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Abstract
When data in higher dimensions with a certain constraint on it, say a set of locations on a sphere, is
encountered, some classical statistical analysis methods fail, as the data no longer assumes its values
in a linear space. In this thesis we consider such datasets and aim to do likelihood-based inference
on the center of the data. To model the nonlinearity, we consider the data to be a set of points on a
Riemannian manifold.

The general approach in this thesis comes from the classical result where the center can be repre-
sented as the maximum likelihood estimator for the true mean of the dataset. To model an underlying
distribution we will model the data as observations of realizations of Brownian motion on the manifold
observed at a fixed time and use the transition density of the Brownian motion to construct a likelihood.
The likelihood can then be approximated using diffusion bridges.

This thesis thus first focuses on differential geometry as well as Itô and Stratonovich calculus. After
that, we will introduce methods to construct a likelihood for the center of the dataset on a manifold
before using simulated diffusion bridges to approximate this likelihood. We finish the thesis with some
numerical experiments in Julia that demonstrate the results on the sphere.

Keywords: Diffusion processes, diffusion bridges, Riemannian manifolds, stochastic differential equa-
tions, stochastic simulation, geometric statistics.
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1
Introduction

In many statistical applications, we encounter data that takes values in more than one dimension but
with certain constraints. One can think for example of a set of locations on earth, where the data takes
values in three dimensions but has the constraint of lying on a sphere. Doing statistical inference when
data takes its values in a nonlinear space is quite different from the regular setting where many common
notions in statistics, such as the mean or standard deviation of a set of data, have been researched for
a long time. They are usually easy to calculate in linear spaces since the concept of adding vectors and
multiplication by constants is present. As an example, consider a set of points in a plane. The mean
of these points will simply be the point that lies in the middle and is found by adding all the vectors
and scaling the result with the sample size. However, if all these points were to lie on a circle, than the
mean that is calculated is not necessarily on the circle, because the circle is not a linear space and thus
a linear combination of vectors that take their values on it does not have to stay on the circle. The aim
of this thesis is to set up a model for performing statistical inference on the center of a dataset when
data takes values in a nonlinear space.

1.1. General formulation of the problem
In this thesis, we will consider datasets consisting of random elements 𝜉1, … , 𝜉𝑛 of a 𝑑-dimensional
Riemannian manifold (M, 𝑔). A toy example will be the sphere, or in some cases the circle or the torus.
The aim of this thesis is to do inference on the center of the dataset represented by a parameter 𝜃.

In the case of a dataset modeled as an independent, identically distributed N (𝜃, 𝜎2) sample, the center
of a dataset, the sample mean , coincides with the maximum likelihood estimator for the true mean 𝜃
of the underlying distribution. When a sample has values on a nonlinear space, however, the notion
of an underlying distribution becomes quite abstract. For example, there is no straightforward way of
characterizing normal distributions on the sphere. The first alternative for a center of a dataset is the
Fréchet mean argmin𝜇 ∑𝑛

𝑖=1 𝑑 (𝜉𝑖, 𝜇)2 where 𝑑 is a metric on M. This alternative, however, does not
give us a sense of uncertainty or an idea of the distribution of the center and there is also no straight-
forward way of selecting the metric.

In this thesis, we propose to view the center as the most likely starting point for a set of 𝑛 realizations of
Brownian motion onM that hit the data points at a given time 𝑇 . We will thus use the transition density
of Brownian motion to characterize a distribution for the center of the sample. Mathematically, we can
formulate this as follows.

Let 𝑋 = (𝑋𝑡)𝑡 be a Brownian motion onM starting at 𝜃 and 𝑇 > 0 be a fixed end time. Furthermore, let
(𝑥𝑖

𝑡)𝑡, 𝑖 = 1, … , 𝑛 denote 𝑛 independent sample paths of the process 𝑋. We aim to find the distribution
of 𝜃 ∣ 𝑥1

𝑇 = 𝜉1, … , 𝑥𝑛
𝑇 = 𝜉𝑛, which can be interpreted as a distribution for the center of the data.

1



2 1. Introduction

1.2. This approach on Euclidean spaces
If we use this approach in Euclidean spaces, we consider the dataset to be realizations of indepen-
dent observations 𝑋(1)

𝑇 , … , 𝑋(𝑛)
𝑇 of standard Brownian motions starting at 𝜃. The data points are thus

observations of the diffusions governed by the stochastic differential equations

d𝑋(𝑖)
𝑡 = d𝑊 (𝑖)

𝑡 𝑋(𝑖)
0 = 𝜃, 𝑖 = 1, … , 𝑛

The likelihood function for 𝜃 is given by the product of the transition densities of the diffusions.

𝑓 (𝜃) =
𝑛

∏
𝑖=1

𝑝 (0, 𝜃; 𝑇 , 𝑋(𝑖)
𝑇 )

where 𝑝 is such that ℙ (𝑋𝑡 ∈ d𝑦 ∣ 𝑋𝑠 = 𝑥) = 𝑝 (𝑠, 𝑥; 𝑡, 𝑦) d𝑦. Since a standard Brownian motion in a
Euclidean space has a normal transition density, the maximum likelihood estimator for 𝜃 coincides with
the classical sample mean.

This result motivates the approach of this thesis on a Riemannianmanifold sincemethods for describing
Brownian motion on manifolds have been derived in previous works and can now be applied to this
research.

1.3. Structure of the thesis
In order to get to the goal formulated in the previous section, we will have to go through various steps.
The thesis starts off with some background theory. This includes an introduction to Riemannian ge-
ometry, preliminaries and basic definitions of probabilistic notions and a couple of results regarding
the transition density of a Markov process. In this chapter we first introduce Riemannian manifolds in
various steps and derive various concepts in Riemannian geometry such as tangent spaces and the
Laplace-Beltrami operator. After that, we introduce both Itô and Stratonovich stochastic calculus and
formulate some theorems and definitions in that field before delving a bit deeper into transition densities
of stochastic process, as these play an important part in the likelihood. In chapter 2.3, we delve deeper
into the transition density of Brownian motion on a manifold via the Kolmogorov equations. In a slight
intermezzo to functional analysis in parabolic equations, we will describe conditions on when we can
solve Kolmogorov’s equations.

In chapter 3, we discuss Brownian motion on Riemannian manifolds. We first introduce a characteriza-
tion of Brownian motion in local coordinates via the Laplace-Beltrami operator in chapter 3.1 and after
that we move to a characterization via orthogonal projections in chapter 3.2.

Chapter 4 moves away from the theoretic background and towards stochastic simulations. By suc-
cessfully simulating diffusion bridges on a manifold, we can approximate the log-likelihood of 𝜃. For
this reason, we discuss common algorithms used to simulate diffusions. Here, we discuss both the
Euler-Maruyama method and jets or functions like the exponential map when known in closed form. In
this chapter, we also discuss the simulation of diffusion bridges using guided proposals.

In chapter 5, we derive amethod to use the simulations of diffusion bridges to approximate the likelihood
of the center of the data and discuss various methods to draw samples from the likelihood and obtain
maximum likelihood estimates. We finish the thesis by testing this method on the sphere by applying
various algorithms to determine maximum likelihood estimates on simulated data and draw samples
from the likelihood.



2
Background Theory

The background theory in this chapter includes various widely used notions in the field of stochastic
processes and Riemannian geometry.

2.1. Riemannian manifolds
In this section, we recap some results from differential geometry in order to familiarize the reader with
Riemannian manifolds and introduce various frequently used notation. The definitions and notations
used in this chapter are based on Spivak, 1970 [25], Lovett, 2010 [14] and Hsu, 2002 [9].

2.1.1. Differentiable manifolds and coordinate systems
The theory of differential geometry is widely used in order to understand subspaces of ℝ𝑁 that are no
longer linear, but do, locally, have a certain similarity to ℝ𝑑 for some 𝑑 < 𝑁 .
Definition 2.1.1 (Manifold). A manifoldM of dimension 𝑑 is a Hausdorff topological space such that for
each point 𝑝 ∈ M, there exists an open neighborhood 𝑈 of 𝑝 in M and a homeomorphism 𝑥 ∶ 𝑈 → ℝ𝑑.
From definition 2.1.1 is not immediately obvious that there is a structure on arbitrary manifolds as
elements of the manifold can have multiple neighborhoods that can be mapped homeomorphically to
completely different sets in ℝ𝑑. In order to do analysis on a manifold, we need to add structure to it.
Definition 2.1.2 (Atlas). Let M be a 𝑑-dimensional manifold. An atlas A is a set of homeomorphisms
𝑥𝛼 ∶ 𝑈𝛼 → ℝ𝑑 such that ⋃𝛼 𝑈𝛼 = M and for all 𝛼 and 𝛽, the transition functions

𝑥𝛼 ∘ 𝑥−1
𝛽 ∶ 𝑥𝛽 (𝑈𝛼 ∩ 𝑈𝛽) → 𝑥𝛼 (𝑈𝛼 ∩ 𝑈𝛽)

𝑥𝛽 ∘ 𝑥−1
𝛼 ∶ 𝑥𝛼 (𝑈𝛼 ∩ 𝑈𝛽) → 𝑥𝛽 (𝑈𝛼 ∩ 𝑈𝛽)

are functions between subsets of ℝ𝑑 of class C1. A manifold M endowed with an atlas A is called a
differentiable manifold and the elements (𝑥𝛼, 𝑈𝛼) of A are called charts or (local) coordinate systems .
If the transition functions are of class C∞, we speak of a smooth manifold .
In some literature (see e.g. Lovett, 2010 [14]), manifolds are even defined via atlases, as these guar-
antee that calculations can be done nicely on them. Smoothness of the transition functions ensures
that, when walking on the manifold, the switches between charts happen smoothly and therefore we
can define various concepts from analysis via local behavior.

An elementary example of a smooth manifolds is ℝ𝑑 itself with just one chart being the identity map.
One can also endow the sphere 𝕊2 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 + 𝑧2 = 1} in ℝ3 with various atlases, such
as the projections from the points (0, 0, 1) and (0, 0, −1) onto ℝ2, turning it into a smooth manifold (see
Spivak, 1970 [25]) of dimension 2, or consider the spherical coordinate system (𝑢, 𝑣), which has inverse

𝑥 = cos𝑢 sin 𝑣
𝑦 = sin𝑢 sin 𝑣
𝑧 = cos 𝑣

3



4 2. Background Theory

for (𝑢, 𝑣) ∈ [0, 2𝜋]×[0, 𝜋]. Obviously, the same can be done for the circle 𝕊1 = {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥2 + 𝑦2 = 1}
with the paremeterization 𝑢 ↦ (cos𝑢, sin𝑢).

2.1.2. Tangent spaces
A very important notion in the field of differentiable manifolds is the notion of a tangent space, but in
order to understand this notion, we first need to know about (directional) derivatives. Since manifolds
locally behave in a similar way to ℝ𝑑, notions such as differentiable functions can be defined via charts.

Definition 2.1.3 (Differentiable functions between manifolds). A function 𝑓 ∶ M → N between two
smooth manifolds of dimensions 𝑑 and 𝑑′ is differentiable if the map 𝑦∘𝑓 ∘𝑥−1 ∶ 𝑥 (𝑈 ∩ 𝑓−1 (𝑉 )) → 𝑦 (𝑉 )
is a differentiable map between subsets of ℝ𝑑 and ℝ𝑑′ for all charts (𝑥, 𝑈) in M and (𝑦, 𝑉 ) in N.

Example 2.1.4 (Differentiable curves on manifolds). Using this definition, we can now characterize
differentiable curves on a manifold. Let 𝛾 ∶ ℝ → M be a curve on a differentiable manifold M. Note
that ℝ is a differentiable manifold with just one chart given by (id, ℝ). A curve is thus differentiable if
the map ℝ ∩ 𝛾−1 (𝑈) → 𝑥 (𝑈) given by 𝑡 ↦ 𝑥 (𝛾 (𝑡)) is a differentiable map between subsets of ℝ for all
charts (𝑥, 𝑈) in M.

Knowing this, we can also define directional derivatives.

Definition 2.1.5 (Directional derivative). Let M be a 𝑑-dimensional differentiable manifold, 𝑝 ∈ M and
let 𝑈 ⊆ M be an open neighborhood of 𝑝 in M. Furthermore, let 𝜀 > 0 and let 𝛾 ∶ (−𝜀, 𝜀) → M be
a differentiable curve such that 𝛾 (0) = 𝑝. For any differentiable function 𝑓 ∶ 𝑈 → ℝ, we define the
directional derivative of 𝑓 along 𝛾 as

𝐷𝛾𝑓 ∶= d
d𝑡𝑓 (𝛾 (𝑡))∣

𝑡=0
(2.1)

The operator 𝐷𝛾 is called the tangent vector to 𝛾 at 𝑝.
These tangent vectors will help us in defining the tangent space to M at the point 𝑝, but in order to give
a proper definition, we first need the following proposition

Proposition 2.1.6. Let M be a 𝑑-dimensional differentiable manifold and let 𝑝 ∈ M. The set of all
directional derivatives at 𝑝 is a vector space of dimension 𝑑 with basis { 𝜕

𝜕𝑥1 , … , 𝜕
𝜕𝑥𝑑 }

Proof [Adapted from Lovett, 2010 [14] . ] Let 𝑝 ∈ M and let 𝑥 ∶ 𝑈 → ℝ𝑑 be a coordinate system around
𝑝. Now define the line curve 𝑣𝑖 ∶ (−𝜀, 𝜀) → M via 𝑣𝑖(𝑡) = 𝑥−1 (0, … , 0, 𝑡, 0, … , 0), where the 𝑡 appears in
the 𝑖th place. Then

𝐷𝑣𝑖
𝑓 = d

d𝑡𝑓 (𝑥−1 (0, … , 0, 𝑡, 0, … , 0))∣
𝑡=0

= 𝜕𝑓
𝜕𝑥𝑖 (𝑥−1 (0, … , 𝑡, … , 0))∣

𝑡=0
= 𝜕𝑓

𝜕𝑥𝑖 ∣
𝑝

We thus see that 𝐷𝑣𝑖
= 𝜕

𝜕𝑥𝑖 ∣𝑝. Now for any differentiable curve 𝛾 ∶ (−𝜀, 𝜀) → M, we can write 𝛾 in local
coordinates as 𝑥 ∘ 𝛾 (𝑡) = (𝛾1 (𝑡) , … , 𝛾𝑑 (𝑡)), where 𝛾𝑖 (𝑡) = 𝑥𝑖 (𝛾 (𝑡)). This gives us

𝐷𝛾𝑓 = d
d𝑡𝑓 ∘ 𝑥−1 (𝛾1 (𝑡) , … , 𝛾𝑑 (𝑡))∣

𝑡=0

=
𝑑

∑
𝑖=1

𝜕𝑓
𝜕𝑥𝑖 ∣

𝑝

d𝛾𝑖

d𝑡 ∣
𝑡=0

and hence 𝐷𝛾𝑓 is a linear combination of the operators 𝜕
𝜕𝑥𝑖 ∣𝑝. Since these operators are also inde-

pendent, they form a basis for the space of tangent vectors at 𝑝 and this space must therefore have
dimension 𝑑.
Definition 2.1.7 (Tangent space and tangent bundle). The space of all tangent vectors at a point 𝑝 ∈ M

is called the tangent space at 𝑝 and will be denoted as 𝑇𝑝M. The disjoint union of all tangent spaces
is the tangent bundle and denoted by 𝑇M . Elements of 𝑇M are given by tuples (𝑝, 𝑋𝑝) where 𝑝 ∈ M

and 𝑋𝑝 ∈ 𝑇𝑝M.
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Tangent spaces enable us to define differentials as well.

Definition 2.1.8 (Differential). Let M and N be differentiable manifolds and let 𝜙 ∶ M → N be a dif-
ferentiable map. The differential of 𝜙 at 𝑝 ∈ M is defined as the map d𝜙𝑝 ∶ 𝑇𝑝M → 𝑇𝜙(𝑝)N given by
𝐷𝛾 ↦ 𝐷𝜙∘𝛾

Example 2.1.9 (Tangent space to the circle). Let 𝑝 = (cos𝑢, sin𝑢) be a point on the circle and let
𝛾 (𝑡) = (cos𝑢 (𝑡) , sin𝑢 (𝑡)) be a curve with 𝛾 (0) = 𝑝. Then 𝛾′ (𝑡) = (− sin𝑢 (𝑡) , cos𝑢 (𝑡)) d𝑢

d𝑡 . Hence

𝐷𝛾 = (− sin𝑢 (0)
cos𝑢 (0) ) 𝑢′ (0) 𝜕

𝜕𝑢∣
𝑝

Now let us interpret this result. Note that the vector (− sin𝑢 (0) , cos𝑢 (0)) is orthogonal to 𝑝 and 𝑢′ (0)
a constant is of dimension 1. The tangent space to the circle at 𝑝 is therefore a line that is orthogonal to
𝑝. Note that this line is tangent to the circle and thus matches the elementary geometrical interpretation
of a tangent space to a circle.

Example 2.1.10 (Tangent space to the sphere). We will apply the same method to the sphere at the
point 𝑝 = (cos𝑢 sin 𝑣, sin𝑢 sin 𝑣, cos 𝑣) and a curve 𝛾 (𝑡) = (cos𝑢 (𝑡) sin 𝑣 (𝑡) , sin𝑢 (𝑡) sin 𝑣 (𝑡) , cos 𝑣 (𝑡))
with 𝛾 (0) = 𝑝. Standard calculations show us that

d𝛾
d𝑡 = ⎛⎜

⎝

− sin𝑢 (𝑡) sin 𝑣 (𝑡)
cos𝑢 (𝑡) sin 𝑣 (𝑡)

0
⎞⎟
⎠

d𝑢
d𝑡 + ⎛⎜

⎝

cos𝑢 (𝑡) cos 𝑣 (𝑡)
sin𝑢 (𝑡) cos 𝑣 (𝑡)

− sin 𝑣 (𝑡)
⎞⎟
⎠

d𝑣
d𝑡

Note that these vectors are both orthogonal to 𝑝 at 𝑡 = 0 and are orthogonal to each other as well. They
will thus span the plane that is orthogonal to 𝑝, which is thus the tangent space to the sphere at 𝑝.
In the definition of tangent spaces 2.1.7 we introduced the tangent bundle 𝑇M that is given by the
disjoint union of all tangent spaces to M. We can now consider the canonical projection map 𝜋 ∶
𝑇M → M mapping (𝑝, 𝑋𝑝) ∈ 𝑇M to 𝑝 ∈ M. For any 𝑝 ∈ M we then have that 𝜋−1 ({𝑝}) = 𝑇𝑝M, which
we call the fiber of 𝑝. Furthermore if 𝐴 ⊆ M, we call a map 𝜎 ∶ 𝐴 → 𝑇M such that 𝜋 ∘𝜎 = id a section of
𝑇M in 𝐴. Notice that if M is a smooth manifold, that the tangent spaces transform smoothly into each
other as well. This process of associating the manifold with a vector space at each point generalizes
to the concept of a vector bundle.

Definition 2.1.11 (Vector bundles). Let M be a differentiable manifold of dimension 𝑑 with atlas A =
{(𝜙𝛼, 𝑈𝛼)}𝛼∈𝐼 and let 𝑉 be a finite-dimensional, real vector space. A vector bundle over M of fiber 𝑉
is a Hausdorff topological space 𝐸 with a continuous surjection 𝜋 ∶ 𝐸 → M (the bundle projection) and
a collection Ψ of homeomorphisms (trivializations) 𝜓𝛼 ∶ 𝑈𝛼 × 𝑉 → 𝜋−1 (𝑈𝛼) such that if 𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅,
then

𝜓−1
𝛽 ∘ 𝜓𝛼 ∶ (𝑈𝛼 ∩ 𝑈𝛽) × 𝑉 → (𝑈𝛼 ∩ 𝑈𝛽) × 𝑉

is of the form
𝜓−1

𝛽 ∘ 𝜓𝛼 (𝑝, 𝑣) = (𝑝, 𝜃𝛽𝛼 (𝑝) 𝑣)
where 𝜃𝛽𝛼 (𝑝) ∶ 𝑈𝛼 ∩ 𝑈𝛽 → GL (𝑉 ) is a continuous map into the general linear group.

A vector bundle is often denoted by 𝜉. The space 𝐸 is called the total space and denoted 𝐸 (𝜉) while
the manifold M is called the base space and denoted 𝐵 (𝜉).

The idea behind a vector bundle is to associate a vector space 𝑉 that ”connects” the manifold to the
bundle locally homeomorphically. For any chart 𝑈𝛼, there is a homeomorphism 𝜓𝛼 that maps 𝑈𝛼 × 𝑉
homeomorphically into a subspace 𝜋−1 (𝑈𝛼) of the total space 𝐸 (𝜉). This is not where it stops however,
as the homeomorphisms also transition into one another in a continuous way through the transitions
𝜃𝛽𝛼.

Some trivial examples of vector bundles are the topological space M × 𝑉 for any real vector space 𝑉
where the trivialization maps are just the identity maps on 𝑈𝛼 × 𝑉 and the maps 𝜃𝛽𝛼 are the identity
linear transformation maps. Another example is the tangent bundle 𝑇M that we hinted at earlier in this
section. 𝑇M is a vector bundle over M with fiber ℝ𝑑, see proposition 4.1.4 of Lovett, 2010 [14] for the
proof.
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Definition 2.1.12 (Global section). Let 𝜉 be a vector bundle over a manifoldM of fiber 𝑉 with projection
𝜋 ∶ 𝐸 (𝜉) → M. A global section of 𝜉 is a continuous map 𝑠 ∶ M → 𝐸 (𝜉) such that 𝜋 ∘ 𝑠 is the identity
function on M. The set of all global sections is denoted by Γ (𝜉).

To illustrate the intuition behind a global section, we go back to the example of the tangent bundle,.
Observe that a global section is the map that assigns to each point 𝑝 ∈ M the tuple (𝑝, 𝑋𝑝), where
𝑋𝑝 has to be an element of 𝑇𝑝M. It does not matter to which vector 𝑋𝑝 ∈ 𝑇𝑝M the point 𝑝 is mapped
for this mapping to be a global section as the canonical projection 𝜋 maps all these tuples back to 𝑝.
A global section of 𝑇M is thus a continuous map that assigns a vector in the tangent space to each
point. When we consider a global section of 𝑇M we will refer to it as a vector field. The set of all vector
fields on M is denoted by Γ (𝑇M). A vector field 𝑋 is of class C𝑘 if 𝑋 ∶ M → 𝑇M is a map of class
C𝑘 between manifolds and we typically talk about smooth vector fields when the map is of class C∞.
Figure 2.1 demonstrates this by showing an example of a vector field on the sphere.

Figure 2.1: An illustration of an arbitrary vector field on the sphere where each arrow denotes a vector in the tangent space to a
point.

Proposition 2.1.13. Let 𝑋 and 𝑌 be two vector fields of class C1 on a differentiable manifoldM. Then
the operation 𝑓 ↦ (𝑋𝑌 − 𝑌 𝑋) 𝑓 is another vector field.

Proof. See proposition 4.2.9 of Lovett, 2010 [14].

Definition 2.1.14 (Lie bracket). Let 𝑋 and 𝑌 be two vector fields of class C1 on a differentiable manifold
M. The vector field [𝑋, 𝑌 ] ∶= 𝑋𝑌 − 𝑌 𝑋 is called the Lie bracket of 𝑋 and 𝑌 . Notice that, since 𝑋 and
𝑌 act on functions, we have [𝑋, 𝑌 ] (𝑓) = 𝑋 (𝑌 (𝑓)) − 𝑌 (𝑋 (𝑓)).

For all 𝑎, 𝑏 ∈ ℝ and differentiable functions 𝑓, 𝑔 ∶ M → ℝ, the following properties hold

1. Anticommunativity: [𝑋, 𝑌 ] = − [𝑌 , 𝑋].

2. Bilinearity: [𝑎𝑋 + 𝑏𝑌 , 𝑍] = 𝑎 [𝑋, 𝑌 ] + 𝑏 [𝑌 , 𝑍] and similarly for the second input variable.

3. [[𝑋, 𝑌 ] , 𝑍] + [[𝑌 , 𝑍] , 𝑋] + [[𝑍, 𝑋] , 𝑌 ] = 0, this is called the Jacobi identity.

4. [𝑓𝑋, 𝑔𝑌 ] = 𝑓𝑔 [𝑋, 𝑌 ] + 𝑓𝑋 (𝑔) 𝑌 − 𝑔𝑌 (𝑓) 𝑋.
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2.1.3. Riemannian metrics
Up to this point, we have considered manifolds to be sets that are locally alike ℝ𝑑 with a differentiable
structure. We improve on this structure by introducing Riemannian metrics. Recall from proposition
2.1.6 that the tangent space to a point on a manifold is a vector space of dimension 𝑑. This motivates
the following definition
Definition 2.1.15 (Riemannian metric). Let M be a smooth manifold. A Riemannian metric on M is a
family of (positive definite) inner products

𝑔𝑝 ∶ 𝑇𝑝M × 𝑇𝑝M → ℝ, 𝑝 ∈ 𝑀
such that, for every pair of differentiable vector fields 𝑋, 𝑌 on M, the map 𝑝 ↦ 𝑔𝑝 (𝑋𝑝, 𝑌𝑝) defines a
smooth function M → ℝ. A smooth manifold equipped with a Riemannian metric is referred to as a
Riemannian manifold and denoted (M, 𝑔).
Since, at a given 𝑝 ∈ M, the Riemannian metric 𝑔 gives us an inner product on the space 𝑇𝑝M, which
has basis { 𝜕

𝜕𝑥1 , … , 𝜕
𝜕𝑥𝑑 }, by proposition 2.1.6, we can represent the metric at 𝑝 by the matrix (𝑔𝑖𝑗) with

entries 𝑔𝑖𝑗 = 𝑔𝑝 ( 𝜕
𝜕𝑥𝑖 , 𝜕

𝜕𝑥𝑗 ), which is also frequently used notation for Riemannian metrics. Note that
with this new notation, one can write the Riemannian metric applied to 𝑋 = ∑𝑑

𝑖=𝑖 𝑋𝑖 𝜕
𝜕𝑥𝑖 ∈ 𝑇𝑝M and

𝑌 = ∑𝑑
𝑖=1 𝑌 𝑖 𝜕

𝜕𝑥𝑖 ∈ 𝑇𝑝M in local coordinates as

𝑔𝑝 (𝑋, 𝑌 ) =
𝑑

∑
𝑖=1

𝑑
∑
𝑗=1

𝑔𝑖𝑗𝑋𝑖𝑌 𝑗 (2.2)

For a fixed positive definite matrix (𝑔𝑖𝑗). We will denote the inverse matrix in a similar way: (𝑔𝑖𝑗) =
(𝑔𝑖𝑗)

−1. To reduce the complexity of most equations, we use the following convention from now on.
Definition 2.1.16 (Einsteins summation convention). In Einstein notation, any index that appears both
in sub- and in superscript is assumed to be summed over all of its possible values.

In Einstein notation, equation (2.2) can thus be briefly written as 𝑔𝑝 (𝑋, 𝑌 ) = 𝑔𝑖𝑗𝑋𝑖𝑌 𝑗. To simplify the
notation in many equations, we will abbreviate 𝜕

𝜕𝑥𝑖 by 𝜕𝑖 from now on.

Example 2.1.17. A trivial Riemannian metric emerges when a subset M ⊆ ℝ𝑁 forms a manifold of
dimension 𝑑 < 𝑁 . This metric is found by simply taking the dot product in ℝ𝑁 . That is, for 𝑝 ∈ M,
define 𝑔𝑝 to be the bilinear map 𝑔𝑝 ∶ 𝑇𝑝M × 𝑇𝑝M → ℝ given by 𝑔𝑝 (𝑢, 𝑣) = 𝑢 ⋅ 𝑣. In local coordinates
(𝑥1, … , 𝑥𝑑), the corresponding matrix is given by the 𝑑 × 𝑑 matrix

(𝑔𝑖𝑗) = (𝜕𝑖 ⋅ 𝜕𝑗) .
In this case, we say that M inherits the Riemannian metric from ℝ𝑁 .

Example 2.1.18 (The circle 𝕊1). The circle can be parameterized via the map 𝑥 ∶ [0, 2𝜋] → 𝕊1 given
by 𝑥 (𝑢) = (cos𝑢, sin𝑢) where 𝑢 ∈ [0, 2𝜋]. Since this manifold is embedded in ℝ2, we can inherit the
standard inner product on ℝ2. 𝕊1 is a manifold of dimension 1 and thus 𝑔 is a 1 × 1 matrix given by

(
𝜕

𝜕𝑢 cos𝑢
𝜕

𝜕𝑢 sin𝑢) ⋅ (
𝜕

𝜕𝑢 cos𝑢
𝜕

𝜕𝑢 sin𝑢) = sin2 𝑢 + cos2 𝑢 = 1

For any 𝑝 ∈ 𝕊1, the tangent space 𝑇𝑝𝕊1 is the line tangent to the circle and orthogonal to the vector
𝑝. We thus have 𝑇𝑝𝕊1 is isomorphic to ℝ (𝑇𝑝𝕊1 ≅ ℝ). If we set 𝑝 = (cos𝑢, sin𝑢), we can represent
a vector 𝑣 ∈ 𝑇𝑝𝕊1 via 𝑣0 ∈ ℝ and the relation 𝑣 = 𝑣0 (− sin𝑢, cos𝑢). This Riemannian metric makes
sense as an inner product on this line now comes down to multiplying two real numbers representing
a tangent vector on the line orthogonal to 𝑝 .

Example 2.1.19 (The sphere 𝕊2). As we have seen previously, the sphere can be parameterized by
spherical coordinates via the map (𝑢, 𝑣) ↦ (cos𝑢 sin 𝑣, sin𝑢 sin 𝑣, cos 𝑣). Again, we inherit the dot
product from ℝ3 and thus, by setting 𝑥 (𝑢, 𝑣) = (cos𝑢 sin 𝑣, sin𝑢 sin 𝑣, cos 𝑣) ∈ 𝕊2, we find that a
Riemannian metric on 𝕊2 at 𝑥 is given by the matrix

(𝑔𝑖𝑗) = (
𝜕𝑥
𝜕𝑢 ⋅ 𝜕𝑥

𝜕𝑢
𝜕𝑥
𝜕𝑢 ⋅ 𝜕𝑥

𝜕𝑣𝜕𝑥
𝜕𝑣 ⋅ 𝜕𝑥

𝜕𝑢
𝜕𝑥
𝜕𝑣 ⋅ 𝜕𝑥

𝜕𝑣
) = (sin

2 𝑣 0
0 1) (2.3)
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2.1.4. The Levi-Civita connection
We continue to let M be a 𝑑-dimensional smooth manifold. Then for any two distinct points 𝑝, 𝑞 ∈ M,
the tangent spaces 𝑇𝑝M and 𝑇𝑞M are 𝑑-dimensional vector spaces and thus isomorphic to ℝ𝑑. Hence
they are isomorphic to each other. This isomorphism however, is generally far from trivial, but we can
induce a relation between the two tangent planes using curves between 𝑝 and 𝑞.
Definition 2.1.20 (Connection). Let M be a smooth manifold and let Γ (𝑇M) denote the set of all
smooth vector fields on M. A connection on 𝑇M is a map

∇ ∶ Γ (𝑇M) × Γ (𝑇M) → Γ (𝑇M) (2.4)

denoted by (𝑋, 𝑌 ) ∇↦ ∇𝑋𝑌 that satisfies the following properties

(i) ∇𝑓𝑋+𝑔𝑌 𝑍 = 𝑓∇𝑋𝑍 + 𝑔∇𝑌 𝑍 for all functions 𝑓, 𝑔 ∶ M → ℝ of class C∞.

(ii) ∇𝑋 (𝑎𝑌 + 𝑏𝑍) = 𝑎∇𝑋𝑌 + 𝑏∇𝑋𝑍 for all 𝑎, 𝑏 ∈ ℝ.

(iii) ∇𝑋 (𝑓𝑌 ) = 𝑓∇𝑋𝑌 + 𝑋 (𝑓) 𝑌 for all functions 𝑓 ∶ M → ℝ of class C∞.

It is important to notice that a connection is a function that takes two vector fields as input and returns
another one. The purpose of this operation is that connections give an insight in how two vector fields
interact with each other by giving us an idea of how 𝑋 moves over into 𝑌 . Now note that over a
coordinate patch, the connection is uniquely defined by its values for 𝑋 = 𝜕𝑗 and 𝑌 = 𝜕𝑘 as they form
a basis for the tangent spaces. Since, by definition, ∇𝑋𝑌 is a vector field in M, there must locally be
smooth functions Γ𝑖

𝑗𝑘 ∶ M → ℝ such that

∇𝜕𝑗
𝜕𝑘 = Γ𝑖

𝑗𝑘𝜕𝑖 (2.5)

Definition 2.1.21 (Christoffel symbols). The functions Γ𝑖
𝑗𝑘 of equation (2.5) are called the Christoffel

symbols of the connection ∇.

Proposition 2.1.22. Let (M, 𝑔) be a Riemannian manifold, then there exists a unique affine connection
∇ that is compatible with the metric 𝑔, i.e. it satisfies the following conditions

(i) ∇𝑔 ≡ 0

(ii) For all 𝑋, 𝑌 ∈ Γ (𝑇M), [𝑋, 𝑌 ] = ∇𝑋𝑌 − ∇𝑌 𝑋.

Proof. See lemma 6.8 in Spivak, 1999, [26].

The notion ∇𝑔 ≡ 0 should be interpreted as follows. When writing 𝑔 = ⟨ , ⟩, it should be clear that
⟨𝑋, 𝑌 ⟩ defines a smooth mapM → ℝ via 𝑝 ↦ ⟨𝑋𝑝, 𝑌𝑝⟩. We thus define ∇𝑋 ⟨𝑌 , 𝑍⟩ = 𝑋 (⟨𝑌 , 𝑍⟩), which
defines a C∞ (M)-linear transformation 𝑋 ↦ ∇𝑋𝑔. It can be shown (See e.g. Spivak, 1999 [26] or
Lovett, 2010 [14]) that ∇𝑔 is identically 0 if and only if

∇𝑋 ⟨𝑌 , 𝑍⟩ = ⟨∇𝑋𝑌 , 𝑍⟩ + ⟨𝑌 , ∇𝑋𝑍⟩ . (2.6)

This demonstrates that a connection that is compatible with the metric 𝑔 satisfies the product rule with
respect to the metric.

Definition 2.1.23 (Levi-Civita connection). The connection defined in proposition 2.1.22 is called the
Levi-Civita connection.

Theorem 2.1.24. Let (M, 𝑔) be a smooth Riemannian manifold, then over a coordinate patch ofM with
coordinates (𝑥1 … , 𝑥𝑑), the Christoffel symbols of the Levi-Civita connection are given by

Γ𝑖
𝑗𝑘 = 1

2𝑔𝑖ℓ (𝜕𝑗𝑔𝑘ℓ + 𝜕𝑘𝑔ℓ𝑗 − 𝜕ℓ𝑔𝑗𝑘) (2.7)
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Proof. See proposition 5.2.13 of Lovett, 2010 [14]

Example 2.1.25 (The sphere 𝕊2). Weparameterize the sphere by (𝑢, 𝑣) ↦ (cos𝑢 sin 𝑣, sin𝑢 sin 𝑣, cos 𝑣).
Note that equation (2.3) implies that

(𝑔𝑖𝑗) = (
1

sin2 𝑣 0
0 1) (2.8)

We now substitute equations (2.3) and (2.8) into (2.7), where 𝜕1 = 𝜕
𝜕𝑢 and 𝜕2 = 𝜕

𝜕𝑣 . Standard calcula-
tions then show that the Christoffel symbols for the sphere are given by

Γ1
11 = 0 Γ2

11 = − sin 𝑣 cos 𝑣

Γ1
12 = 1

tan 𝑣 Γ2
12 = 0

Γ1
21 = 1

tan 𝑣 Γ2
21 = 0

Γ1
22 = 0 Γ2

22 = 0

(2.9)

2.1.5. Vector fields along curves, geodesics and the exponential map
We now know how to define a vector field on a manifold, but we can also define a vector field along a
curve.

Definition 2.1.26 (Vector field along a curve ). Let 𝛾 ∶ 𝐼 → M be a smooth curve in M, where 𝐼 ⊆ ℝ is
an interval. We call 𝑉 a vector field along 𝛾 if for each 𝑡 ∈ 𝐼 , 𝑉 (𝑡) is a tangent vector in 𝑇𝛾(𝑡)M and if
𝑉 defines a smooth map 𝐼 → 𝑇M.

It is important to notice that a vector field along 𝛾 need not be a restriction of a vector field 𝑋 on M

to 𝛾 (𝐼). In order to clarify this, consider a curve that intersects with itself (𝛾 (𝑡0) = 𝛾 (𝑡1) for some
pair 𝑡0 ≠ 𝑡1 in 𝐼). We can very well define a vector field along 𝛾 with 𝑉 (𝑡0) ≠ 𝑉 (𝑡1), but then there
cannot exist a vector field 𝑋 on M with 𝑉 (𝑡) = 𝑋 (𝛾 (𝑡)) for all 𝑡 ∈ 𝐼 . If a vector field along a curve is
a restriction of a vector field 𝑋 to 𝛾 (𝐼), however, we say that 𝑉 is induced from 𝑋 or that 𝑉 extends to
𝑋. We will denote the set of all smooth vector fields on M along a curve 𝛾 by X𝛾 (M).
Example 2.1.27. The most elementary example of a vector field along a curve is its derivative. That
is, let 𝛾 ∶ 𝐼 → M be a smooth curve, then at any time 𝑡 we have 𝛾′ (𝑡) ∈ 𝑇𝛾(𝑡)M, thus the map 𝑡 ↦ 𝛾′ (𝑡)
defines a vector field along 𝛾, since smoothness follows from smoothness of 𝛾.
Proposition 2.1.28. Let ∇ denote the Levi-Civita connection. There exists a unique operator 𝐷𝑡 ∶
X𝛾 (M) → X𝛾 (M) such that

(i) 𝐷𝑡 (𝑉 + 𝑊) = 𝐷𝑡𝑉 + 𝐷𝑡𝑊 for all 𝑉 , 𝑊 ∈ X𝛾 (M).

(ii) 𝐷𝑡 (𝑓𝑉 ) = d𝑓
d𝑡 𝑉 + 𝑓𝐷𝑡𝑉 for all 𝑉 ∈ X𝛾 (M) and 𝑓 ∈ C∞ (M).

(iii) If 𝑉 extends to a vector field 𝑋 ∈ Γ (𝑇M), then 𝐷𝑡𝑉 = ∇𝛾′(𝑡)𝑋.

Proof. Suppose the operator 𝐷𝑡 exists and let 𝑥 = (𝑥1, … , 𝑥𝑑) be local coordinates over a chart 𝑈 of
M. Let 𝑉 ∈ X𝛾 (M) be a smooth vector field aling 𝛾 and write 𝑉 = 𝑣𝑖𝜕𝑖 on 𝑈 , where 𝑣𝑖, 𝑖 = 1, … , 𝑑 are
smooth functions on 𝐼 . Conditions (𝑖) and (𝑖𝑖) now tell us that we must have that

𝐷𝑡𝑉 = ̇𝑣𝑖𝜕𝑖 + 𝑣𝑖𝐷𝑡𝜕𝑖

where we use the notation ̇𝑣𝑖 for the 𝑖’th component of 𝑣′. Now write 𝛾 = (𝛾1, … , 𝛾𝑑). Then over 𝑈 , we
have 𝛾′ = ̇𝛾𝑖𝜕𝑖, so condition (𝑖𝑖𝑖) and the properties of a connection state that

𝐷𝑡𝜕𝑖 = ∇𝛾′(𝑡)𝜕𝑖 = ̇𝛾𝑗∇𝜕𝑗
𝜕𝑖 = ̇𝛾𝑗Γ𝑘

𝑖𝑗𝜕𝑘

By rearranging the indices, we thus deduce that

𝐷𝑡𝑉 = ( ̇𝑣𝑖 + Γ𝑖
𝑗𝑘 ̇𝛾𝑗𝑣𝑘) 𝜕𝑖 (2.10)
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which shows that if 𝐷𝑡 does exist, it has to be unique as well. To proof existence, we define the operator
𝐷𝛼

𝑡 as in equation (2.10) for each chart 𝑈𝛼. From uniqueness of 𝐷𝛼
𝑡 on 𝑈𝛼, it follows that 𝐷𝛼

𝑡 = 𝐷𝛽
𝑡 on

𝑈𝛼 ∩ 𝑈𝛽 for all overlapping charts. Since 𝛼 ranges over all coordinate charts in the atlas, the collection
{𝐷𝛼}𝛼 thus extends to one unique operator on M.

The operator 𝐷𝑡 is called the covariant derivative along 𝛾 . We can observe that 𝐷𝑡𝑉 adjusts the
derivative of the vector field 𝑉 by correcting for the shape of the curve on which 𝑉 is defined. A
natural interpretation of the covariant derivative therefore is that it gives us an idea of how a vector field
changes along a curve on M, and from the Christoffel symbols belonging to the Levi-Civita connection
that appear in equation (2.10), it seems that it also gives us an idea of how the Riemannian metric
behaves along a curve. This becomes particularly clear when noticing that a combination of part (𝑖𝑖𝑖)
of proposition 2.1.28 and equation (2.6) leads to

d
d𝑡𝑔 (𝑉 , 𝑊) = 𝑔 (𝐷𝑡𝑉 , 𝑊) + 𝑔 (𝑉 , 𝐷𝑡𝑊) . (2.11)

Definition 2.1.29 (Geodesic). A curve 𝛾 ∶ 𝐼 → M is called a geodesic if it has acceleration 0, that is
𝐷𝑡𝛾′ (𝑡) = 0 for all 𝑡 ∈ 𝐼 .
Note that (2.11) now implies the physical interpretation that a geodesic also has constant speed, since
the definition implies that d

d𝑡 𝑔 (𝛾′ (𝑡) , 𝛾′ (𝑡)) = 0. This result demonstrates that when a curve is parame-
terized by arc length, i.e. the length of the curve is the same as the paremeterization 𝑡 = ∫𝑡

0 ‖𝛾′ (𝑠)‖ d𝑠,
we must have that the speed 𝑔 (𝛾′ (𝑡) , 𝛾′ (𝑡)) is identically 1.

Geodesics are a very important topic when talking about RiemannianManifolds, as these are the curves
that do not have any change in velocity and thus follow the same direction. One can also show (see
e.g. Lovett, 2010 [14] or Spivak, 1970 [25]) that the shortest curve between two points on a manifold
will always be a geodesic, which intuitively makes sense as geodesics move can be interpreted to
move in a straight line and gives us an alternative for the triangle inequality on manifolds by stating
that a straight line between points is shorter than any other curve between the points. Before we give
some examples of geodesics on some well-known manifolds, we have to derive a result that helps us
to identify a curve as geodesic.

If we substitute 𝛾′ into equation (2.10) and apply the definition of geodesics 2.1.29, we can derive the
Geodesic Equations, stating that a curve 𝛾 on M is a geodesic on a chart 𝑈 with coordinate system
𝑥 = (𝑥1, … , 𝑥𝑑) if and only if the following equations are satisfied.

d2𝛾𝑖

d𝑡2 + Γ𝑖
𝑗𝑘 (𝛾 (𝑡)) d𝛾𝑗

d𝑡
d𝛾𝑘

d𝑡 = 0 for all 𝑖 (2.12)

Here 𝛾 (𝑡) = (𝛾1 (𝑡) , … , 𝛾𝑑 (𝑡)). It is important to notice that these equations form a system of 𝑑 nonlinear
differential equations and therefore it is usually difficult to find a closed form for the geodesics on a
manifold. The following theorem now follows from standard results from ordinary differential equations.

Theorem 2.1.30. Let 𝑝 ∈ M. For any 𝑣 ∈ 𝑇𝑝M and any 𝑡0 ∈ ℝ, there exists an open interval 𝐼 with
𝑡0 ∈ 𝐼 and a unique geodesic 𝛾 ∶ 𝐼 → M with 𝛾 (𝑡0) = 𝑝 and 𝛾′ (𝑡0) = 𝑣.
Proof. See theorem 5.3.12 in Lovett, 2010 [14].

Theorem 2.1.30 shows us that we can start at any point in M and walk in the direction of 𝑣 ∈ 𝑇𝑝M with
constant velocity and thus motivates a definition of the exponential map.

Definition 2.1.31 (The exponential map). Let 𝑝 ∈ M. The exponential mapExp𝑝 ∶ 𝑇𝑝M → M is defined
at any 𝑣 ∈ 𝑇𝑝M as the unique geodesic 𝛾𝑣 from theorem 2.1.30 evaluated at 𝑡 = 1, i.e. Exp𝑝𝑣 = 𝛾𝑣 (1).
Definition 2.1.32 (Logarithm and geodesic distance). The inverse map Log𝑝 ∶ M → 𝑇𝑝M assigns to
a point 𝑞 ∈ M the vector 𝑣 ∈ 𝑇𝑝M such that the geodesic 𝛾𝑣 starting at 𝑝 with initial velocity 𝑣 satisfies
𝛾𝑣 (1) = 𝑞. The logarithmic map induces the geodesic distance on M given by 𝑑 (𝑝, 𝑞) = ∥Log𝑝𝑞∥ that
generalizes the idea that the distance between two points is given by the length of the shortest curve
connecting them. The norm is understood to be a Euclidean norm, which can be taken as 𝑇𝑝M is
isomorphic to a Euclidean space.
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Example 2.1.33 (The exponential map on the circle). A geodesic on the circle at a given time 𝑡 is given
by the vector 𝑆 (𝑡) = (cos𝜓 (𝑡) , sin𝜓 (𝑡)). Since we try to find Exp𝑝𝑣, we must have that 𝑆 (0) = 𝑝
and 𝑆′ (0) = 𝑣. Let us parameterize the point 𝑝 by 𝑝 = (cos 𝜃, sin 𝜃) for some 𝜃 ∈ [0, 2𝜋]. Then we
must have that 𝜓 (0) = 𝜃, which implies that 𝑆′ (0) = 𝜓′ (0) (− sin 𝜃, cos 𝜃). Since 𝑣 ∈ 𝑇𝑝𝕊1 example
2.1.9 tells us that 𝑣 must represent an orthogonal vector to 𝑝 in ℝ2 and thus we immediately have that
it is of the form 𝑣 = 𝑣0 (− sin 𝜃, cos 𝜃), where 𝑣0 ∈ ℝ represents it’s magnitude. Hence 𝜓′ (0) = 𝑣0
(here a positive sign means a counterclockwise movement). We can thus satisfy the requirements by
taking 𝜓 (𝑡) = 𝜃 + 𝑡𝑣0 and thus Exp𝑝𝑣 = (cos (𝜃 + 𝑣0) , sin (𝜃 + 𝑣0)). This means that we move on the
circle either clockwise or counterclockwise (depending on the sign of 𝑣0) where the distance we move
is determined by the magnitude of 𝑣0.

Example 2.1.34 (Geodesics on the sphere 𝕊2). We again consider the unit sphere under the pareme-
terization (𝑢, 𝑣) ↦ (cos𝑢 sin 𝑣, sin𝑢 sin 𝑣, cos 𝑣). A curve on the sphere can now be parameterized by
𝛾 (𝑡) = (𝑢 (𝑡) , 𝑣 (𝑡)). Using the Christoffel symbols found in equation (2.9), we find that the geodesic
equations on the sphere read

d2𝑢
d𝑡𝑡 + 2

tan 𝑣
d𝑢
d𝑡

d𝑣
d𝑡 = 0

d2𝑣
d𝑡2 − sin 𝑣 cos 𝑣 ( d𝑢

d𝑡 )
2

= 0
(2.13)

Since a geodesic is written in the form 𝛾 (𝑡) = (cos𝑢 (𝑡) sin 𝑣 (𝑡) , sin𝑢 (𝑡) sin 𝑣 (𝑡) , cos 𝑣 (𝑡)) we can
find that

𝛾′ (𝑡) = (− sin𝑢 sin 𝑣 d𝑢
d𝑡 + cos𝑢 cos 𝑣 d𝑣

d𝑡 , cos𝑢 sin 𝑣 d𝑢
d𝑡 + sin𝑢 cos 𝑣 d𝑣

d𝑡 , − sin 𝑣 d𝑣
d𝑡 ) .

Taking a second derivative and applying the equations found in (2.13), we find after some simplification
that

𝛾″ (𝑡) = − (sin2 𝑣 ( d𝑢
d𝑡 )

2
+ ( d𝑣

d𝑡 )
2
) 𝛾 (𝑡)

Now notice that (sin2 𝑣 ( d𝑢
d𝑡 )2 + ( d𝑣

d𝑡 )2) = 𝑔 (𝛾′ (𝑡) , 𝛾′ (𝑡)) is the speed of the curve squared, which is
constant as 𝛾 is a geodesic. We therefore find that 𝛾 satisfies

𝛾″ (𝑡) + 𝐶𝛾 (𝑡) = 0

where 𝐶 is a positive constant such that
√

𝐶 equals the velocity of 𝛾. Thus the geodesics on the sphere
can found by

𝛾 (𝑡) = 𝑎 cos (
√

𝐶𝑡) + 𝑏 sin (
√

𝐶𝑡) (2.14)

where 𝑎, 𝑏 are vectors in ℝ3. One quickly calculates that 𝛾 (0) = 𝑎 and 𝛾′ (0) =
√

𝐶𝑏. Since 𝛾 must
lie on the sphere at all times, we also require that ‖𝑎‖ = ‖𝑏‖ = 1 and 𝑎 ⋅ 𝑏 = 0. The geodesics on the
sphere are thus indeed found by the circles around it. One can choose the initial point 𝑎 and the initial
velocity

√
𝐶𝑏 freely

Corollary 2.1.35 (Exponential map on the sphere). The exponential map on the sphere for 𝑝 ∈ 𝕊2 is
given by

Exp𝑝𝑣 = {𝑝 if 𝑣 = 0
cos (‖𝑣‖) 𝑝 + sin (‖𝑣‖) 𝑣

‖𝑣‖ if ‖𝑣‖ > 0 (2.15)

Proof. The form of the geodesics is given in equation (2.14). Since the exponential map should evalu-
ate the unique geodesic 𝛾 from theorem 2.1.30 at 𝑡 = 1. This geodesic satisfies 𝛾 (0) = 𝑝 and 𝛾′ (0) = 𝑣
and we thus fill in that 𝑎 = 𝛾 (0) = 𝑝 and 𝑏

√
𝐶 = 𝛾′ (0) = 𝑣. Equation (2.15) now follows as we must

have that ‖𝑏‖ = 1.
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2.1.6. Gradients, divergence and the Laplace-Beltrami operator
We finish this section on Riemannian geometry by extending some well-known differential operators to
operators on a Riemannian manifold (M, 𝑔).

Recall that in ℝ𝑑, the gradient vector of a function 𝑓 ∶ ℝ𝑑 → ℝ defines the vector field ∇𝑓 = (𝜕1𝑓, … , 𝜕𝑑𝑓)
and is the unique vector that solves ∇𝑓(𝑥) ⋅ 𝑣 = 𝐷𝑣𝑓 (𝑥) for any vector 𝑣 ∈ ℝ𝑑. Here 𝐷𝑣𝑓 (𝑥) denotes
the directional derivative of 𝑓 along 𝑣 evaluated in 𝑥. On a Riemannian manifold M we use a similar
construction.

Definition 2.1.36 (Gradient). The gradient grad𝑓 of a differentiable function 𝑓 ∶ M → ℝ is the unique
vector field that satisfies

𝑔 ( grad𝑓, 𝑋) = d𝑓 (𝑋) = 𝑋𝑓 (2.16)

for all vector fields 𝑋 ∶ M → 𝑇M.

Now let (𝑥1, … , 𝑥𝑑) be a local coordinate system and set 𝑋 = 𝑋𝑖𝜕𝑖. Then grad𝑓 must be of the form
grad𝑓 = 𝑎𝑖𝜕𝑖. Substituting this into equation (2.16) yields

𝑋𝑗𝜕𝑗𝑓 = 𝑔 ( grad𝑓, 𝑋) = 𝑔𝑖𝑗𝑎𝑖𝑋𝑗

From which it follows that for all 𝑗, we must have 𝜕𝑗𝑓 = 𝑔𝑖𝑗𝑎𝑖, which leads us to

𝑎𝑘 = 𝛿𝑗𝑘𝑎𝑗 = 𝑔𝑖𝑘𝑔𝑗𝑖𝑎𝑗 = 𝑔𝑖𝑘𝜕𝑖𝑓

where 𝛿 is the Kronecker delta function. Note that the second identity here follows from (𝑔𝑖𝑗) (𝑔𝑖𝑗) = 𝐼
and the symmetry of the matrix 𝑔. This leads us to a local characterization of the gradient on (M, 𝑔)
given by

grad𝑓 = 𝑔𝑖𝑗𝜕𝑖𝑓𝜕𝑗

The next operator we consider in this section is the divergence operator. The divergence div𝑋 of
a vector field 𝑋 ∶ M → 𝑇M on M turns the vector field into a scalar field. In ℝ𝑑 this happens via
div𝑋 = 𝜕𝑗𝑋𝑗. Just like the gradient however, this works a bit differently when working on differentiable
manifolds.

Definition 2.1.37 (Divergence of a vector field). Let (M, 𝑔) be a smooth manifold. The divergence of a
vector field 𝑋 ∶ M → 𝑇M is defined as div𝑋 = 1

√|𝑔| 𝜕𝑗 (√|𝑔|𝑋𝑗) in local coordinates where |𝑔| denotes
the determinant of the matrix (𝑔𝑖𝑗).
Theorem 2.1.38. The divergence operator can also be written as

𝜕𝑗𝑋𝑗 + Γ𝑖
𝑖𝑗𝑋𝑗 (2.17)

In order to prove this theorem, we first introduce a result from linear algebra: Jacobi’s formula:

Lemma 2.1.39 (Jacobi’s formula for invertible matrices). Let 𝐴 ∶ ℝ → ℝ𝑑×𝑑 be a differentiable map
such that 𝐴 (𝑡) is invertible for all 𝑡 ∈ ℝ. Then the determinant defines a differentiable map ℝ → ℝ such
that

d
d𝑡 |𝐴 (𝑡) | = Trace(|𝐴 (𝑡) |𝐴 (𝑡)−1 d

d𝑡𝐴 (𝑡)) (2.18)

Proof. Without loss of generality, we will show that the formula holds in case 𝑡 = 0. We first show the
result in a very specific case:𝐴 (𝑡) = 𝑡𝐴 + 𝐼 , where 𝐴 is a constant matrix. In this case

d
d𝑡 |𝐴 (𝑡) | = lim

𝑡→0
|𝐼 + 𝑡𝐴| − |𝐼|

ℎ
Now notice that |𝐼 + 𝑡𝐴| is a polynomial in 𝑡 of order 𝑑 that has constant term 1. The linear terms of
the polynomial only appear when the multiplication happens between terms on the diagonal (as the +1
appears there) so the linear term must be Trace (𝐴). Therefore

d
d𝑡 |𝐴 (𝑡) |∣

𝑡=0
= Trace (𝐴) = Trace(|𝐴 (0) |𝐴 (0)−1 d

d𝑡𝐴 (𝑡)∣
𝑡=0

)
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Now let us go back to the more general case where 𝐴 is an invertible matrix. We can write

𝐴 (𝑡) = 𝐴 (0) + 𝑡𝐴′ (0) + O (𝑡2)

And thus we must have that

d
d𝑡 |𝐴 (𝑡) |∣

𝑡=0
= lim

𝑡→0
|𝐴 (𝑡) | − |𝐴 (0) |

𝑡

= lim
𝑡→0

|𝐴 (0) + 𝑡𝐴′ (0) | − |𝐴 (0) |
𝑡 + O (𝑡)

= lim
𝑡→0

|𝐴 (0) ||𝐼 + 𝑡𝐴 (0)−1 𝐴′ (0) | − |𝐴 (0) |
𝑡

= |𝐴 (0) |Trace (𝐴 (0)−1 𝐴′ (0))

which is precisely what we needed to show.

Proof of theorem 2.1.38. By applying both the product and the chain rule, one obtains that

div𝑋 = 1
√|𝑔|

𝜕𝑗 (√|𝑔|𝑋𝑗) = 𝜕𝑗𝑋𝑗 + 1
2|𝑔|𝑋

𝑗𝜕𝑗|𝑔|

We can now apply lemma 2.1.39 to find that

div𝑋 = 𝜕𝑗𝑋𝑗 + 1
2𝑋𝑗 Trace (𝑔−1𝜕𝑗𝑔) = 𝜕𝑗𝑋𝑗 + 1

2𝑋𝑗𝑔𝑖𝑘𝜕𝑗𝑔𝑘𝑖

Now all that is left is to notice that by symmetry of the matrix (𝑔𝑖𝑗), we have

Γ𝑖
𝑖𝑗 = 1

2𝑔𝑖𝑘 (𝜕𝑖𝑔𝑗𝑘 + 𝜕𝑗𝑔𝑘𝑖 − 𝜕𝑘𝑔𝑖𝑗) = 1
2𝑔𝑖𝑘𝜕𝑗𝑔𝑘𝑖

Now that we have equivalents for the divergence and the gradient operators on manifolds, we can
define an equivalent for the Laplace operator as well. Recall that in ℝ𝑑 the Laplace operator is given
by Δ = div∇ = ∑𝑑

𝑖=1
𝜕

𝜕(𝑥𝑖)2 .

Definition 2.1.40 (Laplace-Beltrami operator). Let (M, 𝑔) be a Riemannian manifold. The Laplace-
Beltrami operator on a smooth function 𝑓 ∶ M → ℝ is defined as ΔM𝑓 = div grad𝑓
Using the definitions of divergence and the gradient, it is not hard to see that in local coordinates, the
Laplace-Beltrami operator can be expressed as

ΔM𝑓 = 1
√|𝑔|

𝜕𝑗 (√|𝑔|𝑔𝑖𝑗𝜕𝑖𝑓) (2.19)

A different expression for the Laplace-Beltrami operator can be found using theorem 2.1.38 as

div grad𝑓 = div (𝑔𝑖𝑗𝜕𝑖𝑓𝜕𝑗) = 𝜕𝑗𝑔𝑖𝑗𝜕𝑖𝑓 + Γ𝑖
𝑖𝑗𝑔𝑖𝑗𝜕𝑖𝑓 = 𝑔𝑖𝑗𝜕𝑖𝜕𝑗𝑓 + (𝜕𝑗𝑔𝑖𝑗 + Γ𝑖

𝑖𝑗𝑔𝑖𝑗) 𝜕𝑖𝑓 (2.20)

Now note that we have the identity

0 = 𝜕𝑗𝐼 = 𝜕𝑗 (𝑔𝑔−1) = 𝑔𝜕𝑗𝑔−1 + (𝜕𝑗𝑔) 𝑔−1

which leads to 𝜕𝑗𝑔−1 = −𝑔−1 (𝜕𝑗𝑔) 𝑔−1. Plugging this in into equation (2.20) and rearranging the terms
results in

ΔM𝑓 = 𝑔𝑖𝑗𝜕𝑖𝜕𝑗𝑓 − 𝑔𝑗𝑘Γ𝑖
𝑗𝑘𝜕𝑖𝑓 (2.21)

Example 2.1.41 (Euclidean spaces). Note that on Euclidean spaces with the standard dot product,
we have that (𝑔𝑖𝑗) = 𝐼 and we thus have that grad𝑓 = ∑𝑖 𝜕𝑖𝑓𝜕𝑖 and div𝑋 = 𝜕𝑗𝑋𝑗, which leads
to Δ𝑓 = ∑𝑖 𝜕2

𝑖 𝑓 . The operators on manifolds thus thus reduce to the classical formulas for these
operators on Euclidean spaces.
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Example 2.1.42 (The circle 𝕊1). On the circle parameterized by 𝑢 ↦ (cos𝑢, sin𝑢) we have

(Δ𝕊1𝑓) (𝑢) = 𝜕2𝑓
𝜕𝑢2

Example 2.1.43 (The sphere 𝕊2). Recall equation (2.3). Filling these values in into equations (2.5) and
(2.21), results in

(Δ𝕊2𝑓) (𝑢, 𝑣) = 1
sin2 𝑣

𝜕2𝑓
𝜕𝑢2 + 𝜕2𝑓

𝜕𝑣2 + 1
tan 𝑣

𝜕𝑓
𝜕𝑣 (2.22)
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2.2. Stochastic processes: Itô and Stratonovich calculus
In this section, we introduce diffusion processes and stochastic differential equations. Many of the
notions introduced in this section are based on the lecture notes by Spieksma and van Zanten, 2017
[24], the notes by Eberle, 2016 [7] and the books on stochastic calculus by Cohen and Elliot, 2015 [5]
and Øksendal, 2003 [17].

2.2.1. Stochastic processes
Throughout, it will be assumed that there is an underlying filtered probability space (Ω, ℱ, (ℱ𝑡)𝑡≥0 , ℙ)
that satisfies the following usual conditions :

• The probability space (Ω, ℱ, ℙ) is a complete probability space.

• (ℱ𝑡)𝑡≥0 is a filtration of sub-𝜎-fields of ℱ is right-continuous. That is, F𝑡 is a 𝜎-field for all 𝑡 ≥ 0,
∅ ∈ F𝑠 ⊆ F𝑡 ⊆ F for all 𝑠 < 𝑡 and ℱ𝑡 = ℱ𝑡+ ∶= ⋂𝑠>𝑡 ℱ𝑠 for all 𝑡.

• ℱ0 contains all ℙ-negligible events of ℱ∞ ∶= 𝜎 (ℱ𝑡 ∶ 𝑡 ≥ 0)
A random element of a measurable space (X,B) is defined as a measurable map 𝑋 ∶ (Ω,F) → (X,B).
A stochastic process is a family 𝑋 = (𝑋𝑡)𝑡≥0 of random elements of (X,B). We call a stochastic pro-
cess continuous if ℙ-almost surely, each of its sample paths 𝜔 ↦ 𝑋 (𝜔) is a continuous function of 𝑡 .
The process is adapted to the filtration if each map 𝑋𝑡 ∶ (Ω, ℱ𝑡) → (X,B) is measurable .

Recall that a random variable 𝑋 ∶ (Ω,F, ℙ) → (ℝ𝑑,B) defines a probability measure ℙ𝑋 on ℝ𝑑 by setting
ℙ𝑋 (𝐴) = ℙ (𝑋−1 (𝐴)). The same can be done for a stochastic process.

Definition 2.2.1 (Law of a stochastic process). Let X[0,𝑇 ] denote the set of all functions [0, 𝑇 ] → X for
a given 𝑇 > 0. When X[0,𝑇 ] is equipped with a suitable 𝜎-field, a process 𝑋 = (𝑋𝑡 ∶ 𝑡 ∈ [0, 𝑇 ]) defines
a measurable map Ω → X[0,𝑇 ] given by 𝜔 ↦ 𝑋 (𝜔) and we then induce a probability measure on X[0,𝑇 ]

which can, with slight abuse of notation be denoted as ℙ𝑇 (𝐴) = ℙ (𝑋−1 (𝐴)) for 𝐴 ⊆ X[0,𝑇 ]. This
measure will be referred to as the law of the process 𝑋.

In practice, the 𝜎-field on X[0,𝑇 ] the 𝜎-field generated by the so-called 𝜎-cylinders and the existence of a
law traces back to the existence of finite dimensional distributions, i.e. the distributions of the X𝑘-valued
random vectors (𝑋𝑡1

, … , 𝑋𝑡𝑘
) for any set of times 0 ≤ 𝑡1, … , 𝑡𝑘 ≤ 𝑇 . See Spieksma and van Zanten,

2017 [24] for further reading.

Definition 2.2.2 (Independence of stochastic processes). We say that two stochastic processes are
independent if they define independent random elements of the space X[0,𝑇 ]. It follows (see e.g.
Spieksma and van Zanten, 2017 [24]) that Independence of stochastic processes is equivalent to in-
dependence in the finite dimensional distributions.

Definition 2.2.3 (Brownian motion in ℝ). A special case of a stochastic process is the Brownian motion,
also frequently referred to as the Wiener process. A Brownian motion 𝑊 = (𝑊𝑡)𝑡 with initial distribution𝜈 is a stochastic process adapted to a filtration (F𝑡)𝑡 that satisfies the following properties

(i) The random variable 𝑊0 is F0-measurable and has probability distribution 𝜈.
(ii) 𝑊 is almost surely continuous, i.e. the function 𝑡 ↦ 𝑊𝑡 (𝜔) is continuous for ℙ-almost all 𝜔 ∈ Ω.
(iii) For all 𝑠, 𝑡 ≥ 0 with 𝑠 < 𝑡, the increment 𝑊𝑡 − 𝑊𝑠 is independent of F𝑠 and follows a N (0, 𝑡 − 𝑠)-

distribution.

When 𝜈 is such that 𝑊0 = 0 𝜈-almost surely, we refer to 𝑊 as a standard Brownian motion.

Notice that from (ii) and (iii) it follows that, for a Brownian motion 𝑊 starting at 𝑥 ∈ ℝ, 𝑊𝑡 = 𝑊𝑡 − 𝑊0 +
𝑊0 ∼ N (𝑥, 𝑡) and thus

ℙ (𝑊𝑡 ∈ 𝐴) = ∫
𝐴

1√
2𝜋𝑡𝑒− (𝑦−𝑥)2

2𝑡 d𝑦, 𝐴 ∈ B (ℝ) . (2.23)
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It is well-known that such a process as defined in definition 2.2.3 exists and its sample paths are almost
surely nowhere differentiable (An elegant proof can be seen in Kallenberg, 2006 [10]). An example of
a simulation of a path of Brownian Motion starting at 0 is given in figure 2.2.

Figure 2.2: A simulated path of a standard Brownian Motion in ℝ starting at 0.

An important property of Brownian motion is the martingale property. In appendix A, we give some
background theory on martingales and demonstrate that Brownian motion is indeed a martingale pro-
cess.

Definition 2.2.4 (Brownian motion in ℝ𝑑). A 𝑑-dimensional Brownian motion is an ℝ𝑑-valued stochastic
process𝑊 = (𝑊 1

𝑡 , … , 𝑊 𝑑
𝑡 )𝑡 where𝑊 1, … , 𝑊 𝑑 are independentℝ-valued Brownianmotions. Examples

of simulated paths in ℝ2 and ℝ3 can be found below.

Figure 2.3: Simulations of realizations of ℝ2-valued Brownian motion and ℝ3-valued Brownian motion both starting at 0.

We also make use of quadratic variation and quadratic covariation of stochastic processes 𝑋 = (𝑋𝑡)𝑡
and 𝑌 = (𝑌𝑡)𝑡.

Definition 2.2.5 (Quadratic (co)variation). The quadratic variation of 𝑋 is the process [𝑋]𝑡 defined as

[𝑋]𝑡 ∶= lim
‖∆‖→0

𝑁
∑
𝑘=1

(𝑋𝑡𝑘
− 𝑋𝑡𝑘−1

)2 , 𝑡 > 0 (2.24)
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where Δ ranges over partitions of [0, 𝑡] and ‖Δ‖ ∶= max {|𝑡𝑖 − 𝑡𝑖−1| ∶ 𝑖 = 1, … , 𝑁} and the limit is taken
as a limit in probability. If 𝑋 = (𝑋𝑡)𝑡 and 𝑌 = (𝑌𝑡)𝑡 are two stochastic processes, the quadratic
covariation of 𝑋 and 𝑌 is defined as

[𝑋, 𝑌 ]𝑡 ∶= lim
‖∆‖→0

𝑁
∑
𝑘=1

(𝑋𝑡𝑘
− 𝑋𝑡𝑘−1

) (𝑌𝑡𝑘
− 𝑌𝑡𝑘−1

) , 𝑡 > 0. (2.25)

In appendix A, we elaborate more on quadratic variation and introduce some results in detail.

Proposition 2.2.6. For the quadratic covariation, the following identities can be found by rewriting the
terms in the summation.

[𝑋, 𝑌 ]𝑡 = [𝑋 + 𝑌 ]𝑡 − [𝑋 − 𝑌 ]𝑡
4 = [𝑋 + 𝑌 ]𝑡 − [𝑋]𝑡 − [𝑌 ]𝑡

2
In appendix A, we also deduce that the quadratic covariance defines a bilinear map over 𝑋 and 𝑌 .

Proof. Let Δ range over all partitions {0 = 𝑡0 < ⋯ < 𝑡𝑁 = 𝑡} of [0, 𝑡]. For the first identity, notice that
linearity of limits and summations implies that

1
4 ([𝑋 + 𝑌 ]𝑡 − [𝑋 − 𝑌 ]𝑡) = 1

4 lim
‖∆‖→0

𝑁
∑
𝑘=1

{(𝑋𝑡𝑘
+ 𝑌𝑡𝑘

− 𝑋𝑡𝑘−1
− 𝑌𝑡𝑘−1

)2 − (𝑋𝑡𝑘
− 𝑌𝑡𝑘

− 𝑋𝑡𝑘−1
+ 𝑌𝑡𝑘−1

)2}

= 1
4 lim

‖∆‖→0

𝑁
∑
𝑘=1

{(𝑋𝑡𝑘
− 𝑋𝑡𝑘−1

)2 + (𝑌𝑡𝑘
− 𝑌𝑡𝑘−1

)2 + 2 (𝑋𝑡𝑘
− 𝑋𝑡𝑘−1

) (𝑌𝑡𝑘
− 𝑌𝑡𝑘−1

)

− (𝑋𝑡𝑘
− 𝑋𝑡𝑘−1

)2 − (𝑌𝑡𝑘−1
− 𝑌𝑡𝑘

)2 − 2 (𝑋𝑡𝑘
− 𝑋𝑡𝑘−1

) (𝑌𝑡𝑘−1
− 𝑌𝑡𝑘

)}

= lim
‖∆‖→0

𝑁
∑
𝑘=1

(𝑋𝑡𝑘
− 𝑋𝑡𝑘−1

) (𝑌𝑡𝑘
− 𝑌𝑡𝑘−1

) = [𝑋, 𝑌 ]𝑡

Similarly, we have that

1
2 ([𝑋 + 𝑌 ]𝑡 − [𝑋]𝑡 − [𝑌 ]𝑡) = 1

2 lim
‖∆‖→0

𝑁
∑
𝑘=1

{(𝑋𝑡𝑘
+ 𝑌𝑡𝑘

− 𝑋𝑡𝑘−1
− 𝑌𝑡𝑘−1

)2 − (𝑋𝑡𝑘
− 𝑋𝑡𝑘−1

)2 − (𝑌𝑡𝑘−1
− 𝑌𝑡𝑘

)2}

= 1
2 lim

‖∆‖→0

𝑁
∑
𝑘=1

{(𝑋𝑡𝑘
− 𝑋𝑡𝑘−1

)2 + (𝑌𝑡𝑘−1
− 𝑌𝑡𝑘

)2 + 2 (𝑋𝑡𝑘
− 𝑋𝑡𝑘−1

) (𝑌𝑡𝑘−1
− 𝑌𝑡𝑘

)

− (𝑋𝑡𝑘
− 𝑋𝑡𝑘−1

)2 − (𝑌𝑡𝑘−1
− 𝑌𝑡𝑘

)2}

= lim
‖∆‖→0

𝑁
∑
𝑘=1

(𝑋𝑡𝑘
− 𝑋𝑡𝑘−1

) (𝑌𝑡𝑘
− 𝑌𝑡𝑘−1

) = [𝑋, 𝑌 ]𝑡

2.2.2. Stochastic integration and stochastic differential equations
As this thesis is largely about stochastic differential equations, we will now define stochastic integration
in a proper manner in order to move to this theory. For a detailed construction of the Itô integral, we
refer to Kallenberg, 2006 [10], in this thesis we will stick with the following definition.

Definition 2.2.7 (Itô integral). For a continuous adapted stochastic process (𝐻𝑡)𝑡 and a semimartingale
(𝑋𝑡)𝑡 and a sequence {𝜋𝑛}𝑛 of partitions of [0, ∞) with ‖𝜋𝑛‖ → 0 as 𝑛 → ∞, the Itô integral of 𝐻 with
respect to 𝑋 is defined as the process

(𝐻 ⋅ 𝑋)𝑡 = ∫
𝑡

0
𝐻𝑠 d𝑋𝑠 = lim

𝑛→∞
∑
𝑠∈𝜋𝑛

𝐻𝑠 (𝑋𝑠′∧𝑡 − 𝑋𝑠∧𝑡) (2.26)

where 𝑠′ ∶= min {𝑢 ∈ 𝜋 ∶ 𝑢 > 𝑠} whenever this limit exists and is 𝐿2-bounded. The limit in equation
(2.26) understood to be a limit in 𝐿2 (Ω).



18 2. Background Theory

At first glance, it is not clear whether or not this integral exists. There is a lot of literature available that
shows that this is indeed the case (see e.g. [24], [7] and [17]). Moreover, the limit does not depend on
the choice of partitions (𝜋𝑛) with ‖𝜋𝑛‖ → 0.
Corollary 2.2.8 (Linearity of the Itô integral). If 𝐻1 and 𝐻2 are both continuous adapted processes and
𝛼 and 𝛽 constants, then so is 𝛼𝐻1 + 𝛽𝐻2 and ((𝛼𝐻1 + 𝛽𝐻2) ⋅ 𝑋) = 𝛼 (𝐻1 ⋅ 𝑋) + 𝛽 (𝐻2 ⋅ 𝑋)
Now that we know how to write a stochastic integral, we can consider processes defined as solutions
to

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑋𝑠) d𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑠) d𝑊𝑠

where 𝑏, 𝜎 ∈ C ([0, ∞) × ℝ) and 𝑊 denotes a Brownian motion. Equations of this form are generally
written briefly in the form of stochastic differential equations (SDEs)

d𝑋𝑡 = 𝑏 (𝑡, 𝑋𝑡) d𝑡 + 𝜎 (𝑡, 𝑋𝑡) d𝑊𝑡. (2.27)

The functions 𝑏 and 𝜎 in equation (2.27) are frequently called the drift and the diffusion coefficient
respectively of the process 𝑋 = (𝑋𝑡)𝑡. A process that solves such an equation is usually referred to
as a diffusion process . If 𝑋 and 𝑏 take values in ℝ𝑑, 𝜎 is a ℝ𝑑×𝑑′ -valued matrix for 𝑑′ ≤ 𝑑 and 𝑊 an
ℝ𝑑′ -valued Brownian motion, equation (2.27) is understood to represent the system of SDEs for the
vector 𝑋 with entries 𝑋𝑖 that solve

d𝑋𝑖
𝑡 = 𝑏𝑖 (𝑡, 𝑋𝑡) d𝑡 +

𝑑′

∑
𝑗=1

𝜎𝑖𝑗 (𝑡, 𝑋𝑡) d𝑊 𝑗
𝑡 , 𝑖 = 1, … , 𝑑.

For the remainder of this thesis, we will omit the summation in the right hand side and apply Einstein’s
summation convention from 2.1.16.

A question that one can ask, is whether or not an SDE, given a drift and diffusion coefficient has a
solution and if so, in what sense that solution may or may not be unique. We therefore pose the
following theorem adapted from theorem 5.2.1 of Øksendal, 2003 [17].

Theorem 2.2.9 (Existence and uniqueness theorem for SDEs). Let 𝑇 > 0 and suppose that 𝑏 ∶ [0, 𝑇 ] ×
ℝ𝑑 → ℝ𝑑 and 𝜎 ∶ [0, 𝑇 ] × ℝ𝑑 → ℝ𝑑×𝑑′ be measurable functions that satisfy global Lipschitz contitions
given by

|𝑏 (𝑡, 𝑥)| + |𝜎 (𝑡, 𝑥)| ≤ 𝐶 (1 + |𝑥|) , 𝑥 ∈ ℝ𝑑, 𝑡 ∈ [0, 𝑇 ] (2.28)

for some 𝐶 > 0, where |𝜎|2 = ∑𝑖,𝑗 ∣𝜎𝑖𝑗∣
2
, and

|𝑏 (𝑡, 𝑥) − 𝑏 (𝑡, 𝑦)| + |𝜎 (𝑡, 𝑥) − 𝜎 (𝑡, 𝑦)| ≤ 𝐷 |𝑥 − 𝑦| , 𝑥, 𝑦 ∈ ℝ𝑑, 𝑡 ∈ [0, 𝑇 ] (2.29)

for some 𝐷 > 0. Let 𝑊 be a standard Brownian motion in ℝ𝑑′ and let F𝑡 = 𝜎 (𝑊𝑠 ∶ 𝑠 ≤ 𝑡) denote the
𝜎-field generated by 𝑊 . Furthermore let 𝑍 be a random variable in ℝ𝑑 independent of F∞ such that
𝔼 (|𝑍|2) < ∞. Then the stochastic differential equation

d𝑋𝑡 = 𝑏 (𝑡, 𝑋𝑡) d𝑡 + 𝜎 (𝑡, 𝑋𝑡) d𝑊𝑡, 𝑡 ∈ [0, 𝑇 ] , 𝑋0 = 𝑍

has a unique solution 𝑋 that is continuous in 𝑡, adapted to (F𝑡)𝑡 and

𝔼 ∫
𝑇

0
|𝑋𝑡|

2 d𝑡 < ∞.

Here uniqueness is interpreted as follows. There is a unique measurable map 𝑋 from Ω to the space
of functions [0, 𝑇 ] → ℝ𝑑 that maps ℙ-almost each 𝜔 ∈ Ω to a function 𝑋 (𝜔) that solves the equation for
that particular path 𝑊 (𝜔).
Proof. See Øksendal, 2003 [17].

A well-known result in the field of stochastic differential equations is Itô’s formula.
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Theorem 2.2.10 (Itô’s lemma). Let 𝑓 ∈ C2 (ℝ𝑑) and let 𝑋 be a stochastic process that takes values in
ℝ𝑑. Then the Itô formula holds

d𝑓 (𝑋𝑡) = 𝜕𝑖𝑓 (𝑋𝑡) d𝑋𝑖
𝑡 + 1

2𝜕𝑖𝜕𝑗𝑓 (𝑋𝑡) d [𝑋𝑖, 𝑋𝑗]𝑡 (2.30)

where we have used Einsteins summation convention from 2.1.16 to sum over 𝑖 and 𝑗 and, similar to
the standard notation on manifolds, we set 𝜕𝑖 = 𝜕

𝜕𝑥𝑖 .

Proof. For the proof of this theorem, we refer to section 4.2 of Øksendal, 2003 [17].

Another relation between the Itô integral and the quadratic covariation is given in the following theorem.

Theorem 2.2.11. Let 𝑋 and 𝑌 be continuous martingales that are bounded in 𝐿2. Then 𝑋 ⋅ 𝑌 is the
unique martingale that satisfies [𝑋 ⋅ 𝑌 , 𝑍] = 𝑋 ⋅ [𝑌 , 𝑍] for all continuous martingales 𝑍 that are 𝐿2-
bounded.

Proof. This theorem is part of theorem 5.4 of Le Gall, [12].

It is a well-known result that if 𝑊 is a Brownian motion of dimension 1, that [𝑊, 𝑊]𝑡 = 𝑡 (See A.3.9)
and that for 𝑓 ∈ C2 (ℝ), the Itô formula reads

d𝑓(𝑊𝑡) = 1
2𝑓″ (𝑊𝑡) d𝑡 + 𝑓 ′ (𝑊𝑡) d𝑊𝑡. (2.31)

Another important corollary of the Itô formula is the product rule for stochastic processes

Corollary 2.2.12. For two continuous semimartingales 𝑋 and 𝑌 , we have

d𝑋𝑡𝑌𝑡 = 𝑋𝑡 d𝑌𝑡 + 𝑌𝑡 d𝑋𝑡 + d [𝑋, 𝑌 ]𝑡 (2.32)

Now notice that the equations (2.31) and (2.32) differ from the usual rules of calculus where d𝑓 (𝑥) =
𝑓 ′ (𝑥) d𝑥. To resolve this problem, the Stratonovich form of stochastic differential equations is intro-
duced

Definition 2.2.13 (Stratonovich integral ). Under the same assumptions as in definition 2.2.7, we define
the Stratonovich integral as the process

(𝐻 ∘ 𝑋)𝑡 = ∫
𝑡

0
𝐻𝑠 ∘ d𝑋𝑠 = ∫

𝑡

0
𝐻𝑠 d𝑋𝑠 + 1

2 [𝐻, 𝑋]𝑡 (2.33)

The stochastic differential equations associated with the Stratonovich integral are usually written down
as

d𝑋𝑡 = 𝑏 (𝑡, 𝑋𝑡) d𝑡 + 𝜎 (𝑡, 𝑋𝑡) ∘ d𝑊𝑡 (2.34)

Theorem 2.2.14 (Stratonovich to Itô conversion). Equation (2.34) coincides with the Itô equation

d𝑋𝑖
𝑡 = (𝑏𝑖 (𝑡, 𝑋𝑡) + 1

2 ∑
𝑗,𝑘

𝜎𝑗𝑘 (𝑡, 𝑋𝑡)
𝜕𝜎𝑖𝑘
𝜕𝑥𝑗 (𝑡, 𝑋𝑡)) d𝑡 + 𝜎𝑖𝑗 (𝑡, 𝑋𝑡) d𝑊 𝑗

𝑡

Proof. We will show this result for an ℝ-valued process 𝑋, as the proof in higher dimensions follows
in a similar fashion, but with more complicated equations. Notice that, a solution 𝑋 to (2.34) can be
written as

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑋𝑠) d𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑠) d𝑊𝑠 + 1

2 [𝜎, 𝑊]𝑡
It now follows that

[𝜎, 𝑊] = lim
‖∆‖→0

𝑁
∑
𝑖=1

(𝜎 (𝑡𝑖, 𝑋𝑡𝑖
) − 𝜎 (𝑡𝑖−1, 𝑋𝑡𝑖−1

)) (𝑊𝑡𝑖
− 𝑊𝑡𝑖−1

)

= lim
‖∆‖→0

𝑁
∑
𝑖=1

𝜎 (𝑡𝑖, 𝑋𝑡𝑖
) − 𝜎 (𝑡𝑖−1, 𝑋𝑡𝑖−1

)
𝑋𝑡𝑖

− 𝑋𝑡𝑖−1

(𝑊𝑡𝑖
− 𝑊𝑡𝑖−1

) (𝑋𝑡𝑖
− 𝑋𝑡𝑖−1

)

= lim
‖∆‖→0

𝑁
∑
𝑖=1

Δ𝜎 (𝑡𝑖, 𝑋𝑡𝑖
)

Δ𝑋𝑡𝑖

Δ𝑊𝑡𝑖
Δ𝑋𝑡𝑖
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Now notice that when taking this limit, continuity of𝑋 implies that the first term converges to 𝜕𝜎
𝜕𝑥 (𝑡𝑖, 𝑋𝑡𝑖

),
whereas the second product converges to d𝑊𝑡 d𝑋𝑡 = 𝑏 (𝑡, 𝑋𝑡) d𝑡d𝑊𝑡+𝜎 (𝑡, 𝑋𝑡) d𝑊𝑡 d𝑊𝑡+ 1

2 d [𝜎, 𝑊] d𝑊𝑡.
Note that, when taking expectations, only the term in the middle remains and 𝔼 (d𝑊 d𝑊) = d𝑡 and
thus we can arrive at

[𝜎, 𝑊] = lim
‖∆‖→0

𝑁
∑
𝑖=1

Δ𝜎 (𝑡𝑖, 𝑋𝑡𝑖
)

Δ𝑋𝑡𝑖

𝜎 (𝑡𝑖, 𝑋𝑡𝑖
) Δ𝑡 = ∫

𝑡

0

𝜕𝜎
𝜕𝑥 (𝑠, 𝑋𝑠) 𝜎 (𝑠, 𝑋𝑠) d𝑠

We thus arrive at

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
(𝑏 (𝑠, 𝑋𝑠) + 1

2
𝜕𝜎
𝜕𝑥 (𝑠, 𝑋𝑠) 𝜎 (𝑠, 𝑋𝑠)) d𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑠) d𝑊𝑠 + 1

2 [𝜎, 𝑊]𝑡

which concludes the proof.

As stated earlier, the Stratonovich integral is introduced, because it behaves like the Lebesgue integral.
Let us demonstrate this behavior in the following proposition.

Proposition 2.2.15 (Stratonovich calculus). If 𝑓 ∈ C3 (ℝ𝑑), then the change of variable formula holds.

d𝑓 (𝑋𝑡) = 𝜕𝑖𝑓 (𝑋𝑡) ∘ d𝑋𝑖
𝑡.

One thus has that if 𝐹 ∶ ℝ𝑑 → ℝ𝑛 is of class C3 and 𝑋 denotes a 𝑑-dimensional process, that

d𝐹 (𝑋𝑡) = 𝐽𝐹 (𝑋𝑡) ∘ d𝑋𝑡,

where 𝐽𝐹 denotes the Jacobian matrix of 𝐹 with entries 𝜕𝑗𝐹 𝑖.

Notice that in integral form, the result does match the change of variable formula as we know it from
ordinary calculus as it then reads

𝑓 (𝑋𝑡) = 𝑓 (𝑋0) + ∫
𝑡

0
𝜕𝑖𝑓 (𝑋𝑠) ∘ d𝑋𝑖

𝑠

Proof. Let us go back to the Itô formula (2.30). If we substitute the definition of the Stratonovich integral
into it, notice that it reads

d𝑓 (𝑋𝑡) = 𝜕𝑖𝑓 (𝑋𝑡) ∘ d𝑋𝑖
𝑡 − 1

2 d [𝜕𝑖𝑓 (𝑋) , 𝑋𝑖]𝑡 + 1
2𝜕𝑖𝜕𝑗𝑓 (𝑋𝑡) d [𝑋𝑖, 𝑋𝑗]𝑡 (2.35)

Since 𝑓 is of class C3, we can now apply the Itô formula to 𝜕𝑖𝑓 (𝑋) to find that

d 𝜕𝑖𝑓 (𝑋𝑡) = 𝜕𝑘𝜕𝑖𝑓 (𝑋𝑡) d𝑋𝑘
𝑡 + 1

2𝜕𝑘𝜕𝑗𝜕𝑖𝑓 (𝑋𝑡) d [𝑋𝑘, 𝑋𝑗]𝑡

When integrating both sides, we find that

𝜕𝑖𝑓 (𝑋𝑡) = 𝜕𝑖𝑓 (𝑋0) + (𝜕𝑘𝜕𝑖𝑓 (𝑋) ⋅ 𝑋𝑘)𝑡 + (1
2𝜕𝑘𝜕𝑗𝜕𝑖𝑓 (𝑋) ⋅ [𝑋𝑘, 𝑋𝑗])

𝑡

Using the calculation rules of quadratic variation then gives us that

[𝜕𝑖𝑓 (𝑋) , 𝑋𝑖]𝑡 = [𝜕𝑘𝜕𝑖𝑓 (𝑋) ⋅ 𝑋𝑘, 𝑋𝑖]𝑡 + 1
2 [𝜕𝑘𝜕𝑗𝜕𝑖𝑓 (𝑋) ⋅ [𝑋𝑘, 𝑋𝑗] , 𝑋𝑖]𝑡

In A.3.6 we will show that the quadratic covariation of two semimartingales is of finite total variation and
we will follow up on that by showing that if a process has finite total variation, the quadratic variation
with another semimartingale is 0 in A.3.7. Since 𝑋 solves an SDE, it is a continuous semimartingale
and therefore the latter term in our last equation will be 0. We can thus derive that

d [𝜕𝑖𝑓 (𝑋) , 𝑋𝑖]𝑡 = 𝜕𝑘𝜕𝑖𝑓 d [𝑋𝑘, 𝑋𝑖]𝑡

The desired result now follows by smartly rearranging the indices.
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2.2.3. Transition kernels, Kolmogorov equations and the infinitesimal generator
In this section, we only consider time-homogeneous diffusions, that is 𝑏 and 𝜎 do not have a direct
dependence on time. Let 𝑋 = (𝑋𝑡)𝑡 be a time-homogeneous diffusion process that takes values in
a Banach space (X, ‖⋅‖) where B denotes the Borel 𝜎-field generated by the open sets. The norm of
functions is understood to be the supremum norm ‖𝑓‖ = sup𝑥∈X |𝑓 (𝑥)|. We denote its transition kernel
by (𝑃𝑡)𝑡, that is 𝑃𝑡(𝑥, 𝐴) = ℙ (𝑋𝑡 ∈ 𝐴 ∣ 𝑋0 = 𝑥) , 𝑥 ∈ X, 𝐴 ∈ B

Now if 𝑋 is a continuous diffusion process, (𝑃𝑡)𝑡 satisfies the following properties:

• 𝑃𝑡 (⋅, 𝐴) is a measurable function X → [0, 1] for all 𝐴 ∈ B and 𝑡 ≥ 0.
• 𝑃𝑡 (𝑥, ⋅) is a probability measure on (X,B) for all 𝑥 ∈ X and 𝑡 ≥ 0.

For any 𝑡 ≥ 0 and 𝑥 ∈ X, this leads us to an operator on the set of all measurable functions X → ℝ
given by

(𝑃𝑡𝑓) (𝑥) = 𝔼𝑥𝑓 (𝑋𝑡) = ∫
X

𝑓(𝑦)𝑃𝑡 (𝑥, d𝑦)

where the superscript indicates that the expectation is taken conditional on 𝑋0 = 𝑥. Note that this
operator generalizes the kernel since one still has that 𝑃𝑡 (𝑥, 𝐴) = (𝑃𝑡𝟙𝐴) (𝑥).
An important property of diffusion processes, is that they are continuous Markov processes (see 7.1.2
in Øksendal, 2003 [17]). That is, they satisfy the Markov property.

Definition 2.2.16 (Markov Processes). An (F𝑡)𝑡-adapted stochastic process 𝑋 = (𝑋𝑡)𝑡 is a Markov
process with initial distribution 𝜈 if 𝜈 is a probability measure on (X,B) and the following criteria are
met.

(i) ℙ (𝑋0 ∈ 𝐵) = 𝜈 (𝐵) for all 𝐵 ∈ B.

(ii) 𝔼𝜈 (𝑓 (𝑋𝑡+𝑠) ∣ F𝑠) = 𝑃𝑡𝑓 (𝑋𝑠) for all measurable 𝑓 ∶ X → ℝ and 𝑠, 𝑡 ≥ 0.
Theorem 2.2.17. The transition kernel {𝑃𝑡}𝑡 of an (X,B)-valued almost surely continuous process
𝑋 = (𝑋𝑡)𝑡 forms a strongly continuous semigroup on the space of measurable functions X → ℝ, i.e.
{𝑃𝑡}𝑡 satisfies the following conditions.

(i) 𝑃𝑡 is a bounded linear operator for all 𝑡 ≥ 0, that is 𝑃𝑡 is linear and ‖𝑃𝑡‖ = sup‖𝑓‖=1 ‖𝑃𝑡𝑓‖ < ∞.

(ii) lim𝑡↓0 ‖𝑃𝑡𝑓 − 𝑓‖ = 0 for all measurable 𝑓 ∶ X → ℝ.
Proof. By linearity of expectations, 𝑃𝑡 is a linear operator and since 𝑃𝑡 (𝑥, ⋅) is a probability measure
on X for all 𝑥 ∈ X, we also have that

‖𝑃𝑡‖ = sup
‖𝑓‖=1

‖𝑃𝑡𝑓‖ = sup
‖𝑓‖=1

sup
𝑥∈X

∣∫
X

𝑓 (𝑦) 𝑃𝑡 (𝑥, d𝑦)∣ ≤ sup
‖𝑓‖=1

sup
𝑥∈X

∫
X

|𝑓 (𝑦)| 𝑃𝑡 (𝑥, d𝑦) ≤ sup
𝑥∈X

∫
X

𝑃𝑡 (𝑥, d𝑦) = 1

and thus 𝑃𝑡 is indeed a bounded linear operator for all 𝑡. For the second condition, it is important to
notice that for any 𝑥 ∈ X, we have

|𝑃𝑡𝑓 (𝑥) − 𝑓 (𝑥)| ≤ ∫
X

|𝑓 (𝑦) − 𝑓 (𝑥)| 𝑃𝑡 (𝑥, d𝑦) = ∫
X

|𝑓 (𝑦) − 𝑓 (𝑥)| ℙ (𝑋𝑡 ∈ d𝑦 ∣ 𝑋0 = 𝑥)

Now whenever 𝑦 ≠ 𝑥, by continuity of the process 𝑋, the events {𝑋𝑡 ∈ d𝑦} shrink to a null set as 𝑡 ↓ 0
conditional on 𝑋0 = 𝑥. Therefore, by monotonicity of measures, we must have that

lim
𝑡↓0

|𝑃𝑡𝑓 (𝑥) − 𝑓 (𝑥)| = 0

for all 𝑥 ∈ X and thus ‖𝑃𝑡𝑓 − 𝑓‖ → 0 whenever 𝑡 ↓ 0.
Remark 2.2.18. In this proof we introduced the norm of a bounded linear operator in a similar manner
as in Bressan, 2012 [4]. An important observation is that for a measurable function 𝑓 ∶ X → ℝ this norm
satisfies

‖𝑃𝑡𝑓‖ = ∥𝑃𝑡 ( 𝑓
‖𝑓‖)∥ ‖𝑓‖ ≤ ‖𝑃𝑡‖ ‖𝑓‖ (2.36)
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The second identity of the definition of Markov processes now gives us that

𝑃𝑡 (𝑃𝑠𝑓) (𝑥) = 𝔼𝑥𝑃𝑠𝑓 (𝑋𝑡) = 𝔼𝑥𝔼𝜈 (𝑓 (𝑋𝑡+𝑠) ∣ F𝑡) = 𝔼𝑥𝑓 (𝑋𝑡+𝑠) = 𝑃𝑡+𝑠𝑓 (𝑥)
and therefore 𝑃𝑡+𝑠 = 𝑃𝑡𝑃𝑠. For the second but last equality, we refer to theorem A.1.2 in appendix A.
When this result is combined with theorem 2.2.17, we observe that the map 𝑡 ↦ 𝑃𝑡𝑓 is continuous for
any measurable function 𝑓 ∶ X → ℝ, since equation (2.36), combined with linearity of 𝑃𝑡 and theorem
2.2.17, implies that ‖𝑃𝑡+ℎ𝑓 − 𝑃𝑡𝑓‖ ≤ ‖𝑃𝑡‖ ‖𝑃ℎ𝑓 − 𝑓‖ → 0 as ℎ ↓ 0 (left continuity follows similarly). For
convenience, we will denote 𝑃𝑡,𝑠 (𝑥, 𝐴) ∶= ℙ (𝑋𝑡 ∈ 𝐴 ∣ 𝑋𝑠 = 𝑥) for 𝑡 < 𝑠, and then the Markov property
gives us that 𝑃𝑡,𝑠 = 𝑃𝑡−𝑠

Definition 2.2.19 (Transition density). The transition density 𝑝 of 𝑋 is defined as the Radon-Nikodym
derivative of𝑃𝑡,𝑠 with respect to the Lebesguemeasure, provided it exists. That is, ℙ (𝑋𝑡 ∈ d𝑦 ∣ 𝑋𝑠 = 𝑥) =
𝑝 (𝑠, 𝑥; 𝑡, 𝑦) d𝑦 for 𝑠 < 𝑡. We frequently take 𝑡 = 𝑇 fixed and abbreviate 𝑝 for convenience as 𝑝 (𝑠, 𝑥).

Example 2.2.20. From equation (2.23), it follows that the transition kernel for a standard Brownian
motion 𝑊 starting at 𝑥 is given by

(𝑃𝑡𝑓) (𝑥) = 𝔼𝑥𝑓(𝑊𝑡) = ∫ 1√
2𝜋𝑡𝑒− (𝑦−𝑥)2

2𝑡 𝑓 (𝑦) d𝑦

and we deduce that
𝑝 (𝑠, 𝑥; 𝑡, 𝑦) = 1

√2𝜋 (𝑡 − 𝑠)
𝑒− (𝑦−𝑥)2

2(𝑡−𝑠)

In the field of (functional) analysis, partial differential equations have been studied that are characterized
by a differential operator. For example, the heat equation is characterized by the Laplace operator. In
the field of stochastic differential equations, we can see something similar, as stochastic processes can
be described on small time intervals via their infinitesimal generator as well . This is a partial differential
operator that characterizes the transition kernel of stochastic processes. We will now set the domain
for the desired operator to be

D ∶= {𝑓 ∶ X → ℝ measurable ∶ There exists a measurable 𝑔 ∶ X → ℝ such that lim
𝑡↓0

∥𝑃𝑡𝑓 − 𝑓
𝑡 − 𝑔∥ = 0} .

Here, the norm is still understood to be the uniform norm ‖𝑓‖ = sup𝑥∈X |𝑓 (𝑥)|.

Definition 2.2.21 (Infinitesimal generator). On D, the infinitesimal generator L for is defined as

L𝑓 ∶= lim
𝑡↓0

𝑃𝑡𝑓 − 𝑓
𝑡

The domain D of L is typically denoted by D (L).

It is important to notice that D (L) need not be non-empty. However, if D (L) ≠ ∅, the definition imme-
diately leads to the the identity

𝔼𝜈 (𝑓 (𝑋𝑡+ℎ) − 𝑓 (𝑋𝑡) ∣ F𝑡) = ℎL𝑓 (𝑋𝑡) + 𝑜 (ℎ) , ℙ𝜈 − a.s.,

as ℎ ↓ 0 for all 𝑓 ∈ D (L). In this sense, the infinitesimal generator does describe the motion of our
process in an infinitesimal time-interval.

Remark 2.2.22. In chapter III.5 of Rogers and Williams, 2000 [20], it is derived from the Hille-Yoshida
theorem that the tuple (L,D (L)) uniquely determines {𝑃𝑡}.

Definition 2.2.23 ((Uniform) ellipticity). We call the diffusion 𝑋 (uniformly) elliptic if the infinitesimal
generator is (uniformly) elliptic. That is, the matrix (𝑎𝑖𝑗 (𝑥))𝑖,𝑗 is strictly positive definite for all 𝑥 (elliptic)
and all eigenvalues are ≥ 𝜃 for some uniform 𝜃 > 0 for all 𝑥 (uniformly elliptic.)
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Theorem 2.2.24 (Infinitesimal generator of diffusion processes). Let 𝑋 be 𝑑-dimensional diffusion pro-
cess with drift 𝑏 and diffusion coefficient 𝜎. Then we have that the infinitesimal generator has domain
D (L) ∶= C2

0 (ℝ𝑑), where C2
0 (ℝ𝑑) denotes the set of all functions of class C2 that have compact support.

Furthermore, the infinitesimal generator is given in closed form by

L = 𝑏𝑖𝜕𝑖 + 1
2𝑎𝑖𝑗𝜕𝑖𝜕𝑗. (2.37)

where 𝑎 denotes the matrix 𝑎 = 𝜎𝜎𝑇 .

Proof. This is a direct consequence of lemma 7.3.2 of Øksendal, 2003 [17] where one can take stopping
times 𝜏 = 𝑡 and apply that 𝑃𝑡𝑓 (𝑥) = 𝔼𝑥𝑓 (𝑋𝑡).

Corollary 2.2.25. For a Brownian motion 𝑊 in ℝ𝑑, we have that D (L) = C2
0 (ℝ𝑑). Furthermore, for

𝑓 ∈ D (L), we have L = 1
2 Δ, where Δ denotes the Laplace operator Δ = ∑𝑑

𝑖=1 𝜕2
𝑖 .

Theorem 2.2.26 (Kolmogorov equations). Let {𝑃𝑡}𝑡 be the transition kernel of a time homogeneous
diffusion process taking values in a Banach space X with infinitesimal generator L and let 𝑓 ∈ D (L)
and 𝑡 ≥ 0.Then 𝑃𝑡𝑓 ∈ D (L). The function 𝑡 ↦ 𝑃𝑡𝑓 is differentiable and the Kolmogorov backward and
forward equations hold:

d
d𝑡𝑃𝑡𝑓

(𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑)= L𝑃𝑡𝑓
(𝑓𝑜𝑟𝑤𝑎𝑟𝑑)= 𝑃𝑡L𝑓

.

Proof. Since 𝑋 is a time homogeneous diffusion process, it is also a Markov process and therefore

∥𝑃𝑡+ℎ𝑓 − 𝑃𝑡𝑓
ℎ − 𝑃𝑡L𝑓∥ = ∥𝑃𝑡 (𝑃ℎ𝑓 − 𝑓

ℎ − L𝑓)∥ ≤ ‖𝑃𝑡‖ ∥𝑃ℎ𝑓 − 𝑓
ℎ − L𝑓∥ .

Similarly, we also have

∥𝑃𝑡𝑓 − 𝑃𝑡−ℎ𝑓
ℎ − 𝑃𝑡L𝑓∥ ≤ ∥𝑃𝑡𝑓 − 𝑃𝑡−ℎ𝑓

ℎ − 𝑃𝑡−ℎL𝑓∥ + ‖𝑃𝑡−ℎL𝑓 − 𝑃𝑡L𝑓‖

≤ ‖𝑃𝑡−ℎ‖ ∥𝑃ℎ𝑓 − 𝑓
ℎ − L𝑓∥ + ‖𝑃𝑡−ℎL𝑓 − 𝑃𝑡L𝑓‖

Since 𝑃𝑡 is continuous in 𝑡, taking the limit ℎ ↓ 0 yields

lim
ℎ↓0

𝑃𝑡+ℎ𝑓 − 𝑃𝑡𝑓
ℎ = lim

ℎ↓0
𝑃𝑡𝑓 − 𝑃𝑡−ℎ𝑓

ℎ = 𝑃𝑡L𝑓

We have thus proven differentiabillity as well as the Kolmogorov forward equation. Now observe that,
when using that 𝑃𝑡+𝑠 = 𝑃𝑡𝑃𝑠, these equations directly imply that indeed 𝑃𝑡𝑓 ∈ D (L) and that the
backward equation follows from the definition of L .

2.3. The Transition Density
We continue to let 𝑋 be a time homogeneous process. In the previous section, we briefly introduced
the transition density 𝑝 of a stochastic processes the density of the transition kernel of the process,
ℙ (𝑋𝑡 ∈ d𝑦 ∣ 𝑋𝑠 = 𝑥) = 𝑝 (𝑠, 𝑥; 𝑡, 𝑦) d𝑦. In this section we further elaborate on the transition density.

Let us briefly return to the problem as formulated in the introduction. We consider a vector of data
points 𝜉 = (𝜉1, … , 𝜉𝑛) in ℝ𝑑 modeled as realizations of 𝑋𝑇 . The likelihood of 𝜃 is given by

𝐿 (𝜃 ∣ 𝜉) =
𝑛

∏
𝑖=1

𝑝 (0, 𝜃; 𝑇 , 𝜉𝑖) (2.38)

This result shows that when 𝑝 is known, we can derive a distribution for the center of our data, so we
thus need to find out when 𝑝 exists in closed form and find a way approximate 𝑝.
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2.3.1. Finding the transition density of a diffusion process
Assume 𝑋 is a time-homogeneous diffusion process characterized by the stochastic differential equa-
tion

d𝑋𝑡 = 𝑏 (𝑋𝑡) d𝑡 + 𝜎 (𝑋𝑡) d𝑊𝑡, 𝑋0 = 𝜃
Since likelihood-based inference is hampered by the fact that the transition density is not known in
closed form, we rephrase the Kolmogorov equations in terms of the transition density. Let 𝑃𝑡,𝑠 denote
the transition kernel of 𝑋, i.e. 𝑃𝑡,𝑠 (𝑥, 𝐴) = ℙ (𝑋𝑡 ∈ 𝐴 ∣ 𝑋𝑠 = 𝑥). Set 𝑡 = 𝑇 − 𝑠 and suppose that 𝑃𝑡,𝑠
admits a density 𝑝 with respect to the Lebesgue measure. Since diffusion processes are Markov pro-
cesses, we have that 𝑃𝑡, (𝑥, d𝑦) = 𝑝 (𝑠, 𝑥; 𝑇 , 𝑦) d𝑦.

Recall from theorem 2.2.24 that the process 𝑋 has an infinitesimal generator given by

L = 𝑏𝑖𝜕𝑖 + 1
2𝑎𝑖𝑗𝜕𝑖𝜕𝑗.

where 𝑎 (𝑥) = 𝜎 (𝑥) 𝜎 (𝑥)𝑇 . Recall from theorem 2.2.26 that the Kolmogorov backward equation states
that

d
d𝑡𝑃𝑡 (𝑥, 𝐴) = (L𝑃𝑡 ( ⋅ , 𝐴)) (𝑥)

Now since 𝑡 = 𝑇 − 𝑠, we have d𝑡 = −d𝑠, it follows that

− 𝜕
𝜕𝑠 ∫

𝐴
𝑝 (𝑠, 𝑥; 𝑇 , 𝑦) d𝑦 = (L∫

𝐴
𝑝 (𝑠, ⋅ ; 𝑇 , 𝑦) d𝑦) (𝑥)

Since 𝑝 is a probability density and L is a differential operator while the integral on the right hand side
does not depend on 𝑥, we may again rewrite this equation as

− ∫
𝐴

𝜕
𝜕𝑠𝑝 (𝑠, 𝑥; 𝑇 , 𝑦) d𝑦 = ∫

𝐴
(L𝑝 (𝑠, ⋅ ; 𝑇 , 𝑦)) (𝑥) d𝑦

Since this integral equation has to hold for any Borel set 𝐴, we arrive at

− 𝜕𝑝
𝜕𝑠 (𝑠, 𝑥) = 𝑏𝑖 (𝑠, 𝑥) 𝜕𝑖𝑝 (𝑠, 𝑥) + 1

2𝑎𝑖𝑗 (𝑠, 𝑥) 𝜕𝑖𝜕𝑗𝑝 (𝑠, 𝑥) (2.39)

where 𝑝 (𝑠, 𝑥) is short-hand notation for 𝑝 (𝑠, 𝑥; 𝑇 , 𝑦). Equation (2.39) is an equation that appears a lot
in the theory of stochastic differential equations and is also known as the Fokker-Planck equation.

At first glance, it is not clear whether or not equation (2.39) has a solution. On closer notice however,
we can see that the partial differential equation is linear in the partial derivatives of 𝑝 and thus we can
use the results seen in the following section from functional analysis. We now move to a small section
on parabolic equations in order to derive conditions such that equation (2.39) indeed has a solution.

2.3.2. Parabolic equations
The theory of parabolic equations in functional analysis is build to investigate whether or not equations
of the same type as equation (2.39) have a solution. We base this section on the theory seen in Bres-
san, 2012 [4].

Let us start with formally defining the problem. Let Ω ⊆ ℝ𝑑 be a bounded open set and, given measur-
able functions 𝑎𝑖𝑗, 𝑏𝑖, 𝑐 ∶ Ω → ℝ, consider the second order differential operator

L𝑢 = −𝜕𝑗 (𝑎𝑖𝑗𝜕𝑖𝑢) + 𝜕𝑖 (𝑏𝑖𝑢) + 𝑐𝑢 (2.40)

Consider the initial value problem

⎧{
⎨{⎩

𝜕𝑢
𝜕𝑡 + L𝑢 = 0, 𝑡 > 0, 𝑥 ∈ Ω,
𝑢 (𝑡, 𝑥) = 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω
𝑢 (0, 𝑥) = 𝑔 (𝑥) , 𝑥 ∈ Ω

(2.41)

In order to investigate whether or not there is a solution to this initial problem we will use the following
assumption throughout this section.
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Assumption 2.3.1. The domain Ω ⊆ ℝ𝑑 is open and bounded. The coefficients 𝑎𝑖𝑗, 𝑏𝑖 and 𝑐 in equation
(2.40) are in 𝐿∞ (Ω). Moreover, the operator L is uniformly elliptic, i.e. there exists a constant 𝜃 > 0
such that

𝑎𝑖𝑗 (𝑥) 𝜉𝑖𝜉𝑗 ≥ 𝜃 ‖𝜉‖2 for all 𝑥 ∈ Ω and 𝜉 ∈ ℝ𝑑 (2.42)

Assumption 2.3.1 basically means that for any 𝑥, the matrix with coefficients 𝑎𝑖𝑗 (𝑥) must be strictly
positive definite.

Remark 2.3.2. Notice that differential operators of the form

L𝑢 = −𝑎𝑖𝑗𝜕𝑖𝜕𝑗𝑢 + 𝑏𝑖𝜕𝑖𝑢 + 𝑐𝑢

can be rewritten in the form of equation (2.40) via

L𝑢 = −𝜕𝑗 (𝑎𝑖𝑗𝜕𝑖𝑢) + 𝜕𝑖 ((𝜕𝑗𝑎𝑖𝑗 + 𝑏𝑖) 𝑢) + (𝑐 − (𝜕𝑖𝜕𝑗𝑎𝑖𝑗 − 𝜕𝑖𝑏𝑖)) 𝑢

and we can thus treat these problems, under the condition that all 𝑎𝑖𝑗, 𝜕𝑖𝜕𝑗𝑎𝑖𝑗, 𝑏𝑖, 𝜕𝑖𝑏𝑖, 𝑐 ∈ 𝐿∞ (Ω), using
the same theory we encounter in this section.

Since we are in the scenario of remark 2.3.2, we have tomake one assumption in addition to assumption
2.3.1.

Assumption 2.3.3. For all 𝑖, 𝑗 = 1, … , 𝑑, 𝑎𝑖𝑗 is an element of the Sobolev space 𝑊 2,∞ (Ω) consisting
of all 𝐿∞ functions Ω → ℝ that have their first two weak derivatives in 𝐿∞ (Ω) and 𝑏𝑖 is an element of
𝑊 1,∞ (Ω) and thus has its first weak derivative in 𝐿∞ (Ω).
Definition 2.3.4 (Weak solutions). A function 𝑢 ∈ 𝐻1

0 (Ω) that satisfies

∫
Ω

(L𝑢) 𝑣d𝑥 = ∫
Ω

𝑓𝑣d𝑥 for all 𝑣 ∈ C∞
0 (Ω)

is called a weak solution to (2.41). Here C∞
𝑐 (Ω) represents the set of all C∞-functions Ω → ℝ with

compact support and 𝐻1
0 (Ω) = 𝑊 1,2

0 (Ω) represents the Hilbert-Sobolev space of all 𝐿2-functions Ω →
ℝ that vanish at 𝜕Ω and are such that their first weak derivatives are in 𝐿2 (Ω) as well.
Now a convenient way to look at weak solutions is to consider them as bilinear forms. So on the
Hilbert-Sobolev space 𝐻1

0 (Ω), consider the bilinear form

𝐵 (𝑢, 𝑣) ∶= ∫
Ω

(L𝑢) 𝑣d𝑥 (2.43)

Then we can consider 𝑢 to be a weak solution to (2.41) if

𝐵 (𝑢, 𝑣) = ⟨𝑢, 𝑣⟩𝐿2 for all 𝑣 ∈ C∞
𝑐 (Ω)

where ⟨⋅, ⋅⟩𝐿2 denotes the standard inner product on 𝐿2 given by ⟨𝑢, 𝑣⟩𝐿2 = ∫ 𝑢 (𝑥) 𝑣 (𝑥) d𝑥
Remark 2.3.5. Via integration by parts, one can show that

∫
Ω

(L𝑢) 𝑣d𝑥 = ∫
Ω

[𝑎𝑖𝑗 (𝜕𝑖𝑢) (𝜕𝑗𝑣) − 𝑏𝑖𝑢 (𝜕)𝑖 𝑣 + 𝑐𝑢𝑣] d𝑥 (2.44)

Theorem 2.3.6 (Semigroup of solutions of a parabolic equation). Suppose assumptions 2.3.1 and 2.3.3
hold. Moreover, suppose that the bilinear form defined in equation (2.43) is strictly positive definite.
Then the operator −L generates a contractive semigroup {𝑆𝑡 ∶ 𝑡 ≥ 0} of linear operators on 𝐿2 (Ω).
That is, −L satisfies the following:

• Each 𝑆𝑡 as a bounded linear operator.

• For each pair 𝑡, 𝑠 ≥ 0, the composition satisfies 𝑆𝑡𝑆𝑠 = 𝑆𝑡+𝑠 and 𝑆0 = 𝐼 .
• For every 𝑢 ∈ 𝐿2 (Ω), the map 𝑡 ↦ 𝑆𝑡𝑢 is continuous.
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• ‖𝑆𝑡‖ ≤ 1 and lim𝑡↓0
𝑆𝑡𝑢−𝑢

𝑡 = −L𝑢 for each 𝑢 for which this limit exists.

Proof. For this proof, we refer to theorem 9.21 of Bressan, 2012 [4].

Theorem 2.3.6 now provides us with all that we needed in this chapter, as the map 𝑡 ↦ 𝑢 (𝑡) ∶= 𝑆𝑡𝑔
is a continuous map [0, ∞) → 𝐿2 (Ω) and satisfies 𝑢 (0) = 𝑔. The initial conditions in (2.41) are thus
satisfied. Moreover, if 𝑔 ∈ D (−L), then so is 𝑆𝑡𝑔 for all 𝑡 ≥ 0 and theorem 7.6 of Bressan, 20012 [4]
even demonstrates the map is continuously differentiable and since D (−L) ⊆ 𝐻1

0 (Ω), the boundary
conditions in (2.41) are also satisfied. This shows that the map (𝑡, 𝑥) ↦ 𝑆𝑡𝑔 (𝑥) solves (2.41).

This theorem concludes the section on parabolic equation as we have proven that under certain as-
sumptions, the partial differential equation for the transition density can indeed be solved with these
boundary conditions. In chapter 9 of Bressan, 2012 [4], this result is extended to different boundary
conditions.

2.3.3. Conditions for the existence of a transition density
In the start of this section on transition densities, we have derived a parabolic equation (2.39) for the
transition density of a diffusion process. After that, we went into a bit of functional analysis in section
2.3.2 to show that, under certain conditions, parabolic equations can be solved. Going back to the
equation d𝑋𝑡 = 𝑏 (𝑋𝑡) d𝑡+𝜎 (𝑋𝑡) d𝑊𝑡, we note that 𝑎 = 𝜎𝜎𝑇 is a positive definite matrix and therefore
satisfies assumption 2.3.1. We have thus derived that a transition density for 𝑋𝑡 indeed exists as long
as 𝑎 and 𝑏 have their derivatives in𝐿∞. These assumptions, however, are very reasonable assumptions
as we can see in theorem 2.2.9, that global Lipschitz conditions can also be imposed to ensure that
the stochastic differential equations have a unique solution. This motivates the following requirements
for the SDEs.

|𝑏 (𝑡, 𝑥)| + |𝜎 (𝑡, 𝑥)| ≤ 𝐶 (1 + |𝑥|) (2.45)

|𝑏 (𝑡, 𝑥) − 𝑏 (𝑡, 𝑦)| + |𝜎 (𝑡, 𝑥) − 𝜎 (𝑡, 𝑦)| ≤ 𝐷 |𝑥 − 𝑦| (2.46)

Example 2.3.7. One can quickly verify that a C2-function 𝜎, generates a Stratonovich SDE d𝑋𝑡 =
𝜎 (𝑋𝑡) ∘ d𝑊𝑡 satisfies equations (2.45) and (2.46) and it thus has a unique solution that admits a
transition density.

Notice that these conditions guarantee the existence and uniqueness of a solution of an SDE and a
transition density, but that this is no equivalence, as a unique solution with a density can still exist when
these assumptions are not met. For example, consider the system of SDEs given by

d𝑋𝑡 = 𝑌𝑡 d𝑡
d𝑌𝑡 = 𝑏 (𝑌𝑡) d𝑡 + 𝛾 (𝑌𝑡) d𝑊𝑡

where 𝑏 and 𝛾 are smooth functions. The diffusion coefficient matrix of thus system is given by

𝜎 (𝑥, 𝑦) = ( 0
𝛾 (𝑥)) , and 𝑎 (𝑥, 𝑦) = (0 0

0 𝛾 (𝑦)) .

Clearly, 𝑌 has a unique solution as 𝑏 and 𝑔𝑎 are smooth and thus 𝑋 has a unique solutions as well.
However the matrix 𝑎 is singular and thus has eigenvalue 0 and therefore assumption 2.3.1 is not
satisfied.



3
Brownian Motion on a Riemannian

manifold
With the background theory developed in chapter 2, we can now characterize Brownian motion on Rie-
mannianmanifolds. This chapter introduces two characterizations of Brownianmotion on a Riemannian
manifold (M, 𝑔).

3.1. Brownian motion in local coordinates
In this section we introduce a first characterization of Brownian motion on a Riemannian manifold that
is obtained using the Laplace-Beltrami operator.

3.1.1. Derivation of the SDE for Brownian motion in local coordinates
Recall from remark 2.2.22 that under weak conditions, a diffusion process can be defined via its gen-
erator. Let 𝑋 be the diffusion process governed by the SDE

d𝑋𝑖
𝑡 = 𝑏𝑖 (𝑋𝑡) d𝑡 + 𝜎𝑖𝑗 (𝑋𝑡) d𝑊 𝑗

𝑡 , 𝑖 = 1, … , 𝑑 (3.1)

where (𝑊𝑡)𝑡 is an ℝ𝑑′ -valued Wiener process with 𝑑′ ≤ 𝑑. Then 𝑋 has infinitesimal generator

(L𝑓) (𝑥) = 1
2𝑎𝑖𝑗 (𝑥) 𝜕𝑖𝜕𝑗𝑓 (𝑥) + 𝑏𝑖 (𝑥) 𝜕𝑖𝑓 (𝑥) (3.2)

where 𝑎𝑖𝑗 (𝑥) = (𝜎 (𝑥) 𝜎 (𝑥)𝑇 )
𝑖𝑗
. Now let us revisit equation (2.21) describing the Laplace-Beltrami

operator as
ΔM𝑓 = 𝑔𝑖𝑗𝜕𝑖𝜕𝑗𝑓 − 𝑔𝑗𝑘Γ𝑖

𝑗𝑘𝜕𝑖𝑓.

Recall that in section 2.2.3 we derived that a Brownian motion in ℝ𝑑 is generated by 1
2 Δ. It therefore

makes sense to define Brownian motion on a Riemannian manifold (M, 𝑔) as the process generated
by 1

2 ΔM. We thus have that, in local coordinates

𝑎𝑖𝑗 (𝑥) = 𝑔𝑖𝑗 (𝑥) , 𝑖, 𝑗 = 1, … , 𝑑

𝑏𝑖 (𝑥) = −1
2𝑔𝑗𝑘 (𝑥) Γ𝑖

𝑗𝑘 (𝑥) , 𝑖 = 1, … 𝑑
(3.3)

Since (𝑔𝑖𝑗) is symmetric and positive semidefinite, the 𝑑 × 𝑑′ matrix 𝜎 such that 𝑎 = 𝜎𝜎𝑇 exists and we
thus find that a standard Brownian motion on a Riemannian manifold is in local coordinates given by
the solution of the stochastic differential equation

d𝑋𝑖
𝑡 = −1

2𝑔𝑗𝑘 (𝑋𝑡) Γ𝑖
𝑗𝑘 (𝑋𝑡) d𝑡 + 𝜎𝑖𝑗 (𝑋𝑡) d𝑊 𝑗

𝑡 , 𝑖 = 1, … , 𝑑 (3.4)

27
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We aim to find the transition density of this process, as this leads us to a likelihood for the starting point
as seen in equation (2.38). To achieve this, we require that

|𝑏 (𝑡, 𝑥)| + |𝜎 (𝑡, 𝑥)| ≤ 𝐶 (1 + |𝑥|) (3.5)

|𝑏 (𝑡, 𝑥) − 𝑏 (𝑡, 𝑦)| + |𝜎 (𝑡, 𝑥) − 𝜎 (𝑡, 𝑦)| ≤ 𝐷 |𝑥 − 𝑦| (3.6)

Now let us translate this to local coordinates using equation (3.3).

∣ 12𝑔𝑗𝑘 (𝑥) Γ𝑖
𝑗𝑘 (𝑥)∣ + |𝜎 (𝑥)| ≤ 𝐶 (1 + |𝑥|) (3.7)

∣ 12𝑔𝑗𝑘 (𝑥) Γ𝑖
𝑗𝑘 (𝑥) − 1

2𝑔𝑗𝑘 (𝑦) Γ𝑖
𝑗𝑘 (𝑦)∣ + |𝜎 (𝑥) − 𝜎 (𝑦)| ≤ 𝐷 |𝑥 − 𝑦| (3.8)

Now notice that the functions 𝑔𝑖𝑗 are smooth functions on M by definition and thus, as (𝑔𝑔−1)𝑖𝑗 =
𝑔𝑖𝑘𝑔𝑘𝑗 = 𝟙{𝑖=𝑗}, 𝑔𝑖𝑗 must be smooth functions as well. Since the Christoffel symbols are a linear combi-
nation of the derivatives of 𝑔, these are smooth as well and thus the Lipschitz conditions are satisfied.

Example 3.1.1 (The cirlce 𝕊1). We know from example 2.1.42 that under the paremeterization 𝑢 ↦
(cos𝑢, sin𝑢) we have that Δ𝕊1 = 𝜕2

𝜕𝑢2 . When comparing this to equation (3.2), we quickly find that
𝜎 = 𝑎 = 𝐼 . We therefore easily find that a Brownian motion on a circle is parameterized by a process for
the angle 𝑈𝑡 that solves the stochastic differential equation d𝑈𝑡 = d𝑊𝑡 and thus, assuming 𝑈0 = 𝑢0,
the position on the circle at time 𝑡 is given by (𝑋𝑡, 𝑌𝑡) = (cos (𝑢0 + 𝑊𝑡) , sin (𝑢0 + 𝑊𝑡)).
Example 3.1.2 (The sphere 𝕊2). The Laplace-Beltrami operator on the unit sphere, was found in equa-
tion (2.22) under the paremeterization (𝑢, 𝑣) ↦ (cos𝑢 sin 𝑣, sin𝑢 sin 𝑣, cos 𝑣) to be

(Δ𝕊2𝑓) (𝑢, 𝑣) = 1
sin2 𝑣

𝜕2𝑓
𝜕𝑢2 + 𝜕2𝑓

𝜕𝑣2 + 1
tan 𝑣

𝜕𝑓
𝜕𝑣 .

Hence
(𝑎𝑖𝑗) = (

1
sin2 𝑣 0

0 1) and 𝑏 = ( 0
1

2 tan𝑣
) .

We find that a Brownian Motion on a sphere is parameterized by angles satisfying the following stochas-
tic differential equation

d(𝑈𝑡
𝑉𝑡

) = ( 0
1

2 tan𝑉𝑡

) d𝑡 + (
1

| sin𝑉𝑡| 0
0 1) d𝑊𝑡 (3.9)

Example 3.1.3 (The torus 𝕋2). Consider the 2-torus 𝕋2 ⊆ ℝ3. The torus 𝕋2 is isomorphic to 𝕊1 × 𝕊1

and can be parameterized by

𝑥 (𝑢, 𝑣) = ((𝑅 + 𝑟 cos 𝑣) cos𝑢, (𝑅 + 𝑟 cos 𝑣) sin𝑢, 𝑟 sin 𝑣) (3.10)

where 𝑢, 𝑣 ∈ [0, 2𝜋] and 𝑅 > 𝑟. Similarly as to the circle and the sphere, we can inherit a Riemannian
metric on 𝕋2 from ℝ3 that is given by

(𝑔𝑖𝑗) = (
𝜕𝑥
𝜕𝑢 ⋅ 𝜕𝑥

𝜕𝑢
𝜕𝑥
𝜕𝑢 ⋅ 𝜕𝑥

𝜕𝑣𝜕𝑥
𝜕𝑣 ⋅ 𝜕𝑥

𝜕𝑢
𝜕𝑥
𝜕𝑣 ⋅ 𝜕𝑥

𝜕𝑣
) = ((𝑅 + 𝑟 cos 𝑣)2 0

0 𝑟2) (3.11)

Standard calculations now show that the Christoffel symbols for the Levi-Civita connection are given
by

Γ1
11 = 0 Γ2

11 = (𝑅 + 𝑟 cos 𝑣) sin 𝑣
𝑟

Γ1
12 = − 𝑟 sin 𝑣

𝑅 + 𝑟 cos 𝑣 Γ2
12 = 0

Γ1
21 = − 𝑟 sin 𝑣

𝑅 + 𝑟 cos 𝑣 Γ2
21 = 0

Γ1
22 = 0 Γ2

22 = 0

(3.12)
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By applying equation (3.3), we quickly obtain the SDE describing a Brownian motion on 𝕋2.

d(𝑈𝑡
𝑉𝑡

) = ( 0
− sin𝑉𝑡

2𝑟(𝑅+𝑟 cos𝑉𝑡)
) d𝑡 + (

1
|𝑅+𝑟 cos𝑉𝑡| 0

0 1
𝑟
) d𝑊𝑡 (3.13)

where (𝑊𝑡)𝑡 is a standard ℝ2-valued Brownian motion.

3.1.2. Discussion of this method
The characterization of Brownian motion via local coordinates discussed in this section has the advan-
tage that it can be derived on any Riemannian manifold, as the only thing that we need are the Laplace-
Beltrami operator and the Levi-Civita connection. In our examples we demonstrated the method with
manifolds that are embedded in ℝ3 but this is not even a necessary condition. A disadvantage does
show up on closer inspection of the SDEs that represent the Brownian motions.

Let us stick to the example of the sphere. In equation (3.9), we notice that a singularity appears when
𝑉𝑡 approaches 0 or 𝜋, the coordinates that correspond to the north and south pole. When the Brownian
motion approaches the north or south pole, the drift approaches −∞ or ∞ respectively, driving the
Brownian motion back in the other direction. To compensate for that, the diffusion coefficient of the
other angle 𝑈𝑡 approaches ∞ as well. The Brownian motion is thus forced to stay on the sphere, so we
do not immediately notice this behavior in simulations. It is however problematic, as it suggests that
the assumptions 2.3.1 and 2.3.3 are not met, implying that a transition density might not exist.

The reason that these singularities appear is evident, the sphere is parameterized via one chart that
does not include these points, while we should have two charts. Switching between charts can be
tricky when simulating solutions to SDEs on manifolds, as the process should be continuous. In the
next section we will therefore discuss another characterization of Brownian motion on manifolds that
does not require local coordinates and avoids this problem.

3.2. Regular Submanifolds of ℝ𝑁 and Projections
In this section, we consider another characterization of Brownianmotion onmanifolds that is coordinate-
free. As we briefly discussed in the previous section, and as we demonstrate later on in this thesis, this
will help in simulations as it turns out that problems arise when we have to switch charts. In this chapter
we derive such a method based on Rogers and Williams, 2000 [20], which generalizes the work of van
den Berg and Lewis, 1985 [27], where similar results are derived on the sphere.

3.2.1. Regular submanifolds of ℝ𝑁

Note that we have considered manifolds, such as the sphere, as a 𝑑-dimensional space so far. For the
sphere however, we can also use properties of ℝ3, as this manifold is a subspace of ℝ3. This section
only focuses on manifolds that are subspace of ℝ𝑁 of dimension 𝑑, where we set 𝑁 = 𝑑 + 𝑛 > 𝑑. We
start with the formal definition.

Definition 3.2.1 (Regular submanifolds). A set M ⊆ ℝ𝑁 is a regular C∞-submanifold of ℝ𝑁 of dimen-
sion 𝑑 if for each 𝑥 ∈ M, there exists an open neighborhood 𝐺 ⊆ M of 𝑥 and a C∞ function 𝐹 ∶ ℝ𝑑 → ℝ𝑛

such that
𝐺 = {( 𝑦

𝐹 (𝑦)) ∶ 𝑦 ∈ 𝐴}

for an open set 𝐴 ⊆ ℝ𝑑.

Notice that a regular submanifold of ℝ𝑁 is indeed a 𝑑-dimensional manifold in the sense of definition

2.1.1, since we can take any point 𝑥 = ( 𝑦
𝐹 (𝑦)) ∈ M and define the chart as the projection map 𝐺 → 𝐴

that maps 𝑥 to 𝑦.
In order to see that we can write many well-known manifolds in this form, we continue with an example.

Example 3.2.2. Suppose that 𝑓 ∶ ℝ𝑁 → ℝ is a smooth function and that ∇𝑓 does not vanish on
M ∶= 𝑓−1 ({0}). Then it is a direct consequence of the implicit function theorem (see proposition 5.15
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of Lee, 2013 [13]) that M is a regular submanifold of ℝ𝑁 of dimension 𝑁 − 1. Generally, a function
𝑓 ∶ ℝ𝑁 → ℝ𝑛 that has a Jacobian matrix that is of full rank onM = 𝑓−1 ({0}) defines a regular subman-
ifold of dimension 𝑁 − 𝑛.

Relevant examples of such regular submanifolds are the 𝑑-spheres given by

𝕊𝑑 = {𝑥 ∈ ℝ𝑑+1 ∶ ‖𝑥‖2 − 1 = 0}

For now, let us make the following assumption

Assumption 3.2.3. The manifold M is of the form

M = {( 𝑦
𝐹 (𝑦)) ∶ 𝑦 ∈ ℝ𝑑}

Since we have that any regular submanifold is locally of this form, we will be able to extend this as-
sumption to general regular submanifolds.

Let 𝐽 (𝑦) denote the Jacobian matrix of 𝐹 at 𝑦 ∈ ℝ𝑑 of dimension 𝑛 × 𝑑 with entries given by

(𝐽 (𝑦))𝑖,𝑗 = 𝜕𝐹 𝑖

𝜕𝑦𝑗 for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑑.

Now suppose we have a curve in M, given by 𝑡 ↦ 𝑥 (𝑡) = ( 𝑦 (𝑡)
𝐹 (𝑦 (𝑡))). We can find a tangent vector

𝑣 (𝑡) = 𝑦′ (𝑡) to the curve 𝑡 ↦ 𝑦 (𝑡) in ℝ𝑑 and then lift that vector via the chain rule to the tangent vector
𝑢 (𝑡) to 𝑥 (𝑡).

𝑢 (𝑡) ∶= 𝑥′ (𝑡) = ( 𝐼
𝐽 (𝑦 (𝑡))) 𝑣 (𝑡)

that is tangent to M at 𝑥 (𝑡). We now deduce that when fixing 𝑦 ∈ ℝ𝑑 and 𝑥 = ( 𝑦
𝐹 (𝑦)) ∈ M, we can

expand a tangent vector 𝑣 ∈ 𝑇𝑦ℝ𝑑 to

𝑢 ∶= ( 𝐼
𝐽 (𝑦)) 𝑣 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑣1

⋮
𝑣𝑑

∑ 𝜕𝐹 1
𝜕𝑦𝑖 𝑣𝑖

⋮
∑ 𝜕𝐹 𝑛

𝜕𝑦𝑖 𝑣𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ 𝑇𝑥M. (3.14)

Since our manifold is of dimension 𝑑, we will now equip ℝ𝑑 with a Riemannian metric that preserves the
norms when projecting from ℝ𝑁 to ℝ𝑑, since, when we accomplish that, the representations of vectors
in ℝ𝑁 behave the same as their representations in ℝ𝑑. We thus require that

‖𝑢‖2 = 𝑢𝑇 𝑢 = 𝑣𝑇 𝑔 (𝑦) 𝑣. (3.15)

We now observe that equation (3.15) is satisfied when

𝑔 (𝑦) = (𝐼 𝐽𝑇 (𝑦)) ( 𝐼
𝐽 (𝑦)) = 𝐼 + 𝐽 (𝑦)𝑇 𝐽 (𝑦) (3.16)

3.2.2. Projections and Brownian motion
As the name of this section suggests, we use projections to characterize Brownian motion. More
specifically, we use projections of ℝ𝑁 onto tangent planes of the manifolds. Now that we have derived
a Riemannian metric on these manifolds, we can further specify these projections.
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Theorem 3.2.4. Let 𝜋 denote the canonical projection ℝ𝑁 → ℝ𝑑 given by 𝜋 (𝑥1, … , 𝑥𝑁) = (𝑥1, … , 𝑥𝑑)
and set 𝑦 = 𝜋 (𝑥) ∈ ℝ𝑑. An orthogonal projection 𝑃 (𝑥) of ℝ𝑁 onto 𝑇𝑥M is given by

𝑃 (𝑥) = ( 𝐼
𝐽 (𝑦)) 𝑔 (𝑦)−1 (𝐼 𝐽 (𝑦)𝑇 ) (3.17)

Proof. By definition, 𝑔 (𝑦) ∈ ℝ𝑑×𝑑, which implies that for any 𝜉 ∈ ℝ𝑁 , 𝑔 (𝑦)−1 (𝐼 𝐽 (𝑦)𝑇 ) 𝜉 ∈ ℝ𝑑 and it
thus follows from equation (3.14) that 𝑃(𝑥) indeed maps to 𝑇𝑥M. When substituting equation (3.16) into
equation (3.17), one can also quickly see that 𝑃 (𝑥)2 = 𝑃 (𝑥) and thus 𝑃 (𝑥) is indeed an orthogonal
projection onto 𝑇𝑥M.

Corollary 3.2.5. Let 𝑓 ∶ ℝ𝑁 → ℝ be a smooth function that does not vanish on M ∶= 𝑓−1 ({0}). Then
M is a regular submanifold of ℝ𝑁 and the projection 𝑃 (𝑥) onto 𝑇𝑥M is given by

𝑃(𝑥) = 𝐼 − 𝑛 (𝑥) 𝑛 (𝑥)𝑇 (3.18)

where 𝑛 (𝑥) = ∇𝑓(𝑥)
|∇𝑓(𝑥)| denotes the normal vector to 𝑇𝑥M.

Proof. This corollary can be directly deduced from theorem 3.2.4, but we instead give a more intuitive
proof. Since ℝ𝑁 is a Euclidean space and both 𝑃 (𝑥) and 𝐼 −𝑛 (𝑥) 𝑛 (𝑥)𝑇 are linear maps, we only need
to proof the result for a basis of ℝ𝑁 . Now let 𝜉1, … , 𝜉𝑁−1 denote an orthonormal basis for 𝑇𝑥M. Then
𝜉1, … , 𝜉𝑁−1, 𝑛 (𝑥) is an orthonormal basis of ℝ𝑁 . Since 𝑛 (𝑥)𝑇 𝑛 (𝑥) = 1 and 𝑛 (𝑥)𝑇 𝜉𝑖 = 0 for all 𝑖, we
quicly deduce that (𝐼 − 𝑛 (𝑥) 𝑛 (𝑥)𝑇 ) 𝜉𝑖 = 𝜉𝑖 and (𝐼 − 𝑛 (𝑥) 𝑛 (𝑥)𝑇 ) 𝑛 (𝑥) = 0 and thus 𝐼 − 𝑛 (𝑥) 𝑛 (𝑥)𝑇

is indeed an orthogonal projection onto 𝑇𝑥M.

We can now use the projection of ℝ𝑁 onto tangent spaces to construct a Brownian motion on regular
submanifolds via the following theorem.

Theorem 3.2.6. Let M be a regular submanifold of ℝ𝑁 of the form of assumption 3.2.3, let 𝑊 be a
Brownian motion in ℝ𝑁 and let 𝑋 be the solution of Stratonovich stochastic differential equation given
by

d𝑋𝑡 = 𝑃 (𝑋𝑡) ∘ d𝑊𝑡, 𝑋0 ∈ M. (3.19)

Then 𝑋 takes values in M. Furthermore, the infinitesimal generator L of the process 𝜋 (𝑋) in the
Riemannian manifold (ℝ𝑑, 𝑔) is given by L = 1

2 Δ, where Δ denotes the Laplace-Beltrami operator.

Proof. Throughout this proof, we let 𝑌 denote the ℝ𝑑-valued process given by 𝑌𝑡 = 𝜋 (𝑋𝑡). We first
need to verify that 𝑋 indeed takes values in M. We thus need to verify that 𝑋̃𝑡 ∶= (𝑋𝑑+1

𝑡 , … , 𝑋𝑁
𝑡 ) =

𝐹 (𝑌𝑡). Now recall from proposition 2.2.15 that Stratonovich SDEs follow the classical rules of calculus,
so we have that d𝐹 (𝑌𝑡) = 𝐽 (𝑌𝑡) ∘ d𝑌𝑡. We can now see that for 1 ≤ 𝑟 ≤ 𝑛

d𝐹 𝑟 (𝑌𝑡) = 𝐽 (𝑌𝑡)𝑟𝑖 ∘ d𝑌 𝑖
𝑡

where we used Einsteins summation convention to sum 𝑖 from 1 up to 𝑑.

Now note that 𝑌 denotes the first 𝑑 rows of the process 𝑋 that solves equation (3.19) and that it thus
follows from equation (3.17) when substituting 𝑃 (𝑋𝑡) that

d𝑌𝑡 = 𝑔 (𝑌𝑡)
−1 (𝐼 𝐽 (𝑌𝑡)

𝑇 ) ∘ d𝑊𝑡,
We thus find that

d𝐹 (𝑌𝑡) = 𝐽 (𝑌𝑡) ∘ d𝑌𝑡 = 𝐽 (𝑌𝑡) 𝑔 (𝑌𝑡)
−1 (𝐼 𝐽 (𝑌𝑡)

𝑇 ) ∘ d𝑊𝑡 (3.20)

Similarly, note that 𝑋̃ denotes the last 𝑛 rows of the process 𝑋 and that it thus also follows from equation
(3.17) when substituting 𝑃 (𝑋𝑡) that

d𝑋̃𝑡 = 𝐽 (𝑌𝑡) 𝑔 (𝑌𝑡)
−1 (𝐼 𝐽 (𝑌𝑡)

𝑇 ) ∘ d𝑊𝑡 (3.21)
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Combining the last two equations (3.20) and (3.21) now gives us that

d (𝑋𝑑+𝑟
𝑡 − 𝐹 𝑟 (𝑌𝑡)) = 0, for 𝑟 ∈ {1, … , 𝑛} .

Since 𝑋0 ∈ M, we have that 𝑋0 = ( 𝑌0
𝐹 (𝑌0)) and thus we can conclude that

ℙ (𝑋𝑡 = ( 𝑌𝑡
𝐹 (𝑌𝑡)

) for all 𝑡) = 1.

The process 𝑋 thus stays onM almost surely and we have yet to prove that the infinitesimal generator
of 𝑌 is given by 1

2 Δ. Since d𝑌𝑡 = 𝑔 (𝑌𝑡)
−1 (𝐼 𝐽 (𝑌𝑡)

𝑇 ) ∘ d𝑊𝑡, we may write

d𝑌 𝑖
𝑡 = 𝜎𝑖𝑗 (𝑌𝑡) ∘ d𝑊 𝑗

𝑡 , where 𝜎𝑖𝑗 (𝑦) = {𝑔𝑖𝑗 (𝑦) for 1 ≤ 𝑗 ≤ 𝑑
𝑔𝑖𝑘 (𝑦) 𝐽𝑗𝑘 (𝑦) for 𝑑 + 1 ≤ 𝑗 ≤ 𝑁 . (3.22)

In order to find the infinitesimal generator, we write equation (3.22) in Itô form.

d𝑌 𝑖
𝑡 = 1

2 ∑
𝑗,𝑘

𝜎𝑘𝑗 (𝑌𝑡) 𝜕𝑘𝜎𝑖𝑗 (𝑌𝑡) d𝑡 + 𝜎𝑖𝑗 (𝑌𝑡) d𝑊 𝑗
𝑡 (3.23)

From equation (3.16), it follows that 𝜎𝜎𝑇 = 𝑔−1 (𝐼 + 𝐽𝑇 𝐽) 𝑔−1 = 𝑔−1. We now recall from 2.2.24 that
this now gives us that the infinitesimal generator L of the process 𝑌 can be written as

L = 1
2𝑔𝑖𝑗𝜕𝑖𝜕𝑗 + 𝑏𝑖𝜕𝑖 (3.24)

where
𝑏𝑖 = 1

2 ∑
𝑗≤𝑑,𝑘

𝜎𝑘𝑗𝜕𝑘𝜎𝑖𝑗 + 1
2 ∑

𝑗>𝑑,𝑘
𝜎𝑘𝑗𝜕𝑘𝜎𝑖𝑗. (3.25)

Substituting equation (3.22), results in

2𝑏𝑖 = ∑
𝑗≤𝑑,𝑘

𝑔𝑘𝑗𝜕𝑘𝑔𝑖𝑗 + ∑
𝑗>𝑑,𝑘

𝑔𝑘ℓ𝐽𝑗ℓ𝜕𝑘 (𝑔𝑖ℓ𝐽𝑗ℓ)

Now notice that the Riemannian metric 𝑔 as given in equation (3.16) immediately gives us the identity

𝑔−1 + 𝑔−1𝐽𝑇 𝐽 = 𝐼.

Applying the operator 𝜕𝑘 to both sides and applying the product rule properly leads to

𝜕𝑘𝑔−1 + 𝜕𝑘 (𝑔−1𝐽𝑇 ) 𝐽 = − (𝑔−1𝐽𝑇 ) 𝜕𝑘𝐽. (3.26)

An important observation is that if we fill in 𝑔 = 𝐼 + 𝐽𝑇 𝐽 into the definition of the Christoffel Symbols
and use that 𝜕𝑘𝐽𝑗ℓ = 𝜕ℓ𝐽𝑗𝑘, we obtain that

Γ𝑖
𝑗𝑘 = 1

2𝑔𝑖ℓ (𝜕𝑗𝑔𝑘ℓ + 𝜕𝑘𝑔ℓ𝑗 − 𝜕ℓ𝑔𝑗𝑘)

= 1
2𝑔𝑖ℓ ∑

𝑟
{𝜕𝑗 (𝐽𝑟𝑘𝐽𝑟ℓ) + 𝜕𝑘 (𝐽𝑟ℓ𝐽𝑟𝑗) − 𝜕ℓ (𝐽𝑟𝑗𝐽𝑟𝑘)}

= 1
2𝑔𝑖ℓ ∑

𝑟
{𝐽𝑟𝑘𝜕𝑗𝐽𝑟ℓ + (𝜕𝑗𝐽𝑟𝑘) 𝐽𝑟ℓ + 𝐽𝑟ℓ𝜕𝑘𝐽𝑟𝑗 + (𝜕𝑘𝐽𝑟ℓ) 𝐽𝑟𝑗 − 𝐽𝑟𝑗𝜕ℓ𝐽𝑟𝑘 − (𝜕ℓ𝐽𝑟𝑗) 𝐽𝑟𝑘}

= 𝑔𝑖ℓ ∑
𝑟

𝐽𝑟ℓ𝜕𝑘𝐽𝑟𝑗

Hence, if we wish to evaluate equation (3.26) in a single pair (𝑖, 𝑗), we obtain the formula

𝜕𝑘𝑔𝑖𝑗 + ∑
ℓ

𝜕𝑘 (𝑔𝑖𝑚𝐽ℓ𝑚) 𝐽ℓ𝑗 = − ∑
𝑟

𝑔𝑖ℓ𝐽𝑟ℓ𝜕𝑘𝐽𝑟𝑗 = −Γ𝑖
𝑗𝑘.
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Combining this result with equation (3.25) results in

2𝑏𝑖 = −𝑔𝑗𝑘Γ𝑖
𝑗𝑘.

and we thus have that
L = 1

2 (𝑔𝑖𝑗𝜕𝑖𝜕𝑗 − 𝑔𝑗𝑘Γ𝑖
𝑗𝑘𝜕𝑖.)

After revisiting equation (2.21), we now conclude that the process 𝑌 is generated by the operator
L = 1

2 Δ.

3.2.3. Discussion of this method
At this point we have constructed a way to characterize Brownian motion on regular submanifolds. One
can think of these manifolds as vector spaces in ℝ𝑁 that have 𝑑 ”free” coordinates and 𝑛 constraints that
are represented in the function 𝐹 . If we equip ℝ𝑑 with a Riemannian metric that the ”free” coordinates
behave the same in ℝ𝑑 as the points in ℝ𝑁 do on the manifold, we can construct a stochastic process
𝑌 that has the Laplace-Beltrami operator on ℝ𝑑 belonging to that Riemannian metric as infinitesimal
generator and, when using the constraints in 𝐹 to project this process to ℝ𝑁 via 𝑦 ↦ (𝑦, 𝐹 (𝑦)), gener-
ates Brownian motion on M.

Previously, we have derived a method via local coordinates by characterizing Brownian motion onM as
the process that is generated by the Laplace-Beltrami operator in local coordinates. A noticeable differ-
ence with this method is that, when the projection matrix onto a tangent plane is known in closed form,
local coordinates will not be needed anymore, which justifies the notion of calling this a ”coordinate-
free” characterization. As we saw in corollary 3.2.5, there are many examples where we know the
projection matrix in closed form. This is an advantage of this method compared to the generation of
Brownian motion via the Laplace-Beltrami operator. There are also disadvantages however, as this
method requires 𝑁 driving Brownian motions in ℝ𝑁 in the SDE for Brownian motion on the manifolds,
whereas the other method requires 𝑑′ ≤ 𝑑. Another disadvantage of this method is that it is only ap-
plicable on manifolds that are regular submanifolds of ℝ𝑁 , so this method does not provide us with a
framework for general Riemannian manifolds.





4
Stochastic Simulation of Diffusions and

diffusion bridges

In this chapter, some algorithms for the simulations of diffusion and diffusion bridges inℝ𝑑 are discussed.

4.1. The Euler-Maruyama method
Let 𝑋 be a diffusion process written in integral form as

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑏 (𝑠, 𝑋𝑠) d𝑠 + ∫

𝑡

0
𝜎 (𝑠, 𝑋𝑠) d𝑊𝑠

Themost basic numerical scheme to approximate a path of this integral equation consists of discretizing
time with equal time steps. Let therefore Δ𝑡 > 0 be the step size. Then we can use the forward Euler
method to approximate the first integral as

∫
𝑡+∆𝑡

𝑡
𝑏 (𝑠, 𝑋𝑠) d𝑠 ≈ Δ𝑡𝑏 (𝑡, 𝑋𝑡)

Now to find an approximation for the stochastic integral, it is important to notice that, by definition,
Δ𝑊𝑡 = 𝑊𝑡+∆𝑡 − 𝑊𝑡 ∼ N (0, Δ𝑡). A natural approximation is therefore given by

∫
𝑡+∆𝑡

𝑡
𝜎 (𝑠, 𝑋𝑠) d𝑊𝑠 ≈ 𝜎 (𝑡, 𝑋𝑡)

√
Δ𝑡𝑍

with 𝑍 ∼ N (0, 1). Given 𝑋𝑡, we can thus approximate 𝑋𝑡+∆𝑡 by

𝑋𝑡+∆𝑡 ≈ 𝑋𝑡 + Δ𝑡𝑏 (𝑡, 𝑋𝑡) + 𝜎 (𝑡, 𝑋𝑡)
√

Δ𝑡𝑍 (4.1)

Knowing 𝑋0, we can now simulate the diffusion process on an arbitrary grid via the Euler-Maruyama
method and perform a linear interpolation between the grid points. This method naturally extends to
approximations for diffusions in higher dimensions by using multivariate normally distributed random
variables instead of the standard normal 𝑍. An extensive proof of strong convergence of this method
when Δ𝑡 ↓ 0 for space-dependent diffusions under the satisfying Lipschitz conditions (2.28) and (2.29)
can be seen in theorem 2.2 in Higham et al, 2002 [8].

Example 4.1.1 (Simulating standard Brownian motion). A path of a standard Brownian motion can by
simulated on a grid {0 = 𝑡0 < ⋯ < 𝑡𝑘 = 𝑇 } by simulating standard normal random variables 𝑁1, … , 𝑁𝑘,
setting 𝑤0 = 0, 𝑤𝑡𝑖

= 𝑤𝑡𝑖−1
+ √𝑡𝑖 − 𝑡𝑖−1𝑁𝑖 for 𝑖 = 1, … , 𝑘 and interpolating linearly between these

points. Examples in ℝ, ℝ2 and ℝ3 can be found in figures 2.2 and 2.3.
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Example 4.1.2 (Simulating Brownian motion on the circle 𝕊1). Recall the circle is one of the rare exam-
ples in which we know the exact solution of the SDE describing Brownian motion in local coordinates
(see example 3.1.1). When we let the Brownian motion start in (1, 0), this solution is given by

(𝑋𝑡, 𝑌𝑡) = (cos (𝑊𝑡) , sin (𝑊𝑡)) (4.2)

where 𝑊 = (𝑊𝑡)𝑡 is a standard Brownian motion in ℝ. We can thus simulate Brownian motion on
the circle by simulating a path of a standard Brownian motion as in example 4.1.1 and plugging it into
equation (4.2).

Since we typically do not have a solution in closed form, it is interesting to see how the Euler-Maruyama
method behaves when this solution is written as a 2D-SDE. By the Itô formula 2.30 to equation (4.2),
we find that

d(𝑋𝑡
𝑌𝑡

) = −1
2 (cos𝑊𝑡

sin𝑊𝑡
) d𝑡 + (− sin𝑊𝑡

cos𝑊𝑡
) d𝑊𝑡 = −1

2 (𝑋𝑡
𝑌𝑡

) d𝑡 + (−𝑌𝑡
𝑋𝑡

) d𝑊𝑡 (4.3)

Note that we still consider the driving Brownian motion 𝑊 to be in ℝ. We can now apply the Euler-
Maruyama method to simulate a path of the solution to this equation with starting point (1, 0). The
simulated paths of 𝑋𝑡 and 𝑌𝑡 can be found in figures 4.1 and 4.2.

Figure 4.1: The 𝑥- and 𝑦-coordinates for a Brownian motion on a circle simulated via the Euler-Maruyama method with a time
step of 1

1000 .
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Figure 4.2: The simulated Brownian motion on the circle corresponding to figure 4.1 shown in ℝ2

As can be seen in figure 4.2, the simulated Brownian motion does not stay on the circle as it should. The
reason that the Brownian motion does not stay on the circle has to do with the numerical approximation.
The law of the process we simulate is close to the law of the actual Brownian motion on the circle, but
not equal as we do discretize time. Typically, lower values of Δ𝑡 lead to better approximations but result
in longer computation times.

Example 4.1.3. On the sphere, we can apply this method as well and simulate the SDE given in equa-
tion (3.9). By again applying the Itô formula, we can see how the Euler-Maruyama method performs
on a three-dimensional system of SDEs as well.

Figure 4.3: A Brownian motion on a sphere, simulated using the Euler-Maruyama method On the left, the path is plotted on a
sphere and on the right, the norm of the simulated path is demonstrated.

On the sphere we see the same behavior as we saw on the circle.
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Example 4.1.4 (Brownian motion on the 2-torus 𝕋2). We can also apply Euler-Maruyama on equation
(3.13) to get a visualization of a Brownian motion on the torus as seen in figure 4.4.

Figure 4.4: A simulated path of Brownian motion on the 2-torus, simulated using the Euler-Maruyama method.

4.2. Using 2-jets and the exponential map
The second method we propose for simulating Brownian motion is seen in Armstrong and Brigo, 2018
[1]. In this section we briefly introduce their results and use them for the simulation of Brownian motion.
Here, it is supposed that each point 𝑥 ∈ ℝ𝑑 has an associated smooth curve 𝛾𝑥 ∶ ℝ → ℝ𝑑 with 𝛾𝑥 (0) = 𝑥.
We can now define a stochastic relation by choosing a time step Δ𝑡 > 0 and setting

𝑋∆𝑡
0 = 𝑥0, 𝑋∆𝑡

𝑡+∆𝑡 = 𝛾𝑋∆𝑡
𝑡

(𝑊𝑡+∆𝑡 − 𝑊𝑡) (4.4)

where (𝑊𝑡)𝑡 is a standard ℝ-valued Brownian motion. Note that since 𝑊𝑡+∆𝑡 − 𝑊𝑡 ∼ N (0, Δ𝑡), we can
derive a stochastic process by defining the trajectory between𝑋∆𝑡

𝑡 and𝑋∆𝑡
𝑡+∆𝑡 via the curve 𝑠 ↦ 𝛾𝑋∆𝑡

𝑡
(𝑠)

where 𝑠 ranges from 𝑠 = 0 to 𝑠 = 𝜖𝑡
√

Δ𝑡 where 𝜖𝑡 ∼ N (0, 1).

As 𝛾𝑥 is a smooth curve, we can consider a Taylor expansion at 0, that is given by

𝛾𝑥 (𝑡) = 𝑥 + 𝛾′
𝑥 (0) 𝑡 + 1

2𝛾″ (0) 𝑡2 + 𝑅𝑥𝑡3, where 𝑅𝑥 = 1
6𝛾‴

𝑥 (𝜉) for some 𝜉 ∈ [0, 𝑡] .

Substituting the Taylor expansion in equation (4.4) and setting Δ𝑋∆𝑡
𝑡 = 𝑋∆𝑡

𝑡+∆𝑡 − 𝑋∆𝑡
𝑡 and Δ𝑊𝑡 =

𝑊𝑡+∆𝑡 − 𝑊𝑡, results in

Δ𝑋∆𝑡
𝑡 = 𝛾′

𝑋∆𝑡
𝑡

(0) Δ𝑊𝑡 + 1
2𝛾″

𝑋∆𝑡
𝑡

(0) (Δ𝑊𝑡)
2 + 𝑅𝑋∆𝑡

𝑡
(Δ𝑊𝑡)

3

Now, by replacing (Δ𝑊𝑡)
2 by Δ𝑡 (since the Itô formula states that d𝑊𝑡 d𝑊𝑡 = d [𝑊]𝑡 = d𝑡) and

neglecting higher order terms when Δ𝑡 gets small, we can expect that when Δ𝑡 → 0, we obtain con-
vergence to the SDE given by

d𝑋𝑡 = 𝑏 (𝑋𝑡) d𝑡 + 𝜎 (𝑋𝑡) d𝑊𝑡

where we define 𝑏 (𝑋) = 1
2 𝛾″

𝑋 (0) and 𝜎 (𝑋) = 𝛾′
𝑋 (0). We will specify this notion of convergence in

theorem 4.2.2.
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Definition 4.2.1 (𝑘-jets). A 𝑘-jet of a function between smooth manifolds M and N is the equivalence
class of all smooth mapsM → N that are equal up to order 𝑘 in one, and hence all, coordinate systems.
Given a curve 𝛾𝑥, we will denote the 𝑘-jet associated with 𝛾𝑥 by 𝑗𝑘 (𝛾𝑥).

We now go into the main result of the publication of Armstrong and Brigo stating the conditions that
guarantee the convergence suggested previously. We state the results for ℝ𝑑-valued diffusions driven
by ℝ𝑑′ -valued Brownian motion. For the intermediate results, we refer to the publication [1].

Theorem 4.2.2. Let 𝛾𝑥 ∶ ℝ𝑑′ → ℝ𝑑 be a smoothly varying family of functions with first and second
derivatives in ℝ𝑑′ satisfy that Lipschitz conditions around 0. Furthermore suppose that we have a uni-
form bound on all the third derivatives in 0. Now let 𝑇 be a fixed time, let T𝑁 = {0, Δ𝑡, 2Δ𝑡, … , 𝑁Δ𝑡 = 𝑇 }
and let 𝑋𝑡 denote the 2-jet scheme defined by

𝑋𝑡+𝜖 = 𝛾𝑋𝑡
( 𝜖

Δ𝑡 (𝑊𝑡+∆𝑡 − 𝑊𝑡)) , 𝑡 ∈ T𝑁−1, 𝜖 ∈ [0, Δ𝑡] , 𝑋0 = 𝑥0.

As Δ𝑡 ↓ 0, this process converges in 𝐿2 (ℙ) to the process (𝑋̃𝑡)𝑡
given by

𝑋̃𝑡 = 𝑋̃0 + ∫
𝑡

0
𝑏 (𝑋̃𝑠) d𝑠 +

𝑑′

∑
𝛼=1

∫
𝑡

0
𝜎𝛼 (𝑋̃𝑠) d𝑊 𝛼

𝑠

where

𝑏 (𝑥) = 1
2

𝑚
∑
𝛼=1

𝜕2𝛾𝑥
𝜕𝑢𝛼𝜕𝑢𝛼 ∣

𝑢=0
and 𝜎𝛼 (𝑥) = 𝜕𝛾𝑥

𝜕𝑢𝛼 ∣
𝑢=0

Proof. See Theorem 2.4 of Armstrong and Brigo, 2018 [1].

What this method proves is that we have a family of functions that combine a starting point and then tell
us, based on a Brownian increment where our stochastic process should go. Given an SDE, we can
thus find a curve that fits the drift and diffusion coefficient via its derivatives and simply fill in increments
of Brownian motion.

When simulating Brownian motion on a Riemannian manifold, the most straightforward choice for 𝛾𝑥
is the exponential map, especially when a closed form of this map exists, as is the case on the sphere
(see 2.1.35). Intuitively, this means that we plug in a starting value 𝑋𝑡, project the increment d𝑊𝑡 of a
Brownian motion in the tangent plane 𝑇𝑋𝑡

M and transfer that to an increment on the manifold starting
at 𝑋𝑡 and moving in the direction of d𝑊𝑡.

Example 4.2.3 (The circle 𝕊1). When again considering equation (4.3), we find that the 2-jet scheme
given by

𝛾(𝑥,𝑦) (𝑡) = (𝑥 − 𝑦𝑡 − 1
2𝑥𝑡2, 𝑦 + 𝑥 − 1

2𝑦𝑡2)

substituted in theorem 4.2.2 coincides with the SDE specified by equation (4.3). We can thus simulate
a Brownian motion on the circle using the recursion 𝑋𝑡+∆𝑡 = 𝛾𝑋𝑡

(Δ𝑊𝑡). Using the same time-step and
the sameBrownian increments as used when creating figure 4.2, we obtain the result found in figure 4.5.

Clearly using this method, the simulated Brownian motion seems to stay closer to the circle compared
to the result from Euler-Maruyama method seen in figure 4.2.

The exponential map on the circle is given byExp𝑝𝑣 = (cos (𝜃 + 𝑣0) , sin (𝜃 + 𝑣0))where 𝑝 = (cos 𝜃, sin 𝜃)
and 𝑣 = 𝑣0 (− sin 𝜃, cos 𝜃) (see example 2.1.33). The one dimensional Brownian motion can now be
substituted in place of 𝜃. If we use this map to simulate Brownian motion on the circle, parameterized
by 𝑋𝑡 = (cos 𝜃𝑡, sin 𝜃𝑡), we have that 𝑋𝑡+∆𝑡 = (cos (𝜃𝑡 + Δ𝑊𝑡) , sin (𝜃𝑡 + Δ𝑊𝑡)). This means that
the simulated Brownian motion on the circle comes down to simulating a standard ℝ-valued Brownian
motion and plugging this into the actual solution 𝑋𝑡 = (cos (𝜃0 + 𝑊𝑡) , sin (𝜃0 + 𝑊𝑡)).
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Figure 4.5: Brownian motion on the circle simulated using 2-jets.

Example 4.2.4. As we have seen in corollary 2.1.35, we have a closed form of the exponential map
on the sphere as well. It is given by

Exp𝑝𝑣 = {𝑝 if 𝑣 = 0
cos (‖𝑣‖) 𝑝 + sin (‖𝑣‖) 𝑣

‖𝑣‖ if ‖𝑣‖ > 0

This requires that the vector 𝑣 ∈ 𝑇𝑝𝕊2, which is generally not the case for an ℝ2-valued Brownian
motion. We can therefore take the vectors orthogonal to 𝑝 given by 𝑒𝑝

1 = (−𝑝2, 𝑝1, 0) and 𝑒𝑝
2 = 𝑝 × 𝑒𝑝

1
and normalize them to find an orthonormal base for 𝑇𝑝𝕊2. Given a Brownian increment in ℝ2, Δ𝑊 =
(Δ𝑊 1, Δ𝑊 2) resulting from increments of Brownian motions 𝑊 1 and 𝑊 2 in ℝ, a Brownian increment
on 𝑇𝑝𝕊2 is now given by Δ𝑊 𝑝 = Δ𝑊 1𝑒𝑝

1 + Δ𝑊 2𝑒𝑝
2. Next we can simulate forward using

𝑋𝑡+∆𝑡 = Exp𝑋𝑡
(Δ𝑊 𝑋𝑡) .

A sample path simulated using this method is given in figure 4.6.
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Figure 4.6: A sample path Brownian motion on a sphere simulated using the Exponential map (left) and its norm (right).

4.3. Simulation of diffusion bridges using guided proposals
A diffusion conditioned to hit a specified point at a future time is called a diffusion bridge. Various
methods have been discussed for simulating diffusions and this section will continue on that by writing
diffusion bridges as standard diffusions by altering the drift. In this section, we let 𝑋 denote a time-
inhomogeneous diffusion process that takes values in ℝ𝑑 governed by the SDE

d𝑋𝑡 = 𝑏 (𝑡, 𝑋𝑡) d𝑡 + 𝜎 (𝑡, 𝑋𝑡) d𝑊𝑡, 𝑋0 = 𝑥. (4.5)

Here 𝑏 ∶ [0, ∞) × ℝ𝑑 → ℝ𝑑 and 𝜎 ∶ [0, ∞) × ℝ𝑑 → ℝ𝑑×𝑑′ are the drift and diffusion coefficient and
𝑊 is a 𝑑′-dimensional Brownian motion. Now let 𝑋∗ denote the respective diffusion bridge, i.e. the
conditioned stochastic process 𝑋∗ ∶= (𝑋 ∣ 𝑋𝑇 = 𝑣) conditioned to hit a given point 𝑣 ∈ ℝ𝑑 at a given
time 𝑇 > 0 . Under weak assumptions (see Lyons and Zheng, 1990 [15]), we can represent the bridge
𝑋∗ as the solution to the SDE

d𝑋∗
𝑡 = 𝑏∗ (𝑡, 𝑋∗

𝑡 ) d𝑡 + 𝜎 (𝑡, 𝑋∗
𝑡 ) d𝑊𝑡, 𝑋∗

0 = 𝑥, 𝑡 ∈ [0, 𝑇 ) (4.6)

where
𝑏∗ (𝑡, 𝑥) = 𝑏 (𝑡, 𝑥) + 𝑎 (𝑡, 𝑥) ∇𝑥 log 𝑝 (𝑡, 𝑥; 𝑇 , 𝑣) .

Here 𝑎 denotes thematrix 𝜎𝜎𝑇 and 𝑝 is the transition density of the process 𝑥, i.e. ℙ (𝑋𝑡 ∈ d𝑦 ∣ 𝑋𝑠 = 𝑥) =
𝑝 (𝑠, 𝑥; 𝑡, 𝑦) d𝑦 for 𝑠 < 𝑡. The term 𝑎 (𝑡, 𝑥) ∇𝑥 log 𝑝 (𝑡, 𝑥; 𝑇 , 𝑣) is usually referred to as the guiding term.
Since 𝑝 is generally intractable, simulating the process seen in equation (4.6) is usually not possible
and we thus need an approximation method.

There are multiple ways to approximate a solution to 4.6 and they usually involve a slight adjustment
of the drift 𝑏∗. Delyon and Hu, 2006 [6] have considered proposals 𝑋▽ and 𝑋△ that solve the SDEs
given by

d𝑋▽
𝑡 = (𝑏 (𝑡, 𝑋▽

𝑡 ) + 𝑣 − 𝑋▽
𝑡

𝑇 − 𝑡 ) d𝑡 + 𝜎 (𝑡, 𝑋▽
𝑡 ) d𝑊𝑡

and
d𝑋△

𝑡 = 𝑣 − 𝑋△
𝑡

𝑇 − 𝑡 d𝑡 + 𝜎 (𝑡, 𝑋△
𝑡 ) d𝑊𝑡

We choose to move to the guided proposals proposed in Schauer et al., 2017a [22], as they allow a bit
more flexibility in altering the drift of equation (4.6). The guided proposal 𝑋∘ is given by the solution of
the SDE

d𝑋∘
𝑡 = 𝑏∘ (𝑡, 𝑋∘

𝑡) d𝑡 + 𝜎 (𝑡, 𝑋∘
𝑡) d𝑊𝑡, 𝑋∘

0 = 𝑥, 𝑡 ∈ [0, 𝑇 ) (4.7)

where
𝑏∘ (𝑡, 𝑥) = 𝑏 (𝑡, 𝑥) + 𝑎 (𝑡, 𝑥) ∇𝑥 log ̃𝑝 (𝑡, 𝑥; 𝑇 , 𝑣) .
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and ̃𝑝 is the transition density of a process of which it is known in closed form. In Schauer et al., 2017a
[22], it is shown that we can choose 𝑋̃ be a linear process, which is an example of a class of SDEs
with tractable transition densities. A linear process 𝑋̃ is governed by the SDE

d𝑋̃𝑡 = [𝐵̃ (𝑡) 𝑋̃𝑡 + ̃𝛽 (𝑡)] d𝑡 + 𝜎̃ (𝑡) d𝑊𝑡

We refer to 𝑋̃ as the auxiliary process. It is shown by Schauer et al., 2017a [22], that when 𝜎̃ is such
that 𝜎̃ (𝑇 ) = 𝜎 (𝑇 , 𝑣) under some conditions on 𝐵̃, ̃𝛽 and 𝜎̃, the drift of the original process 𝑋 and the
convergence of 𝑋∘ to 𝑣 as 𝑡 ↑ 𝑇 , we have that the laws of 𝑋∗ and 𝑋∘ are equivalent on [0, 𝑇 ] and

dℙ∗
𝑇

dℙ∘
𝑇

(𝑋∘) = ̃𝑝 (0, 𝑥; 𝑇 , 𝑣)
𝑝 (0, 𝑥; 𝑇 , 𝑣)𝜓 (𝑇 , 𝑋∘) . (4.8)

Here ℙ𝑇 represents the law of the process (𝑋𝑡 ∶ 𝑡 ∈ [0, 𝑇 ]). Before we are able to write down 𝜓, let us
introduce additional notation.

𝑅 (𝑠, 𝑥) = log 𝑝 (𝑠, 𝑥) , 𝑟 (𝑠, 𝑥) = ∇𝑥𝑅 (𝑠, 𝑥) , 𝐻 (𝑠, 𝑥) = (− 𝜕2𝑅
𝜕𝑥𝑖𝜕𝑥𝑗 (𝑠, 𝑥))

𝑖,𝑗
(4.9)

where 𝑝 (𝑠, 𝑥) = 𝑝 (𝑠, 𝑥; 𝑇 , 𝑣). We similarly define 𝑅̃, ̃𝑟 and 𝐻̃ for the auxiliary process 𝑋̃. Going back
to equation (4.8), we have

𝜓 (𝑡, 𝑋∘) = exp(∫
𝑡

0
𝐺 (𝑠, 𝑋∘

𝑠) d𝑠) (4.10)

where, with 𝑏̃ (𝑡, 𝑥) = 𝐵̃ (𝑡) 𝑥 + ̃𝛽 (𝑡),

𝐺 (𝑠, 𝑥) = (𝑏 (𝑠, 𝑥) − ̃𝑏 (𝑠, 𝑥))
𝑇

̃𝑟 (𝑠, 𝑥) − 1
2Trace ([𝑎 (𝑠, 𝑥) − ̃𝑎 (𝑠, 𝑥)] [𝐻̃ (𝑠, 𝑥) − ̃𝑟 (𝑠, 𝑥) ̃𝑟 (𝑠, 𝑥)𝑇 ])

It is important to notice that 𝐺 does not depend on any unknown objects here. We can thus use the
proposal 𝑋∘ to simulate the diffusion bridge 𝑋∗. In practice one uses an Metropolis-Hastings (MH) algo-
rithm (see appendix B). Note that, as functions of guided proposals 𝑋∘, we have dℙ∗

𝑇
dℙ∘

𝑇
(𝑋∘) ∝ 𝜓 (𝑇 , 𝑋∘).

We can thus choose an acceptance rate 𝜌 and use the following algorithm.

Input: Start with a standard Brownian motion 𝑊 in ℝ𝑑′ and simulate a solution 𝑋 to equation
(4.5) both simulated via the Euler-Maruyama method

while maximum amount of iterations not reached do
Simulate a second Brownian Motion 𝑊 independently from 𝑊 and set
𝑊 ∘ = 𝜌𝑊 + √1 − 𝜌2𝑊 ;
Simulate a solution to equation (4.7) with 𝑊 ∘ as driving Brownian motion;
Accept the proposal with probability min{1, 𝜓(𝑇 ,𝑋∘)

𝜓(𝑇 ,𝑋) } and set 𝑋 = 𝑋∘ and 𝑊 = 𝑊 ∘.
Repeat;

end
Algorithm 1: Algorithm for simulating a diffusion bridge using a given acceptance rate 𝜌

In this algorithm, we start with a given solution and alter the driving Brownianmotion via 𝜌. If we improve,
we save the new solution and if we do not improve, we accept the new simulation with probability
𝜓(𝑇 ,𝑋∘)
𝜓(𝑇 ,𝑋) .

Remark 4.3.1. Notice that algorithm 1 is a simplified version of algorithm 5.1 seen in van der Meulen
and Schauer, 2017 [28] where the diffusion is conditioned on hitting multiple points with a given uncer-
tainty. In lemma 5.2 of this paper, the convergence of this algorithm to the target distribution is proven.
This shows that if we iterate long enough, the sampled paths have law ℙ∗

𝑇 .

Remark 4.3.2 (Guided proposal stays on manifold). Notice that if 𝑋 is a diffusion on a Riemannian
manifold (M, 𝑔), then 𝑋∗ stays on M as well per definition, and hence, if we consider the set of
functions that maps [0, 𝑇 ] to M as 𝐴 = {𝑓 ∶ [0, 𝑇 ] → ℝ𝑁 ∶ 𝑓 ([0, 𝑇 ]) ⊆ M}, we must have ℙ∗

𝑇 (𝐴) =
ℙ (𝑋∗

𝑡 ∈ M for all 𝑡 ∈ [0, 𝑇 ]) = 1. Since ℙ∗
𝑇 and ℙ∘

𝑇 are equivalent, we also deduce that almost surely
𝑋∘ stays on M as well since ℙ (𝑋∘

𝑡 ∈ M for all 𝑡 ∈ [0, 𝑇 ]) = ℙ∘
𝑇 (𝐴) = 1.
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4.3.1. Choosing the auxiliary process
We have now seen that a guided proposal for a diffusion bridge is obtained by using the transition
density of a linear process 𝑋̃ governed by the SDE

d𝑋̃𝑡 = [𝐵̃ (𝑡) 𝑋̃𝑡 + ̃𝛽 (𝑡)] d𝑡 + 𝜎̃ (𝑡) d𝑊𝑡

where 𝜎̃ should be such that 𝜎̃ (𝑇 ) = 𝜎 (𝑇 , 𝑣). Equation (4.8) is satisfied as long as 𝑋∘ behaves nicely
as 𝑡 ↑ 𝑇 . This means that there is some freedom left in choosing 𝐵̃ and ̃𝛽. One possibility is to choose
𝐵̃ and ̃𝛽 equal to 0 and let 𝜎̃ be a constant function equal to 𝜎 (𝑇 , 𝑣). This is a valid process such that
equation (4.8) holds and ̃𝑝 is easy to calculate as this would be the a scaled version transition density
of Brownian motion. However, when we study appendix A of Bierkens et al., 2018 [3], we observe that
existence of transition densities extends to control theory. Lemma A.2 tells us that the existence of a
non-degenerate transition density is equivalent with complete controllability of the tuple (𝐵̃, 𝜎̃), which
is in turn equivalent to rank (𝐶) = 𝑑, where 𝐶 is the controllability matrix given by

𝐶 ∶= (𝜎̃ 𝐵𝜎̃ ⋯ 𝐵̃𝑑−1𝜎̃) .

In many applications 𝜎 (𝑇 , 𝑣) is not of full rank, so choosing 𝜎̃ = 𝜎 (𝑇 , 𝑣) constant and 𝐵̃ = 0 would
imply that 𝐶 is not of full rank. If this is the case, we opt to take 𝐵̃ (𝑡)𝑖, = 𝑈𝑖𝑗, where {𝑈𝑖𝑗} are drawn
independently from an U [0, 1] distribution. Alternative choices for the auxiliary process are suggested
in section 5.1 of van der Meulen and Schauer, 2017b [28].

4.3.2. Numerical experiments of simulations of diffusion bridges
Let us start this section by demonstrating what a diffusion bridge should look like. We can do this by
simulating a path that follows from equation (4.7) via the Euler-Maruyama method.

Figure 4.7: A simulated path of a diffusion bridge on a sphere that starts at (1, 0, 0) and is conditioned to hit (−1, 0, 0) at time
𝑇 = 1

2 . The simulation was done by applying the Euler-Maruyama method to equation (4.7) with the drift and diffusion coefficient
that correspond with the local coordinates as seen in example 3.1.2.

In order to improve on this first simulation, we can now apply algorithm 1. This is, however, when we
observe singularities, as after some iterations, the likelihood explodes to the order of 1072. Figure 4.8
demonstrates the output paths in 𝑥, 𝑦, 𝑧-coordinates.
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Figure 4.8: The 𝑥, 𝑦, 𝑧-coordinates after 50000 iterations of algorithm 1 applied on the sphere in local coordinates.

In order to explain the behavior that is observed in figure 4.8, we recall from example 3.1.2 that we
simulate a diffusion bridge 𝑋∗ that is obtained from conditioning a diffusion process process 𝑋 on
hitting (−1, 0, 0) at time 𝑇 = 1

2 . The process 𝑋 is governed by the SDE

d𝑋𝑡 = 𝑏 (𝑋𝑡) d𝑡 + 𝜎 (𝑋𝑡) d𝑊𝑡, 𝑋0 = (1, 0, 0)

where
𝑏 (𝑥) = ( 0

1
2 tan𝑥2

) and 𝜎 (𝑥) = (
1

|sin𝑥2| 0
0 1)

If we plug this into equation (4.10), we see that there are singularities occur when 𝑣 ∈ 𝜋ℤ. These
points correspond to the 𝑥, 𝑦, 𝑧-coordinates (0, 0, 1) and (0, 0, −1), points that are approached by our
diffusion bridge after a sufficient amount of iterations of algorithm. If we simulate a bridge, say 𝑋∘,
that approaches the north or south pole, we observe in equation (4.10), that the 𝜓 (𝑇 , 𝑋∘) tends to ∞.
We then observe in algorithm 1, that this bridge is accepted and from that point, 𝜓 (𝑇 , 𝑋) tends to ∞
and thus no new proposals will be accepted. Also note that the diffusion coefficient tends to ∞ as 𝑉𝑡
approaches 𝑘𝜋 for 𝑘 ∈ ℤ, which explains the behavior we see in figure 4.8. When simulating Brownian
motion in local coordinates on the sphere using guided proposals, we thus encounter the problem that
the most likely absolute continuity fails, which is caused by the fact that the drift and diffusion coefficient
are unbounded.
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Likelihood-Based Inference on

Riemannian manifolds
Let us revisit the aim of this thesis as stated in the introduction. We let 𝑋 = (𝑋𝑡)𝑡 be a Brownian motion
on a Riemannian manifold starting at 𝜃 characterized in local coordinates or via orthogonal projections.
In the model of this thesis, we have 𝑛 observations 𝜉1, … , 𝜉𝑛 of 𝑋𝑇 . As we have seen in section 2.3,
the likelihood for 𝜃 is given by

𝐿 (𝜃 ∣ 𝑇 , 𝜉) =
𝑛

∏
𝑖=1

𝑝 (0, 𝜃; 𝑇 , 𝜉𝑖)

Since 𝑝 is generally not known in closed form, we have to approximate it. In this chapter, we elaborate
on a stochastic approximation of 𝑝 using diffusion bridges.

5.1. Approximating transition densities using diffusion bridges
We use the same notation as introduced in section 4.3, where we let 𝑋 be a diffusion process, 𝑋∗ the
conditioned process 𝑋∗ = (𝑋 ∣ 𝑋𝑇 = 𝑣) and 𝑋∘ the guided proposal given in equation (4.7) with laws
ℙ𝑇 , ℙ∗

𝑇 and ℙ∘
𝑇 respectively. In section 4.3, we derived that under certain conditions

dℙ∗
𝑇

dℙ∘
𝑇

(𝑋∘) = ̃𝑝 (0, 𝜃; 𝑇 , 𝑣)
𝑝 (0, 𝜃; 𝑇 , 𝑣)𝜓 (𝑇 , 𝑋∘) (5.1)

Note that dℙ∗
𝑇

dℙ∘
𝑇
is a function (ℝ𝑑)[0,𝑇 ] → ℝ, so we can integrate both sides of equation (5.1) with respect

to the measure ℙ∘
𝑇 . This yields

∫ dℙ∗
𝑇

dℙ∘
𝑇

(𝑋∘) dℙ∘
𝑇 (𝑋∘) = ̃𝑝 (0, 𝜃; 𝑇 , 𝑣)

𝑝 (0, 𝜃; 𝑇 , 𝑣) ∫ 𝜓 (𝑇 , 𝑋∘) dℙ∘
𝑇 (𝑋∘)

where the left-hand side equals ∫ dℙ∗
𝑇 = 1. We therefore observe that

𝑝 (0, 𝜃; 𝑇 , 𝑣) = ̃𝑝 (0, 𝜃; 𝑇 , 𝑣) 𝔼𝜓 (𝑇 , 𝑋∘) (5.2)

With slight abuse of notation, we now let 𝑋∘
(𝑖) denote the proposed diffusion bridge starting at 𝜃 and

ending at 𝜉𝑖 and set 𝑋∘ = (𝑋∘
(1), … , 𝑋∘

(𝑛)) and 𝜉 = (𝜉1, … , 𝜉𝑛). Since we assume the data to be
independent realizations, we obtain that the posterior density of 𝜃 must satisfy

𝑓 (𝜃 ∣ 𝜉, 𝑇 ) ∝
𝑛

∏
𝑖=1

̃𝑝 (0, 𝜃; 𝑇 , 𝜉𝑖) 𝔼𝜓 (𝑇 , 𝑋∘
(𝑖))

and that the log-likelihood is given by

ℓ (𝜃 ∣ 𝜉, 𝑋∘) ∶=
𝑛

∑
𝑖=1

log 𝑝 (0, 𝜃; 𝑇 , 𝜉𝑖) =
𝑛

∑
𝑖=1

(log ̃𝑝 (0, 𝜃; 𝑇 , 𝜉𝑖) + log𝔼𝜓 (𝑇 , 𝑋∘
(𝑖))) (5.3)
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Note that , when estimating 𝔼𝜓 (𝑇 , 𝑋∘) with 𝜓 (𝑇 , 𝑥∘), where 𝑥∘ is a simulation of a sample path of 𝑋∘

or with an average 1
𝑚 ∑𝑚

𝑗=1 𝜓 (𝑇 , 𝑥∘
𝑗) of simulations 𝑥∘

𝑗 of sample paths of 𝑋∘, the right hand side of
equation (5.3) does not depend on any unknown variables and can thus be calculated using simulated
diffusion bridges. In order to do calculations of the likelihood, we use that

log ̃𝑝 (0, 𝜃; 𝑇 , 𝑣) = 𝑅̃ (0, 𝜃)

In order to find 𝑅̃, we specify section 2.2 of van der Meulen and Schauer, 2017b [28] to our statistical
model. Let us first define Φ as the solution to

dΦ (𝑡) = 𝐵̃ (𝑡) Φ (𝑡) d𝑡, Φ (0) = 𝐼

and set Φ (𝑡, 𝑠) = Φ (𝑡) Φ (𝑠)−1. Furthermore, set

𝐿̃ (𝑡) = Φ (𝑇 , 𝑡) and 𝜇 (𝑡) = ∫
𝑇

𝑡
𝐿̃ (𝜏) ̃𝛽 (𝜏) d𝜏, 𝑡 ∈ [0, 𝑇 ] .

Theorem 5.1.1. Assume that for 𝑡 ∈ [0, 𝑇 ], the matrix

𝑀̃ (𝑡) = (∫
𝑇

𝑡
𝐿̃ (𝜏) ̃𝑎 (𝜏) 𝐿̃ (𝜏)𝑇 d𝜏)

−1

exists. Then
̃𝑟 (𝑡, 𝑥) = 𝐿̃ (𝑡)𝑇 𝑀̃ (𝑡) (𝑣 − 𝜇 (𝑡) − 𝐿̃ (𝑡) 𝑥) �.

Proof. This is a simplified version of theorem 2.3 of van der Meulen and Schauer, 2017b [28]

All that is left to find 𝑅̃ is to note that 𝑅̃ satisfies ̃𝑟 = ∇𝑥𝑅̃ at (𝑡, 𝑥) when

𝑅̃ (𝑡, 𝑥) = log𝜑 (𝑣; 𝜇 (𝑡) + 𝐿̃ (𝑡) 𝑥, 𝑀̃ (𝑡)−1) (5.4)

where 𝜑 (⋅ ; 𝜇, Σ) denotes the density of the multivariate normal distribution with mean 𝜇 and covariance
matrix Σ.

In equation (5.3), we can now substitute equation (5.4) for log ̃𝑝 and approximate log𝔼𝜓 (𝑇 , 𝑋∘) via
simulations of diffusion bridges to find a stochastic approximation for the log-likelihood of 𝜃.

5.2. Drawing samples from the likelihood of 𝜃
In order to draw samples from the likelihood of 𝜃, we use Markov chain Monte Carlo (MCMC) methods,
see appendix B for more information on these algorithms.

In order to specify the algorithms, we introduce the shorthand notation 𝐺𝑃 (𝜃, 𝑊, 𝑣) for a guided pro-
posal for a diffusion bridge onM starting at 𝜃, conditioned on hitting 𝑣 and with driving Brownian motion.
Let 𝑞 (𝜃, ⋅) be the distribution function for drawing a proposed update t 𝜃. We use Metropolis-Hastings
algorithm 2 for drawing samples from the likelihood while simultaneously updating the diffusion bridges
between the data point and 𝜃.

This algorithm consists of two steps. In the first step, we update the guided proposals in order to
increase the value of dℙ∗

dℙ∘ (𝑋∘). This ensures that we draw diffusion bridges whose laws get closer to
ℙ∗, the true law of the conditioned process. Step 1 therefore ensures that we get better approximations
to the log-likelihood of 𝜃. In the second step we propose a new 𝜃 and either accept or reject. This step
results in a draw from the likelihood after a sufficient amount of iterations.
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Input: Start with random point 𝜃 ∈ M and tuning parameters 𝜀 and 𝜌 > 0. Furthermore,
simulate paths standard Brownian motions 𝑊(1), … , 𝑊(𝑛) in ℝ𝑑 and diffusion bridges
𝑋(1), … , 𝑋(𝑛) where 𝑋(𝑖) = 𝐺𝑃 (𝜃, 𝑊(𝑖), 𝜉𝑖).

while maximum number of iterations not reached do
Step 1: Update the diffusion bridges and driving Brownian motions.
for all data points 𝜉𝑖 do

Simulate a Brownian motion 𝑊 in ℝ𝑑 independent of 𝑊(𝑖) and set
𝑊 ∘

(𝑖) = 𝜌𝑊(𝑖) + √1 − 𝜌2𝑊 ;
Simulate a diffusion bridge 𝑋∘

(𝑖) = 𝐺𝑃 (𝜃, 𝑊 ∘
(𝑖), 𝜉𝑖) ;

With probability min{1, 𝜓(𝑇 ,𝑋∘
(𝑖))

𝜓(𝑇 ,𝑋(𝑖))
}, accept the proposal and set 𝑋(𝑖) = 𝑋∘

(𝑖) and

𝑊(𝑖) = 𝑊 ∘
(𝑖) ;

end
Step 2: Update the parameter 𝜃.
Propose a new point 𝜃∘ from the distribution 𝑞 (𝜃, ⋅) ;
for all data points 𝜉𝑖 do

Simulate a bridge 𝑋∘∘
(𝑖) = 𝐺𝑃 (𝜃∘, 𝑊(𝑖), 𝜉𝑖) ;

end
With probability min{1, 𝐿(𝜃∘∣𝜉,𝑋∘∘)𝑞(𝜃∘,𝜃)

𝐿(𝜃∣𝜉,𝑋)𝑞(𝜃,𝜃∘) }, where 𝐿 = exp ℓ and ℓ is the stochastic
approximation to equation (5.3), accept the proposed update for 𝜃 and set 𝜃 = 𝜃∘ and
𝑋 = 𝑋∘∘ ;

end
Algorithm 2: Metropolis-Hastings algorithm for sampling from the likelihood of 𝜃.

5.2.1. Uniform proposals
The first algorithm we propose is the MH algorithm 2 with a uniform proposal distribution for 𝜃. Here the
notion of a uniform proposal is to be interpreted as follows. We consider a uniform update to the local
coordinates, since they are homeomorphic to ℝ𝑑 and we can thus add a uniform draw to each of the
local coordinates. An advantage of these proposals is that they are symmetric, that is 𝑞 (𝑥, 𝑦) = 𝑞 (𝑦, 𝑥)
and therefore this term vanishes when calculating the acceptance probability for the updates on 𝜃. A
disadvantage is that, since the updates are uniform and therefore do not use any knowledge of the
data, it takes more iterations before we are sampling from the likelihood of 𝜃.

5.2.2. Langevin adjusted proposals
In the previous section we choose uniform proposals for the updates on 𝜃. In this section we aim to
improve on these proposals by combining a gradient-based method with the Metropolis-Hastings algo-
rithm. For some background theory on Langevin adjusted proposals, we refer to appendix B.2.1

When applying Langevin adjusted proposals, we draw our proposed updates 𝜃∘ when we are at 𝜃 from
an N (𝜃 + ℎ

2 ∇ℓ (𝜃) , ℎ𝐼)-distribution. This method has the advantage that each update moves in the
direction of ∇ℓ and therefore moves towards the maximum of ℓ. This means that fewer iterations are
needed in order to draw from the likelihood of 𝜃.

5.3. Maximum likelihood estimates
It of interest to see if we can also find maximum likelihood estimates. This maximum can be found
using gradient-based methods. The idea behind this method is to start at a point 𝜃0 ∈ M and move to
a new point 𝜃1 in the direction of the gradient of ℓ at 𝜃0.

A standard gradient ascent method proposes an update 𝜃1 = 𝜃0 + ℎ∇ℓ (𝜃0) for a specified tuning pa-
rameter ℎ > 0. Under certain regularity conditions, these updates converge to the maximum of ℓ. We
however, have the problem that ℓ is intractable and we move to the stochastic approximation using
diffusion bridges, a method we refer to as stochastic gradient ascent.
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A problem encountered when applying stochastic gradient ascent on a manifold is that the updates
generally do not lie on the manifold. Since the gradient ∇ℓ (𝜃0) defines the direction of the updates, we
propose to project the gradient to the tangent space 𝑇𝜃0

M via the orthogonal projection matrix 𝑃 (𝜃0)
we observed in section 3.2 and apply the exponential map if known in closed form the the tangent
vector we obtain after projecting ∇ℓ (𝜃0). This results in algorithm 3.

Input: Start with random point 𝜃0 on M.
Set 𝜃1 = Exp𝜃0

(ℎ𝑃 (𝜃0) ∇ℓ (𝜃0));
if ‖𝜃0 − 𝜃1‖ < 𝜀 then

Stop
else

Set 𝜃0 = 𝜃1 and repeat
end

Algorithm 3: Algorithm for finding a maximum likelihood estimate using stochastic gradient descent
in combination with the exponential map.

Notice that when the updates gets closed to the maximum, the norm of ∇ℓ decreases. Therefore the
geodesic distance (see 2.1.32) between the updates goes to 0, which demonstrates that this algorithm
indeed converges.

For the implementation of both the gradient-based method and the Langevin adjusted proposals, we
use the ForwardDiff.jl package [18] in Julia. Here, the gradient can be approximated quickly by using
automatic differentiation. For the simulations of diffusions, we can make use of the Bridge.jl package
by Schauer et al., 2018 [23].



6
Numerical experiments on the sphere

In order to test the theory derived in chapter 5 on the calculation of log-likelihoods, we generated a
dataset of size 100 on the sphere by simulating indepentent Brownian motions on the sphere and sav-
ing their values at a fixed time 𝑇 .

Since we have seen that a characterization of Brownian motion using charts can be problematic when
simulating bridges on the sphere, we choose the characterization via the Stratonovich SDE d𝑋𝑡 =
𝑃 (𝑋𝑡)∘d𝑊𝑡. For the simulations we use the the Euler-Maruyamamethod, as there is no straightforward
way for finding 2-jets that characterize the SDEs for Brownian motion and bridges on the sphere.

6.1. Deriving the Itô SDE and calculations on a grid of points
We first calculate the projection matrix on the sphere using corollary 3.2.5. For any point 𝑥 on the
sphere, the normal vector to the point is given by 𝑛 (𝑥) = 𝑥 and we thus have that

𝑃 (𝑥) = 𝐼 − 𝑛 (𝑥) 𝑛 (𝑥)𝑇 = ⎛⎜⎜⎜
⎝

1 − (𝑥1)2 −𝑥1𝑥2 −𝑥1𝑥3

−𝑥1𝑥2 1 − (𝑥2)2 −𝑥2𝑥3

−𝑥1𝑥3 −𝑥2𝑥3 1 − (𝑥3)2

⎞⎟⎟⎟
⎠

.

Now recall that, when applying the Euler-Maruyama method to an SDE, it is assumed that the SDE is
in Itô form and thus we translate it into this form first. A direct computation, using that (𝑥1)2 + (𝑥2)2 +
(𝑥3)2 = 1 yields

1
2 ∑

𝑗,𝑘
𝑃 (𝑥)𝑗𝑘 𝜕𝑗𝑃 (𝑥)𝑖𝑘 = −𝑥𝑖, 𝑖 = 1, 2, 3

and we may thus conclude that the Stratonovich SDE d𝑋𝑡 = 𝑃 (𝑋𝑡) ∘ d𝑊𝑡 coincides with the Itô SDE
given by

d𝑋𝑡 = −𝑋𝑡 d𝑡 + 𝑃 (𝑋𝑡) d𝑊𝑡. (6.1)

We apply the Euler-Maruyama method to simulate diffusions starting at a given point and save them
at a fixed time 𝑇 to generate a dataset on the sphere that coincides with our model. Figure 6.1 shows
the simulated dataset when taking 𝜃 = (0, 0, 1) as starting point and 𝑇 = 1

2 .
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Figure 6.1: A view from three separate angles on a dataset on the sphere simulated by saving the values of simulations of
realizations of the solution to equation (6.1) using the Euler-Maruyama method. The red dot indicates the point 𝜃 = (0, 0, 1) that
was used as the starting point for the diffusions.

We can now apply the theory derived in chapter 5, to approximate the log-likelihood on a grid of points in
order to get an impression of how this approximation performs. We thus create a grid of points (of size
5200) and at each point, we use the Euler-Maruyama method to simulate guided proposals for diffusion
bridges between that grid point and each data point. These bridges can then be used in equation (5.3)
to approximate the log-likelihood at that grid point. The results are as given in figure 6.2.

Figure 6.2: The log-likelihood as stated in equation (5.3) calculated at a grid of points on the sphere by simulating diffusion
bridges between these points and the data points simulated previously.

Figure 6.2 demonstrates what we expect. Recall that data was simulated from Brownian motion on
the sphere starting at 𝜃 = (0, 0, 1) and we see that our log-likelihood increases as we move close to
the north pole, whereas it decreases when we move away from it. The point on the grid where the
log-likelihood attains its maximum is given by the point (−0.278, −0.027, 0.960).

6.2. Finding the maximum likelihood estimator
Calculating the log-likelihood in each point on a small grid is computationally feasible in this example,
but in practice, it would be useful to test the gradient-based method derived in section 5.3 to find a
maximum likelihood estimate for 𝜃.
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6.2.1. Stochastic gradient descent using the exponential map
On the sphere, the exponential map is known in closed form (see corollary 2.1.35) and we can thus
apply algorithm 3 to this manifold.

We apply this algorithm many times with many different starting points on the sphere and When typi-
cally observe a maximum at (−0.278, 0.0289, 0.9603), which coincides with the maximum found on our
grid of figure 6.2 earlier. The amount of iterations needed to find this maximum naturally depends on
the random starting point and the convergence rate ℎ. After some trial and error, we observed con-
vergence after an amount of iterations that was typically between 30 and 50 when ℎ is of the order
10−4 and we stop the algorithm when the updates are within a distance of 10−6 from each other. A
somewhat more graphical representation of this result can be seen in figure 6.3, where we plotted the
𝑥, 𝑦, 𝑧-components of the updates at each iteration of one of the runs algorithm 3.

Figure 6.3: The 𝑥, 𝑦, 𝑧-components at each iteration of the gradient descent algorithm that uses the exponential map for the
updates

Figure 6.3 demonstrates that there is convergence present to the maximum likelihood estimate after a
small amount of iterations. After some iterations, the updates get closer to each other and at after a
sufficient amount of iterations, the distance between the updates reaches the threshold set at 10−6 and
then the algorithm stops. Figure 6.4 demonstrates this behavior in the trajectory of the updates of the
algorithm plotted in ℝ3.
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Figure 6.4: The trajectory of the updates of the gradient descent algorithm 3 plotted in ℝ3 (blue) with the data points added to
the figure (black) as well as the north pole (0, 0, 1) from which the dataset was simulated.

6.2.2. Stochastic gradient descent while normalizing the updates
Here, we use the exponential map in combination with the orthogonal projection of the gradient in order
to guarantee that the updates remain on the sphere. It is interesting to see what happens when we use
the specific property of the sphere that we can project any point in ℝ𝑑 onto it by normalizing to find out
if we can improve upon algorithm 3. We are now able to move our updates directly in the direction of
the gradient of ℓ and normalize the result. This results in algorithm 4.

Input: Start with random point 𝜃0 on the sphere.
Set 𝜃1 = 𝜃0+ℎ∇ℓ(𝜃0)

‖𝜃0+ℎ∇ℓ(𝜃0)‖ ;
if ‖𝜃0 − 𝜃1‖ < 𝜀 then

Stop
else

Set 𝜃0 = 𝜃1 and repeat
end

Algorithm 4: Algorithm for finding a maximum likelihood estimate using stochastic gradient descent
while normalizing the updates.

The results of algorithm 4 are similar to the results of algorithm 3; after about 30 to 60 iterations, the
algorithm converges. In this instance, the convergence is to the point (−0.278, −0.0289, 0.960), which
is again close to the maximum on the grid and the maximum found using the exponential map. In figure
6.5, we show a similar plot to the exponential map of the separate 𝑥, 𝑦, 𝑧-components when this method
is used.
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Figure 6.5: The 𝑥, 𝑦, 𝑧-compontents at each iteration of the gradient descent algorithm that normalizes the updates

We see the same behavior in figure 6.5 as we saw in figure 6.3, after about 10 iterations, we get close to
our maximum likelihood estimate and then it takes more iterations to reach the threshold of 10−6 before
the algorithm is stopped. Figure 6.6 also demonstrates this behavior in the trajectory of the updates of
the algorithm on the sphere.

Figure 6.6: The trajectory of the updates of the gradient descent algorithm 3 plotted in ℝ3 (blue) with the data points added to
the figure (black) as well as the north pole (0, 0, 1) from which the dataset was simulated.

6.3. Markov Chain Monte Carlo methods
We now apply the Markov chain Monte Carlo methods derived in section 5.2 to draw samples from the
likelihood of 𝜃.
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6.3.1. Uniform proposals
We first translate algorithm 2 for uniform proposals. Uniform proposals can now be given as fol-
lows. Given a point 𝜃 = (cos𝜗 sin𝜑, sin𝜗 sin𝜑, cos𝜑), we propose uniform updates given by 𝜃∘ =
(cos (𝜗 + 𝑈1) sin (𝜑 + 𝑈2) , sin (𝜗 + 𝑈1) sin (𝜑 + 𝑈2) , cos (𝜑 + 𝑈2)) where 𝑈1, 𝑈2 ∼ U (−𝜀, 𝜀). We ap-
plied this method to the same dataset with 𝜀 = 𝜋

100 and 𝜌 = 1
2 to find the stationary distributions for the

𝑥, 𝑦, 𝑧-coordinates given in figure 6.7.

Figure 6.7: The resulting Markov chain after applying the Markov Chain Monte Carlo algorithm 2 with uniform proposals to the
dataset of size 100 simulated with starting point (0, 0, 1).

In figure 6.7, we see a convergence to the stationary distribution. Recall that the optimum on a grid
of size 5200 was found at (−0.278, −0.027, 0.960). The Markov chain generated is stable around the
same point. A multidimensional visualization of this result can be found in figure 6.8.

Figure 6.8: The Markov chain resulting from applying algorithm 2 with uniform proposals plotted in ℝ3 (blue) with the data points
added to the figure (black) as well as the north pole (0, 0, 1) from which the dataset was simulated.
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Figure 6.8 more clearly demonstrates what we already saw in figure 6.7, where we saw that the Markov
chain converged to its stationary distribution. We can see this here when noticing that the Markov Chain
stays around the same point after a few iterations.

6.3.2. Langevin adjusted proposals
In this section, we apply the Langevin adjusted proposals as seen in section 5.2.2. We do however
make a slight alteration. In order to guarantee that the updates stay on the sphere, we propose updates
given by

𝜃∘ = 𝜃 + ℎ
2 ∇ℓ (𝜃) +

√
ℎ𝑍

∥𝜃 + ℎ
2 ∇ℓ (𝜃) +

√
ℎ𝑍∥

When we apply algorithm 2 with this proposal distribution to the same simulated dataset with 𝜌 = 1
2

and ℎ = 10−4, we typically observe convergence within 20 iterations. One of the traces of updates can
be seen in figure 6.9.

Figure 6.9: A trace of the updates resulting from applying algorithm 2 with Langevin adjusted proposals to the dataset simulated
from (0, 0, 1). The data points are added to the plot.

When looking at figure 6.9, we notice that the Langevin updates behave very similar to the gradient-
based methods for optimizing. The reason for this is that in this case, the norm of the gradient of the
log-likelihood is of the order 105. This causes the normal random variable in equation (B.1) to become
negligible compared to the gradient term and thus eliminates the randomness in the updates.

6.4. Notes
In this chapter, we studied the main statistical problem of this thesis in case the manifoldM is a sphere.
Figure 6.2 demonstrated that the method derived for approximating the log-likelihood stated in equation
(5.3) behaves as we expect, as we saw high values around the north pole and low values around the
south pole. The various methods of finding maxima all have their advantages and disadvantages. The
gradient based methods converged quickly to one single point that coincides with the maximum on the
grid. A disadvantage of the gradient-based methods is that they strongly depend on the structure of
the sphere, where the exponential map is known in closed form and projecting is equivalent to normal-
izing. Such methods are therefore difficult to apply to other manifolds. MCMC methods on the other
hand have the advantage that they can be combined with the calculation of the likelihood, as we can
simultaneously update the diffusion bridges between our points and move on the sphere to a maximum.
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We conclude this chapter by noting that none of the algorithms did give a maximum of (0, 0, 1). The
most likely reason for this is the sample size of 100 in combination with the discretization error made
when simulating the diffusion bridges.



7
Conclusion

We conclude this thesis by going through the broad lines of work that we have done. The aim was to do
likelihood-based inference on the center of a dataset with values on a Riemannian manifold and in order
to get there, we started off by studying Riemannian geometry before moving to diffusions in general
as well as their transition density. The chapters after this focused on several ways to characterize
Brownian motion on a manifold and several ways of simulating diffusions before demonstrating some
results on the sphere and other nonlinear spaces.

7.1. Characterizing Brownian motion on manifolds
We have researched two main characterizations of Brownian motion on manifolds in this thesis; Brown-
ian motion on local coordinates and Brownian motion via projections to the tangent space. Numerically,
the characterization via local coordinates should outperform the method involving projections, as it re-
quires less driving Brownian motions and does its calculations in a lower dimension. However, we
have seen that problems arise when the simulations are approaching the boundaries of the charts.
Armstrong and Brigo, 2018 [1] did propose a method that involves switching charts when one nears
the boundary, so this is interesting to investigate further.

7.2. Simulation of diffusions
We also investigated two types of simulating diffusions, the Euler-Maruyama method and the method
involving 2-jets. When a diffusion is given in the form a stochastic differential equation, the latter did
require us to know the 2-jet from which fitted that SDE. Since the SDEs for Brownian motion on manifold
were not trivial on itself and had to be manipulated to generate guided proposals for diffusion bridges,
it was not practical to implement the 2-jet method in numerical experiments.

7.3. Numerical experiments
After deriving a method for estimating the log-likelihood of the starting point of Brownian motion, we
did numerical experiments to test the result. The Bridge.jl package [23] in Julia provided us with an
excellent tool to test our research and we have seen on the sphere that our approach to do likelihood-
based inference behaves as we expect. However, the properties of the sphere were frequently used,
which complicated experiments on other manifolds. Extending the gradient-based methods to general
manifolds is therefore interesting future research.

7.4. Suggestions for future research
7.4.1. Extend the methods to other spaces
In chapter 6, we have seen that gradient-based methods performed well for finding maximum likelihood
estimates, but did rely heavily on the structure of the sphere. It is interesting to research if there is a
more general method for gradient-based methods on manifolds. The MCMC method with uniform

57



58 7. Conclusion

proposals seems to be more easily translated to other spaces as it only relied on the local coordinates
of the sphere.

7.4.2. Weaken conditions for existence of transition densities
We have discussed global Lipschitz conditions on SDEs to guarantee existence of a transition density
of the solution. When translating this to manifolds, we see that there are various conditions on the
manifold for these conditions to apply. It is interesting to see if these conditions can be weakened. One
could research if Hörmanders theorem can be applied to this problem.

7.4.3. Other approximations of the the transition density 𝑝
In this thesis, we focused on a stochastic approximation to the transition density 𝑝 of a diffusion process
using diffusion bridges, but there are other ways to obtain an approximation. Interesting research would
be to find out if it is possible to apply finite element or finite difference methods to the Fokker-Planck
equation (2.39) in order to solve the PDE numerically. It is interesting research to make a comparison
between classical numerical methods to approximate 𝑝 and the stochastic approximation made in this
thesis.

7.4.4. Relevance of the parameter 𝑇
This thesis assumed a model where a set of data points is interpreted as hitting points of realizations
of Brownian motion at a given time 𝑇 . In the numerical experiments, 𝑇 was fixed and the same 𝑇 was
used for simulating the data as well as making estimations for the center of the data. In practice, the
value of 𝑇 is unknown. Since a Brownian motion at time 𝑡 has variance 𝑡, we suggest that 𝑇 is also a
parameter that is involved when estimating the variance in the dataset. If we look at classical statistics,
where the mean and variance of a dataset can be estimated separately, we argue that this holds in
our case as well and that fixing 𝑇 was a valid assumption. Investigating the relevance and possible
estimates of this parameter would yet be very interesting for future experiments.

7.4.5. Choices for the auxiliary process
In section 4.3.1, we discussed the auxiliary process that is used to generate guided proposals for dif-
fusion bridges. As stated in this section, there is a lot of freedom in this choice and we have chosen a
random matrix 𝐵̃ to ensure controllability. However the question arises whether or not there is an opti-
mal choice for the auxiliary process that ensures a high acceptance probability in the MH algorithms.
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A
Additional Theory on Martingales and

stopping times
This appendix is included to provide some background material on martingales and formulate some
useful results in this field of probability theory. Throughout this chapter we will assume that we have a
filtered probability space (Ω,F, (F𝑡)𝑡 , ℙ) that satisfies the usual conditions as stated in section 2.2

A.1. Conditional expectation
Before being able to introduce martingales, we first need to introduce conditional expectations in a
propper manner.

Definition A.1.1 (Conditional expectation). Let 𝑋 ∶ Ω → ℝ𝑑 be a random variable and G ⊆ F a sub-𝜎-
field of F. The conditional expectation of 𝑋 given G is any G-measurable random variable 𝔼 (𝑋 ∣ G) ∶
Ω → ℝ𝑑 such that

∫
𝐺

𝔼 (𝑋 ∣ G) dℙ = ∫
𝐺

𝑋 dℙ

for all 𝐺 ∈ G

Note that this definition introduces a random variable that need not necessairily exist. However a proof
of existence and uniqueness op to a set of measure 0 can for example be found in Rosenthal, 2006
[21].

Theorem A.1.2 (Properties of conditional expectations). Let 𝑋, 𝑌 be random variables and let G,G1,G2
be sub-𝜎-fields of F. Then the following properties hold.

(𝑖) Conditional expectation defines a linear operator in the sense that 𝔼 (𝛼𝑋 + 𝛽𝑌 ∣ G) = 𝛼𝔼 (𝑋 ∣ G)+
𝛽𝔼 (𝑌 ∣ G) for all 𝛼, 𝛽 ∈ ℝ𝑑.

(𝑖𝑖) If 𝑋 is independent of G, i.e. the events {𝑋 ∈ 𝐵} and 𝐺 are indepentent events for all Borel sets
𝐵 and 𝐺 ∈ G, then 𝔼 (𝑋 ∣ G) = 𝔼𝑋.

(𝑖𝑖𝑖) If 𝑋 is G-measurable, then 𝔼 (𝑋 ∣ G) = 𝑋, furthermore if 𝑌 is another random variable, then
𝔼 (𝑋𝑌 ∣ G) = 𝑋𝔼 (𝑌 ∣ G).

(𝑖𝑣) Suppose that G1 ⊆ G2 ⊆ F. Then

𝔼 (𝔼 (𝑋 ∣ G2) ∣ G1) = 𝔼 (𝑋 ∣ G1)

Proof. (𝑖) is a direct consequence of the linearity of the Lebesgue integral. For (𝑖𝑖) it suffices to notice
that if 𝐺 ∈ G, the indepence implies that

∫
𝐺

𝑋 dℙ = 𝔼 (𝑋𝟙𝐺) = 𝔼𝑋𝔼𝟙𝐺 = 𝔼𝑋ℙ (𝐺) = ∫
𝐺

𝔼𝑋 dℙ.
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(𝑖𝑖𝑖) is a trivial consequence of the definition of conditional expectation and for (𝑖𝑣), we have to verify
that 𝔼 (𝔼 (𝑋 ∣ G2) ∣ G1) is G1-measurable and that

∫
𝐺1

𝔼 (𝔼 (𝑋 ∣ G2) ∣ G1) dℙ = ∫
𝐺1

𝑋 dℙ

for all 𝐺1 ∈ G1. By definition of the conditional expectation, the measurability is satisfied and the second
identity follows as 𝐺1 ∈ G1 ⊆ G2 and we thus have

∫
𝐺1

𝔼 (𝔼 (𝑋 ∣ G2) ∣ G1) dℙ = ∫
𝐺1

𝔼 (𝑋 ∣ G2) = ∫
𝐺1

𝑋 dℙ.

A.2. Martingales and stopping times
Definition A.2.1 (Martingale). An stochastic process 𝑋 that is adepted to a filtration (F𝑡)𝑡 with a finite
expectation for all 𝑡 is a martingale process when for almost surely for any 𝑠 ≤ 𝑡, 𝔼 (𝑋𝑡 ∣ F𝑠) = 𝑋𝑠.

An example of a martingale process is Brownian motion. The martingale property can be easily ob-
tained from the definition of Brownianmotion since for 𝑠 < 𝑡, we have that 𝔼 (𝑊𝑡 ∣ F𝑠) = 𝔼 (𝑊𝑡 − 𝑊𝑠 ∣ F𝑠)+
𝔼 (𝑊𝑠 ∣ F𝑠) = 0 + 𝑊𝑠.

Definition A.2.2 (Stopping time). A random variable 𝜏 with respect to the filtration (F𝑡)𝑡 is a stopping
time iff the event {𝜏 ≤ 𝑡} ∈ F𝑡 for all 𝑡.

Definition A.2.3 (Local martingale). An (F𝑡)𝑡-adapted stochastic process 𝑋 is an (F𝑡)𝑡-local martingale
if there exists a sequence {𝜏𝑘} that almost surely increases to ∞ such that the stopped process 𝑋𝜏𝑘 =
(𝑋𝜏𝑘∧𝑡)𝑡≥0

is an (F𝑡)𝑡-martingale for all 𝑘.

Definition A.2.4 (semimartingale). The process is called e semimartingale when it can be decomposed
as 𝑋𝑡 = 𝑀𝑡 + 𝐴𝑡 where 𝑀 is a local martingale and 𝐴 is a left-continuous process with existing limits
to the right everywhere such that [𝐴]𝑡 < ∞ for all 𝑡.

Notice that from the definitions, it quickly follows that if a process is a martingale, that it is also a local
martingale and a semimartingale.

A.3. Quadratic (co)variation
In the previous section and in chapter 2.2, we already introduced the quadratic (co)varition. We can
even go a step further than that.

Definition A.3.1 (Variation of a semimartingale). For a semimartingale𝑋 and any 𝛼 > 0, the 𝛼-variation
is defined as

𝑉 𝛼
𝑡 (𝑋) = lim

‖∆‖→0

𝑁
∑
𝑖=1

∥𝑋𝑡𝑖
− 𝑋𝑡𝑖−1

∥𝛼

where Δ = {0 = 𝑡0 < 𝑡1 ⋯ < 𝑡𝑁 = 𝑡} is any partition of [0, 𝑡] and ‖Δ‖ = sup |𝑡𝑖 − 𝑡𝑖−1|.

Definition A.3.2 (Total and quadratic variation). If 𝛼 = 1, we refer to 𝑉 𝛼
𝑡 as the total variation and if

𝛼 = 2 we refer to 𝑉 𝛼
𝑡 as the quadratic variation. Note that this coincides with our definition of quadratic

covariation given earlier.

The next theorem demonstrates that there is a difference between finite total variation and finite quadratic
variation in practice.

Theorem A.3.3. Let 𝑋 be a continuous semimartingale. If there is an 𝛼 > 0 such that 0 < 𝑉 𝛼
𝑡 (𝑋) < ∞

then 𝑉 𝛾
𝑡 (𝑋) = 0 for all 𝛾 > 𝛼 and 𝑉 𝛽

𝑡 (𝑋) = ∞ for all 0 < 𝛽 < 𝛼.
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Proof. Since 𝑋 is continuous, we can choose our partition Δ such that ∥𝑋𝑡𝑖
− 𝑋𝑡𝑖−1

∥ < 1 for all 𝑖. Then
we must have that

𝑁
∑
𝑖=1

∥𝑋𝑡𝑖
− 𝑋𝑡𝑖−1

∥𝛾 ≤
𝑁

∑
𝑖=1

∥𝑋𝑡𝑖
− 𝑋𝑡𝑖−1

∥𝛼 ≤
𝑁

∑
𝑖=1

∥𝑋𝑡𝑖
− 𝑋𝑡𝑖−1

∥𝛽

Hence, when ‖Δ‖ → 0, we obtain 𝑉 𝛾
𝑡 (𝑋) ≤ 𝑉 𝛼

𝑡 (𝑋) ≤ 𝑉 𝛽
𝑡 (𝑋). Now since we choose 𝛼 > 𝛾, we must

also have that
𝑁

∑
𝑖=1

∥𝑋𝑡𝑖
− 𝑋𝑡𝑖−1

∥𝛾 ≤
𝑁

∑
𝑖=1

∥𝑋𝑡𝑖
− 𝑋𝑡𝑖−1

∥𝛼
max

𝑖
∥𝑋𝑡𝑖

− 𝑋𝑡𝑖−1
∥𝛾−𝛼

When ‖Δ‖ → 0, the sum remains finite as 𝑉 𝛼
𝑡 (𝑋) < ∞ while the maximum tends to 0 by continuity of

𝑋 and hence 𝑉 𝛾
𝑡 (𝑋) = 0. We can perform a similar trick for 𝛽, since 𝛽 < 𝛼, we have that

𝑁
∑
𝑖=1

∥𝑋𝑡𝑖
− 𝑋𝑡𝑖−1

∥𝛼 ≤
𝑁

∑
𝑖=1

∥𝑋𝑡𝑖
− 𝑋𝑡𝑖−1

∥𝛽
max

𝑖
∥𝑋𝑡𝑖

− 𝑋𝑡𝑖−1
∥𝛼−𝛽

By continuity of 𝑋 we now see that 𝑉 𝛼
𝑡 (𝑋) > 0 can only be true when 𝑉 𝛽

𝑡 (𝑋) = ∞
Corollary A.3.4. For a Brownian motion 𝑊 , we have proven that 𝑉 2

𝑡 (𝑊) = 𝑡 and therefore 𝑊 is not
of finite total variation.

Theorem A.3.5. A semimartingale 𝑋 in ℝ is of finite total variation if and only if it is a linear combination
of monotone processes.

Proof. Note that for a monotone process 𝑌 in ℝ, the total variation forms a telescopic sequence and
hence 𝑉 1

𝑡 (𝑌 ) = |𝑌𝑡 − 𝑌0| < ∞. From the triangle inequality, it also follows that any linear combination
of processes of finite total variation is of finite total variation. For the converse, notice that𝑋𝑡 = 𝑉 1

𝑡 (𝑋)−
(𝑉 1

𝑡 (𝑋) = 𝑋𝑡). Since 𝑡 ↦ 𝑉 1
𝑡 (𝑋) is clearly a monotone function, we are done when we show that 𝑡 ↦

𝑉 1
𝑡 (𝑋)−𝑋𝑡 is monotone. For this, we point out that the triangle inequality implies that for 𝑠 < 𝑡, we have

that |𝑋𝑡 − 𝑋𝑠| will be below the total variation between 𝑠 and 𝑡 and therefore 𝑋𝑡−𝑋𝑠 ≤ 𝑉 1
𝑡 (𝑋)−𝑉 1

𝑠 (𝑆).
Hence 𝑡 ↦ 𝑉 1

𝑡 (𝑋) − 𝑋𝑡 is an increasing function.

Corollary A.3.6. The quadratic covariation of two semimartingales 𝑋 and 𝑌 is if finite total variation.

Proof. Recall from proposition 2.2.6 that we can write the quadratic covariation as

[𝑋, 𝑌 ]𝑡 = [𝑋 + 𝑌 ]𝑡 − [𝑋]𝑡 − [𝑌 ]𝑡
2

From the definition, it should be clear that the quadratic variation is an increasing process and thus the
quadratic covariation is a linear combination of increasing process and therefore of finite variation.

Corollary A.3.7. Suppose that 𝑋 and 𝑌 are continuous semimartingales and one is of finite total
variation. Then [𝑋, 𝑌 ] = 0.
Proof. Since (𝑋, 𝑌 ) ↦ [𝑋, 𝑌 ] defines a bilinear map, we can apply the Cauchy-Schwarz inequality to
find that

‖[𝑋, 𝑌 ]‖ ≤ √‖[𝑋]‖ ‖[𝑌 ]‖
If either 𝑋 or 𝑌 is of finite total variation, the quadratic variation equals 0 and therefore the right hand
side equals 0, thus proving the desired result.

Theorem A.3.8. Let 𝑋 and 𝑌 be local martingales. Then there exists a a process [𝑋, 𝑌 ] of locally finite
variation that is almost surely unique such that [𝑋, 𝑌 ]0 = 0 and 𝑋𝑌 − [𝑋, 𝑌 ] is a local martingale.

Proof. see Kallenberg, 2006 [10].

As the notation in theorem A.3.8 suggests, the process that converts 𝑋𝑌 into a local martingale is
indeed the quadratic covariation of 𝑋 and 𝑌 , see Karandikar and Rao, 2014 [11]. From this uniqueness,
one can also deduce that the quadratic covariance indeed defines a bilinear map.
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Corollary A.3.9. For a standard Brownian motion 𝑊 , we have [𝑊] = 𝑡.
Proof. By theorem A.3.8, it suffices to show that the process 𝑊 2

𝑡 − 𝑡 is a martingale. From a direct
calculation for 𝑠 < 𝑡, we obtain that

𝑊 2
𝑡 − 𝑡 = (𝑊𝑠 + 𝑊𝑡 − 𝑊𝑠)2 − 𝑡 = 𝑊 2

𝑠 + 2 (𝑊𝑡 − 𝑊𝑠) 𝑊𝑠 + (𝑊𝑡 − 𝑊𝑠)2 − 𝑡

We thus derive that

𝔼 (𝑊 2
𝑡 − 𝑡 ∣ F𝑠) = 𝔼 (𝑊 2

𝑠 ∣ F𝑠) + 2𝔼 (𝑊𝑠 (𝑊𝑡 − 𝑊𝑠) ∣ F𝑠) + 𝔼 ((𝑊𝑡 − 𝑊𝑠)2 ∣ F𝑠) − 𝑡
= 𝑊 2

𝑠 + 2𝑊𝑠𝔼 (𝑊𝑡 − 𝑊𝑠) + 𝔼 ((𝑊𝑡 − 𝑊𝑠)2) − 𝑡
= 𝑊 2

𝑠 + 𝑡 − 𝑠 − 𝑡 = 𝑊 2
𝑠 − 𝑠

Hence 𝑊 2
𝑡 − 𝑡 is indeed a martingale and thus [𝑊]𝑡 = 𝑡.



B
Markov Chain Monte Carlo methods and

the Metropolis-Hastings algorithm
In statistics, we encounter many situation where a distribution is intractable. For example, in this thesis
we have seen that the transition density of a stochastic process is usually intractable, leading to an
intractable distribution of the center of data. Markov Chain Monte Carlo methods form a collection of
techniques that can be used to draw samples from such distributions.

B.1. Discrete time Markov chains
Let {𝑋𝑛} be a sequence of random variables in a measurable state space (X,B) with an underlying
probability space (Ω,F, ℙ). Furthermore let F𝑋

𝑛 = 𝜎 (𝑋𝑘 ∶ 𝑘 ≤ 𝑛) denote the sigma-field generated by
𝑋0, … , 𝑋𝑛. We recall the definition of a transition kernel

Definition B.1.1 (Transition kernel). A transition kernel on X is a map 𝑃 ∶ X × B → [0, 1] such that

(𝑖) For every 𝑥 ∈ X, the map 𝐵 ↦ 𝑃 (𝑥, 𝐵) defines a probability measure on (X,B).
(𝑖𝑖) For every 𝐵 ∈ B, the map 𝑥 ↦ 𝑃 (𝑥, 𝐵) is a measurable map (X,B) → ([0, 1] ,B[0, 1]).
If 𝑃 (𝑥, ⋅) admits a density 𝑝, this density is referred to as the transition density and satisfies

𝑃 (𝑥, 𝐵) = ∫
𝐵

𝑝 (𝑥, 𝑦) d𝑦, 𝐵 ∈ B

Definition B.1.2. 𝑋 = {𝑋𝑛} is a Markov chain with initial distribution 𝜈 if ℙ (𝑋0 ∈ 𝐵) = 𝜈 (𝐵) for all
𝐵 ∈ B and if there exists transition kernel 𝑃 such that the Markov property holds:

ℙ (𝑋𝑛+1 ∈ 𝐵 ∣ F𝑋
𝑛 ) = ℙ (𝑋𝑛+1 ∈ 𝐵 ∣ 𝜎 (𝑋𝑛)) = 𝑃 (𝑋𝑛, 𝐵)

Remark B.1.3. If X is a countable space, we conveniently write 𝑃 (𝑥, 𝑦) for 𝑃 (𝑥, {𝑦}).
We can define 𝑃 𝑚 inductively by

𝑃 𝑚 (𝑥, 𝐵) = ∫
X

𝑃 (𝑦, 𝐵) 𝑃 𝑚−1 (𝑥, d𝑦)

and for measurable functions, we can define

𝑃𝑓 (𝑥) = ∫
X

𝑓 (𝑦) 𝑃 (𝑥, d𝑦)

The Markov property then yields

𝔼 (𝟙𝐵 (𝑋𝑛+1) ∣ F𝑋
𝑛 ) = 𝑃𝟙𝐵 (𝑋𝑛) , 𝐵 ∈ B.
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Since 𝑃 and 𝔼 are linear operators and measurable function can be approximated by simple functions,
we deduce that

𝔼 (𝑓 (𝑋𝑛+1) ∣ F𝑋
𝑛 ) = 𝑃𝑓 (𝑋𝑛)

for any measurable 𝑓 ∶ X → ℝ. This property implies that

ℙ (𝑋𝑛+2 ∈ 𝐵 ∣ F𝑋
𝑛 ) = 𝔼 (𝔼 (𝟙𝐵 (𝑋𝑛+2) ∣ F𝑋

𝑛+1) ∣ F𝑋
𝑛 ) = 𝔼 (𝑃𝟙𝐵 (𝑋𝑛+1) ∣ F𝑋

𝑛 ) = 𝑃 (𝑃𝟙𝐵) (𝑋𝑛) = 𝑃 2 (𝑥, 𝐵)

In general, it can be deduced that ℙ (𝑋𝑛+𝑚 ∈ 𝐵 ∣ F𝑋
𝑛 ) = 𝑃 𝑚 (𝑥, 𝐵).

Definition B.1.4. An invariant distribution for 𝑋 on X is a probability distribution Π on X such that

Π (𝐵) = ∫
X

𝑃 (𝑥, 𝐵) Π (d𝑥) , 𝐵 ∈ B

For a Markov chain 𝑋 with invariant distribution 𝜋, it can be shown (see Athreya et al., 1996 [2]) that
under certain conditions,

sup
𝐵∈B

|𝑃 𝑛 (𝑥, 𝐵) − Π (𝐵)| → 0, 𝑛 → ∞

for almost all 𝑥 ∈ X. In this case, Π is called the stationary distribution of 𝑋. If a Markov chain has a
unique stationary distribution, the Markov chain is called ergodic

B.2. Markov chain Monte Carlo methods
Definition B.2.1 (Markov chain Monte Carlo). A Markov chain Monte Carlo (MCMC) method for the
simulation of a distribution Π is any method that returns an ergodic Markov chain with stationary distri-
bution Π.

The most well-known MCMC method is the Metropolis-Hastings (MH) algorithm.

Definition B.2.2 (Metropolis-Hastings (MH) algorithm). Suppose that Π has density 𝜋. The MH algo-
rithm constructs a Markov chain by updating 𝑥𝑛 = 𝑥 to 𝑥𝑛+1 in the following steps.

1. Propose 𝑦 from a proposal density 𝑞 (𝑥, ⋅)
2. Compute

𝛼 (𝑥, 𝑦) = min{1, 𝜋 (𝑦)
𝜋 (𝑥)

𝑞 (𝑦, 𝑥)
𝑞 (𝑥, 𝑦)}

3. Accept the proposal 𝑦 with probability 𝛼 (𝑥, 𝑦) and set 𝑥𝑛+1 = 𝑥 or reject 𝑦 with probability 1 −
𝛼 (𝑥, 𝑦) and set 𝑥𝑛+1 = 𝑥.

Note that there is a lot of freedom in the choice of 𝑞. If 𝑞 is chosen symmetrically in 𝑥 and 𝑦, we observe
that the MH algorithm accepts a proposal 𝑦 if 𝑦 is more likely than 𝑥 according to 𝜋 and has a probability
of rejecting if this is not the case. It is a well-known result that the Markov chain constructed in B.2.2
indeed has 𝜋 as invariant distribution.

The MH algorithm is in particular greatly appreciated by Bayesian statisticians as the algorithm only
needs an expression for 𝜋 up to a proportionality constant.

B.2.1. Langevin adjusted propals
Langevin adjusted proposals are proposals done with the aim to obtain faster convergence of the MH
algorithm to the stationary distribution. In a similar way as Roberts and Rosenthal, 1998 [19], we
implement an accept/reject step in the Euler discretization of the Langevin diffusion (Λ𝑡)𝑡 that solves
the stochastic differential equation given by

dΛ𝑡 = ℎ
2 ∇ℓ (Λ𝑡) d𝑡 +

√
ℎd𝑊𝑡

Here, Λ𝑡 can be interpreted as a given location and the SDE describes a stochastic movement towards
high values of ℓ, as indicated by the ∇ℓ term in the drift. Under weak conditions, this SDE has a unique
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solution that is a continuous-time Markov process whose asymptotic stationary distribution is exp ℓ, see
Michelot et al., 2018 [16].

The Euler discretization of the Langevin SDE is given by

Λ𝑡+1 = Λ𝑡 + ℎ
2 ∇ℓ (Λ𝑡) +

√
ℎ𝑍, 𝑍 ∼ N (0, 𝐼) (B.1)

Now observe that if we implement this into a Metropolis-Hastings algorithm, we are drawing our pro-
posed updates 𝜃∘ when we are at 𝜃 from an N (𝜃 + ℎ

2 ∇ℓ (𝜃) , ℎ𝐼)-distribution. Hence the proposal den-
sity 𝑞 is given by, the probability density function of a N (𝑥 + ℎ

2 ∇ℓ (𝑥) , ℎ𝐼)-distributed random variable
evaluated in 𝑦, i.e.

𝑞 (𝑥, 𝑦) = (2𝜋ℎ)− 3
2 exp{− 1

2ℎ (𝑦 − 𝑥 − ℎ
2 ∇ℓ (𝑥))

𝑇
(𝑦 − 𝑥 − ℎ

2 ∇ℓ (𝑥))} (B.2)
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