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Cooperative output regulation of heterogeneous
unknown systems via passification-based adaptation

Simone Baldi

Abstract—While several robust cooperative output regulation
approaches for heterogeneous systems have been proposed (with
fixed-gain distributed controllers), the design of adaptive-gain
distributed controllers becomes relevant in dealing with larger
uncertainty than robust approaches. This work addresses the
adaptive cooperative output regulation problem for heteroge-
neous systems with unknown linear dynamics, where possibly
large system uncertainty would make fixed-gain robust ap-
proaches not applicable. A passification method is adopted to
design adaptive-gain distributed controllers solving the problem.
The proposed method includes two steps: in the first step, a
distributed observer of the exogenous signal is designed for those
systems that cannot access the exosystem, and a reference model
is designed whose output can converge to the exogenous signal;
in the second step, command generator tracking is achieved via
adaptive laws that make the output of each system converge to the
output of the reference model, and thus to the exogenous signal.
Stability analysis is provided via a Lyapunov approach, and a
numerical example illustrates the effectiveness of the approach.

Index Terms—Cooperative output regulation, distributed adap-
tive control, passification method.

I. I NTRODUCTION

A wide range of multi-agent coordination missions such as
output synchronization, leader-following, formation keeping,
and many more tasks, can be formulated as a distributed output
regulation problem [1]. The main idea behind cooperative
output regulation is that the systems can be divided into two
groups: the first group of systems can access the signals
generated by the exosystem, while the second cannot. As
a result, the regulation problem cannot be solved by the
decentralized approach: typically, some distributed observer
of the exogenous reference signal must be devised. Most
approaches to cooperative output regulation problem can be
divided into two families: the internal model approach [2],
and the feedforward approach [3]. Recent advances in the
field include: removing the assumption that all systems knows
the matrix of the exosystem [4]; reducing the communication
burden by exchanging partial state information [5]; addressing
switching communication topologies [6], [7]. Despite these
advances in cooperative output regulation, only few works
have been focusing on the problem of cooperative output
regulation when the systems might present large uncertainty.
Since the very beginning, researchers in cooperative output
regulation have recognized the need for addressing parameter
uncertainties in system matrices [8], from which a fruitful
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line of research on heterogeneous systems stemmed, aiming
to solve the cooperative output regulation problem when the
agents differ from each other: [9] addresses cooperative control
problems in heterogeneous harmonic oscillators coupled by
diffusive links. It is shown that, in the presence of parameter
uncertainties arising from heterogeneity, structural require-
ments are needed for robust output synchronization.

Currently, the cooperative output regulation problem for het-
erogeneous uncertain systems is addressed by combining the
distributed observer and the feedforward method in such a way
to solve a robust cooperative output regulation problem with
fixed-gain control [10], [11]. However, with some exceptions
like a class of minimum phase systems in [12], the regulator
equations underlying the cooperative problem might have no
fixed-gain solution if uncertainty is too large [13]. To address
large uncertainty, adaptive-gain distributed control becomes
of utmost importance. The passification technique has been
shown to be an effective tool to deal with large uncertainty,
which has been applied to single agents with input/output
communication delays [14] and adaptive synchronization [15].
However, in synchronization approaches via passification,
there is no distinction between the group of systems that can
access the exogenous signals, and those that cannot: therefore,
the distributed observer design is not addressed [16], [17]. In
[18], a sliding-mode design is used in place of the distributed
observer to address cooperative regulation.

As a result, we can summarize this overview of the state
of the art by saying that there are mature robust cooperative
output regulation approaches for heterogeneous systems in
the presence of small uncertainty, but the study of adaptive
cooperative output regulation approaches for heterogeneous
systems in the presence of large uncertainty is not equally
mature: to be more specific, only limited classes of uncertainty
have been addressed via adaptive cooperative control, namely
unknown (but identical) control directions [19], unknown
leader parameters [20], nonlinear systems in output feedback
form with unknown (but identical) parameters [21], and non-
linear systems in the parametric strict-feedback form [22].

In this work we address the cooperative output regulation
problem for heterogeneous unknown linear systems: we use
the term ‘unknown’ in place of ‘uncertain’ to stress that the
system matrices are not known a priori and thus possibly sub-
ject to large uncertainty, so that fixed-gain distributed control
would not be applicable. We use the passification method to
solve this problem. The proposed method involves two steps:
in the first step, we design a distributed observer of the exoge-
nous signal for those agents that cannot access the exosystem,
and we define a reference model whose output can converge to
the exogenous signal; in the second step, command generator
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tracking is achieved via adaptive laws that make the output of
each system converge to the output of the reference model, and
thus to the exogenous signal. As a result, the adaptive gains
can handle large heterogeneity. Stability analysis is provided
via a Lyapunov approach, and a numerical example illustrates
the effectiveness of the approach. It is worth mentioning
that, differently from distributed adaptive approaches based
on model reference adaptive control (MRAC) [23], which
require restrictive system matching conditions based on state
feedback which may limit their applications [24, Chap. 4], we
provide less restrictive matching conditions based on regulator
equations for tracking a given class of exogenous signals.

The rest of the paper is organized as follows: in Section II
we give the preliminaries for the adaptive command generator
tracking (ACGT) approach for a single system; in Section III
we formulate the problem and design the distributed observer
and distributed controller; a numerical example is provided in
Section IV, while Section V concludes the work.

Notation: The notation in this paper is standard. The trans-
pose of a matrix or of a vector is indicated withX ′ and x′

respectively. The trace of a square matrixX is tr[X]. A vector
signal x ∈ R

n is said to belong toL2 class (x ∈ L2), if
∫ t

0
‖x(τ)‖2 dτ < ∞, ∀t ≥ 0. A vector signalx ∈ R

n is said
to belong toL∞ class (x ∈ L∞), if max

t≥0
‖x(t)‖ < ∞, ∀t ≥ 0.

A directed graph is indicated with the pairG = (V, E), where
N is a finite nonempty set of nodes, andE ⊆ V × V is a
set of ordered pair of nodes, called edges. LetNi denote the
subset ofV which consists of all the neighbors of nodei. The
adjacency matrixA = [aij ] of a weighted graph is defined as
aii = 0 andaij > 0 if (j, i) ∈ E , wherei 6= j.

II. A DAPTIVE COMMAND GENERATOR TRACKING WITH

EXOSYSTEM

The task of adaptive command generator tracking (ACGT)
is to make the output of a high-order linear system follow
the output of a low-order reference model [25, Chap. 9]. The
approach has been proposed as a way to achieve robustness
in adaptive control in the presence of unmodelled dynamics
[26], [27], [28]. Historically, ACGT has been formulated for
constant reference signals [28]. In this section we extend the
approach to deal with more general classes of exosystems:
such an architecture will be defined as ACGT with exosystem.
Consider the high-order system

ẋ = Ax+Bu

y = Cx (1)

with x ∈ R
n, u ∈ R

p, y ∈ R
p, and the matricesA, B, C

are unknown matrices of appropriate dimensions. In addition,
consider the low-order reference model

ẋm = Amxm +Bmr

ym = Cmxm (2)

with xm ∈ R
n, r ∈ R

p, ym ∈ R
p, and the matrices

Am, Bm, Cm are known matrices of appropriate dimensions.

As common in (cooperative) output regulation literature, we
assume the reference to be generated by the exogenous system

v̇ = Sv

r = Rv (3)

with v ∈ R
n, andS, R also known matrices. In order to have

a well-posed problem, the following assumptions, classical in
cooperative output regulation literature, are made.

Assumption 1:S has no eigenvalues with negative real part.
Assumption 2:The pairs(A,B) and (Am, Bm) are stabi-

lizable, and the pairs(C,A) and (Cm, Am) are detectable.
The control objective is to find an adaptive control lawu(·)

that, without using the knowledge of the matricesA, B, and
C, can guaranteey − r → 0.

To this purpose, define the ideal input

u∗ = K∗xm + L∗r + F ∗(y∗ − ym) (4)

whereK∗, L∗, F ∗ are ideal unknown gains such thaty∗ → r,
being y∗ the output of the ideal closed-loop system formed
by systems (1) and (2) with ideal input (4). Let us split
the tracking in three stages: the first stage is deriving the
reference model guaranteeingym → r; the second stage are
the matching conditions achievingy∗ → r, and the third
stage is convergence of the closed-loop dynamicsy → ym.

1) Reference model conditions:In order to solve the first
stage (ym → r), a well-posedness assumption is made.

Assumption 3:The reference model (2) is such that the
following regulator equations have solution for a matrixΠ

ΠS = AmΠ+BmR

0 = CmΠ−R. (5)

It is well known that the regulator equations are necessary
and sufficient for tracking [29]: Assumptions 1 and 2 imply
that the solution to (5) is well posed, in the sense that after
defining x̃m = xm −Πv, (5) lead to the dynamics

˙̃xm = Amx̃m

ym − r = Cmx̃m (6)

resulting inym → r, provided thatAm is Hurwitz.

2) Matching conditions:We first show that in general it is
impossible to attainy∗ → ym (and thusy∗ → r) for arbitrary
r: let us definex = [x∗ xm], beingx∗ the state of the ideal
closed-loop system. The dynamics ofx can be written as

ẋ=

[
A+BF ∗C BK∗ −BF ∗Cm

0 Am

]

︸ ︷︷ ︸

Acl

x+

[
BL∗

Bm

]

︸ ︷︷ ︸

Bcl

r

y∗− ym = [C − Cm]
︸ ︷︷ ︸

Ccl

x (7)

whose explicit solution is

y∗(t)− ym(t) = Ccle
Acltx(0) + Ccl

∫ t

0

eAcl(t−τ)Bclr(τ)dτ.

(8)



While the first term in (8) goes to zero if the matrixAcl is
Hurwitz, the second term cannot go to zero for arbitraryr.

If tracking of ym is not possible for arbitraryr, it becomes
possible for some classes of reference signals: therefore,the
exogenous system (3) is used to characterize the class of
reference signals for which the objectivey∗ → r can be
attained. This leads us to a second set of regulator equations

ΠS =

[
A+BF ∗C BK∗ −BF ∗Cm

0 Am

]

Π+

[
BL∗R

BmR

]

0 = [C 0]Π−R (9)

whereΠ can be partitioned asΠ = [Π′
0 Π′]′, with Π being

the same as in (5), because the solution to the Sylvester
equation in (5) is unique when the spectra ofAm andS are
disjoint [29]. We will refer to (9) as ‘matching conditions’
because they give the conditions for which the ideal output
y∗ of the system to be controlled matches the reference signal
r (and thus the output of the reference modelym). Note that
(9) are based on feedback from the outputy and the auxiliary
variablexm, according to the controller (4): however, being
tailored to the exogenous system defined by(S,R), (9) are
different than matching conditions in MRAC, which can
guaranteey → ym, but noty → r [24, Chaps. 4 and 5].

3) Closed-loop dynamics:Now that we have all the condi-
tions guaranteeingy∗ → r (for the ideal closed-loop system),
we need to study the actual closed-loop dynamics and show
y → ym → r. To this purpose, let us definẽx = x− x∗, and
the actual input

u = Kxm + Lr + F (y − ym) (10)

whereK, L, and F are the estimates ofK∗, L∗, and F ∗.
We are now ready to write the actual closed-loop dynamics
formed by systems (1) and (2) with the actual input (10)
[

˙̃x
˙̃xm

]

=

[
A+BF ∗C 0

0 Am

]

︸ ︷︷ ︸

A

[
x̃

x̃m

]

+

[
B

0

]

(K̃xm + L̃r + F̃ (y − ym))

y − ym = [C − Cm]

[
x̃

x̃m

]

+ ζ (11)

where K̃ = K − K∗, L̃ = L − L∗, F̃ = F − F ∗ and ζ is
a term decaying exponentially to zero sincey − ym = y −
y∗ + r − ym + ζ, and under Assumption 3y∗ converges tor
exponentially. The resulting adaptive laws are

K̇ = −γ(y − ym)x′
m

L̇ = −γ(y − ym)r′

Ḟ = −γ(y − ym)(y − ym)′ (12)

whereγ > 0 is an adaptive gain. The derivation of (12), as
well as stability and convergence analysis of the closed-loop
dynamics (11), will be provided in Sect. III. Before concluding
this section, some remarks follow.

Remark 1: The equations in (5) depend bilinearly on the
matricesAm, Bm, Cm and Π: the following procedure can

be adopted to obtain a suitable reference model (2) satisfying
Assumption 3. Select the structure of the reference model (2)
in the observable canonical form

ẋm =






0 −dn

In−1

...
−d1




xm +






nn

...
n1




 r

ym = [0 · · · 0 1]xm (13)

where d1, · · · , dn are selected by the designer in order to
obtain a Hurwitz matrix. Then, (5) will depend linearly on
the matricesΠ and Bm. For example, for the bidimensional
exogenous oscillating system

v̇ =

[
0 1

−ω2 0

]

v

r = [0 1] v (14)

and the matrix

Π =

[
p1 p2
p3 p4

]

(15)

we obtain the solution

p1 = −ω2 p2 = 0 p3 = 0 p4 = 1

−d2 + n2 = −ω2

−d1 + n1 = 0 (16)

whered1 > 0 and d2 > 0 for Hurwitz conditions, andn1, n2

can be solved from (16).
Remark 2: The following consideration should be made

on the dimension of the reference model (2): in MRAC the
reference model has the same dimension of the system to
be controlled, while ACGT literature suggests to take the
dimension of the reference model smaller than the dimension
of the system, without indicating the exact dimension [30].
With the proposed approach, the dimension of (2) is designated
to be the same as the dimension of the exogenous system (3).

Remark 3: The decomposition of the tracking problemy →
r into y → ym → r) arises from the architecture of the ACGT,
in which the output of the system to be controlled is asked to
follow the output of a reference model: as a consequence, the
closed-loop dynamics which have been derived involve not
only the dynamics ofx (or x∗), but also the dynamics ofxm.

III. A DAPTIVE COOPERATIVEOUTPUT REGULATION

The ACGT with exosystem can be extended to a cooperative
output regulation framework. Let us consider a family of
unknown heterogeneousN systems in the form

ẋi = Aixi +Biui

yi = Cixi, i ∈ {1, . . . , N} (17)

with xi ∈ R
ni , ui ∈ R

p, yi ∈ R
p, and the matricesAi, Bi, Ci

are unknown matrices of appropriate dimensions. The state
of the systems in (17) might be of different dimensionsni,
i.e. the state dimension can be heterogeneous as well. Let the
systems in (17) be connected according to an adjacency matrix
A = [aij ], i, j ∈ {0, . . . , N}. The index 0 is associated to the
exosystem (3), thereforeai0 > 0 if and only if systemi can



access the reference signalr and the exogenous statev. The
following connectivity assumption is made:

Assumption 4:Let G = (V, E) be the directed graph
associated toA: then, there exists a directed path from node
0 to every systemi ∈ {1, . . . , N} in the network.
We can now provide the problem formulation and its solution.

Problem 1 (Adaptive Cooperative Output Regulation):
Given the unknown heterogeneous systems (17), the exoge-
nous system (3), and the directed graphG, find an adaptive
distributed control strategyui(·), i ∈ {1, . . . , N} that, without
using the knowledge ofAi, Bi, Ci, i ∈ {1, . . . , N}, guarantees
bounded closed-loop signals and

lim
t→∞

yi(t)− r(t) = 0, i ∈ {1, . . . , N} (18)

Theorem 1:Under Assumptions 1-4, the adaptive cooper-
ative output regulation problem is solved by the following
distributed control

ui = Kixmi
+ Liri + Fi(yi − ymi

)

η̇i = Sηi + µ




∑

j∈Ni

aij(ηj − ηi) + ai0(v − ηj)





ẋmi
= Amxmi

+Bmri

ymi
= Cmxmi

ri = Rηi

K̇i = −γ(yi − ymi
)x′

mi

L̇i = −γ(yi − ymi
)r′i

Ḟi = −γ(yi − ymi
)(yi − ymi

)′ (19)

whereηi ∈ R
n andµ is a design positive number.

Proof: In [3] it is shown that under Assumptions 1 and 4
the distributed observer guarantees thatηi → v, i = 1, . . . , N
exponentially. In addition convergence rate can be increased by
increasingµ. This implies, with reference to the closed-loop
system (11), that the error betweenr and ri = Rηi has the
same effect of the exponentially decaying termζ. Therefore,
stability and convergence analysis of the multi-agent system
can be carried out via stability and convergence analysis of
the closed-loop dynamics (11). In line with the passification
method [15], we assume the system (11) to be strictly positive
real (SPR): assuming (11) to be SPR is not more restric-
tive than the basic passification-based condition of having
(A + BF ∗C,B,C) SPR [15]. In fact, the block-diagonal
structure ofA in (11) implies that if(A + BF ∗C,B,C) is
SPR andAm is Hurwitz, then (11) is SPR. Note thatAm is
Hurwitz by design. The SPR condition can be relaxed to the
hyper minimum-phase(HMP) condition [15], [31], which is
necessary and sufficient for output feedback strict passification
[32]: such relaxation is not shown here for compactness, but
the simulations in Section IV are also carried out for HMP
systems. The SPR condition leads to the Kalman-Yakubovich
Lemma [15]

P1(A+BF ∗C) + (A+BF ∗C)′P1 < 0

P1B = C ′

P2Am +A′
mP2 < 0

P12B = −C ′
m (20)

for a matrixP partitioned as follows

P =

[
P1 P ′

12

P12 P2

]

. (21)

The stability analysis starts from the Lyapunov function

V (x̃, x̃m, K̃, L̃, F̃ ) = [x̃′ x̃′
m]P

[
x̃

x̃m

]

+ tr
(

K̃γ−1K̃ ′
)

+tr
(

L̃γ−1L̃′
)

+ tr
(

F̃ γ−1F̃ ′
)

(22)

with time derivative (time indext is omitted for compactness)

V̇ = [x̃′ x̃′
m]
(

PA+A
′
P
)[

x̃

x̃m

]

+

2 [x̃′ x̃′
m]P

[
B

0

](

K̃xm + L̃r + F̃ (y − ym)
)

+

2tr
(

K̃ ′γ−1 ˙̃
K
)

+ 2tr
(

L̃′γ−1 ˙̃L
)

+ 2tr
(

F̃ ′γ−1 ˙̃
F
)

< 2

([
B

0

]′

P

[
x̃

x̃m

]

x′
m + γ−1 ˙̃

K ′

)

K̃ +

2

([
B

0

]′

P

[
x̃

x̃m

]

(y − ym)′ + γ−1 ˙̃
F ′

)

F̃ +

2

([
B

0

]′

P

[
x̃

x̃m

]

r′ + γ−1 ˙̃L′

)

L̃ < 0 (23)

where we have used the Kalman-Yakubovich Lemma (20),
and the propertya′b = tr(b′a). Using standard Lyapunov ar-
guments we can prove boundedness of all closed-loop signals
and convergence of̃x, x̃m to 0. In fact, sinceV > 0 and
V̇ ≤ 0, it follows thatV (t) has a limit, i.e.,

lim
t→∞

V (x̃(t), x̃m(t), K̃(t), L̃(t), F̃ (t)) = V∞ < ∞ (24)

andV , x̃, x̃m, K̃, L̃, F̃ ∈ L∞. In addition, by integratingV̇
it follows that for someQ > 0

∫ ∞

0

[x̃′(τ) x̃′
m(τ)]Q

[
x̃(τ)
x̃m(τ)

]

dτ ≤

V (x̃(0), x̃m(0), K̃(0), L̃(0), F̃ (0))− V∞ (25)

from which we establish that̃x, x̃m ∈ L2. Finally, sinceV̇
is uniformly continuous in time (this is satisfied becauseV̈

is finite), the Barbalat’s lemma implieṡV → 0 as t → ∞
and hencẽx, x̃m → 0, from which we derivey → ym → r.
The proof is completed by repeating the analysis above to all
systems in (17).

Some remarks follow.
Remark 4: The proposed distributed controller (19) exploits

feedback from the outputyi and auxiliary variables that are
calculated locally (xmi

and ymi
) or in a distributed way (ηi

and ri): no state feedback is used. In fact, (19) contains: a
distributed observerηi for v; a copy of the reference model
driven byηi; adaptive laws for the control gains.

Remark 5: While in most works on cooperative output
regulation for uncertain systems the control gains are fixed
and designed through robust control considerations, the last
three equations of (19) reveal that in the proposed approach
the control gains can vary in order to adapt to the uncertainty



of systemi. As a result, one can deal with larger uncertainties
than robust approaches.

Remark 6: In practice, noises in the feedback loop might
drastically change the performance of the proposed adaptive
controller: this case is not been addressed due to lack of space.
Nevertheless, in view of the decentralized reasoning behind the
proof of Theorem 1, the proposed approach inherits all the
robustness properties of the passification method as studied
in literature [32]. In addition, tools like leakage, dead-zone
and projection, widely known in adaptive literature [33], can
be added to the adaptive law so as to prevent an undesirable
system performance under noisy conditions.

IV. N UMERICAL EXAMPLE

d1 d2 d3 n1 n2 n3

#1 1 2 1.5 1 1.5 1.5
#2 0.75 2.5 1.25 0.5 1 0.5
#3 1.25 2 2 1.25 1 1.5
#4 0.5 1 0.25 0.75 0.75 1
#5 0.75 1 0.5 1.5 2 1
#6 1.5 2.5 3 1 0.5 1.5

Fig. 1: The leader-follower directed communication graph

Simulations are carried out on the directed graph shown in
Fig. 1, where node 0 acts as the exosystem and node 1 is the
only node that can access the exogenous signals. The unknown
systems (17) are taken as third-order linear systems in the
observable canonical form, in such a way that the transfer
function has numeratorn1s

2 + n2s + n3 and denominator
s3 + d1s

2 + d2s + d3. The coefficients for each system are
reported in Table 1: the systems are heterogeneous and have
been selected in such a way that the SPR condition is verified.
In addition, the systems are unknown to the designer, i.e. the
value of their coefficients in Table 1 is not used for control
design. The exosystem (3) is taken as a harmonic oscillator

v̇1 = v2

v̇2 = −ω2v1

r = v2
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Fig. 2: Outputs, references and inputs for all SPR systems.

with ω = 0.7. Therefore, the reference model (2) is selected as
a second-order linear system in the observable canonical form
(13), with d1 = 1, d2 = 0.5, andn1 = d1, n2 = d2 − ω2.

The adaptive gain is taken asγ = 10, and the distributed
observer gain is taken asµ = 1: all estimated control gains
K, L andF are initialized to 0.

The resulting adaptive cooperative output regulation is
shown in Fig. 2. In particular, it can be seen that all outputs
yi converge to the correspondingymi

: at the same time all
ri are converging tor. Also, note also that all outputs of the
reference modelymi

converge to the reference signalr as
predicted by the regulator equation of Assumption 3. Finally,
Fig. 3 shows the adaptive control gains for all systems: because
of the heterogeneity, each system has different control gains.

To show that the SPR condition can be relaxed to HMP,
we change the sign to alld2 in Table 1: this leads to having
two unstable poles and thus non-SPR systems: however, the
systems are hyper minimum-phase as defined in [15], and thus
the passification approach holds true: in fact, convergenceof
the outputs is shown in Fig. 4 (adaptive gains are not shown
for lack of space).

V. CONCLUSIONS

This work has addressed the cooperative output regula-
tion problem for heterogeneous unknown linear systems. In
contrast with state-of-the-art approaches for heterogeneous
‘uncertain’ linear systems based on robust control, here the
term ‘unknown’ was used to stress that the agents are possibly
subject to larger uncertainty than fixed-gain robust approaches
can typically handle. A passification method was used to
design a distributed adaptive controller and solve the problem:
the main feature of the proposed adaptive controller is thatthe
controller gains are not fixed, but can vary in order to adapt
to the system uncertainty. Stability analysis has been provided
via a Lyapunov approach, and a numerical example illustrates
the effectiveness of the approach. Future work could include:
handling switching topologies by using adaptive switching
strategies similarly to [34], [35]; removing the assumption
that each follower knows the matrix of the exosystem, as in
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[4]; extension to nonlinear systems via nonlinear passification
methods, similar to [15].
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