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ABSTRACT 

Steady small disturbances in a compressible boundary 

layer flow past a slightly wavy swept wall are analyzed in­

cluding the effects of compressibility, heat transfer and pos­

sible ablative response of the wall surface. The theory indi­

cates that the non-uniform flow in the boundary layer can 

produce a subsonic wall pressure signature even when the local 

inviscid flow is moderately supersonic. For an ablating surface 

at high heat transfer rates, it is shown that the interaction 

of the gas dynamic and surface material disturbances can lead 

to a condition of "resonance" at a certain critical ratio of 

boundary layer thickness to surface wavelength. The results 

of some recent wind tunnel studies of turbulent boundary layer 

flows past a nonablating wavy wall in the Mach number range 

.8 < M < 1.8 are also shown to corroborate theoretical pre-
- e-

dictions of both pressure and temperature perturbations. 
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1. INTRODUCTION 

This paper describes a study of the gas dynamic 

disturbances within compressible boundary layer flow past a 

slightly wave swept wall including the effects of surface 

ablation. The results find practical application in engineering 

studies of surface disturbance effects on high speed boundary 

layer separation and heating (ref. 1. 2). panel flutter (ref.3). 

hydrodynamic stability of compressible boundary layers on 

deformable surfaces (ref. 4) and ablation surface cross­

hatching (ref. 5). Since in practice the boundary layer along 

the wavy surface is of ten turb~lent. the present investigation 

is mainly concerned with this case although the theoretical 

results can also be applied equally weIl to laminar ~lows. 

In Section 2. an approximate linearized theory of 

compressible non-uniform flow past a slightly wavy wall is 

presented. including the temperature. heat and mass transfer 

perturbation aspects of the flow. In particular. the analysis 

contains significant extensions of previous work on the viscous 

sublayer to include compressibility and heat transfer effects. 

In Section 3. the corresponding disturbances within the wall 

material are analyzed when the vavy wall is a rapidly ablating 

pure sublimator. It is shown that the mutual interaction 

between the boundary layer gas dynamic disturbances and these 

ablative perturbations can lead to a condition of "resonance" 

between them. Section 4 presents a comparison of the present 

theory with some recent wind tunnel measurements (ref. 6) of 

pressure and temperature disturbances on a non-ablating wavy 

wall. Finally. in Section 5 the major results of this study 

are summarized and areas for further investigation are dis­

cussed briefly. 
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2. THEORETICAL ANALYSIS 

The analysis 1S based on an .equivalent inviscid flo~ 

model of the mean (undisturbed) boundary layer and a linearized 

small disturbance treatment of the perturbation field in vhich 

the solution is linearly decomposed into a "slovly-varying" in­

viscid part which determines the pressure and a "rapidly-varying" 

viscous part that is important near the wall. The pressure field 

is analyzed first using an approach similar to one developed 

some years ago by Lighthill (ref. 7). Some interesting thermo­

äynamic aspects of the inviscid disturbance field are observed 

from this analysis. The additional effects of viscosity and 

heat conduct ion are then considered, again onthe basis of ex­

tending some work by Lighthill on viscous sublayer effects in 

perturbed boundary layer flows (ref. 8), The surface shear and 

heat transfer perturbations are determined by this analysis 

for solid surfaces with either fixed temperature or heat 

transfer ana also for a surface unäergoing quasi-steady ablation 

due to large heat transfer from the adjacent boundary layer, 

2,1 General considerations 

We assume steady compressible boundary layer flow of 

a perfect gas with unit Prandtl and Lewis numbers, subjected 

to steady perturbations sufficiently small that they may be 

treated by linearized theory (transonic or hypersonie mean 

flows are thereby exeluded). Following the arguments of 

Lighthill (ref. 7) and Benjamin (ref. 9), the mean flow 1S 

idealized in the first approximation as a rotational plane 

parallel shear flow in the x-di~eetion vith uniform statie 

pressure p~ and arbitrary variations of density Po(y). veloeity 

UO(y), Mach number Mo(Y) and temperature To(y) in the normal 

(y) direction. The steady perturbations are taken to be eaused 

by a stationary rippled surface y (x) =~sina lying in the x-z plar 
v 

as sehematieally illustrated in Fig, 1, where ~ = x sin~-zeos~ 

is the coordinate perpendicular to the erests, ~ the sweep 

angle of the ripple pattern (here taken as arbitrary), E the 
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amplitude and a the reeiproeal wave length. 

Each of the total flow properties is expressed as 

the sum of the mean value and a small perturbation harmonie 

1n a~; denoting E = exp(iat) we thus write 

~ 

U = Uo(y) + 1 U(y) 

v = E V(y) 

~ 

w = E W(y) 

~ 

p = p~ + E p(y) 

p = po(y) + ER(y) 

~ 

T = To(Y) + ET(y) 

where it is understood that only the real parts of these gene­

rally-complex quantities are of ultimate physical interest. 

In addition, we introduee the following velocity variables 

resolved in the ~-direction: 

Q = Usin~ Wcos~ 

w* = W sec~ 

Then sUbstituting these expressions into the general eompressible 

Navier-Stokes equations, applying the aforementioned simplifying 

assumptions, retaining only first order perturbations and in the 

ease of turbulent flow making the assumption of quasi-laminar 

behavior in the perturbation field (ref. 10), one finally 

obtains the fOllowing set of ordinary differential equations 
~ ~ ~ 

governing the perturbation distribution funetions Q, V. p. ete: 
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ia(poQ+qOR) +~ (POV) = 0 ' 

dy 

iapOqoQ 
dqO 

V + iaF 
d ( dQ + Po = ~O(dy + dy dy 

+~ - dqO 2 dV 
(~ -) - - I.I O(ia - + 2Q( 2 ) 

dy dy 3 dy 

iapoqoV + 
dF 4 d ( dV ia Q) ) = '3 dy ~O(dY -2" dy 

+ ia 
dqo 

+ iJo(ia 
dQ 

a 2 V) dy ~ dy 

iapoqoH 
dH

o d ( dH iaqoV) + PO V = ~ 0 (dY + 
dy dy 

+ iaiJO 

P 
R = Po (-

Pao 

dqo 

ëiY - U 

iaF 

d 
(~o 

dQo 
c sc~ dy 

-) 
dy 

( 1 ) 

iaV ») 

(2 ) 

+ ~ 

dH
o 

ëiY) 

( 4 ) 

(6 ) 

where iJo and ~ are the mean and perturbation effective viscosi­

ties, respectively, anà where the energy equation (4) has been 

written in terms o f the mean total enthalpy Ho = C T o + (U 2 /2) 
p 0 

and its perturbation H = C T + UoU = C T + qoUcos~. 
P P 

Now it can be seen that if the effects of viscous 

dissipation heating on the temperature field (as represented 
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by the last two terms of eq. 4) are neglected, the foregoing 

equations become independent of the wavy wall sweep angle ~ and 

the parallel mean flow a~proximation has thus resulted in re­

ducing the original three-dimensional disturbance problem to 

an equivalent two-dimensional one in the direct ion normal to 

the surface waves. Correspondingly, it is noted that this 

resolved perturbation problem is independent of the lateral 

velocity variable WH, which can be subsequently found from eq.6 

af ter the other equations are first solved. Both Lees and 

Reshotko (ref. 11) and Brown (ref. 12) have shown that the 

parallel flow and negligible viscous dissipation approximations 

are acceptable at moderate supersonic speeds but can break 

àown in strongly hypersonic boundary layers. 

The formulation ~s completed by a specification of 

the boundary conditions. Consider first the outer edge y = Ó 

of the boundary layer where the mean flow gradients vanish. 

Here the viscous effects on the perturbation field are taken 

to vanish exponentially (ref. 11) while the remaining inviscid 

solutions are assumed to be bounded and free from any exter­

nally-imposed disturbances such as inward-running shock waves. 

Thus denoting MeN = Mesin~ we have the requirements 

~ 

H(6) = 0 

dP (6) = _ i (Ir-ie N2 - l)P ( ê ) 
dy (8 ) 

which imply, respectively, that the perturbations become 

adiabatic and that the corresponding pressure field involves 

either simple Mach waves (MeN> 1) or exponentially-decaying 

signals (MeN < 1). Now coosider the inner boundary conditions 

on the wall in the general case where there may be mass 

transfer across it, taking viscous and heat conduction effects 

into account. By overall mass conaervation across the gas-solid 

interface, we have that 
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• 
where mw is the mean surface mass lOBS rate, o 

• 
~m its corres­w 

ponding perturbation due to ablative response to boundary layer 

heat transfer perturbations (as calculated below), and p the 
g 

density in the gas phase. In terms of the foregoing complex 

notation, this bound~ry condition becomes 

-
V(O) 

. dRo 
(~ --- (0) + p(O») 
how dy 

The presence of viscosity requires the no slip conditions which 

under the present approximations are that W(x,z,y ) = U(x,z,y ) w w 
= 0; hence we obtain the single equivalent condition 

-
Q(O) ( 0 ) (10) 

Finally, there are the thermal boundary conditions on the 

surface. If it is non-ablating and held at some fixed tempera~ 

ture Tw we require on the mean line that o 
dT O 

T'(x,z,O) = -yw(~) 

dRo 
R(O) = iE (0) dy 

or 

(lla) 

whereas if the surface heat transfer rate is considered fixed, 

we require 

- dHo(O) 
~ dH(O) + ~(O) ~ 0 

Ow dy dy (llb) 

However, if the surface is undergoing rapid equilibrium steady­

state sublimative ablation at some "ablation temperature" 

(T ) bl such that the mass fraction of the ablation specie wa. 
in the gas adjacent to the wall is essentially unity (i.e., 

the partial pressure is approximately equal to the total gas 

pressure), then neglecting gas phase chemical reactions leads 

to the condition that 
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dh 
h(x,z,y ) = hO(x.z.y ) + ( abl) (pw-p-) 

w w dp 0 -
or 

-
H (0) = 

dh 
+ ( abl) 

<lp 0 

-p(o) (llc) 

2 
= Rabl Tab1 

dh
abl 

where the Clausius - Clapyron relationship dp 
p Lvap 

g1ves the e~uilibriu~ ablation temperature as a function of 

pressure. the ablation material gas constant Rabl and the heat 

of vaporization L • It is noted that the foregoing boundary vap 
conditions must be replaced by an alternative set of conditions 

when only the inviscid part of the perturbation solution is 

sought, as discussed below. 

Once the perturbation e~uations are solved. the 

results can be used to calculate a number of important physical 

features of the flow. Thus, for example, the skin friction is 

, = (~~) sin~ - (~~) C06~ 
dy w dy w 

which yields in the present approximation the perturbation 

, - 'No = Re (t., expia~) where 

d~o 
(0 ) and 

'No = ~wo dy 

Ll, dQ ( 0 ) + ~(O) 
d~o 

( 0 ) (12) = ~w 
0 dy dy 

Correspondingly, the net perturbation 1n he transfer to the 

surface from the gas (allowing in the general case for heat 

convection due to ablation) is 

. ;' 

iaE;) Ll~ = Re(Ll'l exp where w w 

- dH - dH - ;-. 
-2.(0) • 

Ll'W = ~ Ow dy 
(0 ) + \.1(0) m H(O) ho Llm (13) dy Wo w w 
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2.2 lnviscid solutions 

Consider now the inviscid part of the disturbance 

field as determined by discarding the viscous terms on the 

right hand sides of eqs (2-4). Lighthill (ref. 1) has shown from 

these equations that the pressure field P can be described 

independently of the velocity, density and temperature by the 

following second order linear differential equation involving 

only the mean flow Mach number profile: 

td 2 dH / dy d 2 ) ~ 
- - 2 (0 - + a (H

oN 
- 1) P = 0 

dy2 MO dy 
(14) 

Once this equation is solveü, the corresponding inviscid 

velocity and enthalpy perturbations follow directly from eqs. 

(2-4). In part icular eq. (4) yields the interesting result that 

~ 

H(y)inviscid (y) 

which shows that the total enthalpy perturbation in the in­

viscid flow is proportional to the local mean flow total en­

thalpy gra~ient and the local perturbed streamline slope and 

has a maximum exactly in the streamline valleys (i.e., H leads 

V by ;) regardless of the e~ge Mach number. 

The solution of eq. (11) must satisfy the outer 

boundary condition (8); the proper inner boundary condition 

to use, however, requires some care since the solution possesses 

a singularity at y = 0 where Mo ~ 0 (refs. 1,8). This difficulty 

can be avoided by imposing a kinematical tangency condition 

v' = qo(dYw/dx) = Eaqo(Yf)cosa~ for a wavy wall placed at some 

appropriate level Yf > 0 (su~h that qo(Y f ) > O)above the actual 

surface; thus, sUbstituting V = Eaqo into the inviscid form of 

eq. (3), one finds the equivalent inne~ inviscid boundary 

condition: 

dP 
dy (y f) . . . 

lnV1SCld 
(16) 
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On physical grounds, this "out-off" distance Yf represents 

the viscous displacement effect due to the influence of vis­

cosity (no slip) on the perturbation velocity field near the 

surface; it can be specified by a consideration of these 

viscous effects, as described below. 

Various methods of solution to eq. (14) have been 

studied by previous investigators. Lighthill (ref. 7) examined 

the general analytical structure of its two linearly-inde­

pendent solutions, and also discussed closed form asymptotic 

solutions in the limits of either smallor large ao values. 

Application to a highly-idealized wav~ wall problem. wherein 

the boundary layer is approximated by a Mach number discon­

tinuity 50 as to obtain a closed form solution, has been 

studied by rnger (ref. 13). The results indicated that the 

mean boundary layer vorticity can significantly influence the 

wal 1 pressure signature and hence that a more detailed 

numerical study of solutions to eq. (14) for realistic boundary 

layer profiles was warranted. Some preliminary results of 

such a study have been obtained for a continuous Mach number 

distribution representative of a turbulent boundary layer 

(ref. 14). An important feature of the study was the develop­

ment of a novel "top down" integration scheme whereby the 

split boundary value problem for eq. (14) is converted into 

an equivalent but more tractible initial vaiue problem. In 

this scheme, a downward integration is initiated at y = 0 with 

the known solution for uniform flow past a wavy wall; then, 

at any 0 < y < 0 within the boundary layer. the resulting P(y) 

defines a streamline via eq. (3) to which an effective wavy 

wallof different amplitude and phase (relative to those at 

the outer edge) can be matched. By simply correcting for these 

known amplitude and phase distortions. the true pressure 

signature on a wavy wallof amplitude E placed at the desired 

level can be determined. The inward march of this top down 

calculation is truncated at the effective wall position y = Yf. 
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Numerical solutions of eq. (14) by the aforementioned 

"topdown" integration method have been obtained for turbulent 

boundary layer Hach number profiles appropriate to available wavy 

wall experiments (ref. 6). An accurate analytical representation 

of these profiles for this purpose was obtained based on the 

theoretical model of Sontowski (ref. 15) as described 1n ref. 6. 
Figure 2 shows some typical variations of the pressure amplitude 

(relative to uniform potential flow) across the boundary layer. 

including details of the behavior approaching the cut-off near 

the surface. It is seen that the non-uniform velocity field of 

the boundary layer causes a large decrease of this relative 

amplitude at transonic edge Mach numbers. It is also interesting 

to note that. 1n agreement with the predictions of Inger's 

simplified model solution (ref. 13), there is evidently soroe 

special Mach nUI4ber in the vicinity of 1\1 '" /'2 where virtually e 
no amplitude change occurs across the layer. Figure 3 illpstrates 

the corresponding phase variations of the pressure across the 

boundary layer. A significant shift of the pressure maximum 

toward the wavy wall valley is seen to occur as a result of 

the wave reflections fr om the boundary layer profile when 

M < 2. Clearly. the nonunifom flow can cause a predomiantly 
e 

subsonic pressure signature to exist on a wavy wall when the 

external inviscid flow is weakly -to- moderately superson1C. 

2.3 viscous and heat conduction effects i n 

the boundary layer 

We now consider the solution of the full eqs. (1-5). 

Numerical solutions of this formiàable set of equations have 

been studied by Brown (ref. 12) and Lev and Li (ref. 16); 

however, in the present work, we shall seek to illuminate the 

essential p~ysics of the viscous sublayer behavior by means of 

approximate analytical solutions. To this end, we introduce 

the following simplifying assumptions: 

(a) viscous dissipation heating effects on both the mean and 

perturbed flows are neglected, which is consistent wi th t he 

already-accepted limitation to moderate supersonic Mach numbersj 
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(b) Yiscosity and heat conduction effects on the perturbation 

~ield lie essentially within a thin "frictional sublayer" whose 

thickness ó f is small compared to the boundary layer thickness; 

(c) In the case of turbulent motion. this friction sublayer lies 

within the so-called l aminar sublayer such that the mean velocity 

and temperature profiles are approximately linear; 

(d) The frictional sublayer is also small compared to the dis­

turbance wavelength such that (a ó
f

)2 ~< 1. which is quite 

accurate for conditions of practical interest; 

(e) Although compressibility effects due to heat transfer on the 

mean flow are taken into account by an appropriate coordinate 

transformation, the density and viscosity perturbations are 

still neglected, an approxil:lation valid'.l.tGd by the work of Lew 

and Li (ref. 16); 

(f) We take Po~o = constant. 

Introducing the compressibility transformations 

Y = J
Y (~) dy 

pOw 

° 
VM 

poY 
= 

pO w 
(18) 

and the aforementioned assum~tions into eqs. (1-5). they greatly 

simplify to the following : 

dq _ Ho iaP d 2 Q 
iaqoQ + (--2..)yM + (-) = vo" dY ho PO w dy2 w 

(20) 

dH o _ 
d 2H 

iaqoH + "dY'" )yM = vO w dy2 
(21) 

with ~ = 0, (i.e •• P is constant across the friction layer dy 
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as deterroined by the inviscid solution described above) and 

v.here 

and v is the kinematic viscosity. Note that the energy equation 
Wo 

(21) has been uncoupled from the others. The outer boundary 

cpnditions to impose are that the viscous parts of the sqlutions 

for Q, V, and H decay exponentially as y » 6
f

, wherea. the 

inner boundary conditions are given by eqs (9-11) vitb . 
- ~ - ti -U.= P = 0 and V , Y re~lacing V,y respectively. 

In connection with the foregoing equations. it is 

ooted that all terms explicitly involving the mean surface mass 

flow that would otherwise appear have been neglected even though" 

we do in fact allow such a mass flow t~ be present. Not on1y is 

such an ap p roximation consistent with our basic parallel mean 

flow model but it is also known to be a reasonable engineering 

approximation in estimating ablation material response to boun­

dary layer disturbances (ret. 17). 

The solution for the velocity perturbation field is 

obtained as follows. Combining eqs.(19) and (20) by di f feren--
t i ation so as to eliminate Q, we obtain a non- h omogeneou5 

Orr-Sommerfèld equation for V alone: 

T ".T 
!l 0 = ~ ~HO/dY(oj 

Po h. w v 
( 22 ) 

where the nev non-homogeneous term on the right side represents 

the influence of the mean flow heat transfer on the perturbation 

pressure gradient. It is immediately seen that the characteristic 

thickness of the frictional sublayer must be 



- 13 -

Now by introducing ç = y/o f ' the homogeneous part of eq. (22) 

assumes the form of an Airy equation in d 2 V/d ç 2, whose solution 

~s of the form 

where 

x( ç) = r [r 1/2 (1) 2 3/'2 
ç H (-3 (iç) ) 

1/3 

~s an exponentially-decaying function having the properties 

X( ... ) ..... 0 and X(O) = 2rr/3 

Z;'(O) = -1.29 eXP(T) 
X ( 0 ) 

lI;"(O) 
X' ( 0 ) = -1.067 exp(r) 

Z;'''(O) = -7.29 ~ exp(- ..!!2:.) • 
X " ( 0 ) 3 

The corresponding particular non-homogeneous solution of eq. 

(22) can be constructed by analogy with the analysis given by 

Holstein (ref. 18) such that the complete solution can be 

written as 

v*(ç) CX(ç) i cd. dHo/dY 
P (0) • I , ( ç) (24) = A + Bp + + - (d / dY) POw qo w 

where I = !~ç G d~dPi and G ~s a function defined and 

tabulated by Holstein with the properties that G(ç) = ç-1 as 

ç » 1, G(O) = 1.285 i and G'(O) •• 937. Application of the 

inner boundary conditions (9) and (10), using eq. (19) serves 

-* to determine the constants A and Band thereby to re-express V 

~n terms of the single constant C = -CX'(O). Then, requiring 
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that the resulting solution for ~ from eqs. (190 and (24) match 

at r,; » 1 with the inviscid solution given by the left hand 

side of eq. 2 evaluated near the surface, and making use of the 

. t t· t th t I +r(l- _dr) 939· l' 1 asymp 0 l.C proper y a . ~ dr,; +. 1 or r,;» , one 

finds the value of C to be 

ë dH 
n e~i/6 (1+.939 i (h f

o 
) dyo(Q») 

p w 

2 -
where n = aë P(O)/ET N is the ratio of pressure to viscous 

p l' ° 
forces in the perturbation field. Hence the v* solution assumes 

the final form 

xG-~ 
~1 

- .776 e - b) (1 

'Il. 
ë

f + .776e - T .L(I',;) (-) 
ho w 

n e7~i/6 
p 

x 

ë 
+ .939 i (-L) 

ho 
W 

dH J dYo(O) 

dR o - (0») + dY 

(26) 

The first term on the right is the inviscid part of the solution 

which satisfies the kinematic tangency condition on a wavy wall 

rl~ced ~ dist~nce Y above the mean surface. The second term 

repreaents the vi~us displacement effect discussed by Lighthill 

(ref. 8), here generalized to include the effect of compressi­

bility due to heat transfer in the mean floWl Following 

Lightöill and viewiog this second term from a large distance 

from the wall when r,; » 1 (X + 0; I + :r,;lnr,; , it effectively 

vanishes at 

'!Ti 
- b 

r,;f = .776e 

'!Tl. 
-"6 

.776e 
<> dH o 
.....t:.... - (0) 
ho dY 

w 
~ + (---------) tnr,; 

_1 
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which thereby defines an effective friction sublayer thickness 

or equivalent wall position in a purely inviscid solution which 
. . ( 2 I )1/3 (). ~s proport~onal to ~ Po TNoa • Thus. eq. 27 prov~des Wo w 

the effective cut-off distance for the inviscid solution 

discussed earlier. 

The complex shear stress perturbation ~n the present 

approximation is found to be 

~ ~~ow -ji - ( 0 ) ~(O) 6T = lJO w = dY dy2 a 

dl '+ lTi 
of dH o T ~lT -

~e (1+1.62e 3 (0) ) '" 1.37 TNo (~) - (28) 
of Ow dY 

whose amplitude is proportional to the mean shear stress and 

the inverse of the friction sublayer thickness with a phase 

which lags the pressure by an angle ranging from 120 0 in the 

case of a very weak mean heat transfer rate to 60 0 in the 

opposite limit of large heat transfer. This result forcefully 

illustrates the error associated with the frequently-made a 

priori assumption that " ~ p'. 

Turn now to a consideration of the energy transfer 

within the friction sublayer. a feature of the sinusoidal 

perturbation problem heretofore ignored ~n the literature. To 

this end. it is convenient to recast eq. (21) in terms of the 
. . -H - -nev Crocco-l~ke enthalpy var~able H _ H - CoQ where 

Co = (dHO/dY)~ )dqO/dY)w is a kind of Reynolds analogy factor 

and the mean flow obeys the Crocco relation Ho(Y) = how+Coqo(Y). 

Then multiplying eq. (20) by Co and subtracting the result 

from eq. (21) yields 



- 16 -

from .. hich VH has no .. been EUÏmmated. Appropriate to eq. (29) 

.. e have tàe follo .. ing .. all boundary condition options in terms 
. H of the var~able H : 

HH(O) = 0 (fixed .. all temperature) (30A) 

dH* '" 
( 0 ) = -CO ~ ( 0 ) 

dY dY (fixed heat transfer) (30B) 

~c T) p(o) 
H*(O) = 

. p w 

Lvap abl. Pa> 
(rapidly ablating .. all) (30C) 

-* The appropriate boundary condition on H at large ç (as in-

ferred from eq. 13) is that 

li* = liH 
'" inviscici 

Now a comrarison of eqs. (22) and (29) shows that the comple­

mentary homogeneous solution of the latter is proportional to 
-V", and hence X", which decays exponentially for ç » 1. 

Furthermore, taking P g constant across the friction sublayer, 

a particular non-homogeneous integral of eq. (29) which satis­

fies the outer con~ition (31) cau be readily found to be pro­

portional to the functional combination: 

Hence, the complete solution can be written as 

RH 

.. here D is a constant determined by the aforementioned boundary 

conditions (30). Hence, in the case of a fixed .. all temperature, 

we find that the complex heat tr.ansfer perturbation to the 
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l31Ti 
cS dR o "30 

(1+5.40(~) ~ e ) 
Wo 

where the second term in brackets represents the compressibility 

effect of the mean flow heat transfer. Since the right side is 

proportional to the mean heat transfer rate, eq. (33) shows 

that when the mean boundary layer flow is adiabatic, so willbe 

the motion ~n the frictional sublayer. Furthermore, this equa­

tion shows that the heat transfer perturbation lags the pressure 

(Up) ~y an angle ranging from 120° in the weak mean heat 

transfer case to about 42° ~n the case of st rong heat transfer. 

Hence. the frequent:-..y used a priori assumption that t.,q ", .p' 
w · 

ean be appreciably in error. 

Turning to the case of a prescribed heating 

rate to tue wall, eqs. (30B) and (32) yield the surface tempe-

rature perturbation as 

C T (y. ) = p w H(O) ie: 
dH o 
dT" ( 0 ) 

71Ti 
dllo b"' cS dH o .4331Ti 

= .595e: ( 0 ) np e (1+5.40(~) - (0 ) e ) dY Ow dY 

(33) 

Thus for a small fixed rate of heat 1055 from the surface 

(dHo/dY < 0). as was the case in the wavy wall experiments of ref.6 

described below, eq. (33) prediets in the leading approximation 

that the wall temperature perturbation leads the pressure by 

only 30°, i.e., that T' and p' are strongly correlated. max max 
This is eorroborated by temperature-sensitive liquid crystal 

pa int observations (ref. 6). 

Finally, in the ablating wall case, eqs. (30C) and 

(32) yield the following gas phase relations that will be 

useful later : 



H(O) = iE 
dHO 

dY 
(0) + 

dH (0) = .729 e 
dY of 

- 18 

dH O 
-)+ dY 

Figure 4 gives a schematic summary of the main 

~ualitative results of the present analysis on the relative 

phasing of the surface pressure, shear and heat transfer per­

turbations for the case of fixed surface temperature. In 

general, there are two different physical extremes: the first 

pertains to either subsonic external flow or supersonl.c ex­

ternal flow with a relatively thick boundary layer aoO > . 1 

such that the flow near the wall is effectively subsonic, the 

second pertains to supersonic external flow with aoO « 1 

such that the pressure field is effectively an inviscid super­

sonic one. In the former regime, the maximum pressure occurs 

in the surface valleys while the shear and heat transfer maxima 

lie either slightly downstream of the maximum slope points in 

the case of weak mean heat transfer (in agreement with Benjamin's 

analysis (ref. 9)) or between the valleys and the maximum slope 

points in the opposite case of large heat transfer. Clearly, 

when the heat transfer rate and aoo are both sufficiently large, 

the heat transfer perturbation can have a significant component 

in the valleys of the surface. In the other regime where 

aoo « 1, all these maxima have shifted downstream so as to 

place the pressure maXl.mum at its 'linearized' supersonic posi­

tion and the shear and heat transfer maxima around the surface 

crests. In all cases, it is noted that the shear and heat 

transfer perturbations are nearly in phase. 
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3. DISTURBANCES WITHIN A RAPIDLY 

ABLATING WAVY WALL 

3.1 General considerations 

The foregoing analysis presents a set of approximate 

relations governing the gas dynamic disturbances within the 

boundary layer adjacent to a wavy wall, including the pos si­

bility of mass 1055 from the surface. In this section, we now 

seek to examine the corresponding ablative response of the 

vall material to these boundary layer disturbances and the 

resulting interaction (and possible ~esonance) of the two. 

The interaction between the boundary layer and the 

ablating material is described by an energy flux conservation 

relation across the gas-solid interface on the vavy wall 

surface, vhich reads 

dT 
(~) 

dl" w 
- mw s 

h 
s, v 

vhere À is the thermal conductivity of the wall material, s 
assumed constant, T its temperature and ~w = ~w = ~ by s g s w 
interfacial mass conservation. Accompanying eq. (36) is the 

requirement that the temperature be continuous acrOBS the 

interface, i.e., that Tg = Hiep = Ts • Now application of w w g w 
eq. (36) to the mean surface yields 

dHO 
ëiY (0) -

o 
(a (0) - h (0») 

go so 

dT 
= À ~ 

s dy 
(0 ) 

where hg - h ~ ~Cp -Cp)T + L ~s the effective energy o So g s v ab1 vap 

absorbed by the mean ablation rate. Furthermore, when applied 

to the first order perturbation effects on both sides of the 

interface, af ter sUbtracting out eq. (37) and transferring to 

the mean surface, eq. (36) yields in the present approximation 

that 
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dH ~ dRO 
~WO dY (0) - ~WO(H(O)-iE dY (O)-C p T' (O))-;(hg (O)-h s (0)\ 

s s 0 0 'f 
. 

tlIl!. 
W 

dT 
:: À ~ (0) 

s dy 

-
where TI = T -T = Re(T expia~) is the material temperature s s so s 
distribution perturbation and where use has been made of the 

approximation d2HO/dy2(0) :: 0 and the fact (see below) that 

À (d 2Ts /dy2) = ~ Cp (dT s /dy) • Once the heat conduction 
s 0 w Wo s 0 w 

equation for the ablating solid is solved for the mean and 

perturbed material temperature fields, the corresponding 

ablative mass losses from the surface can be determined fr om 

eqs. (37) and (38). 

3.2 Perturbation analysis of the heat 

conduction equation 

Within the solid material presumed to underly the 

stationary rippled surface illustrated in fig. 1, the tempera­

tur~ distribution Ts{x,y,z) in the presence of a quasi-steady 

ablative mass loss at the surface is given by the three 

dimen~ional h~at conduction equations 

~ 2 d2 d2~ -+-+-
dx 2 dy 2 dz 2 

T 
s 

dT • s 
:: m -w dy 

where we assume that deep within the material (y ~ -~)T ap­s 
proaches some fixed interior value Ts .• Guided by considera­

~ 

tions similar to those used in treating the boun4ary layer gas 

phase perturbations, we wri te T • Ts (y) + Re (T s (y) expia~) 
, s 0 

and by sUbstituting into eq. (39) find that the mean and per-

turbation temperature fields, respectively, are governed by 

the relations 

= Cf> s 
. 
m 

Wo 

dT s 0 -dy 
(40) 

dT • s m -:: 
Wo dy 

( 41) 
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where it is noted that the term a 2T on the left eide of eq.(41) 
s 

represents the effect of heat conduction in the '-direction. 

while the non-homogeneous term on the right side is due to the 

convective heat loss associated with the surface ablation rate 

solution of eq. (40) subject to the boundary perturbation. The 

conäitions T (0) = 
sa 

T and ~s (_w) = T s . is the we11-known 
wab1 0 ~ 

exponential 

T (y) - T • 
sa s. mwOY :1. 

( 0 ) = exp (À Jc ) T - T 
sa s. 5 Ps 

:1. 

(42A) 

with 

(42B) 
dTso 

( 0 ) (T ) À = m CPs -T 
5 äy Wo w abl 

s. 
~ 

The corresponding solution of eq. (41) which vanishes exponen­

tially far below the surface is reaäily found and yie1ds the 

following expression for the complex conductive heat transfer 

perturbation at the surface: 

dT 
À ~ 

s dy 
(0 ) m 

Wo 
+ 2(Ii+k2_1) ( ) ; 

Cp T bl-T Ám k 2 s a si w 

where Ts(O) ~ iE(dTso/dy)w + (H(O)-iE(dHo/dY)w)~Cpg by virtue 

of temperature continuity across the interface and where the 

parameter . k = 2À a/Cp ~ ~ (streamwise heat conduction/abla-
5 5 Wo 

tive heat loss) is introduced directly by the second term on 

the left of eq. 41. As inspection of eq. 43 shows. this para-

meter is an important on~ in control1ing the contribu~ion of 

the ablation rate perturbation to the interfacial heat balance. 
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3.3 Ablation rate perturbation 

Combining eqs. (37) and (42B) serves to determine 

the mean surface mass loss rate in terms of known quantities as 

m 
Wo 

:< 
~w 0 ( dH 0/ dy ) w 

hg (0) - hs' o 1. 

(44) 

since Tabl » Tsi • Thus from (42B) the mean heat conduction into 

the solid is but a small fraction of the boundary layer heat 

transfer to the surface : 

À (dT s 0/ dy ) s w 
J.l (dHo/dy) 

Wo w 
L +C T vap Pg abl 

Turning to the perturbation problem. eq. (38) and (43) yield 

the following expression governing ~m upon using eqs. (33)-(35) 
w 

and (45) 

.. 
~m 

w 

- B(.729 e 

:< .433f2 
p 

(46A) 

and the parameter 

(46B) 

represents the ratio of the ablation material enthalpy change 

from , a pressure disturbance to the ablative energy absorption 

'. 
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caused by the boundary layer heat transfer perturbation. Since 

hs «hg, a k is always small compared to unity for all values 
o 0 

of k and hence 1S not a significant parameter. Similarly, under 

the conditions of st rong ablation and heat transfer to which 

the present approximatio~pertain, the parameter B is small 

compared to unity and can therefore be dropped from eq. (46A) 

with little error. 

In the limit of strong heat transfer, eq. (46A) can 

thus be simplified to the following leading approximation: 

- dH o 

~.34"p 
711" i 

"J . 
( 0 ) - 30 Cps~wohso{O) __ "'2 Dom E dY w (/l+k2_1 )e (47) == (0 ) e h 

2). hg (O ) m go Wo 5 0 

Without resorting to a detailed parametric study of this equa­

tion, a qualitative analysis can be made which demonstrates the 

existence of aresonant interaction between the boundary layer 

and ablation perturbations at one particular wavelength or 

"eigenvalue" aoo. Consider the component of mass loss perturba­

tion in the surface valleys (i.e., the imaginary part of (47» 

which in terms of n = In lei~p is proportional to 
p p 

ClJs~wohso(O) 
2.34Inplsin{~p-420) - 2), hg (0) (/l+k2-1) 

s 0 

(48 ) 

Now in the thin boundary layer limit aoo ~< 1 where ~ ~ 0 and 
p 

k ~ a6 ~ 0, eq. (48) shows that the valley mass 1066 perturba-

tion 1S negative.However,in the opposite limit aoo » 1 where 
11" 

~p ~ 2' a positive value can appear depending on the magnitude 

of the streamwise heat conduction parameter k. Since kitself 

1S proportional to a and numerical results indicate that(ref.6,14) 
> n ~ constant when aoo ~ 0(1), it is seen that a maximum posi~ 

p 
tive value of eq. (48) must occur at one particular value of 

aoo (on the order of unity). This is illustrated by the sketch 

in fig. 5 which shows 

a function of aoo with 

heat conduction within 

the qualitative behavior of eq. 48 as 

~ as a parameter. Provided the streamwise 
a 
the ablation material is taken into 
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account, the present theory indicates that there is a critical 

wavelength of the surface waves (depending on the combined gas 

dynamic and wall material properties) at which the ablation rate 

in the valleys is a maximum and hence at which a self-perpetua­

ting resonant interaction between the boundary layer and abla­

tion surface perturbations can occur. Such a result is of 

obvious importance in possibly explaining the occurance of 

ablation surface cross hatching patterns (ref. 5) and also in 

suggesting how they maybe eliminated by alTering the surface 

material to change the magnitude of the significant parameter k. 
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4. COMPARISONS WITH EXPERIMENT 

Recently, a set of experiments were carried out (ref.6) 

on 2-dimensional compressible turbulent boundary layer flow past 

a wavy wall. Since these experiments afford an opportunity to 

evaluate a number of important aspects of the present theore­

tical analysis, a short account of them and comparisons of the 

results with theory will be presented here. 

4.1 Brief description of tests 

The purpose of the experiment was to measure the 

pressure and temperature along a simulated doubly-infinite 

sinusoidal surface in the presence of a fully-developed tur­

bulent boundary layer at transonic and low supersonic speeds. 

It was carried out in a standard industrial-type "Trisonic" 

wind tunnel, a standard blowdown-to-atmosphere facility with 

a one foot square tes~ section in which the Mach nu~ber 1S 

continuously variable from .3 to 1.25 and is obtainable from 

1.4 to 3.5 by the use of fixed nozzle blocks. An aluminum wavy 

wall model replaced the entire vertical side wall and was 

centered about the transonic v1ew1ng window in the opposite 

side. The model incorporated a three cycle, two-dimensional 

S1ne wave which spanned the test section from top to bottom 

normal to the wind tunnel free stream flow. The wave pattern 

had a one inch wavelength with an amplitude of .030 inch. The 

transonic test section was used at all times, the remaining 

three walls being porous for the transonic runs b~t replaced 

with solid surfaces for the supersonic runs. Overall tests 

were conducted in a Mach number range from 0.8 to 1.8 with 

unit Reynolds numbers from .5 to 1.5 millions per inch. 

The wavy wall region was instrumenteä with thirty 

0.030 inch diameter pressure taps distributed so as to measure 

the phase shift of the peak pressure and to determine if the 

phasing is identical along two adjacent waves. Five scanivalves 

with five psi pressure transducers accurate to one percent were 
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used to measure these pressures. In addition, the temperature 

distribution along the surface was measured by means of a 

liquid crystal paint strip on a 4~ vide by 12" long acrylic 

insert on one side of the vavy wall model parallel to the 

pressure taps. This paint has the advantage of reversibility, 

fast response and the ability to map finer details which cannot 

be derived from thermocouples even at far greater expense (ref. 

19). The temperature distributions vere recorded vith 35 mm 

camera placed normal to the plane of the mOdel. It ~s noted 

that the typical free stream total temperatures ~n these tests 

were higher than the corresponding vall recovery temperatures; 

consequently, the wall was being cooled rather than being heated 

as in fl~ght. 

In addition to these measurements and prior to the 

wav7 wall tests, surveys of the undistmrbed boundary layer 

profile for eacn test condition were made using a standa~d 

twenty-tube survey rake .• These surveys showed that the boundary 

layer was in a fully developed turbulent state in all cases. 

Bome typi~al experimental Mach number protiles are shovn here 

in fig. 6 while values of the measured boundary layer thickness 

are shvwn in fig. 7. Further details on the experimental arran­

gements and techniques can be found in ref. 6. 

4.2 Pressure 4istribution results 

One of the principal objectives of the vavy vall 

tests was to check the theoretically-predicted phase shift in 

pressure across the boundary layer due to the non-uniform flov 

(simple uniform supersonic inviscid flow theory places the maxi­

mum pressure at the maximum wall slope point). A comparispn of 

the theoretical and experimental phase shifts over the complete 

range of test conditions is given in fig. 8. Qualitatively, 

the agreement is quite good as to trends with respect to both 

Mach and Reynolds number; quantitatively, the theory tends to 

overestimate the phase shift angle by about 20° in the transonic 

regime M < 1.4. A comparison of the corresponding results for 
e -
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pressure amplitude is presented in fig. 9. It is seen that the 

magnitude of the pressure perturbation in the transonic regime 

is overestimated by the theory by a factor of two. although the 

mainqualitative trends are again in good agreement with expe­

riment. This is to be expected in view of the linearized nature 

of the theory (although it is to be noted that its inclusion of 

a non_uniform mean flow eliminates the M = 1 singularity other­

wise associated with the linearized solution in uniform flow). 

Indeed, McClure (ref. 20) has found that nou-linear effects 

were large enough even for only a three percent amplitude ratio 
e:: 1 to reduce the peak pressures by as much as a factor of two. 

His results also agree with ours in showing a decrease of this 

discrepancy with incre~sing Mach number. 

An interesting feature of these experiments 1S the 

occurance of a pronounced non-sinusoidal variation or cusp1ng 

at transonic speeds. Hear Mach one, the absolute value of the 

negative pressure coefficient becomes double that of the posi­

tive pressure. Tbis can be seen in fig.10 where the effect of 

Mach number on this cusping trend is clearly illustrated. Since 

the spacing of statie pressure orifices was chosen to de fine 

the phase shift of the peak positive pressure, the details of 

these unexpectedly-cusped shapes are not too well defined. Some 

suggestion of this phenomenon 1S given by Hosokawa's treatment 

of transonic flow past a wavy wall (ref. 21). 

4.3 Surface temperature results 

As discussed above, the wall temperature variation 

along the wavy wall portion of the model shown on the figure 

was estimated directly from the color photograph and the liquid 

crystal color code. In all cases, an unmistakable oscillatery 

temperature variation in the streamwise direct ion was observed 

which was wall correlated with the pressure disturbances. A 

typical example is shown in fig. lJ . , where the corresponding 

wall temperature and pressure coefficient variations of a given 

nun are compared. Bote that the pressure and temperature varia-
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tions very nearly coincide. in qualitative agreement with the 

predictions of the theoretical analysis of Section 2. Although 

it is usually assumed without proof that heat transfer and 

insulated wall temperature disturbances are in phase with the 

corresponding pressure perturbations. it is believed that is 

the first time it has been theoretically proven and experiment­

ally confirmed. 
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5. CONCLUDING REMARKS 

The significant results of this investigation can be 

summarized as follows. 

1. As a consequenreof the parallel mean flow and small distur­

bance approximations, it was shown that a neglect of hypersonic 

viscous dissipation heating effects permits the swept wayy vall 

problem to be treated in terms of an equivalent two-dimensional 

flow perpendicular to the wave crests. 

2. Theory and experiment agree in showing that large changes 

~n phase and amplitude of the pressure and temperature pertur­

bations can occur across a turbulent boundary layer along a 

wavy wall when the wavelength and boundary layer thickness are 

of the same order. Consequently, a subsonic wall pressure dis­

tribution can exist even when the local inviscid flow is mode­

rately supersonic. 

3. The present generalization of Lighthill's earlier work on 

viscous sublayer effects to include heat transfer and compres­

sibility effects has shown that the heat transfer perturbations 

on asolid wallof fixed surface temperature can be significantly 

out of phase (60° to 120°) with the corresponding pressure per 

turbations, in cont?ast to what is of ten assumed a priori. In 

the case of a wall with a g~ven small heat transfer 1055 from 

the surface, the theory predicts a close correlation between p' 

and T' and this has been confirmed by experiment. 

4. In the case of a rapidly ablating wavy wallof a sublimative 

material, an approximàte analysis shows that aresonant inter­

action between the gas dynamic and ablative material disturban­

ces can occur at one particular wavelength provided streamwise 

heat conduction within the surface is taken into account. The 
~Às 

parameter k ~ • involving both the material and boundary 
cp m 

5 w 
layer properties is thus an important one in determining possible 

cross hatching on an ablation surface. 
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In conclusion, the present work suggests several 

areas for further investigation. 

a. Extension of the v~scous sublayer analysis to incmude the 

case where the mean flow profiles are nonlinear, i.e., when 

this sublayer no long er lies within the laminar sublayer of a 

turbulent boundary layer flow. 

b. Improvement of the theoretical model of the ablating wall 

to incluäe partial ablation conditions (ablative specie mass 

fraction significantly less than unity). 

c. A comprehensive parametric study of the present heat 

transfer and ablative wall solutions over a range of aoo, Me 

and (especi~lly) sweep angles ~ to obtain specific numerical 

values of the resonance wavelength as a function of k. 

d. Non-ablating wavy wall expeiiments in the case of a fixed 

surface temperature in which the heat transfer perturbations 

can be measureu anu compared with theory. 
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