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Abstract
This study explores the extrapolation of learn-
ing curves, a crucial aspect in evaluating learner
performance with varying dataset sample sizes.
We use the Learning Curve Prior Fitted Net-
work (LC-PFN), a transformer pre-trained on
synthetic data with proficiency in approximate
Bayesian inference, to investigate its predictive
accuracy using the Learning Curve Database
(LCDB). The assessment involves MSE as an
error metric, with 2 baselines from previous
studies where we see it outperform the base-
line in some cases and keep on par in oth-
ers. Additionally, we scrutinize instances where
the LC-PFN model may exhibit shortcomings
to identify trends in curve extrapolation fail-
ures, offering insights for potential modifica-
tions to the training dataset. We see a pat-
tern in learners where LC-PFN performs con-
sistently poorly on, whereas no significant pat-
tern can be seen for datasets.

1 Introduction
In the realm of machine learning, one of the factors for
the effectiveness of models is the volume of data they
are exposed to [1]. However, the acquisition and anno-
tation of data come with considerable cost and time in-
vestments. Therefore, determining the optimal amount
of data required for a model can be beneficial. Learn-
ing curves are a valuable tool in this context, portraying
a model’s performance against varying sizes of training
data. These curves offer insights into how the amount
of training data affects models.

Extrapolating the learning curve to predict perfor-
mance on larger or unseen datasets is a complex chal-
lenge that necessitates making assumptions about the
curve’s shape and behaviour. Existing parametric mod-
els, including logarithmic, power-law, and exponential
functions, have been proposed for learning curve fitting
and extrapolation [2]. Despite their utility, these mod-
els may fall short of capturing the intricate and diverse
nature of real-world learning curves, potentially leading
to inaccurate or unrealistic extrapolations.

To address this extrapolation challenge, our research
focuses on leveraging a novel machine learning model:
Prior-Data Fitted Networks (PFNs), capable of approxi-
mating Bayesian inference [3]. We specifically employ an
extended variant, known as Learning Curve PFN (LC-
PFN), detailed by Adriaensen et al. in [4]. LC-PFN spe-
cializes in predicting model performance in later epochs
of training based on earlier epoch performance whereas
the learning curves we talk about in this paper com-
pare model accuracy to dataset size. To try to solve our
problem, we utilize a dataset of learning curves, referred
to as the Learning Curve Database (LCDB) [5]. Using
LCDB to test LC-PFN, we aim to analyze if the model
can accurately extrapolate learning curves, overcoming

the limitations of existing parametric models. An exam-
ple of extrapolation at different cutoffs can be seen in
Figure 1.

In the pursuit of advancing the understanding of
learning curve extrapolation, this thesis aims to answer
the following research question: What are the benefits
and limitations of using LC-PFN for learning curve ex-
trapolation and how does it compare to other methods?
Through an exploration of this question, we contribute
to the evolving discourse on optimizing ML model per-
formance in the face of data constraints.

Figure 1: Visualization of curve extrapolation at 10%(top)
and 40%(bottom) cutoff. The Dataset id is 188 and the
learner is SV C rbf
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2 Related Work
Many papers focus on curve fitting, as evidenced by stud-
ies such as [2, 5, 6, 7]. The rationale behind this em-
phasis lies in the fact that a curve-fitting method can
inherently serve as a foundation for effective extrapola-
tion. However, a caveat of curve fitting is its tendency
to overlook real-life scenarios where a learner may not
conform to the specified parametric model.

Despite this limitation, exploring the performance of
various parametric models is valuable for establishing a
baseline comparison. In an in-depth analysis by Mohr
et al., they scrutinized 16 distinct parametric learning
curve models using the same dataset utilized in our work
[5]. They identified that mmf4 and wbl4 outperformed
the rest of the parametric models when more than 20% of
data was used for fitting. However, at lower percentages,
no clear models emerged as superior. Additionally, they
found that the last1 model performance improves with
more data and significantly outperforms the rest at 80%
training set. They also saw that parametric models with
higher parameter counts performed better overall than
those with less.

Kalandadze, in paper [6], concurred with the effec-
tiveness of the mmf4 model in fitting learning curves,
finding that mmf4 them exp4 outperformed pow4. Con-
versely, findings by Nguyen in [7] suggest that for classi-
fication learners, the pow4 models worked best at lower
training sets. Nguyen stated that last1 takes over as the
best-performing model when 80% of the curve is used for
fitting like what Mohr et al. found [5]. However, it was
emphasized that “no universal model is confirmed for all
tasks, learners, and datasets.”

Considering these varied conclusions, we limit our-
selves to the last1 and mmf4 models as baselines for
comparison against the LC-PFN. The main reason for
this limitation is time constraints. By comparing the
LC-PFN against these chosen baseline models, we aim
to gauge the effectiveness of machine learning in handling
the complexities of learning curves, while acknowledging
the diversity of tasks, learners, and datasets.

3 Methodology
3.1 Database
We will utilize the Learning Curve Database (LCDB)[5].
The LCDB comprises 246 datasets from OpenML and in-
volves 20 learners from scikit-learn. For each dataset size
training and testing are repeated 25 times. This implies
that for each dataset and learner pair, we have 25 curves
representing validation set accuracy, totalling 75 curves
(train, validation, and test). However, our focus is solely
on the validation set. To preprocess the database, we ag-
gregate curves per dataset and learner pair, following the
approach employed by Mohr et al. in [5] in Section 3.3.
Additionally, we convert the dataset size for each curve
into a percentage where we indicate the max dataset size
as 100%, ensuring a consistent framework for the exper-
iments. Please note that the number of points is not the

same in each curve. That depends on the true dataset
size and differs from dataset to dataset.

3.2 Machine Learning Model: LC-PFN
We will employ the Learning Curve Prior Fitted Net-
work (LC-PFN)[4]. A Prior Fitted Network (PFN) is
a transformer pre-trained on synthetic data known as
a prior. It performs approximate Bayesian inference in
a single forward pass. LC-PFN, specifically, is trained
on right-censored curves generated from a parametric
prior [4]. It is important to note that the curves used to
train LC-PFN are different from the learning curves we
are researching. In LC-PFN, the curve represents model
loss versus epoch, while in our case, we are examining
model accuracy versus dataset size. Despite this differ-
ence, both curves share similar characteristics and can
be fitted with the power law (pow3), as Adriaensen et
al. utilized as a parametric model to generate the prior
[4]. Additionally, Nguyen in [7] has demonstrated that
the power law is a suitable model for curve fitting.

Let us look at the model in more detail. The model
is supplied with input data—X, Y, and X test, where
X denotes the dataset size up till the cutoff percent-
age, Y represents accuracy up till the cutoff percentage,
and X test signifies the dataset size for which the model
predicts accuracy, i.e., dataset size from cutoff percent-
age to 100%. We use the functionality provided in the
GitHub1 package to generate the 90% confidence inter-
val (CI). This is done by providing a list of probabilities
for which the quantiles are to be predicted. For example,
[0.05, 0.5, 0.95] where 5th, 50th, and 95th percentiles.

3.3 Model Evaluation Parameters
In evaluating the models, we employ Mean Squared Er-
ror (MSE) as our chosen metric, a consistent choice seen
in many papers [4, 5, 6]. This decision provides a stan-
dardized approach for comparing the performance of dif-
ferent models.

In determining the cutoff percentage, representing the
portion of the curve visible to the model for extrapola-
tion, we adopt values of 10%, 20%, 40%, and 80%. This
choice adheres to a standardized approach, aligning with
percentages commonly employed in numerous studies for
curve fitting and extrapolation [4, 5]. Although Mohr et
al. in [5] explored additional percentages, we adhere to
the specified values due to time constraints. In our ex-
periment, to obtain the points to feed the models, we find
the closest point to the specified cutoff percentage and
use it as our cutoff point. This method implies that, at
times, the cutoff point may be slightly more or less than
the labelled percentage. This approach strikes a balance
between precision and feasibility within the constraints
of our experimentation.

In our analysis, we have incorporated two baseline
models: last1 and mmf4. The former employs a
straightforward approach, where it takes the last point

1Link: https://github.com/automl/lcpfn
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on a given learning curve and always predicts this ac-
curacy value. In contrast, the latter is more intricate,
requiring parameter estimation. It used the formula
(ab + cxd)/(b + xd) where x is the size of the training set
and a,b,c,d are parameters to be estimated. The fitting
procedure for mmf4 is implemented using the code pro-
vided by Mohr et al. in [5]. It is important to note that
some curve fitting attempts with mmf4 result in MSE
values greater than 1 and, therefore, are excluded from
the curve fitting results. In such cases, these curves are
not considered in our analysis to maintain consistency.

3.4 Model breakdown
Our primary focus is on identifying scenarios where the
LC-PFN model exhibits shortcomings and discussing
strategies to improve the representation of real-world
conditions in the synthetic training set. We achieve this
by scrutinizing whether the target accuracies, i.e., the
remaining curve, fall within the model’s 90% CI. Specif-
ically, we verify that at least 60% of the target points re-
side within the 90% CI area. In the graphical representa-
tion of extrapolation (Figure 1), both instances show the
model breakdown, indicated by the target points outside
the 90% CI.

To further understand the nature of the model’s short-
comings, we investigate the cases of breakdown by exam-
ining each curve individually. We first group the curves
by learner and then by dataset, additionally, we check
whether the model tends to overestimate or underesti-
mate accuracies for points outside the expected CI. This
analysis is carried out by evaluating each target point
to determine whether it was underestimated or overes-
timated by the model. We then label the entire curve
based on most of these individual assessments. For ex-
ample, if most points are found to be above the 90%
CI, we conclude that the model has tended to under-
estimate accuracy for that curve. Again, in graphical
representation, in Figure 1 at both cutoffs, the curve is
underestimated.

4 Results and Discussion
4.1 LC-PFN Model Performance

Assessment
The performance of the LC-PFN model is evaluated in
this section. Table 1 provides an overview of the average
MSE values, highlighting the LC-PFN model’s compet-
itive performance relative to the baseline models.

Table 1: Average MSE of each model at different cutoff val-
ues. Please note that if the curve fitting failed for any base-
line, the curve was not included in the overall result.

Cutoff 10% 20% 40% 80%
last1 0.0053 0.0032 0.0016 0.0007
mmf4 0.0091 0.0048 0.0029 0.0022
LC-PFN 0.0032 0.0021 0.0013 0.0009

Remarkably, at a lower cutoff percentage (10%), the
LC-PFN model demonstrates superior performance with

an MSE of 0.0032, outperforming both last1 and mmf4.
However, it is essential to note that the table alone does
not provide the complete picture. Examining the scatter
plot in Figure 3, we observe that for last1, most points lie
below the x = y line. In contrast, this is not the case for
mmf4, which has more points above the x = y line but
also exhibits much higher MSE for several curves. This
indicates that although mmf4 performs slightly better,
it fails to capture the diversity of curves, resulting in a
higher overall MSE.

A similar trend is evident in the box plot in Figure 2,
where the median for mmf4 is lower than LC-PFN, but
the mean and overall variance are higher. Despite hav-
ing a lower average MSE, last1 underperforms in vari-
ance compared to both mmf4 and LC-PFN, as indicated
by the outlier; representing the curve with MSE greater
than 0.01. Both trends, where last1 exhibits high vari-
ance and mmf4 has a higher mean, persist up to the
80% cutoff where the last1 performs better in both the
mean and lower outlier. Comprehensive plots for the re-
maining cutoff percentages are available in the appendix
(see Appendix A).

Figure 2: Comparison of MSE of the model and two baseline
methods at a 10% cutoff, presented through a box plot. The
inner plot displays the full range of the box plot along with
outliers, while the outer plot zooms in on values between 0
and 0.01. The red numerical annotation indicates the count
of curves with MSE exceeding 0.01, green arrowsheads sig-
nify the mean MSE values and the orange line indicates the
median value.
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Figure 3: Scatter plot comparing the MSE of extrapolation
by the LC-PFN model and the two baselines at 10% cutoff.
Each point here represents a curve. The dotted line is x = y.
Please note: The scale of the bottom plot is different than the
top plot

4.2 LC-PFN Model Shortcomings and
Strategies

Our analysis focuses on quantifying the extent to which
the LC-PFN model encounters challenges in extrapolat-
ing curves. Table 2 provides an overview of the total
number of curves that break down the model per cutoff.
We notice that the count increases as the cutoff percent-
age rises. This trend is attributed to the model’s height-
ened confidence in its CI at higher cutoffs, resulting in
overconfidence in its accuracy predictions. We believe
this is primarily because the model has more points to
extrapolate from and has fewer points to extrapolate to.
A visual representation of this phenomenon is illustrated
in Figure 1.

Table 2: Total count and Percentage of curves per cutoff
where the model breaks down and is unable to accurately
predict. The total number of curves tested where curves were
4367

Cutoff Count % Out of total
10% 425 9.73%
20% 572 13.10%
40% 986 22.58%
80% 1255 28.74%

Subsequently, we delve into the nuances of how the
model breaks down by examining the tendencies of over-
estimation and underestimation at different cutoffs. Ta-
ble 3 illustrates a shifting pattern, indicating that at
smaller cutoffs, the model tends to overestimate, while
at larger cutoffs, it leans towards underestimation.

Table 3: Count of curves based on overestimating and under-
estimating tendencies of the model at different cutoffs.

10% 20% 40% 80%
Under Estimate 266 272 406 543
Over Estimate 158 296 557 703
Neither 1 4 23 9
Total 425 572 986 1255

Finally, we have grouped the curves by learner in Table
4 and by dataset in Table 5. When examining the group-
ing by learners, a consistent observation emerges — the
LC-PFN performs worst consistently on SV C sigmoid,
while the learner where the model performs best on is
consistently sklearn.naive bayes.MultinomialNB with
an exception at cutoff 20% where 19 curves from the
learner cause model breakdown. In Appendix A, Figure
6 provides examples of both these learners. The shape of
the latter learner aligns with the synthetic data used by
the LC-PFN for training, whereas SV Csigmoid exhibits
more unconventional curves.

Looking at Table 5, we see that there are not that
many datasets that repeat except for IDs 346 and 1465.
In the bottom left of Appendix A, Figure 6, we can see
a graphical example of the curves produced by dataset
1465. Due to time constraints, we couldn’t investi-
gate the reasons behind the poorer performance of both
datasets compared to the others. However, examining
the curves suggests that the learners’ performance on the
datasets is notably unchanging and poor, which could
be a contributing factor, though this would require ad-
ditional verification.

5 Conclusions and Future Work
To conclude our research, we explore the application
of a novel machine learning model: Prior-Data Fitted
Networks (PFNs), which are capable of approximating
Bayesian inference to extrapolate learning curves [3].
Specifically, we utilize an extended variant known as
Learning Curve PFN (LC-PFN), as detailed by Steven
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Table 4: Top 5 and Bottom 5 learners with the highest count of curves that cause model breakdown per cutoff, along with
the corresponding counts.

10% 20%

Top 5

SVC sigmoid 68 SVC sigmoid 99
sklearn.discriminant analysis.QuadraticDiscriminantAnalysis 54 sklearn.discriminant analysis.QuadraticDiscriminantAnalysis 54
SVC rbf 34 sklearn.linear model.Perceptron 37
SVC poly 27 sklearn.neural network.MLPClassifier 36
sklearn.neural network.MLPClassifier 25 SVC linear 33

Bottom 5

sklearn.ensemble.RandomForestClassifier 9 sklearn.tree.DecisionTreeClassifier 17
sklearn.linear model.LogisticRegression 9 sklearn.ensemble.RandomForestClassifier 15
sklearn.tree.DecisionTreeClassifier 8 sklearn.ensemble.GradientBoostingClassifier 15
sklearn.tree.ExtraTreeClassifier 6 sklearn.linear model.LogisticRegression 13
sklearn.naive bayes.MultinomialNB 4 sklearn.ensemble.ExtraTreesClassifier 11

40% 80%

Top 5

SVC sigmoid 104 SVC sigmoid 114
sklearn.linear model.PassiveAggressiveClassifier 71 sklearn.linear model.Perceptron 101
sklearn.neural network.MLPClassifier 64 sklearn.linear model.PassiveAggressiveClassifier 98
sklearn.linear model.Perceptron 62 sklearn.linear model.SGDClassifier 71
sklearn.linear model.SGDClassifier 56 sklearn.tree.ExtraTreeClassifier 70

Bottom 5

sklearn.ensemble.RandomForestClassifier 40 SVC poly 47
sklearn.naive bayes.BernoulliNB 36 sklearn.ensemble.ExtraTreesClassifier 45
sklearn.ensemble.ExtraTreesClassifier 35 sklearn.linear model.RidgeClassifier 43
sklearn.tree.DecisionTreeClassifier 35 sklearn.discriminant analysis.LinearDiscriminantAnalysis 39
sklearn.naive bayes.MultinomialNB 31 sklearn.naive bayes.MultinomialNB 35

Table 5: Top 10 datasets with the highest count of curves that cause model breakdown per cutoff, along with the corresponding
counts.

10 20 40 80
Dataset id Count Dataset id Count Dataset id Count Dataset id Count

1457 18 346 13 41157 19 346 17
1515 10 41157 11 380 19 18 16
446 10 1465 11 1465 17 299 16
1083 10 1083 11 55 15 1083 15
188 8 1084 11 61 15 1465 15
1088 8 40677 10 1450 15 1499 15
299 7 336 9 346 13 1457 14

40975 6 1457 9 41142 12 1085 14
41161 6 718 9 1086 12 723 13
1233 6 1088 8 392 12 188 12

Adriaensen et al. in [4]. We evaluate its performance in
comparison to two baselines, las1 and mmf4, described
in Section 3.3. LC-PFN exhibited comparatively better
performance at lower cutoff values, i.e., the portion of the
curve visible to the model for extrapolation, as shown
in Table 1. It maintained competitive performance at
higher cutoff values as well.

Additionally, we analyzed cases where the model did
not perform well to enhance the synthetic dataset used
for its training. We observed that the model became
more confident with a higher cutoff, but this overconfi-
dence often led to model breakdown. There was a dis-
cernible pattern in the learner where the LC-PFN un-
derperformed, particularly SV C sigmoid, revealing the
instability of the learner and a weakness for the LC-
PFN. Notably, no clear pattern emerged in curves that
were failing when grouped by datasets. However, the
LC-PFN did perform worse on datasets ID 346 and 1465
in a few cases. The main cause of why the model per-
formed worst on those specific datasets is still unknown
and was not explored due to time limitations but looking
at the curve for 1465 (bottom left in Figure 6), we see
that the learners perform poorly on it, suggesting that

this may be a contributing factor.

5.1 Future work
In our pursuit of advancing the model’s capabilities, pre-
liminary attempts were made to train it using a modified
version of synthetic sampling to use the LCDB. Unfortu-
nately, these initial efforts proved unsuccessful, and the
associated code can be found in repository2.

Notably, certain curves using mmf4 and/or last1 ex-
perienced failures where the curve fitting method pro-
duces MSE greater than 1. Future research endeavours
should try to understand the root causes of these failures
and devise strategies for improvement.

The current scaling methodology encounters chal-
lenges when applied to curves with too few points, po-
tentially resulting in extrapolation breakdown, even if
only one target point falls outside the confidence inter-
val (CI). A similar limitation is observed when dealing
with higher cutoffs, where the number of target points
is insufficient. In such cases, even a single point can sig-
nificantly impact the model’s ability to make accurate
predictions, as reflected in the pattern shown in Table
2. Addressing this concern and refining the scaling ap-
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proach are critical areas for future investigation.
Exploration of the impact of altering the minimum

percentage of points needed in the confidence interval
provided by the model remains an unexplored area. Us-
ing percentages other than 60% could offer valuable in-
sights into the model’s performance.

Finally, another area for future work could involve de-
termining the CI for mmf4 and last1; and potentially
extending this analysis to other parametric models, en-
abling another area of comparison with the LC-PFN
model. This comparative analysis would contribute to
a more comprehensive understanding of each model’s
strengths and weaknesses.

6 Responsible Research
Ensuring the reproducibility of our research is
paramount for promoting scientific rigour and trans-
parency. We are committed in providing comprehensive
documentation detailing our preprocessing steps, param-
eters, and data sources. All code utilized in our experi-
ments is accessible to the public2, facilitating the repli-
cation of our findings. We encourage other researchers
to validate and build upon our work, fostering a culture
of openness in the scientific community

Furthermore, for complete transparency, we acknowl-
edge the use of ChatGPT and GitHub Copilot as tools
that supported our research without generating ideas or
contributing to data creation. Their role was to assist in
error correction and enhance the paper and code’s over-
all coherence. Additionally, we provide the prompts used
during the thesis in Appendix B.

References
[1] Joseph Prusa, Taghi M. Khoshgoftaar, and Naeem

Seliya. “The Effect of Dataset Size on Training
Tweet Sentiment Classifiers”. In: 2015 IEEE 14th
International Conference on Machine Learning and
Applications (ICMLA). 2015, pp. 96–102. doi: 10.
1109/ICMLA.2015.22.

[2] Tom Viering and Marco Loog. The Shape of Learn-
ing Curves: a Review. 2022. arXiv: 2103.10948.

[3] Samuel Müller et al. Transformers Can Do
Bayesian Inference. 2023. arXiv: 2112.10510.

[4] Steven Adriaensen et al. “Efficient Bayesian Learn-
ing Curve Extrapolation using Prior-Data Fitted
Networks”. In: Thirty-seventh Conference on Neural
Information Processing Systems. 2023. url: https:
//openreview.net/forum?id=xgTV6rmH6n.

[5] Felix Mohr et al. “LCDB 1.0: An Extensive Learn-
ing Curves Database for Classification Tasks”. In:
Machine Learning and Knowledge Discovery in
Databases. Ed. by Massih-Reza Amini et al. Cham:
Springer Nature Switzerland, 2023, pp. 3–19. isbn:
978-3-031-26419-1.

2https://github.com/pratham2442000/BachelorThesis

[6] Anna Kalandadze. A Comparative Analysis of
Learning Curve Models and their Applicability in
Different Scenarios. 2023. url: http : / / resolver .
tudelft . nl / uuid : 571d7746 - edef - 4b20 - 83dd -
5415f78c5c57.

[7] Dean Nguyen. In Search of Best Learning Curve
Model. 2023. url: http://resolver.tudelft.nl/uuid:
7921d6fa-b7a3-4fb9-bfdd-cd768da72059.

7

https://doi.org/10.1109/ICMLA.2015.22
https://doi.org/10.1109/ICMLA.2015.22
https://arxiv.org/abs/2103.10948
https://arxiv.org/abs/2112.10510
https://openreview.net/forum?id=xgTV6rmH6n
https://openreview.net/forum?id=xgTV6rmH6n
https://github.com/pratham2442000/BachelorThesis
http://resolver.tudelft.nl/uuid:571d7746-edef-4b20-83dd-5415f78c5c57
http://resolver.tudelft.nl/uuid:571d7746-edef-4b20-83dd-5415f78c5c57
http://resolver.tudelft.nl/uuid:571d7746-edef-4b20-83dd-5415f78c5c57
http://resolver.tudelft.nl/uuid:7921d6fa-b7a3-4fb9-bfdd-cd768da72059
http://resolver.tudelft.nl/uuid:7921d6fa-b7a3-4fb9-bfdd-cd768da72059


A Experiments Additional Plots and
Tables

Table 6: Count of curves LCPFN breaks down grouped by
learner per cutoff.

10% 20%
SVC sigmoid 68 SVC sigmoid 99
sklearn.discriminant analysis.QuadraticDiscriminantAnalysis 54 sklearn.discriminant analysis.QuadraticDiscriminantAnalysis 54
SVC rbf 34 sklearn.linear model.Perceptron 37
SVC poly 27 sklearn.neural network.MLPClassifier 36
sklearn.neural network.MLPClassifier 25 SVC linear 33
sklearn.linear model.Perceptron 24 SVC poly 31
sklearn.linear model.RidgeClassifier 22 sklearn.naive bayes.BernoulliNB 31
sklearn.linear model.SGDClassifier 20 SVC rbf 30
sklearn.linear model.PassiveAggressiveClassifier 20 sklearn.discriminant analysis.LinearDiscriminantAnalysis 26
sklearn.naive bayes.BernoulliNB 19 sklearn.linear model.PassiveAggressiveClassifier 26
sklearn.discriminant analysis.LinearDiscriminantAnalysis 17 sklearn.linear model.RidgeClassifier 23
SVC linear 15 sklearn.neighbors.KNeighborsClassifier 20
sklearn.neighbors.KNeighborsClassifier 15 sklearn.naive bayes.MultinomialNB 19
sklearn.ensemble.ExtraTreesClassifier 15 sklearn.linear model.SGDClassifier 18
sklearn.ensemble.GradientBoostingClassifier 14 sklearn.tree.ExtraTreeClassifier 18
sklearn.ensemble.RandomForestClassifier 9 sklearn.tree.DecisionTreeClassifier 17
sklearn.linear model.LogisticRegression 9 sklearn.ensemble.RandomForestClassifier 15
sklearn.tree.DecisionTreeClassifier 8 sklearn.ensemble.GradientBoostingClassifier 15
sklearn.tree.ExtraTreeClassifier 6 sklearn.linear model.LogisticRegression 13
sklearn.naive bayes.MultinomialNB 4 sklearn.ensemble.ExtraTreesClassifier 11

40% 80%
SVC sigmoid 104 SVC sigmoid 114
sklearn.linear model.PassiveAggressiveClassifier 71 sklearn.linear model.Perceptron 101
sklearn.neural network.MLPClassifier 64 sklearn.linear model.PassiveAggressiveClassifier 98
sklearn.linear model.Perceptron 62 sklearn.linear model.SGDClassifier 71
sklearn.linear model.SGDClassifier 56 sklearn.tree.ExtraTreeClassifier 70
sklearn.neighbors.KNeighborsClassifier 55 sklearn.neighbors.KNeighborsClassifier 66
sklearn.discriminant analysis.QuadraticDiscriminantAnalysis 49 sklearn.discriminant analysis.QuadraticDiscriminantAnalysis 65
sklearn.linear model.RidgeClassifier 47 SVC linear 65
sklearn.discriminant analysis.LinearDiscriminantAnalysis 47 SVC rbf 64
sklearn.ensemble.GradientBoostingClassifier 44 sklearn.ensemble.GradientBoostingClassifier 63
sklearn.tree.ExtraTreeClassifier 43 sklearn.neural network.MLPClassifier 62
SVC rbf 43 sklearn.linear model.LogisticRegression 54
SVC poly 43 sklearn.tree.DecisionTreeClassifier 54
sklearn.linear model.LogisticRegression 41 sklearn.ensemble.RandomForestClassifier 51
SVC linear 40 sklearn.naive bayes.BernoulliNB 48
sklearn.ensemble.RandomForestClassifier 40 SVC poly 47
sklearn.naive bayes.BernoulliNB 36 sklearn.ensemble.ExtraTreesClassifier 45
sklearn.ensemble.ExtraTreesClassifier 35 sklearn.linear model.RidgeClassifier 43
sklearn.tree.DecisionTreeClassifier 35 sklearn.discriminant analysis.LinearDiscriminantAnalysis 39
sklearn.naive bayes.MultinomialNB 31 sklearn.naive bayes.MultinomialNB 35
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Figure 4: Comparison of MSE among the model and two baseline methods at different cutoff values(top left 10%, 20%, 40%,
80%) presented through a box plot. The inner plot displays the full range of the box plot along with outliers, while the outer
plot zooms in on values between 0 and 0.01. The red numerical annotation indicates the count of curves with MSE exceeding
0.01, and a green arrow signifies the mean MSE values.

9



Figure 5: Scatter plot comparing the MSE of extrapolation by the model and the two baselines at different cutoff values. Each
point here represents a curve. Please note: The scale graph with mmf4 is different then of last1 10



Figure 6: The curves of learner SV C sigmoid and sklearn.naivebayes.MultinomialNB from the same datasets. The LC-
PFN model performed the best on the latter in terms of model breakdown, while performing poorly on the former. As we
can see, most of the time the curves are quite dissimilar, but there are cases where they are very close, as seen in the bottom
right.
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Table 7: The Datasets which caused model breakdown per cutoff, grouped by count.

Count
Cutoff 10% 20% 40% 80%

OpenML ID
19 None None 380, 41157 None
18 1457 None None None
17 None None 1465 346
16 None None None 18, 299
15 None None 55, 61, 1450 1083, 1465, 1499
14 None None None 1085, 1457
13 None 346 346 723
12 None None 392, 1086, 1448, 41142 188, 389, 392, 751, 910,

1086, 1448, 1515
11 None 1083, 1084, 1465, 41157 54, 299, 393, 395, 740,

797, 1083
54, 61, 395, 740, 806,
813, 1087, 1233, 4134,
41159, 42809

10 446, 1083, 1515 40677 391, 396, 752, 1488,
1499, 4134, 41164

31, 55, 401, 718, 799,
912, 1088, 1450, 1488,
40982, 41157, 41164

9 None 336, 718, 1457 23, 336, 446, 751, 799,
904, 917, 1087

14, 336, 391, 398, 446,
679, 715, 741, 845, 849,
866, 871, 903, 904, 914,
934, 1084, 1479, 1494,
40975

8 188, 1088 1088, 1488 11, 18, 718, 903, 1041,
1479, 41159

11, 21, 23, 181, 743,
913, 1041, 1042, 1468,
41144, 41158

7 299 299, 446, 849, 1086,
1087

13, 22, 188, 399, 679,
772, 837, 849, 866,
1085, 1475, 1485, 1515,
40664, 40971, 41158,
42809

12, 396, 797, 1485,
41142, 41145, 41156

6 751, 1233, 40975,
41159, 41161, 42810

13, 715, 1499, 42810 181, 398, 741, 743, 806,
871, 979, 1566, 40677,
40981, 41027, 41143,
41144

13, 44, 273, 390, 930,
1166, 1566, 40677,
40687, 40981, 40984,
40994, 41150

5 54, 389, 391, 398, 401,
743, 813, 903, 910,
1114, 1448

54, 181, 389, 806, 813,
897, 904, 1050, 1112,
1448, 1450, 1468, 1494,
1566, 40971, 41159,
42809

14, 273, 389, 390, 845,
930, 1050, 1053, 1084,
1130, 1233, 1441, 1457,
1468, 1494, 41972

16, 22, 293, 393, 399,
720, 734, 737, 807, 816,
897, 917, 995, 1120,
1128, 1134, 1161, 1475,
1567, 40498, 40971

4 12, 18, 390, 392, 803,
881, 904, 1465, 1468,
1499, 1592

22, 23, 61, 392, 398,
740, 799, 837, 843,
912, 930, 934, 958, 980,
1042, 1114, 1441, 41143

12, 16, 44, 60, 401, 722,
807, 913, 991, 1002,
1042, 1067, 1112, 1114,
1590, 1592, 40498,
40687, 40982, 40984,
41145, 41165, 42810

6, 26, 36, 201, 354,
722, 735, 752, 761,
772, 837, 846, 847,
962, 1050, 1067, 1112,
1114, 1441, 1464, 1477,
40664, 40978, 41143,
42734, 42810

Continued on next page
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Table 7: The Datasets which caused model breakdown per cutoff, grouped by count. (Continued)

3 13, 21, 201, 395, 734,
740, 866, 912, 913, 917,
958, 1050, 1488, 1503,
1566, 1567, 40978,
41146, 41164, 41972,
42733

12, 18, 21, 31, 201,
390, 393, 396, 399,
401, 797, 821, 845, 866,
910, 1000, 1002, 1041,
1085, 1130, 1235, 1464,
40664, 40981, 40994,
41142, 41158, 41972,
42733

26, 28, 184, 185, 720,
734, 735, 912, 958,
1000, 1088, 1116, 1128,
1134, 1166, 1235, 1464,
1489, 4538, 40975,
41168, 42733

32, 46, 60, 182, 184,
185, 300, 380, 803,
819, 881, 953, 966,
1002, 1116, 1139, 1461,
1483, 1509, 1592, 4538,
40670, 40685, 40701,
40996, 41146, 41163,
41168, 41169, 42733

2 14, 22, 23, 36, 181,
273, 300, 396, 718,
723, 772, 821, 837,
843, 845, 846, 849, 897,
978, 1000, 1002, 1018,
1067, 1112, 1146, 1161,
1235, 1477, 1479, 1509,
40664, 40670, 40981,
40982, 40984, 41144,
41156, 41163, 41165,
42734

11, 16, 185, 273, 391,
395, 722, 723, 734, 741,
743, 751, 772, 803, 823,
881, 913, 917, 966, 995,
1019, 1067, 1134, 1139,
1161, 1479, 1483, 1503,
1515, 1590, 1592, 4134,
40687, 40701, 40975,
40982, 40984, 41144,
41146, 41150, 41161,
41164, 41165, 42732,
42734

21, 32, 182, 201, 293,
300, 761, 803, 813, 816,
821, 846, 910, 914, 923,
966, 976, 995, 1120,
1138, 1461, 1483, 1487,
1567, 23517, 40668,
40685, 40994, 41146,
41150, 41156, 41161,
42734

554, 727, 728, 822,
901, 923, 976, 978,
991, 1000, 1053, 1068,
1111, 1119, 1130, 1138,
1142, 1235, 1487, 1489,
1590, 4137, 4534, 4541,
23512, 23517, 41027,
41161, 41165, 41166,
42732

1 16, 28, 31, 44, 46,
55, 61, 184, 185, 351,
354, 399, 554, 720,
722, 727, 735, 737,
741, 761, 797, 806, 807,
847, 871, 923, 930, 934,
953, 966, 971, 976, 977,
979, 980, 995, 1036,
1041, 1042, 1049, 1053,
1068, 1116, 1119, 1120,
1128, 1130, 1138, 1139,
1142, 1216, 1441, 1450,
1461, 1475, 1483, 1489,
1494, 1575, 4134, 4137,
40498, 40668, 40685,
40701, 40910, 40971,
40996, 41142, 41145,
41150, 41167, 41168,
42732, 42769, 42809

14, 28, 36, 38, 44,
46, 180, 184, 188, 300,
351, 354, 380, 679, 720,
727, 735, 737, 761, 807,
819, 822, 846, 847, 871,
903, 914, 923, 953, 959,
971, 976, 979, 1018,
1036, 1040, 1049, 1053,
1056, 1068, 1116, 1119,
1120, 1128, 1146, 1166,
1216, 1233, 1461, 1477,
1485, 1487, 1489, 1509,
1567, 1575, 4137, 4541,
40668, 40685, 40910,
41027, 41156, 41163,
41166, 41167, 41168,
42742, 42769

3, 31, 36, 46, 354,
357, 715, 723, 727,
728, 737, 823, 833,
843, 847, 881, 897, 934,
953, 962, 971, 977, 978,
1019, 1020, 1021, 1036,
1049, 1068, 1069, 1139,
1142, 1161, 1216, 1509,
1575, 4135, 4137, 4541,
23512, 40670, 40701,
40983, 41163, 41166,
41167, 42732, 42742,
42769

3, 28, 30, 179, 180, 357,
821, 823, 833, 843, 958,
971, 979, 993, 1020,
1036, 1040, 1049, 1069,
1216, 1575, 1597, 4135,
40672, 41228, 41972,
42769

B LLM usage and prompts
The following are the prompts used during the thesis in no particular order.

1. Analyse this text for grammatical error <Text>
2. What is colspec in this table <latex table code>

3. Suggest a way to make these para flow better into each other <Text>
4. Do a grammar check and list the lines where there are issues <Text>
5. <Code>Explain this line by line
6. Can you give me a synonym for this ”Model failure”, is more related to machine learning where a model is not

able to perform its task and fails to work as expected
7. <Style file>How can I change this to put the reference based on appearance instead
8. Modify this caption such that is suitable for a research paper. It needs to be concise and clear <Text>
9. Optimise this <Code>
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10. <Code>

11. I want to add the count of points below and above the x=y line <Plotting code>

12. I am writing a paper, follow this style of writing <Text>and give ideas for this <Text>to be clear and concise.
13. <Python error>.
14. I want to plot a bar graph, I get a list of values, but I don’t know the range. Suggest ideas for it.
15. I have these two lists which represent points on a curve how can interpolate it?
16. randomly select x% of the train set without changing the ratio of the classes
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