to compute within reasonable time a locally optimal controller. We have made
an effort to reduce the computation time of these algorithms by exploiting the control-
theoretic characteristics of the underlying problem, i.e. the structure that is present in the
objective function or constraints that is a consequence of it being a control problem. An
example is for instance the Lyapunov-like structure in the BMIs of (2.75).

Remark. Exploiting the control-theoretic characteristics of the underlying problem is
sometimes denoted by ‘structure exploitation’ in the literature. Since the term ‘structure’
might be confused with the (conceptually different) structure of a controller (i.e. diagonal,
PID etc.), we use the terminology ‘exploiting the control-theoretic characteristics’ instead.

Summarizing, the research question posed in Chapter 1 can be made more specific as
follows: how can we develop

À techniques for solving (2.75) with the focus on (global or local) convergence guaran-
tees

Á schemes to assess local and global optimality of the resulting controllers

Â algorithms for (2.75) with the focus on reducing the complexity of the computations,
such that they can be employed to design controllers for industrial servo-systems?
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Chapter 3

Literature survey

The synthesis of fixed-order (or static-output feedback) controllers satisfying stability re-
quirements and / or closed loop norm bounds have been an active area of research since
as early as the beginning of the 70’s. A whole variety of techniques has been developed,
some of them of a surprisingly different nature. The existence of H∞-optimal fixed-order
controller synthesis algorithms based on (seemingly) totally different concepts can be (par-
tially) explained by the different ways that a bound on the closed-loop H∞ performance
can be expressed, e.g., in the frequency domain, with Riccati equations and with matrix
inequalities. In view of the large number of different techniques, only a few of them can be
discussed in detail in this chapter. Relevant references to other algorithms are provided.

Probably the computationally cheapest and most straightforward way to compute
reduced-order or static controllers is by controller reduction as explained in Section 3.1.
The reduction is based on weighted balancing followed by truncation or residualization.
This section also addresses an approach to quantify the loss of closed-loop performance in
terms of the reduction error. In Section 3.2 we discuss algorithms based on sequential LMI
optimization. A branch and bound algorithm will be described in Section 3.3. Nonsmooth
optimization of structured controllers is discussed in Section 3.4 and we briefly address
several other algorithms in Section 3.5. We conclude this chapter with a presentation of
the contributions of this thesis with respect to the existing literature in Section 3.6.

3.1 Controller reduction

A computationally very cheap method to compute fixed-order controllers is reduction of
some full order H∞-optimal controller. In this method a balanced realization of a (possibly
weighted) full order H∞-optimal controller is computed to evaluate, in a heuristic way, the
contribution of each controller state to the closed-loop performance. The controller states
that have a small contribution are then eliminated by either residualization or truncation.

3.1.1 Controller reduction by direct balanced truncation

Model reduction

A well-known approach to model reduction is based on the so-called Gramian matrices.
Let (A,B,C,D) be a minimal realization of a stable transfer function G(s) = D+C(sI −
A)−1B with McMillan degree n. Then the controllability and observability Gramians of
the realization are symmetric positive definite matrices P ∈ Sn and Q ∈ Sn respectively,
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defined by

P =

∫ ∞

0

eAtBBT eAT tdt

and

Q =

∫ ∞

0

eAT tCTCeAtdt.

P and Q are related to the minimum input energy to reach a specific state and output
energy respectively. To be more specific, xT

0 P
−1x0 is the minimum required energy of

u ∈ L2(−∞, 0] to reach the state x0 at t = 0 from the zero state at t = −∞, i.e. xT
0 P

−1x0

is equal to the optimal value of the minimization problem [69]

infimize
∫ 0

−∞
u(t)Tu(t)dt

subject to u ∈ L2(−∞, 0], x(0) = x0, limt→−∞ x(t) = 0
ẋ(t) = Ax(t) +Bu(t), for all t ≤ 0

Furthermore, xT
0Qx0 is the energy of the free response of the output y(t) from initial

condition x(0) = x0 [69]:

xT
0Qx0 =

∫ ∞

0

y(t)Ty(t)dt, where x(0) = x0 and ẋ(t) = Ax(t), y(t) = Cx(t) for all t ≥ 0.

It is easily verified that P and Q satisfy

AP + PAT +BBT = 0

and
ATQ+QA+ CTC = 0.

The Gramians are not invariant under similarity transformations. In fact, there always
exists a nonsingular matrix T ∈ R

n×n such that the transformed system

(
Ã B̃

C̃ D̃

)

=

(
T−1AT T−1B
CT D

)

has diagonal Gramians P̃ = T−1PT−T and Q̃ = T TQT that satisfy [69]

P̃ = Q̃ = Σ =










σ1 0 0 . . . 0
0 σ2 0 0

0 0 σ3
. . .

...
...

. . . . . . 0
0 0 · · · 0 σn










,

where σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, are the Hankel singular values (HSVs) of G. The HSVs
are invariant under similarity transformations.

The realization (Ã, B̃, C̃, D̃) with state vector x̃ is called the balanced realization of G.
The balanced realization is not unique. If the HSVs of the system are distinct, then it is
unique up to similarity transformation with a sign matrix [69], i.e. a diagonal matrix with
diagonal elements equal to either 1 or −1.

Balanced reduction of the system is done by elimination of the states xe =
(

0 In−r

)
x̂

and hence retaining the states xr =
(
Ir 0

)
x̂ corresponding to the r largest Hankel

42



singular values. Let us introduce to this purpose the partitioning of the state-space matrices

implied by x =
(
xT

r xT
e

)T
:

(
Ã B̃

C̃ D̃

)

=





Ãrr Ãre B̃r

Ãer Ãee B̃e

C̃r C̃e D̃



 (3.1)

Model reduction by Truncation eliminates the states xe, which results in the following
reduced system:
(
AT BT

CT DT

)

:=

(
Ãrr B̃r

C̃r D̃

)

=

( (
Ir 0

)
T−1 0

0 I

)(
A B
C D

)(

T
(
Ir 0

)T
0

0 I

)

(3.2)
In contrast to truncation, Residualization approximates the dynamics in xe, i.e. ẋe =
Ãerxr + Ãeexe + B̃eu, by the algebraic relation

0 = Ãerxr + Ãeexe + B̃eu,

which yields the reduced system
(
AR BR

CR DR

)

:=

(
Ãrr − ÃreÃ

−1
ee Ãer B̃r − ÃreÃ

−1
ee B̃e

C̃r − C̃eÃ
−1
ee Ãer D̃ − C̃eÃ

−1
ee B̃e

)

. (3.3)

One of the main differences between reduction based on truncation and residualization
is that truncation preserves the direct-feedthrough of the original system whereas the
residualization preserves the steady-state gain, i.e. G(∞) = GT(∞) and G(0) = GR(0),
where

GT(s) := DT + CT(sI − AT)−1BT (3.4)

GR(s) := DR + CR(sI − AR)−1BR. (3.5)

This is easily verified from (3.2) and (3.3). It was mentioned above that the balanced
realization is unique up to a similarity transformation with sign matrix if the HSVs σ1 >
σ2 > . . . > σn ≥ 0 are distinct. Under this assumption the transfer function of the
rth-order reduced model does not depend on the specific balanced realization [206]. This
immediately follows from (3.2)-(3.5).

A nice property of both balanced truncation and residualization is their preservation
of stability, i.e. if the original system G is stable and the HSVs are distinct, then the
reduced system is also stable. Furthermore, the H∞ approximation error satisfies an upper
bound, equal to ‘twice the sum of the tail’ of the Hankel singular values. These facts are
the content of the following lemma.

Lemma 3.1 Suppose the stable transfer function G(s) admits a balanced state-space rep-
resentation (Ã, B̃, C̃, D̃) with Ã Hurwitz and with Gramians P̃ = Q̃ = diag(σ1, σ2, . . . , σn),
where the Hankel singular values satisfy σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 and σr > σr+1 for
some 1 ≤ r < n. Consider the balanced truncated and residualized state space systems
(AT, BT, CT, DT) and (AR, BR, CR, DR) given by (3.2) and (3.3) respectively, using the

partitioning in (3.1) with Ãrr =
(
Ir 0

)
Ã
(
Ir 0

)T
. Then AT and AR are stable. Fur-

thermore GT(s) and GR(s) given by (3.4) and (3.5) respectively satisfy

‖G−GT‖∞ ≤ 2
n∑

i=r+1

σi (3.6)
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and

‖G−GR‖∞ ≤ 2
n∑

i=r+1

σi (3.7)

Proof. see [69] and [74] for truncation and residualization, respectively.

Direct controller reduction

One of the most straightforward controller reduction methods is direct truncation or resid-
ualizion of the balanced controller. This is computationally cheap, if compared to other
methods for fixed-order controller synthesis. P and Q can easily be computed for systems
with state dimension 100, using for instance the Bartels-Stewart algorithm as described in
Section 7.2.2. For systems with larger state dimensions, dedicated Lyapunov solvers [13]
that exploit sparsity might be more suitable.

A disadvantage of the method is that the resulting controller is not guaranteed to be
stabilizing, even though the original controller is. Furthermore the closed-loop performance
with the reduced controller is often much worse than the full-order optimal one. To improve
this, the so-called frequency weighted reduction has been developed to take into account
that the controller is part of a closed-loop interconnection, as explained in the next two
sections.

3.1.2 Frequency weighted controller reduction

This section describes frequency weighted controller reduction [57, 206, 207, 139, 213, 1],
see [139] for more references on this subject. Consider the series interconnection V KW
where K ∈ RH∞ is the transfer function of the full order controller and V ∈ RH∞

and W ∈ RH∞ are frequency weighting filters, all assumed to be real rational, proper
and stable. Let (AK , BK , CK , DK), (AV , BV , CV , DV ) and (AW , BW , CW , DW ) be minimal
realizations of K, V and W respectively, with AK ∈ R

nc×nc , AV ∈ R
µ×µ and AW ∈ R

ν×ν .
A realization of V KW is then given by







AV BVCK BVDKCW BVDKDW

0 AK BKCW BKDW

0 0 AW BW

CV DVCK DVDKCW DVDKDW






.

Let the Gramians of this state-space system be partitioned corresponding to the states of
V , W and K as

P =





PV V PV K PV W

P T
V K PKK PKW

P T
V W P T

KW PWW



 and Q =





QV V QV K QV W

QT
V K QKK QKW

QT
V W QT

KW QW



 .

Then there exists a similarity transformation

T =





Iµ 0 0
0 TK 0
0 0 Iν




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with TK ∈ R
nc×nc such that the Gramians transform into

P̂ = T−1PT−T =





P̂V V P̂V K P̂V W

P̂ T
V K Σk P̂KW

P̂ T
V W P̂ T

KW P̂WW





Q̂ = T TQT =





Q̂V V Q̂V K Q̂V W

Q̂T
V K Σk Q̂KW

Q̂T
V W Q̂T

KW Q̂WW





where Σk = diag(σ1, . . . , σnc), σ1 ≥ σ2 ≥ . . . ≥ σnc ≥ 0. The reason for not fully diagonal-
izing P and Q is to prevent mixing of the states of K with those of V and W .

A Frequency Weighted reduced controller of order r is obtained using truncation or
residualization of the last nc−r controller states after a similarity transformation with TK .
In case of truncation this leads to:
(
AFW BFW

CFW DFW

)

:=

( (
Ir 0

)
T−1

K 0
0 I

)(
AK BK

CK DK

)(

TK

(
Ir 0

)T
0

0 I

)

. (3.8)

Let us denote the corresponding transfer function by KFW. For single sided weighting,
i.e., if either V = I or W = I, the transfer function KFW is stable if K is stable [57].
See [139] and the references therein for H∞-norm error bounds on some special cases of
one-sided weighted reduction. For double-sided dynamic weighting, the reduced controller
is not necessarily stable even if K is, let alone that a H∞-bound on the reduction error is
known in general. See [184] for an example of an unstable controller obtained by double-
sided frequency weighted truncation of a stable controller.

3.1.3 Closed-loop Controller reduction

This section describes the so-called closed-loop balanced reduction as presented in [206,208].
Consider a generalized plant

P =

(
P11 P12

P21 P22

)

(3.9)

and a stabilizing controller K with McMillan degree nc, obtained by e.g. full order H∞-
optimal controller synthesis. Assume the plant and controller admit state space realizations

(2.2) and (2.3) respectively. With xcl =
(
xT xT

K

)T
, the closed-loop system admits the

realization (
ẋcl

z

)

=

(
Acl(K) Bcl(K)
Ccl(K) Dcl(K)

)(
xcl

w

)

,

where

(
Acl(K) Bcl(K)
Ccl(K) Dcl(K)

)

:=





A+B2DKC2 B2CK B1 +B2DKD21

BKC2 AK BKD21

C1 +D12DKC2 D12CK D11 +D12DKD21



 . (3.10)

The controllability Gramian Pcl and observability Gramian Qcl are the solutions of the
following Lyapunov equations:

Acl(K)Pcl + PclAcl(K)T +Bcl(K)Bcl(K)T = 0,

AT
cl(K)Qcl +QclAcl(K) + Ccl(K)TCcl(K) = 0.
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Let us partition these Gramians according to the closed-loop states xcl =
(
xT xT

K

)T
as:

Pcl =

[
PPP PPK

P T
PK PKK

]

and Qcl =

[
QPP QPK

P T
PK QKK

]

.

There exists a balancing similarity transformation TK ∈ R
nc×nc of the controller states

zk = T−1
K xK such that [206]:

T−1
K PKKT

−T
K = T T

KQKKTK = ΣKK = diag(σ1, σ2, . . . , σnc).

After a similarity transformation of the closed-loop system with:

Tcl :=

[
I 0
0 TK

]

,

the closed loop state-space quadruple becomes (T−1
cl AclTcl, T

−1
cl Bcl, CclTcl, Dcl) and the Grami-

ans Pcl and Qcl transform into:

P̂cl =

[
P̂PP P̂PK

P̂ T
PK ΣKK

]

, Q̂cl =

[
Q̂PP Q̂PK

Q̂T
PK ΣKK

]

,

where ΣKK = diag(σ1, . . . , σnc), σ1 ≥ σ2 ≥ . . . ≥ σnc ≥ 0. The element σi is in a heuristic
sense representative for the contribution of the ith (transformed) controller state to the
closed-loop input-output behavior.

The reduced controller of maximal McMillan degree r is obtained using truncation or
residualization of the last nc − r controller states of T−1

K xK . The resulting Closed Loop
Truncated controller is given by

(
ACLT BCLT

CCLT DCLT

)

:=

( (
Ir 0

)
T−1 0

0 I

)(
AK BK

CK DK

)(

T
(
Ir 0

)T
0

0 I

)

. (3.11)

In a similar fashion a Closed Loop Residualized controller can be obtained.

Evaluation

To the best of our knowledge, there are no generally valid a priori bounds known on the
closed-loop H∞-performance of a closed-loop reduced controller in terms of σi, i = 1, . . . , nc.
The Closed Loop Truncated (or Residualized) controller may not be stabilizing, even if the
original controller is. Despite this lack of theoretical guarantees for performance, the
resulting reduced controller is often very acceptable, i.e. it stabilizes the plant and results
in a reasonable closed-loop H∞-norm. Closed-loop reduction is, therefore, in our opinion
well-suited to generate initial guesses, for instance for the optimization algorithms that will
be presented in Section 3.4 and Chapter 7 of this thesis. Since the reduction involves the
solution of two Lyapunov Equations, it is very efficient even for systems with large McMillan
degree, if compared with the other algorithms for fixed order controller synthesis.

See [163] for some results on the connection between the closed-loop reduction of this
section and frequency weighted reduction of the previous section.
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3.1.4 Bounds on closed-loop H∞-norm after controller reduction

For certain bounds on the suitably weighted controller reduction error, the closed-loop
system with a reduced controller is guaranteed to be stable and is bounded in H∞-norm.
Several conditions of this kind have been presented in the literature [23, 22, 70, 126, 77,
139,201,197]. We will describe the method of Goddard and Glover [70] based on coprime
factorization, which has also been discussed in [197, 139, 214]. Recall from Theorem 2.16
that the set of all stabilizing controllers satisfying ‖Fl(P,K)‖∞ < γ is given by

K := {Fl(J,Q), Q ∈ RH∞, ‖Q‖∞ < γ}

where J is as in Theorem 2.16. Since J21 has a stable and proper inverse [214], Fl(J,Q)
can be written as

Fl(J,Q) = (M12 +M11Q)(M22 +M21Q)−1

where (
M11 M12

M21 M22

)

=

(
J12 − J11J

−1
21 J22 J11J

−1
21

−J−1
21 J22 J−1

21

)

. (3.12)

Now Kc = M12M
−1
22 is a coprime factorization of the so-called central controller . A re-

duced order controller Kr is an admissible controller (i.e. Kr stabilizes P and satisfies
‖Fl(P,Kr)‖∞ < γ) if it admits a factorization Kr = UV −1 with U, V ∈ RH∞ satisfy-
ing [70,214]

∥
∥
∥
∥

(
1
γ
Im2 0

0 Ip2

)

M−1

(
M12 − U
M22 − V

)∥
∥
∥
∥
∞

<
1√
2

(3.13)

Computing the reduced controller which minimizes the left-hand side of (3.13) and using
it in a controller synthesis scheme is in general not straightforward.

3.2 Sequential LMI optimization

Motivated by the successful application of Interior Point optimization for LMI problems,
several researchers have investigated fixed-order H∞-optimal controller synthesis by se-
quential LMI optimization. In our experience and as illustrated in Sections 7.4 and 9.4,
these methods work well for systems up to about McMillan degree 30, but for systems with
larger orders the solution of the LMI sub-problems is either computationally too expensive
or results in inaccurate solutions, depending on which LMI solver is used.

The dual iteration method [96], the min /max algorithm [68], the XY -centering algo-
rithm [100], the path-following method [79, 80], the log-det heuristic [59], the augmented
Lagrangian method [4], the alternating projections method [75, 15], the Cone Comple-
mentarity algorithm [56], and the V K-iteration [54] are methods using sequential LMI
iterations. Since optimization results with the latter two algorithms will be presented in
this thesis, we discuss them in more detail in the following sections.

3.2.1 Cone-Complementarity algorithm

In this section we consider the static controller synthesis. As was shown in Section 2.3.1, the
fixed order synthesis problem can easily be transformed into the static synthesis problem.
For a static controller the number of controller states satisfies nc = 0, which together with
(2.28) implies X − Y −1 = 0. The cone-complementarity algorithm is motivated by the
following simple fact.
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Lemma 3.2 If (2.27) is satisfied for X ∈ Sn, Y ∈ Sn then:

(i.) Trace(XY ) ≥ n

(ii.) X − Y −1 = 0 ⇔ Trace(XY ) = n

Proof. (2.27) implies Y ≻ 0 and X − Y −1 � 0. Hence for any R with Y = RTR we
conclude RXRT � In. Hence

Trace(XY ) = Trace(XRTR) = Trace(RXRT ) � Trace(In) = n

which shows (i.). To prove (ii.), observe that X − Y −1 = 0 implies that XY = In, which
immediately shows Trace(XY ) = n. On the other hand, if Trace(XY ) = n and Y = RTR,
we infer Trace(RXRT ) = Trace(XY ) = n. Combining this with RXRT � In (from (2.27))
implies RXRT = In such that indeed X − Y −1 = 0.

The lemma implies the following result. If a static controller with closed-loop H∞-optimal
performance of γ∗ exists, then the optimal value of

infimize Trace(XY )
subject to (2.25), (2.26) and (2.27) for fixed γ = γ∗

(3.14)

is n. Furthermore if this optimal value is attained at (X∗, Y∗), then there exist an Xcl ∈ Sn

and a corresponding static controller K that render (2.19) satisfied. Because the con-
straints in (3.14) are all LMIs, the feasible region of this optimization problem is convex.
The objective functional Trace(XY ) is, however, non-convex. The cone complementarity
method uses sequential linearization of the objective functional Trace(XY ) at the current
iterate (Xk, Yk):

Trace(XY ) = Trace(Xk, Yk) + Trace [(X −Xk)Yk +Xk(Y − Yk)] + higher order terms.

A conceptual description of the algorithm is as follows:

Algorithm 3.3 (Cone complementarity algorithm for static controllers)

1. Initialization: fix γ at a desired value larger than the H∞-optimal full-order perfor-
mance. Set k = 0 and find (X0, Y0) satisfying (2.25), (2.26) and (2.27),

2. find any suboptimal solution (Xk+1, Yk+1) to the minimization problem

infimize Trace(XYk +XkY )
subject to (2.25), (2.26) (2.27)

3. set tk = 1
2
Trace (Xk+1Yk +XkYk+1),

4. if a stopping criterion is satisfied exit, otherwise set k = k + 1 and return to step 2.

In Steps 1 and 2, an LMI feasibility and minimization problem have to be solved respec-
tively. The other steps are straightforward. The sequence tk is non-increasing and bounded
below by n. It converges therefore to some value topt ≥ n for k → ∞. If topt = n and
Xk and Yk converge to some Xopt and Yopt for k → ∞, then XoptYopt = In. For the static
output feedback stabilization problem it is shown in [56] that at every step k

Rank

(
Xk I
I Yk

)

≤ 2n− max(p2,m2).

By a bisection over γ the closed-loop H∞-performance can be minimized.
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Evaluation

Convergence of tk in Algorithm 3.3 to the global optimal value of (3.14) is not guaranteed.
Hence tk might not converge to n, even if a static controller with performance γ exists.

If, for a certain value of γ, the sequence tk does not converge to n, it is not possible,
in general, to construct a stabilizing controller on the basis of the final iterates Xkmax and
Ykmax , where kmax is the maximum number of iterations. This is in contrast with the next
method, which minimizes γ directly and enables to construct a stabilizing controller of
order nc at each iteration.

The algorithm is also quite sensitive with respect to round-off errors in the LMI op-
timization. Due to these errors, tk does never converge exactly to n in practice. Even if
the final optimal value is very close to n, numerical errors in the solution (Xk, Yk) make
it often impossible to construct an Xcl that is (together with an appropriate K) feasible
for (2.19). Hence, for a successful controller construction it is often required to use an
accurate LMI solver such as LMILAB [65]. The LMI sub-problems in Algorithm 3.3 are,
however, too large to be solved by LMILAB in reasonable time if the McMillan degree of
the plant exceeds about 40. For a generalized plant with McMillan degree 27 the method
is still applicable, as will be illustrated in Section 7.4.

3.2.2 V K-iteration approach

V K-iteration [54] is similar to the well-known controller-scaling iteration (DK-iteration)
for robust control synthesis. In the V K-iterations γ is minimized subject to Xcl ≻ 0 and
the BMI inequality (2.19), by iteratively solving LMI subproblems in Xcl (which is also
denoted by V ) and K. V K iteration is, therefore, a coordinate search over the ‘coordinates’
Xcl and K. The algorithm consists of the following steps:

Algorithm 3.4 (V K-iteration):

1. find a stabilizing initial controller K0, set k = 0,

2. search for a (Xcl)k ≻ 0 that minimizes γ and satisfies (2.19) for fixed K = Kk,

3. search for controller Kk+1 that minimizes γ and satisfies (2.19) for fixed Xcl = (Xcl)k,

4. if k = kmax then stop, otherwise set k = k + 1 return to step 2.

kmax is a tuning parameter of the algorithm.

Evaluation

To the best of our knowledge there is no convergence result known for this algorithm.
The algorithm has been successfully applied to systems up to McMillan degree four [54,8].
However, in our experiments with plants of larger McMillan degree the algorithm often got
stuck at controllers that are far from optimal and that can easily be improved by other
algorithms. This is illustrated in Chapter 9 by means of a controller design problem for a
wafer stage.

The accuracy of the LMI-solver is important, since the computed controller may not
be stabilizing if the errors in the LMI variables are large.

An advantage of V K-iteration if compared to the cone complementarity algorithm is
the possibility to explicitly add structural constraints other than the McMillan degree of the
controller. Examples of such constraints are diagonal controllers and strong stabilization.
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3.3 Branch and bound method

The Branch and Bound (BB) method is a global optimization algorithm. It has been
applied by Tuan and Apkarian [193] to a general class of BMIs given by:

infimize cTx+ dTy (3.15)

subject to F (x, y) � 0 (3.16)

xmin ≤ x ≤ xmax (3.17)

where

F (x, y) := F0 + F1x1 + . . .+ Fmxm +G1y1 + . . .+Gnyn +
m∑

i=1

n∑

j=1

Hijxiyj

and x ∈ R
m and y ∈ R

n are unknown variables. The vectors c ∈ R
m, d ∈ R

m and symmetric
matrices Fi, Gj and Hij, i = 1, . . . ,m, i = 1, . . . , n and xmin, xmax,∈ R

m are given. Assume
without loss of generality that m ≤ n. This BMI problem formulation includes almost all
practical static-output feedback controller synthesis problems, if the controller variables are
a priori restricted to lie within a box Kbox. Indeed with x = vec(K), K ∈ Kbox is equivalent
to xmin ≤ x ≤ xmax for some xmin, xmax,∈ R

m, where the inequality is element-wise, i.e.
a ≤ b for a, b ∈ R

m is defined as

ai ≤ bi for all i ∈ 1, . . . ,m.

Furthermore let us choose the vector y as y :=
(
γ svec(X)T

)T
, where svec is the vec-

torization of a symmetric matrix, i.e. if A ∈ Sr is defined by

A :=








A1,1 A1,2 · · · A1,r

A1,2 A2,2 A2,r

...
. . .

...
A1,n A2,r · · · Ar,r








then
svec(A) := [A1,1, A1,2, . . . , A1,r, A2,2, A2,3, . . . , A2,r, . . . , Ar,r]

T . (3.18)

With these choices, Xcl ≻ 0 and (2.19) are constraints that can be combined by diagonal
augmentation into a constraint of the form (3.16).

We will give a conceptual description of the algorithm. The reader is referred to [193]
for more details. The method consists of the following steps:

1. branching,

2. bounding,

3. discarding.

These steps are illustrated in Figure 3.1, where x ∈ R
2 are the branching variables. The

branching consists of sub-partitioning the box {x ∈ R
m| xmin ≤ x ≤ xmax} into small boxes.

On these boxes lower and upper bounds on the achievable performance within these subsets
are computed by solving two LMI problems. Those boxes that lead to a larger lower bound
than the best upper bound can be discarded. By further refinement of the non-discarded
boxes the best upper and worst lower bound get closer and closer to each other.
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It is shown in [193] that for fixed ǫ > 0 the difference between the best upper and
worst lower bound is smaller than ǫ in a finite number of iterations. Any controller in
a non-discarded set is at this stage a global ǫ-suboptimal controller. Although global
convergence is a nice property of the method, it comes at a large price: the computation is
so expensive that optimization of controllers for real-life systems seems out of reach. The
complexity of the algorithm is strongly increasing with the number of branching variables,
i.e. the controller variables. For each bounding step LMI problems have to be solved. As
mentioned in Section 3.2, the state-of-the-art LMI software can not solve these problems
with high accuracy for systems with large McMillan degree.

3.4 Nonsmooth optimization

Let the closed-loop matrices (Acl(K), Bcl(K), Ccl(K), Dcl(K)) be as in (2.8). Observe that
these matrices depend affinely on the matrix K. The H∞-optimal structured controller
problem is

infimize γ

subject to





Acl(K)TX +XAcl(K) XBcl(K) Ccl(K)T

Bcl(K)TXcl −γI Dcl(K)T

Ccl(K) Dcl(K) −γI



 ≺ 0, X ≻ 0.
(3.19)

A disadvantage of optimizing over γ, X and K is the large number of decision variables
in X. The number of decision variables in X for a 60th order plant with a 15th order
controller is 1

2
(n+ nc)(n+ nc + 1) = 2850.

H∞-optimal controller design with non-smooth objective and constraints

One way to avoid the introduction of the Lyapunov variable X is to directly use the H∞-
norm as optimization objective and to consider

infimize maxω∈R(σ̄ (Fl(P (jω), K(jω)))
subject to max(ℜ(λ(Acl(K)))) < 0

(3.20)

where σ̄(·) denotes the maximum singular value and max(ℜ(λ(A))) denotes the maximum
of the real parts of the eigenvalues of the matrix A. A disadvantage of the formulation is
that both the objective and the constraints contain non-smooth functions, as is illustrated
with the following example.

Example 3.5 Let us consider the static output feedback stabilisation problem with K ∈ R,
Acl(K) := A+B2KC2 and

(
A B2

C2 0

)

=







−4.8 −1.6875 −0.2875 1
4 0 0 0
0 2 0 0
1 0.25 0.15625 0






.

Figure 3.2 displays the root-locus plot, i.e. the eigenvalues λ(Acl(K)) in the complex plane
for K ∈ [0,∞). For K∗ = 0.5321 the eigenvalues are

λ(Acl(0.5321)) =
(
−3.4881 −0.92199 −0.92199

)
.
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At K∗ the left-derivative of g(K) := max(ℜ(λ(Acl(K)))) does not exist, such that g(K)
is non-differentiable at K∗. In Figure 3.3 the eigenvalues are plotted for K ∈ [0, 1], which
illustrates that g(K) indeed is non-differentiable at K∗ = 0.5321.

Non-smooth dependence of maxω∈R(σ̄ (Fl(P (jω), K(jω))) on K often occurs if the max-
imum is attained at two or more different frequencies. In our experience this is often
encountered during controller optimization. It is therefore important to take this into
consideration.

Implications of non-smoothness for optimization

The non-smoothness implies that algorithms are not applicable that compute their search
direction by differentiation of the objective function and constraints. Of course one could
just ignore the non-differentiability and compute approximate derivatives by numerical
perturbation, but in our experience these kind of algorithms often get stuck at non-smooth
points that are not locally optimal.

This motivates to use dedicated optimization methods for nonsmooth optimization.
These kind of algorithms have been applied to the fixed-order controller synthesis problem
by for instance Rotunno and De Callafon [158,159], by Burke, Lewis, Overton and Henrion
[32–34] using gradient sampling techniques and by Apkarian and Noll [3] using the Multi-
Directional Search method. The latter is originally due to Torczon [192] and will be
discussed in the sequel.

Multi-Directional Search method

The Multi-Directional Search (MDS) method [192] is very similar to the Simplex method
[53] and is an algorithm for unconstrained optimization, e.g. for solving infx∈Rm fp(x),
where fp : R

m → R. The MDS algorithm has tuning parameters α ∈ (1,∞) and β ∈ (0, 1)
and can be summarized as follows

Algorithm 3.6 (MDS algorithm) Set x0
0 = xinit, x

0
j = x0

0 + ej where ej, j = 1, . . . ,m are
basis vectors in R

m. Choose a large enough N ∈ N and set k = 0. Perform the following
steps:

1. Compute pk
x,opt := minj∈{0,1,...,m} fp(x

k
j ) and let jk

opt be any index such that pk
x,opt =

fp(x
k
jopt

).

2. compute rj = xk
jopt

− (xk
j − xk

jopt
) and pk

r,opt := minj∈{0,1,...,m} fp(r
k
j ). If pk

r,opt < pk
x,opt

then go to Step 3, otherwise go to Step 4.

3. compute qk
j := xk

jopt
− α(xk

j − xk
jopt

), j = 0, 1, . . . ,m and pk
q,opt := minj∈{0,1,...,m} fp(q

k
j ).

If pk
q,opt < pk

r,opt set xk+1
j := qk

j , j = 0, 1, . . . ,m, otherwise set xk+1
j := rk

j , j =
0, 1, . . . ,m. Goto step 5

4. compute ckj := xk
jopt

− β(xk
j − xk

jopt
) and set xk+1

j := ckj , j = 0, 1, . . . ,m.

5. set k = k + 1. If k > N stop, otherwise return to Step 1.

Steps 2, 3 and 4 can be geometrically interpreted as reflection, expansion and contraction
steps as illustrated in Figure 3.4.
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The problem in (3.20) is a constrained optimization problem. We present in the sequel
a penalty technique [136,125] to replace the constrained problem by an unconstrained one,
which can be solved with the MDS algorithm. To simplify notation we define x := vec(K),
f(x) : maxω∈R(σ̄ (Fl(P (jω), K(jω))) and g(x) := max(ℜ(λ(A))), such that (3.20) can be
written as infg(x)≤0 f(x). Let xinit = vec(Kinit) be an initial, not necessarily stabilizing,
controller. Then we solve the unconstrained problem infx∈Rm fp(x) for

fp(x) := f(x) + ρmax(0, g(x)), (3.21)

where ρ > 0 is (fixed) tuning parameter of the algorithm. For guidelines for the choice of
ρ the reader is for instance referred to [125].

3.5 Other fixed-order methods

In this section we briefly address some important alternative techniques for structured
H∞-synthesis. The reader is referred to the references for more details. The first two
methods are classical and use a sequence of Lyapunov equations to solve the static H2-
optimal control problem. The other algorithms have been developed more recently. They
optimize the closed-loop H∞-norm.

Anderson-Moore algorithm

This method solves the H2-optimal static output feedback controller synthesis problem by
iteratively solving Lyapunov equations. Using the solutions to these Lyapunov equations,
a descent direction is computed for the controller variables, based on the implicit function
theorem. The method has been described in the book “Linear Optimal Control” of Ander-
son and Moore [2]. See [150] for a further analysis of the search steps that are computed
in this method. Pensar and Toivonen [145] have made an extension of the algorithm to
fixed-order H∞-synthesis.

Homotopy method on the Projection Equations

This method [95, 204, 43, 44, 202] has been developed for the static H2-optimal controller
synthesis problem. The so-called projection equations are first-order necessary conditions
for local optimality of this problem. These are solved by a homotopy [154] scheme that
consists of a sequence of Lyapunov-like equations. Conditions for H∞-optimal control have
been derived in [16].

Frequency gridding

In [73] a PID controller is tuned in a model matching problem. In this approach a family
of transfer functions {Kp(s)| p ∈ R

M} of PID controllers is parameterized by p ∈ R
M

(for some M ∈ N). Within this family a p ∈ R
M is searched, such that the loop gain

G(s)Kpopt(s) matches the desired loop shape transfer function L(s) at certain frequencies.
More precisely, for a finite frequency grid Ω = {ω1, ω2, . . . , ωN} for some N ∈ N the largest
maximum singular value of the frequency response of V (GK(p) − L) is minimized:

inf
p∈RM

sup
ω∈Ω

σ̄ (V (jω) (G(jω)Kp(jω) − L(jω))) , (3.22)
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where V is a weighting function. If Kp(jω) is affine in p for fixed ω ∈ R, then (3.22) can
be converted into an LMI problem. As addressed in Section 2.4.1, this is often the case.
Note that an optimal Kp is not necessarily stabilizing.

Interpolation approach

To design fixed-order controllers, interpolation techniques for H∞-controller design have
been modified to construct interpolants with a bound on the McMillan degree [135]. These
methods cannot straightforwardly be extended to MIMO control for the generalized plants
as described in Section 2.1.1.

Evolutionary, genetic and randomized algorithms

These algorithms [111, 35, 115] optimize a controller using a random number generator.
These methods seem not well suited to optimize controllers with a moderate or large
number of variables.

Interior point methods

Interior point methods [93,121] will be extensively discussed in Chapter 7.

3.6 Contribution of this thesis

It is surprising that, despite the large number of research publications on the topic, the
fixed order H∞-optimal control problem is (in our opinion) still not fully solved. We
will precisely formulate these unsolved issues and point to the (partial) answers that are
presented in this thesis.

Firstly, most of the algorithms that have been published in the literature are local
optimization methods. Convergence of these algorithms to the global optimal controller is
not guaranteed. It is therefore not possible to judge the quality of the resulting optimized
controller, in the sense that it is unknown if there exists a controller with the same structure
that yields a much smaller closed-loop H∞-norm. The knowledge of a global sub-optimality
certificate may prevent a futile and time-consuming re-optimization with different initial
guesses, since they imply that no better controller with the specified structure exists.
We will present in Chapters 4 and 5 a methodology for the computation of such global
optimality certificates. It consists of a sequence of relaxations problems with Linear Matrix
Inequalities (LMIs), whose optimal values are lower bounds of the achievable closed-loop
H∞-norm and converge in the limit to this value. The proposed scheme is based on the
decomposition of polynomial matrices as a sum of squares. Our efforts to reduce the
complexity of the relaxations resulted in a scheme that is not only applicable to examples
with small McMillan degree, but also to (moderately sized) control problems encountered
in engineering practice.

This latter scheme is based on a reformulation of the fixed-order H∞-controller synthesis
problem as a robust analysis problem. This is of independent interest, since it enables to
apply the wide range of the robust analysis techniques to obtain optimal H∞-controller
values. If these relaxations are exact, it is under certain conditions possible to construct a
globally optimal controller.

In Chapter 6 the Sum-Of-Squares decompositions are used to generate a family of relax-
ations for robust analysis problems. These relaxations are guaranteed to be asymptotically
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exact. This result allows us to systematically reduce the conservatism for a very wide range
of robust analysis problems.

Secondly, exploitation of the structure of the H∞-optimal control problem is in our opinion
crucial to develop a synthesis method that:

• allows the incorporation of various additional constraints such as controller degree
bounds and strong stabilization and

• is applicable to systems with high McMillan degree.

To the best of our knowledge such an algorithm does not exist in the literature. In Chapter
7 we present an Interior Point method for the fixed-order H∞-optimal control synthesis
problem in terms of Bilinear Matrix Inequalities (BMIs). Exploitation of the control-
theoretic characteristics of the problem yields a novel Interior Point optimization algorithm
based on Sylvester equations, that has connections with both the ‘classical’ methods based
on Lyapunov equations (which are a subclass of Sylvester equations) and the ‘modern’
techniques based on Interior Point optimization. The approach is applied to design a
controller for an active suspension system. Experimental results as well as a comparison
with two other state-of-the-art fixed-order synthesis techniques are presented.

The interior-point algorithm converges to a solution satisfying the first-order necessary
optimality conditions, which has motivated us to derive (local) second-order optimality
conditions for the BMI problem. These conditions are based on elementary arguments and
are usually computationally cheaper than the global optimality certificates presented in
Chapters 4 and 5.

Thirdly, the effects of the inherent over-parametrization of state-space controllers can
hamper convergence of fixed-order controller optimization algorithms. To the best of our
knowledge this topic has not been addressed within the literature on structured controller
synthesis. In Chapter 8 we analyze the effects of over-parametrization and present a rem-
edy in terms of a reduced controller parametrization.

Finally, we present in Chapter 9 an application of structured controller synthesis to the
controller design for a wafer stage prototype. We describe the design of a SISO and 3 × 3
MIMO controllers and present the result of experiments. The results illustrate that the
algorithms presented in this thesis are suited to design high-performing controllers for
mechanical servo-systems used in industry.
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Figure 3.1: The steps in the branch and bound algorithm. The boxes are subdivided in
smaller boxes (branching), upper UB and lower bounds LB are computed (bounding) and
boxes with a lower bound LB larger than the globally smallest upper bound are discarded
(discarding).
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Figure 3.4: The reflection, expansion and contraction steps in the simplex algorithm.
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Chapter 4

Polynomial optimization by

Sum-Of-Squares

4.1 Introduction

Many analysis and synthesis problems in control can be reduced to scalar polynomially
constrained polynomial programs. This class of problems is still very general and contains
non-convex instances that are hard to solve. Only (rather) recently it has been suggested
how to construct LMI relaxations of such optimization problems based on the Sum-Of-
Squares (SOS) decomposition of multivariable polynomials [144,37,119,39,38,85,83]. These
relaxation schemes have been applied to various non-convex problems in control such as
Lyapunov stability of nonlinear dynamic systems [144, 141, 38]. Scalar polynomial tech-
niques have also been applied to the SISO fixed-order controller synthesis problem by
Dorato [47] for stabilization and by Henrion et. al. [86, 82] for H∞ performance. These
techniques cannot be extended to MIMO (Multiple Input Multiple Output) controller syn-
thesis in a straightforward fashion. Furthermore, the latter method critically depends on
the choice of a certain central polynomial.

In particular in control engineering many problems actually involve, apart from scalar
polynomial constraints, semi-definite constraints on symmetric-valued polynomial matri-
ces. Since multiple polynomial SDP-constraints can be easily collected into one single
polynomial SDP-constraint, these problems can be described as

infimize f(x)
subject to G(x) � 0

(4.1)

where x ∈ R
m and f : R

m → R, G : R
m → Sr are general scalar, symmetric-matrix-valued

polynomials (to be precisely defined in the sequel). In this and the following chapters we
make the assumption:

Assumption 4.1 The set
{x ∈ R

m| G(x) � 0}
is nonempty.

Let us denote the optimal value of (4.1) by popt. Examples of these kind of problems are
the spectral factorization of multidimensional transfer functions to assess dissipativity of
linear shift-invariant distributed systems [146], multi-objective control and input-output
selection, where the integer constraints of type p ∈ {0, 1} are replaced by quadratic con-
straints of the form p(p− 1) = 0.
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The main result of this chapter is a sequence of LMI relaxations of the possibly non-
convex problem (4.1) on the basis of matrix SOS decompositions, whose optimal values
are converging from below to the optimal value popt. This result is an extension of SOS
relaxations of problems with scalar polynomial constraints [142,37,119] to polynomial semi-
definite constraints. These latter relaxations can also directly be applied to polynomial
SDPs, after scalarization of the semi-definite constraints. However, a major advantage of
using matrix-valued SOS decompositions is that the size of the constructed LMI relaxations
grows at most quadratically in the dimension r (i.e. the number of columns / rows) of
G(x).

As described in Section 2.4, the structured H∞-optimal controller synthesis problem
can also be molded into (4.1). The LMI relaxations presented in this chapter can be applied
to compute lower bounds on the optimal fixed order H∞ performance. The computation
of such bounds enables to equip local optimization algorithms, such as the one presented
in Chapter 7, with a stopping criterion, because the bounds provide information on the
difference of the performance of the computed controller and the optimal fixed order H∞

performance. This is important since algorithms based on local optimization can in gen-
eral not be guaranteed to converge to a globally optimal solution. A trivial lower bound
on the fixed-order H∞-optimal controller performance is, of course, the optimal full order
performance. Boyd and Vandenberghe [28] proposed lower bounds based on convex relax-
ations of the fixed-order synthesis problem, though it is unknown how to systematically
improve these relaxations. For the sequence of LMI relaxations presented in this chapter
the relaxation gap is systematically reduced to zero. To the best of our knowledge such
sequences did not exist in the literature before the publication of our results in [89,88,90],
except for Branch and Bound schemes. The application of the BB algorithm to practical
control problems seems currently out of reach, as mentioned in Section 3.3.

The outline of this chapter is as follows. The Sum-Of-Squares relaxations for polynomial
SDPs are introduced in Section 4.2. They can be interpreted as a polynomial extension to
standard Lagrange dualization. In Section 4.3 we introduce the concept of a sum of squares
of matrix-valued polynomials. Section 4.4 covers the main contribution of this chapter,
namely the extension of the exactness result of SOS relaxations for scalar polynomial
problems to polynomial SDPs. This allows us to construct a sequence of LMI relaxations
whose optimal values converge to the optimal value of the polynomial SDP, as explained
in Section 4.5. In Section 4.6 we exploit these results to compute lower bounds on the
globally optimal fixed-order H∞-optimal control performance. In Section 4.7 we apply the
method to a set of (randomly generated) fourth-order systems. We conclude with a brief
evaluation of the results in Section 4.8.

4.2 Polynomial semi-definite programming

The fixed order synthesis problem and many important non-convex optimization problems
can be written as polynomial semi-definite programs. A scalar multivariate polynomial
p(x) for x ∈ R

m can be written as

p(x) =
N∑

i=1

cix
αi1
1 xαi2

2 . . . xαim
m (4.2)

where ci ∈ R, i = 1, . . . , N are the ‘coefficients’ and αij ∈ N0 := (0 ∪ N), i = 1, . . . , N ,
j = 1, . . . ,m, are the ‘exponents’. The set of all polynomials in the variable x is denoted
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by R[x]. Polynomials are actually finite linear combinations of ‘monomials’, which are
products of powers of xi, i = 1, . . . ,m given by

h(x) = xα1
1 x

α2
2 . . . xαm

m

for some αj ∈ N0, j = 1, . . . ,m. For α ∈ R
m we will sometimes use the notation xα

to denote xα1
1 x

α2
2 . . . xαm

m . The total degree of a monomial h(x) = xα is the sum of the
exponents tdeg(h) :=

∑m

j=1 αj and the total degree of a polynomial is defined as the
maximum of the total degrees of its monomials. We write f(x) = g(x) to denote that the
two polynomials f(x) and g(x) are the same, i.e. if they both admit a representation as in
(4.2) with the same exponent matrix α ∈ N

N×m and coefficient vector c ∈ R
N .

A symmetric r × r matrix-valued polynomial can also be written in the same fashion,
with the only difference that the coefficients ci ∈ Sr are symmetric matrices. LMI problems
(also denoted by Linear SemiDefinite Programs) are a subclass of polynomial SDPs. Any
LMI problem can be written as (4.1) for affine f and G. As mentioned in Section 2.5.2,
LMI problems can be solved efficiently. Such efficiency results are definitely out of reach
for the general problem formulation (4.1).

As explained in Chapter 2, the H∞-optimal control problem can be formulated as

infimize γ
subject to Xcl ≻ 0, B(γ,Xcl, K) ≻ 0,

(4.3)

where B(γ,Xcl, K) represents the ‘constraint function corresponding to the Bounded Real
Lemma:

B(γ,X,K) := −





Acl(K)TX +XAcl(K) XBcl(K) Ccl(K)T

Bcl(K)TXcl −γI Dcl(K)T

Ccl(K) Dcl(K) −γI



 , (4.4)

where (Acl(K), Bcl(K), Ccl(K), Dcl(K)) are defined as in (2.8). This is a polynomial semi-
definite program as in (4.1) over the variable x = (γ,X,K), with an affine objective
function f(x) = γ and a polynomial (more specifically bilinear) semi-definite constraint
G(x) ≺ 0 where

G(x) :=

(
−B(γ,Xcl, K) 0

0 −Xcl

)

. (4.5)

Although the inequalities in (4.3) are strict, we work in the remainder of this chapter with
(4.1), which has non-strict inequalities.

As shown in Section 2.5.4 weak Lagrange duality implies that for any matrix S � 0, the
value infx∈Rnx f(x) + 〈S,G(x)〉 is a lower bound on the optimal value popt of (4.1), where
〈A,B〉 := Trace(AB) is the standard inner product for symmetric matrices with the same
number of rows/columns. However, not even the maximization of this lower bound over
S � 0 closes the duality gap, due to non-convexity of the problem. This is the reason for
considering, instead, Lagrange multiplier matrices S(x) � 0 which are polynomial functions
of x. Still infx∈Rnx f(x) + 〈S(x), G(x)〉 defines a lower bound of popt, and the best lower
bound that is achievable in this fashion is given by the supremal d for which there exists
a polynomial matrix S(x) � 0 such that

f(x) + 〈S(x), G(x)〉 − d > 0 for all x ∈ R
m. (4.6)

Remark. The extension of a constant Lagrange multiplier to a polynomial multiplier
can be nicely illustrated by means of Figure 4.1. Strong duality for convex optimization
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Figure 4.1: Separation of a point and a convex set by a halfspace (left) and of a point and
a non-convex set by a semi-algebraic set (right)

problems is based on a geometric version of the Hahn-Banach theorem known as Eidelheit’s
separation theorem (as explained in e.g. [124]). A special case of this theorem is the
following: for any point in x∗ ∈ R

m and a compact convex set A ⊂ R
m that are disjoint,

there exists a nonzero s ∈ R
m and b ∈ R such that the halfspace Hl := {x ∈ R

m| 〈s, x〉+b ≤
0} contains x∗ but does not contain points of A, where 〈·, ·〉 is the standard inner product
in R

m as defined by 〈u, v〉 = uTv.

As is clear from the right-hand side of Figure 4.1, separation by an affine functional
〈s, x〉 + b of a point and a compact non-convex set that are disjoint is not possible in
general. Instead of an affine functional one could try to construct a polynomial p(x) such
that the semi-algebraic set Hp := {x ∈ R

m| p(x) ≤ 0} contains x∗ but does not contain
points of A. An example of such a set is depicted on the right-hand side of Figure 4.1.
This separation is illustrated in the next example for a convex and a nonconvex polynomial
optimization problem.

Example 4.2 Consider the convex optimization problem popt = minG(x)≤0 f(x), x ∈ R,
with a linear SDP constraint G(x) := diag(x−1,−x−1) and objective f(x) := x2+3x. The
separation is illustrated in Figure 4.2. In this figure the feasible region G = {x ∈ R| G(x) �
0} = [−1, 1] is depicted as a bar on the x-axis. Also shown is the so-called epigraph of
f(x) [155], i.e. the set epi(f) := {(x, r) ∈ R

m+1| r ≥ f(x)}, which is in this case a subset
of R

2. Since f(x) is convex, epi(f) is a convex set [155]. The optimal value popt = −2 is at-
tained at x∗ = −1, which is depicted with a star at (xopt, popt) = (−1,−2). Since strong du-
ality holds the optimal dual multiplier S = diag(0, 1) satisfies min(f(x)+ 〈S,G(x)〉) = popt.
This implies that f(x) ≥ popt − 〈S,G(x)〉 = x − 1 =: h(x). Geometrically this means
that epi(f) lies above the dotted line defined by the linear functional h(x). In conclusion,
the halfspace Hl := {(x, y) ∈ R

2| y ≤ h(x)} contains (xopt, popt) but does not contain any
interior points of epi(f). This simple example illustrates the interpretation of Lagrange
duality by separation with affine functionals. Note that for nonlinear, convex G(x) the set
{(x, y) ∈ R

2| y ≤ h(x)} with h(x) := popt + 〈S(x), G(x)〉 is not necessarily a halfspace. In
this case a geometric interpretation with a halfspace is still possible using a different graph,
see [125].

The situation for a non-convex polynomial optimization problem infG(x)�0 f(x) is shown
in Figure 4.3 for the same G(x) as above and f(x) := −x6 + 4x4 − 4x2 + 1

5
x. An optimal

polynomial multiplier S(x) with

S(x) =

(
S1(x) 0

0 S2(x)

)

(4.7)
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Figure 4.2: Interpretation of Lagrange duality by separation by a hyperplane. Depicted
are feasible region (bar on x-axis), optimal value (∗), epi(f) (solid), and separating curve
(dotted).

where

S1(x) := 0.511 + 0.563x− 1.296x2 − 1.700x3 + 0.854x4 + 2.211x5 + 1.050x6

S2(x) := 0.716 − 0.665x− 1.499x2 + 1.986x3 + 0.007x4 − 1.406x5 + 1.050x6

has been computed with the LMI relaxation that will be presented in Section 4.5. S and
d := −1.3504 satisfy (4.6), such that d is a global lower bound on the optimal value. Hence
xopt = −0.8340 is almost optimal since it satisfies G(xopt) � 0 and f(xopt) = −1.3503 :=
popt.

In this case the interior of epi(f) is separated from the almost optimal point (xopt, popt)
by the curve described by h(x) := popt − 〈S(x), G(x)〉, as is nicely illustrated in Figure
4.3. This follows from f(x) + 〈S(x), G(x)〉 − popt ≥ 0 for all x ∈ R, which indeed implies
f(x) ≥ h(x) for all x ∈ R, such that Hp := {(x, y) ∈ R

2| y ≤ h(x)} contains (xopt, popt)
but does not contain any interior points of epi(f).

In order to render the determination of the lower bound d satisfying (4.6) computational,
we need a characterization of positivity of the matrix-valued polynomial S(x) and the scalar
polynomial (4.6). For this purpose we introduce the concept of Sum-Of-Squares matrix-
valued polynomials in the next section. First we give some results on sum-of squares of
scalar-valued polynomials. A scalar polynomial s : R

m → R is a Sum-Of-Squares if there
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Figure 4.3: Interpretation of polynomial relaxations by separation with a semi-algebraic
set. Depicted are feasible region (bar on x-axis), optimal value (∗), epi(f) (solid), and
separating curve (dotted).

exist some number N ∈ N and polynomials tj, j = 1, . . . , N such that

s(x) =
N∑

j=1

tj(x).

Remark. The characterization of non-negative polynomials, even for scalar polynomi-
als, is a nontrivial problem, strongly related to Hilbert’s 17th problem. In 1900 Hilbert
posed his famous open questions in mathematics at the Paris Congress. Hilbert’s 17th

problem is related to the question whether any homogeneous nonnegative polynomial can
be written as a sum of squares of rational functions. In 1927 Artin proved that this is
indeed always possible. See [153] for a historical overview.

The following result due to Putinar is important in the sequel. It characterizes functions
that are positive on sets described by polynomial inequalities that satisfy a constraint
qualification.

Theorem 4.3 Suppose that gi(x), i = 0, 1, . . . , r are polynomials such that G := {x ∈
R

m| gi(x) ≤ 0, i = 0, 1, . . . , r} is nonempty. Furthermore, suppose that the following
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constraint qualification holds true:

∃ SOS ψi(x), i = 0, 1, . . . , r such that:

{

x ∈ R
m|

r∑

i=1

ψi(x)gi(x) − ψ0(x) ≤ 0

}

is compact

(4.8)
If a polynomial f is strictly positive on G , i.e. satisfies f(x) > 0 for all x ∈ G, then there
exists SOS polynomials si, i = 0, 1, . . . , r, such that

s0(x) = f(x) +
r∑

i=1

si(x)gi(x)

Proof. See [149], [101] or [180].

Remark. The constraint qualification (4.8) can be equivalently formulated as follows [180]:

∃M > 0, SOS polynomials ψi(x), i = 0, 1, . . . , r such that: ψ0(x) = M−‖x‖2+
r∑

i=1

ψi(x)gi(x).

(4.9)

4.3 Sum of squares of polynomial matrices

A symmetric matrix-valued polynomial matrix S(x) : R
m → Sr is said to be a SOS if there

exists a (not necessarily square and typically tall) polynomial matrix T (x) such that

S(x) = T (x)TT (x).

If r = 1 and if Tj(x), j = 1, . . . , N , denote the components of the column vector T (x)

of length r we infer S(x) =
∑N

j=1 Tj(x)
2, which motivates our terminology since we are

indeed dealing with a generalization of classical scalar SOS representations. Clearly, any
SOS polynomial matrix is globally positive semi-definite, but as for r = 1 the converse is
in general not true, see the remark on Hilbert’s 17th problem in the previous section.

Example 4.4 The matrix valued polynomial

S(x) =

(
2 + x2 3x

3x 3x2(2 + 2x+ 3x2)

)

(4.10)

is a SOS since S(x) = T (x)TT (x) where

T (x) =







1 2x
1 x
x 0
0 3x2 + x






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Let us briefly describe how one easily verifies whether a given polynomial matrix is
SOS by solving a linear SDP. We present a construction that allows flexibility in the
selection of the underlying monomial bases. Let us hence choose a polynomial vector
u(x) = col(u1(x), . . . , uξ(x)) whose components uk(x), k = 1, . . . , ξ are pairwise different
x-monomials. It suffices to take only those monomials whose squares have lower total
degree than the total degree of S(x). Usually even fewer monomials are needed, as will be
explained in more detail in Section 4.5.4.

Then S(x) of dimension r × r is said to be SOS with respect to the monomial basis
u(x) if there exist real matrices Tk, k = 1, . . . , ξ, such that

S(x) = T (x)TT (x) with T (x) =

ξ
∑

k=1

Tkuk(x) =

ξ
∑

k=1

Tk(uk(x) ⊗ Ir).

If U = (T1 · · · Tξ) and if P denotes the permutation matrix that guarantees u(x) ⊗ Ir =
P [Ir ⊗ u(x)] we infer with W = (UP )T (UP ) � 0 that

S(x) = [Ir ⊗ u(x)]TW [Ir ⊗ u(x)]. (4.11)

For the numerical verification of whether S(x) is SOS it is convenient to introduce the
following bilinear mapping

〈., .〉r : R
p×qr × R

p×qr → R
r×r, 〈A,B〉r = Tracer(A

TB)

where

Tracer(C) :=






Trace(C11) · · · Trace(C1r)
...

. . .
...

Trace(Cr1) · · · Trace(Crr)




 (4.12)

for C ∈ R
qr×qr, Cjk ∈ R

q×q, j, k = 1, . . . , r. For later reference and with the Kronecker
product ⊗ it is easy to see that

Tracer(A(Ir ⊗B)) = Tracer((Ir ⊗B)A) for A ∈ R
rp×rq, B ∈ R

q×p. (4.13)

A proof is given in Appendix A.2.1. For symmetric C ∈ R
qr×qr and B ∈ R

q×p, we can
choose A = (Ir ⊗B)TC to infer

Tracer((Ir ⊗B)TC(Ir ⊗B)) = 〈C, Ir ⊗BBT 〉r. (4.14)

Note that the left-hand side just equals (Ir ⊗B)TC(Ir ⊗B) if B is a column. Finally,

if C ∈ Sqr and D ∈ Sq are positive semi-definite then 〈C, Ir ⊗D〉r � 0. (4.15)

Indeed, if we decompose D = BBT we infer (Ir ⊗B)TC(Ir ⊗B) � 0. Since the trace oper-
ator from R

n×n into R is completely positive [41], we conclude that Tracer((Ir⊗B)TC(Ir⊗
B)) � 0 and then (4.14) indeed implies (4.15). See Appendix A.2.1 for some additional
elementary properties of Tracer and the Kronecker product that will be frequently used in
the remainder of this thesis. See Appendix A.2.2 for some remarks on complete positivity.

Let us now choose pairwise different monomials uj(x), j = 1, . . . , ξ, and collect them
into the vector u(x) = (u1(x)

T , . . . , uξ(x)
T )T . Then S(x) is said to be SOS with respect to
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the monomial basis u(x) if there exist real matrices Tj, j = 1, . . . , ξ, with r columns such
that

S(x) = T (x)TT (x) with T (x) =

ξ
∑

j=1

Tjuj(x)

If wj(x), j = 1, . . . , η, denote the pairwise different monomials that appear in u(x)u(x)T

one can determine the unique symmetric matrices Zj with

u(x)u(x)T =

η
∑

j=1

Zjwj(x).

Now we are ready to prove the following result which reduces the question of whether S(x)
is SOS with respect to u(x) to an LMI feasibility problem.

Lemma 4.5 The polynomial matrix S(x) of dimension r is SOS with respect to the mono-
mial basis u(x) iff there exist symmetric Sj with S(x) =

∑η

j=1 Sjwj(x) and the following
linear system has a solution W � 0:

〈W, Ir ⊗ Zj〉r = Sj, j = 1, . . . , η. (4.16)

If W solves (4.16) then S(x) = 〈W, Ir ⊗ u(x)u(x)T 〉r = (Ir ⊗ u(x))TW (Ir ⊗ u(x)).

Proof. If S(x) is SOS with respect to u(x) and if we collect the coefficients of T (x)
as U = (T1 · · · Tξ) then T (x) = U(u(x) ⊗ Ir). If P denotes the permutation matrix
that guarantees u(x) ⊗ Ir = P (Ir ⊗ u(x)), we infer with W := (UP )T (UP ) � 0 that
S(x) = (Ir ⊗ u(x))TW (Ir ⊗ u(x)). With (4.14) we obtain

S(x) = (Ir ⊗ u(x))TW (Ir ⊗ u(x)) = 〈W, Ir ⊗ (u(x)u(x)T )〉r =

η
∑

j=1

〈W, Ip ⊗ Zj〉wj(x),

which proves necessity. Conversely, if W satisfies (4.16) we can reverse the arguments to
obtain the claimed representation. If W � 0 the factorization UTU = PWP T then leads
to S(x) = T (x)TT (x) with T (x) = U(u(x) ⊗ Ir).

Remark. The construction in Lemma 4.5 is a natural extension of the representation
of scalar SOS polynomials with the Gram Matrix, see e.g. [147].

Example 4.6 (Example 4.4 continued) For the Sum-Of-Squares polynomial S(x) of Ex-

ample 4.4 and polynomial basis u(x) =
(

1 x x2
)T

we obtain

W =











2 0 0 0 3 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
3 0 0 0 6 3
0 0 0 0 3 9











.
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4.4 Polynomial Lagrange duality with SOS

Let us now just replace the inequality in (4.6) and S(x) � 0 for all x ∈ R
m by the

requirement that the corresponding polynomials or polynomial matrices are SOS. This
leads to the following optimization problem:

supremize d
subject to S(x) and s0(x) := f(x) + 〈S(x), G(x)〉 − d are SOS

(4.17)

with optimal value dopt. We have seen in Section 4.2 that dopt defines an upper bound on
the optimal popt of (4.1). The main result of this chapter is to prove equality under a rather
mild constraint qualification on G(x), similar to the qualification in Theorem 4.3. On the
basis of this result we will discuss in Section 4.5 how to construct families of relaxations in
order to determine a whole sequence of lower bounds for problem (4.1) which converges to
popt.

Theorem 4.7 Let Assumption 4.1 hold true and popt be the optimal solution of (4.1).
Furthermore, suppose that the following constraint qualification holds true:

∃M > 0, matrix SOS Ψ(x) and SOS ψ(x) such that: ψ(x) = M − ‖x‖2 + 〈Ψ(x), G(x)〉.
(4.18)

Then the optimal value dopt of (4.17) equals the optimal value popt of (4.1).

Proof. The value of (4.17) is not larger than popt. Since trivial for popt = ∞, we assume
that G(x) � 0 is feasible. Choose any ǫ > 0 and some x̂ with G(x̂) � 0 and f(x̂) ≤ popt +ǫ.
Let us now suppose that S(x) and f(x) + 〈S(x), G(x)〉 − dopt are SOS. Then

popt + ǫ− dopt ≥ f(x̂) − dopt ≥ f(x̂) + 〈S(x̂), G(x̂)〉 − dopt ≥ 0

and thus popt + ǫ ≥ dopt. Since ǫ was arbitrary we infer popt ≥ dopt.
To prove the converse we first reveal that as a consequence of the constraint qualifica-

tion, if
G(x) � 0 is replaced by G̃(x) := diag(G(x), ‖x‖2 −M2) � 0

then (4.1) is not modified. In a first step of the proof let us show that the same is true for
the SOS reformulation (4.17). Indeed suppose S(x) and s0(x) = f(x) − d + 〈S(x), G(x)〉
are SOS. Then S̃(x) := diag(S(x), 0) satisfies s0(x) = f(x) − d+ 〈S̃(x), Ĝ(x)〉.

Conversely suppose f(x) − d + 〈S̃(x), G̃(x)〉 = s̃0(x) with SOS polynomials S̃(x) and
s̃0(x). Now we make explicit use of M2 − ‖x‖2 = ψ(x) − 〈Ψ(x), G(x)〉 with SOS matrices
ψ(x), Ψ(x). Let us partition

S̃(x) =

(
Spart(x) ∗

∗ spart(x)

)

with spart(x) a scalar polynomial. Define S(x) := (Spart(x)+spart(x)Ψ(x)), of dimension r.
It is easy to verify that both spart(x) and S(x) are both SOS and satisfy 〈S̃(x), G̃(x)〉 =
〈S(x), G(x)〉 − spart(x)ψ(x). This implies f(x) − d + 〈S(x), G(x)〉 = s̃0(x) + spart(x)ψ(x)
and it remains to observe that s̃0(x) + spart(x)ψ(x) is SOS.

Therefore, from now on we can assume without loss of generality that

vT
1 G(x)v1 = ‖x‖2 −M2 (4.19)
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where v1 is the last standard unit vector. To show popt ≤ dopt, choose a sequence of
unit vectors v2, v3, . . . such that vi, i = 1, 2, . . . is dense in the Euclidian unit sphere
{v ∈ R

r : ‖v‖ = 1}. Define GN := {x ∈ R
m : vT

i G(x)vi ≤ 0, i = 1, . . . , N} to infer
that GN is compact (by (4.19)) and that GN ⊃ GN+1 ⊃ G for N = 1, 2, . . . . Therefore
pN := min{f(x) : x ∈ GN} is attained by some xN and

pN ≤ pN+1 ≤ popt for all N = 1, 2, . . . .

Choose a subsequence Nν with xNν
→ x∗ to infer popt ≥ limν→∞ f(xNν

) = f(x∗) =: p∗.
Then p∗ = popt follows if we can show that G(x∗) � 0. In fact, otherwise there exists a unit
vector v with δ := vTG(x∗)v > 0. By convergence there exists some K with ‖G(xNν

)‖ ≤ K
for all ν. By density, there exists a sufficiently large ν such that K‖vi−v‖2 +2K‖vi−v‖ <
δ/2 for some i ∈ {1, . . . , Nν}. Since vTG(xNν

)v → vTG(x∗)v we can increase ν to even
guarantee vTG(xNν

)v ≥ δ/2 and arrive at the following contradiction:

0 ≥ vT
i G(xNν

)vi =

= (vi − v)TG(xNν
)(vi − v) + 2vTG(xNν

)(vi − v) + vTG(xNν
)v ≥

≥ −K‖vi − v‖2 − 2K‖vi − v‖ + δ/2 > 0.

When replacing the original SDP constraintG(x) � 0 by the scalar constraints vTG(x)v ≤
0, i = 1, . . . , N0 for some N0, we are now in the position to apply Putinar’s scalar rep-
resentation result given in Theorem 4.3 since, due to (4.19), the constraint qualifications
(4.9) and (equivalently) (4.8) are trivially satisfied. Hence for arbitrary ǫ > 0, there exist
a large enough N ∈ N and polynomials ti(x), i = 1, . . . , N , such that

w(x) := f(x) − dopt + ǫ+
N∑

i=1

[ti(x)
T ti(x)](v

T
i G(x)vi) is SOS in x. (4.20)

With the SOS matrix

SN(x) :=
N∑

i=1

viti(x)
T ti(x)v

T
i =






t1(x)v
T
1

...
tN(x)vT

N






T 




t1(x)v
T
1

...
tN(x)vT

N






we conclude that f(x) − dopt + ǫ + 〈SN(x), G(x)〉 equals w(x) in (4.20) and is thus SOS.
This implies that the optimal value dopt of (4.17) is at least popt − ǫ, and since ǫ > 0 was
arbitrary the proof is finished.

Theorem 4.7 is a natural extension of Theorem 4.3 to polynomial SDPs. Lasserre’s ap-
proach [119] for minimizing f(x) over scalar polynomial constraints gi(x) ≤ 0, i = 1, . . . ,m,
is recovered with G(x) = diag(g1(x), . . . , gm(x)). To the best of our knowledge, this gen-
eralization has, except for our publications [90, 88] and the recent independent work of
Kojima [114], not been presented anywhere else in the literature. The constraint qualifi-
cation in Theorem 4.7 is a natural generalization of that used by Schweighofer [180].

Remark. As in the scalar case, the constraint qualification (4.18) can be equivalently
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formulated as follows: there exist an SOS matrix Ψ(x) and an SOS polynomial ψ(x) such
that

{x ∈ R
nx | 〈Ψ(x), G(x)〉 − ψ(x) ≤ 0} is compact. (4.21)

This is shown in Appendix A.2.3

Example 4.8 We reconsider the non-convex optimization problem in Example 4.2, i.e.

inf
G(x)�0

f(x),

with f(x) = −x6 +4x4−4x2 + 1
5
x and G(x) = diag(x−1,−x−1). Figure 4.4 displays f(x)

and s0(x) := f(x)−dopt+〈S(x), G(x)〉, where S(x) is as defined in (4.7). It can numerically

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

interval[−3,3]

Figure 4.4: SOS relaxation example with the feasible region (bar on x-axis), f(x) (solid
line), s0(x) := f(x) − dopt + 〈S(x), G(x)〉 dotted line and optimal value popt (∗).

be verified that s0(x) is a Sum-Of-Squares and as a consequence it is nonnegative. The
function f(x) − dopt is negative for some values outside the feasible domain G, e.g. for
all x > 1.6. Hence to render s0(x) = f(x) − dopt + 〈S(x), G(x)〉 nonnegative the term
〈S(x), G(x)〉 must be positive for those values. This is possible since G(x) is indefinite
outside G. This illustrates that, to render s0(x) nonnegative, S(x) ‘pulls f(x) up’ outside
the feasible domain G with the term 〈S(x), G(x)〉.
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Remark. The Sum-Of-Squares relaxations can be interpreted as adding redundant con-
straints to the problem and then applying standard Lagrange dualization. Consider

inf
G(x)�0

f(x)

with optimal value popt and an arbitrary ǫ > 0. If G(x) satisfies the constraint qualification
(4.18), then there exist SOS S(x) and s0(x) with

f(x) + 〈S(x), G(x)〉 − popt + ǫ = s0(x).

Let us introduce the new optimization problem

inf
G(x)�0, g(x)≤0

f(x) (4.22)

with g(x) := 〈S(x), G(x)〉 and optimal value p∗. Since g(x) ≤ 0 is implied by G(x) � 0, the
constraint g(x) ≤ 0 is redundant. Hence the optimal values of the two problems coincide:
popt = p∗. The Lagrange relaxation of (4.4) with constant Lagrange multipliers S1 = 0 and
s2 = 1 results in

f(x) + 〈S1, G(x)〉 + 〈s2, g(x)〉 = f(x) + 〈S(x), G(x)〉 = s0(x) + popt − ǫ.

This illustrates that if we add suitable redundant constraints to the optimization problem,
then we can use a constant multiplier S � 0 in (4.17) instead of a polynomial multiplier.

4.5 LMI relaxations based on SOS

4.5.1 Construction of LMI relaxation families

With monomial a vector v(x) ∈ R
ζ and some real coefficient matrix B ∈ R

r×rζ let us
represent the constraint functions as G(x) = B(Ir ⊗ v(x)). The constraint in (4.17) can be
reformulated as

f(x) + 〈S(x), G(x)〉 − d = s0(x), with s0(x) and S(x) being SOS.

Moreover, let us choose monomial vectors u(x) and u0(x) of length ξ and ξ0 to parameterize
S(x) and s0(x) with respect to u(x) and u0(x) with W � 0 and W0 � 0 respectively as in
Section 4.3. We infer

s0(x) = 〈W0, u0(x)u0(x)
T 〉

and

〈S(x), G(x)〉 = 〈〈W, Ir ⊗ u(x)u(x)T 〉r, B(Ir ⊗ v(x))〉
= Trace

(
W (B (Ir ⊗ v(x))) ⊗ u(x)u(x)T

)

= Trace
(
W (B ⊗ Iξ)

(
Ir ⊗ v(x) ⊗ u(x)u(x)T

))
,

where we used the properties of the Kronecker product and Tracer given in Appendix
A.2.1. Let us now choose the pairwise different monomials

w0(x) = 1, w1(x), . . . , wη(x)
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to allow for the representations

u0(x)u0(x)
T =

η
∑

j=0

P 0
j wj(x), v(x) ⊗ u(x)u(x)T =

η
∑

j=0

Pjwj(x) (4.23)

and

f(x) =

η
∑

j=0

ajwj(x). (4.24)

Then there exist SOS polynomials S(x) and s0(x) with respect to u(x) and u0(x), such
that

f(x) + 〈S(x), Iq ⊗G(x)〉 − d = s0(x) (4.25)

if and only if there exists a solution to the following LMI system:

W0 � 0, W � 0, (4.26)

aj + 〈W0, P
0
j 〉 + 〈W, (B ⊗ Iξ) (Ir ⊗ Pj)〉 − δjd = 0, j = 0, 1, . . . , η, (4.27)

where δ0 = 1 and δj = 0 for j = 1, . . . , η. We can hence easily maximize d over these LMI
constraints to determine a lower bound on the optimal value of (4.1). The next theorem
shows that these lower bounds are guaranteed to converge to the optimal value popt of
(4.1), if we choose u0(x) and u(x) to comprise all monomials up to a certain degree, and if
we let the degree bound grow to infinity.

Theorem 4.9 Let {u1(x), u2(x), . . .} be a sequence of monomial vectors such that

span ({u1, u2, . . .}) = R[x].

Consider the sequence

dN := supremum d

subject to s0(x) = f(x) + 〈S(x), G(x)〉 − d

with s0(x) and S(x) SOS w.r.t.
(

u1(x), u1(x), . . . , uN(x)
)T

(4.28)
Then limN→∞ dN = popt, where popt is the optimal value of (4.1).

Proof. Obviously dN ≤ dN+1 ≤ popt for all N ∈ N. Furthermore Theorem 4.7 implies
that for arbitrary ǫ > 0 there exist SOS matrices S(x) and s0(x) such that s0(x) =
f(x) + popt − ǫ+ 〈S(x), G(x)〉. Since

span ({u1, u2, . . .}) = R[x]

we infer that there exists a large enough M ∈ N such that s0 ∈ span ({u1, u2, . . . , uM})
and Sij ∈ span ({u1, u2, . . . , uM}), i = 1, . . . , r, j = 1, . . . , r, where Sij denotes the entry of
the ith row and jth column of the matrix-valued polynomial S. This implies that S and s0

are SOS with respect to
(
u1(x), u1(x), . . . , uM(x)

)T
. We conclude that dM in (4.28)

satisfies dM ≥ popt − ǫ. Since ǫ was arbitrary, the result follows.
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4.5.2 Size of the LMI problem

The size of the LMI relaxation for (4.17) is easily determined as follows. The constraints
are (4.26) and (4.27). The conditions on the matrices W0 and W to be nonnegative definite
in (4.26) comprise one inequality in Sξ0 and one in Srξ, where (as mentioned earlier in the
text) r, ξ0 and ξ denote the number of rows in G(x) and the number of monomials for
the SOS matrices s0(x) and S(x) respectively. Equation (4.27) adds another η + 1 scalar
equation constraints to the LMI problem.

The decision variables in the LMI relaxation are d ∈ R and the matrices for the SOS
representation W0 ∈ Sξ0 and W ∈ Srξ. Since a symmetric matrix in Srξ can be parame-
terized by a vector in R

1
2
rξ(rξ+1), we end up in total with

1 +
1

2
(ξ0(ξ0 + 1) + rξ(rξ + 1)) (4.29)

scalar variables in our LMI problem.

4.5.3 Comparison with scalarization

In this section we shed some light on the benefits of exploiting the matrix structure in
the SOS relaxations compared to straightforward scalarization. In particular we explain
why scalarization fails to lead to the desired properties (of quadratic growth in the matrix
sizes) of the corresponding LMI relaxations. Observe that G(x) � 0 is equivalent to
Mi(G(x)) ≤ 0, i = 1, . . . , N where Mi(A), i = 1, . . . , N are all the principal (nonempty)
minors of a matrix A ∈ R

r×r [94]. The maximum of the total degrees of the minors
Mi(G(x)), i = 1, . . . , N is often much higher than the total degree of G(x). A larger
polynomial degree often requires to use a larger monomial basis and hence more variables
and constraints in the LMI relaxation to obtain good approximations of popt. This is
illustrated by the following example (inspired by a personal communication with Didier
Henrion).

Example 4.10 We compute lower bounds on popt = infG(x)�0 f(x) where x =
(
x1 x2

)T ∈
R

2, f(x) = x1 + x2 and

G(x) =





−1 −x2
1 0

−x2
1 −9 + x2

2 0

0 0 −1 +
x2
2+x2

1

100



 .

Table 4.1 shows lower bounds on the optimal value and the sizes of the LMI problems for
SOS relaxations based on (4.17) and based on two ways of scalarization, where we used for
“Scalar 1”

g1(x) = det

(
(
I2 0

)
G

(
I2
0

))

, g2(x) = Trace

(
(
I2 0

)
G

(
I2
0

))

and g3(x) = G3,3

and for “Scalar 2” the minors gi(x) := Mi(G(x)) ≤ 0, i = 1, . . . , 7. We choose monomial
bases u0(x) as shown in the table and u(x) = 1 to represent s0(x) and S(x) respectively as
in Lemma 4.5. An upper bound on the optimal value popt is F (−1.148,−2.695) = −3.843,
which was obtained by gridding. As is clear from the table, the matrix-valued relaxation is
(almost) exact for u0 = (1, x1, x2)

T , obtained by LMI optimization with 18 constraints and
13 variables. The scalarised relaxations are exact if u0 = (1, x1, x2, x

2
1, x1x2, x

2
2)

T , which
required the solution of an LMI problem with 27 constraints and 16 variables. The table
shows that “Scalar 2” requires even more LMI variables to make the relaxation gap small.
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Table 4.1: Optimal values and LMI size for matrix and scalar relaxations

Relax- optim. monomial in LMI LMI
ation value dopt u0(x)

T constr vars
Matrix -3.85 (1, x1, x2) 18 13
Scalar 1 -12.65 (1, x1, x2) 16 10
Scalar 1 -3.85 (1, x1, x2, x

2
1, x1x2, x

2
2) 27 16

Scalar 2 -2.6e4 (1, x1, x2) 29 14
Scalar 2 -3.85 (1, x1, x2, x

2
1, x1x2, x

2
2) 48 29

4.5.4 Strict feasibility and variable reduction

Strict feasibility

We solve the LMI relaxations, i.e. supremizing d with constraints (4.26) and (4.27), by
Interior Point solvers as described in Section 2.5.2. For these solvers absence of strictly
feasible points, i.e. the absence of d ∈ R, W0 ∈ Sξ0 and W ∈ Srξ that satisfy (4.26) strictly
and satisfy (4.27), often results in numerical problems. Hence guaranteeing the existence
of strictly feasible points is important to obtain numerically accurate results.

Variable elimination

One of the reasons for the absence of strictly feasible points is the occurrence of monomials
in the basis u0(x) that are not needed in an SOS decomposition of f(x) + 〈S(x), G(x)〉.
To eliminate unnecessary monomials in the basis u0(x) the Newton polytope is a useful
concept (as defined in e.g. [189]). The Newton polytope of a polynomial f : R

m → R given
by f(x) :=

∑N

i=1 cix
αi , is the convex hull of its exponents αi ∈ R

m, i = 1, . . . , N :

New(f(x)) := co{α1, α2, . . . , αN} ⊂ R
m.

If f(x) is a scalar SOS polynomial, then it is SOS with respect to any monomial basis
u0(x) that contains all monomials mj(x) = xα

j whose exponents αj ∈ (N0)
m satisfy 2αj ∈

New(f(x)) [152], see also [148]. This motivates to define Mf(x) as the set of monomials
that contains all monomials that can appear in a SOS representation of f :

Mf(x) := {xα| α ∈ (N0)
m, 2α ∈ New(f(x))}

This implies that the only monomials that are needed in u0(x) are in Mf(x)+〈S(x),G(x)〉−d.
Note that Mf(x)+〈S(x),G(x)〉−d depends on d and the coefficients W of the SOS polynomial
S(x) = 〈W, Ir ⊗ (u(x)u(x)T )〉r, which are not known a priori. In those cases we let

Mf(x)+〈S(x),G(x)〉−d

be the union of all monomials that can occur for all instances of the unknown parameters.
We therefore choose the vector u0 to contain precisely those monomials in the set

Mf(x)+〈S(x),G(x)〉−d. However, even when we use the monomials in Mf(x)+〈S(x),G(x)〉−d as
basis for u0(x) for some problem instances a strictly feasible point, i.e. that satisfies (4.26)
strictly and satisfies (4.27), does still not exist. Consider for instance the optimization
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problem infG(x)�0 f(x), where x ∈ R, f(x) := x and

G(x) =





−x3 0 0
0 x2 − 1 0
0 0 −x





and consider SOS basis u(x) = 1. We choose u0(x) according to the prescription above,

e.g. u0(x) =
(

1 x
)T

. Then the problem in (4.17) is to find the supremal d, W0 � 0 and
nonnegative numbers λi ≥ 0, i = 1, 2, 3 such that

x− d− λ1x
3 + λ2(x

2 − 1) − λ3x = uT
0 (x)W0u0(x).

Since this equation implies that λ1 = 0, this problem is not strictly feasible. We therefore
propose to use the following variable elimination procedure.

Algorithm 4.11 Initialization: set i = 0, W i
0 = Sξ0 and W i = Srξ.

1. compute (by e.g. vectorization followed by Gauss elimination [72]) linearly indepen-
dent W k ∈ W i and W k

0 ∈ W i
0, k = 0, . . . ,M for some M ∈ N0 such that

V i :=

{(

d,W 0 +
M∑

k=1

vkW
k,W 0

0 +
M∑

k=1

vkW
k
0

)

∈ R × Srξ × Sξ| d ∈ R, v ∈ R
M

}

parameterizes all solutions of (4.27) restricted to W i ×W i
0, i.e.

V i =
{

(d,W,W0) ∈ R ×W i ×W i
0

∣
∣ (d,W,W0) satisfy (4.27)

}

2. Set
I i

0 :=
{
l ∈ {1, . . . ξ0}| eT

l W
k
0 el = 0 for all k ∈ {0, . . .M}

}

and
I i :=

{
l ∈ {1, . . . rξ}| eT

l W
kel = 0 for all k ∈ {0, . . .M}

}
.

Furthermore set

W i+1
0 =

{
W0 ∈ W i

0

∣
∣ W0el = 0 for all l ∈ I i

0

}

and
W i+1 =

{
W ∈ W i

∣
∣ Wel = 0 for all l ∈ I i

}

3. if W i 6= W i−1 or W i
0 6= W i−1

0 , set i = i+ 1 and go to step 1, otherwise stop.

The steps in the algorithm can be interpreted as follows. In step 1 a parametrization of the
solution set V i of the linear equations (4.27) is constructed, where the additional restriction
W ∈ W i and W0 ∈ W i

0 is made. Since W i
0 = Sξ0 and W i = Srξ for i = 0, this restricts W

and W0 to be symmetric matrices of appropriate size in the first iteration of the algorithm.
In step 2 the indices I i of the diagonal elements of W that are identically zero in V i are
identified. All variables in the corresponding rows and columns of W must necessarily
be zero, since W is positive semi-definite. These variables are therefore eliminated, by
enforcing that the columns and rows of the matrices in W i+1 are zero for those indices. In
a similar fashion rows and columns of W0 are eliminated. The loop is repeated if at least
one row or column in either W or W0 has been eliminated in the last iteration.
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As the original conditions W � 0 and W0 � 0 are often not strictly feasible together
with (4.27), it should be clear that we actually implement the modified version

V0 � 0, V � 0,

aj + 〈EI0V0E
T
I0
, P 0

j 〉 + 〈EIV E
T
I , (B ⊗ Iξ) (Ir ⊗ Pj)〉 − δjd = 0, j = 0, 1, . . . , η,

where the optimization variables V0 and V are symmetric matrices of appropriate size, I
and I0 are the final index sets in Algorithm 4.11 and EI0 is a full column rank matrix
whose columns consist of the basis vectors {ei| i ∈ I0}. Similarly, EI is a full column rank
matrix whose columns consist of the basis vectors {ei| i ∈ I}.

4.5.5 Choice of monomial basis

A straightforward way to choose the monomial basis vector u(x) is to collect all monomials
up to a certain total degree p, and then apply the elimination technique discussed in the
previous section. If x consists of a large number of variables, this will lead to large LMI
problems even for small p. Indeed the number of all monomials in x ∈ R

m up to a given
total degree p is given by [147]

(
m+ p
m

)

, (4.30)

where

(
·
·

)

denotes the binomial coefficient defined as

(
a
b

)

:=
a!

b!(a− b)!

for a > b. Observe that
(
m+ p
m

)

=
(m+ p)(m+ p− 1) . . . 2 · 1

m(m− 1) . . . 2 · 1 = (m+ p)(m+ p− 1) . . . (m+ 2)(m+ 1).

Although this is for fixed p polynomial growth in m, we observe that the growth rate is
already large for moderate total degree p. If the number of variables m is large, the length
of the monomial vector is therefore huge even for small p, e.g if m = 20, p = 3 the number
of monomials up to order p is

(
m+ p
m

)

=

(
23
20

)

= 1771.

In [144] a comparison is given of the number of variables and constraints in two different
LMI formulations of the SOS relaxation. It is clear from Section 4.5.2 that this implies
that the number of variables and constraints in the LMI relaxation also grows fast in m.
To keep the LMI relaxations computationally tractable, it is therefore important to use a
more refined selection of the monomial basis than bluntly collecting all monomials up to a
certain total degree. It is however not known how to find the monomial basis of a certain
length that gives the best lower bound in (4.17). This is a practically important and inter-
esting question that is not yet fully answered. The elimination procedure described in the
previous section is a first step in this direction, since it eliminates monomials in u0(x) and
u(x) that cannot occur in a sum-of squares representation. A more sophisticated selection
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procedure that selects monomials based on their expected impact on the quality of the
lower bounds is however beyond the scope of this thesis. Unless specified differently, we
collect all monomials of a certain degree in u(x) and u0(x), followed by the elimination
procedure of the previous section.

Remark. If G(x) is diagonal, a priori bounds on the degree of the polynomial S(x)
to achieve an exact lower bound with (4.17) have been presented in [138, 181] and [174].
However, these bounds get very large if we approach the optimal value of the SDP.

4.5.6 Constructing optimal solutions

In this section we present a method to construct a globally optimal solution, if the relax-
ation gap is zero. If such solutions exist, they can be computed on the basis of the kernel
of the optimal W0 in (4.26) and (4.27). The procedure, to be explained below, is based on
the following theorem. See [37] for a similar result.

Theorem 4.12 Suppose that (4.1) attains its optimal value popt at xopt. Let dopt, W(0,opt)

and Wopt be an optimal solution to the SOS relaxation for some monomial bases u0(x) and
u(x). If popt = dopt, then u0(xopt) ∈ Ker(W(0,opt)).

Proof. With s(0,opt)(x) = u0(x)
TW(0,opt)u0(x) and Sopt(x) = [Ir ⊗u(x)]TWopt[Ir ⊗u(x)] we

conclude that
s(0,opt)(x) = f(x) + 〈Sopt(x), G(x)〉 − dopt

If we plug in xopt, we infer

s(0,opt)(xopt) = 〈Sopt(xopt), G(xopt)〉 (4.31)

Since s(0,opt) is SOS, s(0,opt)(xopt) ≥ 0. On the other hand, 〈Sopt(xopt), G(xopt)〉 ≤ 0, because
Sopt is SOS and G(xopt) � 0 by feasibility of xopt for (4.1). Hence (4.31) implies

u0(xopt)
TW(0,opt)u0(xopt) = s(0,opt)(xopt) = 0

This shows that u0(xopt) ∈ Ker(W(0,opt)).

Remark. Note that the theorem includes the possibility that the optimal value is at-
tained at more than one points.

With this result we are in the position to present the exactness test. We assume that
the first m+ 1 elements of the bases u0(x) are

(
Im+1 0

)
u0(x) =

(
1
x

)

and suppose that these are not eliminated by the procedure described Section 4.5.4. If the
kernel of W(0,opt) has dimension 1, the construction of an optimal xopt is very simple. If y
is the kernel vector of W(0,opt) with its first element equal to 1, an optimal solution is xopt

given by: (
1
xopt

)

=
(
Im+1 0

)
y. (4.32)
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The construction is more involved if the dimension of the kernel l is larger than one.
The solution can be found by solving a polynomial semi-definite feasibility problem with l
variables. If l is small compared to the number of variables m in x, this may be a relatively
easy problem.

Example 4.13 We will construct the optimal solution to the non-convex optimization
problem of Example 4.2, i.e.

inf
G(x)�0

f(x),

where f(x) = −x6 + 4x4 − 4x2 + 1
5
x and G(x) = diag(x− 1,−x− 1). The best lower bound

for a monomial basis u0(x) = u(x) = (1, x, x2, x3) is −1.3503, and the corresponding W0,opt

is

W0,opt =







0.46513 −0.43787 −0.67852 0.61419
−0.43787 1.0641 0.70175 −1.4376
−0.67852 0.70175 1.0167 −0.95408
0.61419 −1.4376 −0.95408 1.9739






.

We decompose this matrix as

W0,opt = Y T







σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4






Y,

with σ1 = 3.85, σ2 = 0.646 σ3 = 0.0188 and σ4 = 8.87 · 10−10. The dimension of the
(approximate) kernel is therefore 1, since there is a large gap between σ3 and σ4. The
corresponding scaled kernel vector is

y =







1
−0.83505
0.69731
−0.58229







The optimal solution is therefore xopt = −0.835. Indeed f(xopt) = −1.35.

Remark. A different approach to extract global solutions are presented in [84, 120].
In these papers the dual variables of the LMI relaxation are used to extract the solution.

4.6 SOS relaxtaions for fixed-order H∞ controller syn-

thesis

An SOS relaxation of the H∞-fixed order synthesis problem is:

supremize d
subject to γ + 〈S(γ,X,K), G(γ,X,K)〉 − d = s0(γ,X,K)

S(γ,X,K) and s0(γ,X,K) are SOS

where
G(γ,X,K) := diag

(
−X,−B(γ,X,K), γ2 + ‖X‖2

F + ‖K‖2
F − ρ

)
,
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‖A‖F denotes the Frobenius norm of A and B is as in (4.4). The additional constraint
γ2 + ‖X‖2

F + ‖K‖2
F − ρ ≤ 0 is added to bound the size of the variables. It guarantees that

the constraint qualification in (4.18) is satisfied. If we choose ρ large enough, this extra
constraint does hardly affect the optimal value.

Remark. The symmetric matrix-valued polynomials with matrix-valued arguments such

as S(γ,X,K) must be read as SOS polynomials S(x) with x =
(
γ svec(X)T vec(K)T

)T
,

where svec is as defined in (3.18) on page 50.

This definition of matrix-valued polynomials with a matrix-valued argument is a natural
extension of a matrix-valued polynomial. In a similar fashion we define rational functions
with a matrix-valued argument. Since vec(K) 7→ K is a linear bijection, standard results
on polynomials and rational functions such as Weierstrass’ Approximation Theorem and
the S-procedure hold obviously true for polynomials and rational functions with a matrix-
valued argument, as will be used in the next chapter. Noncommutative polynomials in the
sense of [81] are conceptually different. The interested reader is referred to that paper for
Sum-Of-Squares results for these kind of polynomials.

Remark. One of the strengths of the proposed relaxation scheme is the possibility
to construct globally optimal structured controllers, if there is no relaxation gap. The
controller can be constructed with the procedure presented in Section 4.5.6, by extracting
the corresponding controller variables from xopt in (4.32). We will see in the next section
that a globally optimal controller can often be constructed with (4.32), even if the total
degree of the sum-of squares polynomials is only 2.

4.7 Application

We computed lower bounds for randomly generated 4th order plants with n = 4, p1 =
3,m1 = 2, p2 = 1,m2 = 1 and computed upper bounds by gridding, as shown in Table
4.2. The table shows lower bounds on the optimal static-output feedback H∞, that were
computed by SOS relaxations. The bounds for the H2-norm have been computed with a
similar approach, see also [90]. To keep the size of the LMI problems small, we used the

very simple SOS bases u(x) =
(

1 K
)

and u0(x) =
(

1 γ K svec(X) Ksvec(X)
)T

,
where K ∈ R is a static controller and X ∈ S4. The number of decision variables in the
LMI is 469. Table 4.2 reveals that the lower bound on the globally optimal H2 performance
is for all systems larger than the trivial lower bound of full order performance and in 6 out
of 11 cases it is equal to the upper bound, such that the relaxation gap is zero. It is not
yet clear whether there is a theoretical explanation for the lower bounds being no worse
than the full order performance for this choice of bases. The lower bounds on the globally
optimal H∞ performance is only 7 out of 13 times better than the full order performance.

Extracting controllers

We construct globally optimal controllers with the method presented in Section 4.5.6. We
choose a monomial basis vector u0(x) such that its first m+ 1 columns are given by

(
Im+1 0

)
u0(x) =

(
1
x

)

,
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Table 4.2: Upper bounds based on gridding and lower bounds for static output feedback
together with Full Order H2 and H∞ performance for randomly generated 4th order systems

H2 H∞

Upper Lower Full Order Upper Lower Full Order
bound bound performance bound bound performance

6.74 6.67 4.6 9.9 7.71 8.14
11.1 11.1 9.71 15 14.6 12.5
14.4 14.4 11.5 15.9 15.5 13.3
8.78 8.49 7.36 30.7 15.1 30.7
7.95 7.94 2.69 5.61 2.83 4.6
8.88 8.88 7.68 21.2 19.4 21.2
16.1 16.1 15.4 55.9 42.5 29.5
10.6 10.6 8.1 22.6 12 22.6
5.02 5.02 2.14 7.35 6.37 3.98
44.1 44.1 42.7 199 166 155
12 12 9.6 36.1 35.4 35.4

3.07 3.07 1.25 2.65 2.5 1.94
5.8 5.8 4.35 8.84 7.58 8.13

where
x =

(
1 γ K svec(X)

)T
.

The kernel of W0 can not be computed exactly due to numerical errors. Instead we decom-
pose it as W0 = Y ΣY T , with orthogonal Y and diagonal Σ = diag(σ1, . . . , σξ0) � 0 and
σ1 ≥ σ2 ≥ . . . ≥ σξ0 . Let {e1, . . . , eξ0} be a basis for R

ξ0 . Then we determine a candidate
global optimal solution by (4.32), where

(
1
y

)

=
1

e1Y eξ0

Y eξ0 .

The corresponding candidate controller is extracted as the second element in the vector
xopt. Tables 4.3 and 4.4 show the results for the H2- and H∞-norm optimal control problems
respectively. The first column shows the lower bound computed by the SOS relaxation,
as was also shown in Table 4.2. The second and third columns show the best controllers
and the corresponding closed-loop norms found by gridding, respectively. The last two
columns of the tables show the extracted controller and the corresponding closed-loop
norms, respectively. The entries (in Table 4.4) with value ∞ correspond to cases where
the controller is not stabilizing. From Table 4.3 we observe that by this procedure we
were able to extract an almost-optimal controller in 11 out of 13 times. The constructed
H∞-controllers are much less often close to optimal, probably because the relaxation gaps
are much more often large.

4.8 Conclusion

In this chapter we have made a first step towards the computation of global optimality
certificates for structured controller synthesis. This gives a partial answer to research
question Á in Section 2.8. In addition, we have developed an SOS-based relaxation scheme
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Table 4.3: Lower bounds and upper bounds for static output feedback based on gridding
and controller extraction for the H2 performance for randomly generated 4th order system

Lower bound Upper bounds
Gridding Controller extraction

H2-norm Controller H2-norm Controller H2-norm

6.67 −1.83 6.74 −39.3 14.7
11.1 0.406 11.1 0.392 11.1
14.4 −0.276 14.4 −0.271 14.4
8.49 −4.21 8.78 −17.4 8.89
7.94 −2.6 7.95 −10.6 11.7
8.88 −0.307 8.88 −0.315 8.88
16.1 0.096 16.1 0.0997 16.1
10.6 −0.834 10.6 −0.825 10.6
5.02 −3.84 5.02 −3.84 5.02
44.1 0.902 44.1 0.888 44.1
12 −0.276 12 −0.264 12

3.07 −1.73 3.07 −1.75 3.07
5.8 −3.56 5.8 −3.58 5.8

Table 4.4: Lower bounds and upper bounds for static output feedback based on gridding
and controller extraction for the H∞ performance for randomly generated 4th order system

Lower bound Upper bounds
Gridding Controller extraction

H∞-norm Controller H∞-norm Controller H∞-norm

7.71 −1.67 9.9 −3.06 15
14.6 0.995 15 1.1 15.2
15.5 0.344 15.9 1.3 18.6
15.1 0.902 30.7 0.992 31.4
2.83 −2.26 5.61 −2.23 5.62
19.4 0.282 21.2 −0.629 ∞
42.5 0.127 55.9 0.52 ∞
12 0.003 22.6 −2.16 ∞

6.37 −2.48 7.35 −3.24 7.75
166 1.12 199 0.923 232
35.4 −0.307 36.1 −0.618 42
2.5 −1.61 2.65 −2.06 5.93
7.58 0.003 8.84 0.931 22.6
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for polynomial SDPs, which are applicable to a wide range of very hard problems in control
engineering.

For small-order systems the SOS relaxations are surprisingly good for very simple mono-
mial bases, in the sense that they are often close to the optimal fixed-order performance
and significantly larger than the full order performance. Especially for the H2-optimal con-
trol problem, verifiable globally optimal controllers have been computed with only small
monomial basis vectors.

In our numerical experience the size of the LMI problems of the SOS relaxations grows
fast, such that good lower bounds can be only computed for systems with state dimension
up to about 4. This is to be expected, since the relaxation scheme is applicable to the whole
class of polynomial SDPs, which contain a wide range of very hard problems. To reduce
the computational complexity it is crucial to exploit the control-theoretic characteristics of
the problem. We reveal in the next chapter that this can be done by avoiding the need of
constructing SOS polynomials in the Lyapunov variable X.
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Chapter 5

H∞-synthesis by robust analysis

The LMI relaxations described in the previous chapter have a number of variables that
grows fast with the number of plant states. As a consequence, good lower bounds on the
structured controller performance can only be computed for systems with small McMillan
degree up to about 4. In this chapter we present a two-stage dualization technique which
converts the fixed order problem into a robust analysis problem, which can then be relaxed
with Sum-Of-Squares decompositions. The resulting SOS relaxations grow only quadrati-
cally in the number of states, which is the same growth rate as for the LMI solution of the
full-order problem.

In Section 5.1 we convert the structured synthesis problem into a robust analysis prob-
lem, where the controller variables are the ‘uncertain’ parameters. Relaxing the robust
analysis problem by Sum-Of-Squares as described in Section 5.2 leads to a family of LMI
problems. The optimal values of these problems are global lower bounds on the opti-
mal closed-loop H∞ performance which converge to this performance value for increasing
monomial bases.

The conversion to a robust analysis problem is of independent interest: it allows us
to apply the wide spectrum of robust analysis techniques to the fixed order controller
design problem. In particular using a family of LMI relaxations based on the S-procedure
we can compute global lower bounds on the optimal closed loop H∞ performance. This
will be explained in Section 5.3. Again it is guaranteed that optimal values of this family
converge from below to the globally optimal fixed order H∞-norm. We apply the method in
Section 5.5 to a fourth-order example and to the fixed-order H∞-optimal controller design
problem of an active suspension system with a 27th-order plant. The results presented in
this chapter have been published in [89], [88] and [91].

5.1 Conversion to robustness analysis

For the closed-loop matrices described by (2.8) our starting point is the same BMI for-
mulation of the H∞ structured controller synthesis problem as in the previous chapter.
Consider a generalized plant with state-space realization





ẋ
z
y



 =





A B1 B2

C1 D11 D12

C2 D21 D22









x
w
u



 , x(0) = 0, (5.1)
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with A ∈ R
n+nc×n+nc , Bi ∈ R

n+nc×mi , C ∈ R
pi×n+nc and Dij ∈ R

pi×mi , i, j ∈ {1, 2}. With
static feedback matrix K ∈ R

(nc+m2)×(nc+p2), the closed loop matrices are given by

(
Acl(K) Bcl(K)
Ccl(K) Dcl(K)

)

=

(
A B1

C1 D11

)

+

(
B2

D21

)

K
(
C2 D12

)
. (5.2)

The structured H∞-optimal control problem can then be formulated as

inf
Acl(K)is Hurwitz

∥
∥Dcl(K) + Ccl(K)(sI − Acl(K))−1Bcl(K)

∥
∥
∞

(5.3)

As explained in Chapter 2, this problem can be formulated in terms of BMIs using the
‘Bounded Real Lemma inequality’

B(γ,X,K) := −





Acl(K)TX +XAcl(K) XBcl(K) Ccl(K)T

Bcl(K)TX −γI Dcl(K)T

Ccl(K) Dcl(K) −γ



 ≻ 0. (5.4)

As explained later in this chapter, we can reduce the complexity of our relaxations by
taking first a Schur complement on the Bounded-Real Lemma inequality B(γ,X,K) ≻ 0.
Indeed if using Lemma 2.7 we formulate (5.4) equivalently as

BS(t,X,K) ≻ 0, (5.5)

where

BS(t,X,K) :=

(
−Acl(K)TX −XAcl(K) −XBcl(K)

−Bcl(K)TX tI

)

−
(
Ccl(K)T

Dcl(K)T

)
(
Ccl(K) Dcl(K)

)

where t = γ2 and the closed loop matrices (Acl(K), Bcl(K), Ccl(K), Dcl(K)) are defined by
(5.2). Hence (5.3) is equivalent to

infimize γ
subject to X ≻ 0 and BS(t,X,K) ≻ 0.

(5.6)

For technical reasons that will be clarified in the sequel we need the additional assump-
tion that (Acl(K), Bcl(K)) is controllable for every K ∈ K. Furthermore we restrict the
controller variables, as was also assumed in the previous chapter, to a compact set K. Com-
pactness can, for instance, be realized by restricting the controller variables to a Euclidean
ball of radius ρ > 0

K :=
{
K ∈ R

(nc+m2)×(nc+p2)| ‖K‖ ≤ ρ
}
.

Some additional remarks on these assumptions will be given later on in this chapter. The
BMI problem to be solved can then be formulated as

infimize t
subject to X ≻ 0, BS(t,X,K) ≻ 0, K ∈ K and t > 0

(5.7)

with optimal value popt. We added the obviously redundant constraint t > 0 for reasons
to be explained in the next section.

For translating the nonlinear synthesis problem in (5.7) into an equivalent robustness
analysis problem, the key idea is to apply partial Lagrange dualization: fix the controller
variables K and dualize with respect to the Lyapunov variable X. We will show that one
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is required to determine parameter-dependent dual variables, in full analogy to computing
parameter-dependent Lyapunov functions for LPV systems. As the main advantage, this
reformulation allows us to suggest novel SOS relaxations that grow only quadratically in the
number of the system states, in stark contrast to the relaxations of the previous chapter,
which were based on Lagrange dualization in all decision variables of (5.7). The number
of monomials and hence the number of LMI variables of the relaxations of the previous
chapter grow according to the binomial formula (4.30).

5.1.1 Partial dualization

For fixed K = K0 ∈ K, (5.7) is an LMI problem in X and t:

infimize t
subject to X ≻ 0, BS(t,X,K0) ≻ 0, t > 0,

(5.8)

Let us partition the dual variable Z for the constraint BS(t,X,K) ≻ 0 in (5.7) as

Z =

(
Z11 Z12

ZT
12 Z22

)

∈ Sn+nc+m1 , with Z11 ∈ Sn+nc . (5.9)

Then the Langrange dual reads as follows:

supremize Trace
([

Ccl(K0) Dcl(K0)
]
Z
[
Ccl(K0) Dcl(K0)

]T
)

subject to Acl(K0)Z11 + Z11Acl(K0)
T +Bcl(K0)Z

T
12 + Z12Bcl(K0)

T � 0
Trace(Z22) ≤ 1, Z � 0,

(5.10)

see Appendix A.3.1 for a derivation. The reason for the redundant constraint t > 0 in the
primal problem is to arrive at a dual problem without inequality constraints.

Let dopt(K0) denote the dual optimal value of (5.10). Note that (5.10) is strictly
feasible for all K0 ∈ K as is shown in Appendix A.3.2. This implies (due to strong duality)
dopt(K0) = popt(K0) and, as a consequence, we draw the following conclusion. Given any
d ∈ R suppose that the matrix-valued function Z(K) satisfies

Trace
([

Ccl(K) Dcl(K)
]
Z(K)

[
Ccl(K) Dcl(K)

]T
)

> d, (5.11)

Acl(K)Z11(K) + Z11(K)Acl(K)T +Bcl(K)Z12(K)T + Z12(K)BT
cl(K) ≻ 0, (5.12)

Trace(Z22(K)) < 1, Z(K) ≻ 0, (5.13)

for all K ∈ K. Then it is clear that dopt(K) ≥ d and hence popt(K) ≥ d hold for all K ∈ K.
Therefore d is a lower bound on the best achievable controller performance. It is thus
natural to maximize d over some class of functions Z(.) in order to determine tight lower
bounds on the value of (5.7). Our construction allows us to show that this lower bound is
actually tight if optimizing over symmetric matrix-valued polynomials Z(K).

Theorem 5.1 Let popt be the optimal solution of (5.7) and dopt be the supremal d for
which there exists a polynomial matrix Z(K) ∈ Sn+nc+m1 satisfying (5.11)-(5.13) for all
K ∈ K. Then popt = dopt.
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Proof. We have already seen that popt ≥ dopt. Now suppose popt ≥ dopt + ǫ for some
ǫ > 0. For any fixed K0 ∈ K, the optimal value of (5.8) and hence that of (5.10) is not
smaller than popt. Since (5.10) is strictly feasible there exists Y 0 (partitioned as (5.9)) with

Trace
([

Ccl(K0) Dcl(K0)
]
Y 0
[
Ccl(K0) Dcl(K0)

]T
)

> popt −
ǫ

2
,

Acl(K0)Y
0
11 + Y 0

11Acl(K0)
T +Bcl(K0)Y

0
12

T
+ Y 0

12B
T (K0) ≻ 0,

Trace(Y 0
22) < 1, Y 0 ≻ 0.

Since the inequalities are strict and K is compact, we can use a partition of unity argument
[160] to show that there actually exists a continuous function Y (K) such that

Trace
([

Ccl(K) Dcl(K)
]
Y (K)

[
Ccl(K) Dcl(K)

]T
)

> popt −
ǫ

2
, (5.14)

Acl(K)Y11(K) + Y11(K)Acl(K)T +Bcl(K)Y12(K)T + Y12(K)BT
cl(K) ≻ 0, (5.15)

Trace(Y22(K)) < 1, Y (K) ≻ 0, (5.16)

for all K ∈ K. Due to the Weierstrass’ Approximation Theorem of continuous functions
by polynomials [116] on compacta, we can even choose Y (K) to be a matrix polynomial.
This allows us to conclude dopt ≥ popt − ǫ

2
, a contradiction which finishes the proof.

In actual computations we optimize over functions Z(·) belonging to an increasing
sequence of finite-dimensional subspaces of matrix-valued polynomials. Then the difference
of the computed lower bound with the actual optimal H∞-performance is non-decreasing.
If we restrict the search to a subspace of degree-bounded matrix polynomials, and if we let
the bound on the degree grow to infinity, Theorem 5.1 guarantees that the corresponding
lower bounds converge from below to the globally optimal H∞ performance.

We have thus reduced the H∞-synthesis problem to a robust analysis problem with
complicating variables K and polynomial robustness certificates Z(K). In Section 5.2 we
will discuss how (5.11)-(5.13) can be relaxed to standard LMI constraints via suitable SOS
tests and in Section 5.3 we will discuss relaxations based on the S-procedure.

Remark. The robustness certificates provide global lower bounds and are not construc-
tive, i.e. they do not yield a globally optimal controller. However, in Section 5.3 we will
show that under certain conditions the relaxations do make it possible to construct globally
optimal controllers.

Remark. The proposed partial dualization technique is not at all restricted to fixed-
order H∞-optimal control. Straightforward variations do apply to a whole variety of other
interesting problems, such as designing structured controllers for any performance criterion
that admits an LMI representation of its analysis problem (as e.g. general quadratic perfor-
mance, H2-performance, multi-objective control [212,167,173] or placement of closed-loop
poles in LMI regions [40]).

Remark. We require the controller parameters to lie in a compact set in order to be
able to apply Weierstrass’ Approximation Theorem. From a practical point of view this
is actually not restrictive, since the controller parameters cannot be too large for digital
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implementation. Moreover one can exploit the flexibility in choosing the set K in order to
incorporate the suggested lower bound computations in branch-and-bound techniques, see
Section 3.3.

Remark. The controllability assumption is needed to prove that the dual (5.10) is strictly
feasible for all K ∈ K. Controllability can be verified by a Hautus test: (Acl(K), Bcl(K))
is controllable for all K ∈ K if and only if

PH(λ,K) :=
(
Acl(K) − λI Bcl(K)

)
has full row rank for all λ ∈ C, K ∈ K. (5.17)

This property can be verified by SOS decompositions as described in Chapter 4. Indeed
suppose M > 0 is chosen with ‖Acl(K)‖ ≤ M for all K ∈ K (with ‖ · ‖ denoting the
spectral norm). Then (5.17) holds true if and only if the real-valued polynomial

FH(a, b,K) : = |det (PH(a+ bi,K)PH(a+ bi,K)∗)|2

= det (PH(a+ bi,K)PH(a+ bi,K)∗)∗ det (PH(a+ bi,K)PH(a+ bi,K)∗)

is strictly positive on [−M,M ]×[−M,M ]×K. This can be tested with SOS decompositions,
provided that K has a representation that satisfies the constraint qualification (4.18). The
upper boundM on the spectral norm of A on K can also be computed with SOS techniques.

Remark. The utmost right constraint in (5.13) (Z(K) ≻ 0 for all K ∈ K) can be
replaced by the (generally much) stronger condition that Z(K) is SOS. As we will see in
Section 5.2 this may reduce the complexity of our relaxation problems. Theorem 5.1 is
still true after the replacement, since for any matrix-valued polynomial Z(K) that satisfies
(5.11)-(5.13) for all K ∈ K, we can find a unique matrix valued function R(K) on K that
is the Cholesky factor of Z(K) for all K ∈ K. Furthermore R(K) is continuous on K if
Z(K) is, because the Cholesky factor of a matrix can be computed by a sequence of con-
tinuity preserving operations on the coefficients of the matrix [72]. Again by Weierstrass’
Approximation Theorem there exists an approximation of the continuous R(K) on K by
a polynomial R̃(K) such Z(K) := R̃(K)T R̃(K) satisfies (5.11)-(5.13). The constructed
matrix-valued polynomial Z(K) is then indeed SOS.

5.1.2 Finite-dimensional approximation

Suppose that Zj : R
(nc+m2)×(nc+p2) 7→ Sn+m1 , j = 1, 2, . . . , Npar, is a set of linearly inde-

pendent symmetric-valued polynomial functions in K (such as a basis for the real vector
space of all symmetric matrix polynomials of a certain maximal total degree). Let us now
restrict the search of Z(.) in Theorem 5.1 to the subspace

ZNpar :=

{

Z(., z)| Z(., z) :=

Npar∑

j=1

zjZj(.), z = (z1, . . . , zNpar) ∈ R
Npar

}

. (5.18)

Then (5.11)-(5.13) are polynomial inequalities in K that are affine in the coefficients z
for the indicated parametrization of the elements Z(., z) in ZNpar . With y := col(d, z),
c := col(1, 0nz

) and

F (K, y) := diag(F11(K, z) − d, F22(K, z), Z(K, z), 1 − Trace(Z22(K, z))), (5.19)
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where

F11(K, z) := Trace
([

Ccl(K) Dcl(K)
]
Z(K, z)

[
Ccl(K) Dcl(K)

]T
)

(5.20)

and

F22(K, z) := Z11(K, z)Acl(K)T +Acl(K)Z11(K, z)+Z12(K, z)Bcl(K)T +Bcl(K)ZT
12(K, z)

T ,
(5.21)

the problem to be solved can be compactly written as follows:

supremize cTy
subject to F (K, y) ≻ 0 for all K ∈ K. (5.22)

This problem involves a semi-infinite semi-definite constraint on a matrix polynomial in K,
only. This allows us to construct relaxations that rely on SOS-decomposition for polyno-
mials in K. This is the key to keep the size of the resulting LMI-problem quadratic in the
number of system states, as opposed to the large growth of the size of the LMI-problem
for the direct approach discussed in Chapter 4.

Remark. Additional structure in the elements of the feedback matrix K can be taken into
account as follows. Suppose that the controller variables can be parameterized with an
affine functionK(p) as in (2.56), K : R

lc → R
(nc+m2)×(nc+p2) for some lc ≤ (nc+m2)(nc+p2).

Then it is easy to see that partial dualization in p transforms the structured H∞-optimal
control problem into a problem of type (5.22). This is explained in full detail in our
publication [89].

5.2 Relaxations based on Sum-Of-Squares

In this section we present SOS-relaxations for the robust analysis problem (5.22) with
compact K described as K := {K ∈ R

(nc+m2)×(nc+p2)| G(K) � 0} for some matrix-valued
polynomial G : R

(nc+m2)×(nc+p2) → Sr. Note that this description of K allows us to rep-
resent any set described by non-strict inequalities which include polytopes, norm-bounded
sets or any combination thereof.

Since SOS-relaxations for robust analysis problems are addressed in detail in Chapter 6,
we briefly sketch in this section the ideas. We replace the constraints in (5.22) by requiring
the existence of ǫ > 0 and SOS matrices S0(K) and S(K), S0 : R

(nc+m2)×(nc+p2) → Sq,
S : R

(nc+m2)×(nc+p2) → Sqr such that

F (K, y) + 〈S(K)G(K)〉q − ǫI = S0(K), (5.23)

where q is the number of rows/columns of F (K, y). Using similar weak duality arguments
as in Section 4.2 it is easy to see that the optimal value of (5.22) is bounded from below by
the largest achievable cTy for which there exist ǫ > 0 and a SOS matrix S(K) with (5.23).
In Chapter 6 we will show that this relaxation is exact under the constraint qualification
(4.18). This is the key step to see that one can construct a family of LMI relaxations for
computing lower bounds arbitrarily close to the optimal H∞-norm, of which their sizes
grow quadratically in the state dimension n. The construction of the LMI relaxations is
similar to the one for matrix valued polynomial SDPs and will be described in more detail
in Section 6.3.
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Remark. We have performed partial dualization in the high dimensional variables X
in order to arrive at the formulation of (5.22). It is interesting to interpret the replace-
ment of the semi-infinite constraint in (5.22) by (5.23) as the result of a second Lagrange
relaxation step in the low dimensional variable K. In this sense the suggested relaxation
can be viewed as a full SOS Lagrange dualization of the original nonlinear semi-definite
program, and splitting into two steps yields the desired quadratic growth (of the size of
the LMIs) in the McMillan degree n.

Remark. In Section 2.2.2 it has been discussed how to transform a generalized plant
with nonzero D22 to a plant with zero D22, using (2.7). This mapping results in a rational
dependence of the left-hand sides of (5.11) and (5.13) on K, such that we cannot directly
apply the SOS test. Under the well-posedness condition that I−Dk(K)D22 is nonsingular
for all K ∈ K, we can multiply (5.11) and (5.13) by det(I − Dk(K)D22)

2. In this case
det(I −Dk(K)D22)

2 > 0 for all K ∈ K. Hence the resulting inequalities for all K ∈ K

(det(I −D22Dk(K))I)T (Z11(K)A(K)T + Acl(K)Z11(K) + Z12(K)BT
cl(K)+

+Bcl(K)Z12(K)T )(det(I −D22Dk(K))I) ≻ 0,

(det(I −D22Dk(K)))2Trace(
[
C(K) D(K)

]
Z(K)

[
Ccl(K) Dcl(K)

]T
) > d

and
Z(K) � 0

are equivalent to (5.11) and (5.13) and polynomial in K, such that our problem is a robust
LMI problem and we can apply the SOS technique. It is easy to see that testing well-
posedness is a robust LMI problem as well. In a similar fashion we can introduce a rational
parametrization for Z(K). Let Zj : R

(nc+m2)×(nc+p2) 7→ Sn+nc+m1 , j = 1, 2, . . . , Npar, be a
set of linearly independent symmetric valued rational (instead of polynomial as in Section
5.1.2) functions in K without poles in K. By multiplication of the inequalities (5.11)-(5.13)
with the smallest common denominator of Z(K) that is strictly positive for all K ∈ K,
their left-hand sides become polynomials in K. See [106] for similar ideas to transform a
positivity test of a rational function to a positivity test on a polynomial.

5.3 Relaxations based on the S-procedure

We present in this section relaxations based on the S-procedure if K is the polytope

co{K1, K2, . . . , KNpoly
}.

We use a parametrization of Z(K) as a linear combination of fixed rational functions
in K, and we apply the full block S-procedure as described in Section 2.5.7 to solve the
robust analysis problem. However, we do not need the S-procedure to tackle this particular
problem; we can use the SOS relaxations of the previous section or any other robust analysis
test.

Let Zj : R
(nc+m2)×(nc+p2) 7→ Sn+nc+m1 , j ∈ {1, 2, . . . , Npar}, be independent matrix-

valued rational functions in K without poles in K. Consider the vector space

ZNpar :=

{
Npar∑

j=1

zjZj(K)

∣
∣
∣
∣
∣
z ∈ R

Npar

}

, (5.24)
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We search over Z ∈ ZNpar . With a slight abuse of notation we use Z(K, z) to represent

the function Z(K, z) =
∑Npar

j=1 zjZj(K) parameterized by z ∈ R
Npar .

Full block S-procedure

If we use the parametrization (5.24) for Z(K, z), we observe that the inequalities (5.11),
(5.12) and (5.13) are rational inequalities in K depending affinely on the coefficients z in
the parametrization of Z(K, z). We construct an LFT

FLFT(z,K) = Fu








∆(K),

(
A B

C(z) D(z)

)

︸ ︷︷ ︸

H(z)








= D(z) + C(z)∆(K)(I − A∆(K))−1B,

where Fu is the upper LFT as explained in Section 2.1.2, ∆(K) is linear in K and I −
A∆(K) is nonsingular for all K ∈ K, such that (5.11), (5.12) and (5.13) for all K ∈ K are
equivalent to

(
I

FLFT(z,K)

)T

Pd

(
I

FLFT(z,K)

)

≺ 0 for all K ∈ K, (5.25)

where Pd is a fixed matrix. The construction of such an LFT and a corresponding matrix
Pd is presented at the end of this section. Since K is compact we can apply the full-
block S-procedure as described in Section 2.5.7, to infer that our problem is equivalent to
maximizing d over z ∈ R

Npar and multipliers Pmult with

(
∆(K)
I

)T

Pmult

(
∆(K)
I

)

≻ 0 for all K ∈ K, (5.26)

and

(
I 0
A B

)T

Pmult

(
I 0
A B

)

+

(
0 I

C(z) D(z)

)T

Pd

(
0 I

C(z) D(z)

)

≺ 0. (5.27)

Equation (5.26) is a semi-infinite constraint on the multiplier Pmult. To render the lower
bound computationally tractable we introduce a (standard) inner approximation of the set
of multipliers. The set Pmult of multipliers Pmult such that

(
I
0

)T

Pmult

(
I
0

)

≺ 0, (5.28)

(
∆(Kk)
I

)T

Pmult

(
∆(Kk)
I

)

≻ 0, k = 1, . . . , Npoly (5.29)

is an inner approximation for {Pmult| Pmult satisfies (5.26)}, as can be shown by an elemen-
tary convexity argument [176]. Hence the optimal value of the LMI problem

supremize d
subject to (5.27), (5.28) and (5.29)
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is a lower bound on the square of the optimal closed-loop H∞-norm. If we optimize over
many controller variables, the number of generators Npoly of K may be large. To avoid
explosion of the size of the relaxed problem, we can exploit the block diagonal structure
in ∆(K).

Remark. If Acl(K) is stable for all K ∈ K, we can eliminate several parameters in
the problem. Inequality (5.12) then reduces to

Z11(K)Acl(K)T + Acl(K)Z11(K) + Z12(K)Bcl(K)T +Bcl(K)ZT
21(K) = 0,

and Z11(K) can be explicitly described as a rational function in terms of Z12(K). This
drastically reduces the number of free variables in the polynomial Z. The function Z11(K)
constructed in this fashion has a rational dependence on the controller variables and affine
dependence on Z12(K).

LFT construction

In this section we present an LFT representation to obtain relaxations based on the S-
procedure of (5.11), (5.12) and (5.13). For this purpose let us define, similar to F in (5.19)
the matrix-valued polynomial

FLFT(K, z) :=







FLFT,11(K, z) − V 0 0 0
0 FLFT,22(K, z) 0 0
0 0 Z(K, z) 0
0 0 0 W − Z22(K, z)







where
FLFT,11(K, z) := Z(K, z)

(
Ccl(K) Dcl(K)

)T (
Ccl(K) Dcl(K)

)

and
FLFT,22(K, z) := Z11(K, z)Acl(K)T + Z12(K, z)Bcl(K)T .

V ∈ Sn+nc+m1 and W ∈ Sm1 are auxiliary variables. Let us furthermore choose Pd in
(5.25) as

Pd :=















0 0 0 0 −In+nc+m1 0 0 0
0 0 0 0 0 −In+nc 0 0
0 0 0 0 0 0 −In+nc+m1 0
0 0 0 0 d 0 0 −Im1

−In+nc+m1 0 0 0 0 0 0 0
0 −In+nc 0 0 0 0 0 0
0 0 −In+nc+m1 0 0 0 0 0
0 0 0 −Im1 0 0 0 0















.

(5.30)
It is easy to see that existence of V,W and z with (5.25), Trace(V ) > d and Trace(W ) < 1 is
equivalent to (5.11), (5.12) and (5.13) for allK ∈ K. To keep the LMIs small, it is important
to construct the LFT Fu (∆(K), H(z)) = FLFT(K, z) with a small sized uncertainty block
∆(K). For this purpose we decompose FLFT as

FLFT(K, z) = L0 +
4∑

i=1

LiZ(K, z)Ri(K),
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where L0 ∈ Sn+nc+m1 is given by

L0 :=







−V 0 0 0
0 0 0 0
0 0 0 0
0 0 0 W







and Li ∈ R
(3(n+nc+m1))×(n+nc+m1), i = 1, . . . , 4 are defined as

L1 :=







In+nc+m1

0
0
0






, L2 :=







0 0
In+nc 0

0 0
0 0






, L3 :=







0
0

In+nc+m1

0







L4 :=







0 0
0 0
0 0
0 Im1






.

Finally, Ri ∈ R
(n+nc+m1)×(3(n+nc+m1)), i = 1, . . . , 4 are chosen as follows:

R1(K) :=
(
(
Ccl(K) Dcl(K)

)T (
Ccl(K) Dcl(K)

)
0 0 0

)

,

R2(K) :=

(
0 Acl(K)T 0 0
0 Bcl(K)T 0 0

)

, R3 :=
(

0 0 In+nc+m1 0
)

and

R4 :=

(
0 0 0 0
0 0 0 Im1

)

,

respectively. Note that the size of the zero blocks in the matrices given above are chosen
to match the partitioning of the left-upper block of Pd in (5.30). The LFTs for R1(K) and
R2(K) are

R1(K) = Fu







(
KT 0
0 K

)

,







0 DT
12D12 DT

12C1 DT
12D11 0 0 0

0 0 C2 D21 0 0 0
CT

2 CT
1 D12 CT

1 C1 CT
1 D11 0 0 0

DT
21 DT

11D12 DT
11C1 DT

11D11 0 0 0













and

R2(K) = Fu



KT ,





0 0 BT
2 0 0

CT
2 0 AT 0 0

DT
21 0 BT

1 0 0







 ,

respectively.
Next, we construct the LFT for Z(K). The size of its uncertainty block depends

on the degree of numerator and denominator of Z(K). Suppose, for instance, that Z is
parameterized by Z(K, z) = ZD(z) + ZC(z)K(I − ZAK)−1ZB. Then, we can construct an
LFT

Z(K, z) = Fu

((
ZA ZB

ZC(z) ZD(z)

)

, K

)

,

with an uncertainty block of size (nc+m2)×(nc+p2). We compose each term LiZ(K)Ri(K)
by multiplication of the LFT Z(K) with the LFT Ri(K), which results in a (usually larger)
new LFT [214].

Remark. The LFT construction procedure in [89] is different, since the original problem
is formulated in terms of (5.4) instead of (5.5). This different formulation may, depending
on the size of the data matrices, result in a smaller LFT.
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5.4 Complexity, conservatism and exactness

5.4.1 Complexity for approach based on SOS relaxations

The number of variables and constraints in the LMI relaxations grows quadratically in
the state dimension n. Indeed F (K, y) in (5.19) and hence S0(K) in (5.23) have q :=
2 + 2n + 2nc + m1 rows and columns. If the monomial bases for S0(K) and S(K) are
ξ0 and ξ, respectively, then the variables in the SOS relaxation are y ∈ R

1+Npar , W0 ∈
Sξ0(2+2n+2nc+m1) and W ∈ Sξ(2+2n+2nc+m1)r, as will be explained in Chapter 6. If we count
a symmetric matrix in S l as 1

2
l(l + 1) variables, we arrive at the total number of ‘scalar

variables’

1 +Npar +
1

2
(ξ0(2 + 2n+ 2nc +m1) + 1)(ξ0(2 + 2n+ 2nc +m1))+

+ (ξ(2 + 2n+ 2nc +m1)r + 1)(ξ(2 + 2n+ 2nc +m1)r). (5.31)

The constraints in the LMI problem are W0 � 0 and W � 0 and equation constraints
similar to (4.27).

5.4.2 Complexity for approach based on S-procedure

The variables in the relaxation based on the S-procedure are Pmult ∈ SrLFT+cLFT , z ∈ R
Npar ,

V ∈ Sn+nc+m1 and W ∈ Sm1 , where rLFT and cLFT are the number of rows and columns in
the uncertainty block ∆(K) respectively. The total number of ‘scalar variables’ is

1+Npar +
1

2
(rLFT +cLFT +1)(rLFT +cLFT)+

1

2
(n+nc +m1 +1)(n+nc +m1)+

1

2
(m1 +1)m1

The constraints are (5.27) and (5.28) and (5.29). Since FLFT(z,K) and D(z) are (2+2n+
m1)× (2+2n+m1) matrices and the number of rows in C(z) is rLFT, the constraint (5.27)
is in SrLFT+(2+2n+m1). The constraint (5.28) is in SrLFT and the Npoly constraints in (5.29)
are all in ScLFT .

It is clear that the number of LMI variables depends on the number Npar of basis
elements of ZNpar in (5.18) and (5.24). In addition, the choice of the monomial basis u(x)
of S(x) affects the number of LMI variables and constraints. It is not a priori known
for which choice of bases ZNpar and u(x), the suggested relaxations generate good lower
bounds. Typically one expects that for ‘large’ sets K a large dimension of ZNpar is needed
to obtain a good lower bound.

5.4.3 Conservatism and exactness

There are two sources of conservatism in our approach. The first is the approximation of
the matrix valued function Z(K) by a finite-order rational matrix function and applies to
the SOS-based method and to the approach based on the S-procedure as well. To prove its
asymptotic exactness we can apply Weierstrass’ Approximation Theorem again. It implies
that the sequence of optimal values of

supremize d
subject to Z ∈ ZNpar

(5.11), (5.12) and (5.13) for all K ∈ K
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converges to popt for Npar → ∞. The size of the LMI problems of this family is increasing
due to the increase of the dimension of ZNpar for larger Npar.
By applying SOS relaxations, a second source of conservatism is introduced. It will be
shown in the next chapter how this conservatism can be systematically reduced under mild
conditions, by using a sequence of monomial basis of increasing dimension to parameterize
the SOS polynomials.
The second source of conservatism when applying the S-procedure is the error made by
the inner approximation of the multipliers. As will be shown in the next chapter as well,
these errors can be reduced under similar conditions as for the SOS approach, by using
an asymptotically exact family of multiplier parameterizations, again by introducing more
variables in the LMI problem.
If the relaxation of the robust analysis problem is exact, a test presented in [172] enables
to construct a worst-case perturbation under certain conditions. For the problem under
consideration this results in a “worst-case” controller. If the closed-loop H∞-norm equals
the lower bound dopt, then this controller is optimal and the lower bound computation
exact. It is interesting to compare this method to construct a globally optimal controller
with the one discussed in Section 4.5.6. This is however beyond the scope of this thesis.

5.5 Application

We present lower bound computations for the fixed order H∞ problem of a fourth order
system and a 27th order active suspension system. The results of the relaxations based
on SOS decompositions and the S-procedure have also been published in [88] and [89]
respectively.

5.5.1 Fourth order system

We consider an example with





A B1 B2

C1 D11 D12

C2 D21 D22



 :=











−7 4 0 0.2 0.9 0.2 0
−0.5 −2 0 0 2 0.2 0

3 4 −0.5 0 0.1 0.1 0
3 4 2 −1 −4 0 −0.2
0 −10 −3 0 0 3 −4

0.8 0.1 0 0 0.3 0 0











(5.32)

and computed lower bounds on the closed-loop H∞-performance of all stabilizing static
controllers in a compact subset of R

2×1. The open loop H∞ norm is 47.6. We first

compute an initial feedback law Kinit =
(
−38 −28

)T
, which gives a performance of

0.60. We compute bounds for the box ρKbox, where ρ = 5 and of the unit box Kbox :=

{K ∈ R
2| ‖Ki‖ ≤ 1} around the initial controller, i.e. K := Kinit +

(
K1 K2

)T
. Observe

that K ∈ ρK is equivalent to G(K) � 0 where

G(K) :=

(
K2

1 − ρ2 0
0 K2

2 − ρ2

)

. (5.33)

SOS relaxations

We consider

Fr(K, y) = diag(F11(K, z) − d, F22(K, z), 1 − Trace(Z22(K, z)))
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where F11 and F22 as in (5.20) and (5.21), together with the constraint that

Z(K) is SOS. (5.34)

As argued in Section 5.1.1, replacement of F by Fr is not restrictive, if we add (5.34)
as additional constraint. This reduces the number of variables in the LMI relaxation,
since Fr has 6 rows and columns opposed to 11 rows and columns of F . We used the
monomial vector u(K) = 1. The monomial vector u0(K) is chosen such that it contains
the monomials1 in MF (K,Y )+〈S(K),G(K)〉q−ǫI , see (5.23).

The resulting lower bound, the number of variables and constraints in the LMI are
shown in Table 5.1 for various degrees in Z(K). The first column presents the monomials
in Z(K), where (1, K1, K

2
1) should be interpreted as the parametrization

Z(K, z) = Z0 +

Npar∑

j=1

(
zjEj + zj+NparK1Ej + zj+2NparK

2
1Ej

)
,

where Npar = dim(Sn+m1) = 1
2
(n+m1 + 1)(n+m1) and Ej, j = 1, . . . , Npar, is a basis for

Sn+m1 . For this parametrization the number of variables in y grows quadratically with n,
which illustrates the aforementioned quadratic growth in the number of state variables.

By a gridding technique we have found an optimal controller Kopt =
(

1.33 0.69
)T ∈

K with performance 0.1832. The best lower bound on the optimal closed-loop H∞-norm
is 0.1811, which is slightly smaller than the optimal performance 0.1832. The number of
variables and constraints in our implementation of the LMI relaxations are also shown in
the table. These may deviate from those in Section 5.4, due to some minor modifications to
the implementation. The same holds true for the number of LMI variables and constraints
given in the remaining tables of this chapter. The number of constraints is very large, but
apparently due to the sparseness each LMI problem can be solved within 80 seconds.

For comparison, we have also applied the direct SOS relaxation as described in the
previous chapter to this example. A lower bound of 0.1832 is computed as the optimal
value of the LMI relaxation

supremize d
subject to γ + 〈S(γ,X,K), G(γ,X,K)〉 − d = s0(γ,X,K)

S(γ,X,K), s0(γ,X,K) are SOS w.r.t. u(γ,X,K), u0(γ,X,K)

where

G(γ,X,K) := diag
(
−X,−B(γ,X,K), K2

1 − ρ2, K2
2 − ρ2

)
,

and with monomial basis

u(γ,X,K) :=
(

1, γ, K1, K2, K2
1 , K1K2, K2

2

)

and u0(γ,X,K) contains all monomials in Mγ+〈S(γ,X,K),G(γ,X,K)〉−d. The number of LMI
variables is 1380. This lower bound of 0.1832 is slightly better than the best lower bound
0.1811 in Table 5.1 and is equal to the upper bound 0.1832.

1See Section 4.5.4 for the definition of M.
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Table 5.1: SOS lower bounds
√
dopt on optimal closed-loop H∞-norm for the fourth order

system (5.32), with various monomial bases of Z(K).

Basis of Z(K)
√
dopt # LMI variables # LMI constr. comp. time

(1) 0.0077 1039 11.338 53.4s
(1, K1, K

2
1) 0.1513 1109 12.028 60.7s

(1, K2, K
2
2) 0.0083 1109 12.028 55.6s

(1, K1, K
2
1 , K1K2, K

2
1K2, K

2
2) 0.1811 1377 14.291 79.9s

S-procedure relaxations

Using the S-procedure relaxations as discussed in Section 5.3, we were unfortunately not
able to reproduce these exact lower bounds, because the size of ∆ and hence the resulting
LMI problem gets too large if we use a polynomial Z(K) even of modest total degree. Only
a relaxation with constant basis (1), i.e. Z(K) = Z0 ∈ S5 appears to be computable with
the current computers. This relaxation yields a lower bound of 0 for ρ = 5. A reasonable
lower bound of 0.3882 could only be established for ρ = 0.1. Note that this bound does
not contradict the optimal performance 0.1832 above, since this performance is realized by
a controller in the box for ρ = 5 and is outside the box for ρ = 0.1.

5.5.2 Active suspension system

As a second example, we consider the control of the active suspension system. A detailed
description of this system is postponed to Section 7.4, where we present a fixed-order
controller design for this system by interior-point optimization. The dynamic model of the
suspension system has 17 states and the weights of our 4-block H∞ design contributes with
10 states, which adds up to 27 states of the generalized plant. The full order design has
closed-loop H∞-norm 2.48. We computed a 5th order controller by closed-loop balanced
residualization, as described in Section 3.1.1 with performance 3.41. We computed lower
bounds for changes in two diagonal elements of the state-space matrices of the controller

K(p1, p2) =

(
AK(p1, p2) BK

CK DK

)

=











−78.2 1129.2 173.24 −97.751 −130.36 6.6086
−1240.9 −78.2 + p1 111.45 125.12 76.16 21.445

0 0 −6.0294 164.81 + p2 159 −11.126
0 0 0 −204.56 49.031 −12.405
0 0 0 −458.3 −204.56 −9.4469

−0.067565 0.19822 −1.0047 −0.069722 0.19324 0.0062862











,

where p1 and p2 are free scalar controller variables.

SOS relaxations

Table 5.2 shows the computed lower bounds for various bases for Z(K) and various con-
troller sets ρKball := {p | R

2, ‖p‖ ≤ ρ}, ρ ∈ {5, 10, 50, 100}, together with the num-
ber of LMI variables. Again we used the monomial vector u(K) = 1 and u0(K) =
New(F (K,Y )+〈S(K), G(K)〉q−ǫI). We observe that the lower bounds are larger than the
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Table 5.2: SOS lower bounds
√
dopt on optimal closed-loop H∞-norm for the active sus-

pension system, with various monomial bases of Z(K). The controller sets K = ρKball are
balls of various radii ρ ∈ {5, 10, 50, 100}.

Basis Radius ρ # LMI variables
of Z(K) 5 10 50 100

(1) 3.2271 3.0176 2.2445 1.9790 1719
(1, K1) 3.2570 3.0732 2.3975 2.1585 2313
(1, K2) 3.2412 3.0468 2.3725 2.2398 2313

Table 5.3: S-procedure lower bounds
√
dopt on optimal closed-loop H∞-norm for the active

suspension system, with Z(K) = Z0. The controller sets K = ρKbox are boxes of various
sizes ρ ∈ {0.1, 2.5, 2.8}.

Basis Radius ρ size ∆ # LMI variables
of Z(K) 0.1 2.5

(1) 3.41 3.19 4 613

full-order performance for radii ρ ∈ {5, 10} with either u(K) = (1, K1) or u(K) = (1, K2).
Hence relevant lower bounds can be computed for reasonably large parameter sets K.

S-procedure relaxations

Lower bounds have also been obtained with the S-procedure. The results in Section 5.3
cannot be applied to compute lower bounds for Kball, since this ball is not a polytope. We
therefore replace it by the box

Kbox :=
{
p| R

2, |pi| ≤ 1, i = 1, 2
}
.

The resulting lower bounds for various boxes ρKbox are shown in Table 5.3. We observe
that the lower bounds are worse than the lower bounds by SOS decompositions, which
follows from comparison of Tables 5.2 and 5.3 and by observing Kbox ⊂

√
2Kball.

5.5.3 Conclusions on application

The relaxations based on SOS decompositions appear to be better than those based on
the S-procedure, in the sense that they generate better lower bounds with roughly the
same size of the LMI problem. The S-procedure however, allows a more straightforward
implementation for rationally parameterized Z(K), because it can directly be applied to
inequalities that are rational in K.

We have applied the method to systems of McMillan degree 4 and 27 respectively. The
first example illustrates that close to exact lower bounds can efficiently be computed, with
simple monomial bases for the SOS polynomials Z(K), S(K) and S0(K). The second
example showed the feasibility of the approach for plants with moderate McMillan degree,
in the sense that we can compute nontrivial lower bounds by solving LMI problems with
about 2300 variables. Hence the lower bound relaxations based on partial dualization are
computable for this practically relevant control problem.
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5.6 Conclusions

We suggested novel relaxation schemes for the structured H∞-optimal controller synthesis
problem, based on SOS matrices and the S-procedure. Both grow quadratically in the
dimension of the system state and can be guaranteed to be asymptotically exact under
mild conditions. With these schemes we can assess global optimality of controllers. This
concludes our work on the research question on global optimality certificates, as formulated
in item Á in Section 2.8. To the best of our knowledge this has been an unexplored research
area before the publication of our results in [89,88,90].

As mentioned in Section 2.6, it is widely accepted that structured controller synthesis
is a very hard problem. This partially explains the large effort we had to make to reduce
the complexity of the LMI relaxations. The developed relaxation scheme is applicable to
control problems encountered in practice. The LMI problems may still be quite large if
for instance Npar is large or the controller has many variables. Due to the strength of
the global results with certainty, we expect that controller synthesis tools based on the
proposed principles will become more important in control engineering.
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Chapter 6

Sum-of-squares relaxations for

Robust SDPs

We leave the main track on fixed-order synthesis and focus in this chapter on robust con-
trol: we present a nontrivial extension of the results on Sum-Of-Squares relaxations in the
previous two chapters to robust Semi-Definite Programs. These are SDPs with coefficient
matrices depending on an uncertain parameter that varies, typically, in a compact set.
Several robust stability and performance analysis problems with either parametric or dy-
namic, time-invariant or time-varying deterministic uncertainties can be re-formulated as
robust SDPs [55,9, 172].

Various schemes (such as multiplier relaxation in structured singular value theory [51,
140, 97, 98, 170]) and more recently Sum-Of-Squares decompositions [38, 39, 86] have been
applied to construct efficiently computable relaxations for these programs. In general
it cannot be expected that these relaxations are exact, and the only known techniques
to systematically reduce the relaxation gap with guaranteed convergence is restricted to
boxes [19, 18] or to finitely generated polytopes with known generators [171, 172]. As
the main goal of this chapter we show how such asymptotically exact relaxation families
can be constructed on the basis of matrix SOS decompositions for the much larger class
of uncertainty sets, such as norm-bounded and structured uncertainty as encountered in
µ-analysis and various other possibly non-convex compact uncertainty sets. In contrast
to approaches based on scalarization and a subsequent application of existing relaxation
techniques [119, 143, 180], we will be able to show that the size of the constructed LMI
relaxations grows at most bi-quadratically in the dimension of the polynomial matrices
that occur in the problem formulation. Moreover the techniques in [172] can be applied in
order to verify whether a given finite relaxation does not involve any conservatism.

The outline of this chapter is as follows. After the problem description in Section 6.1,
we present the main result in Section 6.2: a reformulation of the robust SDP in terms
of matrix-valued SOS polynomials. In Section 6.3 we construct LMI-relaxations to this
latter problem, whose optimal values converge from above to the optimal value of the
robust SDP. In Section 6.4 we show the benefits of the formulation with matrix-valued
SOS polynomials: it has enabled us to prove a guaranteed bi-quadratic growth of the size
of the LMI relaxations in the dimension of the polynomial matrices. In Section 6.5 we
reveal how the SOS relaxations can be exploited to systematically reduce the conservatism
in standard robust analysis tests based on the full-block S-procedure and more specific D-
scalings. Finally in Section 6.6 we apply the method to compute upper bounds on a robust
SDP and to assess robust analysis of a 4th order helicopter model. Both these examples
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are taken from the literature. The results in this chapter and the numerical examples have
partially been published in [174], [92] and [175].

6.1 Robust polynomial SDPs

In this chapter we consider the following robust polynomial SDP with optimal value popt:

infimize cTy
subject to F (x, y) ≻ 0 for all x ∈ R

m with G(x) � 0.
(6.1)

Here F : R
m × R

n 7→ Sq and G : R
m 7→ Sr are symmetric-valued functions which depend

polynomially on the uncertainty parameter x ∈ R
m while F depends affinely on the design

parameter y ∈ R
n. Therefore F (x, y) ≻ 0 is a standard linear matrix inequality (LMI)

in y for fixed x, while the robust counterpart requires to satisfy the LMI for all x in the
uncertainty set

G = {x ∈ R
m : G(x) � 0}. (6.2)

The set G admits a very general description in terms of a polynomial semi-definite con-
straint. We stress that in many interesting practical cases G turns out to admit an LMI
representation (i.e. G is affine) or is even just a compact polytope (i.e. G is diagonal
and affine). Polynomial SDPs as considered in Chapter 4 are recovered from (6.1) with
F (x, y) = f(x) − y and c = −1. If F depends also affinely on the uncertainty x and G
is the convex hull of a moderate number of explicitly given finite number of points in R

m

(also called the generators [155] of G), it is clear that (6.1) amounts to solving a standard
LMI problem. If the number of extreme points to describe G is large, it is often possible
to construct efficiently computable relaxations with a priori guarantees on the relaxation
error [10, 11]. The situation drastically differs if the uncertainties enter nonlinearly, since
then such guarantees are not known.

If F (x, y) is rationally dependent on x and a well-posedness condition is satisfied, we
can render the Robust SDP polynomial in x: multiply F (x, y) by its smallest common
denominator that is positive on G. Complex-valued uncertainty are reduced to real values
in a standard fashion.

Example 6.1 As an example of a robust analysis problem that can be molded into (6.1),
consider the uncertain system ż(t) = A(δ(t))z(t), where A(·) is a matrix-valued polynomial
and δ(·) varies in the set of continuously differentiable parameter curves δ : [0,∞) 7→ R

m

with δ(t) ∈ ∆ for all t ∈ [0,∞) and compact uncertainty set ∆. Consider for instance the
following combination of polytopic and norm-bounded uncertainties

∆ := {δ =
(
δ1 δ2

)T
: δ1 ∈ R

m1 , δ2 ∈ R
m2 , H(δ1) � 0, ‖δ2‖ ≤ 1}

where H is affine, m1+m2 = m and such that ∆ is compact. Then the system is uniformly
exponentially stable if there exists a Y ≻ 0 such that A(δ)TY + Y A(δ) ≺ 0 for all δ ∈ ∆

[46]. With x1 = δ1, x2 = δ2, y = svec(Y ), c = 0, G(x) = diag(H(x1), x
T
2 x2 − 1) and

F (x, y) = diag(Y,−A(x)TY − Y A(x)) this problem is of type (6.1).

6.2 Construction of an exact SOS reformulation

In this section we show that under a constraint qualification on G, (6.1) is equivalent to a
certain SOS problem, in the sense that their optimal values are equal. On the basis of these
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results we are able to construct a sequence of finite-dimensional LMI relaxation problems,
whose optimal values converge to the optimal value popt of (6.1). Hence, we can construct
LMI relaxations of robust SDPs, with a guarantee of reducing the relaxation gap to zero.

We will show in the proof of Theorem 6.3, that the optimal value dopt of the following
optimization problem is an upper bound on the optimal value of (6.1):

infimize cTy
subject to ǫ > 0, S(x) and F (x, y) + 〈S(x), Iq⊗G(x)〉q − ǫIq are SOS in x.

(6.3)

The main result of this chapter is to prove equality (i.e. popt = dopt) under the constraint
qualification (4.18), as discussed in Section 4.4. Before presenting this main result, let us
first assume that G is diagonal, i.e.

G(x) := diag(g1(x), g2(x), . . . , gr(x)). (6.4)

Feasibility of y∗ for (6.1) comes down to computationally verifying whether

F (x, y∗) ≻ 0 for all G(x) ≺ 0. (6.5)

The following theorem shows that this is possible using a representation with matrix-valued
SOS polynomials.

Theorem 6.2 Suppose G(x) is as in (6.4) for some gi(x), i = 1, . . . , r and satisfies (4.18).
Then (6.5) implies that there exist ǫ > 0 and matrix SOS S0(x), S1(x), . . . , Sr(x) such that

F (x, y∗) − ǫIq +
r∑

i=1

Si(x)gi(x) = S0(x). (6.6)

Proof. The proof is a straightforward extension of Theorem 2 in our paper [174], see also
our publication [175]

Now let us drop the assumption on G(x) being diagonal. This brings us to the central
result in this chapter.

Theorem 6.3 Suppose that G satisfies (4.18). If popt and dopt are the optimal values of
(6.1) and (6.3) respectively, then popt = dopt.

Remark. Theorem 6.3 combines the results on polynomial SDP as described in Chapter
4 and robust LMI problems with polytopic uncertainty regions (with diagonal and affine
G) [172] to a very general formulation with a wide range of applications in robust controller
analysis.

Proof. We use similar arguments as in the proof of Theorem 4.7. We first prove
popt ≤ dopt, by showing that the constraint in (6.1) is implied by the constraint in (6.3).
Consider arbitrary ǫ > 0, y∗ ∈ R

n and x∗ with G(x∗) � 0. Let us now suppose that S(x)
and S0(x) = F (x, y∗) − ǫIq + 〈S(x), Iq ⊗G(x)〉q are SOS. Due to (4.15) one infers

F (x∗, y∗) � F (x∗, y∗) − ǫIq + 〈S(x∗), Iq ⊗G(x∗)〉q = S0(x) � 0.

Since x∗ with G(x∗) � 0 was arbitrary, the implication is shown. We conclude that
popt ≤ dopt.
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To prove popt ≥ dopt, note that, as a consequence of the constraint qualification, if
G(x) � 0 is replaced by

G̃(x) := diag(G(x), ‖x‖2 −M) � 0

then the value of (6.1) is not modified. In a first step of the proof of popt ≥ dopt, let us
show that the same is true for the SOS reformulation (6.3).

Indeed suppose F (x, y)− ǫIq + 〈S(x), Iq ⊗G(x)〉r = S0(x) with SOS matrices S0(x) and
S(x). If we partition S(x) = (Sjk(x))jk into r × r-blocks then S̃(x) := (diag(Sjk(x), 0))jk

satisfies 〈S̃(x), Iq⊗G̃(x)〉q = 〈S(x), Iq⊗G̃(x)〉q = 〈S(x), Iq⊗G(x)〉q and therefore F (x, y)−
ǫIq+〈S̃(x), Iq⊗G̃(x)〉q−ǫIq = S0(x). Conversely suppose F (x, y)−ǫIq+〈S̃(x), Iq⊗G̃(x)〉q =
S̃0(x) with SOS matrices S̃0(x), S̃(x). Now we make explicit use of (4.18) with SOS
matrices ψ(x), Ψ(x). Let us partition

S̃(x) =

((
Sjk(x) ∗

∗ sjk(x)

))

jk

into blocks of size (r + 1) × (r + 1) and define

S(x) := (Sjk(x)+sjk(x)Ψ(x))jk

and s(x) = (sjk(x))jk of dimension qr and q respectively. It is easy to verify that both
matrices are SOS and satisfy

〈S̃(x), Iq ⊗ G̃(x)〉q = 〈S(x), Iq ⊗G(x)〉q − s(x)ψ(x).

This implies F (x, y) − ǫIq + 〈S(x), Iq ⊗ G(x)〉q = S̃0(x) + s(x)ψ(x) and it remains to
observe that S̃0(x) + s(x)ψ(x) is SOS.

Therefore, from now on we can assume without loss of generality that

vT
1 G(x)v1 = ‖x‖2 −M (6.7)

where v1 := er is the last standard unit vector. It remains to show popt ≥ dopt, and for this
purpose it suffices to choose an arbitrary y∗ which is feasible for (6.1) and to prove that y∗
is as well feasible for (6.3).

Let us hence assume F (x, y∗) ≻ 0 for all x ∈ G. Choose a sequence of unit vectors
v2, v3, . . . such that vi, i = 1, 2, . . . is dense in the unit sphere {v ∈ R

r : ‖v‖ = 1}. Define

GN := {x ∈ R
m : vT

i G(x)vi ≤ 0, i = 1, . . . , N}

to infer that GN is compact (by (4.19)) and that GN ⊃ GN+1 ⊃ G for N = 1, 2, . . . .
Therefore qN := min{λmin(F (x, y∗)) : x ∈ GN} is attained by some xN and qN ≤ qN+1 for
all N = 1, 2, . . .. Let us prove that there exists some N0 for which qN0 > 0 which implies

F (x, y∗) ≻ 0 for all x ∈ GN0 . (6.8)

Indeed otherwise qN ≤ 0 for all N = 1, 2, . . . and hence limN→∞ qN ≤ 0. Choose a
subsequence Nν with xNν

→ x0 to infer 0 ≥ limν→∞ λmin(F (xNν
, y∗)) = λmin(F (x0, y∗)).

This contradicts the choice of y∗ if we can show that G(x0) � 0. In fact, otherwise there
exists a v with unit norm ‖v‖ = 1 such that δ := vTG(x0)v > 0. By convergence there
exists some L ∈ R with ‖G(xNν

)‖ ≤ L for all ν. By density there exists a sufficiently large
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ν such that L‖vi − v‖2 + 2L‖vi − v‖ < δ/2 for some i ∈ {1, . . . , Nν}. Since vTG(xNν
)v →

vTG(x0)v we can increase ν to even guarantee vTG(xNν
)v ≥ δ/2 and arrive at the following

contradiction:

0 ≥ vT
i G(xNν

)vi =

= (vi − v)TG(xNν
)(vi − v) + 2vTG(xNν

)(vi − v) + vTG(xNν
)v ≥

≥ −L‖vi − v‖2 − 2L‖vi − v‖ + δ/2 > 0.

We are now in the position to apply Theorem 6.3 to (6.8) since, due to (4.19), the
constraint qualification is trivially satisfied. Hence there exist ǫ > 0 and polynomial
matrices Ui(x) with q columns, i = 1, . . . , N0, such that

F (x, y∗) − ǫI +

N0∑

i=1

[Ui(x)
TUi(x)](v

T
i G(x)vi) (6.9)

is SOS in x. With some Kronecker product manipulations and (4.13) we conclude

[Ui(x)
TUi(x)](v

T
i G(x)vi) = Traceq

(
[Ui(x)

TUi(x)] ⊗ (vT
i G(x)vi)

)
=

= Traceq

(
([Ui(x)

TUi(x)] ⊗ vT
i )(Iq ⊗G(x))(Iq ⊗ vi)

)
=

= Traceq

(
(Iq ⊗ vi)([Ui(x)

TUi(x)] ⊗ vT
i )(Iq ⊗G(x))

)
=

= Traceq

(
([Ui(x)

TUi(x)] ⊗ viv
T
i )(Iq ⊗G(x))

)
=

= 〈(Ui(x) ⊗ vT
i )T (Ui(x) ⊗ vT

i ), Iq ⊗G(x)〉q.

With the SOS polynomial matrix

S(x) :=

N0∑

i=1

(Ui(x) ⊗ vT
i )T (Ui(x) ⊗ vT

i )

we infer that F (x, y∗)−ǫI+〈S(x), Iq⊗G(x)〉 equals the left-hand side in (6.9) and is hence
SOS in x. Therefore y∗ is feasible for (6.3).

6.3 Construction of LMI relaxations

We briefly discuss how to modify the LMIs in Section 4.5 to compute upper bounds for (6.3),
by choosing a fixed monomial bases u(x) for S(x). The procedure in Section 4.5.4 gives us
the required monomial basis vector u0(x) to represent F (x, y)+ 〈S(x), Iq⊗G(x)〉q − ǫIq as a
sum of squares. Moreover we choose some monomial basis vector v(x) and matrix B such
that G(x) = B(Ir ⊗ v(x)). Finally choose pairwise different monomials w1(x), . . . , wη(x)
such that there exist matrices P 0

j , Pj and symmetrically-valued affine mappings Aj(y, ǫ)
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with

u0(x)u0(x)
T =

η
∑

j=1

P 0
j wj(x),

v(x) ⊗ u(x)u(x)T =

η
∑

j=1

Pjwj(x),

F (x, y) − ǫI =

η
∑

j=1

Aj(y, ǫ)wj(x).

Furthermore we construct SOS polynomials

S0(x) = 〈W0, Iq ⊗ u0(x)u0(x)
T 〉q

and
S(x) = 〈W, Iqr ⊗ u(x)u(x)T 〉qr,

parameterized with matricesW0 ∈ Sqξ0 andW ∈ Sqrξ. We then infer S0(x) =
∑η

j=1〈W0, Iq⊗
P 0

j 〉q wj(x) as well as

〈S(x), Iq ⊗G(x)〉q = Traceq

[
(Iqr ⊗ u(x))TW (Iqr ⊗ u(x))(Iq ⊗G(x))

]

= Traceq

[
(Iq ⊗ [Ir ⊗ u(x)T ])W (Iq ⊗ ([Ir ⊗ u(x)]G(x)))

]

= Traceq

[
W (Iq ⊗ [G(x) ⊗ u(x)][Ir ⊗ u(x)T ])

]

= Traceq

[
W (Iq ⊗ [B(Ir ⊗ v(x))] ⊗ u(x)u(x)T )

]

= Traceq

[
W (Iq ⊗B ⊗ Iξ)(Iqr ⊗ v(x) ⊗ u(x)u(x)T )

]

=

η
∑

j=1

〈W, (Iq ⊗B ⊗ Iξ)(Iqr ⊗ Pj)〉q wj(x).

Therefore there exist ǫ > 0 and SOS matrices S(x), S0(x) with respect to u(x), u0(x) such
that F (x, y) − ǫI + 〈S(x), Iq ⊗Gi(x)〉q = S0(x) iff the following LMI system is feasible:

ǫ > 0, W0 � 0, W � 0, (6.10)

Aj(y, ǫ) + 〈W, (Iq⊗B⊗Iξ)(Iqr⊗Pj)〉q = 〈W0, (Iq⊗P 0
j 〉q, j = 1, ..., η. (6.11)

If we minimize cTy over these LMI constraints we determine an upper bound of the value
dopt of (6.3) and hence also an upper bound of the value popt of (6.1), even without
constraint qualification. Let {u1(x), u2(x), . . .} be a sequence of monomial vectors such
that

span ({u1, u2, . . .}) = R[x].

Let us choose for some ξ the monomial basis vector u(x) =
(
u1(x) u2(x) . . . , uN(x)

)T

and let u0(x) contain all monomials in MF (x,y)+〈S(x),Iq⊗G(x)〉q−ǫIq

1 Let dN denote the corre-
sponding upper bound, i.e. the optimal value of the corresponding LMI relaxation. Then
the sequence dN is non-increasing and is guaranteed to converge to popt for increasing N ,
if the constraint qualification (4.18) is satisfied. The proof of this result is completely
analogous to Theorem 4.9 and therefore omitted.

1See Section 4.5.4 for the definition of MF (x,y)+〈S(x),Iq⊗G(x)〉q−ǫIq
.
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Let us finally observe that the size of the relaxation is determined by three SDP con-
straints (6.10) in S1, Sqξ0 and Sqrξ and the η affine equation constraints (6.11) in Sq.
Moreover it involves the unknowns y, ǫ, W0, W of sizes n, 1, qξ0 and qrξ respectively
which sum up to

n+ 1 + 0.5 qξ0(qξ0 + 1) + 0.5 qrξ(qrξ + 1)

scalar decision variables. Generically this number is reduced by 0.5 ηq(q + 1) through
(6.11). The variable elimination technique as described in 4.5.4 can be applied to (6.10)
and (6.11). As stressed in the introduction of this chapter the size of the LMI relaxation
indeed only grows bi-quadratically in the dimension q of F (x, y) or r of G(x) respectively.

6.4 Comparison with scalarization

We compare in this section the size of the LMI relaxations (6.11) with a SOS decomposition
after scalarization of both F (x) and G(x), similar the scalarization of polynomial SDPs as
described in Section 4.5.3. Indeed, we can equivalently replace the semi-definite constraint
G(x) � 0 by its minors Mi(G(x)) ≤ 0, i = 1, . . . , N . Furthermore if we define f(v, x, y) :=
vTF (x, y)v and

hi(v, x) = Mi(G(x)) i = 1, . . . , N, hN+1(v, x) = 1 − vTv, hN+2(v, x) = vTv − 2, (6.12)

then (6.1) is equivalent to infimizing cTy subject to

f(v, x, y) > 0 for all (x, v) with hi(v, x) ≤ 0, i = 1, . . . , N + 2. (6.13)

If hi, i = 1, . . . , N +2 satisfy a constraint qualification, then Theorem 4.3 and (6.13) imply
that there exist SOS polynomials si(v, x), i = 1, . . . , N + 2, such that

f(v, x, y) +
N+2∑

i=1

si(v, x)hi(v, x) is SOS. (6.14)

However, although f(v, x, y) and hi(v, x) are quadratic in v, no available result guarantees
that the SOS polynomials si(v, x), i = 1, . . . , N + 2, can be chosen quadratic in v without
loosing the relaxation’s exactness. Theorem 6.3 implies that one can indeed confine the
search to sN+1(v, x) = 0, sN+2(v, x) = 0 and to sj(v, x) = vTSj(x)v, j = 0, 1, . . . , r, which
are homogenously quadratic in v, without violating popt = dopt. Furthermore the theorem
shows that the minors of G(x) (or any other scalarization technique for G(x) � 0) are
not required for exact SOS relaxations. Hence Theorem 6.3 extents Theorem 4.7 in the
sense that bi-quadratic growth of the LMI relaxations in the size of both F (x) and G(x)
is realized.

6.5 Relaxations based on the S-procedure

6.5.1 S-procedure

In this section we intend to reveal the relation of the suggested approach to relaxations
based on the so-called full-block S-procedure, as presented in Section 2.5.7. Indeed, even
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if F (x, y) is rational (instead of merely polynomial) in x without pole at x = 0, one can
construct the LFT

F (x, y) = Lu

(

∆(x),

(
A B

C(y) D(y)

))

:= D(y) + C(y)∆(x)(I − A∆(x))−1B (6.15)

where A, B are fixed fixed matrices and C(y), D(y), ∆(x) are matrix-valued affine map-
pings in y and x respectively. Let us stress that many robust control problems involve
constraints that are naturally formulated in this fashion which hence forms an excellent
starting point to construct relaxations [51,214].

6.5.2 SOS relaxations based on S-procedure

We assume the constraint qualification of Theorem 6.3 to hold such that G is compact.
One can then apply the full block S-procedure as described in Section 2.5.7 to infer that

det(I − A∆(x)) 6= 0 and F (x, y) ≻ 0 for all x ∈ G

if and only if there exists a symmetric multiplier matrix Pmult such that

(
∆(x)
I

)T

Pmult

(
∆(x)
I

)

≻ 0 for all x ∈ G, (6.16)

(
I 0
A B

)T

Pmult

(
I 0
A B

)

−
(

0 I
C(y) D(y)

)T (
0 I
I 0

)(
0 I

C(y) D(y)

)

≺ 0.

(6.17)

Although the uncertainties x enter the original problem in a rational fashion, we observe
that (6.16) is quadratic in x and affine in Pmult. We can hence apply Theorem 6.1 to infer
that (6.16) holds iff there exist ǫ > 0 and SOS matrices S(x), S0(x) with

(
∆(x)
I

)T

Pmult

(
∆(x)
I

)

+ 〈S(x), Iq ⊗G(x)〉q − ǫI = S0(x). (6.18)

If constraining S(x), S0(x) to be SOS with respect to fixed monomial basis vectors u(x),
u0(x) it is possible to turn (6.18) into a genuine LMI constraint (Section 6.3). By infimizing
cTy over these LMIs combined with (6.17), one determines an upper bound on the optimal
value popt of (6.1), which is again guaranteed to converge to popt if the length of the
monomial basis vector u(x) and u0(x) grow to infinity.

In practice the relaxation is often already exact for a short vectors u(x) and u0(x). Since
the suggested LMI relaxation falls in the general class as discussed in [172], we can directly
apply all results in this reference in order to numerically verify exactness in practice. It
is an interesting topic to relate this exactness test with the one in Section 4.5.6. This is
however beyond the scope of this thesis.

6.5.3 Connections to standard relaxations

The presented SOS relaxations are extensions of various standard relaxations in the lit-
erature. We will discuss how the well-known D-scalings [140] can be recovered as special
cases of the SOS relaxations.
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Consider the uncertainty set

G := {x ∈ R
q2 | G(x) � 0}

where G(x) := ∆(x)T ∆(x) − Iq, ∆(x) :=
∑q2

i=1 xiEi, and {E1, . . . , Eq2} is the standard
basis of R

q×q. For arbitrary p > 0 and ǫ > 0, (6.16) holds true if Pmult is given by

P (p, ǫ) :=

(
−pIq 0

0 (p+ ǫ)Iq

)

.

We will now show that the relaxations based on the scalings P (p, ǫ) for all p > 0 and ǫ > 0
are a subset of the SOS relaxations. This is done by showing that Pmult = P (p, ǫ) render
(6.18) feasible for all p > 0 and ǫ > 0. For this purpose, we choose S0(x) := 0 and

S(x) :=

q2
∑

i=1

p⊗ Ei ⊗ Ei.

These choices imply that the left-hand side of (6.18) equals

(
∆(x)
Iq

)T

P (p, ǫ)

(
∆(x)
Iq

)

+ 〈S(x), Iq ⊗G(x)〉q − ǫIq =

= ǫIq + p
(
−∆(x)T ∆(x) + Iq

)
+ p

q2
∑

i=1

〈Ei ⊗ Ei, Iq ⊗ [∆(x)T ∆(x) − Iq]〉q − ǫIq =

= −p
(
∆(x)T ∆(x) − Iq

)
+ p

q2
∑

i=1

EiTrace(Ei

(
∆(x)T ∆(x) − Iq

)
) =

= −p
(
∆(x)T ∆(x) − Iq

)
+ p

(
∆(x)T ∆(x) − Iq

)
= 0,

where we used the identity Traceq(A ⊗ B) = ATrace(B) for arbitrary A ∈ R
q×q and ar-

bitrary real square matrix B, as is shown in Appendix A.2.1. This implies that (6.18) is
satisfied.

6.6 Application

6.6.1 An example from the literature

We choose a variation of an example in [140,172] and determine the infimal y with

(
y fa(x)

fa(x) y

)

≻ 0 for all x ∈ G := {x ∈ R
2 : gj(x) ≤ 0, j = 1, . . . , 4}

for 20 equidistant values of a ∈ [0.5, 1], where

fa(x1, x2) := 1 − 2
ax2

1x2

2 − 2ax2 + ax2
1x2 − x2

1

− x2 (2ax2 + x2
1 + ax2

1x2 − 2)

2 − 2a2x2
2 − x2

1 + x2
1a

2x2
2

,

g1(x) := −0.8 + x1, g2(x) = −0.7 − x1, g3(x) = −0.7 + x2, g4(x) = −0.65 − x2.
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Relax- Line in Monomial bases
ation Figure 6.1 u0(x)

T u1(x)
T u2(x)

T u3(x)
T u4(x)

T

a − (1, x1, x2) (1, x1) (1, x1) 1 1
b · · · (1, x1, x2) 1 1

(
1 x1

) (
1 x2

)

c −− (1, x1, x2) (1, x1, x2) (1, x1, x2) (1, x1, x2) (1, x1, x2)
d −− (1, x1, x2, x1x2) (1, x1, x2) (1, x1, x2) (1, x1, x2) (1, x1, x2)

Table 6.1: SOS bases employed for relaxations.

Note that the optimal value equals supx∈G |fa(x)|. Moreover, one easily determines a linear
fractional representation of fa with ∆(x) = diag(x1I2, x2I2) and

(
A B
C D

)

=









0 1 0 1 1
1
2

0 1
2

0 0
2a 0 a 0 0
0 −2a 0 −a 1
0 0 0 1 1









.

Since the polytope G is compact, the constraint qualification is satisfied and we can either
apply the relaxation in Section 6.5.2 (labeled by a, b, c) or we can use the direct approach
as in Section 6.3 (labeled by d), both based on Theorem 6.3. The corresponding upper
bounds have been computed for SOS matrices Sj(x), j = 0, 1, . . . , 4, with respect to the
monomial bases uj(x), j = 0, 1, . . . , 4, as given in Table 6.1.

Figure 6.1 depicts the computed upper bounds on popt, together with lower bounds that
are obtained by constructing a worst-case uncertainty as described in [172]. Clearly a, b

suffer from a relaxation gap, while both c and d are exact as confirmed by the exactness
test of [172]. For comparison we show in Figure 6.2 lower and upper bounds computed
with a relaxation as presented in [172], which is based on Pólya’s Theorem. First, second
and third order relaxations are shown in a (solid), b (dotted) and c (dashed) respectively.
We observe that up to α < 0.85 all three relaxations are exact. For α > 0.85 the third
order relaxation is exact.

6.6.2 Robust analysis for a helicopter model

As a second example, we consider the stability analysis of an LPV model of a closed-
loop Vertical TakeOff and Landing (VTOL) helicopter [65,98]. The linearized longitudinal
dynamic equations of the helicopter, after applying a static feedback law as in [98], are
ż = A(δ)z where δ =

(
δ1, δ2, δ3

)
and

A(δ) =







−0.0366 −0.096 0.018 −0.45
0.0482 a3(δ) 0.0024 −4.02
0.10 a1(δ) −0.707 a2(δ)
0 0 1 0







and a1(δ) = 14.0 + 0.05δ1, a2(δ) = 1.42 + 0.01δ2 and a3 = −18.2 − 0.0399δ3. We analyze
its stability for all uncertainties satisfying ‖δ‖ ≤ γ and |δ̇k| ≤ ρ, k = 1, 2, 3 for fixed values
of γ and ρ. We consider quadratic Lyapunov functions zTP (δ)z where P depends affinely
on δ:

P (δ) =
4∑

i=1

Pimi(δ),
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Figure 6.1: Upper and lower bounds for SOS relaxations a (solid), b (dotted), c and d

(dashed).
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Figure 6.2: Upper and lower bounds for Pólya relaxations a (solid), b (dotted) and c

(dashed).
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Figure 6.3: SOS lower bounds for the norm-bounded set.

where m(δ) = (1, δ1, δ2, δ3). Then the system is robustly stable if there exist Pi = P T
i ∈

R
4×4, i = 1, . . . , 4 such that

A(δ)TP (δ) + P (δ)A(δ) +
3∑

k=1

∂A(δ)

∂δk
ϑk ≺ 0

for all ‖δ‖ ≤ γ and all |ϑk| ≤ ρ, k = 1, 2, 3 [46]. Hence with the definitions x :=
(
δT ϑT

)T
, y :=

(
vec(P1)

T , . . . , vec(P4)
T
)T

,

F (x, y) := A(δ)TP (δ) + P (δ)A(δ) +
3∑

k=1

∂A(δ)

∂δk
ϑk,

G = diag (g1, . . . , g4), g1(x) := ‖δ‖2 − γ2 and g1+i(x) := |ϑi| − ρ, i = 1, 2, 3, feasibility of y
in (6.1) implies robust stability.

We compute SOS relaxations of (6.1) with SOS bases u0(x) =
(

1 xT
)T

and ui(x) = 1,
i = 1, . . . , 4. Figure 6.3 shows the results. Note that the results cannot directly be
compared with those in [98], [65] and [133], since we consider a norm-bounded instead of a
polytopic set and the relaxations in those reference can only be applied to polytopic sets.
This illustrates the additional flexibility of our framework, since it can be applied to any
uncertainty set that admits a polynomial SDP description.

For comparison, we also computed bounds for the polytope |δk| ≤ γ, k = 1, 2, 3 that
can be compared to [65], as shown in Figure 6.4. The figure shows that the bounds are
similar2.

2The values of (◦−) in the Figure 6.4 are adopted from [98]. They have been obtained by personal
communication with T. Iwasaki.
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Figure 6.4: SOS lower bounds (∗−) and Gahinet’s lower bounds (◦−) for the polytopic
set.

6.7 Conclusions

For a general class of robust SDP problems with polynomial or rational dependence on
the uncertainties, we have shown how to approximately compute upper bounds on the
optimal value. These bounds are applicable to robust analysis problems with uncertainty
regions described in terms of polynomial matrix inequalities. LMI regions and compact
polytopes are special yet practically important instances of this class of uncertainty sets.
Under the same constraint qualification as in Chapter 4 we have revealed how to construct a
convergent sequence of relaxations with a guaranteed bi-quadratic growth of the number of
variables in both F (x) and G(x). We have finally pointed out how one can systematically
reduce the conservatism as present in the relaxations based on D-scalings or standard
convex hull relaxations using the presented SOS decompositions. This concludes our work
on sum-of squares relaxations. In the following chapters we proceed with the fixed-order
controller synthesis problem, where our goal is the development of a controller synthesis
technique that can be applied to design controllers for industrial servo-systems.
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Chapter 7

Interior Point optimization

This and the following chapters focus on the development and implementation of fixed-
order synthesis techniques for generalized plants with high McMillan degree, i.e. of degree
25 up until about 90. In this chapter we present an Interior Point (IP) algorithm and local
optimality certificates, and apply both to a generalized plant with a McMillan degree of 27.

The success of IP methods to solve LMI problems is one of the key reasons to consider
this technique to solve problems with BMIs arising from structured controller synthesis.
Although the guaranteed efficiency of IP methods does not in general extend to BMIs,
it is plausible that it exhibits practical good convergence properties for some problem in-
stances. The numerical example presented at the end of this chapter gives some evidence
to substantiate this statement.

In this chapter we present a nonlinear SDP approach to the H∞ fixed-order controller
synthesis problem. Interior Point methods have been applied to control problems by sev-
eral authors. In the augmented Lagrangian method of Apkarian and Noll [4] the BMIs are
replaced by LMIs and a bilinear equality constraint. This new problem is then solved by
an augmented Lagrangian trust region method. In Goh et. al. [71] it has been pointed out
that Interior Point methods may be promising, although no actual numerical implementa-
tions were discussed. Leibfritz and Mostafa [121] proposed an Interior Point trust region
method for a special class of nonlinear Semi-Definite Programming (SDP) problems. The
method is a sequential minimization method of a logarithmic barrier function subject to
a nonlinear matrix equality constraint. To the best of our knowledge these methods have
only been applied successfully to fixed-order controller synthesis for systems with small
state dimensions n = 8. This is significantly smaller than the number of states 27 of the
plant to which we apply our method in Section 7.4.

In Section 7.1 we explain the interior-point algorithm, which is based on the work
of Jarre [105]. The non-convexity of the BMI constraints necessitates extra measures to
guarantee local convergence, if compared to IP methods for LMIs. We do this using a
curved line-search, which searches simultaneously for the optimal trust-region size and
step length. The additional computational time that we spend on this line-search is of-
ten justified, since it reduces the number of computationally expensive evaluations of the
Hessian of the barrier function.

To the best of our knowledge our paper [93] in 2003 is the first reported application of
this algorithm to H∞-optimal fixed-order controller synthesis1. Furthermore, our contri-

1In the paper of Kocvara et. al. [112], that appeared in 2004, H∞-optimal controllers are computed by
the optimization software PENNON. The software [113] is based on an augmented Lagrangian method.
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butions to this algorithm are:

(i.) a transparent description of the Hessian of the barrier function that is used in the
corrector step

(ii.) a computation method for the trust region steps using a fixed number of Sylvester
equations

(iii.) an application of the method to a practical control design problem with a generalized
plant of McMillan degree 27

(iv.) a derivation of optimality conditions as discussed in the sequel

Item (ii.) reduces the computation time for generalized plants with large McMillan degree.
The corresponding Sylvester equations in Section 7.2 are derived by exploiting the control-
theoretic characteristics in the problem.

Under mild conditions the algorithm converges to a point that satisfies the first order
necessary optimality conditions. This motivates to check second order optimality condi-
tions of the computed solution, which we derive in Section 7.3 in terms of the original BMI
problem. These conditions were first published in our paper [93], are based on elementary
arguments if compared to [182,24] and are ‘sharper’ than those in [60].

In Section 7.4 we apply the method to synthesizing a controller for a 27th generalized
plant model of an active suspension system. We compare its performance with two state-
of-the-art fixed-order controller synthesis techniques: balanced controller reduction and
the cone complementarity method as discussed in Section 3.1.1 and 3.2.1 respectively.

7.1 Curved line-search Interior Point method

7.1.1 Preliminaries

In this section we present a Curved Line-search Interior Point (CLIP) method to solve the
fixed order H∞ problem based on the work of Jarre [105]. In Section 2.3 it was shown how
to convert the dynamic controller synthesis problem into a static output feedback (SOF)
problem where the controller is the matrix

K :=

(
AK BK

CK DK

)

.

Let us denote the number of variables in K by mc := (nc +m2)(nc +p2). The SOF problem
is formulated as minimizing γ subject to

B(γ,X,K) := −





Acl(K)TX +XAcl(K) XBcl(K) Ccl(K)T

Bcl(K)TXcl −γI Dcl(K)T

Ccl(K) Dcl(K) −γI



 ≻ 0 (7.1)

and
X ≻ 0, (7.2)

where (Acl(K), Bcl(K), Ccl(K), Dcl(K)) are defined in (2.8). We introduce the following
constraints to restrict the variables in size:

X ≺ ρXIn+nc
, ‖K‖F < ρK , (7.3)
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where ρX ∈ R and ρK ∈ R are large positive constants. These extra constraints prevent
numerical difficulties due to variables with very large values. ρX and ρK are chosen by a
factor 1000 larger than the largest eigenvalue of the initial matrix X and the Frobenius
norm of the initial matrix K, respectively.

The optimization problem considered in this chapter is

minimize γ
subject to B(γ,X,K) ≻ 0, 0 ≺ X ≺ ρXIn+nc

, ‖K‖F < ρK .
(7.4)

Like in the previous chapters we combine the set of decision variables compactly into
x = (γ,X,K). The vector x is an element of the vector space X :

X :=
{
x = (γ,X,K)

∣
∣ γ ∈ R, K ∈ R

(m2+nc)×(p2+nc), X ∈ Sn+nc
}
. (7.5)

And the feasible set G of the minimization in (7.4) is:

G := {x = (γ,X,K) ∈ X | B(γ,X,K) ≻ 0, 0 ≺ X ≺ ρXI, ‖K‖F < ρK } . (7.6)

Due to its nice properties as described in Section 2.5.2, we employ the following loga-
rithmic barrier function:

φ(x, µ) =
γ

µ
−log(det(B(γ,X,K)))−log(det(X))−log(det(ρXIn+nc−X))−log(ρK−‖K‖2

F),

where µ ∈ R is a barrier parameter as defined in Section 2.5.2. Since the domain of the
log-barrier function is the interior of the feasible region G, the Interior Point algorithm
must be initialized with a feasible point. This issue is discussed in Section 7.1.6. The
log-barrier function

φ(x, µ) =
x1 + x2

µ
− log (det(−G(x))) (7.7)

is illustrated in Figure 7.1, where µ = 1000 and

G(x) :=

(
−1 + 3.7x1x2 −x1

−x1 −3.7 + x2
1 + x2

2

)

� 0.

7.1.2 Algorithm outline

The method consists of an outer loop with two steps: a corrector and a predictor step.
In the corrector step the barrier function is minimized for a fixed barrier parameter µ. In
the predictor step the barrier parameter µ is reduced and x is modified. The minimization
of the barrier function in the corrector step is the inner loop of the algorithm. We use
xl

k to denote the decision variable at the lth inner iteration and kth outer iteration. The
following steps, which will be made more precise in Sections 7.1.3 and 7.1.4, can therefore
be distinguished:

• corrector: given (x0
k, µk) generate a sequence xl

k, l ∈ {1, 2, . . .} to iteratively minimize
the barrier φ(x, µk) with respect to x until an approximate minimum is reached,

• predictor: given (xl
k, µk) compute a new pair (x0

k+1, µk+1) such that the barrier pa-
rameter is reduced as much as possible, while at the same time x0

k+1 is not ‘too far’
from the minimum of the barrier φ(x, µk+1).
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Figure 7.1: Log-barrier function for a non-convex set

Example 7.1 In Figure 7.2 we illustrate these steps for the barrier function φ(x, µ) as
in (7.7). Starting with µ1 = 100 and x1 = (0, 0) we applied the following interior point
scheme for k = 1, . . . , 19

• minimize the barrier function φ(xk, µk) with respect to x with the algorithm as dis-
cussed in the next section. Denote the final iterate by xk+1

• set µk+1 = 1
2
µk

This is a slightly simplified version of the IP algorithm that will be presented in Algorithm
7.2. The iterates xk, k = 1, . . . , 20 are shown in Figure 7.2. The infeasible region {x ∈
R

2| G(x) ≻ 0} is the solidly filled area. For the iterates with indices k ∈ {1, 2, 8, 10, 20}
the value of the barrier parameter µk is shown. In Figure 7.3 the same sequence xk,
k = 1, . . . , 20 is shown, together with a sequence xk, k = 1, . . . , 20 obtained in the same
fashion, but with a slightly different initial vector x0 = (−0.01, 0.01). This illustrates that
for different initial points the Interior Point method may converge to completely different
locally optimal points.

7.1.3 Corrector step

In the corrector step the barrier function is minimized for fixed µ = µk. The usual linear
system of the centering Newton step, which minimizes a local quadratic approximation of
the barrier function, is replaced by a trust region method. Direct application of Newton’s
method may fail because the problem is possibly nonconvex. For the trust region method
the first and second order derivatives of the barrier function have to be known, as will be
clarified in the sequel. They can be computed analytically, see Appendix A.4.1. In Section
7.2 we will present a method for computing the trust-region search steps using the inherent
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Figure 7.2: Iterates after corrector steps and their barrier parameter value µ.
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Figure 7.3: Iterates after corrector steps with initial guesses x0 = (0, 0) (∗) and x0 =
(−0.01, 0.01) (◦).
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Lyapunov-like structure of the underlying equations. In this section we restrict ourselves
to the following scalarization technique. Stack the decision variables x = (γ,X,K) into
one vector x̃ := ve(x) ∈ R

m, where m = 1 + mc + 1
2
(1 + n + nc)(n + nc) and the linear

bijection ve : R × Sn+nc × R
m2+nc×p2+nc → R

m is defined by:

ve (γ,X,K) :=





γ
svec(X)
vec(K)



 (7.8)

and

svec(X) :=
[
X11, X12, . . . , X1n, X22, X23, . . . , X2(n+nc), . . . , X(n+nc)(n+nc)

]T
,

vec(K) :=
[
K11, K21, . . . , K(nc+p2)1, K12, K22, . . . , K(nc+p2)2, . . . , K(nc+m2)(nc+p2)

]T
.

The mapping B and the barrier function φ in terms of the stacked variable x̃ are de-
noted by B̃ := B ◦ ve−1 and φ̃ := φ ◦ ve−1 respectively. For a given x̃l

k ∈ R
N , the

algorithm computes the gradient ∇x̃φ̃(x̃l
k, µk)

T :=
[

∂x̃φ̃(x̃l
k, µk)

]T

∈ R
N and the Hessian

∇2
xφ̃(x̃l

k, µk) := ∂2
x̃φ̃(x̃l

k, µk) ∈ SN of φ̃(x̃l
k, µk) using the Kronecker product as described in

Section 7.2.3.
The Hessian may be indefinite, such that a Newton step may point into a ‘wrong’

(ascending) direction. To prevent wrong search steps we restrict them to a ball with radius
ρ, the trust-region. We compute a search direction to minimize the barrier function φ̃ by
solving the following trust region problem:

min
sT s≤2ρ2

gT s+
1

2
sTHs, (7.9)

where H := ∇2
x̃φ̃(x̃l

k, µk), g := ∇x̃φ̃(x̃l
k, µk) and ρ > 0 denotes the trust region radius.

This is a Quadratically constrained Quadratic Program (QQP). Using the S-procedure (as
presented in Lemma 2.17) we conclude that the optimal value popt ≤ 0 of (7.9) equals that
of the LMI problem

supremize t

subject to

(
H + λI g
gT −2t− λρ2

)

� 0, λ ≥ 0, λ ∈ R
(7.10)

In Appendix A.4.4 it is shown that for every ρ > 0 the optimum of (7.10) is attained by
unique t(ρ) and λ(ρ). Under mild conditions (see Jarre [105, 179]) λ(·) is continuous and
for every trust region size ρ ∈ (0,∞) the search direction

d̃c(λ(ρ)) := − (H + λ(ρ)I)−1 g, (7.11)

is the unique solution of the QQP in (7.9). If ‖g‖ > 0, this step direction has the following
additional properties:

1. limρ→0
d̃c(λ(ρ))

‖d̃c(λ(ρ))‖
= − g

‖g‖
(steepest descent direction),

2. limρ→∞
d̃c(λ(ρ))

‖d̃c(λ(ρ))‖
= − H−1g

‖H−1g‖
, if H ≻ 0 (Newton step).
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The optimal size of the trust region ρ is searched at each iteration, such that the algorithm
can perform full Newton steps if the Hessian is positive definite. If this is not the case, the
trust region must be sufficiently small to guarantee that the search direction is a descent
step. For this purpose λ(ρ) must be larger than or equal to the smallest negative eigenvalue
of the Hessian, i.e., it must satisfy

λ(ρ) ≥ λ := max {0,−λmin (H)} ,

where λmin(H) denotes the smallest eigenvalue of H. Since there is a one-to-one corre-
spondence between trust region size ρ and λ(ρ) we can and will directly search over λ ≥ λ
instead of ρ.

Remark. This discussion reveals that the trust-region approach described above is
nothing else than a (standard) Levenberg-Marquardt regularization of the Hessian (see
e.g. [17]). However, one of the differences of our algorithm compared to conventional opti-
mization schemes is the explicit search over the trust-region size, as discussed in the sequel.

In addition to the search over the optimal regularization parameter λ we search simul-
taneously for the best step-size α > 0 along the direction d̃c(λ). This leads to a search in
the two variables λ and α:

(λ∗, α∗) ∈ arg inf
λ>λ, α>0

φ̃
(

x̃l
k + αd̃c(λ), µk

)

. (7.12)

Since the minimization in (7.12) has two decision variables λ and α, it is called a ‘plane
search’ as opposed to a line search over a single decision variable. A plane search is numer-
ically more expensive than a line search. In our experience the plane search often reduces
the number of outer iterations if compared to the line search. The overall computation
time often is smaller with the plane search, because the very expensive computation of the
Hessian is done once every outer iteration. The next QQP iterate x̃l+1

k is equal to:

x̃l+1
k = x̃l

k + α∗d̃c(λ∗). (7.13)

where α∗ and λ∗ are given by (7.12).

7.1.4 Predictor step

At the predictor step one could simply reduce the barrier parameter µ in (7.7) and continue
with the corrector step. We try to prevent that the corrector needs many QQP-steps after
the update of µ, by computing a step in x̃ based on a convex approximation of the feasible
set by a Dikin ellipsoid [104, 157]. The predictor direction d̃p is defined as the direction
minimizing γ over the Dikin ellipsoid. For a convex set C the Dikin ellipsoid at a point x̃∗
is given by:

Eφ(x̃∗) =
{

x̃ | (x̃− x̃∗)
T∇2φ̃(x̃∗)(x̃− x̃∗) ≤ 1

}

, (7.14)

where φ̃(·) is a barrier function for C. The feasible set G given by Equation (7.6) and the
barrier function φ̃ are not necessarily convex, since B̃ is a bilinear function. To resolve this,
we replace the barrier by a convex one based on linearization of the constraints.

The derivative of B at (γ∗, X∗, K∗) := x∗ := ve−1(x̃∗) is

∂B(x∗)dx := Lγ(x∗)(dγ) + LX(x∗)(dX) + LK(x∗)(dK), (7.15)
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where ∂B(x∗)dx denotes the derivative of B at x∗ in the direction dx := (dγ, dX , dK).
Furthermore, Lγ(x∗) : R → Sn+nc+m1+p1 , LX(x∗) : Sn+nc → Sn+nc+m1+p1 and LK(x∗) :
R

(nc+m2)×(nc+p2) → Sn+nc+m1+p1 are defined by

Lγ(x∗)dγ :=





0 0 0
0 dγIm1 0
0 0 dγIp1



 (7.16)

LX(x∗)dX := −





In+nc

0
0



 dX





Acl(K∗)
T

Bcl(K∗)
T

0





T

−





Acl(K∗)
T

Bcl(K∗)
T

0



 dX





In+nc

0
0





T

(7.17)

LK(x∗)dK := −





X∗B2

0
D12



 dK





CT
2

DT
21

0





T

−





CT
2

DT
21

0



 dK
T





X∗B2

0
D12





T

. (7.18)

Let us linearize the constraints of (7.4) at xl
k = (γl

k, X
l
k, K

l
k):

B(xl
k) + ∂B(xl

k)dx ≻ 0, X l
k + dX ≻ 0, X l

k + dX ≺ ρXIn+nc
, 2Trace(dK

TK l
k) < ρ2

K .
(7.19)

The feasible set of (7.19) Glin is a convex approximation of G. We therefore compute the
Dikin ellipsoid of Glin to approximate G and use this set to find a suitable prediction step.

To this purpose, we use the following log-barrier function for Glin:

φlin
xl

k
(dx) := − log

(
det(B(xl

k) + ∂B(xl
k)dx)

)
− log

(
det(X l

k + dX)
)
−

− log
(
ρ2

K − 2Trace(dK
TK l

k)
)
− log

(
det(ρXI −X l

k − dX)
)
.

Let φ̃lin
x̃l

k

(d̃x) := φlin
ve−1(x̃l

k
)
(ve−1(d̃x)) be the corresponding barrier function in terms of the

stacked variables x̃l
k and d̃x. The predictor step direction d̃p is then calculated as the

direction minimizing:

minimize eT
1 d̃p over the Dikin ellipsoid: d̃p ∈ Eφ̃lin

x̃l
k

(0).

If ∇2φ̃lin
x̃l

k

(0) is positive definite, the solution is given by

d̃p = −
(∇2φ̃lin

x̃l
k

(0))−1e1
√

eT
1 (∇2φ̃lin

x̃l
k

(0))−1e1
.

The predictor step is then:

x̃0
k+1 = x̃l

k + d̃p.

The barrier parameter µ is updated as follows. Given a pair (x̃l
k, µk) we set a target

value µ+
k = µk

10
. Then we compute the minimum x̃0

k+1 of φ̃(·, µ+
k ) along the Dikin direc-

tion ∆x̃ using a line search. We modify the target µ+
k by finding µk+1 ≤ µk

2
such that

‖∇x̃φ̃(x̃0
k+1, µk+1)‖ is minimized. All this is done to reduce the number of QQP steps in

the next corrector step.
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7.1.5 Interior Point algorithm

The method can be summarized by the following algorithm adopted from [105].

Algorithm 7.2 (Curved Line-search Interior Point method (CLIP))
Initialization: let x̃ = x̃0

0, µ0 = 1. For k = 0, 1, 2, . . . do (outer loop):

1. Corrector steps (inner loop):
Set l = 0. Do until convergence:

(a) Define d̃c(λ) = − (H + λIN)−1 g where g = ∇x̃φ̃(x̃l
k, µk) and H = ∇2

x̃φ̃(x̃l
k, µk).

(b) Find the step lengths λ∗ ≥ max
{

0,−λmin(∇2
x̃φ̃(x̃l

k, µk))
}

and α∗ > 0 that mini-

mize φ̃(x̃l
k + αd̃c(λ), µk).

(c) Set x̃l+1
k = x̃l

k + α∗d̃c(λ∗) and l = l + 1.

2. Predictor step:

(a) Set d̃p = −
(∇2φ̃lin

x̃l
k

(0))−1e1
√

eT
1 (∇2φ̃lin

x̃l
k

(0))−1e1
.

(b) Define µ+
k = µk

10
.

(c) Find the step length t∗ > 0 that minimizes φ̃(x̃l
k + td̃p, µ

+
k ) and set x̃0

k+1 =

x̃l
k + t∗d̃p.

(d) Choose µk+1 ∈ arg minµ≤
µk
2
‖∇φ̃(x̃0

k+1, µ)‖2.

Jarre [105] shows that the QQP steps in (7.13) with exact plane search return, under mild
conditions, a point that satisfies the first order necessary conditions for optimality, i.e., the
gradient of the barrier φ̃(·, µk) with respect to the first variable for fixed µk is zero at an
accumulation point. Furthermore the outer loop of the Algorithm 7.2 converges to a point
that satisfies the necessary first order optimality conditions of the original BMI problem
of minimizing γ subject to (7.1), (7.2) and (7.3). If the Hessian is positive definite in one
of the accumulation points (which implies local convexity), Jarre shows that the iterates
converge superlinearly to this point2.

7.1.6 Initialization

The IP algorithm requires an initial choice of the decision variables in the interior of the
feasible region G. Finding a feasible initial solution is called a phase-one problem. An
initial stabilizing controller can often be found by closed-loop balanced reduction of the
full order order H∞-optimal controller, see Section 3.1.1.

If a stabilizing initial controller Kinit is given, an initial guess x̃0
0 can be constructed by

solving a H∞-norm analysis problem. Indeed for fixed K = Kinit, minimizing γ subject
to (7.1) and (7.2) is a feasible standard LMI problem. If (γinit, Xinit) is a solution to this
problem, then x̃0

0 := ve(γinit, Xinit, Kinit) is a suitable initial guess, provided that Xinit ≺
ρIn+nc and ‖K‖F < ρK . As described in Section 2.2.4, finding a feasible pair (γinit, Xinit)
by solving Riccati equations is often faster and more reliable.

2see Luenberger [125] for a definition of superlinear convergence.
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If a stabilizing controller is not given and cannot be constructed, the phase-one problem

infimize t
subject to B(γ,X,K) ≻ −tI, X ≻ −tI

ρXI −X ≻ −tI, ‖K‖2
F − ρK < t

(7.20)

can also be solved by the IP algorithm, i.e., Algorithm 7.2. If its optimal value topt is
strictly negative then the optimal solution of this problem is a feasible initial guess for the
H∞ problem. The minimization in (7.20) is a possibly non-convex BMI problem and there
is no guarantee that the IP algorithm converges to the global optimum. The resulting
value tIP of the objective function at the final iteration might therefore be positive, even if
the global optimal value topt is negative. In other words, if the IP algorithm is applied to
the phase-one problem it might not find a stabilizing controller even though one exists.

7.1.7 Intermediate analysis steps

The kth corrector step is started with x0
k = (γ0

k, X
0
k , K

0
k) computed in the predictor step.

An improved starting point can often be computed by the solution of the H∞-analysis
LMI problem for the fixed controller K = K0

k : minimize γ subject to (7.1) and X ≻ 0.
The resulting pair γ∗, X∗ together with the controller K0

k yields a candidate vector x∗ =
(γ∗, X∗, K

0
k). If the corresponding value of the barrier function is smaller than that for

x0
k+1, we replace x0

k+1 by x∗ before we start the corrector step. This is an ad-hoc way to
reduce the barrier function which works very well in practice.

7.1.8 Discussion

Under the conditions described in Section 7.1.5 the method converges superlinearly to a
local optimum. This is intuitively appealing, since the corrector steps allow to compute
(and perform) full Newton steps if the barrier function is locally convex. The algorithm can
therefore behave like Newton’s method close to local optima that have a positive definite
Hessian. This is the motivation for spending much time to compute the full Hessian of
the barrier function. As µ decreases, the optimal value in the corrector step gets closer
and closer to the boundary of the feasible region, which implies that the local curvature of
the barrier gets larger and the minimization problem of the barrier becomes increasingly
ill-conditioned. For these ill-conditioned problems first-order methods like the conjugate
gradient method or quasi-Newton methods [125] will converge very slowly. Furthermore if
the underlying constrained problem has many inequalities of which only a few are almost
active, first-order methods require many steps to gather enough information about the
Hessian before they can make efficient search steps. This is even true if the constraints
are convex [136]. For systems with high McMillan degree the number of constraints in
the fixed-order synthesis problem, i.e. (7.1), (7.2) and (7.3) is indeed large. It is therefore
reasonable to believe that the computation of the full Hessian is required to obtain good
convergence of the corrector for small values of the barrier parameter µ.

The computation of the Hessian is expensive for fixed-order H∞ synthesis for plants
with high McMillan degree n, since the Hessian is a large matrix in S1+mc+

1
2
(n+nc)(n+nc+1)

that is computed using Kronecker products as described in Section 7.2.3. However, based
on the arguments above, it seems unwise to eliminate this evaluation of the Hessian totally.
Instead, effort is made to reduce the number of times that it needs to be computed. As has
been discussed, this is done by the introduction of the plane search, which requires some
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more function evaluations than a one-dimensional search. The next iterate will in general
have a lower value of the barrier function for a plane search than for a one-dimensional
search. Spending some computation time in the plane search before computing a new
Hessian will therefore be worth the effort for many optimization problems and in particular
for the fixed-order H∞-optimal control problem. In the next section we describe how the
Hessian can be computed more efficiently for large n.

Since our algorithm converges locally to a point satisfying the first-order necessary
conditions, it makes sense to check if the final iterate is indeed a local optimum. This can
be done using LMI tests for second-order optimality as described in Section 7.3. Before
we derive these optimality conditions, we will explain how we can compute the Newton
direction.

7.2 Computation of the Newton direction

Let us fix a point (x̃l
k, µk) at which we have determined the gradient g := ∇x̃φ̃(x̃l

k, µk) and
the Hessian H := ∇2

x̃φ̃(x̃l
k, µk) of the barrier function. In the corrector step of Algorithm

7.2 we solve
(H + λI)d̃x = −g, (7.21)

for various values of λ. Recall that if H is nonsingular the Newton direction for the barrier
function is the solution to Hd̃x = −g. In Section 7.2.1 we explain that solving (7.21) or
Hd̃x = −g comes down to solving a set of non-standard Sylvester equations. In Section
7.2.2 we argue why this set of equations cannot be solved using standard solvers. Then
we show how a solution can be found using Kronecker products in Section 7.2.3. Since
this method is inefficient for large state dimension n, we present in Section 7.2.4 a more
efficient method by decomposing the search for d̃x into a sequence of standard Sylvester
equations.

7.2.1 Newton step as solution to three matrix equations

To compute a Newton step (dX , dK , dγ) at x = (γ,X,K) we introduce the mappings
L∗

γ(x) : Sn+nc+m1+p1 → R, L∗
X(x) : Sn+nc+m1+p1 → Sn+nc and L∗

K(x) : Sn+nc+m1+p1 →
R

(nc+m2)×(nc+p2)

L∗
γ(x)dW := Trace



dW





0 0 0
0 Im1 0
0 0 Ip1







 (7.22)

L∗
X(x)dU := −





Acl(K)T

Bcl(K)T

0





T

dU





In+nc

0
0



−





In+nc

0
0





T

dU





Acl(K)T

Bcl(K)T

0



 (7.23)

L∗
K(x)dV := −2

(
C2 D21 0

)
dV





XB2

0
D12





These mappings are adjoints [124] of Lγ(x), LX(x) and LK(x) respectively, i.e. the
linear operators represented in the appropriate input and output bases by the trans-
poses of the matrix-representations of Lγ(x), LX(x) and LK(x) respectively. This is ex-
plained in Appendix A.4.3. Additionally we introduce the following mappings LXK(x) :
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R
(nc+m2)×(nc+p2) → Sn and LKX : Sn → R

p2×m2

LXK(x)(dK) := B2dK





CT
2

DT
21

0





T

B(x)−1





I
0
0



+





I
0
0





T

B(x)−1





CT
2

DT
21

0



 dK
TBT

2

(7.24)
and

LKX(x)(dX) := 2





CT
2

DT
21

0





T

B(x)−1





dXB2

0
0



 , (7.25)

to write ∂K∂Xφ(γ,X,K, µ) as

∂K∂Xφ(γ,X,K, µ)(dγ , dK , dX) = Trace
(
B(x)−1LX(x)dXB(x)−1LK(x)dK

)
+

+ Trace(LXK(x)(dK)dX),

see Appendix A.4.1 for a derivation. Solving (7.21) in terms of the matrix representation of
dx = (dγ, dX , dK) is equivalent to solving the following Sylvester equations for (dγ, dX , dK):

L∗
γ(x)

(
B(x)−1 [LX(x)(dX) + LK(x)(dK) + Lγ(x)(dγ)]B(x)−1 − B(x)−1

)
+

1

µ
+λdγ = 0,

(7.26)

L∗
X(x)

(
B(x)−1 [LX(x)(dX) + LK(x)(dK) + Lγ(x)(dγ)]B(x)−1 − B(x)−1

)
+LXK(x)(dK)−

−X−1 +X−1dXX
−1 + (ρXI −X)−1 + (ρXI −X)−1dX(ρXInX

−X)−1 + λdX = 0,
(7.27)

and

L∗
K(x)

(
B(x)−1 [LX(x)(dX) + LK(x)(dK) + Lγ(x)(dγ)]B(x)−1 − B(x)−1

)
+LKX(x)(dX)+

+
2

ρK − ‖K‖2
F

(K + dK)T +
4Trace(KTdK)

(ρK − ‖K‖2
F )2

KT + λdK = 0, (7.28)

where Lγ(x)(dγ), LX(x)(dX) and LK(x)(dK) are defined in (7.16), (7.17) and(7.18) respec-
tively. See Appendix A.4.2 for a derivation of these equations.

The set of equations has a ‘Lyapunov-like’ characteristic. It is not straightforward to ex-
ploit this Lyapunov-like characteristics in computations, because the number of coefficients
of each unknown (dγ, dK , dX) is larger than that of the standard Sylvester or Lyapunov
equations, as discussed in the next section.

7.2.2 Standard Sylvester techniques

Equations (7.26), (7.27) and (7.28) cannot be solved using the so-called ‘standard Sylvester
techniques’ as described in e.g. [190, 66, 107, 108] since the number of terms is too large.
The standard techniques can for instance solve equations of the type

F1dXF2 + F3dXF4 = F0 (7.29)

where dX ∈ R
n×n is the unknown and Fi, i = 0, . . . , 4 are the data matrices, which are

for simplicity all assumed to be elements of R
n×n. One of the well-known techniques is
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an extension of the Bartels-Stewart algorithm as discussed in [66]. In this algorithm the
coefficient matrices Fi, i = 1, . . . , 4 are first transformed using orthogonal transformation
matrices Q1, Q2, Z1 and Z2 into upper triangular and quasi-upper-triangular matrices using
the QZ algorithm. Left and right multiplication by Q1 and QT

2 respectively transforms
(7.29) to the following set of equivalent equations:

Q1(F1dXF2 + F3dXF4)Q
T
2 =

= (Q1F1Z1)(Z
T
1 dXZ2)(Z

T
2 F2Q

T
2 ) + (Q1F3Z1)(Z

T
1 dXZ2)(Z

T
2 F4Q

T
2 ) =

= T1Y S
T
2 + S1Y T

T
2 = Q1F0Q

T
2

where T1 = Q1F1Z1 and T2 = Q2F
T
4 Z2 are upper triangular, S1 = Q1F3Z1 and S2 =

Q2F
T
2 Z2 are quasi-upper-triangular and Y = ZT

1 dXZ2, where a quasi-upper-triangular
matrix is a block-upper-triangular matrix with 2× 2 and/or 1× 1 blocks on the diagonal.
A solution for Y can be found by solving a sequence of 2 × 2 and/or 1 × 1 systems of
equations, starting from the right lower corner of Q1F0Q

T
2 . The worst-case computation

time is 72n3 [66] floating point operations (flops). By a flop is meant a single elementary
arithmetic operation like scalar addition, substraction, multiplication or division [72]. For
large n, the number of flops is relatively small if compared to that for computing the
Newton step using scalarization, as explained in the next section.

The technique described in this section cannot straightforwardly be applied to solve
(7.26)-(7.28) [12]. In the next two sections we present two different ways to solve these
equations. In Section 7.2.3 we ignore the matrix-structure and solve these equations by
the usually not very efficient technique of scalarization, whereas in Section 7.2.4 we exploit
the matrix structure and solve the equations by a (fixed) number of Sylvester equations.

7.2.3 Computation of trust regions steps by scalarization

This section discusses the solution of (7.26), (7.27) and (7.28) by stacking the variables γ, X
and K into a large vector x̃ as in (7.8). The resulting equations are (H+λI)d̃x = −g, where
H and g are the Hessian and gradient of φ̃(x̃, µ) with respect to x̃ respectively. To simplify
the presentation of H and g we introduce matrix representations of the mappings Lγ, LX

etc. Since vec(AXB) =
(
BT ⊗ A

)
vec(X) (see e.g. [30]), the linear mapping LX(x)(·) has

the following matrix representation

vec(LX(x)(dX)) = LXvec(dX)

where

LX :=





Acl(K)T

Bcl(K)T

0



⊗





I
0
0



+





I
0
0



⊗





Acl(K)T

Bcl(K)T

0



 .

Remark. Although LX depends on x, we omit this dependency in the notation for
simplicity. Furthermore, we write LXvec(dX) without brackets around vec(dX), since LX

is a matrix. To stress that LX(x)(·) is linear mapping and not a matrix, we do write
LX(x)(dX) with brackets around dX .
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Similarly to LX , the following matrices represent the corresponding mappings defined
in Section 7.1.3:

Lγ := vec









0 0 0
0 Im1 0
0 0 Ip1







 ,

L∗
γ := LT

γ ,

L∗
X :=

(
I 0 0

)
⊗
(
Acl(K) Bcl(K) 0

)
+
(
Acl(K) Bcl(K) 0

)
⊗
(
I 0 0

)
,

LK :=





CT
2

DT
21

0



⊗





XB2

0
D12



+





XB2

0
D12



⊗





CT
2

DT
21

0



Πtr,

L∗
K :=

(
BT

2 X 0 DT
12

)
⊗
(
C2 D21 0

)
,

LXK :=
(
I 0 0

)
B(x)−1





CT
2

DT
21

0



⊗B2 +B2 ⊗
(
I 0 0

)
B(x)−1





CT
2

DT
21

0



 ,

LKX := BT
2 ⊗





CT
2

DT
21

0





T

B(x)−1





I
0
0



 ,

where Πtr is the permutation matrix that maps vec(dK) into vec(dK
T ), i.e. vec(dK

T ) =
Πtrvec(dK). These definitions allow us to express the matrix representation of

dX 7→ L∗
X(x)

(
B(x)−1LX(x)(dX)B(x)−1

)

as follows:
L∗

X(B(x)−1 ⊗ B(x)−1)LX .

This follows since

vec
(
L∗

X(x)
(
B(x)−1LX(x)(dX)B(x)−1

))
= L∗

Xvec
(
B(x)−1LX(x)(dX)B(x)−1

)
=

= L∗
X

(
B(x)−1 ⊗ B(x)−1vec(LX(x)(dX))

)
= L∗

X(B(x)−1 ⊗ B(x)−1)LXvec(dX).

Similar results hold for the other mappings. The Hessian can be split up into the three
separate terms

H = HKYP +Hr +Hnc,

whereHKYP is the Hessian corresponding to the LMI (2.11) in the KYP-lemma, i.e. Lemma
2.6. This Hessian is

HKYP :=
(
L∗

γ ΠT
svecL

∗
X L∗

K

)
(B(x)−1 ⊗ B(x)−1)





Lγ

LXΠsvec

LK



 , (7.30)

where Πsvec maps a vectorized symmetric matrix vec(X) into svec(X), i.e. Πsvecvec(X) =
svec(X) for all X = XT . Hr is the Hessian corresponding to the ‘remaining’ inequalities
(7.2) and (7.3) and is given by

Hr :=





0 0 0
0 ΠT

svecHrXXΠsvec 0
0 0 HrKK



 , (7.31)
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where

HrXX := X−1 ⊗X−1 + (ρXI −X)−1 ⊗ (ρXInX
−X)−1

and

HrKK :=
2

ρk − ‖K‖2
F

I(nc+m2)(nc+p2) +
4

(ρK − ‖K‖2
F)

2 vec(KT )vec(KT )T .

Finally Hnc is the indefinite part of the Hessian

Hnc :=





0 0 0
0 0 ΠT

svecLXK

0 LKXΠsvec 0



 . (7.32)

Remark that HKYP � 0 and Hr � 0 but Hnc is not necessarily positive semi-definite. The
solution (7.21) can be found by solving

(H + λI)−1d̃x = (HKYP +Hr +Hnc + λI)−1d̃x =





− 1
µ

+ L∗
γ(x) (B(x)−1)

svec (L∗
X(x) (B(x)−1))

vec (L∗
K(x) (B(x)−1))



 (7.33)

for d̃x.

Updating the Hessian during the plane search

Since H is a symmetric m×m matrix where m = 1 +mc + 1
2
(n+ nc)(n+ nc + 1), solving

(7.33) by Cholesky factorization for instance (assuming that H + λI ≻ 0) requires

1

3
m3 + 2m2

flops in worst-case [72]. Fortunately it is not required to solve (7.33) in this fashion for each
evaluation of d̃c(λ) in (7.12) during the plane search, since we can circumvent that by the
following technique inspired by the work of Jarre [105]. Compute a Schur decomposition
H = QTDQ, with Q being orthogonal and D being diagonal. Remark that D is diagonal
since H is symmetric. This costs at most 4

3
m3 flops in worst-case [72]. Then

d̃c(λ) = −(H + λI)−1g = −(QTDQ+ λI)−1g = −QT (D + λI)−1Qg (7.34)

can easily be computed in about 5m2 flops [72]. The Schur decomposition of H has to be
computed only once for each plane search. If d̃c(λ) is evaluated for Nls ∈ N distinct values
of λ in the plane search, then the total cost of this procedure is 4

3
m3 + Nls(2m

2 + 8m),
whereas the Cholesky factorization approach requires Nls(

1
3
m3 + 2m2). Hence the Schur

decomposition is for moderate and large m already favorable if Nls > 4, if compared to
solving (7.33) directly for each different value of λ.

Because m grows quadratically with the state dimension n, we still need to perform
O(n6) flops in a single correction step. In the following section we present a method to
solve (7.21) that is, in general, computationally cheaper for large n. This is achieved by
exploiting the control-theoretic characteristics.
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7.2.4 Solving the Sylvester equations directly

The Newton step in dX for the Bounded Real Lemma Inequality (7.1)

For simplicity, let us first consider the Sylvester equation

L∗
X(x)

(
B(x)−1(LX(x)(dX))B(x)−1 − B(x)−1

)
= 0, (7.35)

where L∗
X(x) (y) should be read as the linear mapping L∗

X(x) (·) applied to y. Analysis of
the existence of solutions of this equation is beyond the scope of this thesis. We refer the
reader to [151] for more details on this topic. In vectorized form this equation is:





0
I
0



HKYP

(
0 I 0

)
vec(dX) = −





0
I
0



 g,

where HKYP is defined in (7.30). Note that this is the Sylvester equation corresponding
to the Newton step for (7.1) in X for fixed K and γ. The solution method presented here
is inspired by Vandenberghe, et. al. [194, 195], see also [200]. These authors consider an
IP method to solve the LMI dual of the H∞-analysis problem and some generalizations
thereof. They compute the Newton steps in the IP method with a similar technique as
described in this section, although controller synthesis was not addressed.

Since B(x)−1 ≻ 0 we can factorize it as B(x)−1 = RTR by a Cholesky factorization,
with upper triangular R partitioned as

R =





R11 R12 R13

0 R22 R23

0 0 R33



 ,

where R11 ∈ R
n×n, R22 ∈ R

m1×m1 and R33 ∈ R
p1×p1 . Using these definitions we can

simplify the left-hand side of (7.35) as

L∗
X(x)

(
B(x)−1(LX(x)(dX))B(x)−1 − B(x)−1

)
=

= V
(
W TdXV + V TdXW

)
W T +W

(
W TdXV + V TdXW

)
V T =

= V dZW
T +WdZV

T

where

V :=
(
V1 V2

)
:=
(
A B

)
(
R11 R12

0 R22

)T

,

W :=
(
I 0

)
(
R11 R12

0 R22

)T

=
(
RT

11 0
)
,

dZ := W TdXV + V TdXW.

Hence, the solution dX can be found by first solving V dZW
T +WdZV

T = −L∗
X(x) (B(x))

for dZ and then solving W TdXV + V TdXW = dZ for dX . These are however not standard
Sylvester equations, since the solution dZ to V dZW

T + WdZV
T = −L∗

X(x) (B(x)) is not
unique.

However, by solving 2(n + nc)m1 Sylvester equations a solution can be found using
the same idea as in [200]. Indeed let us define Q := V2V

T
2 dX and use a (standard) basis
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{E1, E2 . . . , E(n+nc)m1}, Ei ∈ R
m1×(n+nc), for Q, i.e. Q(q) =

∑(n+nc)m1

i=1 qiEi with q ∈
R

(n+nc)m1 and define E0 = 0. Then (7.35) reduces to

V1

(
W T

1 dXV1 + V T
1 dXW1

)
W T

1 +W1

(
W T

1 dXV1 + V T
1 dXW1

)
V T

1 +

+Q(q)W1W
T
1 +W1W

T
1 Q(q)T = L∗

X(x)
(
B(x)−1

)
.

Now let us denote by dXi the solution to

V1

(
W T

1 dXV1 + V T
1 dXW1

)
W T

1 +W1

(
W T

1 dXV1 + V T
1 dXW1

)
V T

1 +

+ EiW1W
T
1 +W1W

T
1 E

T
i = L∗

X(x)
(
B(x)−1

)
,

for each i = 0, 1, . . . , (n+nc)m1. For each i, dXi can be computed by solving the following
two standard Sylvester equations

V1dZiW
T
1 +W1dZiV

T
1 = −EiW1W

T
1 −W1W

T
1 Ei − L∗

X(x) (B(x)) (7.36)

and

V T
1 dXiW1 +W T

1 dXiV1 = dZi. (7.37)

Once dXi, i = 0, 1, . . . , (n + nc)m1, have been computed, solution to (7.35) is finally
computed as

dX∗ = dX0 +

(n+nc)m1∑

i=1

qs
idXi,

where qs
i , . . . q

s
(n+nc)m1

are the solutions to

(n+nc)m1∑

i=1

qiEi = V2V
T
2



dX0 +

(n+nc)m1∑

i=1

qidXi



 , (7.38)

for q1, . . . , q(n+nc)m1 . Solving (7.38) is computationally cheap, since its number of unknowns
is (n + nc)m1, which is a small number compared to the number of unknowns in (7.33) if
n+ nc is much larger than m1.

The Newton step in all variables for the Bounded Real Lemma Inequality (7.1)

It seems not straightforward to solve

L∗
γ(x)

(
B(x)−1 [LX(x)(dX) + LK(x)(dK) + Lγ(x)(dγ)]B(x)−1 − B(x)−1

)
= 0,(7.39)

L∗
X(x)

(
B(x)−1 [LX(x)(dX) + LK(x)(dK) + Lγ(x)(dγ)]B(x)−1 − B(x)−1

)
= 0,(7.40)

L∗
K(x)

(
B(x)−1 [LX(x)(dX) + LK(x)(dK) + Lγ(x)(dγ)]B(x)−1 − B(x)−1

)
= 0,(7.41)

for (dγ, dX , dK) in the same fashion as (7.35), due to dependence of these equations on
all three unknowns dγ, dX and dK . However, if the number of controller variables mc is
small (or K is a structured controller with only a few degrees of freedom), and if we write
dK =

∑mc

i=1 kiEi, where {E1, . . . , Emc} is a basis for R
(n+nc+m2)×(n+nc+p2), a similar solution

as for (7.35) is possible. For E0 = 0 let dXi be the solution to

L∗
X(x)

(
B(x)−1 (LX(x)(dX) + LK(x)(Ei))B(x)−1 − B(x)−1

)
= 0, (7.42)
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for i = 0, 1, . . . ,mc and let dXmc+1 be the solution to

L∗
X(x)

(
B(x)−1 (LX(x)(dX) + Lγ(x)(1))B(x)−1 − B(x)−1

)
= 0. (7.43)

Then dX defined by

dX(ki) = dX0 +
mc∑

i=1

kidXi + dγdXmc+1, (7.44)

is a partial solution of (7.39)-(7.41), parameterized in terms of ki and dγ. After substitution
of dX using (7.44) and dK =

∑mc

i=1 kiEi in (7.39) and (7.41), these equations have as only
unknowns dγ and ki, i = 0, 1, . . . ,mc. If the number of controller variables is small, these
equations can be solved in reasonable computation time by e.g. scalarization. Remark
that the number of these unknowns are independent of the McMillan degree n of the plant.

Non-convex terms and remaining terms

Now let us focus on solving

(HKYP +Hr +Hnc + λI) dx = −g,

where HKYP, Hr and Hnc are as defined in (7.30), (7.31) and (7.32), respectively.
If X renders (7.1) satisfied, then X ≻ 0 is equivalent to the existence of a Y such that

(A+B2KC2)
TY + Y (A+B2KC2) ≺ 0 and Y ≻ 0. (7.45)

Hence, let us replace X ≻ 0 by (7.45). As the final steps towards an efficient solution to
(7.39)-(7.41), let us ignore the non-convex part of the Hessian Hnc, the regularization term
λ and the constraint X ≺ ρXI. If we (again) write dK =

∑mc

i=1 kiEi, where {E1, . . . , Emc}
is a basis for R

(n+nc+m2)×(n+nc+p2), E0 = 0, then a partial solution of the Newton step in
dX can be expressed as (7.44), where dXi, i = 0, . . . ,mc + 1 are the solutions to (7.42) and
(7.43).

The search step in Y can be computed in a similar fashion using mc Sylvester equations,
see Appendix A.4.6. Concluding, by separating the H∞ performance constraint and the
stability constraint over two variables X and Y , we reduce the convexified Newton step
equations for X to smaller subproblems that can be solved efficiently. See [121] for a
different way to exploit the same idea.

Final remarks on the direct solution

Even though the set (7.26), (7.27) and (7.28) have an apparently simple matrix-structure,
we have seen that is not very straightforward to solve these equations directly. We sum-
marize here the steps to arrive at a set of standard Sylvester equations:

1. eliminate the part of the equation corresponding to the non-convex Hessian Hnc and
set λ = 0,

2. introduce a basis for dK ,

3. split the constraint on the closed-loop H∞-norm and the stability constraint into two
equations with variables X and Y , respectively

4. introduce a basis for Q = V2V
T
2 dX
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Table 7.1: Complexity of steps to compute dγ, dX and dK , where nB := n+ nc +m1 + p1

step Complexity (no. of flops in worst-case) no. of steps

Cholesky factor of B(x)−1 1
3
n3
B + 2nB 1

Solving Sylvester eq. (7.36) 72(n+ nc)
3 (n+ nc + 1)m1mc

Solving Sylvester eq. (7.37) 72(n+ nc)
3 (n+ nc + 1)m1mc

Finding qi in (7.38) 2
3
((n+ nc)m1)

3 + 2((n+ nc)m1)
2 mc

Finding search step dY in Y 72mc(n+ nc)
3 1

5. split the equation L∗
X(x) (B(x)−1(LX(x)(dX))B(x)−1 − B(x)−1) = 0 into:

L∗
X(x)

(
dZ − B(x)−1

)
= 0

and
B(x)−1(LX(x)(dX))B(x)−1 = dZ .

This allows us to compute a convexified Newton step by solving 2np(1 + (n + nc)m1)
standard Sylvester equations. The complexity of the main steps are shown in Table 7.1,
where, as mentioned before, mc = (nc + m2)(nc + p2) denotes the number of controller
variables. Minor steps that are not dominant in the complexity analysis have been omitted
for simplicity. From the table we can read off that the total number of flops in worst-case
is

N(n, nc,m1, p1,m2, p2) :=
n3
B

3
+ 2nB + 2mc(72(n4

cl
+ n

cl
)m1 +

(n
cl
m1)

3

3
+ (n

cl
m1)

2) + 36n3
cl
,

where nB := n+nc+m1+p1 (which equals the number of columns in B(γ,X,K) in (7.1)) and
n

cl
= n+ nc is the total number of states in the closed-loop plant. N(n, nc,m1, p1,m2, p2)

is a 4th order polynomial in the state dimension n, if the other variables sizes are consid-
ered fixed. In Section 7.2.3 it has been clarified that the number of flops in worst-case of
the trust-region step using scalarization is O(n6), if all other variable sizes are considered
fixed. Hence for large (state dimension) n and small (numbers of controller variables and
generalized disturbance signals) mc and m1, the approach presented in this section may be
favorable to scalarization.

This concludes our results on the trust region step computation, which completes the
IP algorithm for fixed-order synthesis. Since the algorithm is guaranteed to converge to
a point satisfying first-order necessary conditions, it is useful to verify second-order local
optimality after running this algorithm. In the next section we present first and second
order optimality conditions and the corresponding numerically computable tests for the
fixed order synthesis problem. These results can also be applied to any other nonlinear
Semi-Definite Program with twice differentiable objective and constraint functions.

7.3 Optimality conditions

In this section we recap the usual first order necessary conditions and provide a rather
elementary derivation of the most general second order necessary and sufficient conditions
for optimality for the BMI problem

infimize γ
subject to (7.1), (7.2) and (7.3).

(7.46)
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These are local optimality conditions, which contrast with the global optimality certificates
obtained with the SOS relaxations in Chapters 4 and 5. One expects that local optimality
is in general easier to verify computationally and we will see in this section that this is
indeed true.

Recall that the decision variable is x = (γ,X,K) and the feasible set is G as defined in
(7.6). The objective function is denoted by f(x) = γ and the constraint functions by

G1(x) = −B(γ,X,K), G2(x) = −X, G3(x) = X − ρXI, g4(x) = ‖K‖2
F − ρK ,

which are collected in the usual fashion as G = diag(G1, G2, G3, g4). Since the feasible set
G is open and the objective γ is linear, optimal values are not attained. For the analysis
in this section we therefore replace the strict inequalities G(x) ≺ 0 by the non-strict ones
G(x) � 0, as we did in Chapter 4. Weierstrass’ Theorem (as for instance described in [124])
implies that if the feasible set is nonempty, then the global minimum of infG(x)�0 f(x),
where f(x) := γ, is attained.

Note that Gi(x) � 0 for i = 1, 2, 3 are semi-definite constraints. The functions f and
G are C∞ on the interior of the feasible set G, and the first and second order (directional)
derivatives of G at x (in directions d or d1, d2 in X ) are denoted by ∂G(x) and ∂2G(x)
(or ∂G(x)d and ∂2G(x)(d1, d2)) respectively. Explicit formulas are given in Appendix A.4.5.

With X as defined in (7.5), the non-strict version of the BMI problem just amounts to
minimizing f(x) over the feasible set

G = {x ∈ X | G(x) � 0} . (7.47)

For our analysis f andG are required to be merely twice continuously differentiable (instead
of C∞). In the next sections we present conditions for x ∈ X to be a local optimal point for
this problem, see Section 2.5.5 for the definition of such points. The results are extensions
of optimality conditions for optimization problems with scalar inequality constraints, as
described in standard texts, e.g. [125,17,102].

Example 7.3 We illustrate for a scalar problem some of the most important situations
that can occur at a candidate local point in Figure 7.4. We consider the minimization of
f(x) over the feasible region G := {x | g1(x) ≤ 0, g2(x) ≤ 0}, i.e. the optimization problem

inf
g1(x)≤0,g2(x)≤0

f(x),

x = (x1, x2) ∈ R
2, f(x) = x2 g1(x) = −x1, for four different choices of the constraint

g2(x). At the critical point x = (0, 0) we have the following cases:

• with g2(x) = x3
1 + x1 − x2 the first order sufficient conditions are satisfied (left upper

subplot ‘a’)

• with g2(x) = x2
1 − x2 the second order sufficient conditions are satisfied (right upper

subplot ‘b’)

• with g2(x) = −x3
1 − x2 the second order necessary conditions are satisfied, but the

point (0, 0) is not optimal (left lower subplot ‘c’)

• with g2(x) = x3
1 − x2 the point (0, 0) is optimal, but the second order sufficient con-

ditions are violated (right lower subplot ‘d’).
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Figure 7.4: Optimality conditions for four different situations, as described on page 132.
Shown are the gradient of f (arrow), the infeasible region R

2\G (solidly filled region) and
the tangent cone (horizontally shaded area) at x = 0.
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7.3.1 First order necessary optimality conditions

To derive the optimality conditions, we rely on the usual concept of a tangent cone.

Definition 7.4 - Tangent cone. The tangent cone TG(x∗) of the feasible set G at
x∗ ∈ G is the union of the zero vector together with the set of all vectors d ∈ X that can be
represented as d = λs for some λ > 0 such that there exists a sequence sν with

sν 6= 0, lim
ν→∞

sν = 0, lim
ν→∞

sν

‖sν‖
= s and x∗ + sν ∈ G for all ν = 1, 2, . . . (7.48)

Lemma 7.5 With ǫ > 0 let z : [0, ǫ] → R
n be any curve with z(0) = x∗ ∈ G and z(t) ∈ G

for t ∈ [0, ǫ]. Furthermore let it have a right-derivative ∂+z(0) 6= 0 at t = 0. Then ∂+z(0)
is contained in TG(x∗).

Proof. For the sequence chosen as sν := z(ǫ 1
ν
)−x∗ we immediately observe limν→∞ sν = 0,

x+ sν ∈ G for all ν = 1, 2, . . . . Furthermore

sν

‖sν‖
=

z(ǫ 1
ν
) − x∗

∥
∥z(ǫ 1

ν
) − x∗

∥
∥

=

z(µ)−x∗

µ
∥
∥
∥

z(µ)−x∗

µ

∥
∥
∥

=

z(µ)−z(0)
µ

∥
∥
∥

z(µ)−z(0)
µ

∥
∥
∥

,

with µ = ǫ
ν
. Hence

lim
ν→∞

sν

‖sν‖
= lim

µ→0,µ>0

z(µ)−z(0)
µ

∥
∥
∥

z(µ)−z(0)
µ

∥
∥
∥

=
∂+z(0)

‖∂+z(0)‖ ,

where the latter equality follows from the definition of first order right-derivatives.

Note that for all x∗ ∈ G, TG(x)∗ is a closed cone (which is allowed to be empty if x∗ is
isolated). That TG(x) is a cone (as defined in Section 2.5.1) is trivial from the definition.
Closure is shown in the following lemma.

Lemma 7.6 For all x∗ ∈ G, TG(x∗) is a closed set.

Proof. Based on a proof in [17]. Let x∗ ∈ G be arbitrary and dk, k = 1, 2, . . . be a sequence
such that dk ∈ TG(x∗) for all k = 1, 2, . . . with limit d := limk→∞ dk. To prove that TG(x) is
closed we show that d ∈ TG(x∗). Since dk ∈ TG(x∗) there exist for all k = 1, 2, . . . sequences
sk

ν satisfying sk
ν 6= 0 for all ν = 1, 2, . . . and such that

sk
ν 6= 0, lim

ν→∞
sk

ν = 0, lim
ν→∞

sk
ν

‖sk
ν‖

= sk and x∗ + sk
ν ∈ G for all ν = 1, 2, . . . ,

which is (7.48) for sν = sk
ν . Hence, for such sequences sk

ν there exist for each k a large
enough index νk such that ‖sνk

‖ < 1
k

and

∥
∥
∥
∥

sk
νk

‖sk
νk
‖ − dk

‖dk‖

∥
∥
∥
∥
<

1

k
.
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For these choice of indices νk we therefore conclude that

lim
k→∞

sk
νk

= 0 and lim
k→∞

∥
∥
∥
∥

sk
νk

‖sk
νk
‖ − dk

‖dk‖

∥
∥
∥
∥

= 0.

Obviously x+ sk
νk

∈ G for all k. Furthermore, for all k we have (by the triangle inequality
of the norm)

∥
∥
∥
∥

sk
νk

‖sk
νk
‖ − d

‖d‖

∥
∥
∥
∥
≤
∥
∥
∥
∥

sk
νk

‖sk
νk
‖ − dk

‖dk‖

∥
∥
∥
∥

+

∥
∥
∥
∥

dk

‖dk‖
− d

‖d‖

∥
∥
∥
∥
,

and by combining the preceding two relations with the fact that limk→∞ dk = d we obtain

lim
k→∞

sk
νk

= 0 and lim
k→∞

∥
∥
∥
∥

sk
νk

‖sk
νk
‖ − d

‖d‖

∥
∥
∥
∥

= 0.

Hence we conclude that d ∈ TG(x)

The definition of the tangent cone is motivated by the following necessary condition for
local optimality.

Theorem 7.7 Let x∗ be a local minimum point of f on G. Then

∂f(x∗)d ≥ 0 for all d ∈ TG(x∗). (7.49)

Proof. If d = 0 then (7.49) trivially holds true. Choose an element d 6= 0 of the tangent
cone and a corresponding sequence sν satisfying d = λs for some λ ≥ 0 and (7.48). Local
optimality of x∗ and (7.48) imply

f(x∗ + sν) − f(x∗)

‖sν‖
≥ 0 for all sufficiently large ν. (7.50)

By the definition of first order derivatives we infer

lim
ν→∞

f(x∗ + sν) − f(x∗)

‖sν‖
= lim

ν→∞
∂f(x∗)

sν

‖sν‖
= ∂f(x∗)s. (7.51)

Combining (7.50) and (7.51) implies

∂f(x∗)d = ∂f(x∗)(λs) = λ∂f(x∗)(s) ≥ 0.

In a similar fashion one can prove the following first-order sufficient condition for local
optimality.

Theorem 7.8 Let x∗ ∈ G satisfy

∂f(x∗)d > 0 for all d ∈ TG(x∗), d 6= 0.

Then x∗ is a strict local minimum point of f on G.
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Proof. Suppose x∗ is not a strictly local optimum. Then for each ν there exists a point
xν ∈ G, xν 6= x∗ with ‖x∗ − xν‖ ≤ 1

ν
and f(xν) ≤ f(x∗). If we define the sequence

sν := xν − x∗ then obviously limν→∞ ‖sν‖ = 0 and x∗ + sν ∈ G for all ν = 1, 2, . . ..
Furthermore

f(x∗ + sν) ≤ f(x∗) for all ν = 1, 2, . . . . (7.52)

Observe that xν 6= x∗ implies ‖sν‖ > 0 for all ν such that sν

‖sν‖
is well-defined for all

ν. Since sν

‖sν‖
is bounded it admits a convergent subsequence. We can assume that the

sequence itself converges with limit limν→∞
sν

‖sν‖
= s. This reveals that s ∈ TG(x∗). To

show s 6= 0 we use continuity of ‖ · ‖ to conclude

‖s‖ =

∥
∥
∥
∥

lim
ν→∞

sν

‖sν‖

∥
∥
∥
∥

= lim
ν→∞

∥
∥
∥
∥

sν

‖sν‖

∥
∥
∥
∥

= 1.

By the definition of derivatives we infer

∂f(x∗)s = lim
ν→∞

f(x∗ + sν) − f(x∗)

‖sν‖
≤ 0, (7.53)

where the inequality follows from (7.52). Hence we have found a nonzero s ∈ TG(x∗) with
∂f(x∗)s ≤ 0, a contradiction.

Although conceptually very simple, the derived optimality conditions are not necessarily
straightforward to verify computationally, because in general it is not simple to describe
the tangent cone. Under a mild constraint qualification the description of TG(x) becomes
very simple, as clarified in the sequel.

For this purpose we introduce the concept of the linearization cone of G at x:

LG(x) :=
{
d ∈ X | uT [∂G(x)d]u ≤ 0 for all u ∈ Ker(G(x))

}
.

Note that the linearization cone depends on G, i.e. on the representation of the feasible
set G, whereas the tangent cone only depends on the set G itself. Just by using the first
order optimality condition it is elementary to see that TG(x) ⊂ LG(x), which is subject of
the following lemma

Lemma 7.9 For arbitrary x∗ ∈ G the inclusion TG(x∗) ⊂ LG(x∗) holds true.

Proof. Take an arbitrary d ∈ TG(x∗) and u ∈ Ker(G(x∗)) and observe that the mapping
gu(x) := uTG(x)u attains its maximum 0 on G at x = x∗. Hence the first order necessary
conditions imply that ∂gu(x∗)d = uT [∂G(x∗)d]u ≤ 0, since d is in the tangent cone. This
implies d ∈ LG(x∗).

The converse inclusion is not necessarily true, as illustrated in the next example.

Example 7.10 This example is adopted from [110]. For

G(x) :=

(
−1 + x2 − (1 − x1)

3 0
0 1 − x2

)
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Figure 7.5: Example that illustrates difference between tangent and linearization cone.
Shown are the gradient of f (grey arrow), the constraint function G(1,1)(x) = 0 (solid line),
the infeasible region (shaded area), the tangent cone (solid arrow) and the linearization
cone (dashed arrow).

the tangent cone at x∗ = (1, 1) is

TG(x∗) :=

{(
λ
0

)

| λ ∈ R, λ ≥ 0

}

,

whereas the linearization cone is

LG(x∗) :=

{(
λ
0

)

| λ ∈ R

}

.

These cones as well as the feasible set {x ∈ R
2| G(x) � 0} are depicted in Figure 7.5.

As a consequence, the sufficient optimality condition in terms of the linearization cone
at x∗ is violated, even though x∗ is an optimal point. To illustrate this consider infG(x)�0 f(x)
with f(x) = −x1. The global optimum is attained at x∗, such that the first order necessary
condition in terms of the tangent cone holds true. However, if we replace TG(x∗) by LG(x∗)
in (7.49) the condition is violated.

Fortunately, under the aforementioned Constraint Qualification (CQ), which very often
holds true in practice, the tangent and linearization cones are equal. To simplify the
presentation of this CQ at x∗, let us choose a nonsingular matrix U∗ = (V∗ W∗) such that
the columns of V∗ span the kernel of G(x∗).

Theorem 7.11 Let the following analogue of the standard Mangasarian-Fromowitz Con-
straint Qualification (MFCQ) be satisfied: there exists some d0 ∈ X with

uT [∂G(x∗)d0]u < 0 for all u 6= 0 with u ∈ Ker (G(x∗)) . (7.54)

Then TG(x∗) = LG(x∗).

Proof. Let d0 be a vector that satisfies (7.54). Then (7.54) obviously implies

V T
∗ [∂G(x∗)d0]V∗ ≺ 0. (7.55)
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We will first show that d0 ∈ TG(x∗). If d0 = 0 then d0 ∈ TG(x∗), so let us assume d0 6= 0.
To prove d0 ∈ TG(x∗) we will consider the sequence sν := 1

ν
d0. Define

ǫν :=
G(x∗ + 1

ν
d0) −G(x∗) − ∂G(x∗)

d0

ν

‖ 1
ν
d0‖

such that limν→∞ ǫν = 0. By the definition of V∗ we have G(x∗)V∗ = 0 such that

UT
∗ G(x∗ + 1

ν
d0)U∗

‖ 1
ν
d0‖

= UT
∗ ǫνU∗ +

ν

‖d0‖

(
0 0
0 W T

∗ G(x∗)W∗

)

+

+
ν

‖d0‖

(
V T
∗

[
∂G(x∗)

d0

ν

]
V∗ V T

∗

[
∂G(x∗)

d0

ν

]
W∗

W T
∗

[
∂G(x∗)

d0

ν

]
V∗ W T

∗

[
∂G(x∗)

d0

ν

]
W∗

)

=

= UT
∗ ǫνU∗ +

1

‖d0‖

(
V T
∗ [∂G(x∗)d0]V∗ V T

∗ [∂G(x∗)d0]W∗

W T
∗ [∂G(x∗)d0]V∗ νW T

∗ G(x∗)W∗ +W T
∗ [∂G(x∗)d0]W∗

)

.

By feasibility of x∗ we conclude W T
∗ G(x∗)W∗ ≺ 0. This combined with (7.55) implies for

large enough ν,
(

V T
∗ [∂G(x∗)d0]V∗ V T

∗ [∂G(x∗)d0]W∗

W T
∗ [∂G(x∗)d0]V∗ νW T

∗ G(x∗)W∗ +W T
∗ [∂G(x∗)d0]W∗

)

≺ 0.

This follows from a Schur complement argument and the fact that the largest eigenvalue
of the negative definite term νW T

∗ G(x∗)W∗ can be made arbitrary small for large enough
ν. Hence the sequence sν satisfies, for all large ν, the conditions of the tangent cone (7.48)
such that ‖d0‖ limν→∞ sν = d0 ∈ TG(x∗).

Now choose an arbitrary dl ∈ LG(x∗). Then d(τ) := (1− τ)dl + τd0 for arbitrary τ ∈ (0, 1]
is a vector satisfying (7.54) since for any u 6= 0 with u ∈ Ker(G(x∗))

uT [∂G(x∗)d(τ)]u = τ uT [∂G(x∗)d0]u
︸ ︷︷ ︸

<0 by (7.54)

+(1 − τ)uT [∂G(x∗)dl]u
︸ ︷︷ ︸

≤0 by dl∈LG(x∗)

< 0.

Since any vector that satisfies (7.54) is in TG(x∗) (as shown in the first part of this proof),
we conclude d(τ) ∈ TG(x∗) for all τ ∈ (0, 1]. Finally due to the fact that TG(x∗) is
closed, dl = limτ→0,τ>0 d(τ) ∈ TG(x∗). Since dl ∈ LG(x∗) was arbitrary we conclude
LG(x∗) ⊂ TG(x∗). Combining this with Lemma 7.9 yields LG(x∗) = TG(x∗)

Example 7.12 (Example 7.10 continued.) For

G(x) :=

(
−1 + x2 − (1 − x1)

3 0
0 1 − x2

)

,

we show that x∗ = (1, 1) does not satisfy the MFCQ. Observe that

∂G(x)d :=

(
d2 + 3d1(1 − x1)

2 0
0 −d2

)

.
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Since G(x∗) = 0 we can choose V∗ = I2. To satisfy (7.54) we need to find a d0 :=
(
δ1 δ2

)T
such that

V T
∗ [∂G(x∗)d0]V∗ =

(
δ2 0
0 −δ2

)

≺ 0,

which is obviously impossible.

If the MFCQ holds at x∗, and if the columns of V∗ span the kernel of G(x∗), the
necessary optimality condition translates into the SDP

minimize ∂f(x∗)d

subject to d ∈ X , V T
∗ [∂G(x∗)d]V∗ ≤ 0

having optimal value zero. Since this SDP is strictly feasible, its dual also has optimal value
zero. Consequently, there exists some Z � 0 with ∂f(x∗)d+ Trace[(V∗ZV

T
∗ ) ∂G(x∗)d] = 0

for all d ∈ X . Observe that Λ := V∗ZV
T
∗ � 0 and ΛG(x∗) = V∗ZV

T
∗ G(x∗) = 0 by definition

of V∗. This immediately leads to the standard first order necessary optimality conditions:
There exists a Lagrange multiplier Λ with

∂f(x∗) + ∂xz(x∗,Λ) = 0, Λ � 0, ΛG(x∗) = 0, (7.56)

where z(x,Λ) := Trace(ΛG(x)). Let us denote the set of all matrices Λ satisfying (7.56)
by Λ∗.

Remark. The difference between the first order necessary and sufficient conditions seem
to be small, since a non-strict inequality for the necessary condition is replaced by a strict
one. In practice the gap between these conditions is large, in the sense that for many SDP
problems encountered in practice the first order sufficient conditions do not hold at locally
optimal points. To be able to verify local optimality for these cases we formulate second
order conditions in the next section.

7.3.2 Second order conditions

The second order conditions for SDPs are somewhat more involved than for usual scalar
constraints. Using U∗ = (V∗ W∗) we infer that G(x) � 0 if and only if UT

∗ G(x)U∗ � 0 if
and only if

Gr(x) := [V T
∗ G(x)V∗] − [V T

∗ G(x)W∗](W
T
∗ G(x)W∗)

−1[W T
∗ G(x)V∗] � 0, (7.57)

whenever x ∈ X satisfies W T
∗ G(x)W∗ ≺ 0. This motivates to define

W :=
{
x ∈ X | W T

∗ G(x)W∗ ≺ 0
}

and Gr := {x ∈ W| Gr(x) � 0}

such that
x∗ ∈ W ∩ G = Gr. (7.58)

Since W is open and x∗ ∈ W, a whole neighborhood of x∗ lies in W . Hence local optimality
of x∗ on G is equivalent to its local optimality on W ∩ G and, since W ∩ G = Gr, it is also
equivalent to local optimality of x∗ on Gr. Hence x∗ is a local minimal point of f on G
if and only if x∗ is a local minimal point of f on Gr. As the essential difference, since
Gr(x∗) = 0, all constraints Gr(x) � 0 are ‘binding’ at x∗, whereas this is not necessarily
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true for G(x) � 0.

We now clarify that the first order necessary optimality conditions for minimizing f on G
and on Gr are fully equivalent. First observe that

∂Gr(x∗)d = V T
∗ [∂G(x∗)d]V∗ −

(
V T
∗ [∂G(x∗)d]W∗

) (
W T

∗ G(x)W∗

)−1 (
W T

∗ G(x)V∗
)
−

−
(
V T
∗ G(x)W∗

) (
W T

∗ G(x)W∗

)−1 (
W T

∗ [∂G(x∗)d]W∗

) (
W T

∗ G(x)W∗

)−1 (
W T

∗ G(x)V∗
)
−

−
(
V T
∗ G(x)W∗

) (
W T

∗ G(x)W∗

)−1 (
W T

∗ [∂G(x∗)d]V∗
)

= V T
∗ [∂G(x∗)d]V∗,

where the most right equality follows since G(x∗)V∗ = 0. This allows us to relate the
Lagrange multipliers Λ∗ corresponding to the constraint G(x∗) � 0 to the set

Σ∗ := {Σ � 0 : ∂f(x∗) + Trace(Σ ∂Gr(x∗)) = 0} ,

of the Lagrange multipliers related to Gr(x) in the following simple fashion.

Lemma 7.13 The set of Lagrange multipliers Λ∗ is related to Σ∗ by Λ∗ = V∗Σ∗V
T
∗ and

Σ∗ = V +
∗ Λ∗(V

+
∗ )T with the Moore-Penrose [94] left inverse V +

∗ of V∗. In particular Λ∗ 6= ∅
iff Σ∗ 6= ∅.

Proof. For an arbitrary Σ ∈ Σ∗ we infer

∂f(x∗) + Trace(V∗ΣV
T
∗ ∂G(x∗)) =

= ∂f(x∗) + Trace(ΣV T
∗ ∂G(x∗)V∗) =

= ∂f(x∗) + Trace(Σ∂Gr(x∗)) = 0,

V∗ΣV
T
∗ � 0 and V∗ΣV

T
∗ G(x) = 0 such that V∗ΣV

T
∗ ∈ Λ∗ and hence V∗Σ∗V

T
∗ ⊂ Λ∗. On the

other hand, for an arbitrary Λ ∈ Λ∗, ΛG(x) = 0 implies that Λ can be decomposed into
Λ = V∗ΣV

T
∗ for some unique Σ � 0. Furthermore Λ ∈ Λ∗ implies

0 = ∂f(x∗) + Trace(Λ ∂G(x∗)) =

= ∂f(x∗) + Trace(V∗ΣV
T
∗ ∂G(x∗)) =

= ∂f(x∗) + Trace(Σ∂Gr(x∗))

such that we conclude Σ ∈ Σ∗. Since Λ ∈ Λ∗ is arbitrary we infer Λ∗ ⊂ V∗Σ∗V
T
∗ .

Summarizing we have shown V∗Σ∗V
T
∗ = Λ∗. Since V +

∗ V∗ = I this furthermore implies

Σ∗ = V +
∗

(
V∗Σ∗V

T
∗

)
(V +

∗ )T = V +
∗ Λ∗(V

+
∗ )T .

All this motivates to formulate the second order conditions in terms of the (reduced)
Lagrangian

lr(x,Σ) = f(x) + Trace(ΣGr(x)).

Let us now continue under the assumption that Σ∗ is nonempty (without any hypotheses
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on constraint qualifications). After fixing some Σ∗ ∈ Σ∗, we introduce the new constraint
set

G∗ :=
{
x ∈ W | uTGr(x)u ≤ 0 for all u ∈ Ker(Σ∗) and Gr(x)Σ∗ = 0

}
.

This definition is motivated by

f(x) = lr(x,Σ∗) for all x ∈ G∗, (7.59)

which will be essential in proving the following two results.

Lemma 7.14 If x∗ is a local minimal point of f on G, then it is also a local minimum
point of lr(·,Σ∗) on G∗.

Proof. Choose an open neighborhood U of x∗ such that x∗ is a minimal point of f on
U ∩ G. The set V := W ∩ U has the property x∗ ∈ V ∩ G∗ ⊂ V ∩ Gr = V ∩ G due to (7.58)
and V ⊂ W. Hence x∗ is also a minimal point of f on V ∩ G∗. Now we use (7.59) in order
to infer that the same property holds for the Lagrangian.

Theorem 7.15 (Second order necessary optimality condition) Suppose that x∗ is
a local minimal point of f on G. Then

∂2
xlr(x∗,Σ∗)(d, d) ≥ 0 for all d ∈ TG∗

(x∗).

Proof. Represent d ∈ TG∗
(x∗) as d = λs with λ ≥ 0, limν→∞ sν/‖sν‖ = s where sν 6= 0

for all ν = 1, 2, . . . and limν→∞ ‖sν‖ = 0 and x∗ + sν ∈ G∗. We infer limν→∞ ǫν = 0 for

ǫν :=
lr(x∗ + sν ,Σ∗) − lr(x∗,Σ∗) − ∂xlr(x∗,Σ∗)sν − 0.5 ∂2

xlr(x∗,Σ∗)(sν , sν)

‖sν‖2
.

We make use of ∂xlr(x∗,Σ∗) = 0 by the definition of Σ∗ to get

lr(x∗ + sν ,Σ∗) − lr(x∗,Σ∗)

‖sν‖2
= ǫν + 0.5 ∂2

xlr(x∗,Σ∗)

(
sν

‖sν‖
,
sν

‖sν‖

)

.

At this point we exploit x∗, x∗ + sν ∈ G∗ to infer

lr(x∗ + sν ,Σ∗) = f(x∗ + sν) ≥ f(x∗) = lr(x∗,Σ∗)

for all large ν by local optimality. Taking the limit implies ∂2
xlr(x∗,Σ∗)(s, s) ≥ 0 and hence

∂2
xlr(x∗,Σ∗)(d, d) ≥ 0.

If we define the linearization cone of G∗ at x∗ as

L∗(x∗) =
{
d ∈ X : uT [∂Gr(x∗)d]u ≤ 0 for all u ∈ Ker(Σ∗) and [∂Gr(x∗)d]Σ∗ = 0

}
,

(7.60)
it is again simple to show that TG∗

(x∗) ⊂ L∗(x∗).

Lemma 7.16 The inclusion TG∗
(x∗) ⊂ L∗(x∗) holds true in general.
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Proof. Take arbitrary d ∈ TG∗
(x∗), u ∈ Ker(Σ∗) and v, w ∈ R

q, where q is the number
of rows of Gr(x). The mapping g(x) := uTGr(x)u + vTGr(x)Σ∗w satisfies g(x) ≤ 0 for
all x ∈ G∗ and g(x∗) = 0, which implies that g attains a maximum at x = x∗ on G∗. By
Theorem 7.7 this implies

∂g(x)d = uT [∂Gr(x∗)d]u+ vT [∂Gr(x∗)d] Σ∗w ≤ 0.

Since u, v and w were arbitrary we infer

uT [∂Gr(x∗)d]u ≤ 0 for all u ∈ Ker(Σ∗) and [∂Gr(x)d]Σ∗ = 0.

Therefore d ∈ L∗(x∗).

We will show that TG∗
(x∗) = L∗(x∗) if the following two conditions are satisfied:

X ∋ d 7→ [∂Gr(x∗)d]Σ∗ ∈ {Y Σ∗ : Y = Y T} is surjective (7.61)

and

∃d0 ∈ X with [∂Gr(x∗)d0] Σ∗ = 0 and uT [∂Gr(x∗)d0]u < 0 for all u ∈ Ker(Σ∗)\{0}.
(7.62)

To show TG∗
(x∗) = L∗(x∗) we additionally need the following auxiliary result.

Lemma 7.17 Consider a continuously differentiable function h : R
m 7→ R

n with x∗ ∈ R
m

such that h(x∗) = 0 and ∂h(x∗) is surjective. Then for each d ∈ Ker(∂h(x∗)) there exist
an ǫ > 0 and a continuously differentiable curve c : (−ǫ, ǫ) → R

m with c(0) = x∗ such that
h(c(t)) = 0 for all t ∈ (−ǫ, ǫ) and d

dt
c(0) = d.

Proof. See [125].

We are now in the position to prove TG∗
(x∗) = L∗(x∗) under the hypotheses (7.61) and

(7.62).

Theorem 7.18 If (7.61) and (7.62) hold true then TG∗
(x∗) = L∗(x∗).

Proof. Let d0 be a vector that satisfies (7.62). We will first show that d0 ∈ TG(x∗). If
d0 = 0 then d0 ∈ TG(x∗), so let us assume d0 6= 0. To prove d0 ∈ TG(x∗) we will construct a
sequence sν that satisfies (7.48). Let us choose a orthogonal matrix UΣ∗

=
(
VΣ∗

WΣ∗

)

such that the columns of VΣ∗
span the kernel of Σ∗. Furthermore, define

h∗(x) :=

(
vec
(
V T

Σ∗

Gr(x)WΣ∗

)

svec
(
W T

Σ∗

Gr(x)WΣ∗

)

)

,

where svec is as defined in (7.9). The definition of h∗ is motivated by

h∗(x) = 0 if and only if Gr(x)Σ∗ = 0 (7.63)

and (7.61) implies that ∂h∗(x∗) is surjective.
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Now observe that (7.62) implies [∂Gr(x∗)d0] Σ∗ = 0 and hence ∂h∗(x∗) = 0. Combined
with surjectivity of ∂h∗(x∗) and Lemma 7.17 we conclude that there exists an ǫ > 0 and a
continuously differentiable curve c : (−ǫ, ǫ) → R

m, such that h(c(t)) = 0 for all t ∈ (−ǫ, ǫ)
and d

dt
c(0) = d0. Since d

dt
c(0) = d0 6= 0 there exists a sequence tν such that limν→∞ tν = 0

and

tν ∈ (−ǫ, ǫ) and c(tν) 6= c(0) = x∗ for all ν.

If we therefore choose sν = c(tν) − x∗, then

lim
ν→∞

sν

‖sν‖
= lim

ν→∞

c(tν) − x∗
‖c(tν) − x∗‖

= lim
ν→∞

c(tν)−c(0)
tν∥

∥
∥

c(tν)−c(0)
tν

∥
∥
∥

=
d
dt
c(0)

∥
∥ d

dt
c(0)

∥
∥

=
d0

‖d0‖
= λd0,

for λ = 1
‖d0‖

. Furthermore h(c(t)) = 0 for all t ∈ (−ǫ, ǫ) implies that Gr(x∗ + sν)Σ∗ =

Gr(c(tν))Σ∗ = 0 for all ν.
Finally, let us show that for all large enough ν

uT∂Gr(x∗)(sν)u < 0 for all u ∈ Ker(Σ∗)\{0}

or equivalently

V T
Σ∗

Gr(x∗ + sν)VΣ∗
≺ 0. (7.64)

We show that (7.64) holds true for all large enough ν using similar arguments as in Theorem
7.11. For this purpose define R(t) := V T

Σ∗

Gr(c(t))VΣ∗
and

ǫν :=
R(tν) −R(0) − ∂R(0)(tν)

tν

such that limν→∞ ǫν = 0. Since Gr(x∗) = 0 we have R(0) = V T
Σ∗

Gr(x∗)VΣ∗
= 0 and by the

chain rule of differentiation we conclude

∂R(0) = V T
Σ∗

[

∂Gr(x∗)
d

dt
c(0)

]

VΣ∗
= V T

Σ∗

[∂Gr(x∗)d0]VΣ∗
.

This implies that

1

tν

(
V T

Σ∗

Gr(x∗ + sν)VΣ∗

)
=
R(tν)

tν
= ǫν +

1

tν
R(0)+

1

tν
[∂R(0)tν ] = ǫν +

1

tν
V T

Σ∗

[∂Gr(x∗)d0]VΣ∗

Since V T
Σ∗

[∂Gr(x∗)d0]VΣ∗
≺ 0 by (7.62) we infer that for all large enough ν (7.64) holds

true.
In summary, the sequence sν satisfies for all large enough ν all the conditions in (7.48)

such that limν→∞
sν

‖sν‖
= λd0 ∈ TG(x∗) and hence d0 ∈ TG(x∗).

Now choose an arbitrary dl ∈ L∗(x∗). Then d(τ) := (1− τ)dl + τd0 for arbitrary τ ∈ (0, 1]
is a vector that satisfies (7.62) because

[∂Gr(x∗)d(τ)] Σ∗ = τ [∂Gr(x∗)d0] Σ∗
︸ ︷︷ ︸

=0 by (7.62)

+(1 − τ) [∂Gr(x∗)dl] Σ∗
︸ ︷︷ ︸

=0 by dl∈L∗(x∗)

= 0

and for arbitrary u ∈ Ker(Σ∗)\{0}
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uT [∂Gr(x∗)d(τ)]u = τ uT [∂Gr(x∗)d0]u
︸ ︷︷ ︸

<0 by (7.62)

+(1 − τ)uT [∂Gr(x∗)dl]u
︸ ︷︷ ︸

≤0 by dl∈L∗(x∗)

< 0.

Hence d(τ) for τ ∈ (0, 1] is contained in TG∗
(x∗). Finally, due to the fact that TG∗

(x∗)
is closed, dl = limτ→0, τ>0 d(τ) ∈ TG∗

(x∗). Since dl ∈ L∗(x∗) was arbitrary we conclude
L∗(x∗) ⊂ TG∗

(x∗). Combining this with Lemma 7.16 yields L∗(x∗) = TG∗
(x∗).

Under these constraint qualifications the second order condition can be formulated
with TG∗

(x∗) replaced by L∗(x∗). This shows that the second order necessary conditions
are ideally close to the following sufficient conditions for local optimality which do not
require any constraint qualification whatsoever.

Theorem 7.19 (Second order sufficient optimality condition) Suppose at x∗ ∈ G
there exists Σ∗ ∈ Σ∗ such that

∂2
xlr(x∗,Σ∗)(d, d) > 0 for all d ∈ L∗(x∗) \ {0}.

Then x∗ is a strict local minimum point of f on G.

Proof. If x∗ is not strictly locally optimal, there exists a sequence sν 6= 0 with sν → 0,
x+ sν ∈ G, sν/‖sν‖ → s 6= 0 and f(x∗ + sν) ≤ f(x∗). Clearly

f(x∗ + sν) − f(x∗) − ∂f(x∗)sν

‖sν‖
→ 0,

and
Gr(x∗ + sν) −Gr(x∗) − ∂Gr(x∗)sν

‖sν‖
→ 0.

For large ν we infer x∗+sν ∈ N∩G and hence x∗+sν ∈ Gr or Gr(x+sν) ≤ 0. Since Gr(x∗) =
0 we infer ∂f(x∗)s ≤ 0 and ∂Gr(x∗)s ≤ 0 by taking the limit. Since Σ∗ ≥ 0 we have
Trace(Σ∗[∂Gr(x∗)s]) ≤ 0. On the other hand we exploit ∂f(x∗)s+Trace(Σ∗[∂Gr(x∗)s]) = 0
to see Trace(Σ∗[∂Gr(x∗)s]) ≥ 0. Hence in fact Trace(Σ∗[∂Gr(x∗)s]) = 0 and thus even
[∂Gr(x∗)s]Σ∗ = 0. Therefore s ∈ L∗(x∗). By hypothesis we conclude ∂2

xlr(x∗,Σ∗)(s, s) > 0
which leads to a contradiction as follows. Since lr is C2 as a function of x we infer

lr(x∗ + sν ,Σ∗) + qν
‖sν‖2

→ 0.

where
qν := −lr(x∗,Σ∗) − ∂xlr(x∗,Σ∗)(sν) − ∂2

xlr(x∗,Σ∗)(sν , sν)

We now use lr(x∗ + sν ,Σ∗) = f(x∗ + sν) + Trace(Σ∗Gr(x∗ + sν)) ≤ f(x∗ + sν) ≤ f(x∗) =
f(x∗) + Trace(Σ∗Gr(x∗)) = lr(x∗,Σ∗). Due to ∂xlr(x∗,Σ∗) = 0 we arrive at

∂2
xlr(x∗,Σ∗)(sν , sν)/‖sν‖2 ≤ 0

which leads to ∂2
xlr(x∗,Σ∗)(s, s) ≤ 0 by taking the limit, a clear contradiction.
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Table 7.2: Parameters of two mass system
variable unit value
m1 kg 0.2
m2 kg 0.2
k N

m
300

c Ns
m

0.1

7.3.3 Discussion of the optimality conditions

We have derived in an elementary fashion the first and second order conditions in terms
of tangent and linearization cones under weak hypotheses. We believe that the presented
approach is considerably more elementary than those in [182,24] and their references, and
it still leads, in contrast to [60], to very ‘sharp’ conditions.

In this thesis the main purpose of the second order conditions is to verify at least
local optimality of a computed reduced order controller. Unfortunately, for the problem
under investigation the second order sufficient conditions cannot be satisfied since {x ∈
X : f(x) = γ} ∩ G never has isolated points. This simply follows from the fact that one
can change x by a coordinate change in the controller state without modifying f(x). A
precise analysis of this phenomenon and its effects on the CLIP algorithm are the subject
of Chapter 8.

m2m1

c

k

F

x2

Figure 7.6: One degree-of-freedom mechanical motion system with two masses connected
by a spring and a damper.

Example 7.20 We illustrate the optimality conditions with a fixed-order H∞-optimal con-
troller synthesis problem for a two-mass system as illustrated in Figure 7.6 3. The param-
eters of this system are given in Table 7.2

The transfer function from the force F to the position x2 is given by

G(s) =
s+ 3000

2s2(s2 + s+ 3000)
.

A Bode plot of this transfer function is shown in Figure 7.7. We have designed a full-order
H∞-optimal controller using the four-block design that will be discussed in full detail in
Section 9.3. The generalized plant has McMillan degree n = 7 and is given in Appendix E.
The optimal full order controller is shown in Figure 7.8. Its closed-loop H∞-norm is 1.78.
We reduced this controller to one with McMillan degree nc = 4 by closed-loop balanced

3This example is inspired by personal communication with E. van de Meché.
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Figure 7.7: Bode plot of open-loop system G

truncation, as discussed in Section 3.1.1. The resulting controller has a closed-loop H∞-
norm of 1.84. Based on this controller, a Riccati solution for X has been calculated,
as explained in Section 7.1.6. This gives a barrier value φ(xinit) = 21.9 with xinit :=
(γinit, Kinit, Xinit). We optimized the controller with the Interior Point method, where xinit

has been used as initial point. The resulting optimized controller results in a closed-loop
H∞-norm of 1.79. The reduced and optimized controller are shown in Figure 7.8 in red
and green, respectively.

We verify the optimality conditions for the final iterate xf = (γf, Xf, Kf) of the interior-
point algorithm for the optimization problem infG(x)�0 f(x), where x := (γ,X,K), f(x) :=
γ and G(x) := diag (−X,−B(γ,X,K)).

To test the first-order optimality conditions, we constructed matrices Vf that approx-
imately span the kernel of G(xf). We can not exactly find a bases of Ker(G(xf)) to V∗,
due to the round-off errors in the computations. Therefore, we computed Vf by first cal-
culating an eigenvalue decomposition of X. Then we constructed a matrix VX consisting
of all eigenvectors corresponding to eigenvalues that are smaller than 10−6ρsp(X), where
ρsp(·) denotes the spectral radius of a matrix. Similarly we constructed VB of all eigenvec-
tors corresponding to eigenvalues of B(γ,X,K) that are smaller than 10−6ρsp(B(γ,X,K)).
Finally, V is constructed by diagonal augmentation of these matrices: V = diag(VX , VB).

By solving a feasibility LMI problem in Matlab LMILAB, we found a vector d with
V T∂G(xf)dV ≺ 0, which implies that G approximately satisfies the MFCQ at xf, where
‘approximately’ refers to the approximate construction of the vectors that span the kernel
of G(xf).

To test the first-order necessary optimality conditions we solved the problem

inf
Λ�0, ΛG(xf)=0

‖∂xh(xf,Λ)‖ ,
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Figure 7.8: Bode plot of full order (blue), reduced (red) and optimized controller (green)

Figure 7.9: Active suspension system
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where h(x,Λ) := f(x) + Trace (Λ∂G(x)) The optimal value is 3.2 · 10−12,which is approxi-
mately attained at Λf. Λf is block-diagonal and allows the partitioning

Λf =

(
Λf,X 0
0 Λf,B

)

,

where Λf,X ∈ Sn+nc , Λf,X ∈ Sn+nc+m1+p1, n + nc = 10 and n + nc + m1 + p1 = 14. We
computed an approximation of the linearization cone L∗(xf), as defined in (7.60). For
simplicity, we discard the extra condition related to Ker(Λf), i.e. instead of (7.60) we
compute the subspace

Lsubspace(xf) = {d ∈ X : [∂Gr(xf)d]Σf = 0} .

Since L∗(x) ⊂ Lsubspace(x) for all x ∈ X , the sufficient condition in Theorem 7.19 holds
true if L∗ is replaced by Lsubspace. We compute Lsubspace(xf) by computing the vectors that
approximately span the kernel of the matrix MLsubspace

that represents the mapping

X ∋ d→ [∂Gr(xf)d] Λsubspace.

This span is approximately determined by a singular value decomposition MLsubspace
=

ULsubspace
ΣVLsubspace

: it consists of all column vectors of VLsubspace
that correspond to singu-

lar values that are smaller than 10−8‖MLsubspace
‖.

We tested a second order sufficient condition for optimality by computing the eigenvalues
of the matrix representation HLsubspace

of the mapping

Lsubspace(xf) ∋ d→ ∂2
xlr(xf,Σf)(d, d)

Since HLsubspace
∈ S34 is symmetric, all the eigenvalues of HLsubspace

are real-valued. If they
are furthermore all strictly positive, Theorem 7.19 implies that xf is locally optimal. Eight
of the 34 eigenvalues of HLsubspace

are smaller than 10−12, the most negative one equal to
−5.9 · 10−12. Hence, the sufficient condition is violated. This example will be continued in
Section 8.4.3 in Chapter 8, where optimality will be tested for the same problem, but with
a different parametrization with a smaller number of decision variables.

Remark. The outcome of the optimality conditions strongly depends on the accuracy
of the LMI solver that is used and the accuracy of the calculation of the vectors that span
the bases of the kernels of G, Λ etc.

7.4 Application

7.4.1 Controller design for an active suspension system

The IP method is applied to the reduced order synthesis of an active suspension system,
see Figure 7.9. This design, together with the IP algorithm and the optimality conditions
have been published in [93, 90]. The reader is referred to [118] for details on the active
suspension system. The system has been a benchmark for the synthesis of fixed-order
controllers. A special issue [117] of the European Journal of Control has been devoted
to this benchmark, which contains a nice collection of low-order controller designs for
the system. The experimental performance of these controllers, including the controller
designed in this section, are compared in it.
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Figure 7.10: Closed-loop system of the active suspension system
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Figure 7.11: Open loop primary and secondary path frequency response

The structure of the closed-loop system is shown in Figure 7.10. The control input u
drives the position of the piston. The measured output is the residual force. The transfer
function between the excitation of the shaker and the residual force is called the primary
path or the ‘disturbance model’ D. The system G is in this setting called the ‘secondary
path’. Its transfer function G(z) maps the control input into the residual force. The control
objective is to compute a linear discrete-time controller which minimizes the residual force
around the first and second vibration modes of the primary path (disturbance) model D

and which distributes the amplification of the disturbances over the higher frequencies.
We choose the sampling frequency at fs = 800Hz, which is also the sampling frequency of
the identified discrete-time models. The frequency response of the primary path D(z) and
secondary path G(z) are shown in Figure 7.11. Note that a linear frequency axis is used
in these and the plots presented in the sequel. For such an axis is chosen in this chapter,
since the performance specifications for the benchmark system in [117] are specified with
straight lines on a Bode magnitude plot with linear frequency axis.

The control objective is represented in terms of constraints on the closed loop sensi-
tivity S(z) = 1

1+G(z)K(z)
and controller sensitivity K(z)S(z) = −K(z)

1+G(z)K(z)
in the frequency

domain, as shown in Figures 7.12 and 7.13 respectively.

We compute the controllers by H∞ synthesis in discrete-time using a four-block design,
as was depicted in Figure 2.2. This four-block interconnection structure is repeated in
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Figure 7.12: Sensitivity
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Figure 7.13: Controller Sensitivity
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Figure 7.14: Four-block controller set-up

Figure 7.14 for the reader’s convenience. We used a four-block design, since this leads in
our experience to better results for this system (i.e. a closed-loop that better satisfies the
performance criteria) than an S/KS [183] design. A further motivation of this choice and
detailed explanation of the design procedure is postponed to Section 9.3. An identified 17th

order discrete-time model G(z) of the secondary path G is used. The transfer function
P (z) of the plant P is given by:

P =





−W1V1 −W1GV2 −W1G
0 0 W2

−V1 −GV2 −G



 (7.65)

and the closed loop is given by

P =

(
W1SV1 W1SGV2

W2KSV1 W2KSGV2

)

where S(z) = 1
1+K(z)G(z)

is the sensitivity and V1(z), V2, W1 and W2(z) are the weights in
RH∞ The transfer functions of the weights are obtained by full order synthesis tuning.
They are given by:

V1(z) =
0.575z4 − 1.207z3 + 1.205z2 − 0.75z + 0.2335

z4 − 2.498z3 + 3.022z2 − 2.336z + 0.8914
W1(z) = 1

W2(z) =
8.952z6 − 17.52z5 + 14.16z4 − 6.046z3 + 1.437z2 − 0.1799z + 0.009276

z6 + 0.8845z5 + 0.4842z4 + 0.1615z3 + 0.03581z2 + 0.004889z + 0.0002892
V2(z) = 0.01

The frequency responses of V1 and W2 are given in Figures 7.15 and 7.16 respectively. The
6th order weight W2 suppresses large control action at high frequencies (larger than 200Hz).
The weight V1 is a low order approximation of the transfer function of the disturbance
model D(z). It is a 4th order filter with reversed notches at 31.5Hz and 160Hz, which are
the most dominant vibration modes of the primary path. The order of the plant is 27: 17
are attributed to the identified model of the secondary path G and 10 to the weighting
functions. For both full and fixed-order design the plant is bi-linearly transformed into a

continuous-time model using Tustin’s approximation z → 1+ 1
2
sh

1− 1
2
sh

, where h = 1
fs

= 1.25ms

is the sampling period. The controller synthesis is performed in continuous time and the
controller is transformed back into discrete time. The frequency response of the controllers
are shown in Figure 7.17 where the following abbreviations are used:

• Full: full order controller design. The controller order is 28.

• Balreal: fixed-order controller design by a posteriori reduction as explained in Sec-
tion 3.1. The controller order is 6.
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Figure 7.15: Weight V1(z): amplitude frequency response.
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Figure 7.16: Weight W2(z): amplitude frequency response.
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• CC: fixed-order controller design by the cone complementarity method as explained
in Section 3.2.1. The controller order is 6.

• CLIP: fixed-order controller design by the curved line-search Interior Point method
as explained in Section 7.1. The controller order is 6.

The computed fixed-order controllers are all of order nc = 5. Because it is required that
the controller gain is equal to zero at frequency 0.5fs, an extra term z+1

z
is added to all

controllers after the fixed-order design. The displayed fixed-order controllers all have there-
fore McMillan degree 6. The extra term z+1

z
does not change the transfer function of the

controllers much in the important frequency range (0-300[Hz]), such that the performance
loss due its a posteriori addition is probably small. The controllers are implemented at
sampling frequency fs = 800Hz. Their closed loop performance is shown in Figures 7.12
and 7.13 respectively. The transfer functions of the fixed-order controllers are given in Ap-
pendix B. The maximum singular value of the closed loop plant σ̄

(
Fl(P (ejωh), K(ejωh))

)
is

plotted in Figure 7.18 as function of the frequency ω, where P is the transfer function of the
plant as defined in (7.65) and h = 1.25ms the sampling period. The full order H∞-optimal
controller (denoted by ‘Full’) yields a closed-loop performance of ‖Fl(P,K)‖∞ ≈ 2.48,
where ‖ · ‖∞ denotes the discrete-time H∞-norm. The full order controller has been re-
duced to a 5th order controller (denoted by ‘Balreal’) by closed loop weighted controller
reduction. The H∞-norm of the weighted closed-loop is 3.41 for this controller. Although
the pole-pair at 160Hz is present in both full-order and Balreal controller, the shape of the
amplitude of the frequency response around this frequency is very different. This results
in large sensitivity peaks slightly below and above 160Hz. These peaks are also the reason
for the increase of the weighted closed-loop H∞-norm, as is clear from Figure 7.18. This
controller served as starting point for the Curved Line-search Interior Point method, as
presented in Section 7.1. By this method we computed a controller (denoted by ‘CLIP’)
with weighted closed-loop H∞-norm 2.51, which is very close to that of the full order con-
troller. From the magnitude of the frequency response of the controller in Figure 7.17 it is
clear that the full order controller exhibits many small peaks that are likely to be irrelevant
for the closed loop behavior. (The phase of the frequency response of the controllers is
shown for completeness in Appendix B.) The CLIP controller has a resonant pole-pair at
about 160Hz respectively, close to the second resonant mode. It does not have a pole-pair
at 31.5Hz to suppress the first vibration mode, because the open-loop plant has already a
mode there. The resonances of the plant above 200Hz are not incorporated in the CLIP
controller. This does not lead to much performance loss with respect to the full-order
controller, apparently because these resonances are not so important for the suppression
at the vibration modes. The closed-loop interconnection of the plant with the controller
(denoted by ‘CC’) computed by the cone complementarity method has H∞-norm 2.63. Its
shape at high frequencies (> 200Hz) is remarkably different from the other controllers. It
also violates the specifications on the controller sensitivity at high frequencies, see Figure
7.13. The high-frequency content can probably be suppressed with a different weight W2.
We have chosen however, to use the same weights for all controllers.

The performance and computation time are shown in Table 7.4. The number of decision
variables in the Interior Point optimization is 1+ 1

2
(n+nc)(n+nc +1)+mc = 565. Closed-

loop experiments have been performed on the experimental setup in Grenoble with the
controller computed with the CLIP method. The disturbance force is a Pseudo-Random
Binary Signal (PRBS) applied to the system by a shaker. Estimates of the square root of
the power spectral densities of the sensitivity and controller sensitivity are shown in Figures
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Figure 7.17: Controllers: frequency response
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Figure 7.18: Maximum singular value of the closed loop plant
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7.19 and 7.20, which illustrates the good performance of the controller. The resonances at
37Hz and 160Hz are sufficiently suppressed and the control effort satisfies the specifications.
A slight violation of the specification is observed around 180Hz, 230Hz and at a few higher
frequencies.
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Figure 7.19: Experimental results: estimated square root spectral density of sensitivity
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Figure 7.20: Experimental results: estimated square root spectral density of controller
sensitivity

7.4.2 Discussion

Due to its relatively low computational effort, the closed loop balanced reduction method
is an efficient method for tuning of the weighting functions for reduced order H∞ synthe-
sis. Because the method requires only the solution of two Lyapunov equations if the full
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Table 7.3: Distribution of computation time in CLIP algorithm
component relative comp. time

Function evaluations 2.7 %
Intermediate analysis steps 16.6%
Trust region: 71.1%

Hessian computation 15.8 %
Schur decomposition H = QTDQ 33.5%
Solve (7.34) 21.8%

order controller is given, it is very efficient. The closed loop performance of the resulting
controllers can also be quickly verified. The method is therefore very fast. Even the closed
loop performance for all controllers of order 1 up to full order can be computed within
a few seconds in this application. A disadvantage of the method is that stability of the
closed loop with the reduced controller is not necessarily preserved and that there is no
guarantee of optimality in any respect.

We have shown that the CLIP method converges to a feasible solution to the BMI
problem for H∞-synthesis that satisfies the first order necessary conditions. This contrasts
with the other methods, for which no converge to a local optimal solution can be proven.
Furthermore we have provided numerically verifiable tests for the first and second order
necessary and sufficient optimality conditions. We have verified that the first order neces-
sary conditions are indeed satisfied by the solution. The computation time of 8 min 11 sec
is reasonable4 and significantly smaller than for the Cone Complementarity algorithm. The
distribution of the computation time over the different tasks is shown in Table 7.3. The
trust region steps take 71.1% of the total computation time. The Hessian 16.6% of the
computation is spent on the intermediate analysis steps by LMI optimization as discussed
in Section 7.1.7.

The number of decision variables in the CLIP algorithm is large, since it contains the
Lyapunov variable X which has 1

2
(n+nc)(n+nc +1) variables. Apparently this is the price

we have to pay to formulate the problem using the Bounded Real Lemma, i.e. with the
constraints (7.1) and (7.2). The main advantage of this formulation is smooth dependence
of the objective and constraints on the decision variables. The IP algorithm heavily exploits
this smoothness by computing search directions based on first and second-order derivatives.

The controller KBalreal served in the application as a good initial controller for the CLIP
method. The CLIP method yields a controller with closed-loop H∞-norm that is only
slightly larger than the closed-loop H∞-norm of the full order controller. The performance
of the controller has also been evaluated in terms of the original control objectives, not
only in terms of the closed-loop H∞-norm. The experimental results have illustrated that
the CLIP controller performs also well in this respect, i.e. it adequately suppresses the
resonance frequencies of the suspension system.

The closed-loop H∞-performance of the CC controller is in between that of KBalreal and
KCLIP. An advantage of the method is that the computationally most expensive step of the
method, step 2 in Algorithm 3.3, can be solved with standard software, i.e. an LMI-solver.
However, for systems with large state dimensions the LMI problems in this step have too
many decision variables and constraints to be solved efficiently. This will be illustrated in
Chapter 9 for another LMI-based method, the XK-iteration.

4Due to more efficient implementation the computation time is much smaller than reported in [93]

156



The interested reader is referred to [58] for an application of a genetic algorithm to our
four-block design as discussed in this section.

Table 7.4: Performance and computation time of controllers
Controller γ Computation time
Full order 2.4759 11.9sec

Balanced reduced 3.4051 12.8sec
CLIP 2.5065 8min11sec
CC 2.6302 14min33sec

7.5 Conclusion

In this chapter we have presented an algorithm for structured controller synthesis based
on Interior Point Optimization. Local convergence is guaranteed using a trust-region,
which gives a partial solution to the problem posed in À of Section 2.8. The algorithm is
applicable to every polynomial SDP.

To reduce the computational complexity, we have exploited the control-theoretic charac-
teristics in the Newton step computation. The result is an algorithm that is able to solve
controller design problems in industrial practice, as is illustrated with the design example
for the active suspension system. This chapter therefore has also contributed to an answer
of the question posed in Â of Section 2.8.

Finally, we have developed local optimality certificates for general SDP problems and
for the fixed-order control problem in particular. The presented LMI conditions are good
means to verify the guaranteed local convergence of the IP algorithm. The results fur-
thermore contribute to an answer to Á in Section 2.8, in the sense that they provide a
computationally cheap alternative to the global certificates presented in Chapters 4 and 5.
As mentioned on page 145 a reduced parametrization is needed to be able to verify strict
optimality of dynamic controllers. This is the subject of the next chapter.

As final remark, we would like to point to the parallel with the SOS relaxations dis-
cussed in Chapter 4 that were also applicable to every polynomial SDP, and where the
exploitation of its control-theoretic characteristics in Chapter 5 also reduced the compu-
tational complexity of the algorithm.
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Chapter 8

Over-parametrization of state-space

controllers

The state-space representation of a transfer function of a dynamic controller is not unique in
general. This may introduce over-parameterization in fixed-order H∞-optimal controller
synthesis algorithms and absence of verifiably locally optimal controllers, by which we
mean controllers that satisfy the second order sufficient optimality conditions as have been
presented in the previous chapter. A more important and often overlooked drawback of
over-parametrization is that it complicates the computation of accurate search directions
and hampers the speed of convergence of optimization algorithms.

In this chapter we analyze those negative effects of over-parametrization on the Interior
Point algorithm of the previous chapter and present a method to resolve them.

If the controller is parameterized in a different fashion than in state-space coordinates,
over-parametrization does not necessarily occur. An example is the parametrization of a
SISO controllers in terms of the coefficients of the numerator and denominator polynomial
of the elements of its transfer function, and the controllable and observable canonical forms.
These parametrizations are sensitive to round-off errors [128], and are therefore not suit-
able to synthesize fixed-order controllers for systems with large state dimension. Reduced
parametrization of all transfer functions G ∈ RH∞ with ‖G‖∞ < 1 have been presented
in [185] and [162]. However, it seems not straightforward to apply these parameterizations
to fixed-order controller synthesis in state-space coordinates.

Over-parametrization due to similarity transformations is a fundamental problem in
optimization with state-space realizations. In system identification this has been recognized
by several authors [198,127,78]. To the best of our knowledge, and surprisingly, there has
not been any contribution on over-parametrization in the context of controller synthesis.

In this chapter we discuss the effects of over-parametrization on the Interior Point
method as has been presented in the previous chapter. Although focus is on this particular
optimization routine, many of the results are applicable to other algorithms as well. We
analyze how optimizing over a reduced search space may alleviate the negative effects
of over-parameterization. Since the optimal H∞-controller transfer function is often not
unique, we cannot guarantee a priori the existence of verifiable optimal points in the
reduced parameter space. The best we can achieve is that, if a locally uniquely optimal
controller transfer function exists, its reduced state-space coordinates are also verifiably
locally optimal. We derive conditions on the reduced parameterization that guarantee this.

Secondly, we present a reduced parametrization of the controller that
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• satisfies for almost all controllers the conditions mentioned above and

• covers with a single coordinate system all (possible MIMO) controller transfer func-
tions with a McMillan degree not larger than a fixed number nc.

For an H∞-optimal controller design example we show that optimizing in a reduced space
requires less corrector steps in the IP algorithm and yields a better final closed-loop H∞-
norm. The proposed parametrization therefore strengthens the optimality certificates pre-
sented in the previous chapter, and improves the IP algorithm as well.

The outline of this chapter is as follows. In Section 8.1 we explain why the decision vari-
ables in the Interior Point-method are over-parameterized. In Section 8.2 we describe the
effects of over-parametrization on the verifiability of the sufficient optimality conditions.
Furthermore, we present the above mentioned conditions to make the existence of verifi-
able optimal points possible. We illustrate the conditions with the canonical controllable
form in Section 8.3 for SISO controllers. Finally, in Section 8.4 we present the reduced
parametrization for MIMO controllers as mentioned above and apply it to a control design
example.

8.1 Reasons for over-parametrization

We explain in this section that similarity transformations of the controller result in over-
parametrization of the minimization of the barrier function in the corrector step of the
Interior Point algorithm presented in the previous chapter. The state-space controller with
McMillan degree nc can be represented with the matrix

K :=

(
AK BK

CK DK

)

,

where AK ∈ R
nc×nc , BK ∈ R

nc×p2 , CK ∈ R
m2×nc and DK ∈ R

m2×p2 . We assume in this
chapter that nc > 1. Let us denote the number of variables inK bymc := (nc+m2)(nc+p2).
The H∞-optimal control problem is formulated as minimizing γ subject to

B(γ,X,K) := −





Acl(K)TX +XAcl(K) XBcl(K) Ccl(K)T

Bcl(K)TXcl −γI Dcl(K)T

Ccl(K) Dcl(K) −γI



 ≻ 0 (8.1)

and
X ≻ 0, (8.2)

where (Acl(K), Bcl(K), Ccl(K), Dcl(K)) are defined in (2.8). For simplicity we do not take
the constraints in (7.3) into account. These constraints were introduced in the previous
chapter to bound the decision variables.

Recall that at each corrector step of the IP algorithm the log-barrier function

φr (x, µ) :=
γ

µ
− log (det (B(γ,X,K))) − log(det(X)) (8.3)

is minimized with respect to x := (γ,X,K) for fixed barrier parameter µ > 0. The value
of the barrier function is invariant under certain transformations of the decision variables.
To show this, we consider a similarity transformation of the controller states Tzk = xk,
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where T is a matrix in R
nc×nc and det(T ) = 1. This change of coordinates of the controller

states transforms K into

Ktrans(K,T ) :=

(
T 0
0 I

)−1

K

(
T 0
0 I

)

=:

(
Atrans

K (K,T ) Btrans
K (K,T )

Ctrans
K (K,T ) Dtrans

K (K,T )

)

. (8.4)

The corresponding closed matrices are
(
T̄−1Acl(K)T̄ T̄−1Bcl(K)
Ccl(K)T̄ Dcl(K)

)

,

where:

T̄ =

(
I 0
0 T

)

. (8.5)

Furthermore B(γ,X,K) as defined in (8.1) transforms likewise into:

−





(T̄−1Acl(K)T̄ )TX +X(T̄−1Acl(K)T̄ ) XT̄−1Bcl(K) (Ccl(K)T̄ )T

(T̄−1Bcl(K))TX −γI Dcl(K)T

Ccl(K)T̄ Dcl(K) −γI



 . (8.6)

Since det(T ) = 1 the transformed controller Ktrans(K,T ) together with

Xtrans(X,T ) := T̄ TXT̄ , (8.7)

have the same value of the barrier function φr in (8.3) as the original variables. To see
this, define

xtrans(x, T ) := (γ, svec(Xtrans(X,T )), vec(Ktrans(K,T ))) (8.8)

and observe that

φr(x
trans(x, T ), µ) =

=
γ

µ
− log

(

det

[(
T̄ T 0
0 I

)

B(γ,X,K)

(
T̄ T 0
0 I

)])

− log(det(T̄ TXT̄ )) = φr(x).

For later reference we derive now the first- and second-order derivatives1 of xtrans. The
derivative with respect to x = (γ,X,K) is easily derived to be

∂xx
trans(x, T )(dx) =

(
dγ, ∂1X

trans(X,T )(dX), ∂KK
trans(K,T )(dK)

)
, (8.9)

where

∂KK
trans(K,T )(dK) =

(
T−1 0
0 Im2

)

dK

(
T 0
0 Ip2

)

∂XX
trans(X,T )(dX) =

(
In 0
0 T

)T

dX

(
In 0
0 T

)

(8.10)

The second derivative of xtrans(x, T ) with respect to x is zero, i.e. ∂2
xx

trans(x, T )(dx1, dx2) =
0 for all dx1 and dx2. To get the derivative with respect to T , consider a small perturbation
dT . Then, a first order approximation of xtrans(x, T ) is

(

γ,

(
0 0
0 T + dT

)T

XT̄ + T̄ TX

(
0 0
0 dT

)

, Ktrans(K,T + dT )

)

,

1See e.g. [5] for some useful derivatives of standard matrix-valued functions.
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where

Ktrans(K,T+dT ) :=

(
T 0
0 Im2

)−1

K

(
T + dT 0

0 Ip2

)

+

(
−T−1dTT

−1 0
0 0

)

K

(
T 0
0 Ip2

)

such that the first derivative with respect to T is given by

∂Tx
trans(x, T )(dT ) =

(
0, ∂TX

trans(K,T )(dT ), ∂TK
trans(K,T )(dT )

)
(8.11)

where

∂TX
trans(K,T )(dT ) =

(
0 0
0 dT

)T

X

(
In 0
0 T

)

+

(
In 0
0 T

)T

X

(
0 0
0 dT

)

(8.12)

∂TK
trans(K,T )(dT ) =

(
∂TA

trans
K (K,T )(dT ) ∂TB

trans
K (K,T )(dT )

CKdT 0

)

with

∂TA
trans
K (K,T )(dT ) = −T−1dTT

−1AKT + T−1AKdT (8.13)

∂TB
trans
K (K,T )(dT ) = −T−1dTT

−1BK . (8.14)

The second derivative with respect to T is

∂2
Tx

trans(x, T )(dT 1, dT 2) =
(
0, ∂2

TX
trans(K,T )(dT 1, dT 2), ∂

2
TK

trans(K, Inc)(dT 1, dT 2)
)

(8.15)

where

∂2
TX

trans(X,T )(dT 1, dT 2) =

(
In 0
0 dT 1

)T

X

(
In 0
0 dT 2

)

+

(
In 0
0 dT 2

)T

X

(
In 0
0 dT 1

)

∂2
TK

trans(K,T )(dT 1, dT 2) =

(
∂2

TA
trans
K (K,T )(dT 1, dT 2) ∂2

TB
trans
K (K,T )(dT 1, dT 2)

0 0

)

with

∂2
TA

trans
K (K,T )(dT 1, dT 2) = T−1dT 2T

−1dT 1T
−1AKT + T−1dT 1T

−1dT 2T
−1AKT −

−T−1dT 1T
−1AKdT 2 − T−1dT 2T

−1AKdT 1

and

∂2
TB

trans
K (K,T )(dT 1, dT 2) = T−1dT 2T

−1dT 1T
−1BK + T−1dT 1T

−1dT 2T
−1BK . (8.16)

Finally, we partition dK as

dK =

(
dAK

dBK

dCK
dDK

)

,

where dAK
∈ R

nc×nc , dBK
∈ R

nc×p2 , dCK
∈ R

m2×nc and dDK
∈ R

m2×p2 . Then ∂x∂Tx
trans(x, T )

is given by:

∂x∂Tx
trans(x, T )(dx, dT ) =

(
0, ∂X∂TX

trans(X,T )(dX , dT )
)
, ∂K∂TK

trans(K,T )(dK , dT )
(8.17)
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where

∂X∂TX
trans(X,T )(dX , dT ) =

(
0 0
0 dT

)T

dX

(
In 0
0 T

)

+

(
In 0
0 T

)T

dX

(
0 0
0 dT

)

∂K∂TK
trans(K,T )(dK , dT ) =

(
∂K∂TA

trans
K (K,T )(dK , dT ) ∂K∂TB

trans
K (K,T )(dK , dT )

dCK
dT 0

)

with

∂K∂TA
trans
K (K,T )(dK , dT ) = T−1dTT

−1dAK
T + T−1dAK

dT

∂K∂TB
trans
K (K,T )(dK , dT ) = T−1dTT

−1dBK
.

8.2 Effects of over-parametrization on optimality con-

ditions

8.2.1 Optimality conditions for barrier problem

We will explain in this section why over-parametrization may cause numerical problems in
the optimization, and makes it impossible to verify the sufficient optimality conditions at
optimal points. We do this in a slightly more general setting than just considering Interior
Point minimization. For this purpose φr is replaced by f in this section and we consider

inf
x∈G

f(x), (8.18)

where G is an open subset of a vector space X of dimension m. We describe the over-
parametrization by a C2-mapping g : X ×Ω → X where Ω := {y ∈ Y| c(y) = 0} is a subset
of a vector space Y of dimension n < m and c is a C1-mapping. We use the following
notational shorthand for the image of the derivative of g at (x∗, y∗), if the domain is
restricted to the kernel of ∂c(y∗):

Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

)
:= {∂yg(x∗, y∗)d ∈ X | d ∈ Ker (∂c(y∗)) ⊂ Y}

To describe the over-parametrization we need the following assumption.

Assumption 8.1 The mapping g : X × Ω → X has the following properties:

(i.) for all x ∈ G there exists some ŷ ∈ Ω such that g(x, ŷ) = x

(ii.) ∂xg(x, y) is invertible for all x ∈ G and y ∈ Ω

(iii.) f and g satisfy

g(x, y) ∈ G and f(g(x, y)) = f(x) for all x ∈ G, y ∈ Ω (8.19)

(iv.) for all x∗ ∈ G, y∗ ∈ Ω there exists a d ∈ Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

)
\{0}

Example 8.2 We elucidate Assumption 8.1 with the corrector step of the Interior Point
method for structured H∞-optimal controller synthesis for nc > 1. f(x) is in this case given
by the barrier function in (8.3) and x = (γ,X,K). With X = R × R

p1+nc×m1+nc × Sn+nc

the domain of f is G := {x = (γ,X,K) ∈ X | X ≻ 0, B(γ,X,K) ≻ 0} . Let Y = R
nc×nc,
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c(y) := det(y) − 1 such that Ω is the set {T ∈ R
nc×nc| det(T ) = 1}. With x = (γ,X,K)

let the mapping g be defined by

g(x, y) := xtrans(x, y), (8.20)

where xtrans is as in (8.8). All items in Assumption 8.1 are satisfied in this case. Indeed,
with ŷ := Inc

∈ Ω, (i.) is satisfied for all x. Secondly, (ii.) follows from (8.9). (iii.) is true
since φr(x

trans(x, T )) = φr(x) for all x and T with det(T ) = 1. To show (iv.), consider
x∗ = (γ∗, X,K) ∈ G, and y∗ = T ∈ Ω. In the sequel we construct a dT that satisfies

• Trace(dT ) = 0

• ∂TX
trans(K,T )(dT ) 6= 0 in (8.12) is nonzero

These properties imply that ∂yg(x∗, y∗)(dT ) ∈ Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

)
\{0}. To simplify

the exposition, we denote the right lower block of dimension nc × nc of X by XK, i.e.

XK :=
(

0 Inc

)
X

(
0
Inc

)

;

then the right lower nc × nc block of (8.12) reads as

(
0 Inc

)
∂TX

trans(K,T )(dT )

(
0
Inc

)

= dT
TXKT + T TXKdT .

Let us first suppose that Trace(X−1
K T−T ) = 0; then obviously dT := X−1

K T−T does the job,
since Trace(dT ) = 0 and dT

TXKT + T TXKdT = 2Inc
, such that ∂TX

trans(K,T )(dT ) 6= 0.
Now suppose Trace(X−1

K T−T ) 6= 0. This implies that at least one element on the diagonal of
X−1

K T−T is nonzero, i.e. there exists a k ∈ {1, . . . , nc}, such that eT
kX

−1
K T−T ek 6= 0, where

ek is the kth basis vector in R
nc. Now if we choose dT := X−1

K T−T
(

Inc
− Trace(X−1

K
T−T )

eT
k

X−1
K

T−T ek
eke

T
k

)

,

then

Trace(dT ) = Trace(X−1
K T−T ) − Trace(X−1

K T−T )

eT
kX

−1
K T−T ek

Trace(X−1
K T−T eke

T
k ) = 0.

Furthermore

dT
TXKT + T TXKdT = 2Inc

− 2
Trace(X−1

K T−T )

eT
kX

−1
K T−T ek

eke
T
k ,

which is nonzero, since nc > 1. Hence dT has the desired properties, which concludes the
proof of (iv.).

Remark. It seems not very difficult to mold the over-parametrization due to group
structure in Sum-Of-Squares optimization as described in [67] into our framework. This
is, however, beyond the scope of this thesis work.

Since G is open, a first order necessary optimality condition for an arbitrary x∗ ∈ G
is

∂f(x∗)d = 0, for all d ∈ X , (8.21)

as has been described in Section 7.3. If x∗ satisfies (8.21), we call it a critical point .
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Lemma 8.3 Suppose Assumption 8.1 is true. If x∗ ∈ G is an arbitrary critical point of
(8.18), then g(x∗, y∗) is also a critical point of (8.18) for arbitrary y∗ ∈ Ω.

Proof. Differentiating (8.19) at x∗, y∗ with respect to x yields

∂f (g(x∗, y∗)) ∂xg(x∗, y∗) = ∂f(x∗).

Since ∂f(x∗) = 0 and ∂xg(x∗, y∗) is invertible by Assumption 8.1 we conclude

∂f(g(x∗, y∗)) = 0.

Remark. The notation ∂f(g(x∗, y∗)) has been used in the proof of Lemma 8.3, by
which we mean the derivative of f evaluated at x = g(x∗, y∗).

The following result shows that for a critical point x∗ ∈ G and arbitrary y ∈ Ω that
dimensions of the kernels of f at x = x∗ and at x = g(x∗, y∗) are equal. It will be used in
the proofs of the theorems that follow.

Lemma 8.4 If x∗ is a critical point then for arbitrary y∗ ∈ Ω the following holds true:

dim
(
Ker

(
∂2f(x∗)

))
= dim

(
Ker

(
∂2f(g(x∗, y∗))

))

Proof. Differentiating (8.19) at x∗, y∗ twice with respect to x yields for arbitrary d ∈ X

∂2f(x∗)(d, d) =

= ∂2f (g(x∗, y∗)) (∂xg(x∗, y∗)d, ∂xg(x∗, y∗)d) + ∂f (g(x∗, y∗))
(
∂2

xg(x∗, y∗)(d, d)
)

︸ ︷︷ ︸

=0 by Lemma 8.3

= ∂2f (g(x∗, y∗)) (∂xg(x∗, y∗)d, ∂xg(x∗, y∗)d) .

Since ∂xg(x∗, y∗) is invertible, the result follows.

Critical points that are optimal satisfy the second order necessary conditions

∂2f(x∗)(d, d) ≥ 0, for all d ∈ X . (8.22)

If x∗ is a critical point, then the following second order conditions are sufficient for (local)
optimality of x∗ for (8.18):

∂2f(x∗)(d, d) > 0 for all d ∈ X with d 6= 0. (8.23)

If there exists a g that satisfies Assumption 8.1, (8.23) will never be satisfied for a critical
point of (8.18). This is the content of the following theorem.

Theorem 8.5 Suppose Assumption 8.1 is true. If x∗ ∈ G is an arbitrary critical point of
(8.18), then there exists a d ∈ X , d 6= 0 such that

∂2f(x∗)(d, d) = 0. (8.24)
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Hence there is no critical point satisfying (8.23). More specifically, for any x̂ ∈ G and
ŷ ∈ Ω with g(x̂, ŷ) = x∗ every

d ∈ Im
(
∂yg(x̂, ŷ)|Ker(∂c(ŷ))

)

satisfies (8.24)

Proof. Let x∗ be a critical point, such that (8.21) is satisfied. Since g(x̂, ŷ) = x∗ we
conclude

∂f(g(x̂, ŷ)) = 0. (8.25)

Differentiating (8.19) evaluated at x = x̂, y = ŷ once with respect to y implies

∂f(g(x̂, ŷ))∂yg(x̂, ŷ)d = 0 for all d ∈ Ker (∂c(ŷ)) .

Differentiating once again with respect to y implies for all d1, d2 ∈ Ker (∂c(ŷ))

∂2f(g(x̂, ŷ))(∂yg(x̂, ŷ)d1, ∂yg(x̂, ŷ)d2) + ∂f(g(x̂, ŷ))(∂2
yg(x̂, ŷ)(d1, d2)) = 0. (8.26)

Due to (8.25) the second term on the left-hand side is zero. Hence (8.26) implies

∂2f(g(x̂, ŷ))(∂yg(x̂, ŷ)d1, ∂yg(x̂, ŷ)d2) = 0 for all d1, d2 ∈ Ker (∂c(ŷ))

such that for all d ∈ Im
(
∂yg(x̂, ŷ)|Ker(∂c(ŷ))

)
we conclude

∂2f(x∗)(d, d) = ∂2f(g(x̂, ŷ))(d, d) = 0,

which implies (8.24). Due to (iv.) in Assumption 8.1, this hence holds for some d 6= 0,
which implies that (8.23) cannot hold true. This finishes the proof.

Remark. It is easy to show that also for the original BMI problem

infimize γ
subject to B(γ,X,K) � 0 and X � 0

(8.27)

the second order sufficient conditions as derived in Theorem 7.19 of Section 7.3 cannot hold
true for any feasible point. Consider an arbitrary feasible point x∗ = (γ,X,K) and the
function

z(t) := xtrans

(

x∗,
1

det(I + tR)
(I + tR)

)

for an arbitrary but not identically zero matrix R ∈ R
nc×nc , ‖R‖ < 1. The function z(t)

satisfies z(0) = x∗ and z(1) 6= z(0). Furthermore, (γt, Xt, Kt) := z(t) satisfies

B(γt, Xt, Kt) � 0 and Xt � 0

for all t ∈ [0, 1]. This implies that x∗ does not satisfy the sufficient optimality conditions
for (8.27).
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8.2.2 Reduced parametrization

The problems with verifying optimality as discussed in the previous section can often
be resolved by re-parametrization of the decision variables. For this purpose consider a
continuously twice differentiable function h : Ψ ⊂ Z → X , where Ψ is an open subset of
a vector space Z of dimension dim(Z) = dim(X ) − dim(Y) and where h(z) satisfy the
following additional hypothesis:

For each x ∈ X there exist y ∈ Ω, z ∈ Ψ with h(z) = g(x, y). (8.28)

Based on this hypothesis we conclude that

inf
x∈X

f(x) = inf
z∈Ψ

f(h(z)). (8.29)

In other words, the minimization with the reduced parametrization z yields the same
optimal value as the original problem.

Example 8.6 To illustrate that re-parametrization can improve the convergence of mini-
mization algorithms, we consider (inspired by [105]) the objective function

f(x1, x2, x3) := (x1 − 1)2 + γ((1 + x2)x
2
3 − x2

1)
2.

We describe the over-parametrization by

g(x, y) :=
(
x1 x2y

2
1 + y2

1 − 1 x3y2

)T
,

for all y =
(
y1 y2

)T ∈ Ω := {y ∈ R
2| c(y) = 0} with c(y) = y1y2 − 1. g(x, y) satisfies

all items in Assumption 8.1, if G = {x ∈ R
3| x3 6= 0}. Indeed g(x, 1) = x and

f(g(x, y)) = (x1 − 1)2 + γ((1 + x2y
2
1 + y2

1 − 1) (x3y2)
2 − x2

1)
2 = f(x)

for all x ∈ G and y ∈ Ω. Differentiating g(x, y) with respect to x yields

∂xg(x, y) =





1 0 0
0 y2

1 0
0 0 y2



 ,

which is invertible for all x ∈ X and y ∈ Ω. Finally

∂yg(x, y) =

(
0 2x2y1 + 2y1 0
0 0 x3

)

is nonzero for all x ∈ G. Hence (iv.) in Assumption 8.1 is satisfied.

We consider the reduced parametrization h(z1, z2) = (z1, z2, 1)T . For an arbitrary x =
(x1, x2, x3)

T choose z = (x1, x2x
2
3 + x2

3 − 1)T and y = (x3,
1
x3

) to render (8.28) satisfied,
which directly follows from

g(x, y) =
(
x1 x2x

2
3 + x2

3 − 1 x3

x3

)
= h(z).

We have used the trust-region optimization algorithm in Section 7.1.3 to solve infx∈G f(x)
and infz∈Ψ f(h(z)), where Ψ = R

2. To obtain a fair comparison we choose initial values
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Table 8.1: Performance and computation time of controllers

over-parameterized (inf f(x)) reduced parametrization (inf f(h(z)))
γ it f(x∗) cond(H) it f(x∗) cond(H)

1 7 5.487e-24 3.916e+012 5 6.769e-10 33.969
100 6 0.771 4.117e+018 12 4.009e-13 2508

10000 75 2.707e-13 4.509e9 43 1.827e-14 2.5e+5

such that h(zinit) = xinit by choosing xinit = (−1,−2, 1) and zinit = (−1,−2) respectively.
The optimal values of infx∈G f(x) and infz∈Ψ f(h(z)) are attained at x = (1, 0, 1) and
z = (1, 0), respectively. In Table 8.1 the number of iterations, the final objective function
and the condition number of the Hessian at the optimum is given. For γ = 100 the op-
timization of f gets stuck at f(x) = 0.77 due to slow convergence, whereas the reduced
parametrization reaches the value 4 · 10−013, which is very close to the optimal value zero.
For γ = 10000 the optimization does converge to an almost optimal value, but this re-
quires 75 iterations instead of the 43 iterations needed with the reduced parametrization.
In Figure 8.1 the function f is shown for fixed x1 = 1 and γ = 1 and x2, x3 ∈ [−1, 1].
The optimal points are shown as the two solid curves and the dashed curve is the set
{(h(z), f(h(z)))| z ∈ Ψ}. The optimum of infz∈Ψ f(h(z)) is attained at z∗ = (1, 0), which
is the point where one of the solid curves and the dashed curve intersect. The corresponding
optimal point for infx∈G f(x) is x∗ = h(z∗) = (1, 0, 1).
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1 −1
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f(
1,

x 2,x
3)

Figure 8.1: f(1, x2, x3) for γ = 1. The optimal points are shown as solid white curves and
the set {(h(z), f(h(z)))| z ∈ Ψ} as dashed curve.
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Remark. Since the trust-region method applied in Example 8.6 is tailor-made for
ill-conditioned nonconvex problems, its convergence to points with a singular Hessian will
often be faster than for less sophisticated methods. The difference in convergence between
full and reduced parametrization is therefore likely to be even more pronounced if we had
used for instance a gradient method.

8.2.3 Optimality conditions for reduced parametrizations

To analyze the optimality conditions of Section 7.3 for the minimization problem with the
reduced parametrization, let us define r(·) := f(h(·)), such that

∂r(z)d = ∂f(h(z))(∂h(z)d)

and

∂2r(z)(d1, d2) = ∂2f(h(z)) ((∂h(z)d1, ∂h(z)d2) + ∂f(h(z))
(
∂2h(z)(d1, d2)

)
. (8.30)

Necessary conditions

It is easy to see that the necessary optimality conditions of the original problem imply that
the necessary optimality conditions for the reduced parametrization hold true. This is the
content of the following lemma.

Lemma 8.7 If a point x∗ ∈ G satisfies the necessary conditions (8.21) and (8.22), then
for any z∗ and y∗ with h(z∗) = g(x∗, y∗), z∗ satisfies the first order necessary conditions for
infz∈Ψ r(z).

Proof. By Lemma 8.3 we conclude ∂f(g(x∗, y∗)) = 0 such that

∂r(z∗) = ∂f(h(z∗))∂h(z∗) = ∂f(g(x∗, y∗))∂h(z∗) = 0.

Differentiating (8.19) twice at x∗, y∗ with respect to x implies for all d ∈ X

∂2f(g(x∗, y∗))(∂xg(x∗, y∗)d, ∂xg(x∗, y∗)d) + ∂f(g(x∗, y∗))(∂
2
xg(x∗, y∗)(d, d)) = ∂2f(x∗)(d, d).

(8.31)
Since ∂f(g(x∗, y∗)) = 0 and ∂2f(x∗) � 0 by local optimality of x∗ (i.e. by (8.21) and (8.22))
we infer ∂2f(g(x∗, y∗)) (∂xg(x∗, y∗)d, ∂xg(x∗, y∗)d) ≥ 0 for all d ∈ X . By invertibility of
∂xg(x∗, y∗) (due to (ii.) in Assumption 8.1) we conclude ∂2f(g(x∗, y∗)) � 0. Hence for all
δ ∈ Z

∂2r(z∗)(δ, δ) = ∂2f(h(z∗))(∂h(z∗)δ, ∂h(z∗)δ) + ∂f(h(z∗))(∂
2h(z∗)(δ, δ)) =

= ∂2f(h(z∗))(∂h(z∗)δ, ∂h(z∗)δ) = ∂2f(g(x∗, y∗))(∂h(z∗)δ, ∂h(z∗)(δ)) ≥ 0 (8.32)
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Sufficient conditions: towards verifiably locally optimal controllers

In the sequel we analyze under which conditions re-parametrization enables to verify op-
timality in terms of the sufficient optimality conditions as discussed in Section 7.3 of the
previous chapter. Let x∗ be a critical point of (8.18) and let y∗ ∈ Ω and z∗ be such that
g(x∗, y∗) = h(z∗). For verifiability of the sufficient conditions at z∗ for infz∈Ψ r(z), it is
obvious that ∂h(z∗) must have full column rank. Furthermore h must satisfy at z = z∗:

Im (∂h(z∗)) ∩ Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

)
= {0}. (8.33)

Only if (8.33) is satisfied, it is not impossible to verify the sufficient condition for
infz∈Ψ r(z) at z∗. However ∂h(z∗) having full column rank and (8.33) are not sufficient.
To illustrate this we consider the fixed-order H∞-optimal synthesis of a SISO controller,

where K∗ =

(
AK BK

CK DK

)

is a locally optimal controller. Suppose that arbitrary close

to K∗ there exists for each ǫ > 0 another optimal K0 with the same McMillan degree
but a different transfer function and such the ‖K∗ − K0‖ < ǫ, where ‖ · ‖ is the matrix
2-norm. Then it is obvious that the sufficient optimality do not hold, even though we use
for instance the controller canonical form to re-parametrize the controllers.

The following condition together with ∂h(z∗) full column rank and (8.33) are sufficient
for verifiable optimality of z∗ :

dim
(
Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

))
= dim

(
Ker

(
∂2f(x∗)

))
. (8.34)

These observations are summarized in the following theorem.

Theorem 8.8 Suppose x∗ satisfies the first-order and second-order necessary optimality
conditions for infx∈G f(x) and let g(x∗, y∗) = h(z∗) and r(·) := f(h(·)). Furthermore let
f and g satisfy Assumption 8.1. Then z∗ is verifiably locally optimal for infz∈Ψ r(z) if the
following conditions hold true

(i.) (8.33)

(ii.) (8.34)

(iii.) ∂h(z∗) has full column rank.

Proof. Suppose (i.), (ii.) and (iii.) hold true. By Lemma 8.3 we conclude that z∗ satisfies
the second order necessary conditions for infz∈Ψ r(z). It remains to prove that ∂2r(z∗) ≻ 0.
From (8.32) we know that ∂2r(z∗) � 0, so it remains to show that ∂2r(z∗) is nonsingular.
To prove this by contradiction, suppose there exists a d ∈ Z, d 6= 0 such that

∂2r(z∗)(d, d) = 0. (8.35)

Since x∗ is a critical point by assumption, (8.21) holds. This implies by Theorem 8.5 that

Im
(
∂yg(x∗, y∗)|Ker(∂c(y))

)
⊂ Ker

(
∂2f(x∗)

)
.

Hence to contradict (ii.) it suffices to construct a nonzero

d1 ∈ Ker
(
∂2f(x∗)

)
\
(
Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

))
.
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Since x∗ is a critical point, Lemma 8.3 implies

∂xf(h(z∗)) = ∂xf(g(x∗, y∗)) = 0. (8.36)

Then (8.30) reads as

∂2r(z∗)(d, d)
︸ ︷︷ ︸

=0 by (8.35)

= ∂2f(h(z∗)) (∂h(z∗)d, ∂h(z∗)d) + ∂f(h(z∗))
(
∂2h(z∗)(d, d)

)

︸ ︷︷ ︸

=0 by (8.36)

,

which implies

∂2f(h(z∗)) (∂h(z∗)d, ∂h(z∗)d) = 0.

Since ∂h(z∗) has full column rank (by (iii.)) we infer d1 := ∂h(z∗)d 6= 0. Since d1 ∈
Im (∂h(z∗)), (i.) implies

d1 /∈ Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

)
.

Hence

d1 ∈ Ker(∂2f(x∗))\
(
Im(∂yg(x∗, y∗))|Ker(∂c(y∗))

)

is the required contradicting vector.

Remark. The condition on the dimension of the subspaces as given in (8.34) can be
interpreted as follows. Suppose x∗ satisfies the necessary optimality conditions. Then
(8.34) implies that all vectors d in the kernel of the Hessian matrix ∂2f(x∗) are in the
image of ∂yg(x∗, y∗). In other words, x∗ is not locally verifiable optimal only because of
the over-parametrization described by g. In terms of the fixed-order H∞-optimal con-
trol problem this occurs for an optimal controller K∗ if every controller close to K∗, but
with a different transfer function, has a strictly larger optimal value of the barrier function.

The following theorem is a statement on the converse implication of Theorem 8.8.

Theorem 8.9 Suppose x∗ satisfies the first-order and second-order necessary optimality
conditions for infx∈X f(x) and let g(x∗, y∗) = h(z∗) and r(·) := f(h(·)). Furthermore let f
and g satisfy Assumption 8.1. If

dim (Im (∂h(z∗))) + dim
(
Im
(
∂yg(x∗, y∗)|Ker(∂c(ŷ))

))
= dim(X ) (8.37)

then violation of at least one of the items (i.)-(iii.) in Theorem 8.8 implies that z∗ is not
verifiably locally optimal for infz∈Ψ r(z).

Proof. Since x∗ is a critical point, Lemma 8.3 implies that g(x∗, y∗) is also a critical point,
i.e.

∂xf(h(z∗)) = ∂xf(g(x∗, y∗)) = 0. (8.38)

Hence for arbitrary d ∈ Z we infer from (8.30) that

∂2r(z∗)(d, d) = ∂2f(h(z∗)) (∂h(z∗)d, ∂h(z∗)d) + ∂f(h(z∗))
(
∂2h(z∗)(d, d)

)

︸ ︷︷ ︸

=0 by (8.38)

=

= ∂2f(h(z∗)) (∂h(z∗)d, ∂h(z∗)d) . (8.39)
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Suppose (i.) in Theorem 8.8 does not hold true, i.e. there exists a d 6= 0 such that
d1 := ∂h(z∗)d ∈ Im

(
∂yg(x∗, y∗)|Ker(∂c(y∗))

)
. By (8.39) we conclude

∂2r(z∗)(d, d) = ∂2f(g(x∗, y∗)) (∂h(z∗)d, ∂h(z∗)d) = ∂2f(g(x∗, y∗))(d1, d1) = 0, (8.40)

where the last equality follows from Theorem 8.5. Equation (8.40) obviously implies that
the second order sufficient conditions for infz∈Ψ r(z) are violated at z∗.

Secondly, suppose that (i.) in Theorem 8.8 is true, but (ii.) does not hold. Observe that
(i.) and (8.37) imply

Im (∂h(z∗)) ⊕ Im
(
∂yg(x∗, y∗)|Ker(∂c(ŷ))

)
= X . (8.41)

Due to Theorem 8.5 and since (ii.) is not true,

dim
(
Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

))
< dim

(
Ker

(
∂2f(x∗)

))
.

Lemma 8.4 implies that

dim
(
Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

))
< dim

(
Ker

(
∂2f(g(x∗, y∗))

))

as well. Hence, there exists a d /∈ Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

)
with

∂2f(g(x∗, y∗))d = 0. (8.42)

Due to (8.41), d can be decomposed as d = d1 + d2 where d1 ∈ Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

)

and d2 ∈ Im (∂h(z∗)) 6= 0. Theorem 8.5 implies ∂2f(g(x∗, y∗))d1 = 0, such that by (8.42)
we conclude

0 = ∂2f(g(x∗, y∗))d = ∂2f(g(x∗, y∗))d1 + ∂2f(g(x∗, y∗))d2 = ∂2f(g(x∗, y∗))d2. (8.43)

Since d2 ∈ Im (∂h(z∗)) there exists a d3 such that d2 = ∂h(z∗)d3. By (8.39) we infer

∂2r(z∗)(d3, d3) = ∂2f(h(z∗))(∂h(z∗)d3, ∂h(z∗)d3) = ∂2f(g(x∗, y∗))(d2, d2) = 0,

where the utmost right equality follows from (8.43). Again we infer that the second order
sufficient conditions for infz∈Ψ r(z) are violated at z∗.

Finally suppose that ∂h(z∗) does not have full column rank, i.e. there exist a d 6= 0
with ∂h(z0)d = 0. Then (8.39) implies that

∂2r(z∗)(d, d) = ∂2f(h(z∗))(∂h(z∗)d, ∂h(z∗)d) = ∂2f(h(z∗))(0, 0) = 0,

which again contradicts the second order sufficient conditions for infz∈Ψ r(z).

Example 8.10 We analyze the conditions described in this section for the optimal point
x∗ = (1, 0, 1), y∗ = (1, 1) and z∗ = (1, 0) in Example 8.6. Firstly, observe that ∂h(z) has
full column rank for all z. Secondly ∂f(x∗) = 0 and

∂2f(x∗) =





2 + 8γ −4γ −8γ
−4γ 2γ 4γ
−8γ 4γ 8γ



 ,
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with eigenvalues λ1 = 0, λ2(γ) = 1 + 9γ +
√

1 − 2γ + 81γ2 and λ3(γ) = 1 + 9γ −
√

1 − 2γ + 81γ2. Since λ2(γ) > 0 and λ3(γ) > 0 for all γ > 0, the Hessian ∂2f(x∗)
is positive semi-definite for all γ > 0 and

dim
(
ker(∂2f(x∗))

)
= 1 for all γ > 0. (8.44)

Now let us consider an arbitrary γ > 0. Since

∂yg(x∗, y∗) =





0 0
2 0
0 1





and ∂c(y∗) =
(

1 1
)
, we infer

Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

)
=











0
2
−1



 t

∣
∣
∣
∣
∣
∣

t ∈ R






. (8.45)

Furthermore

∂h(z∗) =





1 0
0 1
0 0





such that (8.33) follows. (8.45) implies

dim
(
Im
(
∂yg(x∗, y∗)|Ker(∂c(y∗))

))
= 1.

This and (8.44) imply that (8.34) is true. Theorem 8.8 therefore implies that z∗ is a
verifiable local optimal point for infz∈Ψ r(z) for r(·) = f(h(·)). Indeed r(z) := (z1 − 1)2 +
γ(1 + z2 − z2

1)
2 satisfies ∂r(z∗) = 0 and

∂2r(z∗) =

(
2 + 8γ −4γ
−4γ 2γ

)

≻ 0 for all γ > 0.

This implies that z∗ is verifiable optimal. Since γ > 0 was arbitrary, we infer that for all
γ > 0, z∗ is verifiable optimal.

The conditions in Theorem 8.8 can also geometrically be illustrated using Figure 8.1,
for γ = 1. The white solid curve in the figure through x∗ is the collection of points

{(g(x∗, y), f(g(h(z∗), y))| y ∈ Ω}.

We observe from the figure that (8.33) holds true, since the tangents of this white solid curve
and the white dashed curve at x∗ are not the same. Furthermore it can be seen that the
dimension of the kernel of the Hessian at x∗ and the dimension of Im

(
∂yg(x∗, y∗)|Ker(∂c(y∗))

)

are both 1, such that (8.34) holds. Therefore, Theorem 8.8 implies that z∗ is verifiable
optimal, which is also clearly visible in the figure.

This concludes the analysis on the existence of locally optimal verifiable points for opti-
mization problems with over-parametrization. In the next sections we will use these results
to analyze two parametrizations for the fixed-order controller synthesis problem. We start
with a parametrization based on the controllable canonical form for SISO controllers
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8.3 Reduced parametrizations based on controllable

canonical form

Well-known controller parametrizations for SISO controllers are the controllable and ob-
servable canonical forms [62,123]. In this section we discuss a reduced parametrization on
the basis of the controllable canonical form. It will be verified that this parametrization
eliminates the non-uniqueness due to similarity transformation of the controller states,
if the parametrization is applied to the corrector step of the interior-point method for
fixed-order H∞-optimal control problem. Recall from Section 8.1 that x = (γ,X,K),
X = R × Sn+nc × R

m2+nc×p2+nc and

G := {x = (γ,X,K) ∈ X | X ≻ 0, B(γ,X,K) ≻ 0} .
As illustrated in Example 8.2, the non-uniqueness can be described with

g(x, y) := xtrans(x, y), (8.46)

where xtrans is as defined in (8.8) and Ω = {T ∈ R
nc×nc | det(T ) = 1}. A controller in

controllable canonical form has the following structure

(
AK BK

CK DK

)

=












0 1 0 · · · 0 0
0 0 1 0 0
...

. . . . . .
... 0

0 0 0 · · · 1 0
−anc −anc−1 −anc−2 · · · −a1 1
c1 c2 c3 · · · cnc d












=: hctr(v), (8.47)

where ai ∈ R, ci ∈ R, i = 1, . . . , nc, d ∈ R and v =
(
a1 . . . anc c1 . . . cnc d

)T
. We

will analyze the conditions discussed in the previous section for this parametrization. For
this purpose we choose

h(z) = (γ,X, hctr(v)) (8.48)

with X ∈ Sn+nc and

z =





γ
svec(X)

v



 .

Obviously h(z) is injective. We show that (8.33) holds true for every triple (x0, y0, z0)

with x0 ∈ G, y0 ∈ Ω, z0 ∈ Z = R
1+ 1

2
(n+nc)(n+nc+1)+2nc+1 satisfying g(x0, y0) = h(z0).

For this purpose we define x1 := g(x0, y0) such that g(x1, I) = g(x0, y0). In Appendix
A.5.2 it is shown that Im(∂g(x1, I)) = Im(∂g(x0, y0)). Hence, we can assume that y0 = I
without loss of generality. This implies that with x0 =: (γ0, X0, K0), K0 has the structure
as (8.47). Assume that d = (dγ, dK , dX) is in the images of ∂h(z0) and of ∂yg(x0, y0).
d ∈ Im (∂yg(x0, I)) implies dγ = 0 and

dK =

(
−dTAK + AKdT −dT enc

cdT 0

)

, (8.49)

for some dT ∈ R
nc×nc and where AK has the structure as in (8.47), while enc is the nc

th

basis vector in R
nc . On the other hand, d ∈ Im (∂h(z0)) implies

dK =





0(nc−1)×(nc) 0(nc−1)×1

da
T 01×1

dc 01×1



 , (8.50)
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for some da ∈ Rnc , where for clarity we show the dimensions of the zero elements. Com-
bining (8.49) and (8.50) implies

(
−dTAK + AKdT −dT enc−1

cdT 0

)

=





0(nc−1)×(nc) 0(nc−1)×1

da
T 01×1

dc 01×1



 . (8.51)

The right upper nc × 1 sub-block of this equation implies dT enc = 0. dT can therefore be
partitioned as dT =

(
dT 11 0

)
, where dT 11 ∈ R

(nc)×(nc−1). The left upper nc × nc sub-
block of (8.51) implies dT 11 = 0, as is shown in Appendix A.5.1. We therefore conclude
that dT and hence d = 0, such that (8.33) follows.

Theorem 8.8 therefore implies that the reduced parametrization eliminates the non-
uniqueness due to similarity transformations, for each x0 ∈ G for which there exist y0 ∈ Ω,
z0 ∈ Z such that g(x0, y0) = h(z0). However, this parametrization is numerically not easy
to work with, due to the often large differences in the magnitude of the coefficients that
appear in h(z). In our experience this parametrization is therefore not suited to be used
in controller optimization, unless the controller order is very small. We propose a novel
reduced parametrization for SISO and MIMO controllers that does have (for almost all
controllers) the desired properties in the next section.

8.4 MIMO controller parametrization

In this section we propose a surjective parametrization for the optimization of multi-
variable controllers by the Interior Point method. For the controller AK-matrix we choose
the following parametrization:

Apar(a) =
















a1,1 a1,2 a1,3 a1,4 · · · · · · a1,(nc−1) a1,nc

a2,1 a1,1 a2,3 a2,4 · · · · · · a2,(nc−1) a2,nc

0 0 a3,3 a3,4 · · · · · · a3,(nc−1) a3,nc

0 0 a4,3 a3,3 · · · · · · a4,(nc−1) a4,nc

0 0 0 0
. . . . . .

...
...

...
...

...
...

. . . . . . . . .
...

0 0 0 0 . . . 0 a(nc−1),(nc−1) a(nc−1),nc

0 0 0 0 . . . 0 anc,(nc−1) a(nc−1),(nc−1)
















, (8.52)

where a = (a1,1, a1,2, . . . anc,nc)
T ∈ R

N , N = 1
2
nc(nc + 1). Note that the diagonal elements

in the 2-by-2 blocks of Apar(a) are equal.

8.4.1 Orthogonal transformations into (8.52)

The purpose of this section is to show that every matrix in R
nc×nc can be turned into the

form of (8.52) by an orthogonal similarity transformation, i.e. for any B ∈ R
nc×nc there

exist an orthogonal matrix Q, QTQ = Inc and a = (a1,1, a1,2, . . . anc,nc)
T ∈ R

N such that

QTBQ = Apar(a).

First, it is shown in for instance [72] that every matrix in R
nc×nc can be transformed by

an orthogonal transformation into the real Schur form, i.e. for any B ∈ R
nc×nc there exist
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an orthogonal matrix Qschur ∈ R
nc×nc , QT

schurQschur = Inc and r = (r1,1, r1,2, . . . rnc,nc)
T such

that

QT
schurBQschur = Rschur(r) =
















r1,1 r1,2 r1,3 r1,4 · · · · · · r1,(nc−1) r1,nc

r2,1 r2,2 r2,3 r2,4 · · · · · · r2,(nc−1) r2,nc

0 0 r3,3 r3,4 · · · · · · r3,(nc−1) r3,nc

0 0 r4,3 r4,4 · · · · · · r4,(nc−1) r4,nc

0 0 0 0
. . . . . .

...
...

...
...

...
...

. . . . . . . . .
...

0 0 0 0 . . . 0 r(nc−1),(nc−1) r(nc−1),nc

0 0 0 0 . . . 0 rnc,(nc−1) r(nc),(nc)
















.

(8.53)
Secondly, observe that the zero structure in (8.53) is invariant under the transformations
with the following class of block-diagonal orthogonal matrices

Q =
















q1,1 q1,2 0 0 0 · · · 0 0
q2,1 q2,2 0 0 0 · · · 0 0
0 0 q3,3 q3,4 0 · · · 0 0
0 0 q4,3 q4,4 0 · · · 0 0

0 0 0 0
. . . . . .

...
...

...
...

...
...

. . . . . . 0 0
0 0 0 0 . . . 0 q(nc−1),(nc−1) q(nc−1),nc

0 0 0 0 . . . 0 qnc,(nc−1) q(nc),(nc)
















, where QTQ = I.

(8.54)
Therefore it suffices to show that for any matrix B ∈ R

2×2:

B =

(
b1,1 b1,2

b2,1 b2,2

)

there exists an orthogonal matrix Q ∈ R
2×2 and real numbers a1,1, a1,2, a2,1 ∈ R such that

QTBQ = Apar(a) =

(
a1,1 a1,2

a2,1 a1,1

)

. (8.55)

To this purpose consider a family of orthogonal matrices parameterized by

Q(φ) :=

(
sin(φ) cos(φ)

− cos(φ) sin(φ)

)

(8.56)

and suppose that φ is such that

Q(φ)TBQ(φ) = Apar(a) =

(
a1,1 a1,2

a2,1 a1,1

)

. (8.57)

From (8.57) we conclude that

sin2(φ)b1,1 + cos2(φ)b2,2 − cos(φ) sin(φ)(b2,1 + b1,2) =

= cos2(φ)b1,1 + sin2(φ)b2,2 + cos(φ) sin(φ)(b2,1 + b1,2),

which is equivalent to

(sin2(φ) − cos2(φ))(b1,1 − b2,2) = 2 cos(φ) sin(φ)(b2,1 + b1,2).
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Using standard trigoniometic relations we conclude

cos(2φ)(b2,2 − b1,1) = sin(2φ)(b2,1 + b1,2). (8.58)

Hence (8.57) is satisfied if we choose φ as

φ = 1
4
π, if b2,1 + b1,2 = 0

= 1
2
tan−1

(
−b1,1+b2,2

b2,1+b1,2

)

, otherwise.

If we therefore select for each ith diagonal 2 × 2 block of Rschur the appropriate angle φi,
i = 1, . . . , nc

2
as follows

φi = 1
4
π, if r(i+1),i + ri,(i+1) = 0

= 1
2
tan−1

(
−ri,i+r(i+1),(i+1)

r(i+1),i+ri,(i+1)

)

, otherwise,

we can transform Rschur to the format in (8.52) by similarity transformation with

Qblk :=








Q(φ1) 0 · · · 0

0 Q(φ2)
. . . 0

...
. . . . . .

...
0 0 · · · Q(φ(nc

2
))







.

Hence Q := QschurQblk is the matrix that transforms B into QTBQ = Apar(a) for some
a = (a1,1, a1,2, . . . anc,nc)

T ∈ R
N .

8.4.2 Reduced parametrization for controller optimization

We propose the following parametrization for the optimization of fixed-order controllers

h(z) =

(

γ,

(
XP U
UT βInc

)

,

(
Apar(a1,1, a1,2, . . . , anc,nc) BK

CK DK

))

(8.59)

where Apar is as in (8.52), XP ∈ Sn and

z =
(
γ, svec(XP)T , vec(U)T , β, a1,1, a1,2, . . . , anc,nc , vec(BK)T , vec(CK)T , vec(DK)T

)T
.

(8.60)

Obviously ∂h(z∗) has full column rank for all z∗ ∈ Z := R
1
2
nc(nc+1)+1+N , where N := 1

2
n(n+

1)+(n+m2+p2)nc+m2p2. Furthermore the range of the mapping q(z, T ) := xtrans(h(z), T )
contains all (γ,X,K) in the feasible domain G, or more precisely

G ⊂
{
q(z, T ) ∈ R × Sn+nc × R

(nc+m2)×(nc+p2)| z ∈ Z, XP ≻ 0, β > 0, det(T ) = 1
}
.

We show this by constructing for an arbitrary x0 = (γ0, X0, K0) ∈ G a z0 and T such that
x0 = xtrans(h(z0), T ). First, transform the controller states by a similarity matrix

T1 :=

(
In 0
0 det(R)R−1,

)

where R is the Cholesky factor of

XK :=
(

0 Inc

)
X0

(
0
Inc

)

,
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i.e. XK = RTR. This transformation yields

xtrans(x, T1) =

(

γ,

(
X̃P Ũ

ŨT det(R)2I

)

, K̃

)

,

for some X̃P ∈ Sn and Ũ ∈ R
n×nc . Next, using the procedure of the previous sec-

tion an orthogonal Q can be constructed such that QTAKQ = Apar(a) for some a =
(a1,1, a1,2, . . . , anc,nc). Now we compute the the transformation matrix T = T1T2, where T2

is given by

T2 :=

(
In 0
0 Q

)

.

This transformation matrix satisfies

xtrans(x0, T ) =

(

γ,

(
XP U
UT , βInc

)

,

(
Apar(a1,1, a1,2, . . . , anc,nc) BK

CK DK

))

= h(z0),

for some XP, U , β, a, BK , CK , DK and z0. We observe that T−1 is the desired trans-
formation matrix satisfying xtrans(h(z0), T

−1) = x0. Hence we conclude that (z, T ) 7→
xtrans(h(z), T ) maps onto G. Next, we show that (8.33) is true, if K satisfies the additional
assumption:

(
Inc 0

)
K
(
Inc 0

)T ∈ T nc×nc , (8.61)

where T nc×nc ⊂ R
nc×nc is the set of matrices F ∈ R

nc×nc with the following properties:

1. F has distinct eigenvalues,

2. consider a real Schur form R of F . Then each diagonal block Ri,i ∈ R
2×2 does not

have the form:

Ri,i =

(
α β
−β α

)

(8.62)

Theorem 8.11 Let g and h be given by (8.20) and (8.59) respectively. Let x0 ∈ G, y0 ∈
Ω, z0 ∈ Z be such that g(x0, y0) = h(z0) =: (γ,X,K), K =

(
AK BK

CK DK

)

with AK ∈
T nc×nc for an even number nc. Then (8.33) holds true.

Proof. Consider a dx := (dγ, dX , dK) ∈ Im (∂h(z0)) ∩ Im
(
∂yg(x0, y0)|Ker(∂c(y))

)
. dx ∈

Im (∂h(z0)) implies that

dX :=

(
dXP

dU

dU
T dβInc

)

and

dK =

(
dAK

dBK

dCK
dDK

)

,

for some dXP
∈ Sn, dU ∈ R

n×nc and dβ ∈ R and state space matrices (dAK
, dBK

, dCK
, dDK

),
where

dAK
= Apar

(
da1,1, da1,2, . . . , danc,nc

)
,

for some da1,1, da1,2, . . . , danc,nc
. On the other hand, dx ∈ Im

(
∂yg(x0, y0)|Ker(∂c(y))

)
implies

that there exists a dT such that Trace(dT ) = 0 and

dAK
= −dTAK + AKdT (8.63)
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and
(

0 Inc

)
dX

(
0
Inc

)

= βdT + βdT
T .

By combining these facts we conclude that −dTAK +AKdT = Apar

(
da1,1, da1,2, . . . , danc,nc

)

and dT + dT
T =

dβ

β
I. The latter implies that dT =

dβ

β
I + dT skew for some skew-symmetric

dT skew. Then we can rewrite (8.63) as

dAK
= −dTAK + AKdT = −

(
dβ

β
+ dT skew

)

AK + AK

(
dβ

β
+ dT skew

)

=

= −dT skewAK + AKdT skew. (8.64)

From (8.52) we know that AK admits the partition

AK =








A1,1 A1,2 . . . A(1, 1
2
nc)

0 A2,2 . . . A(2, 1
2
nc)

...
. . . . . .

...
0 · · · 0 A( 1

2
nc,

1
2
nc)







, (8.65)

where Ai,j, i, j =
{
1, 2, . . . , 1

2
nc

}
are 2 × 2 blocks. Let us partition dT skew accordingly as

dT skew =








dT 1,1 dT 1,2 . . . dT (1, 1
2
nc)

dT 2,1 dT 2,2 . . . dT (2, 1
2
nc)

...
. . .

...
dT 1

2
nc,1

· · · dT ( 1
2
nc,

1
2
nc−1) dT ( 1

2
nc,

1
2
nc)







.

The left lower 2 × 2-block of (8.64) reads as

−dT ( 1
2
nc,1)

A1,1 + A( 1
2
nc,

1
2
nc)
dT ( 1

2
nc,1)

= 0.

This Sylvester equation has a unique solution dT ( 1
2
nc,1)

= 0, since the spectra of A11 and

A( 1
2
nc,

1
2
nc)

are disjoint by the assumption that AK ∈ T nc×nc .
dT 1

2
nc,1

= 0 implies that the second left lower block reduces to

−dT ( 1
2
nc,2)

A2,2 + A( 1
2
nc,

1
2
nc)
dT ( 1

2
nc,2)

= 0

and since the spectra of A(1,1) and A( 1
2
nc,

1
2
nc)

are also disjoint, we conclude dT ( 1
2
nc,2)

= 0.
This reasoning can be continued to show that dT skew has the same block-upper triangular
structure as AK in (8.65). To prove this by induction, assume for some i ∈ {2, . . . , 1

2
nc}

and some j < i that all elements of dT left-lower to (i, j) are zero, more precisely that

dT (k,l) = 0 for all (k, l) ∈
(

{i, i+ 1 . . . ,
1

2
nc} × {1, 2, . . . , j}

)

\ (i, j). (8.66)

Then (ei ⊗ I2)
T (8.64)(ej ⊗ I2) reads as

−dT (i,j)Aj,j + Ai,idT (i,j) = 0.

Since the spectra of Ai,i and Aj,j are disjoint, we conclude dT i,j = 0. Because the induction
hypothesis (8.66) holds true for i = 1

2
nc and j = 1, we conclude

dT (i,j) = 0 for all i ∈ {2, . . . , 1
2
nc} and j ∈ {1, . . . , i− 1}.
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This implies that dT is block upper triangular. Since dT skew is skew-symmetric as well, we
conclude that it is even block diagonal with the only possible nonzero blocks of size 2× 2.
Suppose one such a block, say dT (i,i) for some i ∈ {1, 2, . . . , 1

2
nc} is nonzero. Since it is

skew-symmetric, it can be written as

dT (i,i) =

(
0 t
−t 0

)

for some t ∈ R. Since Ai,i is a diagonal sub-block ofAK , it admits the following partitioning:

Ai,i =

(
a1,1 a1,2

a2,1 a1,1

)

for some a1,1, a1,2 and a2,1. Furthermore a1,2 + a2,1 6= 0, since AK ∈ T nc×nc by assumption.
Hence (8.64) implies

(ei ⊗ I2)
TdAK

(ei ⊗ I2) = −dT i,iAi,i + Ai,idT i,i =

(
−t(a2,1 + a1,2) 0

0 t(a2,1 + a1,2)

)

Since

(ei ⊗ I2)
TdAK

(ei ⊗ I2) =

(
dAK (2i−1,2i−1) dAK (2i−1,2i)

dAK (2i,2i−1) dAK (2i−1,2i−1)

)

,

we infer

−t(a2,1 + a1,2) = t(a2,1 + a1,2)

This latter equation implies t = 0, since a1,2 + a2,1 6= 0 (by AK ∈ T nc×nc). Hence we
conclude dT = 0, which completes the proof.

By counting the dimensions of the subspaces Im (∂h(z0)) and Im
(
∂yg(x0, y0)|Ker(∂c(y0))

)

we infer that (8.37) holds true. Indeed the number of elements in a = (a1,1, a1,2, . . . , anc,nc)
is 1

2
nc(nc + 1), β ∈ R and the number of variables in XP, U , BK , CK and DK is in

total N := 1
2
n(n + 1) + (n + m2 + p2)nc + m2p2, such that dim(Im∂h(z0)) = 1

2
nc(nc +

1) + 1 + N . If x0 = (γ,X,K) ∈ G with K satisfying (8.61) and y ∈ Ω, the dimen-
sion of Im

(
∂yg(x0, y0)|Ker(∂c(y0))

)
is nc

2 − 1. This is true, since ∂yg(x0, y0)d = 0 for
some d ∈ Ker (∂c(y0)) implies d = 0, (as follows from the proof of Theorem 8.11) and
dim (Ker (∂c(y0))) = 1. Hence

dim(Im∂h(z0)) + dim Im(∂yg(x0, y0)) =

= nc
2 +

1

2
nc(nc + 1) +

1

2
n(n+ 1) + (n+m2 + p2)nc +m2p2 =

=
1

2
(n+ nc)(n+ nc + 1) + (nc +m2)(nc + p2) = dim(X ),

which implies (8.37).

Summarizing, since the proposed parametrization satisfies the properties above, we con-
clude that it

• parameterizes all stabilizing multi-variable controllers of order nc
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Table 8.2: Barrier values after 100 trust region steps for two parametrizations
Parametrization full transformed reduced

Final barrier value φ(x100) −27.093 −35.672
Final closed-loop H∞-norm 1.7993 1.7838

and for almost all controllers (i.e. all controllers with AK ∈ T nc×nc , where T nc×nc is the
set of matrices is as defined on page 178)

• eliminates the non-uniqueness due to similarity transformations

• and hence eliminates the failure of optimality tests due to these transformations.

8.4.3 Application

We analyze the convergence of the IP algorithm and the optimality conditions for the
two-mass system as presented in Example 7.20, where we compare the full and reduced
parametrization. We consider the first corrector step in the Interior Point algorithm and
compare the convergence for a full and reduced parametrization. The initial set of decision
variables is xinit, as has also been used in Example 7.20. Using the transformation xtrans :=
g(xinit, y) in (8.8), we transformed the initial guess to the form in (8.59). We minimized
the barrier function with the Interior Point method discussed in the previous chapter for
two different parametrizations:

• full parametrization with the transformed variables (denoted by full transformed),

• reduced parametrization with h(z) as in (8.59) (denoted by ‘reduced’)

The final values of the objective function after 100 trust-region steps are shown in Table
8.2. We observe that the final barrier value of the reduced parametrization is better than of
the full parametrization, which illustrates the improved convergence that can be achieved
with the reduced parametrization.

To evaluate the effect of the parametrization on the optimality conditions, we performed
for the reduced parametrization 500 instead of 100 IP steps, in order to be in an (almost)
optimal point. The resulting vector z∗ has an objective value of f(h(z∗)) = −36. The
smallest eigenvalue is −1.4 · 10−5, so z∗ is not verifiably locally optimal. The number of
eigenvalues of the Hessian H smaller than 10−16‖H‖ is 5. For the full parametrization,
the Hessian ∂2f(∗) evaluated at x∗ = h(z∗) has 13 eigenvalues smaller than 10−8 and its
smallest eigenvalue is −2.91.

The controllers have been optimized further with both parametrizations, i.e. the IP-
method has been applied with a full and reduced parametrization with starting points
xtrans and h(xtrans), respectively. The following slight modifications have been applied:

• the simplified version of the predictor step as discussed in Section 7.1.4 has been used

• no intermediate analysis steps as described in Section 7.1.7 are performed.

The resulting decision variables are denoted by xfull,red and zopt,red, respectively. The
closed-loop H∞-norm of the final controller Kopt,red corresponding to zopt,red for the re-
duced parametrization is 1.78, slightly better than that of the full parametrization 1.80,
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and better than 1.79 obtained in Example 7.20. Note that the slight difference between
the full optimization in this example and in Example 7.20 is due to the difference in initial
decision variables and the slightly different predictor step.

Using the approach as described in Example 7.20, we evaluated the first and second
order conditions for zopt,red and x = h(zopt,red). The MFCQ as well as the first order
necessary conditions are satisfied for both parameterizations. To evaluate the second order
sufficient conditions, we have plotted in Figure 8.2 the eigenvalues of the reduced Hessian
matrix HLopt as defined in Example 7.20. All eigenvalues smaller than 10−25 have been
shown as being equal to 10−25. For the reduced parametrization one eigenvalue of the
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Figure 8.2: Eigenvalues of the Hessian matrix HLopt for the full parametrization (· · · ◦ · · · )
and the reduced parametrization (−∗−). All eigenvalues smaller than 10−25 are shown as
being equal to 10−25.

Hessian matrix HLopt is smaller than 10−12, such that unfortunately the sufficient condition
is not convincingly satisfied. However, one small eigenvalue is a clear reduction compared
to the seven almost zero eigenvalues of HLopt for the full parametrization.

8.4.4 Conclusions on reduced parametrization

In the previous section we have shown that h(z) in (8.59) satisfies all hypotheses in Theorem
8.8 for all x ∈ G whereK satisfies (8.61). This theorem implies that for these x, the reduced
parametrization eliminates the non-uniqueness due to similarity transformations for almost
all controllers. Furthermore we can describe through h(z) all controller transfer functions
with a single parametrization. This is in contrast to multi-variable extensions of controller
canonical parametrizations [123], where this not possible in general.

Finally, we have illustrated the application of the parametrization to fixed order H∞-
optimal controller synthesis by interior-point optimization with an example. The parametriza-
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tion improved the convergence of the corrector step of the IP algorithm and yielded slightly
better final optimal closed-loop H∞-norm, if compared to the final norm with the standard
parametrization.

The proposed parametrization enables to verify local optimality of controllers.

8.5 Conclusion

The theoretical arguments and the controller design example presented in this chapter
show that the proposed parametrization

• improves the Interior Point optimization algorithm and

• strengthens the local optimality conditions discussed in the previous chapter.

This completes our developments on research questions À and Á, as have been posed on
page 40.

The results in this chapter are a first step towards controller optimization oriented pa-
rameterizations. The analysis and the parametrization may be applied to other controller
optimization algorithms and other optimization problems as well. Further developments
in this area may for instance be an analysis of the sensitivity of the controller parameteri-
zations to round-off errors during numerical optimization.
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Chapter 9

Application to a wafer stage

One of the goals of this thesis project is to develop a fixed-order controller synthesis algo-
rithm that can be used for controller design for industrial servo-systems. To evaluate the
functionality of the presented algorithms for this purpose, we will discuss in this chapter the
H∞-optimal fixed-order controller design for a prototype of a wafer stage at Philips Applied
Technologies. This system has approximately locally linear dynamics (although with quite
some position dependence) and significant interaction beyond the required bandwidth. The
interaction hampers achieving good performance for separate SISO controller designs. This
motivates to apply H∞-optimal controller synthesis based on a multi-variable model of the
system. After a short description of the experimental set-up in Section 9.1, a model of the
wafer stage is derived in Section 9.2 by closed-loop identification. Secondly, a four-block
full-order H∞-optimal controller design for the wafer stage is presented in Section 9.3. The
resulting generalized plant is employed for designing and optimizing fixed-order controllers
in Section 9.4. Both 3×3 MIMO and SISO controllers with structural constraints on their
McMillan degree have been designed with several of the algorithms presented in previous
chapters. The results allow us to compare the different algorithms in terms of convergence
and computation time and their applicability to this type of servo-system control problems.
On the basis of the numerical experience obtained by this exercise, we will present some
guidelines that help the control designer to make the fixed-order optimization less prone
to numerical errors.

A selection of the optimized controllers has been implemented on the system. Results of
these experiments will be shown in Section 9.5. They illustrate how fixed-order controller
optimization can be employed to improve disturbance rejection of controllers obtained
by order reduction of full order H∞-controllers, and how this can contribute to a better
time-domain performance. Finally, in Section 9.6 we draw some conclusions.

9.1 System description

The system under consideration is a wafer stage prototype designed and constructed at
Philips Applied Technologies in Eindhoven, the Netherlands. It serves as prototype for
a new generation wafer-scanners. To protect the interests of the manufacturer we keep
the explanation rather short. Furthermore, the time and frequencies are normalized with
respect to a certain reference value. As explained in Chapter 1, the wafer stage is a part
of a machine for IC-production based on photolithography. The figure with the setup was
presented in Chapter 1 and is repeated in Figure 9.1 for the reader’s convenience.

The wafer stage performs the motion of the wafers during exposure. In the machine an
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Figure 9.1: Representation of the basic layout of a wafer scanner.
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Figure 9.2: A schematic representation of the wafer stage carrier and measurement system.

optical system projects the IC-pattern on the wafer. The optical system is situated above
the wafer stage in the complete wafer scanner, but at the time when experiments were
performed, this system was not mounted onto the set-up.

Actuation and sensors

In the vertical direction the wafer stage and actuators are lifted with an electromagnetic
gravity compensator, such that the system can move without friction in all directions.
The wafer stage is actuated with two strokes . The long-stroke actuator performs the large
motions. The short-stroke actuator is mounted on top of it, as is shown in Figure 9.2.
It can only make small motions (with respect to the long-stroke), but has a much higher
accuracy than the long stroke. Both actuators have 6 degrees of freedom. The order of
magnitudes of their strokes and their required error bounds are given in Table 9.1. Since
the highest demands on accuracy are on the short-stroke, we focus on the controller design
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Table 9.1: Orders of magnitude of the strokes and errors of the long and short strokes.

order of magnitude of the stroke order of magnitude of the errors
Long stroke 1m 1µm = 10−6m
Short stroke 1mm 1nm = 10−9m

of this Lorentz-actuated system. The considered short-stroke is schematically depicted in
Figure 9.3.

Coordinate transformations are used for the actuators and sensors, to obtain both
controls and measurements in an orthogonal coordinate system with principal axes x, y

and z. The scans are performed in the direction y. We focus on the translations, because
the rotations are easily brought within the specifications with simple SISO controllers and
their interaction with the translations can be ignored. The position and translations of

x, Rx

y, Ry

z, Rz

Fx, Tx

Fy, Ty

Fz , Tz

Figure 9.3: Degrees of freedom in the wafer stage.

the wafer are measured with six laser interferometers, with a resolution (and accuracy) in
the order of tenths of nm. In addition the system has capacitive position sensors of lower
accuracy which are used during start-up. Because of the low accuracy of these sensors,
they are not used to control the short-stroke.

System specifications

The performance requirements of the system are in the order of 5nm for all three trans-
lations. The advanced mechatronic design of the system enables to achieve these tight
specifications. As a result of this elaborate design, the wafer stage moves without friction,
backlash and very little hysteresis so the dynamics of this system are approximately linear,
with some slight position dependence. This position dependence is considered in more
detail in [76] for a similar wafer stage prototype system.

Due to the relatively stiff construction, the resonance frequencies are high. To suppress
excitation of the system by floor vibrations, the system is suspended with air mounts.

Controller synthesis method

The approximately linear dynamics of the system enable the control engineer to base the
controller design on linear system analysis. To reach the high performance requirements, a
high closed-loop bandwidth is needed. In this high-frequency region the interaction is sig-
nificant. All this makes the system amenable for H∞-optimal controller design. We design
a single, fixed controller for the whole horizontal operating plane. A further improvement
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could be reached by taking the position dependence explicitly into account using Linear
Parameter Varying (LPV) controller synthesis (see e.g. [210], [46]). This is beyond the
scope of this thesis. We refer the reader to [76] for an application of LPV control to a
wafer stage.

Control architecture

The system is controlled with dedicated software. This software allows us to implement
controllers in state-space format. Controllers designed in continuous time are discretised
using the First Order Hold method. The controllers are implemented on six motion control
boards at a sampling frequency of 30Hz (in terms of the scaled frequency axis)1. Measure-
ments of the interferometers can be collected at the same sampling frequency. These
measurements are used to identify the system in the next section, as well as for closed-loop
control.

9.2 System identification

As a first step towards the controller design we have obtained an estimate of the Frequency
Response Function (FRF) using an identification experiment. This experiment has to be
performed in closed-loop, since the uncontrolled wafer stage would drift too much and make
mechanical contact with the end of the strokes during an experiment. The controllers that
were used for the experiments were three manually tuned low-bandwidth SISO PID-like
controllers.

9.2.1 Experiments for system identification

Figure 9.4 shows the closed-loop set-up, where all signals are in discrete-time and the
Digital to Analog (DA) and AD conversion are contained in G. The discrete-time signals
are the control outputs u, the measurement output y, the excitation signal n and the error
signal e. They are vectors that comprise the three translations and are partitioned such
that

u =
(
ux uy uz

)T

y =
(
yx yy yz

)T

n =
(
nx ny nz

)T

e =
(
ex ey ez

)T

In three different experiments an excitation signal has been injected into one of the three
directions x, y and z. In the first experiment the actuation in x-direction is excited,
such that nx is nonzero and ny = nz = 0. The excitation signal nx is pink noise, i.e. a
(pseudo-)random low-pass filtered white noise sequence. This low pass filter has a first
order roll-off and a cut-off frequency 3Hz, which is a tenth of the sampling frequency.
The standard deviation of the pink noise signal (in Newton) is 20

3
N. In the other two

experiments the y- and z-motors are excited in a similar fashion. At all three experiments
the three measured positions y and measured control outputs u are logged at a sampling
frequency of 30Hz. Each experiment is subdivided into 20 periods of about 550 seconds

1The unscaled sampling frequency is in orders of magnitude of kHz.
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Figure 9.4: Closed loop system of Alpha tool wafer stage prototype

(in scaled time units). After each period the measurement data are saved on a hard-disk
of the PC that is connected to the controller boards. The controller software computes
an approximate Frequency Response Function of the open-loop system. We define FRF
estimate of the open-loop system as a mapping G̃ : Ω → C

r×r, where Ω = {ω1, ω2, . . . , ωN}
is a finite number of frequency points. The number of degrees of freedom r is in this case
equal to 3. The open-loop FRF estimate G̃ is distilled from the closed-loop measurement
data as follows. First, the signals u, e and n are discrete-time Fourier transformed [87]
to û(jω) ê(jω) and n̂(jω), for a finite number of frequencies ω ∈ Ω := {ω1, ω2, . . . , ωN}.
These are N = 4889 equidistant frequency points ωk = 0.0494 + (k − 1)0.00183Hz, k =
1, . . . , N such that ωN = 9Hz. An FRF estimate of the input sensitivity Sinp(jω) :=
(I +K(jω)G(jω))−1, i.e. the transfer function from n to u, is computed as

S̃inp(jω) :=
(

û1(jω)
n̂1

û2(jω)
n̂2

û3(jω)
n̂3

)

for all ω ∈ Ω,

where u1 and n1 denote the responses of the 1st experiment, i.e. where the x-motor has
been excited2. Similarly u2 and n2 are the responses for the excited y-motor and u3 and
n3 those for an excitation of the motor in z-direction. Since ui(jω) i = 1, 2, 3 are vectors
in C

3, S̃inp(jω) is a 3× 3 complex matrix for all ω ∈ Ω. Similarly, an FRF-estimate of the
process sensitivity H(jω) := G(jω)(I +K(jω)G(jω))−1 is obtained by

H̃(jω) :=
(

ê1(jω)
n̂1

ê2(jω)
n̂2

ê3(jω)
n̂3

)

, for all ω ∈ Ω

The FRF estimate G̃ : Ω → C
r×r with r = 3 of the transfer function of the open-loop

physical system (without controller) is finally computed as follows:

G̃(jω) = H̃(jω)S̃(jω)−1 for all ω ∈ Ω.

This FRF is shown in Figure 9.5.
The rigid-body dynamics are clearly visible as double integrators in the diagonal ele-

ments of the system. Furthermore we see that the model is fairly well decoupled at low
frequencies below 0.6Hz, since the magnitudes of the off-diagonal entries are small com-
pared to the diagonal ones. This approximate decoupling of the rigid-body dynamics has
been realized in the software by multiplying the controller outputs by a static matrix (i.e.
static decoupling). At the diagonal entries the dynamics introduced by flexibilities are
clearly visible from around 3Hz.

The FRF-estimate of the dynamics in x-direction is denoted by G̃xx(jω). The cor-
responding FRF-data are shown in the left upper block of the figure. G̃xy(jω) is the
FRF-estimate of the dynamics from the y actuator to the measured x-position etc. In

2Actually a full 6 × 6 MIMO FRF is identified, where a posteriori the 3 × 3 subsystem x/y/z is split
off.
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Figure 9.5: Estimated FRF G̃ of the 3 × 3 MIMO open-loop system.
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G̃xx(jω) we observe two resonance pairs around 4.28Hz and 5.53Hz. The gain of G̃xx(jω)
rolls off with −4 slope after 5.69Hz.

G̃yy(jω) is the transfer function from force on the y-motor to measured position in y-
direction. The −4 slope starts in this entry of the FRF at around 5.4Hz. In the frequency
response of the z-direction (i.e. G̃zz(jω)) we observe a complex zero pair followed by a
complex pole-pair. The FRF estimates of the off-diagonal elements are much less reliable,
due to the lower signal-to-noise ratio. There are peaks in G̃xy(jω), G̃yy(jω) and G̃zy(jω)
at around 5.4Hz, which indicates that they are possibly from the same source. They are
probably caused by a flexibility that is excited by the y-motor and can be measured in all
directions.

Remark. Formally speaking the FRF estimates do not have poles and zeros, such that
the above terminology is not fully correct. We use these terms here, because the trans-
fer functions identified in Section 9.2.3 will have poles and zeros at the corresponding
frequencies.

9.2.2 Rigid-body dynamics and time delay

To improve the fit of a model on the FRF, we first remove the rigid body dynamics and
time delay.

Rigid body dynamics

The rigid body dynamics of the system can be modelled by double integrators. These
integrators make the low-frequent gains of the diagonal elements of the FRF very large, if
compared to the high-frequent dynamics. To reduce the effect of round-off errors on the
modelling of the high-frequent dynamics, we multiply the FRF by (jω)2I for all ω ∈ Ω,
i.e. the frequency response of the inverse of the rigid body dynamics.

Time delay

Due to computational delays in the real-time processor and Zero-Order Hold controller
implementation, the open-loop system has a time delay. The delay is estimated using the
FRF, by considering the phase lag at frequency ωd = 0.6Hz. We assume that the phase lag
of the open-loop physical system at this frequency is only due to the rigid body dynamics
and the delay time τd. Since the rigid body dynamics introduce a phase lag of 180 deg, the
total phase at frequency ωd can be expressed as

φ = −180 − 360τdωd,

where φ and ωd are in degrees and (scaled frequency unit) Hz respectively. The estimated
phase lag for the diagonal elements of the FRF at ωd = 0.6Hz is shown in Table 9.2. On
the basis of these estimates, we estimated the delay to be about 41.7ms. In our experience
the quality of the model is improved if the phase-contribution of the delay is first removed
from the data, before fitting transfer functions on the data. A Padé approximation of the
delay is added afterwards to the identified model.

The ‘elimination’ of the rigid-body dynamics and delays results in the following Modi-
fied FRF:

G̃M(jω) =
(
(jω)2eτdjωI

)
G̃(jω) for all ω ∈ Ω
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Table 9.2: Estimated delay times at frequency ωd = 0.6Hz for the three SISO FRF esti-
mates.

x y z

phase φ [deg] −188.76 −188.74 −188.52
estimated time delay [ms] 40.6 40.5 39.5

After having obtained an identified and Reduced state space model GMR of this Modified
FRF, we multiply its transfer by 1

s2p(s)I to obtain a model of the wafer stage system:

G(s) =

(
1

s2
p(s)I

)

GMR(s) (9.1)

where p(s) is a SISO second order Padé approximation of e−τds.

9.2.3 Identification of a state-space model

A state-space model GM with transfer function GM(s) has been derived from the FRF es-
timate G̃M with the least squares approximation algorithm for SISO systems as described
in [178]. We do this entry by entry, i.e. we fit each entry GM(s)xx, GM(s)xy, . . ., GM(s)zz
separately. For each entry the smallest model order has been chosen that resulted in a
transfer function that well enough interpolates the estimated FRF G̃M at Ω, if judged
by visual inspection of the amplitude and phase of the frequency response. After obtain-
ing models for all entries in this fashion, they have been combined into an r × r stable
transfer function matrix GM(s) with McMillan degree 70. Based on this transfer function
matrix, an 82nd-order model has been computed: G82nd

(s) :=
(

1
s2p(s)I

)
GM(s). The fre-

quency response of G82nd
(s) and estimated FRF are shown in Figure 9.6 in green and red

respectively.
Figure 9.7 shows the relative difference between the measured FRF G̃ and the 82nd

order model computed G as



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

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, for all ω ∈ Ω,

We observe that at the diagonal entries both phase and amplitude of the estimated FRF
and the model G82nd

(s) match quite well. The off-diagonal entries are badly estimated at
low frequencies. It has been mentioned in the previous section that the estimated FRF
is not very reliable in the low-frequency range, which (partially) explains the difficulty to
obtain a good fit. It also implies that further improvement of the off-diagonal elements
does not necessarily improve the model much. For multi-variable controller design a good
fit of the off-diagonal elements is required at frequencies around the desired bandwidth,
which is 0.9Hz for x and y and 0.48Hz for z. Based on visual inspection we conclude that
around these frequencies the fit seems accurate enough. Many of the resonances that are
important for control are between 3Hz and 7Hz. To assess the quality of the fit of the
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Figure 9.7: Relative difference between the estimated FRF G̃ and following two models:
82th order model G82nd

(green) and reduced 32th order model G (blue).

important resonances, a magnified version of Figure 9.6 is shown in Figure 9.8 between
these frequencies. This figure illustrates that several modes of the off-diagonal elements are
fitted well. For instance, the mode at 5.4Hz in the second column of the transfer function
matrix is captured in the model. Furthermore G82nd

xy has a resonance at 5.35Hz, which is

included in the model, and the peaks at 5.4Hz, 5.52Hz and 5.66Hz of G82nd

yx and 3.86Hz

and 4.3Hz of G82nd

xz are captured by the model.

Remark. To cover the mismatch between the FRF and the model, the closed loop perfor-
mance is not only analyzed on the model, but also on the FRF. This analysis is presented
in Section 9.4.2.

Remark. Subspace identification in the frequency domain is an alternative technique
for obtaining a state-space model fitting on the measured FRF. We have tried this tech-
nique [129], but the resulting model was not better than the 82th order model and the
reduced model presented in the next section, both shown in Figure 9.6, if judged by visual
inspection of the frequency response.

9.2.4 Model reduction

It is not unlikely that the frequency estimates of the different entries of G82nd
have common

poles and zeros, because flexibilities in the mechanical structure may have effect on more
than one physical direction, or may be excited by more than one actuator. Due to modelling
inaccuracies these common resonances do not have the same pole-locations exactly, but
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Figure 9.8: Estimated FRF G̃ (red), 82th order model G82nd
(green) and reduced 32th order

model G (blue), zoomed in at the frequency region between 3Hz and 7Hz
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they will be close to each other in terms of damping and natural frequency. For instance,
the poles around 5.4Hz in the second column of the transfer function seem to result from
a single dynamic mode.

As discussed in the previous section, a realization of the transfer functionGM is obtained
by combining the realizations of the entries. Common poles of these entries may give rise
to a non-minimal realization or a realization with some Hankel Singular Values (HSVs)
that are very small if compared to the largest HSV. Elimination of the corresponding states
in the balanced realization will not change the transfer function much, due to the bound
on the H∞-norm of the truncation error as explained in Lemma 3.1. At the same time,
this reduction simplifies the controller optimization, because the computation time of the
fixed-order algorithms is large for higher order models. The stable 70th order model GM(s)
has therefore been reduced by balanced residualization as explained in Section 3.1.1. With
order n = 20 we have obtained a reasonable fit GMR(s) of the estimated FRF. Finally, the
integrators and Padé approximations are added to the reduced model GMR(s) resulting in
G(s) as given by (9.1).

The transfer function is given in blue in Figures 9.6 and 9.8. The McMillan degree of
the transfer function is 32. G(s) is computed using (9.1). The frequency response of G(s)
and estimated FRF are shown in Figure 9.6 in green and red respectively. Figure 9.7 shows
the relative difference between the measured FRF G̃ and the reduced 32th order model G
computed as








|Gxx(iω)−G̃xx(iω)|
|Gxx(iω)|

|Gxy(iω)−G̃xy(iω)|
|Gxy(iω)|

|Gxz(iω)−G̃xz(iω)|
|Gxz(iω)|

|Gyx(iω)−G̃yx(iω)|
|Gyx(iω)|

|Gyy(iω)−G̃yy(iω)|
|Gyy(iω)|

|Gyz(iω)−G̃yz(iω)|
|Gyz(iω)|

|Gzx(iω)−G̃zx(iω)|
|Gzx(iω)|

|Gzy(iω)−G̃zy(iω)|
|Gzy(iω)|

|Gzz(iω)−G̃zz(iω)|
|Gzz(iω)|







, for all ω ∈ Ω.

The figures illustrate that the ‘dominant’ dynamics of the diagonal and off-diagonal
elements are fairly well captured by the reduced-order model. For instance, the resonance
at 5.35Hz of Gxy is included in model. The peak of the resonance at 2.77Hz in Gxy is
‘smaller’, and this may be the explanation for its presence and absence in the high-order
model and the 32th order model, respectively. The transfer function G of Mc-Millan degree
32 will be used for controller synthesis in the next section.

9.3 Four-block H∞-optimal controller design

We compute the controllers by H∞ synthesis using a four-block design, as depicted in
Figure 9.9. The closed-loop plant M(s) is given by

W1 W2 V2 V1

r

6− K- r?+
+
- G- r?+

+
-

6

6

6

6 ? ?

-
y u

z1 z2 w2 w1

Figure 9.9: Four-block controller set-up

M :=

(
M11 M12

M21 M22

)

= −
(

W1SV1 W1SGV2

W2KSV1 W2KSGV2

)

(9.2)

196



where S = (I + GK)−1. This implies that the four-block design procedure allows us to
shape, although not independently, the loops of the following closed loop transfer functions:

1. the sensitivity S = (I +GK)−1,

2. the process sensitivity SG,

3. the controller sensitivity KS and

4. KSG, which is in the SISO case equal to the complementary sensitivity T = GKS.

Apart from the possibility to shape four transfer functions, an advantage of the four-block
design is that pole zero cancellations are not so likely to occur than with two-block designs
such as S/KS or S/T as for instance explained in [183]. See [199] and the references therein
for some more detailed considerations on the choice for the four-block problem. The reader
is referred to this latter paper and the dissertation [45] for four-block H∞-designs applied
to predecessors of the wafer stage prototype discussed in this chapter.

To achieve good disturbance rejection we aim at bandwidths of around 0.9Hz for x

and y and 0.48Hz for z. The choice of the weighting filters V1, V2, W1 and W2 is based
on [199], where an H∞-optimal controller design technique is presented for a wafer stage.
For completeness we give a short explanation of this procedure.

9.3.1 Choice of weighting filters

The weighting filters are diagonal and chosen on the basis of SISO loop-shaping argu-
ments. The diagonal entries of the weighting filters are parameterized using the following
parameters:

• the target bandwidth fBW, defined here for a SISO system as the frequency where
the open-loop gain GK first crosses the 0dB line (or in other words the cross-over
frequency).

• the frequency f I . Up to this frequency the controller has integral action to suppress
low frequent disturbances,

• the frequency fR. Beyond this frequency the controller must have a −2 roll-off,
to avoid amplification of sensor noise and highly saturating actuators and to avoid
performance deterioration due to unmodelled high-frequent dynamics.

f I is typically chosen five times smaller than the corresponding target bandwidth fBW

whereas fR is usually chosen five times larger than fBW. These few design parameters
have a clear interpretation which makes the design easier and more intuitive.

To enforce zero steady state error, W1 is chosen as the diagonal augmentation of first
order filters, each with a single pole at s = 0:

W1(s) = D






s+2πfI
x

2s
0 0

0
s+2πfI

y

2s
0

0 0 s+2πfI
z

2s




 (9.3)

where D = diag(dx, dy, dz) is a diagonal matrix whose diagonal nonzero entries dx, dy

and dz are used to scale different units to comparable orders of magnitude and to address
differences in specifications.
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W2 has high gain at high frequencies to enforce the controller to have roll-off. By tuning
we concluded that first-order roll-off for x and y and second order roll-off for z work best.
W2 is therefore chosen as

W2(s) = D





wx(s) 0 0
0 wy(s) 0
0 0 wz(s)



 , (9.4)

where

wx(s) := kR
xαx

s+ (2πfR
x )

s+ (αx2πfR
x )
,

wx(s) := kR
yαy

s+ (2πfR
y )

s+ (αy2πfR
y )
,

wz(s) := kR
z α

2
z

s2 + 4πβzf
R
z s+ (2πfR

z )2

s2 + 4πνzαzfR
z s+ (αz2πfR

z )2
.

αx, αy and αz are the ratios between the eigenfrequencies of the zeros and poles and
are all set equal to 100. The damping ratios βz and νz of the numerator and denominator
respectively of wz are set to 0.7.

To illustrate the choice of the scaling factors kR
x , kR

y and kR
z we consider the SISO design

for the x direction with closed-loop plant

Mx :=

(
M11x M12x

M21x M22x

)

:= −
(

W1,xSxxV1,x W1,xSxxGxxV2,x

W2,xKxxSxxV1,x W2,xKxSxxGxxV2,x,

)

(9.5)

where Sxx, Gxx and Kxx are the sensitivity, system and controller in x-direction and Vi,x,
Wi,x, i.e. are the left upper elements of Vi and Wi, respectively, i = 1, 2. kR

x is chosen
such that at the target bandwidth the norms of the first row and second row of Mx(s)
in (9.5) have the same order of magnitude. Observe from (9.5) that this is realized if
|W1,x(2πjfBWx

)| is approximately equal to |W2,x(2πjfBWx
)Kxx(2πjfBWx

)|. Furthermore,
since for a SISO system the loop gain is order one in magnitude at the bandwidth, we
infer that |Gxx (2πjfBWx

)| approximately equals 1
|Kxx(2πjfBWx

)|
. Hence we achieve that

Mx(2πjfBWx
) has rows with approximately equal magnitude if we choose

kR
x =

1

2
|Gxx (2πjfBWx

)| .

Likewise we choose

kR
y =

1

2

∣
∣Gyy

(
2πjfBWy

)∣
∣ ,

kR
z =

1

2
|Gzz (2πjfBWz

)| .

Using similar arguments we choose

V2 =





|Gxx (2πjfBWx
)|−1 0

0
∣
∣Gyy

(
2πjfBWy

)∣
∣
−1

0

0 0 |Gzz (2πjfBWz
)|−1



V1 (9.6)
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Table 9.3: Parameters of 4-block design parameters.

Parameter x y z

fBW 0.9 0.9 0.48
f I 0.18 0.18 0.16
α 100 100 100
β - - 0.7
ν - - 0.7
d 1 4 1

to achieve that the first and second column of Mx

(
2πjfBWy

)
have norms with equal orders

of magnitude and using similar considerations for y and z. Finally, we choose V1 = D−1,
to enforce a bound on the peak of the sensitivity of about 2. Indeed since

(
1 0 0

)
W1(s)S(s)V1(s)





1
0
0



 = dx

s+ 2πf I
x

2s
Sxx(s)

1

dx

=
s+ 2πf I

x

2s
Sxx(s),

we observe that ‖Mx(iω)‖ < 1 for all ω ∈ R implies ‖Sxx(iω)‖ < 2, ω ∈ R, which is the
desired bound on the sensitivity peak.

Observe that the diagonal scaling matrix D is present in W1 and W2 and its inverse
in V1 and V2. As a result, the scalingD does not affect the diagonal entries ofMij, i, j = 1, 2.

In Table 9.3 we have collected the parameters, whose choice has been motivated above.
By tuning we determined that D = diag(1, 4, 1) yields a good design.

Remark. The presented weighting functions are diagonal, since nonzero off-diagonal
weighting functions are hard to interpret and tune. This chapter illustrates that norm-
based MIMO controller synthesis can be done with diagonal weights, which is in our opinion
one of the main advantages of this design technique.

9.3.2 Towards a generalized plant

The open-loop generalized performance outputs z1 and z2 and control inputs y are related
to the generalized disturbances w1 and w2 and controls u by





z1

z2

y



 = P





w1

w2

u





where

P =





−W1V1 −W1GV2 −W1G
0 0 W2

−V1 −GV2 −G





P is however not a generalized plant, since it is not stabilizable. Indeed the weighting filter
W1 contains unstable poles at s = 0, which cannot be stabilized by the controller. One
way to overcome this, is to shift these poles or all poles of P slightly into the left-half plane
[187, 186]. An often relevant drawback of this approach is that the resulting generalized
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Figure 9.10: Four-block controller set-up with W1 in the loop.

plant has uncontrollable poles close to the imaginary axis. These poles are then also present
in the closed-loop plant and are relatively very close to the imaginary axis if compared to
other closed-loop poles. In our numerical experience this makes the fixed-order synthesis
prone to large numerical errors that often slow down the convergence rate. Moreover, the
LMI-based synthesis algorithms are frequently not applicable to such systems, because
the LMI algorithms often fail to determine solutions of feasible subproblems. Scaling of
variables may definitely improve the accuracy of the results of the algorithms, but the
effect of large differences in eigenvalues cannot easily be alleviated by scaling.

On the other hand the shift of the poles cannot be chosen too large, since the resulting
controller will not necessarily satisfy the original specifications, even if the controller poles
are shifted back. For this reason it is important to avoid uncontrollable poles very close to
the imaginary axis.

An alternative way to enforce that the controller has integral action is based on the
well-known Internal Model Principle. It has the advantage that it does not require to
shift the uncontrollable poles into the left-half plane. In the next section we will see that
this makes the fixed-order controller optimization for the wafer stage numerically easier.
The poles at s = 0 are pulled into the loop [25], as illustrated in Figure 9.10, where the
controller K is replaced by K̃ := KW−1

1 . The resulting plant P̃ can be composed as:

P̃ =





−W1V1 −W1GV2 −W1G
0 0 W2

−W1V1 −W1GV2 −W1G





If G does not have zeros at s = 0, it is clear from Figure 9.10 that the poles of W1 at s = 0
can be stabilized by the controller K̃, such that perturbation of these poles is not required
to satisfy the stabilizability and detectability conditions for H∞-synthesis in Assumption
2.4. After synthesis of K̃, a controller K is reconstructed using K = K̃W1.

9.3.3 Full-order synthesis

The McMillan degree of the MIMO generalized plant P̃ is 39, where

• 32 orders are in the system

• 3 are due to the integral action in W1 in (9.3)

• 4 are needed for the roll-offs in W2 in (9.4)

Indeed, the transfer functions wx and wy in W2 each have McMillan degree 1 and wz has
degree 2.

SISO controllers for all 3 DOFs as well as a single MIMO controller have been designed
and their frequency responses are shown in Figure 9.11 in red and blue, respectively.
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Table 9.4: Closed-loop H∞-norms of optimal full order controllers.

SISO/MIMO Controller Closed-loop H∞-norm

SISO for x-direction 1.956
SISO for y-direction 1.959
SISO for z-direction 1.913

MIMO diagonal 8.172
MIMO full 1.962

Table 9.5: The maximum of the real values of the poles of closed-loop with full-order
controller for two different design techniques.

Max. real value of closed-loop poles designed
direction by shifting by internal model principle

x −5.65 · 10−5 −0.0412
y −5.65 · 10−5 −0.0850
z −5.65 · 10−5 −0.0590

MIMO −5.65 · 10−5 −0.0412

The closed-loop H∞-norms are shown in Table 9.4, together with that of the MIMO con-
troller constructed by diagonal augmentation of the SISO controllers for the x-, y- and
z-directions. The closed-loop H∞-norm of the 3 × 3 controller consisting of diagonal aug-
mentation of the SISO x-, y- and z-controllers is 8.17, denoted by ‘diagonal’ in the table.
This is significantly larger than the performance 1.96 of the MIMO optimized full order
controller as shown in the table.

In Table 9.5 the maximum of the real values of the poles of the closed-loop system are
given for the two design techniques as discussed above, one by shifting all the eigenvalues
of the plant with ǫ = −5.7 · 10−5 and the second with the internal model principle. The
minimum of the real values of the poles is for all directions in the order of −105. From the
table we see that the shifted closed-loops are about a factor 100 closer to the imaginary
axis than the closed-loop systems obtained using the internal model principle. This ratio
is larger for smaller ǫ > 0. The optimal full-order closed-loop H∞-norms appear to be
the same, irrespective of the method (shifting or internal model principle) that is applied.
However, in Section 9.4.1 we will illustrate that fixed-order controller optimization for a
generalized plant based on the Internal Model Principle often yields a controller with a
better closed-loop H∞-norm than for a plant with shifted eigenvalues.

The controllers are shown in Figure 9.11, where the SISO controllers are depicted in
each corresponding diagonal element. The diagonal elements of the SISO and MIMO
controllers are similar in the low frequent region, but they differ significantly around 6Hz.
The SISO controllers have a PID-like shape of the magnitude, combined with notches and
inverse notches at higher frequencies. Especially at higher frequencies the non-diagonal
elements of the controller have significant gain, if compared to the diagonal elements.

The closed-loop sensitivities of the MIMO and diagonally augmented SISO controllers
are shown in Figure 9.12. The sensitivity peaks of about 2.15 (i.e. 6.5dB) is slightly above
the target of 2. The frequency responses of the other three closed loop transfer functions
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Figure 9.11: Frequency response of full order controllers. Blue: full MIMO controller, Red:
diagonally augmented SISO controllers
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Figure 9.12: Frequency response of the closed-loop sensitivity of the loop with the MIMO
plant model and two controllers: the full-order MIMO controller (blue) and diagonally
augmented SISO controllers (red).
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that are shaped with the four-block design are shown in Appendix C.2.

9.3.4 Unstable controller poles

All full order controllers are unstable due to the integral action. Besides these poles at
s = 0 the SISO controllers for the directions x and y and the MIMO controller have single
unstable pole-pairs with real values of 0.359, 0.396 and 0.0211 respectively. Controllers
with unstable poles that have large real values are not desired from a practical viewpoint.
In [46] an implementation scheme for a CD-player is discussed, of controllers with unstable
poles apart from the pole for integral action. However, such controllers are not desirable
in commercial wafer stages. We therefore aim at the synthesis of controllers, with unsta-
ble poles only due to integral action and with the other poles stable. Observe that the
integrators are removed from the controller K̃ described above. This implies that the de-
sired property of the controllers is assured if we search for a stable K̃, i.e. if we solve a
fixed-order strong stabilization problem. In most of the fixed-order algorithms discussed
in this thesis an extra constraint can be added to enforce stability of the controller poles.
In particular this can be done for all algorithms used for optimization in the next section.
However, it turned out not to be necessary to enforce these stability constraints explic-
itly. The optimized controllers are all stable, if we start the algorithms with stable initial
controllers. How to obtain stable initial controllers is also explained in the next section.

9.4 Fixed-order controller synthesis

Using controller reduction by balanced closed-loop residualisation, as discussed in Section
3.1.3, we have constructed SISO controllers of McMillan degree 3, 3, 4 for the x-, y- and
z-direction respectively. With the same technique, we have reduced the full-order MIMO
controller to a McMillan degree of 11. The choice of the degrees is based on a trade-off
between McMillan degree and performance. This has been done by evaluation of the closed-
loop H∞-performance of the reduced controllers of all orders, i.e. static up to full order
controllers. This is illustrated for the MIMO controller in Figure 9.13. This figure shows
in black the closed-loop H∞ norms of the controllers obtained by balanced reduction of the
full order controller. The smallest controller order is 3, since if K̃ is static, K = K̃W1 is
a third order controller. The largest controller order is equal to 42. Of these 42 controller
states 39 are from the full-order controller K̃ and 3 from W1. The controllers up to order
11 are not stabilizing, and they are therefore depicted as bars of magnitude 20.

Almost all controllers are unstable. We have obtained stable controllers by eliminating
the unstable controller modes in the following fashion. We perform a similarity transfor-
mation on a state-space representation of the controller such that

AK =

(
As

K 0
0 Au

)

where As
K is Hurwitz and truncate the states corresponding to Au. The resulting closed-

loop performances of these stable controllers are shown as white bars3 in Figure 9.13. For

3To be able to compare the performance of the controllers, we have plotted the performance of the
original reduced controller and its performance after truncation of the unstable part next to each other,
although the stabilized controllers might have smaller order due to the truncation. Due to this choice of
presentation, the stabilized controllers may have smaller McMillan degree than shown in the figure.

204



0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

16

18

20

order

H
in

f p
er

fr
om

an
ce

Figure 9.13: Closed-loop H∞-norm for reduced MIMO controllers K of order 3 up to 42.
Depicted are reduced controllers (black) and reduced and stabilized controllers (white).

the controllers of order 25 or larger, the stabilized controllers have larger closed-loop H∞-
norm as the original reduced controllers. For several lower order controllers the stabilized
controllers appear to have better performance. The closed-loop H∞-norm of the controller
obtained by truncating the 15th order controller is 5.02. Since four poles are truncated, its
McMillan degree is 11. This controller will be used for further optimization.

Stable SISO controllers of McMillan degree 3, 3, 4 respectively have been computed in
a similar fashion. The McMillan degrees of the SISO controllers are the minimal that one
can expect, since for a reasonably small closed-loop H∞-norm one needs integral action, a
lead-lag filter to create stability margin and a 1st order roll-off for x and y and a 2nd order
roll-off for z.

9.4.1 Controller optimization with several algorithms

We have optimized the SISO controllers x and y and z with constraints on their McMillan
degree of 3, 3 and 4, respectively. The MIMO controller was restricted to McMillan degree
11. All these controllers have been optimized with the following algorithms:

• the MDS method as described in Section 3.4, denoted in this chapter by ‘Simplex
algorithm’.

• the Interior Point (IP) algorithm as presented in Chapter 7

• the XK algorithm as discussed in Section 3.2.2
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Table 9.6: H∞-norms of the closed-loop SISO generalized plants in three directions and of
the closed-loop MIMO generalized plant, for all optimized controllers. Also shown are the
computation times spent on the controller designs in seconds.

Controller Full Reduction Simplex Interior Point XK-iteration

H∞- comp. H∞- comp. H∞ comp. H∞- comp. H∞- comp.

-norm time -norm time -norm time -norm time -norm time

SISO, x 1.956 2.047 2.598 4.703 2.307 12.824 2.117 521.28 2.122 62.625

SISO, y 1.959 1.000 2.560 2.219 2.167 16.081 2.089 558.19 2.151 66.39

SISO, z 1.913 1.157 6.128 2.484 2.423 23.077 2.099 1013.0 - -

MIMO 1.964 9.190 5.021 9.562 2.9612 108.16 3.1724 65231 - -

We have modified the Simplex algorithm to speed up its convergence, as is discussed
in Appendix D. All three algorithms have been initialized with the reduced controller.
The reduced controller is obtained by closed-loop balanced residualization of a full-order
controller with a slightly larger γ than optimal. This improves the quality (measured in
terms of the closed-loop H∞-norm) of the reduced controller significantly in comparison
with the reduced optimal full-order controller. To make the optimization less prone to
round-off errors, the state-space representation of both controller and plant have been
balanced.

The closed-loop H∞ performances of the optimized controllers are given in Table 9.6,
together with their computation times. For the SISO controllers the H∞-norm of the
corresponding closed-loop SISO generalized plant is displayed in the table. For the MIMO
controller the H∞-norm of the closed-loop MIMO generalized plant is shown in the table.

The closed-loop balanced reduction is the fastest amongst all algorithms for fixed-
order controller design. However, the closed-loop performance is worse than for the other
algorithms. In particular, the closed-loop H∞-norm of 6.13 of the reduced z-controller is
very large. The final closed-loop H∞-norms of the other algorithms are comparable for
all 3 SISO controllers and acceptable, if compared to the full order performance. The IP
method yields the best (in terms of closed-loop H∞-norm) fixed-order SISO controllers and
their performances are close to the full order closed-loop H∞-norms. The XK-iteration
algorithm could not compute a controller for the z-direction, because the initial LMI was
infeasible. This must probably be attributed to numerical errors in the LMI optimization,
since the initial controller is in fact stabilizing.

The IP-method and Simplex method computed MIMO controllers with a closed-loop
H∞-norm of 3.169 and 3.04 respectively, which is a large reduction if compared with the
performance of the initial controller of 5.02. The closed-loop sensitivities of these controllers
are shown in Figure 9.14. Apart from a slightly larger peak of the sensitivity of the IP
optimized controller in the diagonal elements are the closed-loop sensitivities

For completeness the full, reduced and optimized MIMO controllers are shown in Figure
C.1 in Appendix C.1. Figure 9.15 shows the optimized controllers for all orders up to
full order. Again, controllers that are not stabilizing are depicted by a bar with H∞-
performance level 20. The performance of the initial controllers obtained by reduction are
also shown in the plot. The plot reveals that the 17th order optimized controller has a
good performance, i.e. of 2.4. The figure also shows that the algorithm does not necessarily
compute globally optimal controllers, since for instance the closed-loop H∞-norm of the
25th order controller is larger than of the 17th order controller.
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Figure 9.14: Frequency response of closed-loop sensitivity of the MIMO controllers: full
order in green, reduced in red, IP optimized in blue and Simplex optimized in black.
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Table 9.7: Comparison of optimization with generalized plant with shifted eigenvalues
and with plant based on the Internal Model Principle (IMP): closed-loop H∞-norms of
optimized controllers and the computation times in seconds for the x-direction.

Plant Full Reduction Simplex Interior Point XK-iteration
H∞- comp. H∞- comp. H∞ comp. H∞- comp. H∞- comp.
-norm time -norm time -norm time -norm time -norm time

IMP 1.956 1.312 2.598 2.938 2.307 10.328 2.117 533.44 2.122 62.188
Shifting 1.956 1.062 3.727 2.313 2.068 31.625 2.364 293.95 3.723 19.5

The other algorithms could not optimize the MIMO controller, due to limited memory
and/or computation speed of the computer.

For the x-direction, Table 9.7 illustrates the difference between optimization with the
shifted generalized plant and the plant based on the Internal Model Principle (IMP). The
results for the shifted plant are the closed-loop H∞-norms of the shifted plant P̃ , together
with the corresponding optimized controller, i.e. the controller has not been back-shifted.
The full order performance is approximately the same for both plants; the shift of the poles
is apparently small enough. The performance of the reduced controllers is very different:
the controllers made with the IMP plant have much smaller closed-loop H∞-norm. All
optimized controllers with the IMP plant have better performance than those computed
with the shifted plant. A notable exception is the controller optimized with the Simplex
algorithm. The advantage of using the IMP plant is even more convincingly illustrated
with the y-direction: the reduced controller is unstable for the shifted plant, such that
all optimization algorithms could not be initialized with this controller. These results are
therefore not shown in the table.

To illustrate that the Simplex model can also handle higher order models, we have
optimized a reduced controller for the four-block generalized plant with the (unreduced)
70th order model. This plant has McMillan degree 89. The full order controller for this
plant has been reduced by closed-loop balanced truncation to a 15th-order controller with
a closed-loop H∞-norm of 12.7. This controller leading to a closed-loop H∞-norm of 3.5
is found by the Simplex algorithm in 499 seconds. Nevertheless, the closed-loop norm is
significantly larger than the full order performance of 1.96.

9.4.2 Controllers for implementation

The reduced SISO controllers and those that have been optimized by the Simplex algorithm
have been implemented on the set-up. These controllers are shown together with the full-
order controller in Figures 9.16, 9.17 and 9.18 for the directions x, y and z respectively.
We observe from the figures that the magnitude of the reduced SISO controllers have a
PID-like shape, with poles at s = 0 and a complex pole-pair.

Table 9.9 shows the achieved bandwidth, gain and phase margin and sensitivity peaks
of the reduced and optimized controllers. The bandwidths of the x and y controllers are
below the target bandwidth of 0.9Hz, but seem satisfactory. The bandwidth of the z

controllers are quite close to the target bandwidth of 0.48. The phase and gain margins
are good for all designs. The reduced controller in the z-direction has a large sensitivity
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Table 9.8: Pole locations of reduced and optimized controllers

Reduced controller Optimized controller
x y z x y z

−16.4 + 20.2j −15.8 + 21.3j −27.1 −17.2 + 18.8j −18.1 + 17.3j −21.8

−16.4 − 20.2j −15.8 − 21.3j −6.41 + 11.8j −17.2 − 18.8j −18.1 − 17.3j −6.61 + 10.1j

0 0 −6.41 − 11.8j 0 0 −6.61 − 10.1j

0 0

Table 9.9: Gain, phase margins of the controllers

Item Unit Reduced controller Optimized controller
x y z x y z

Bandwidth Hz 0.789 0.762 0.492 0.755 0.796 0.462
Gain Margin dB 8.34 8.72 7.16 8.72 8.21 7.817
Phase Margin deg 30.2 29.9 30.6 31.3 30.0 27.4
Sensitivity Peak dB 5.95 5.89 9.63 5.71 6.27 6.97

peak of 9.6, much larger than the target peak of 6dB.
At Philips Applied Technologies it is common practice to evaluate the frequency re-

sponse of the closed-loop of the controllers with the measured FRF before implementation.
With this plot we can evaluate the effects of the modelling errors introduced by the fre-
quency fit and model reduction. The closed loop sensitivities are shown in Figure 9.19 and
9.20 for the reduced and optimized controllers, respectively.

The diagonal elements of the closed-loop system are almost identical. The off-diagonal
elements differ much around 0.6Hz. This could be expected from the large difference in
the off-diagonal elements of the open-loop FRF and the model around this frequency. The
relatively large differences in elements Sxz, Syx and Syz around 0.6Hz are not so harmful,
since the magnitude of the sensitivity is small at that frequency.

In Section 9.2.4 it was mentioned that the resonance at 2.77Hz in Sxy was eliminated
in the reduction step. In closed loop this mode yields a peak of −11.4dB of the closed-loop
with the FRF, whereas it is −35dB in the model.

9.4.3 Conclusion on fixed-order controller synthesis

With the IP algorithm, the Simplex method and the XK-iteration we have computed
fixed-order SISO controllers with satisfactory closed-loop H∞-norms. The algorithms can
compute SISO controllers with satisfactory performance, except for the computation of a z-
controller by XK-iteration. The SISO controllers have been optimized by the IP algorithm
to values that are within 103% of the full-order closed-loop H∞-norm, as is clear from Table
9.6.

The IP algorithm has optimized the full MIMO controller of McMillan degree 11 to
a performance of 3.17, where the initial controller has closed-loop H∞-norm of 5.021.
The generalized plant in this fixed-order control problem is 39. In our experience the IP
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Figure 9.16: Frequency response of the controllers in x direction: full order in green,
reduced in red and fixed-order optimized in blue.
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Figure 9.17: Frequency response of the controllers in y direction: full order in green,
reduced in red and fixed-order optimized in blue.
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Figure 9.18: Frequency response of the controllers in z direction: full order in green,
reduced in red and fixed-order optimized in blue.

algorithm is successful for plants with McMillan degree up to about 40 − 50, since its
computation time gets rather long. The XK-iteration was not able to compute MIMO
controllers within reasonable computation time. The Simplex algorithm has optimized the
full, low-order MIMO controller within 173s. Although the controllers optimized by the IP
and Simplex method have a much better closed-loop H∞-norm than the initial controller
obtained by closed-loop reduction, their sensitivity peak is rather large.

The computation times of the Simplex algorithm are in our experience short enough to
use this algorithm in an iterative design procedure for practical controller design. Tuning
the weighting functions of the generalized plant, doing a full order H∞-optimal controller
design, reduction and optimization can indeed be performed within half a minute for the
SISO plants discussed in the chapter and within 4 minutes for the 39th order MIMO plant.
Once the weighting functions are fixed, we suggest to use the IP algorithm to compute the
final controller.

The closed-loop sensitivity of the optimized controller is quite good, except for the peak
at element Szy at 5.57Hz of 6.33dB. This peak is present in the closed loops for both the
model and the FRF. The reduced controller has a large sensitivity peak in Szz at 3.89Hz
of 10.2dB. The optimized controller has a much better response at this frequency: 4.95dB.
We will see in the next section that this peak causes the bad time-domain performance of
the reduced controller.

9.5 Controller implementation

In this section we evaluate the performances of the reduced and optimized controllers on
the basis of experiments.
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Figure 9.19: Closed-loop sensitivity of the loop with the reduced diagonal controller and
the model (blue) and the FRF (red).
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Figure 9.20: Closed-loop sensitivity of the loop with the optimized diagonal controller and
the model (blue) and the FRF (red).
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9.5.1 Standstill experiments

Measurements have been obtained of the closed loop systems during ‘standstill’, i.e. when
the reference signals are constant in time. This is done at two positions of the wafer chuck:
the central position and a position at the left upper corner, as illustrated in Figure 9.21.
This latter position is at the edge of the required operating range. The error signal e

y


x


1


2


Figure 9.21: Positions on the wafer chuck where experiments have been performed.

(see Figure 9.4) has been measured for 547 sec. For a representative time interval within
this period the standstill errors of the three translations x, y and z are shown in Figures
9.22-9.24.
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Figure 9.22: Time response of the error in the x direction for t ∈ [150, 155] sec for reduced
controller (red) and optimal controller (blue), at center (solid) and the left upper corner
(dash-dotted) of the wafer chuck.

The errors in the x- and y-directions are small. The resolution of the interferometers
is even visible in the Figures 9.22 and 9.23. Figure 9.24 reveals that the z-errors are much
larger for the reduced controller at the corner position. The maximum and the standard
deviation of the z-error is given in Table 9.10. The errors of both controllers at the central
position are satisfactory for the lithographic process. For the corner position the difference
between the optimal and reduced controllers is more pronounced.

The error of the closed loop with the reduced controller is much larger than of the
optimal controller. Based on Figure 9.24 we have estimated the period of the frequency of
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Figure 9.23: Time response of the error in the y direction for t ∈ [150, 155] sec for reduced
controller (red) and optimal controller (blue), at center (solid) and the left upper corner
(dash-dotted) of the wafer chuck.
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Figure 9.24: Time response of the error in the z direction for t ∈ [150, 155] sec for reduced
controller (red) and optimal controller (blue), at center (solid) and the left upper corner
(dash-dotted) of the wafer chuck.

Table 9.10: Maximum of absolute values ‖e‖L∞
and standard deviation of error signal e in

z-direction.

Center position Corner position
direction ‖e‖L∞

standard deviation ‖e‖L∞
standard deviation

Reduced 7.20 1.79 30.1 15.8
Optimized 7.20 1.91 8.24 1.98
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dominant sinusoid in the error signal to be 3.93Hz, for the experiment with the reduced
controller. This is very close to the frequency 3.89Hz of the sensitivity peak of the reduced
controller, as depicted in Figure 9.19 for the center position. The response is better than
was expected based on this figure. Probably, the smaller error must be attributed to a
slight change in dynamics of the system, in the time between the identification, performed
on February 25th 2005 and the closed-loop experiments performed on April 1st 2005. This is
confirmed by Figure 9.28, which shows the frequency response of the sensitivity measured
on April 1st 2005, with the reduced controller in the loop.

The contribution of the frequency 3.89Hz to the cumulative spectral density at the
corner position is clearly visible in z-direction, as shown in Figure 9.25. In the directions
x and y we see large contributions to the variances at 1.55Hz and 2.84Hz respectively.
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Figure 9.25: Cumulative spectral densities of the errors in the three translations x, y and
z, at center (solid) and the left upper corner (dash-dotted) of the wafer chuck for reduced
controller (red) and optimal controller (blue).

The measured input sensitivity as depicted in Figure 9.26 illustrates that at the corner
position the z-direction is very sensitive to disturbances around frequency 3.9Hz. The
difference is more clearly visible in Figure 9.27, which shows the frequency response of the
z-direction only, for frequencies between 3.6Hz and 4.2Hz. It is shown in Table 9.11, that
the amplitude of the sensitivity of the peak around that frequency is 9.40dB (at 3.89Hz),
as opposed to 5.80dB (at 3.89Hz) of the optimal controller. This illustrates once more that
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Figure 9.26: Measured input sensitivity, reduced controller (red) and optimal controller
(blue), at center (solid) and the left upper corner (dash-dotted) of the wafer chuck.

Table 9.11: Peak value of the measured sensitivity between 3.6Hz and 4.2Hz for the z-
direction.

Position Controller Peak [dB] Frequency [Hz]

Center Reduced 7.33 3.89
Center Optimized 4.22 3.89
Corner Reduced 9.40 3.88
Corner Optimized 5.80 3.89
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Figure 9.27: Measured input sensitivity, reduced controller (red) and optimal controller
(blue), at center (solid) and the left upper corner (dash-dotted) of the wafer chuck.

the large sensitivity of the reduced controller at this frequency results in unsatisfactory
closed-loop behavior.

Based on Figure 9.19 we would have expected a larger cumulative error at the central
position at 3.9Hz. As already explained, this must be attributed to a change in dynamics.

9.5.2 Conclusions on experiments

The sensitivity peak around 3.89Hz of the reduced controller causes large errors during
standstill. By fixed-order optimization we were able to improve the controller’s sensitiv-
ity at this frequency. This controller has better time-domain performance at the corner
position of the system.

The performance can be further reduced by controller re-design. One method is to
incorporate approximations of the spectra of the errors in the weighting filters, see e.g. [199].
This is not pursued, since the objective of the experiments is to obtain a fair comparison
of the controllers, based on the same generalized plant.

9.6 Discussion

In this chapter we have presented the application of the structured controller synthe-
sis algorithms to very recently developed high-tech servo-system. The results illustrate
that structured controller synthesis for industrial servo-systems is feasible with the algo-
rithms presented in this thesis, although there is still room for improvement in terms of
computation time and convergence for the MIMO controller designs. This concludes our
contributions to the last research question Â in our problem definition given in Section 2.8.
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Figure 9.28: Measured input sensitivity on April 1st 2005 (red) and sensitivity of FRF
obtained at February 25th 2005 (blue), both with the reduced controller and at center
position of the wafer chuck.
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Figure 9.29: Measured input sensitivity at April 1st 2005 (red) and sensitivity of FRF
obtained at February 25th 2005 (blue), both with the reduced controller and at center
position of the wafer chuck

The controller in this chapter illustrates the benefit of closed-loop optimization to
improve the performance of controllers obtained by reduction of full order H∞-suboptimal
controllers. Referring to research question Â on page 40 we conclude that the algorithms
presented in this thesis can synthesize practically relevant controllers. Furthermore this
chapter has revealed that in practice the McMillan degree of the optimized controllers
can be much smaller than that of a full-order controller without severe degradation loss.
Indeed, from Table 9.6 we conclude that the performance degradation of the SISO Interior
Point optimized controllers is only 3%,if compared to the performance of the full-order
controller. Since such small performance degradation will often be in the order of the
modelling error, we conclude that optimized controllers with significantly lower orders
than the plant are a feasible alternative to full-order control, in the sense that the actual
closed-loop performance on the real system will be comparable.
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Chapter 10

Conclusions and Recommendations

In this thesis we have made several important steps towards the solution of the structured
H∞-optimal controllers synthesis problem. New algorithms have been developed and local
and global certificates have been derived. Furthermore, we have shown that with the de-
veloped algorithms we can design low order controllers for industrial servo-systems with a
closed-loop performance that is very close to that of a full-order controller. In Section 10.1
we summarize the main contributions of this thesis, give some remarks on relations between
the chapters and outlooks on the implications of the results to other control problems. In
Section 10.2 we conclude this thesis with some recommendations for future research.

10.1 Conclusions of this thesis

The main contributions of this thesis can be summarized as follows:

À The Interior Point algorithm as presented in Chapter 7 has local convergence guar-
antees. With the proposed computation of the Newton steps through the solu-
tion of Sylvester equations, the computation time can be significantly decreased for
high-order plants. The convergence of the algorithm is improved if the reduced
parametrization presented in Chapter 8 is applied.

Á Sum-Of-Squares relaxations families for two hard problems in control theory have
been constructed: the structured controller synthesis problem (or more general a
polynomial SDP) and the robust analysis problem (or more precisely a robust SDP).
Local first and second order optimality conditions for polynomial SDPs have been
derived as well.

Â We have shown that the IP algorithm is suited for MIMO and SISO fixed-order
controller design in industrial practice. This is illustrated with the controller designs
for the active suspension system and the wafer stage in Chapters 7 and 9, respectively.
The resulting closed-loop performance of the low-order controller that have been
computed by the IP algorithm is very close to the full-order performance. The
performance in real-time experiments is much better than of the controllers obtained
by controller reduction.

These conclusion will be worked out in some more detail in the following sections.
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10.1.1 Optimality certificates

Global certificates

Global optimality certificates through Sum-Of-Squares relaxation have been developed in
Chapters 4 and 6. These strongly rely on LMI duality, and can themselves be considered
as generalizations of LMI duality to polynomial SDPs and robust polynomial SDPs. Based
on these results, relaxation families for two hard problems in control theory have been
constructed: the structured controller synthesis problem and the robust analysis problems
(as presented in Chapter 6).

By converting the fixed-order control problem into a robust analysis problem using partial
dualization, we have constructed a relaxation scheme that is applicable to a practical fixed-
order controller synthesis problem, such as for the active suspension system. It has been
explained how a controller can be extracted under certain conditions. Due to the strength
of the certainty induced by global certificates and extraction of corresponding solutions, it
is expected that these techniques will play a major role in future developments on struc-
tured controller synthesis and robust control. This will be stimulated if progress is made
to faster computers, better LMI solvers and further exploitation of the control-theoretic
characteristics.

Local certificates

Computationally less demanding local optimality certificates have been derived in Section
7.3 for the BMI formulation of the H∞-optimal control problem. This analysis is also based
on LMI duality. With these conditions one can asses the local optimality of controllers
using relatively small-sized LMI problems. Furthermore, the conditions can directly be
applied to other polynomial SDPs. The reduced parametrization presented in Chapter 8
enables to assess strict local optimality.

10.1.2 Convergent algorithms

In Chapter 7 an Interior Point method has been presented for structured controller synthe-
sis. This algorithm has local convergence guarantees. The control-theoretic characteristics
of the underlying problem have been exploited to obtain a Newton step computation based
on Sylvester equations. This improves the computation speed and combines the classical
methods based on Lyapunov equations with non-convex Interior Point optimization.

The method has successfully been applied to design a structured order controller for a
27th order generalized plant of an active suspension system.

10.1.3 Controller design for industrial servo-systems

Applicability of the presented algorithms to industrial servo-systems has been illustrated
with the wafer stage controller design in Chapter 9 and with the active suspension system
in Chapter 7. It has been illustrated that the IP algorithm is able to design fixed-order
SISO and MIMO controllers for generalized plants up to about McMillan degree 40. The
experience with these practical control problems have shown that the accuracy of the
solutions are sensitive to the numerical conditioning and size of the problem data. This
sensitivity often hampers the convergence of the algorithms. Effort has been made in this
thesis to alleviate the effects of the round-off errors and other numerical artifacts by
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• balancing the state-space realizations of the system and the controller

• using Newton-step based algorithms like the Interior-Point algorithm in Chapter 7;
this makes the algorithm less sensitive to scaling of the decision variables

• avoiding vectorization as discussed in Section 7.2; the Sylvester equations are com-
putationally much cheaper than the Kronecker formulation and produce in our ex-
perience more accurate results

• using a reduced parametrization of controllers in state-space, as has been presented
in Chapter 8; by an example it has been illustrated in that chapter that this may
improve the convergence

• avoiding uncontrollable modes in the generalized plant with poles close to the imag-
inary axis, as discussed in Chapter 9

The control designs have also illustrated that for systems with high McMillan degree several
algorithms are computationally too expensive. For these systems a Simplex algorithm has
been successfully applied to a plant of McMillan degree 89 in Chapter 9. The price to be
paid for the smaller computation time is the weak convergence guarantees, if compared to
more sophisticated methods.

10.2 Recommendations for further research

Choice of monomial bases

The relaxation gap of the lower bounds described in Chapters 4 and 6 depends on the
choice of the monomial bases. The computational complexity of the SOS relaxations could
be reduced, if one can a priori determine which monomials are important to include in the
SOS bases. A more sophisticated procedure to select monomials based on their expected
impact on the quality of the lower bounds would, therefore, be an important step towards
more efficient SOS relaxations.

Exploit control-theoretic characteristics further

In Section 7.2.4 it has been explained how the control-theoretic characteristics (as defined
in Section 2.8) of the problem are exploited to compute the trust region step using a set of
Sylvester equations. The number of Sylvester equations depends on the number of general-
ized disturbance variables m1 and on the number of controller variables. We think that this
is not the end of the story, i.e. it might be possible to reduce the computational complexity
of the trust-region step even more by exploiting the control-theoretic characteristics. This
may result in even a better merging of the Interior Point method with classical methods
based on Lyapunov equations.

Complexity

It has been discussed in Section 2.6 that the fixed-order H∞-optimal control problem,
without a priori bounds on the controller parameters, is still open. This is a fascinating
question that should be solved.
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Robust structured controller design for mechanical servo-systems

The algorithms for structured controller synthesis in this thesis are applicable to nominal
H∞-optimal controller design. It is often important to be able to design controllers that
guarantee robust closed-loop performance against dynamic or parametric uncertainty. Al-
though some ideas on the solution of this synthesis problem can be extracted from the
results in this thesis, we have not developed an algorithm to solve this problem. Algo-
rithms for this have been addressed literature, but to the best of our knowledge there does
not exits an algorithm to efficiently perform a robust, structured controller synthesis for
high-order models as the waferstage model in Chapter 9.

Direct controller synthesis on frequency response data

To design fixed-order controllers with the algorithms discussed in this thesis, a state-space
model of the system is required. Such a model can be identified based on an experimentally
obtained frequency response function, as for instance described in Section 9.2. To speed
up the controller design process, it would be convenient if a controller could directly be
designed based on the FRF.

Relaxing structural constraints, adding dynamics to the controller

If the desired performance cannot be achieved with a controller of a given structure, some of
the structural constraints can be relaxed. For instance, one might introduce extra dynamics
to the controller. It would be valuable, if the controller optimization does not fully need to
be redone, but might be warm-started with the results of the previous optimization. The
results of the previous optimization might indeed contain structural information, which
may be valuable to determine a good initial guess of the location of the poles and zeros of
the extra dynamics.
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Appendix A

Auxiliary technical results

A.1 Direct feedthrough controller reconstruction

Equation (2.7) can be verified as follows. The interconnection with K̃ is shown Figure 2.3
and is repeated in Figure A.1 for the readers convenience. Its state-space matrix quadruple
is (AK̃ , BK̃ , CK̃ , DK̃). The state, input and output variables of K and K̃ are related as
follows:

xK = AK̃xK +BK̃ ỹ

ũ = CK̃xK +DK̃ ỹ

y = ỹ +D22ũ

u = ũ

xK = xK̃

Hence

ỹ = y −D22ũ

u = CK̃xK +DK̃ ỹ = CK̃xK +DK̃y −DK̃D22u.

This implies (I +DK̃D22)u = CK̃xK +DK̃y. For nonsingular Q := I +DK̃D22 we obtain

u = Q−1CK̃xK +Q−1DK̃y.

K-

D22
�

ỹ ũ

D22
�

P
�z � w

�

r?+ �−

r?+ �+

K̃

P̃

Figure A.1: Loop transformation to eliminate D22
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Furthermore

xK = AK̃xK +BK̃ ỹ = AK̃xK +BK̃y −BK̃D22u =

= AK̃xK +BK̃y −BK̃D22(Q
−1CK̃xK +Q−1DK̃y) =

= (AK̃ −BK̃D22Q
−1CK̃)xK + (BK̃ −BK̃D22Q

−1DK̃)y

Hence K is given by
(
AK BK

CK DK

)

=

(
AK̃ −BK̃D22Q

−1CK̃ BK̃ −BK̃D22Q
−1DK̃

Q−1CK̃ Q−1DK̃

)

(A.1)

which is (2.7).

A.2 Results for Chapter 4

A.2.1 Elementary identities involving Tracer and the Kronecker

product

The in (4.12) defined extension of the trace-operator Tracer satisfies the following property:
for all A and B of appropriate size

Tracer((Ir ⊗B)A) = Tracer(A(Ir ⊗B)). (A.2)

The proof of this property is elementary. Indeed, let us partition A in blocks Aij ∈
R

m×n, i, j = 1, . . . , r and let P := Tracer((Ir ⊗ B)A) ∈ R
r×r then the element Pij of P at

the ith row and jth column is given by

Pij = (Tracer((Ir ⊗B)A))ij = Trace(BAij) = Trace(AijB).

On the other hand if we define Q := Tracer(A(Ir ⊗B)) ∈ R
r×r, then the element Qij of Q

at the ith row and jth column is given by

Qij = Trace(AijB),

which implies P = Q.
Let A ∈ R

q×r, B ∈ R
r×s, C ∈ R

s×t, D ∈ R
t×u and E ∈ R

u×v be arbitrary matrices.
The Kronecker product is associative:

(A⊗ C) ⊗ E = A⊗ (C ⊗ E).

Another important property is the following product rule (see e.g. [30] of [122])

(AB) ⊗ (CD) = (A⊗ C)(B ⊗D).

Using these properties it is not hard to derive the following identities for symmetric matrices
M ∈ Sr×r, N ∈ Ss×s and P ∈ Srs×rs:

(Is ⊗M)(N ⊗ Ir) = (N ⊗ Ir)(Is ⊗M)

M = Tracer(M)

Tracer(P )M = Tracer(P (M ⊗ Is))

Tracer(P (Is ⊗N)) = Tracer((Is ⊗N)P )

Tracer(M ⊗N) =






M11Trace(N) · · · M1rTrace(N))
...

. . .
...

Mr1Trace(N) · · · MrrTrace(N)




 = MTrace(N)
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A.2.2 Complete positivity of the Trace operator

A linear map Φ : R
n×n 7→ R

m×m is [41]:

• positive if Φ maps positive semidefinite matrices into positive semidefinite matrices,

• p-positive if Φ ⊗ Idp is positive on R
np×np, where Idp : R

p×p is the identity map and

• completely positive if Φ is p-positive for every p ∈ N.

Complete positivity of Trace : R
n×n 7→ R follows from a simple extension of Theorem 1 of

Choi [41] to real-valued mappings:

Theorem A.1 Let Φ : R
n×n 7→ R

m×m. Then Φ is completely positive if and only if Φ is
of the form Φ(A) =

∑

i V
T
i AVi for all A in R

n×n where Vi are n×m matrices.

Proof. Simple extension of the proof of Theorem 1 in [41].

This implies that Trace : R
n×n 7→ R is completely positive for all n ∈ N since it admits

an expression

Trace(A) =
n∑

i=1

eT
i Aei for all A ∈ R

n×n.

A.2.3 Proof of equivalent constraint qualification

We will show that (4.18) can be equivalently formulated as follows: there exist an SOS
matrix-valued polynomial P (x) and an SOS polynomial p(x) such that

{x ∈ R
nx | 〈P (x), G(x)〉 − p(x) ≤ 0} is compact. (A.3)

Indeed, (4.18) implies the existence of a M > 0 and SOS polynomials Ψ(x) and ψ(x) such
that

〈Ψ(x), G(x)〉 − ψ(x) = ‖x‖2 −M for all x ∈ R
m.

Since {x ∈ R
nx | ‖x‖2−M ≤ 0} is obviously compact, (A.3) follows. On the other hand, let

P (x) and p(x) be a matrix-valued and a scalar-valued SOS polynomial, respectively, such
that (A.3) holds true and let us set h(x) := 〈P (x), G(x)〉 − p(x). Obviously, (A.3) implies
that {x ∈ R

nx | h(x) ≤ 0} is compact, and Assumption 4.1 implies that it is nonempty as
well. This implies there exists a large enough M such M−‖x‖2 is positive on this set. Now
we apply Schmüdgen’s theorem [177] to conclude that there exist SOS polynomials s0(x)
and s1(x) with M −‖x‖2 +h(x)s0(x) = s1(x). Finally (4.18) follows for Ψ(x) = s0(x)P (x)
and ψ(x) = s1(x) + p(x)s0(x), which are obviously SOS polynomials.

A.3 Results for Chapter 5

A.3.1 Derivation of the dual of (5.7)

We derive the Lagrange dual of the optimization problem

infimize t
subject to X ≻ 0, BS(t,X,K0) ≻ 0, t > 0
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for fixed K0, where

BS(t,X,K0) :=

(
−Acl(K0)

T X − XAcl(K0) −XBcl(K0)
−Bcl(K0)

T X tI

)

−
(

Ccl(K0)
T

Dcl(K0)
T

)(
Ccl(K0)

T

Dcl(K0)
T

)T

.

The Lagrangian is

L(S, Z, λ, t,X) = t− Trace(SX) − Trace(ZBS(t,X,K0)) − λt =

= (1 − λ− Trace(Z22))t+ Trace
([

Ccl(K0) Dcl(K0)
]
Z
[
Ccl(K0) Dcl(K0)

]T
)

+

+ Trace
((
−S + Acl(K0)Z11 + Z11Acl(K0)

T +Bcl(K0)Z
T
12 + Z12Bcl(K0)

T
)
X
)
,

where we used the partition

Z =

(
Z11 Z12

Z21 Z22

)

.

Hence, the dual problem reads as

supremize Trace
([

Ccl(K0) Dcl(K0)
]
Z
[
Ccl(K0) Dcl(K0)

]T
)

subject to Acl(K0)Z11 + Z11Acl(K0)
T +Bcl(K0)Z

T
12 + Z12Bcl(K0)

T = S
1 − λ− Trace(Z22) = 0, Z � 0, S � 0 and λ ≥ 0

Eliminating the dual variables S and λ yields the desired formulation of the dual prob-
lem:

supremize Trace
([

Ccl(K0) Dcl(K0)
]
Z
[
Ccl(K0) Dcl(K0)

]T
)

subject to Acl(K0)Z11 + Z11Acl(K0)
T +Bcl(K0)Z

T
12 + Z12Bcl(K0)

T � 0
Trace(Z22) ≤ 1, Z � 0

A.3.2 Proof of strict feasibility of the dual problem

Let us prove that (5.10) is strictly feasible for all K0 ∈ K. For an arbitrary K0 ∈ K, we
need to show that there exists some W with

A(K0)W11 +W11A(K0)
T +B(K0)W

T
12 +W12B(K0)

T ≻ 0, (A.4)

Trace(W22) < 1, W ≻ 0.

Since (A(K0), B(K0)) is controllable, one can construct an anti-stabilizing state-feedback
gain, i.e., a matrix L such that A(K0)+B(K0)L has all its eigenvalues in the open right-half
plane. Hence there exists some P ≻ 0 with

(A(K0) +B(K0)L)P + P (A(K0) +B(K0)L)T ≻ 0 (A.5)

and rP also satisfies (A.5) for any r > 0. Then W defined by the blocks W11 = rP ,
W T

12 = rLP and

W22 = W T
12W

−1
11 W12 + rI = r(LTPL+ I)

in the partition (5.9) satisfies (A.4) and W ≻ 0 for arbitrary r > 0. The constructed W
does the job if we choose in addition r > 0 sufficiently small to achieve Trace(W22) =
rTrace(LTPL+ I) < 1 .
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A.4 Results for Chapter 7

A.4.1 Derivatives of the barrier function

Since the term − log det(B(x)) is involved in the barrier, we first give the first- and second-
order derivatives of B(x) and − log det(B(x)).

Derivatives of B(x)

The derivative of B(x) as given in (7.15), which we repeat for the convenience of the reader:

∂B(x)dx := Lγ(x)(dγ) + LX(x)(dX) + LK(x)(dK), (A.6)

where dx = (dγ, dX , dK) and Lγ(x)(dγ), LX(x)(dX) and LK(x)(dK) are defined in (7.16),
(7.17) and (7.18), respectively. For the second derivative of B(x), we need the derivatives
of the Lγ(x)(dγ), LX(x)(dX) and LK(x)(dK) with respect to x:

∂xLγ(x)(dγ1)(dx2) = 0 (A.7)

∂xLX(x)(dX1)(dx2) = −sy










In+nc

0
0



 dX1





B2dK2C2
T

B2dK2D21
T

0





T



 (A.8)

∂xLK(x)(dK1)(dx2) = −sy










dX2B2

0
0



 dK1





CT
2

DT
21

0





T



 , (A.9)

where dx1 = (dγ1, dX1, dK1), dx2 = (dγ2, dX2, dK2) and sy(A) = A+AT . Since ∂xLγ(x)(dγ)dx2 =
0, the second derivative of B(x) is

∂2B(x)(dx1, dx2) := ∂xLX(x)(dX1)(dx2) + ∂xLK(x)(dK1)(dx2). (A.10)

Derivatives of − log det(B(x))

The matrix derivative rules as for instance presented in [5] imply for arbitrary Y ≻ 0

∂(− log(det(Y )))(dY ) = −Trace(Y −1dY ) (A.11)

∂(−Trace(Y −1))(dY ) = Trace(Y −1dY Y
−1). (A.12)

By combining (A.6), (A.11) with the chain rule of derivation, we obtain the following
first-order derivative of − log (det (B(x))):

∂ (− log (det (B(x)))) (dx) = −Trace
(
B(x)−1[Lγ(x)(dγ) + LX(x)(dX) + LK(x)(dK)]

)
=

= −Trace
(
B(x)−1∂B(x)(dx)

)
.

In terms of the dual mappings L∗
γ, L∗

X and L∗
K , this derivative is equivalently expressed as

∂ (− log (det (B(x)))) (dx) = −L∗
γ(x)

(
B(x)−1

)
dγ−

− Trace(L∗
X(x)

(
B(x)−1

)
dX) − Trace(L∗

K(x)
(
B(x)−1

)
dK). (A.13)
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Using (A.12) we compute the second-order derivative of − log (det (B(x))):

∂2 (− log (det (B(x)))) (dx1, dx2) = ∂x

[
Trace(B(x)−1)∂B(x)(dx1)

]
(dx2) =

= Trace
(
B(x)−1∂B(x)(dx1)B(x)−1∂B(x)(dx2)

)
− Trace

(
B(x)−1∂2B(x)(dx1, dx2)

)
.

(A.14)

The first term of the last expression of (A.14), i.e. Trace (B(x)−1∂B(x)(dx1)B(x)−1∂B(x)(dx2)),
can be written in terms of the dual mappings as follows

Trace
(
B(x)−1∂B(x)(dx1)B(x)−1∂B(x)(dx2)

)
=

= L∗
γ

(
B(x)−1∂B(x)(dx1)B(x)−1

)
dγ2 + Trace

(
L∗

X

(
B(x)−1∂B(x)(dx1)B(x)−1

)
dX2

)
+

+ Trace
(
L∗

K

(
B(x)−1∂B(x)(dx1)B(x)−1

)
dK2

)
(A.15)

The mappings LKX and LXK defined in (7.24) and (7.25) satisfy the following identities

Trace(LKX(dX1)dK2) = −Trace
(
B(x)−1∂xLX(x)(dX1)(dx2)

)

Trace(LXK(dK1)dX2) = −Trace
(
B(x)−1∂xLK(x)(dK1)(dx2)

)
,

where dx2 = (dγ2, dX2, dK2). This follows from (7.24), (7.25) and (A.8)-(A.9). Using these
identities and (A.10), we can express second term −Trace (B(x)−1∂2B(x)(dx1, dx2)) of the
last expression of (A.14) as

− Trace
(
B(x)−1∂2B(x)(dx1, dx2)

)
=

= −Trace
(
B(x)−1∂xLX(x)(dX1)(dx2)

)
− Trace

(
B(x)−1∂xLK(x)(dK1)(dx2)

)
=

= Trace(LKX(dX1)dK2) + Trace(LXK(dK1)dX2) (A.16)

This completes the computation of the derivatives of − log det(B(x)).

Derivatives of remaining terms in barrier

The first and second order derivative of − log(det(X)) follow directly from (A.11) and
(A.12)

∂[− log(det(X))](dX) = −Trace(X−1dX) (A.17)

∂2[− log(det(X))](dX1, dX2) = Trace(X−1dX1X
−1dX2). (A.18)

Similarly we obtain for the derivatives of − log(det(ρXI −X)) the following expressions:

∂[− log(det(ρXI −X))](dX) = Trace((ρXI −X)−1dX) (A.19)

∂2[− log(det(ρXI −X))](dX1, dX2) = Trace
(
(ρXI −X)−1dX1(ρXI −X)−1dX2

)
.(A.20)

Finally observe that

∂
(
− log(ρK − ‖K‖2

F)
)
(dK) =

2

ρK − ‖K‖2
F

Trace(KTdK) (A.21)

and

∂2
(
− log(ρK − ‖K‖2

F)
)
(dK1, dK2) =

2

ρK − ‖K‖2
F

Trace(dK
T
1 dK2)+

+
4Trace(KTdK1)Trace(KTdK2)

(ρK − ‖K‖2
F )2

(A.22)
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Partial derivatives of the barrier

Equations (A.13), (A.17), (A.19) and (A.21) imply the following first order partial deriva-
tives of φ:

∂γφ(γ,X,K) = −L∗
γ(x)

(
B(x)−1

)
+

1

µ
(A.23)

∂Xφ(γ,X,K) = −L∗
X(x)

(
B(x)−1

)
−X−1 + (ρXI −X)−1 (A.24)

∂Kφ(γ,X,K) = −L∗
K(x)

(
B(x)−1

)
+

2

ρK − ‖K‖2
F

KT (A.25)

Similarly, the following second-order partial derivatives of the barrier φ can be derived
from (A.14)-(A.16), (A.18), (A.20) and (A.22):

∂2
γφ(γ,X,K)(dγ , dX , dK) = L∗

γ(x)
(
B(x)−1Lγ(x)(dγ)B(x)−1

)
(A.26)

∂γ∂Xφ(γ,X,K)(dγ , dX , dK) = L∗
γ(x)

(
B(x)−1LX(x)(dX)B(x)−1

)
(A.27)

∂γ∂Kφ(γ,X,K)(dγ , dX , dK) = L∗
γ(x)

(
B(x)−1LK(x)(dK)B(x)−1

)
(A.28)

∂2
Xφ(γ,X,K)(dγ , dX , dK) = L∗

X(x)
(
B(x)−1LX(x)(dX)B(x)−1

)
+X−1dXX

−1 +

+(ρXI −X)−1dX(ρXI −X)−1 (A.29)

∂X∂Kφ(γ,X,K)(dγ , dX , dK) = L∗
X(x)

(
B(x)−1LK(x)(dK)B(x)−1

)
+ LXK(x)(dK) (A.30)

∂2
Kφ(γ,X,K)(dγ , dX , dK) = L∗

K(x)
(
B(x)−1LK(x)(dK)B(x)−1

)
+

+
2

ρK − ‖K‖2
F

(K + dK)T +
4Trace(KTdK)

(ρK − ‖K‖2
F )2

KT . (A.31)

For reasons of clarity we finally remark that the derivatives in (A.26)-(A.31) have been
presented as mappings of the form ∂2φ(dx, ·).

A.4.2 Derivation of Sylvester equations for the Newton step

The Newton step is the solution to

∂2φ(γ,X,K)(dγ , dX , dK) = −∂φ(γ,X,K),

where ‘=’ means equality of the linear mappings on the left and right-hand side. In the IP
algorithm we compute trust region steps, which are the solutions to

∂2φ(γ,X,K)(dγ , dX , dK) + λq(dγ, dX , dK) = −∂φ(γ,X,K), (A.32)

for some trust-region parameter λ ≥ 0, where q(·)(·) :
(
R × Sn+nc × R

(nc+m2)×(nc+p2)
)
×

(
R × Sn+nc × R

(nc+m2)×(nc+p2)
)
→ R is defined by

q(dγ1, dX1, dK1)(dγ2, dX2, dK2) = dγ1dγ2 + Trace(dX1dX2) + Trace(dK
T
1 dK2).

Sylvester equations

Equation (A.32) can be subdivided into the following three equations:

∂2
γφ(γ,X,K)(dγ) + ∂γ∂Xφ(γ,X,K)(dX) + ∂γ∂Kφ(γ,X,K)(dK) + λqγ(dγ) = −∂γφ(γ,X,K)

∂X∂γφ(γ,X,K)(dγ) + ∂2
Xφ(γ,X,K)(dX) + ∂X∂Kφ(γ,X,K)(dK) + λqX(dX) = −∂Xφ(γ,X,K)

∂K∂γφ(γ,X,K)(dγ) + ∂K∂Xφ(γ,X,K)(dX) + ∂2
Kφ(γ,X,K)(dK) + λqK(dK) = −∂Kφ(γ,X,K)
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where qγ(γ1)(γ2) = γ1γ2, qX(X1)(X2) = Trace(X1X2) and qK(K1)(K2) = Trace(KT
1 K2).

By substituting in these equations the partial derivatives given in (A.23)-(A.25) and (A.26)-
(A.31), we obtain the following set of Sylvester equations which are (7.26), (7.27) and (7.28)
respectively:

L∗
γ(x)

(
B(x)−1 [Lγ(x)(dγ) + LX(x)(dX) + LK(x)(dK)]B(x)−1 − B(x)−1

)
+

1

µ
+ λdγ = 0

L∗
X(x)

(
B(x)−1 [LX(x)(dX) + LK(x)(dK) + Lγ(x)(dγ)]B(x)−1 − B(x)−1

)
+ LXK(x)(dK)−

−X−1 +X−1dXX
−1 + (ρXI −X)−1 + (ρXI −X)−1dX(ρXInX

−X)−1 + λdX = 0,

and

L∗
K(x)

(
B(x)−1 [LX(x)(dX) + LK(x)(dK) + Lγ(x)(dγ)]B(x)−1 − B(x)−1

)
+ LKX(x)(dX)+

+
2

ρK − ‖K‖2
F

(K + dK)T +
4Trace(KTdK)

(ρK − ‖K‖2
F )2

KT + λdK = 0.

A.4.3 Adjoint mappings of Lγ, LX and LK

The domains of the mappings Lγ, LX and LK are R, Sn+nc and R
(nc+m2)×(nc+m2), which

are linear finite-dimensional vector spaces. The ranges of these functions are Sn+nc+m1+p1 ,
which is also a linear vector space. To be more general, consider an arbitrary finite-
dimensional linear operator L : U → V , where U and V are vector spaces with finite
dimensions of m and n, respectively. In terms of arbitrary bases {u1, . . . um} of U and
{v1, . . . vn} of V , L has a matrix representation. This implies that there exists a matrix
A ∈ R

m×n such that

L
(

m∑

i=1

αiui

)

=
n∑

i=1

βivi, β = Aα, for all α ∈ R
m.

The adjoint L∗ : V → U is the linear mapping represented by AT , i.e. the mapping defined
by

L∗

(
n∑

i=1

βivi

)

=
m∑

i=1

αiui, α = ATβ, for all β ∈ R
n.

The adjoint appears to be independent of the choice of the bases {u1, . . . um} and {v1, . . . vn}
[124]. The dual of Lγ satisfies [124] for all dγ ∈ R, dW ∈ Sn+nc+m1+p1

Trace(dW (Lγ(dγ)) = Trace



dW





0 0 0
0 Im1 0
0 0 Ip1



 dγ



 = Trace
(
dγL∗

γ(dW )
)
,

which implies that L∗
γ is as given in (7.22). Similarly, L∗

dX
satisfies for all dX ∈ Sn+nc and

dU ∈ Sn+nc+m1+p1
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Trace (dU(LX(dX))) = 2Trace




−dU





In+nc

0
0



 dX





Acl(K)T

Bcl(K)T

0





T



 =

= 2Trace




−





Acl(K)T

Bcl(K)T

0





T

dU





In+nc

0
0



 dX




 = Trace

(
L∗

dX
(dU)dX

)

and for all dK ∈ R
(m2+nc)×(p2+nc) and dV ∈ Sn+nc+m1+p1 , L∗

dK
satisfies

Trace (dV (LK(dK))) = Trace




−dV





XB2

0
D12



 dK





CT
2

DT
21

0





T

−





CT
2

DT
21

0



 dK
T





XB2

0
D12





T



 =

= 2Trace




−





CT
2

DT
21

0





T

dV





XB2

0
D12



 dK




 = Trace(L∗

dK
(dV )dK).

Using these properties, (7.23) and (7.24) follow immediately.

A.4.4 Unique solution of trust region problem

Lemma A.2 Let H be a symmetric matrix. For every ρ > 0 the problem

supremize t

subject to

(
H + λI g
gT −2t− λρ2

)

� 0, λ ≥ 0, λ ∈ R
(A.33)

has a unique optimal solution.

Proof. First observe that the problem is feasible, since we can always choose λ large
enough and t small enough to render the constraints in (A.33) satisfied. The optimal
value is also bounded above by zero, since the constraints in (A.33) imply λ ≥ 0 and
t ≤ −1

2
λρ2 ≤ 0.

Let us denote the (finite) optimal value of (A.33) by popt. The optimal value of (A.33)
does obviously not change, if we add the constraints 2popt ≤ t ≤ 0. This condition
combined with the constraint in (A.33) imply −4popt − λρ2 ≥ −2t − λρ2 ≥ 0 such that
λ ≤ −4popt

ρ2 . The feasible set is therefore compact and Weierstrass’ Approximation Theorem

implies that the supremum of (A.33) is attained. Furthermore the maximum is unique, for
suppose (topt, λ1) and (topt, λ2) are both optimal for (A.33) with 0 ≤ λ1 < λ2. This implies
that (

H + λI g
gT −2topt − λρ2

)

� 0

for all λ ∈ [λ1, λ2]. Since

lim
λ→∞

1

λ

(
H + λI g
gT −2topt − λρ2

)

=

(
I 0
0 −ρ2

)
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is nonsingular, the polynomial

f(λ) := det

((
H + λI g
gT −2topt − λρ2

))

is nonzero for very large λ and therefore has a finite number of roots. This implies that
there exists a λ3 ∈ [λ1, λ2] with f(λ3) 6= 0, such that

(
H + λ3I g
gT −2topt − λ3ρ

2

)

≻ 0.

Since this inequality holds strict, there exists a t3 > topt such that

(
H + λ3I g
gT −2t3 − λ3ρ

2

)

≻ 0.

This contradicts optimality of topt.

A.4.5 Derivatives of constraints

For x = (γ,K,X) and a direction dx = (dγ, dK , dX), the directional derivatives of G =
diag(G1, G2, G3, g4) with

G1(x) = −B(γ,X,K), G2(x) = −X, G3(x) = X − ρXI, g4(x) = ‖K‖2
F − ρK ,

are as follows:

∂g1(x)dx = −∂B(x)dx = −Lγ(x)(dγ) − LX(x)(dX) − LK(x)(dK) =

=





dXAcl + AT
cldX +XB2dKC2 + (XB2dKC2)

T dXBcl +XB2dKD21 (D12dKC2)
T

(dXBcl +XB2dKD21)
T −dγ (D12dKD21)

T

D12dKC2 D12dKD21 −dγ





∂G2(x)dx = −dX

∂G3(x)dx = dX

∂G4(x)dx = 2Trace(KTdK)

For directions dx1 = (dγ1, dK1, dX1) and dx2 = (dγ2, dK2, dX2), the second derivative of
G1 (as also given in (A.10)) is:

∂2G1(x)(dx1, dx2) = −∂2B(γ,X,K)(dx1, dx2) =

=





sy (dX1B2dK2C2 + dX2B2dK1C2) dX1B2dK2D21 + dX2B2dK1D21 0
(dX1B2dK2D21 + dX2B2dK1D21)

T 0 0
0 0 0



 ,

where sy(A) = A+AT . Note that, due to the bilinear structure, ∂2G1(x) is constant over
x. The second derivatives of G2 and G3 are identically zero and finally

∂2G4(x)(dx1, dx2) = 2Trace(dK
T
1 dK2).
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A.4.6 Newton step in Y

LMI for stability analysis

First, let us consider for A ∈ R
n×n the barrier function for the stability analysis LMIs

ATY + Y A ≺ 0 and Y ≻ 0:

φ(Y,A) := − log(det(−(ATY + Y A))) − log(det(Y )). (A.34)

We assume A ∈ R
n×n is stable, such that there exists an Y ∈ Sn with Y ≻ 0 and

ATY + Y A ≺ 0. (A.35)

Furthermore we assume that A has the following block-diagonal structure

A =








A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 AN







,

where Ak ∈ R
mk×mk , k = 1, 2, . . . , N are square matrices.

Define

Fk :=
(

0mk×m1 · · · 0mi×mk−1
Imk

0mk×mk+1
· · · 0mk×mN

)T
, k = 1, . . . , N

(A.36)

Consider P : Sn 7→ Sn defined by:

P (A) =
N∑

k=1

FkF
T
k AFkF

T
k , . (A.37)

Since P (P (A)) = P (A) for all A ∈ Sn, P is an idempotent mapping and its definition is
motivated by the following property: if Y is block-partitioned as A, i.e.

Y =








Y1 Y12 · · · Y1N

Y T
12 Y22

. . .
...

...
. . . . . . Y(N−1)N

Y T
1N · · · Y T

(N−1)N YNN







,

then

P (Y ) =








Y1 0 · · · 0

0 Y22
. . .

...
...

. . . . . . 0
0 · · · 0 YNN







.

We want to prove that for all A with the block diagonal structure and Y ≻ 0 such that
ATY + Y A ≺ 0 the following holds true

φ(Y,A) ≥ φ(P (Y ), A). (A.38)
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Let us first assume that A has two blocks (k = 2), i.e. A =

(
A1 0
0 A2

)

, where A1 and

A2 are square matrices. Partition Y accordingly into

Y =

(
Y1 Y12

Y T
12 Y2

)

then

det(−(ATY+Y A)) = det

(

−
(
A1 0
0 A2

)T (
Y1 Y12

Y T
12 Y2

)

−
(

Y1 Y12

Y T
12 Y2

)(
A1 0
0 A2

))

=

= det

(

−
(

AT
1 Y1 AT

1 Y12

AT
2 Y

T
12 AT

2 Y2

)

−
(

Y1A1 Y12A2

Y T
12A1 Y2A2

))

=

= det

(

−
(

AT
1 Y1 + Y1A1 AT

1 Y12 + Y12A2

AT
2 Y

T
12 + Y T

12A1 AT
2 Y2 + Y2A2

))

To simplify notation we define

M :=

(
M11 M12

M21 M22

)

:= −
(

AT
1 Y1 + Y1A1 AT

1 Y12 + Y12A2

AT
2 Y

T
12 + Y T

12A1 AT
2 Y2 + Y2A2

)

.

Note that (A.35) implies that M is a symmetric positive definite matrix, which implies

M21M
−1
11 M12 � 0. (A.39)

Writing det(−(ATY + Y A)) in terms of M leads to

det(−(ATY + Y A)) = det

((
M11 M12

M21 M22

))

=

= det(M11) det(M22 −M21M
−1
11 M12) ≤ det(M11) det(M22) (A.40)

where the inequality follows from (A.39) and the monotonicity of the determinant with
respect to the Löwner partial ordering, i.e. A � B � 0 ⇒ det(A) ≥ det(B) [94]. Since the
right-hand-side of the inequality in (A.40) is

det(M1) det(M2) = det

(

−
(
AT

1 Y1 + Y1A1 0
0 AT

2 Y2 + Y2A2

))

=

= det(−(ATP (Y ) + P (Y )A)),

we conclude that

det(−(ATY + Y A)) ≤ det(−(ATP (Y ) + P (Y )A))

and by the monotonicity of the logarithm this implies that

− log(det(−(ATY + Y A)) ≥ − log(det(−(ATP (Y ) + P (Y )A)). (A.41)

Next, consider the second term of the barrier in (A.34), i.e.

− log(det(Y )) = − log

(

det

((
Y1 Y12

Y T
12 Y2

)))

=

= − log
(
det(Y1) det(Y2 − Y21Y

−1
1 Y12)

)
≥ det(Y1) det(Y2) = − log(det(P (Y )))

, (A.42)
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where the inequality follows from the fact that Y21Y
−1
1 Y12 � 0 and (again) the monotonicity

of the determinant with respect to the Löwner partial ordering. Combining (A.41) and
(A.42) yields

− log(det(−(ATY + Y A))) − log(det(Y )) ≥
≥ − log(det(−(ATP (Y ) + P (Y )A))) − log(det(P (Y )))

which implies (A.38). This shows that (A.38) holds for N = 2.
Now suppose that N > 2 and consider

Ã2 =








A2 0 · · · 0

0 A3
. . .

...
...

. . . . . . 0
0 · · · 0 AN








as a single block matrix. The A-matrix can then compactly be written as the two-block
matrix

A =

(
A1 0

0 Ã2

)

.

Let us similarly partition Y as follows:

Y =

(
Y1 Ỹ12

Ỹ T
12 Ỹ2

)

.

Since (A.38) holds for two blocks we infer that

φ

((
Y1 Ỹ12

Ỹ T
12 Ỹ2

)

, A

)

≥ φ

((
Y1 0

0 Ỹ2

)

, A

)

. (A.43)

For the right-hand side of this equation the following holds true

φ

((
Y1 0

0 Ỹ2

)

, A

)

=

= − log(det(−(AT
1 Y1 + Y1A1)) det(−(ÃT

2 Ỹ2 + Ỹ2Ã2))) − log(det(Y1) det(Ỹ2)) =

= − log(det(−(AT
1 Y1+Y1A1)))− log(det(Y1))− log(det(−(ÃT

2 Ỹ2+ Ỹ2Ã2)))− log(det(Ỹ2)) =

= φ(Y1, A1) + φ(Ỹ2, Ã2),

such that we can proceed by partitioning Ã2 in two smaller blocks. Doing this for all N
blocks finally implies (A.38).

BMI for synthesis

Now let us consider the BMI for controller synthesis

φ(Y,A,B2, C2) := − log(det(−((A+B2KC2)
TY +Y (A+B2KC2))))−log(det(Y )). (A.44)

If we transform A, B, C, and Y with a nonsingular matrix T ∈ R
n×n into

Ã = T−1AT, B̃2 = T−1B2, C̃2 = C2T, Ỹ = T TY T,
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then

T T
(
(A+B2KC2)

TY + Y (A+B2KC2)
)
T = (Ã+ B̃2KC̃2)

T Ỹ + Ỹ (Ã+ B̃2KC̃2).

The constraints in terms of the new variables are obviously feasible, i.e.

(Ã+ B̃2KC̃2)
T Ỹ + Ỹ (Ã+ B̃2KC̃2) ≺ 0 (A.45)

and
Ỹ ≻ 0 (A.46)

If P (·) is the projection in (A.37) corresponding to the block structure of Ã+ B̃2KC̃2,
then, by a similar argument as above, it can be shown that (A.45) and (A.46) also hold
for the projected P (Ỹ ), i.e. that

(Ã+ B̃2KC̃2)
TP (Ỹ ) + P (Ỹ )(Ã+ B̃2KC̃2) ≺ 0 (A.47)

and
P (Ỹ ) ≻ 0. (A.48)

Log-barrier optimization of stability constraint

We are now in the position to derive the Newton step equations for the log-barrier function
for the constraints in (7.45) (or equivalently in (A.45) and (A.48)), that is given by

φ(Y,K) = − log(det(−(A+BKC)TY − Y (A+BKC))) − log(det(Y )), (A.49)

where we write in this section B and C instead of B2 and C2 for ease of notation. Using
the notation

L := −(A+BKC)TY − Y (A+BKC) (A.50)

and

dL(dY , dK) := −(A+BKC)TdY − dY (A+BKC) − (BdKC)TY − Y BdKC, (A.51)

we can write the barrier φ(Y,K) and its derivatives as

φ(Y,K) = − log(det(L)) − log(det(Y ))

∂Y φ(Y,K)(dY ) = −Trace(L−1dL(dY , 0) + Y −1dY ) =

= Trace
([
L−1AT

cl + AclL
−1 − Y −1

]
dY

)

∂Y φ(Y,K)(dK) = Trace
(
BTY L−1CTdK

T + CL−1Y BdK

)

∂2
Y φ(Y,K)(dY 1, dY 2) = Trace(L−1dL(dY 1, 0)L−1dL(dY 2, 0) + Y −1dY 1Y

−1dY 2)

∂Y ∂Kφ(Y,K)(dY 1, dK2) = Trace
(
L−1dL(dY 1, 0)L−1dL(0, dK2)

)
+

+Trace
(
BdK2CL

−1dY 1 + dY 1L
−1(BdK1C)T

)

∂2
Kφ(Y,K)(dK1, dK2) = Trace

(
L−1dL(0, dK1)L

−1dL(0, dK2)
)
,

where ∂2
Y φ(Y,K)(dY 1, dY 2) satisfies the following identity

∂2
Y φ(Y,K)(dY 1, dY 2) =

= Trace
([
−L−1dL(dY 1, 0)L−1AT

cl − AclL
−1dL(dY 1, 0)L−1 + Y −1dY 1Y

−1
]
dY 2

)
.
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Similarly, for ∂Y ∂Kφ(Y,K)(dY 1, dK2) the relation

∂Y ∂Kφ(Y,K)(dY 1, dK2) = Trace
(
L−1

[
Y BdKC + (BdKC)TY

]
L−1AT

cldY

)
+

+ Trace
(
BdKCL

−1dY

)
+ Trace

(
AclL

−1
[
Y BdKC + (BdKC)TY

]
L−1dY

)

holds true. The Newton step dY is the solution to

∂2φ(Y,K)(dY , dK) = −∂φ(Y,K)),

which with the partial derivatives derived above is equivalent to

−L−1dL(dY , 0)L−1AT
cl − AclL

−1dL(dY , 0)L−1 + Y −1dY Y
−1 = QY (dK), (A.52)

−BTY L−1dL(0, dK)L−1CT − CL−1dL(0, dK)L−1BY = QK(dY ), (A.53)

where

QY (dK) = −L−1AT
cl − AclL

−1 + Y −1−
− L−1dL(0, dK)L−1AT

cl − AclL
−1dL(0, dK)L−1 +BdKCL

−1 + L−1(BdKC)T

and

QK(dY ) = −2CL−1Y B + 2CL−1dL(dY , 0)L−1Y B − CL−1dYB.

Let us first solve (A.52) for dY with dK = Ei and some fixed i ∈ {0, 1, . . . ,mc}, where
{E1, . . . , Emc} is a basis for R

(n+nc+m2)×(n+nc+p2) and E0 = 0. (Note that a similar approach
has been used in Section 7.2.4.)

If Y and Acl := A + BKC have block-diagonal structure, this equation can be solved
efficiently as follows. Suppose that

Acl =








Acl1 0 · · · 0
0 Acl2 · · · 0
...

. . .
...

0 · · · 0 AclN








with Aclk ∈ R
mk×mk , k = 1, . . . , N and

Y =








Y1 0 · · · 0
0 Y2 · · · 0
...

. . .
...

0 · · · 0 YN







,

with Yk ∈ Smk , k = 1, . . . , N , respectively. This implies that L has similar block-diagonal
structure

L =








L1 0 · · · 0
0 L2 · · · 0
...

. . .
...

0 · · · 0 LN







,
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with Lk ∈ Smk , k = 1, . . . , N , Observe that the block-diagonal structure of Acl, Y and L
imply that

F T
k Acl = AclkF

T
k

AclFk = FkAclk

F T
k Y = YkF

T
k

Y Fk = FkYk

F T
k L = LkF

T
k

LFk = FkLk,

where Fk, k = 1, . . . , N are as defined in (A.36). Hence, for arbitrary k, l = 1, . . . , N we
infer

(dL(dY, 0))kl := F T
k dL(dY, 0)Fl = −F T

k A
T
cldY Fl − F T

k dYAclFl = −Acl
T
k dY kl − dY klAcll,

where dY kl := F T
k dY Fl. Furthermore, if we multiply (A.52) from left and right by F T

k and
Fl, respectively, we obtain

F T
k (−L−1dL(dY, 0)L−1AT

cl − AclL
−1dL(dY, 0)L−1 + Y −1dY Y

−1)Fl =

= −L−1
k (dL(dY, 0))klL

−1
l Acll − AclkL

−1
k (dL(dY, 0))klL

−1
l + Y −1

k dY klY
−1
l = F T

k QY (dK)Fl.
(A.54)

The only unknown in (A.54) is dY kl and this equation can hence be solved for dY kl, inde-
pendently of the other variables in dY . Since k, l ∈ {1, . . . , N} were arbitrary, this shows
that (A.52) can be solved block-wise.

Procedure for the Newton step computation

Finally, we present the procedure to compute the Newton directions (dY , dK) in the cor-
rector step of the Interior Point algorithm, if we use the barrier as in (A.49). First we
transform the closed-loop matrix Acl to block diagonal form. Then, as in Section 7.2.4, we
write dK =

∑mc

i=1 kiEi, where {E1, . . . , Emc} is a basis for R
(n+nc+m2)×(n+nc+p2) and E0 = 0,

and we compute the solution to (A.52) for dK = Ei for each i ∈ {0, . . . ,mc}, using the
block-wise solution procedure described in the previous section. Let Zi, i = 1, . . . , np and
Z0 be the solutions of (A.52) for dK = Ei, i = 1, . . . , np and dK = 0 respectively. We
express the solution to (A.52) as

dY (dk1, . . . , dkmc
) = Z0 +

mc∑

i=1

Zidki.

This can be substituted in (A.53), and this equation can be solved for dki, i = 1, . . . ,mc

by scalarization. The procedure is more precisely explained in the sequel.
Suppose that at the lth main iteration and kth corrector step of Algorithm 7.1.5 we

have Y and K as decision variables. To find the Newton step of dY and dK we perform
the following steps

1. find a nonsingular T ∈ R
(n+nc)×(n+nc) with det(T ) = 1, such that Ãcl = T−1AclT is

in real-Jordan form [94]
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2. find the projection P (·) as in (A.37)

3. replace Y by P (T TY T ), Bcl by T−1Bcl and Ccl by CclT . Note that the value of the
barrier function is not increased by this replacement.

4. introduce a basis {E1, . . . , Emc} for dK and parameterize dK as dK(ki) =
∑mc

i=1 kiEi.
Set E0 = 0.

5. solve for each i = 0, 1, . . . ,mc (A.52) with right-hand side QY (Ei). Do this block-wise
using (A.54) for all k, l ∈ {1, . . . , N}. Denote the solution of (A.52) by Zi

6. find the coefficients ki by solving the Sylvester equation for dK(ki) by scalarization.

7. compute the Newton directions dK =
∑mc

i=1 kiEi and dY = Z0 +
∑mc

i=1 kiZi.

A.5 Results for Chapter 8

A.5.1 Proof that dT 11 = 0

Let ej be the jth basis vector in R
nc , j = 1, . . . , nc and AK be as in (8.47). We need to

show that
−dTAK + AKdT = encda

T and dT enc = 0

has the unique solution dT = 0 and da = 0. With aT =
(
−anc · · · −a2 −a1

)
∈ R

nc

and

N =

(
0(nc−1)×1 Inc−1

0 01×(nc−1)

)

, (A.55)

we write AK as AK = N + enca
T . The result to be shown is formulated in the following

lemma.

Lemma A.3 Let AK = N + enc
aT for arbitrary a ∈ R

nc, N as in (A.55) and enc
be the

nc
th basis vector in R

nc. Then the set of equations

−dTAK + AKdT = enc
da

T and dT enc
= 0 (A.56)

has the unique solution dT = 0 and da = 0.

Proof. Observe that (A.56) implies that

−dTN +NdT = enc(da
T − aTdT ) + dT enca

T = enc(da
T − aTdT ).

If we define dg := (da
T − aTdT )T ∈ R

nc , this equation simplifies to

−dTN +NdT = encdg
T .

Hence, it suffices to show that the system of equations

−dTN +NdT = encdg
T (A.57)

dT enc = 0 (A.58)

has a unique solution dT = 0 and dg = 0.
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First, we will show that dT is upper triangular. This will be done by an induction ar-
gument. Let us define

Ej :=
(
Inc−j 0(nc−j)×j

)
∈ R

(nc−j)×nc

for j = 1, . . . , nc − 1, where 0(nc−j)×j denotes the zero matrix in R
(nc−j)×j. Observe that

EjN
j−1 =

(
0(nc−j)×(j−1) Inc−j 0(nc−j)×1

)

such that
EkN

k−1enc = 0 for all k ∈ {1, . . . , nc − 1}. (A.59)

Multiplying (A.57) from the left by E1 and from the right by e1 implies that

−E1dTNe1 + E1NdT e1 = E1encdg
T e1 (A.60)

Since Ne1 = 0 and E1enc = 0, we conclude that

E1NdT e1 = 0. (A.61)

As the induction hypothesis, let us assume that

EjN
jdT ej = 0 (A.62)

for some j ∈ {1, . . . nc − 2}. By multiplying (A.57) from the left by Ej+1N
j and from the

right by ej+1 we conclude that

−Ej+1N
jdTNej+1 + Ej+1N

j+1dT ej+1 = Ej+1N
jencdg

T ej+1 = 0, (A.63)

where the utmost right equality follows from (A.59).
Furthermore,

Ej+1N
jdTNej+1 = Ej+1N

jdT ej = 0,

because it is a subset of the rows of EjN
jdT ej, which is zero by (A.62). From (A.61) we

conclude that the induction hypothesis (A.62) is true for j = 1, such that by induction we
conclude that

EkN
kdT ek = 0 for all k ∈ {1, . . . , nc − 1}, (A.64)

which shows that dT is upper triangular.

As a second step, let us multiply (A.57) from the left by E1 and from the right by enc

to infer that
−E1dTNenc + E1NdT enc = 0. (A.65)

Since dT enc , we conclude E1dT enc−1 = 0. Since Enc−1N
nc−1dT enc−1 = 0 by (A.64), we

actually infer dT enc−1 = 0. As induction hypothesis we assume dT ej = 0 for some j ∈
{2, . . . nc − 1}. Then multiplying (A.57) from the left by E1 and from the right by ej

implies
−E1dTNej + E1NdT ej = 0. (A.66)

Since E1NdT ej = 0 holds true because of the induction hypothesis, we conclude E1dT ej−1 =
0. Together with Ej−1N

j−1dT ej−1 = 0 from (A.64) this implies dT ej−1 = 0. Hence we con-
clude dT ej = 0, j = 1, . . . , nc − 1 and thus dT = 0. This implies dg = 0, which completes
the proof.
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A.5.2 Proof of Im(∂g(x1, I)) = Im(∂g(x0, y0))

Let x0 = (γ0, X0, K0), x1 = (γ1, X1, K1) and T0 ∈ R
nc×nc be arbitrary such that det(T0) = 1

and g(x0, T0) = x1. The function g given in (8.46) and is repeated here for the reader’s
convenience:

g(x, T ) :=
(
γ, svec

(
Xtrans(X,T )

)
, vec

(
Ktrans(K,T )

))
,

where

Xtrans(X,T ) :=

(
In 0
0 T

)T

X

(
In 0
0 T

)

and

Ktrans(K,T ) :=

(
T 0
0 Im2

)−1

K

(
T 0
0 Ip2

)

.

We need to show that Im(∂g(x1, Inc)) = Im(∂g(x0, T0)). Let us partition K0 and K1 into
its state-space matrices

K0 =:

(
AK0 BK0

CK0 DK0

)

and

K1 =:

(
AK1 BK1

CK1 DK1

)

,

where AK0 , AK1 ∈ R
nc×nc . The identity g(x0, T0) = x1 implies that

Xtrans(X0, T0) = X1 (A.67)

Ktrans(K0, T0) =

(
Atrans

K (K0, T0) Btrans
K (K0, T0)

Ctrans
K (K0, T0) Dtrans

K (K0, T0)

)

= K1 (A.68)

where Atrans
K , Btrans

K , Ctrans
K and Dtrans

K are as defined in (8.4). Recall from (8.12) that the
first-order derivative of Xtrans at arbitrary X∗ ∈ Sn+nc and T∗ ∈ R

nc×nc , det(T∗) 6= 0 reads
as

∂TX
trans(X∗, T∗)(dT ) = dT

TX∗T∗ + T T
∗ X∗dT .

For arbitrary T∗ ∈ R
nc×nc with det(T∗) 6= 0, the derivatives of Atrans

K and Btrans
K with

respect to T are given in (8.13) and (8.14) and are repeated here:

∂TA
trans
K (K∗, T∗)(dT ) = −T−1

∗ dTT
−1
∗ AK∗

T∗ + T−1
∗ AK∗

dT

∂TB
trans
K (K∗, T∗)(dT ) = −T−1

∗ dTT
−1
∗ BK∗

,

where and

K∗ :=

(
AK∗

BK∗

CK∗
DK∗

)

∈ R
(nc+m2)×(nc+p2).

Furthermore, the derivatives of Ctrans
K and Dtrans

K are as follows

∂TC
trans
K (K∗, T∗)(dT ) = CK∗

dT

∂TD
trans
K (K∗, T∗)(dT ) = 0.

Using these derivatives (A.67) and (A.68), we observe that

∂TA
trans
K (K0, T0)(dT ) = −T−1

0 dTT
−1
0 AK0T0 + T−1

0 AK0dT =

= −(T−1
0 dT )AK1 + AK1T

−1
0 dT = ∂TA

trans
K (K1, I)(T

−1
0 dT )
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and

∂TB
trans
K (K0, T0)(dT ) = −T−1

0 dTT
−1
0 BK0 = −(T−1

0 dT )BK1 = ∂TB
trans
K (K1, I)(T

−1
0 dT )

∂TC
trans
K (K0, T0)(dT ) = CK0dT = CK1(T

−1
0 dT ) = ∂TC

trans
K (K1, I)(T

−1
0 dT )

∂TD
trans
K (K0, T0)(dT ) = 0 = ∂TD

trans
K (K1, I)(T

−1
0 dT )

and finally

∂TX
trans(X0, T0)(dT ) = dT

TX0T0 + T T
0 X0dT =

= dT
TT−T

0 X1 +X1T
−1
0 dT = ∂TX

trans(X1, I)(T
−1
0 dT ).

We conclude xtrans(K0, T0)(dT ) = xtrans(K1, I)(T
−1
0 dT ) for all dT , such that indeed

Im(∂g(x1, I)) = Im(∂g(x0, T0)).
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Appendix B

Fixed-order controllers for the active

suspension system

The discrete-time transfer functions of the controllers are:

KBalreal(z) := 0.01

(
z + 1

z

)
1.402z5 − 2.769z4 + 3.126z3 − 1.885z2 + 0.1928z + 0.05143

z5 − 3.161z4 + 4.657z3 − 4.29z2 + 2.355z − 0.5605

KCC(z) := 0.01

(
z + 1

z

)
2.402z5 − 7.781z4 + 10.11z3 − 6.653z2 + 2.254z − 0.3242

z5 − 3.795z4 + 5.69z3 − 4.205z2 + 1.524z − 0.2135

KCLIP(z) := 0.01

(
z + 1

z

)
1.331z5 − 2.357z4 + 2.413z3 − 1.427z2 + 0.1925z + 0.01808

z5 − 2.991z4 + 4.071z3 − 3.48z2 + 1.841z − 0.4377

The phase of their frequency responses is shown in Figure B.1.
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Figure B.1: Controllers: phase of the frequency response
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Appendix C

Frequency responses of controller

design for the wafer stage

C.1 MIMO controllers
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Figure C.1: Frequency response of the MIMO controllers: full order solid, reduced dotted,
IP optimized dashed and Simplex optimized dash-dotted.
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C.2 Frequency responses of SG, KS and KSG for full

order MIMO and diagonal SISO controllers
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Figure C.2: Frequency response of the process sensitivity of the full order controllers. Solid:
full MIMO controller, Dotted: diagonally augmented SISO controllers
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Figure C.3: Frequency response of the controller sensitivity of the full order controllers.
Solid: full MIMO controller, Dotted: diagonally augmented SISO controllers
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Figure C.4: Frequency response of the controller sensitivity of the full order controllers.
Solid: full MIMO controller, Dotted: diagonally augmented SISO controllers
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Appendix D

Modifications to Simplex algorithm

In this appendix we present a description of our modifications to the Simplex algorithm as
explained in Section 3.4, that speed up the convergence.

The Simplex algorithm minimizes the function fp(x) as given in (3.21). This function
is evaluated 3m + 1 times at each iteration of Algorithm 3.6. These function evaluations
are the computationally most demanding steps. It is therefore important to reduce the
computation time of them as much as possible.

After a few iterations the step-sizes tend to be very small. This implies that the
computational cost of the function evaluation can possible be reduced using the results
from previous evaluations.

Suppose the algorithm evaluates fp at xeval. If fp(xeval) is larger than the best value
pcurrent obtained thus far, it is not necessary in the algorithm to compute fp(xeval) exactly:
we only need to know that fp(xeval) > pcurrent to decline xeval as the better controller. In
practice, the number of declinations exceeds by large the number of times a new minimum
point is found as the algorithm proceeds. This motivates to make the declinations more
efficient as follows.

Suppose that for some K ∈ R
(nc+m2)×(nc+p2), the closed-loop matrix Acl(K) is strictly

stable and H∞-norm of the closed loop Gcl(P,K) is attained at a certain frequency ω. Since
σmax(Gcl(P,K)(iω)) depends continuously on the element in the matrix K, the H∞-norm
of the closed-loop Gcl(P,Keval) will often be close to ‖Gcl(P,K)‖∞, if ‖K−Keval‖ is small.
It will therefore often be the case that σmax(Gcl(P,Keval)(iω)) > pcurrent. This motivates to
evaluate σmax(Gcl(P,Keval)(iω)) and compare it with γ. If γ < σmax(Gcl(P,Keval)(iω)), then
Keval can be declined as a possible better controller without computation of its H∞-norm.
This can save significant computation time, since the computation of σmax(Gcl(P,K)(ω)) is
in general cheaper than the computation of the H∞-norm of the closed loop, i.e. ‖Gcl(P,K)‖∞.
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Appendix E

Generalized Plant of the two-mass

system

A state-space representation of the two-mass system is as follows:

A =













−8.216 · 10−5 0 0 0 −0.9064 0 0
0 −4502 −3355 0 0 0 0
0 3355 −1249 0 0 0 0
0 0 0 −8.216 · 10−5 0 1 0
0 0 0 0 −8.216 · 10−5 0 1
0 0 0 −1500 1500 −0.5001 0.5
0 0 0 1500 −1500 0.5 −0.5001













(
B1 B2

)
=













−0.9064 0 0
0 0 −482.8
0 0 131.6
0 0 0
0 0 0
0 132 1
0 0 0













(
C1

C2

)

=





0.9064 0 0 0 −0.5 0 0
0 482.8 131.6 0 0 0 0
0 0 0 0 −1 0 0





(
D11 D12

D21 D22

)

=





−0.5 0 0
0 0 37.89
−1 0 0




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Samenvatting

Voor vele toepassingsgebieden van mechanische servo-systemen is een zeer hoge positineer-
nauwkeurigheid en een snel volggedrag vereist. Een goed voorbeeld hiervan is een wafer
stage, die gebruikt wordt bij de productie van Integrated Circuits (IC’s). Om aan de eisen
te voldoen is het dikwijls noodzakelijk om de regelaar strak te tunen en daarbij rekening te
houden met dynamische interactie. Modelgebaseerd H∞-optimaal regelaarontwerp is daar-
voor een handige en systematische methodiek. De bestaande manier om zo een regelaar te
berekenen, levert echter een regelaar op met een zelfde McMillan graad (d.w.z. het aantal
toestanden in een minimale toestandsrealisatie) als die van de generalised plant, oftewel
het systeem en de wegingsfuncties. Door beperkte capaciteit in de real-time processoren
is het vaak onmogelijk deze regelaars op hoge sample-frequentie te implementeren. An-
dere a priori eisen op de structuur van de regelaar, zoals PID-structuur, diagonaliteit of
stabiliteit, zijn ook vaak belangrijk. Het ontwerpen van dit soort regelaars noemen we
gestructeerde regelaarsynthese. Het onderwerp van dit proefschrift is het ontwikkelen van
nieuwe methoden voor H∞-optimale gestructeerde regelaarsynthese voor servo-systemen.

Met behulp van polynomen die bestaan uit een som van kwadraten is er in dit proef-
schrift een familie van relaxaties ontwikkeld, waarmee ondergrenzen uitgerekend kunnen
worden voor het H∞-optimale gestructureerde regelaarsynthese probleem. Deze ondergren-
zen kunnen worden gevonden door een convex probleem met Lineaire Matrix-ongelijkheden
(LMIs) op te lossen. Het is gegarandeerd, dat deze ondergrenzen convergeren naar de
globaal optimale gestructureerde regelaar-prestatie in termen van de H∞-norm, indien we
kiezen voor steeds betere relaxaties. Door de snelle groei van het aantal beslissingsvari-
ablen in de LMIs, is de toepassing van deze techniek echter beperkt tot generalised plants
van lage McMillan graad.

Door middel van gedeeltelijke dualisatie verkrijgt men een andere formulering van het
gestructureerde regelaarontwerpprobleem, waardoor de relaxaties over het algemeen minder
beslissingsvariabelen hebben en kunnen worden toegepast op regelaarproblemen met een
generalised plant van hogere McMillan graad. Deze relaxaties maken het ook mogelijk
globale ondergrenzen uit te rekenen met behulp van technieken voor robuuste analyse,
zoals bijvoorbeeld de S-procedure.

De relaxaties op basis van sommen van kwadraten zijn ook toegepast op robuuste poly-
nomiale Semi-Definiete Programma’s (SDP’s). Ook hiervoor is een familie van relaxaties
ontwikkeld, wiens optimale waarden van beneden convergeren naar de optimale waarde
van het robuuste SDP.

De hiervoor genoemde ondergrenzen kunnen gebruikt worden als stop-criterium van
algoritmes voor gestructureerd regelaarontwerp. Zo is een algoritme ontwikkeld op basis
van een inwendige punts-methode. Bij deze methode moet er in elke iteratie een stelsel
van Sylvester vergelijkingen opgelost worden. Er is aangetoond hoe dit stelsel efficiënt
is op te lossen, door de onderliggende structuur van het probleem uit te buiten. Het
algoritme maakt gebruik van een trust-region en een plane search, die zorgen voor een

271



gegarandeerde convergentie naar een stationair punt. Locale optimaliteit kan in dit punt
geverifieerd worden met behulp van de eerste en tweede orde optimaliteitscondities, die zijn
afgeleid voor algemene polynomiale semi-definiete programma’s. De gegarandeerd goede
convergentie van het algoritme is bevestigd met behulp van het regelaarontwerp voor een
actief trillingsonderdrukkingssysteem.

De keuze van de toestandsrealisatie van de regelaar geeft vrijheden in de beslissingsvari-
abelen van vele algoritmes voor regelaaroptimalisatie en in het bijzonder voor het inwendige
punts-algoritme. Dit kan trage convergentie tot gevolg hebben. Bovendien is het daar-
door vaak onmogelijk om locale optimaliteit van regelaars te verifiëren. Er is daarom een
parametrisatie ontwikkeld voor multi-variabele regelaars, die deze problemen verhelpt en
waarmee toch alle regelaars (met de vereiste structuur) kunnen worden geparametriseerd.

Tenslotte zijn vescheidene algoritmes gebruikt om regelaars met beperking op de McMil-
lan graad te ontwerpen voor een nieuw prototype van een wafer stage. Hiervoor is een lineair
tijdsinvariant model van dit servo-systeem gëıdentificeerd. Een diagonale, geoptimaliseerde
regelaar is gëımplementeerd en vergeleken met een diagonale gereduceerde regelaar. Deze
analyse is zowel gedaan op basis van het model als op basis van experimenten met het sys-
teem. Hieruit blijkt dat de geoptimaliseerde regelaar beter presteerde over het beschouwde
deel van het werkgebied.
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Abstract

In many application areas of mechanical servo-systems a high positioning accuracy and
fast tracking is required. A good example is a wafer stage, that is used for the production
of Integrated Circuits (IC’s). The high demands on the performance often imply a tightly
tuned feedback controller, that takes dynamical interaction into account. Model-based H∞-
optimal controller synthesis is a well-suited systematic design technique for this purpose.
However, the state-of-the-art synthesis approach yields a controller with the same Mc-
Millan degree as the generalized plant, i.e. the order of the system model and the weighting
filters. Often these controllers can not be implemented in real-time at high sampling-rates,
because of the limited computational capacity of the processors. Besides restrictions on
the Mc-Millan degree it is often also important that the controller satisfies other structural
constraints, such as PID-structure, strong stabilization or zero off-diagonal entries. The
design of controllers with an a priori structure is denoted by structured controller synthesis.
The aim of this thesis is to provide numerical tools for H∞-optimal structured controller
synthesis.

As the first result of this thesis work, relaxations have been developed that are based
on Sum-Of-Squares polynomials. Their optimal values are lower bounds on the globally
optimal structured controller synthesis problem. Those bounds can be computed by solving
Linear Matrix Inequalities (LMI) problems. It is guaranteed, that the bounds converge
to best achievable performance when restricting to structured control as we improve our
relaxations. However, the technique is limited to generalized plants of small Mc-Millan
degree, due to the fast growth of the number of decision variables in the LMIs.

We obtain a different scheme for lower bound computation, if we first apply partial
dualization. The corresponding relaxations have often fewer variables than the ones men-
tioned above and are therefore applicable to plants with higher McMillan degree. By partial
dualization it is also possible to reformulate the structured controller synthesis problem
as a robust analysis problem. Known robust analysis techniques, such as those based on
the S-procedure, can therefore be used to compute lower bounds on the optimal controller
performance.

The Sum-Of-Squares relaxations have also been applied to robust polynomial Semi-
Definite Programs (SDPs). Also for this case a sequence of relaxations has been developed,
whose optimal values converge from below to the optimal value of the robust SDP.

The aforementioned lower bounds can be used as a stopping criterion for the Interior
Point algorithm, that has been developed for controller synthesis. At each iteration of
this method a system of Sylvester equations has to be solved. It is shown how this can
be done efficiently, by exploiting the control-theoretic characteristics of the problem. The
algorithm uses a trust region and a plane search and has a guaranteed convergence to a
point satisfying the first-order necessary conditions. Local optimality of this point can
be verified using first- and second-order optimality conditions, that have been derived
for polynomial semi-definite programs in general and the structured synthesis problem in
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particular. The guaranteed good local convergence of the algorithm is confirmed by means
of a controller design for an active suspension system.

The choice of the state-space realization of the controller gives freedom in the decision
variables. This freedom plays a role in several structured controller synthesis algorithms
and in the Interior Point method in particular. It may cause slow convergence of the algo-
rithm and it makes it impossible to verify the local optimality conditions. A parametriza-
tion for multi-variable controller synthesis has been developed to resolve this problem for
the Interior Point algorithm. At the same time, this parametrization can describe all
controllers of the required structure.

Finally, several algorithms described in this thesis have been applied to synthesize
fixed-order controllers for a new prototype of a wafer stage. To this purpose a linear time-
invariant model of the servo-system has been identified. A diagonal optimized controller
has been implemented. Its performance has been compared to that of a reduced controller,
in terms of the closed-loop H∞-norm, as well as by experiments. The optimized controller
exhibited better performance over the considered part of the operational domain.
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Camile Wilbert José was born in 1973 in Enschede. He finished his secondary school
(Ongedeeld Atheneum) in 1991 at the Thijcollege in Oldenzaal. In 1991-1992 he has been
an exchange student to Russia with exchange organization ‘Youth for Understanding’.
In 1992 he started with his study Mechanical Engineering at the Technical University
in Delft. In 1994 he received his first-years degree (propaedeuse) Cum Laude. During
his study he participated in the EU-Japan exchange Programme for Engineering students
in 1998-1999. This programme consisted of a Japanese Language Course in Tokyo of four
months, followed by an internship of eight months in the company NTT Data in Kawasaki.
He graduated in 2000 in Mechanical Engineering at the Delft University of Technology with
the MSc. thesis entitled “Nonlinear state estimator design for model predictive control,
application on a high density polyethylene process” with the grade 9 (out of 10). From
2000-2001 he conducted research at the Wageningen University and Research Center. He
started his PhD. at the Delft Center for Systems and Control of the Delft University of
Technology in April 2001. In May 2005 he started working at the Department Rolling
Metal Strip of Corus Research, Development and Technology in IJmuiden.

277


