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Abstract

This research studies the Projected Bidirectional Long Short-Term Memory Time
Delayed Neural Network (TDNN-BLSTM) model for English phoneme recognition. It
contributes to the field of phoneme recognition by analyzing the performance of the
TDNN-BLSTMmodel based on the TIMIT corpus and the Buckeye corpus, respectively
containing read speech and spontaneous speech. The TIMIT corpus can be used as
benchmark to make comparisons between architectures. The Buckeye corpus is used
to better understand how the TDNN-BLSTM architecture would perform on recorded
informal conversations. Parameter values are taken from literature and are optimized.
Using the improved parameters, the results show Phoneme Error Rates (PER) for read
speech to be 31.78% and for spontaneous speech to be 54.03%. Related work shows
PER scores for read speech to be 14.9% and for spontaneous speech to be 23.4%.
This indicates that the TDNN-BLSTM architecture does not perform as well as other
acoustic models for both spontaneous and read speech.

1 Introduction
Automatic Speech Recognition (ASR) translates speech into words. It needs to be able
to cope with a large diversity in voices and accents. Every voice is unique and subject to
change, for example when a sore throat affects the vocal chords [1].

Phoneme recognition is a form of ASR. While most ASR systems translate speech into
words, Phoneme Recognition (PR) systems translate speech into phonemes. A phoneme is
"the [smallest] contrasting unit of sound which can be used to change the meaning" of a
word [2]. This change in meaning can be illustrated by the words ‘hat’ and ‘cat’ and their
phonemic difference: /hat/ and /kat/. The change of /h/ into /k/ changes the meaning of
the word, therefore /h/ and /k/ are phonemes.

Heteronyms are words that are written the same, but have different meanings and pro-
nunciations. The output of a Word Recognition (WR) system cannot show which pronunci-
ation is used, but this information remains traceable when using a PR system. An example
of this is the word ‘sake’, which can either be pronounced as /"seIk/, meaning ‘benefit’, or
as /"sA:ki:/, meaning ‘rice wine’.

WR is different from PR in the sense that instead of having a single phoneme, a word
usually consists of multiple phonemes. A lexicon is the dictionary of words the WR system
can output. A WR system uses the words in the lexicon to find what word is most likely to
be formed by the phoneme sequence. When comparing PR systems to WR systems, it can
be established that both have their own advantages and disadvantages. WR systems make
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use of a lexicon, but they are therefore also limited by the lexicon available to the model.
Although WR research shows word error rates "as low as 2%-3% on standard datasets" [3],
WR implementations, such as digital assistants, are not robust yet [3].

The benefits of PR systems can be applied, for example, in online language training
tools. A study by Dlaska and Krekeler shows that second language (L2) learners benefit
from "individual corrective feedback" [4]. This means that a student’s language learning
process is impacted when there is no teacher available to give such feedback. An application
that makes use of a PR system that can evaluate a student’s pronunciation could therefore
be beneficial to L2 learners.

A benefit of PR systems is that they are, unlike WR systems, not limited by a lexicon
and can therefore recognize all combinations of phonemes. However, PR systems are still
bound by the characteristics of the language it is trained on.

The acoustic model is trained for each phoneme in a certain language on large amounts of
speech data. The set of phonemes that appears in a language can be different per language.
An example of languages with more phonemic differences are tonal languages, where pitch
is tied to the meaning of a word. In Mandarin, for example, two words with a different
meaning can consist of the same sequence of phonemes: pronouncing these words with a
different pitch is what causes the change in the meaning.

1.1 The working of an automatic phoneme recognition system
The automatic phoneme recognition system used in this research translates audio files of
speech into phonemes. First, the speech signals are processed into Mel-Frequency Cepstral
Coefficients (MFCC) by splitting the audio into frames of about ten milliseconds and ex-
tracting the characteristics of the speech in these frames into feature vectors. These feature
vectors are the input for training the acoustic model and the language model. The acoustic
model learns the probability of observing the acoustics given a sequence of phonemes, i.e.
P (O|phoneme1, phoneme2, ...phonemen). The language model contains the probability of
generating a phoneme sequence in the language, i.e. P (phoneme1, phoneme2, ..., phonemen).
Multiplying these probabilities gives the probability of these audio frames being that se-
quence of phonemes: P (phoneme1, phoneme2, ..., phonemen|O). The full formula is shown
below in Equation 1. In order to recognize new speech, the speech signals are first turned
into feature vectors. Then, the trained acoustic and language model are used to compute
the most probable sequence of phonemes. The language model captures what phoneme
sequences are likely to exist, based on the phoneme sequences that are used as training
input. When trained on one language, the language model will capture the probability of a
phoneme sequence to appear in that language.

P (ph1, ph2, ..., phn|O) = P (O|ph1, ph2, ...phn) ∗ P (ph1, ph2, ..., phn) (1)

1.2 TDNN-BLSTM model
This research applies the Projected Bidirectional Long Short-Term Memory Time Delayed
Neural Network (TDNN-BLSTM) model on phoneme recognition of American English speech.
It aims to evaluate the performance of the model both quantitatively and qualitatively. This
evaluation can be used to assess whether the TDNN-BLSTM has the potential to work
well for English speech recognition. Two databases are used to analyze the performance
of TDNN-BLSTM architecture: The TIMIT Acoustic-Phonetic Continuous Speech Corpus
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and The Buckeye Corpus of Conversational Speech [5, 6]. These corpora contain respectively
read speech and spontaneous speech. In the rest of this paper, these will be referred to as
the TIMIT corpus and the Buckeye corpus.

The TDNN-BLSTM architecture is used to train the acoustic model. The TDNN-
BLSTM is a hybrid acoustic model consisting of TDNN layers and BLSTM layers. The
BLSTM model is a bidirectional model, which means that it takes previous, current, and
future input into account. The TDNN is a network that takes the current and a predeter-
mined number of previous and future inputs into account. The TDNN model is especially
good at capturing the short-term context of an input, whilst the BLSTM model is good
at capturing long term temporal dependencies [7, 8]. Combining these models gives the
TDNN-BLSTM model the ability to balance the importance of long short-term context and
short-term context [8].

1.3 Related work
This research builds upon recent work done by Levenbach on Dutch PR [9]. In Levenbach’s
research, the performance of four acoustic models on two different Dutch corpora was com-
pared. It showed that the TDNN-BLSTM model was performing well. The TDNN-BLSTM
model reached a Phoneme Error Rate (PER) of 5.71% on a Dutch clear speech corpus and
a PER of 23.42% on a Dutch spontaneous speech corpus [9].

To be able to compare the results of the TDNN-BLSTM architecture to other architec-
tures, these architectures have to be discussed. The first ASR systems were designed in the
1950s and were made to only predict a handful of different speech sounds [10]. Using the
TIMIT corpus as a benchmark, a comparison between the TDNN-BLSTM architecture and
other architectures can be drawn [11]. The Buckeye corpus, on the other hand, helps us gain
a better understanding of how the TDNN-BLSTM architecture would perform on recorded
informal conversations, but fewer comparative results are available. Currently, the Li-GRU
architecture can achieve a PER score of 14.9% on the TIMIT corpus [12]. This is, to this
researcher’s knowledge, the lowest PER score on the TIMIT corpus to this date. Although
the Buckeye corpus contains spontaneous speech, which is closer to situations outside of a
controlled environment, this corpus is used less often for assessing the accuracy of phoneme
recognition systems than the TIMIT corpus.

In a research done by Qader et al. [13] a 23.4% PER score is achieved. Since the Buckeye
corpus does not have a standard way of preparing data, like the TIMIT corpus does, the
data preparation, and thus the results, differs per research. This makes comparisons more
difficult.

2 Research question
This research aims to answer the following question, in order to compare the TDNN-BLSTM
architecture with other phoneme recognition architectures:
How does the TDNN-BLSTM architecture perform on English read and spontaneous speech?
The following sub-questions are answered in order to answer the main research question:

• What PER can be achieved with training and testing the TDNN-BLSTM model on
the TIMIT corpus?

• What PER can be achieved with training and testing the TDNN-BLSTM model on
the Buckeye corpus?
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• What phonemes have a large PER difference between read and spontaneous speech?

By answering these research questions, a better understanding of the effectiveness of the
TDNN-BLSTM architecture for phoneme recognition can be achieved. One question this
research aims to answer is whether the TDNN-BLSTMmodel is generally a good architecture
or whether it performs well specifically on Dutch. The combination of the results of the
TDNN-BLSTM evaluation on Dutch and English are not enough to generalize any claims
about phoneme recognition in all languages. It contributes to the generalization of claims
about the network, but does not provide answers to this question.

3 Methodology
This research focuses on the preparation of the corpora and the configuration of the TDNN-
BLSTM model. The preparation of the corpus data has been done in collaboration with
colleague Georgi Genkov. The tuning of the configuration focused on layer dimensions,
on the number of epochs, and on the learning rate of the model. At the beginning, five
runs were done with the same configuration in order to estimate the variance. After the
same configuration had been run five times, the PER scores were all within 0.58% of each
other. Whenever PER scores were close to the minimum PER score of that tuning step, the
configurations were rerun to see what PER score is the lowest over two separate runs.

3.1 Corpora
To analyze the performance of TDNN-BLSTM, two databases were used. The TIMIT
Acoustic-Phonetic Continuous Speech Corpus and The Buckeye corpus of conversational
speech were chosen to represent speech [5, 6]. These corpora respectively contain read
speech and spontaneous speech.

The TIMIT corpus is an American English continuous speech corpus with 6300 sentences
[5]. These sentences come from 630 speakers who each spoke ten sentences. The data in
the TIMIT corpus has a predetermined training and testing division. This research used
this advised division in order to ensure that TIMIT can be used as a benchmark and to
maximize the validity of the comparisons. The training set consists of 462 speakers of whom
70% are male and 30% are female. The core test set contains 24 speakers of whom 67% are
male and 33% are female. The set contains speakers from eight dialect regions in the United
States. Two male and one female participant from each region make up this test set. These
24 speakers each spoke eight sentences. All phonemes appear both in the training set and
in the test set. Instead of having a continuous flow of input data, the audio is split into
chunks. For TIMIT, each sentence is a separate chunk.

The Buckeye corpus is a 307.000-word spontaneous speech corpus [14]. There are 40
speakers who had 30 to 60 minute interviews. All speakers were native to Central Ohio and
were middle-class Caucasians. There was an even distribution in gender. The two inter-
viewers, one male and one female, each conducted half of the interviews. Each interviewer
spoke with half of the male and half of the female participants. This corpus has no pre-
determined training and test subdivision. For this research, speakers one to six have been
selected. Speakers four and five form the test set, the other speakers form the training set.
The training set contains a young male, an old male, a young female and an old female. The
test set contains a young female and an old female. Together, these four speakers of the
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training set spoke 2876 utterances. The audio and phoneme transcriptions had to be cut
into chunks of less than ten seconds in order to let the acoustic model process it effectively.
This study has defined these chunks based on non-phonetic audio markers. Non-phonetic
audio markers are, for example, silences or vocal noises such as sighing, sniffing, or clearing
the throat.

Both corpora have been labeled using the TIMIT labeling guidelines and the Defense
Advanced Research Projects Agency (DARPA) phonetic alphabet. Furthermore, it is im-
portant to note that although the audio has been carefully transcribed into phonemes and
verified by comparing multiple transcriptions, these corpora can still contain transcription
errors.

3.2 Network configuration
The TDNN-BLSTM model contains many parameters that can be tuned to alter the out-
come. The dimensions of the layers, as well as the number of epochs and the learning rate,
have been tuned to reach the lowest possible PER.

The TDNN-BLSTM network is made up out of four TDNN layers, then a BLSTM layer
and afterwards two more TDNN layers. This is visualized in Figure 1.

Because this research uses of smaller datasets than the training set consisting of 200.000
utterance used by Levenbach, it focuses on reducing the complexity of the network. The
main reductions within the network are done on the number of dimensions within both the
non-linear and the linear layers. Furthermore, experimentation with the training epochs
and the learning rate is done to see if improvements are possible.

Figure 1: TDNN-BLSTM model

3.3 Kaldi
For this research, the Kaldi speech recognition toolkit was used [15]. Kaldi was instrumental
in preparing the data, training the TDNN-BLSTM model, and decoding the test data. It
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offers scripts for most standard techniques used in ASR [15].
The TDNN-BLSTM model was trained and tested on the corpora using the TU Delft’s

student access to the HPC cluster.1 For this research, the cluster gave access to two CPU
cores and a maximum runtime of four hours.

3.4 Evaluation metric
To evaluate the performance of the model, the Phoneme Error Rate (PER) was used. The
PER is a metric based on the Levenstein Distance metric, which determines the distance
between two strings. It gives an error rate based on the phonemic difference between the
ground truth provided by the corpus and the phonemes predicted by the model. The PER is
calculated by taking the minimum number of insertions, deletions and substitutions needed
to make the predicted phoneme sequence equal to the ground truth and dividing this by the
total number of labeled phonemes in the ground truth. Lower PER scores are considered to
be better than higher PER scores. The PER formula can be seen in Equation 2.

PER =
#Insertionstotal +#Deletionstotal +#Substitutionstotal

#GroundTruthtotal
(2)

3.5 BLSTM parameters
This research made use of the same parameter values that Levenbach used in their research
for initial testing of the model [9, p. 32].

• 3 BLSTM layers [7]

• 1024 cells per BLSTM layer [16]

• Equal [number] of cells per layer [17]

• Projected recurrence and non-projected recurrence: 256 [18]

• Dropout schedule: 0,0@0.20,0.3@0.50,0 [19]

• L2 regularization: 0.00005 [20]

• Mini-batch: 128 [17]

• 6 epochs [9]

1http://insy.ewi.tudelft.nl/content/hpc-cluster

6



4 Results
This section discusses the results for each tuning step. After the data was prepared, the
TDNN-BLSTM model was run on the TIMIT and Buckeye corpora. The PER results of
running the model will be given in this section. First, the PER results of the optimization
of respectively the TIMIT and the Buckeye corpora are discussed. Then, the confusion
matrices of the best runs are provided, in order to analyze how TDNN-BLSTM performs on
read versus spontaneous speech.

4.1 Optimization of TDNN-BLSTM for TIMIT
In order to be able to compare the PER scores of TIMIT with Dutch speech, this research
first evaluates the BLSTM configuration. Using the BLSTM configurations of Levenbach
as shown before on the TIMIT corpus yielded a PER of 35.25%. This is comparable to
the 35.82% PER score of BLSTM on Dutch [9, p. 38]. Since the TIMIT corpus contains
read speech and Levenbach did not study read speech, no direct comparisons can be made.
It can be seen that BLSTM configurations for TIMIT (35.25%) yield a higher PER than
BLSTM on Dutch clear speech (11.75%), but a lower PER than BLSTM on Dutch spon-
taneous speech (43.12%). This is plausible since read speech is considered more clear than
spontaneous speech, but less clear than clear speech.

Then, the TDNN-BLSTM architecture is evaluated. The optimizations for the TDNN-
BLSTM network were done on the TIMIT model as described in subsection 3.2. All changes
made to this model are discussed below.

Table 1 shows the PER scores for the tuning with different layer dimensions. The linear
layer dimensions range from 16 to 64 and the non-linear layer dimensions range from 32 to
256. Only powers of two are considered as layer dimensions. The X in the figure means
that the configuration is not possible, due to the non-linear layer dimension needing to be
at least two times the linear layer dimension. Table 1 shows that the original configuration
of a linear layer dimension of 64 and a non-linear layer dimension of 256 is already close to
optimal. Slightly reducing the dimensions helps, but larger reductions do result in higher
PER scores. The table shows that having 32 linear layers and 128 non-linear layers gives
a PER score of 33.44%. The tuning continues with a linear layer dimension of 32 and a
non-linear layer dimension of 128.

Lin. Lay. Dim.
Lay. Dim. 32 64 128 256

16 37.93 35.30 33.65 34.04
32 X 33.94 33.44 33.90
64 X X 33.47 33.64

Table 1: (TIMIT) PER results in percentages with different (linear) layer dimensions

Table 2 shows the influence of the number of epochs used while training the model.
It contains the PER scores for runs with three to seven training epochs. The number of
iterations was automatically adjusted. The original value was six epochs and in Table 2 it
can be seen that this gives a PER score of 33.44%. This is also the lowest PER score in
this tuning step. Increasing the number of epochs to seven leads to the same PER score
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as for six epochs, but increases the training time. Therefore, the tuning continues with six
training epochs.

Train Epochs PER
3 35.07
4 34.54
5 33.87
6 33.44
7 33.44

Table 2: (TIMIT) PER results in percentages with different number of epochs

The final tuning is done with the learning rates. The learning rates are split into an
initial learning rate and a final learning rate. The initial learning rate is larger than the
final learning rate to make large improvements early on and to approach the local minimum
more precisely. The outcome of the tuning can be found in Table 3. It shows the PER
scores for initial learning rates varying from 0.0005 to 0.1 and final learning rates varying
from 0.00005 to 0.05. Since it is not desirable to have a final learning rate larger than the
initial learning rate, these cells have no results and are marked with an X. The run with
the initial learning rate 0.01 and final learning rate 0.05 was run accidentally. Nevertheless,
this result was still included, for the sake of completeness, as X/33.10. The lowest reached
PER score was 31.78%, which was achieved with an initial learning rate of 0.1 and a final
learning rate of 0.0005.

Inital lr.
Final lr. 0.00005 0.00010 0.00050 0.00100 0.00500 0.00100 0.05000

0.0005 33.44 33.18 32.67 X X X X
0.0050 32.72 32.67 32.47 32.07 32.61 X X
0.0100 32.27 32.46 32.77 31.91 33.33 33.39 X/33.10
0.0500 32.10 32.50 32.49 32.24 32.81 32.75 32.39
0.1000 32.22 32.42 31.78 32.64 31.95 32.60 32.71

Table 3: (TIMIT) PER results in percentages with different learning rates

4.2 Optimization of TDNN-BLSTM for Buckeye
Using the BLSTM configurations of Levenbach as shown before on the Buckeye corpus
yielded a PER of 57.26%. This is higher than the PER 43.12% for BLSTM on Dutch
spontaneous speech [9, p. 38]. A reason for the higher PER score can be the different sizes
of the training sets: Levenbach used a training set of 200.000 utterances [9, 37], whereas
this research used 2876 utterances for training to reduce training time.

The TDNN-BLSTM configurations are tuned to get a lower PER. In Table 4 the results
for the layer dimension optimization can be seen. The same configurations as for the TIMIT
layer dimension optimization are used. The combination of 16 linear layers and 32 non-linear
layers timed-out two times after four hours. This is indicated in Table 4 with XX. Since
the results of 64 linear layers and 256 non-linear layers was very close to the result of 16
linear layers and 256 non-linear layers, these configurations have been run a second time.
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The mean of these two runs is used in the table and is indicated with an orange cell. The
tuning continues with 16 linear layers and 256 non-linear layers.

Lin. Lay. Dim.
Lay. Dim. 32 64 128 256

16 XX 56.27 55.41 54.37
32 X 55.37 55.37 55.64
64 X X 57.26 54.73

Table 4: (Buckeye) PER results in percentages with different (linear) layer dimensions

For the step of tuning the number of epochs, the values three to seven were chosen. From
this, seven epochs gave the best result, with a PER score of 54.05. Therefore, one more
epoch was added to see if the accuracy would further increase. Training with eight epochs
turned out to yield a PER score of 54.03% and tuning therefore continued with eight epochs.
The results for this tuning step can be seen in Table 5.

Train Epochs PER
3 55.23
4 54.56
5 54.14
6 54.73
7 54.05
8 54.03

Table 5: (Buckeye) PER results in percentages with different number of epochs

Since the training and decoding of Buckeye takes longer than that of TIMIT, it is at-
tempted to do an epoch reduction for the decoding step. The number of test epochs is
reduced from 12 to eight, six and four. The result of this optimization is that four epochs is
enough for the decoding step. Table 6 shows the full results. The lowest reached error rate
remains at 54.03%.

Test Epochs PER
4 54.03
6 54.03
8 54.03
12 54.03

Table 6: (Buckeye) PER results in percentages with different number of epochs

4.3 Individual PER differences between TIMIT and Buckeye
For the run with lowest PER scores per corpus, a confusion matrix is made to illustrate the
errors that are made. The matrices in Appendix A and Appendix B show how many times
the actual phoneme was deleted, had to be inserted, or was confused with other phonemes.
Each row represents an actual phoneme and the columns represent the phoneme that was
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predicted. When looking at the individual contributions to the error rates for the TIMIT
corpus, it can be discovered that 430 out of the 2293 errors are deletions of silences or
substitutions with silences. Furthermore, 80 errors are related to ‘epi’, which stands for
epenthetic silence. This means that 22% of the phoneme errors relate to silences.

Overall, the recognition of TIMIT is better than that of Buckeye. When comparing the
correct predictions of TIMIT to the correct predictions of Buckeye, the phoneme recognition
percentages for TIMIT are, apart from those for ‘ih’ and ‘sh’, all higher.

The ‘ih’ phoneme has a TIMIT recognition value of 60% and a Buckeye recognition
value of 60%. The higher value for Buckeye comes from the difference between phoneme
sets between the corpora. The Buckeye corpus does not contain the ‘ix’ sound, whilst for
TIMIT 16% of the errors for ‘ih’ comes from the confusion with ‘ix’.

The ‘sh’ phoneme has a TIMIT recognition value of 85% and a Buckeye recognition value
of 87%. This does not have an apparent reason, but it does have the highest percentage of
insertions.

Furthermore, there are confusions of phonemes that are quite similar. For example the
phonemes ‘z’ and ‘s’. For TIMIT 6% of ‘z’ phonemes were recognized as ‘s’. For Buckeye,
this number is 12%. Buckeye has a higher percentage of confusions, which is to be expected,
since spontaneous speech differs more often from the original phonemes in a word than read
speech.

5 Responsible Research
During this research, two corpora were used: TIMIT and Buckeye. For both corpora, the
TU Delft licence was used. The Buckeye corpus is free for non-commercial use and the
TIMIT corpus has paid licences available. The TIMIT corpus dates to 1993 and the second
release of the Buckeye corpus is from 2007.

When studying the inclusiveness of these corpora, it is important to take into account
that both corpora do limit the variety of voices that is being trained on. All participants were
over 18 years old, which means that the voices of children and teenagers are not represented
in the training corpus and can therefore cause higher error rates when tested on.

The TIMIT corpus divided its participants up into eight dialect regions and it gives
information about gender of the participants. Additional information about the participants
is not available. This makes it hard to determine any potential bias towards elderly people or
to determine whether there is any bias relating to socio-economic background of participants.

It must be noted that the TIMIT corpus has 30% female participants and 70% male
participants. However, since some research has shown that ASR systems are better at
recognizing female voices than male voices [21, 22], this inequality in percentages would be
beneficial to lowering the difference between error rates. It must also be pointed out that
not all studies agree upon this matter and some research shows increased error rates for
females when comparing male and female error rates [23].

The Buckeye corpus also divides its participants by gender and makes a division between
‘young’ and ‘old’ participants. The researchers used speakers between 18 and 40 years old
to make up the group of ‘young’ participants and speakers over 40 years old to make up the
group of ‘old’ participants. There is no information about the upper bound of the age of
‘old’ participants and a more precise indication of the ages is not given. While the Buckeye
corpus is balanced in terms of gender of participants and some balance is shown in terms
of age of participants, the corpus is not diverse in socio-economic background and dialect
region. The Buckeye corpus has only middle-class Caucasian participants who are native to
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Columbus, Ohio [14]. This causes speech recognition on speech outside of the middle-class
Caucasian subgroup to become a scientific gap. More diverse corpora are advised.

While both corpora have made decisions to ensure diversity between speakers, these cor-
pora on their own are still limited in representation. During this research, the aim is to find
a minimum PER for the TDNN-BLSTM architecture to see how well the model performs.
It must not be forgotten that a low PER for the entire corpus does not automatically mean
that the architecture performs equally well when subdividing data by gender, age, socio-
economic background or dialect region. When aiming for an overall minimum PER, it can
happen that a PER for a specific subgroups turns out to be higher. For any use of phoneme
recognition systems, it should be determined whether to aim for a minimum PER globally or
for a balanced PER when looking at results of subgroups. For research with large real-world
implications it is advised to use a diverse training set and to aim for a balanced PER rather
than a minimum PER globally. Since this research has a limited real-world influence, the
choice was made to aim for a minimum PER globally without taking differences between
results of subgroups into account.

The results of this paper should be reproducible using the procedures described in the
methodology and experimental setup. Of course, the results can differ slightly due to the
non-deterministic character of the TDNN-BLSTM training process. Before tuning, the same
configuration was run five times to see how much variance there is, the PER scores were all
within 0.58% of each other. When values were close to the lowest PER value for that tuning
step, these configurations were rerun to improve the accuracy of the result. The mean of
these runs is used in the result section.

6 Discussion
The results found for TDNN-BLSTM on TIMIT are not near those for the current best
architecture. Li-GRU outperforms TDNN-BLSTM by 16.88%. The model can be further
optimized, but it is unlikely that these optimizations will result in a PER score below 14.9%.
Using TIMIT as benchmark, it can be established that there are at least 15 architectures
that perform better on read speech. The results for spontaneous speech are also lower than
the 23.4% PER reached by Qader et al. on Buckeye [13].

When comparing the results to the parallel research carried out by Genkov [24], the
TDNN-BLSTM model is slightly outperformed by the TDNN-OPGRU model. The PER
score of TDNN-OPGRU is 30.82% for TIMIT and 51.1% for Buckeye.

Two comparable studies for TDNN-BLSTM and TDNN-OPGRU have been performed by
Chiroşca and Van der Tang on two Mandarin corpora [25, 26]. These studies combined show
that TDNN-OPGRU outperforms TDNN-BLSTM when trained and tested on Mandarin
corpora.

Because of the limited time and computational power available during this project, the
choice was made to train and test on only a portion of the Buckeye corpus instead of on the
full corpus. As a consequence, the parameters shown in this paper could lead to different
error rates when applied to the full corpus.

In Appendix B it can be seen that there are more phonemes than appear in the DARPA
phonetic alphabet. These phonemes do not appear in the set of expected phonemes, but
do appear in the set of predicted phonemes. Since most of these phonemes seem to be a
variation to phonemes within the DARPA phonetic alphabet, e.g. ‘aa’ and ‘iy’ are in the
DARPA phonetic alphabet and ‘aan’ and ‘iyn’ are not, a merge of these phonemes with
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their variation might be possible. The Buckeye corpus documentation did not elaborate on
the meaning of these variations and the validity of this merge can therefore not be assessed.
Therefore, they are not removed in this research.

6.1 Future work
Future work should include lowering the number of errors made with silences, since these
kind of errors were present in high numbers during this research. If the full potential of the
TDNN-BLSTM network is to be analyzed, future work should include further optimization
of the model’s parameters. Tuning with different numbers of TDNN or BLSTM layers
or different order of layers is not investigated in this study, but it would be interesting
to see what influence this can have on the PER score. As the section about responsible
research pointed out, the current corpora are limited in representation. Therefore, it would
be interesting to research the validity of the current PER scores on corpora with a more
diverse group of participants.

7 Conclusion
In conclusion, this research studied the performance of the TDNN-BLSTM architecture
on English read and spontaneous speech. By preparing the TIMIT and Buckeye corpora
and optimizing the TDNN-BLSTM configuration, the performance of the TDNN-BLSTM
model is assessed. The results show that the TDNN-BLSTM achieves a PER score of
31.78% on read speech and a PER score of 54.03% on spontaneous speech. These PER
results are not as low as those of current state-of-the-art architectures. The TDNN-BLSTM
architecture currently seems to be the best model for Dutch phoneme recognition, but not for
English phoneme recognition. When comparing the results to the research done by Genkov
[24], Chiroşca [25] and Van der Tang [26], it can be concluded that the TDNN-OPGRU
architecture performs better than the TDNN-BLSTM network on both spontaneous and
read speech in English and Mandarin.
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A Normalized confusion matrix of TDNN-BLSTM on
TIMIT
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B Normalized confusion matrix of TDNN-BLSTM on
Buckeye

aa
ae

aen
ah

ao
aw

ay
b

ch
d

dh
dx

eh
ehn

el
em

en
eng

er
ey

f
g

hh
ih

ihn
iy

iyn
jh

k
l

m
n

ng
nx

ow
ow

n
oy

p
r

s
sh

t
th

tq
uh

uw
v

w
y

z
zh

aan
aen

ahn
aon

aw
n
ayn

eyn
uhn

SIL
del

ins

aa
0.55

0.05
0.11

0.04
0.02

0.05
0.0

0.01
0.0

0.01
0.01

0.0
0.0

0.0
0.0

0.0
0.01

0.0
0.01

0.01
0.02

0.02
0.0

0.0
0.01

0.0
0.0

0.0
0.0

0.01
0.02

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.33

0.02
ae

0.03
0.54

0.01
0.04

0.01
0.03

0.03
0.0

0.0
0.0

0.12
0.0

0.0
0.0

0.01
0.0

0.0
0.03

0.01
0.0

0.0
0.01

0.03
0.01

0.01
0.01

0.0
0.0

0.0
0.0

0.0
0.01

0.0
0.02

0.0
0.0

0.0
0.0

0.01
0.01

0.21
0.02

aen
0.25

0.25
0.25

0.25
0.75

0.25
ah

0.05
0.02

0.51
0.01

0.0
0.03

0.0
0.0

0.01
0.01

0.01
0.05

0.0
0.01

0.0
0.0

0.01
0.0

0.0
0.0

0.0
0.07

0.0
0.0

0.0
0.01

0.01
0.02

0.0
0.0

0.04
0.0

0.01
0.0

0.01
0.0

0.02
0.01

0.03
0.01

0.0
0.01

0.0
0.0

0.0
0.0

0.0
0.0

0.02
0.23

0.02
ao

0.08
0.09

0.48
0.01

0.0
0.01

0.02
0.02

0.0
0.01

0.0
0.01

0.06
0.0

0.01
0.0

0.01
0.09

0.01
0.0

0.01
0.0

0.03
0.0

0.01
0.02

0.0
0.34

0.03
aw

0.04
0.08

0.01
0.07

0.01
0.38

0.01
0.01

0.01
0.01

0.01
0.01

0.01
0.01

0.01
0.01

0.01
0.03

0.03
0.02

0.04
0.03

0.01
0.01

0.02
0.01

0.04
0.01

0.01
0.01

0.06
0.19

0.01
ay

0.05
0.01

0.04
0.01

0.0
0.73

0.0
0.0

0.0
0.01

0.01
0.0

0.0
0.01

0.0
0.0

0.0
0.02

0.0
0.01

0.0
0.01

0.0
0.0

0.01
0.0

0.0
0.0

0.0
0.0

0.0
0.01

0.0
0.01

0.0
0.0

0.01
0.0

0.0
0.0

0.01
0.14

0.01
b

0.01
0.0

0.0
0.76

0.0
0.03

0.02
0.0

0.0
0.0

0.0
0.0

0.0
0.02

0.01
0.01

0.01
0.0

0.0
0.0

0.05
0.0

0.0
0.0

0.01
0.0

0.0
0.02

0.01
0.0

0.36
0.01

ch
0.01

0.69
0.01

0.01
0.01

0.06
0.01

0.01
0.01

0.01
0.09

0.07
0.02

0.01
0.01

0.01
0.2

d
0.01

0.0
0.02

0.0
0.0

0.0
0.03

0.0
0.49

0.05
0.03

0.02
0.0

0.0
0.0

0.0
0.01

0.03
0.0

0.02
0.0

0.02
0.02

0.0
0.0

0.02
0.0

0.01
0.01

0.0
0.01

0.01
0.06

0.01
0.01

0.0
0.0

0.0
0.0

0.01
0.07

0.29
0.01

dh
0.0

0.01
0.0

0.06
0.09

0.54
0.01

0.02
0.0

0.0
0.0

0.0
0.01

0.01
0.04

0.0
0.0

0.01
0.01

0.01
0.03

0.0
0.01

0.01
0.01

0.01
0.01

0.02
0.03

0.01
0.01

0.0
0.02

0.0
0.01

0.01
0.48

0.02
dx

0.0
0.01

0.02
0.0

0.01
0.05

0.02
0.49

0.01
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.01
0.01

0.03
0.0

0.01
0.0

0.0
0.01

0.09
0.0

0.08
0.01

0.0
0.0

0.0
0.0

0.04
0.0

0.01
0.0

0.01
0.01

0.0
0.0

0.0
0.0

0.26
0.02

eh
0.01

0.07
0.08

0.0
0.01

0.0
0.0

0.01
0.0

0.0
0.46

0.0
0.0

0.0
0.0

0.0
0.02

0.0
0.0

0.0
0.13

0.0
0.01

0.0
0.0

0.01
0.03

0.01
0.01

0.01
0.0

0.0
0.01

0.0
0.02

0.0
0.03

0.01
0.0

0.0
0.0

0.01
0.0

0.0
0.29

0.02
ehn

1.0
8.0

el
0.01

0.02
0.02

0.01
0.03

0.01
0.01

0.3
0.01

0.01
0.01

0.26
0.01

0.04
0.01

0.01
0.03

0.01
0.01

0.03
0.01

0.01
0.01

0.01
0.11

0.28
0.01

em
0.01

0.01
0.01

0.66
0.05

0.07
0.07

0.01
0.09

0.7
en

0.03
0.01

0.05
0.01

0.0
0.0

0.0
0.02

0.01
0.02

0.04
0.19

0.0
0.0

0.0
0.04

0.01
0.01

0.0
0.01

0.13
0.24

0.0
0.02

0.02
0.0

0.01
0.02

0.0
0.02

0.01
0.0

0.01
0.0

0.0
0.0

0.01
0.02

0.25
0.05

eng
0.67

0.33
0.33

er
0.0

0.0
0.03

0.0
0.01

0.01
0.01

0.0
0.01

0.0
0.0

0.53
0.0

0.0
0.01

0.0
0.05

0.01
0.0

0.01
0.0

0.0
0.0

0.0
0.0

0.01
0.0

0.0
0.01

0.16
0.0

0.0
0.01

0.01
0.01

0.01
0.0

0.0
0.0

0.0
0.0

0.03
0.09

0.0
ey

0.01
0.01

0.0
0.01

0.0
0.0

0.01
0.0

0.04
0.5

0.01
0.01

0.0
0.09

0.0
0.1

0.03
0.0

0.0
0.02

0.03
0.0

0.0
0.0

0.0
0.0

0.02
0.0

0.02
0.01

0.01
0.0

0.0
0.01

0.05
0.1

0.01
f

0.0
0.0

0.01
0.0

0.0
0.0

0.03
0.01

0.74
0.01

0.01
0.0

0.02
0.0

0.01
0.0

0.0
0.0

0.0
0.02

0.01
0.03

0.0
0.01

0.05
0.0

0.0
0.01

0.01
0.0

0.32
0.02

g
0.0

0.02
0.01

0.0
0.0

0.02
0.05

0.02
0.01

0.01
0.01

0.0
0.0

0.58
0.01

0.04
0.01

0.02
0.06

0.01
0.03

0.01
0.0

0.02
0.03

0.0
0.01

0.0
0.0

0.02
0.37

0.02
hh

0.0
0.0

0.02
0.0

0.0
0.01

0.0
0.01

0.01
0.03

0.0
0.0

0.0
0.02

0.01
0.64

0.03
0.0

0.01
0.04

0.01
0.01

0.01
0.0

0.0
0.02

0.01
0.0

0.0
0.01

0.01
0.0

0.0
0.0

0.01
0.04

0.0
0.0

0.47
0.05

ih
0.0

0.01
0.08

0.0
0.0

0.0
0.0

0.0
0.02

0.0
0.0

0.06
0.0

0.01
0.01

0.02
0.0

0.0
0.0

0.61
0.0

0.04
0.0

0.0
0.0

0.0
0.01

0.0
0.0

0.01
0.0

0.0
0.0

0.01
0.01

0.0
0.01

0.0
0.0

0.02
0.01

0.0
0.0

0.01
0.0

0.0
0.0

0.0
0.26

0.02
ihn

0.25
0.25

0.25
0.25

2.25
iy

0.0
0.01

0.01
0.0

0.0
0.0

0.0
0.01

0.0
0.0

0.01
0.0

0.0
0.0

0.0
0.02

0.0
0.0

0.0
0.07

0.0
0.74

0.0
0.0

0.0
0.0

0.02
0.0

0.01
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.02
0.02

0.0
0.0

0.0
0.01

0.13
0.01

iyn
1.0

1.0
jh

0.01
0.01

0.01
0.08

0.03
0.01

0.01
0.01

0.03
0.01

0.6
0.01

0.01
0.01

0.03
0.03

0.01
0.01

0.01
0.01

0.03
0.04

0.01
0.15

0.01
k

0.0
0.01

0.01
0.01

0.0
0.0

0.0
0.0

0.01
0.02

0.0
0.01

0.0
0.0

0.83
0.0

0.0
0.0

0.01
0.02

0.0
0.0

0.0
0.03

0.0
0.0

0.0
0.0

0.0
0.0

0.47
0.01

l
0.02

0.0
0.02

0.01
0.0

0.01
0.01

0.0
0.01

0.01
0.01

0.04
0.0

0.0
0.0

0.0
0.01

0.01
0.0

0.0
0.01

0.62
0.02

0.01
0.0

0.0
0.03

0.0
0.0

0.0
0.0

0.0
0.0

0.02
0.01

0.01
0.0

0.05
0.0

0.0
0.0

0.0
0.02

0.25
0.03

m
0.0

0.0
0.01

0.0
0.0

0.0
0.02

0.01
0.01

0.0
0.0

0.01
0.01

0.0
0.0

0.0
0.0

0.01
0.0

0.0
0.01

0.77
0.04

0.01
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.01

0.0
0.0

0.01
0.02

0.0
0.0

0.03
0.21

0.02
n

0.0
0.0

0.01
0.0

0.0
0.0

0.01
0.0

0.02
0.01

0.0
0.01

0.0
0.0

0.01
0.02

0.0
0.0

0.0
0.01

0.0
0.01

0.0
0.0

0.0
0.01

0.01
0.07

0.59
0.05

0.04
0.01

0.0
0.0

0.0
0.0

0.0
0.01

0.0
0.01

0.0
0.0

0.01
0.0

0.01
0.0

0.0
0.0

0.03
0.17

0.01
ng

0.02
0.02

0.01
0.01

0.01
0.01

0.01
0.01

0.02
0.01

0.03
0.01

0.02
0.01

0.01
0.19

0.48
0.02

0.02
0.01

0.01
0.02

0.04
0.81

0.01
nx

0.02
0.01

0.01
0.01

0.08
0.01

0.01
0.05

0.05
0.01

0.07
0.15

0.02
0.45

0.02
0.01

0.01
0.01

0.01
0.01

1.15
0.02

ow
0.01

0.0
0.08

0.02
0.01

0.0
0.0

0.0
0.01

0.01
0.01

0.02
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.02
0.0

0.0
0.07

0.02
0.01

0.0
0.57

0.0
0.0

0.01
0.01

0.0
0.01

0.02
0.01

0.01
0.01

0.0
0.0

0.0
0.0

0.03
0.23

0.01
ow

n
0.05

0.05
0.05

0.11
0.16

0.05
0.05

0.42
0.05

1.16
oy

0.02
0.13

0.04
0.04

0.02
0.02

0.02
0.02

0.04
0.02

0.08
0.04

0.04
0.33

0.02
0.02

0.02
0.02

0.02
0.06

0.15
p

0.0
0.02

0.01
0.06

0.03
0.01

0.0
0.02

0.0
0.04

0.0
0.0

0.0
0.72

0.0
0.02

0.02
0.0

0.0
0.0

0.01
0.0

0.0
0.44

0.01
r

0.01
0.01

0.01
0.0

0.0
0.01

0.01
0.0

0.0
0.01

0.01
0.01

0.0
0.0

0.0
0.06

0.0
0.0

0.01
0.01

0.01
0.01

0.0
0.01

0.01
0.01

0.01
0.0

0.0
0.01

0.0
0.0

0.67
0.0

0.0
0.01

0.0
0.01

0.01
0.01

0.01
0.02

0.0
0.0

0.02
0.2

0.01
s

0.0
0.0

0.01
0.0

0.0
0.01

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.01

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.81
0.03

0.02
0.01

0.0
0.0

0.0
0.0

0.0
0.04

0.0
0.01

0.12
0.0

sh
0.01

0.06
0.01

0.01
0.02

0.01
0.01

0.01
0.87

0.01
0.01

0.24
t

0.0
0.01

0.01
0.0

0.0
0.0

0.02
0.04

0.0
0.0

0.01
0.0

0.0
0.01

0.01
0.01

0.01
0.0

0.01
0.04

0.0
0.0

0.01
0.0

0.0
0.02

0.01
0.01

0.67
0.01

0.02
0.01

0.0
0.0

0.0
0.0

0.0
0.04

0.5
0.03

th
0.02

0.01
0.0

0.0
0.01

0.01
0.08

0.0
0.02

0.0
0.0

0.0
0.02

0.0
0.0

0.01
0.0

0.0
0.02

0.0
0.0

0.0
0.02

0.03
0.08

0.55
0.0

0.01
0.01

0.0
0.0

0.55
0.01

tq
0.01

0.02
0.04

0.02
0.0

0.01
0.0

0.0
0.01

0.0
0.0

0.0
0.01

0.03
0.0

0.01
0.0

0.01
0.03

0.01
0.01

0.01
0.04

0.0
0.44

0.01
0.01

0.01
0.0

0.0
0.22

0.77
0.08

uh
0.01

0.22
0.01

0.01
0.01

0.01
0.01

0.01
0.01

0.01
0.01

0.19
0.02

0.02
0.01

0.01
0.03

0.01
0.01

0.01
0.04

0.01
0.32

0.03
0.01

0.01
0.7

0.03
uw

0.0
0.01

0.05
0.01

0.0
0.0

0.0
0.01

0.01
0.0

0.01
0.01

0.01
0.01

0.0
0.0

0.0
0.07

0.05
0.0

0.0
0.01

0.01
0.01

0.03
0.01

0.0
0.02

0.01
0.0

0.0
0.01

0.01
0.02

0.5
0.02

0.01
0.0

0.05
0.22

0.02
v

0.01
0.01

0.01
0.1

0.02
0.09

0.02
0.01

0.01
0.01

0.0
0.02

0.0
0.01

0.03
0.01

0.0
0.03

0.01
0.0

0.01
0.02

0.03
0.0

0.01
0.01

0.0
0.0

0.44
0.01

0.0
0.01

0.02
0.4

0.01
w

0.01
0.0

0.0
0.01

0.01
0.0

0.02
0.0

0.01
0.01

0.0
0.01

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.01

0.0
0.07

0.02
0.0

0.01
0.0

0.02
0.0

0.0
0.0

0.0
0.0

0.01
0.0

0.76
0.0

0.0
0.0

0.21
0.01

y
0.0

0.01
0.01

0.0
0.0

0.0
0.01

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.02

0.01
0.04

0.0
0.0

0.0
0.01

0.03
0.01

0.0
0.01

0.0
0.0

0.01
0.0

0.0
0.01

0.78
0.0

0.0
0.47

0.03
z

0.0
0.0

0.01
0.0

0.0
0.0

0.0
0.01

0.01
0.0

0.01
0.0

0.0
0.0

0.0
0.0

0.0
0.02

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.13
0.0

0.02
0.01

0.0
0.0

0.0
0.0

0.0
0.0

0.67
0.01

0.05
0.09

0.01
zh

0.03
0.03

0.03
0.03

0.03
0.03

0.21
0.03

0.06
0.03

0.03
0.42

0.03
0.33

0.03


	Introduction
	The working of an automatic phoneme recognition system
	TDNN-BLSTM model
	Related work

	Research question
	Methodology
	Corpora
	Network configuration
	Kaldi
	Evaluation metric
	BLSTM parameters

	Results
	Optimization of TDNN-BLSTM for TIMIT
	Optimization of TDNN-BLSTM for Buckeye
	Individual PER differences between TIMIT and Buckeye

	Responsible Research
	Discussion
	Future work

	Conclusion
	Acknowledgement
	Normalized confusion matrix of TDNN-BLSTM on TIMIT
	Normalized confusion matrix of TDNN-BLSTM on Buckeye

