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Abstract. Large-scale weather systems have the potential to modulate offshore wind energy
production. The Northern European sea areas have recently seen a rapid increase in wind
power capacity and thus there is a need to understand how different weather systems affect
offshore production from the perspective of energy system integration. In this study, mean sea
level pressure data from a new-generation reanalysis (ERA5) are utilised to classify synoptic
systems into 30 different weather patterns using a self-organising map (SOM) approach. ERA5
wind speeds are then used in conjunction with a reference 8 MW wind turbine power curve to
estimate wind power values at selected offshore sites. We assess how wind power output varies
for different weather patterns, specifically, the impact on power production and power ramps.

Keywords: self-organizing map, spatio-temporal variability, wind power ramps

1. Introduction
European countries have been developing offshore wind farm fleets particularly in the North and
Baltic sea areas. These regions of the seas are suitable for wind farms due to their shallow depth
and favourable wind speeds. Indeed, offshore wind speeds are generally higher in magnitude
and lower in variability than onshore. Despite the lack of terrain, offshore areas still experience
a significant degree of spatio-temporal variability caused by large-scale weather patterns.
It is clear that at any given time and location, the prevailing weather pattern influences
the magnitude and fluctuation of wind speed. Several studies have been conducted on how
meteorological systems determine the magnitude of wind speeds in different regions of the world
[1, 2, 3]. These studies found that there is a strong association between weather patterns and
wind speed. For example, a westerly wind flow and a rise in pressure tendency leads to a strong
fluctuation in wind speed magnitude over the North Sea [4]. High-pressure centers and ridge
systems generally lead to underproduction of wind power and vice-versa for the weather patterns
characterised by low-pressure centers and trough systems [1]. In addition, wind power production
is influenced by mesoscale systems [5]. As the current share of electricity generated from offshore
wind power is increasing over Europe [5, 6], it is important to quantify the influence of large-
scale weather patterns on wind power generation. This characterisation benefits the planning
and utilisation of wind power production. With this in mind, we have classified weather patterns
in order to explore how these patterns influence offshore wind power production in Northern
European sea areas both in its magnitude and variability.
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Meteorological reanalysis data have been used for regions where there is a lack of public-domain
data and/or in-situ meteorological data. Studies have used global reanalysis wind speed data to
quantify the spatio-temporal variability of wind speed and wind power [5, 7, 8, 9, 10].
The main objectives of the research presented in this paper are to: (i) reduce large-scale
complex weather systems into a discrete number of patterns; (ii) to quantify the seasonal and
spatial variation of wind power at several Northern European offshore sites; (iii) determine the
association of wind power production and extreme wind power ramps with different weather
patterns.

2. Methodology
2.1. Weather patterns
There has been previous work to classify European weather patterns into different clusters to
identify the most prominent large-scale synoptic systems. For example, mean sea level pressure
(MSLP) and the 500 mb geopotential height, which show a contemporaneous spatial correlation
[11], have been used in the past for identifying large-scale weather features and for clustering
weather patterns [1, 12].

Different clustering techniques have been used to identify coherent weather patterns. For
instance, principal component analysis (PCA) was used to identify seven distinct European
weather patterns [1] and k-means clustering was used to identify 30 European weather patterns
[12]. In the current study, we have chosen to use a self-organising map (SOM) [13, 14] due to its
ability to cluster nonlinear patterns. As the input layer to the SOM, we use hourly ERA5 mean
sea level pressure (MSLP) data vectors for the period 2003–2017 over Western Europe. ERA5
is the recent high resolution fifth generation of ECMWF’s atmospheric reanalyses of the global
climate (ERA5) [15] which provides data for a range of meteorological variables at a grid size
resolution of 30 km. The output layer of the SOM is the weather patterns defined by a number
of neurons. Each neuron is initialized either linearly or randomly, derived from the first principal
components of the input data vectors [16]. In this study, we use linear initialization combined
with a batch learning algorithm. The batch learning algorithm is chosen as we are dealing with
a large dataset. A number of iterations are performed to minimize the distance between input
data vectors and the weighting of the neurons. A Gaussian neighborhood function is used so that
input data vectors close to the neurons have more weight. For similarity calculation between
input data vectors and the neurons’ weight, we use a Euclidean distance and two phases of
training are performed. In the first phase, we use a broad radius of influence, i.e. 5, with
30 iteration epochs, and in the second phase, we consider a radius of influence of 1 with 50
iteration epochs. In the second phase, the learning iterates more until there is no change in
the topological order of the input data vectors. Finally, the input data vectors are assigned to
the best matching unit (BMU) neurons. Furthermore, we have calculated the topographic error
(TE) and quantization error (QE) to measure the quality of the weather patterns [13, 14, 18]
as given by Equation 1 and 2.

TE =
1

T

T∑
ti=1

d(Xp(t)) (1)

QE(p) =
1

T

T∑
ti=1

|Xp(t)−Wp(t)| (2)

Where Xp(t) is the sample data for the weather pattern (p) with length t; Wp(t) is the weight
vector of the BMU corresponding to the Xp(t) input data vector; and d(Xp(t)) = 1 if the first
and the second data sample, Xp(t) are not in the same cluster, otherwise, d(Xp(t)) = 0.
QE measures the average difference of the sample data in each cluster from its BMU weight
vector. It assesses the homogeneity of data represented in each cluster, whereas TE measures
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the perseverance of the topology. TE indicates the temporal data sample being not found in
adjacent cluster. A small value of these two parameters implies that the input data vectors are
well represented by their assigned cluster [17].
Generally, the number of SOM clusters are determined subjectively based on the purpose for
which they are intended. In this study, we have generated 30 weather patterns in a similar
manner to [12] which used k-means. The 30 weather patterns that are produced using a SOM
are shown in Fig. 1. The seven distinct weather patterns identified by [1] can be seen within the
30 patterns, namely: European Blocking (P27 and P28), Scandinavian Blocking (P26), Atlantic
trough (P21), Zonal trough (P6), Scandinavian trough (P19), and Atlantic ridge (P23). Also,
more prominent European weather patterns such as the Northerly cold front (P18 and P24)
and British Isles Low Pressure (P2 and P3) are identified. Moreover, weather patterns show a
topological order that distinguish high pressure from low pressure. High pressure is located at
the bottom of the figure whereas low pressure is at the top. Note that in our analysis, we found
an areal average of TE 0.042 meaning that 4.2% of the input data vectors in the BMU were
not adjacent to each other. The QE values were highest (8.14%) and lowest (4.26%) for the
weather patterns P1 and P19, respectively. These values would suggest that the data vectors
were satisfactorily clustered by the 30 patterns.

2.2. Wind power metrics
We consider the variation in power characteristics for 10 representative offshore sites and relate
them to the cluster patterns defined above. These sites are denoted as S1–S10 and are shown
in Fig. 2 (middle and right). The nearest grid point from ERA5 is chosen to calculate the
representative wind turbine power output at that site. Wind speed values (U) at 100 m height
are extracted from the ERA5 database and are converted to wind power P (t, j) for each hourly
time step t and grid point j using an 8 MW reference turbine wind power curve [19] as shown
in Fig. 2 (top).
Firstly, we calculate for each weather pattern i and grid point j, the average power Pav(i, j)
over the period 2003 – 2017:

Pav(i, j) =

ni∑
ti=1

P (ti, j)

ni
(3)

where the summation is over the ni hourly power values which occur in that weather class. We
also define a climatological mean wind power for each grid point over all weather patterns:

Pg(j) =

N∑
t=1

P (t, j)

N
(4)

where, for the m = 30 weather classes:

N =
m∑
i=1

ni (5)

We now define a number of statistics of interest. The normalised percentage power deviation
(PN) for each weather pattern and grid point, PN(i, j) is given by:

PN(i, j) =

(
Pav(i, j)− Pg(j)

Pg(j)

)
× 100% (6)

The variance of these values over all patterns, σ2P (j) is defined:
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Figure 1 Weather patterns that are classified using a SOM. The contour lines shows the mean sea level pressure
in intervals of 3hPa and the scale-colour is the mean sea level pressure anomalies (hPa).

σ2P (j) =

m∑
i=1

(PN(i, j)− PNav(j))2

m− 1
(7)

where

PNav(j) =

m∑
i=1

PN(i, j)

m
(8)

The hourly power ramp value, R(t, j) at each time step is:

R(t, j) = P (t+ 1, j)− P (t, j) (9)

For the entire time period 2003 – 2017, we derive the 95th percentile ramp value, R95(i, j),
from the ramp distribution at each grid point (i) broken down by weather pattern (j) which
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Sites (S) Closest wind farms

S1 Codling Wind Park
S2 Saint-Brieuc
S3 Hornsea Project One
S4 Belwind Alstom Haliade
S5 Borssele 1 and 2
S6 Havsul I
S7 Gode Wind 1 and 2
S8 Horns Rev 3
S9 Baltyk III - phase 2
S10 Storgrundet

Figure 2 The sites used in this study (top panel), reference power curve for the 8 MW wind turbine
(bottom-left panel). Power ramps distribution (bottom-right) for 2003 – 2017 (red dash line) and
weather patterns. The dash magenta line is the 95% percentile used to identify extreme positive ramps.

we refer to as the extreme (positive) ramp value as shown in the Figure 2. We also derive
Rg,95(j) for each grid point over the entire period. From these we determine a value analogous
to Eq. 6, namely the normalised percentage extreme ramp deviation for each pattern and grid
point, RN95(i, j):

RN95(i, j) =

(
R95(i, j)−Rg,95(j)

Rg,95(j)

)
× 100% (10)

Finally, we define the variance of these extreme power ramp values over all patterns, σ2R(j):

σ2R(j) =

m∑
i=1

(RN95(i, j)−Rg,95(j))
2

m− 1
(11)

3. Results
3.1. Spatial variation of wind power
Firstly, we examine the spatial variation in wind power from the hypothetical 8 MW turbine
at each site over the entire period 2003 – 2017, averaged over all weather patterns. Fig. 3
(left) shows box-whisker plots based on 25th, median and 75th percentile of P (t, jS) are shown
in blue, where jS is the closest grid point to each of the 10 sites. Sites S2 and S10 show the
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lowest power production whereas S4 and S5 (which are farthest from the shore) show the highest
power production. Sites S1 and S9 show very marked variation in seasonal output. As might be
expected, all sites show the greatest wind power production during winter (DJF) and autumn
(SON) and lowest during summer (JJA) and spring (MAM).
Fig. 3 (right) shows the 5th percentile and 95th percentile of the R(t, jS) values split by season.
The strongest hourly wind power ramps are during spring and summer across most of the sites.
There is significant seasonal variation in ramp magnitude. The sites which have the lowest mean
power production, i.e. S2, S6, S7, S8 and S10, show consistently high ramps across all seasons.
The sites with higher mean output, i.e. S4, S5 and S9 show significantly lower ramps during the
winter months in particular. These findings are not so surprising as at the higher wind speed
sites during winter, the turbine will be operating frequently above rated power thus reducing
variability compared to lower wind speed sites where a much larger fraction of the time is spent
between cut-in and rated wind speeds.

Figure 3 Seasonal and spatial variation of wind power (left) and wind power ramps (right) for an 8 MW wind
power curve at the 10 selected sites. For the box-whisker plots of P (t, jS), the 25th percentile, the
median and 75th percentile values are shown. For the power ramp values, R(t, jS), the shaded regions
represent the 5th and 95th percentiles.

3.2. Association of wind power production with weather patterns
In this section, we examine the correlation between expected offshore wind power production
and weather patterns, concentrating on four examples that show significant spatial variation:
the British Isles low pressure (P2), the zonal trough (P6), the Scandinavian Blocking (P26) and
the European Blocking (P27) synoptic systems. These four weather patterns were chosen as they
represent a wide range of mean power production across the 10 sites. This can be seen in Fig. 4
(bottom-left) where the range of mean power production for all 30 patterns is superimposed as
a shaded band on top of the mean power production for the four chosen weather patterns across
the 10 sites. It can be seen from the contour plots in Fig. 4 that weather patterns P2 and P6
lead to higher than average wind power production over Northern Europe including the North
Sea and to a lesser extent the Baltic Sea. By contrast, weather patterns P26 and P27 give rise
to lower than average wind power production. This is broadly confirmed by the site specific
values. When looking at the results for site S9, it can be seen that there is rather less variation
in the Baltic Sea for these weather patterns. Overall, low pressure systems contribute to higher
than average wind power and vice-versa for high-pressure systems with some slight variation
from site to site.

3.3. Correlation of wind power ramps with weather patterns
In this section, we investigate how extreme wind power ramps correlate with the four chosen
weather patterns. Fig. 5 shows contour plots of RN95(i, j) as well as R95(i, j) and RN95(i, j)
plotted for the 10 offshore sites and four weather patterns. In general, a higher magnitude of
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Figure 4 The association between specific weather patterns and wind power production: Contour plots of
PN(i, j) for (top-left) i=P2; (top-right) i=P6; (middle-left) i=P26; (middle-right) i=P27;
(bottom-left) Pav(i, jS) for i= P2, P6, P26, P27, the mean over the entire period Pg(jS) and the
shaded region ranges of wind power production:- upper bound is the maximum of P (i, jS) and lower
bound is the minimum of P (i, jS) for the 10 sites as well as over the entire period (Pg(jS)); and
(bottom-right) the corresponding values of PN(i, jS).

extreme positive power ramps occurs during the prevailing low-pressure systems (P2 and P6)
compared with high-pressure systems (P26 and P27).
It can be seen that there is a significant amount of spatial variation. In particular, for the low
pressure weather patterns P2 and P6, there is a contrast between onshore and offshore where
higher than average extreme ramps are seen in Northern Europe whereas in some of the near
offshore regions, lower than average extreme ramps are observed. However, most of the study
sites show slightly higher than average extreme ramps with the exceptions of the Baltic Sea
sites, S9 and S10, particularly for pattern P6. In addition, the ramp magnitude for these two
sites is lower than the other eight sites during this prevailing weather pattern. The Irish Sea
site (S9) shows the highest ramp magnitudes whereas the most southerly site, off the French
coast, S2 shows the lowest values in general. During patterns P26 and P27, lower than average
extreme ramps are observed both onshore and offshore.

3.4. Trends over all 30 weather patterns and variance
Finally, we consider the different trends in power production, its variance and extreme power
ramps at the 10 sites for all of the 30 weather patterns. These are summarised in Fig. 6. Those
weather patterns which are associated with prevailing low pressure systems over the North
European sea areas show higher than average wind power production, in particular, P1, P2, P3,
P6, P7, P8, P11 and P12. Conversely, those weather patterns associated with high pressure
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Figure 5 The association between specific weather patterns and extreme wind power ramps: Contour plots of
RN95(i, j) for (top-left) i=P2; (top-right) i=P6; (middle-left) i=P26; (middle-right) i=P27;
(bottom-left) R95(i, jS) for i= P2, P6, P26 and P27 for the 10 sites as well as the mean over the entire
period (Rg,95(jS)); and (bottom-right) the corresponding values of PN(i, jS).

systems show lower than average production, especially P21-P30.
The trend for the magnitude of extreme wind power ramps is similar but not so pronounced.
There are some differences between the sites as might be expected given their geographical
spread. For example, site S6, the most northerly site, exhibits a large variation in average power
across weather patterns; whereas site S9 (with a higher average wind power) in the Baltic shows
little variation. Sites S3, S4 and S5 also show little variation. These sites with higher mean
wind power and the patterns seen will have a relationship to the amount of time spent above
rated wind speed, which will be greater for higher mean wind power (and thus higher mean wind
speed) sites. This is confirmed by the fact that sites S4 and S5 show little variation in extreme
wind ramps across the different classes. The exception to this is site S10 which is a low mean
wind power site, where there is low variation of mean wind power and extreme power ramp
magnitudes. The largest degree of variance in mean power and extreme power ramp magnitude
is seen for the lowest mean wind power sites, S2, S6, S7 and S8. This is also consistent with the
discussion above.

4. Conclusions
Spatial variation in large scale weather systems can cause significant variations in power
generation and power ramps at offshore wind farm sites. We have presented a way of classifying
weather systems into 30 different patterns which can be used to assess expected mean wind
power and extreme ramp magnitude over a wide spatial area. Weather systems with prevailing
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Figure 6 Variability in normalised power output, extreme ramp magnitude and their variance for the 30
weather patterns at the 10 offshore sites: (top-left) PN(i, jS); (top-right) RN95(i, jS) and; (bottom)
σ2
P (jS) and σ2

R(jS).

low pressure systems over Northern European sea areas tend to be associated with higher
than average wind power output at offshore wind farm sites. Weather patterns dominated
by high pressure systems show the opposite trend. Sites with higher mean wind power tend
to show less variability across weather classes as wind turbines at these sites will be above
rated power for a larger amount of the time. Reducing weather systems to a limited number of
weather patterns which can be associated with expected mean power output or extreme ramp
magnitudes could have a number of practical applications. For example, it could substantially
reduce the computational effort required to predict future spatial and temporal trends in offshore
wind power output under the influence of climate change which was a primary motivation for
this work. The results could also be used in power system planning giving system and wind
farm operators warning if a specific weather pattern is likely to the prevalent in a coming
period. Furthermore, it could be used for operations and maintenance to assess likely patterns
of loading of turbines in specific locations subject to particular weather patterns and for planning
maintenance schedules. Also, it could be used to quantify forecast skill under different prevailing
weather classes several days in advance. This could be important when assigning expected levels
of uncertainty. In summary, classification into a relatively small number of patterns is of benefit
to anyone involved with wind power who needs a convenient way to reduce the number of
options they need to consider in the planning, maintenance or operation of wind farms. One
important caveat to this work is that reanalysis data have limitations in reproducing local
extreme wind speeds due to their finite spatial and temporal resolution. We would recommend
further work incorporating in-situ data or the use of high-resolution mesoscale model downscaling
such as NEWA (New European Wind Atlas) [20] and EURO-CORDEX (Coordinated Regional
Downscaling Experiment) [21] to capture finer level extreme winds.
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