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ABSTRACT

Steady small disturbances in a compressible boundary
layer flow past a slightly wavy swept wall are analyzed in=-
cluding the effects of compressibility, heat transfer and pos-
sible ablative response of the wall surface, The theory indi=-
cates that the non=-uniform flow in the boundary layer can
produce & subsonic wall pressﬁre signature even when the local
inviscid flow is moderately supersonic. For an ablating surface
at high heat transfer rates, it is shown that the interaction
of the gas dynamic and surface material disturbances can lead
to a condition of '"resonance" at a certain critical ratio of
boundary layer thickness to surface wavelength., The results
of some recent wind tunnel studies of turbulent boundary layer
flows past & nonablating wavy wall in the Mach number range
8 < M, < 1.8 are also shown to corroborate theoretical pre-

dictions of both pressure and temperature perturbations,







1, INTRODUCTION

This paper describes a study of the gas dynamic
disturbances within compressible boundary layer flow past a
sligntly wave swept wall including the effects of surface
eblation., The results find practical application in engineering
studies of surface disturbance effects on high speed boundary
layer separation and heating (ref, 1, 2), panel flutter (ref.3),
hydrodynamic stability of compressible boundary layers on
deformable surfaces (ref., 4) and ablation surface cross=-
hatching (ref. 5). Since in practice the boundary layer along
the wavy surface is often turbulent, the present investigation
is mainly concerned with this case although the theoretical

results can also be applied equally well to laminar flows.

In Section 2, an approximate linearized theory of
compressible non-uniform flow past a slightly wavy wall is
presented, including the temperature, heat and mass transfer
perturbation aspects of the flow. In particular, the analysis
contains significant extensions of previous work on the viscous
sublayer to include compressibility and heat transfer effects,
In Section 3, the corresponding disturbances within the wall
material are analyzed when the vavy wall is a rapidly ablating
pure sublimator, It is shown that the mutual interaction
between the boundary layer gas dynamic disturbances and these
ablative perturbations can lead to a condition of "resonance"
between them, Section 4 presents a comparison of the present
theory with some recent wind tunnel measurements (ref. 6) of
pressure and temperature disturbances on a non-ablating wavy
wall, Finally, in Section 5 the major results of this study
are summarized and areas for further investigation are dis=-

cussed briefly.,




2. THEORETICAL ANALYSIS

The analysis is based on an equivalent inviscid flow
model of the mean (undisturbed) boundary layer and a linearized
small disturbance treatment of the perturbation field in which
the solution is linearly decomposed into & "slowly=-varying" in-
viscid part which determines the pressure and a "rapidly-varying"
viscous part that is important near the wall., The pressure field
is analyzed first using an approach similar to one developed
some years ago by Lighthill (ref., 7). Some interesting thermo-
aynemic aspects of the inviscid disturbance field are observed
from this analysis., The additional effects of viscosity and
heat conduction are then considered, again on the basis of exe=
tending some work by Lighthill on viscous sublayer effects in
perturbed boundary layer flows (ref, 8), The surface shear and
heat transfer perturbations are determined by this analysis
for solid surfaces with either fixed temperature or heat
transfer ana also for a surface undergoing quasi-steady ablation

due to large heat transfer from the adjacent boundary layer,

2.1 General considerations

We assume steady compressible boundary layer flow of
a perfect gas with unit Prandtl and Lewis numbers, subjected
to steady perturbations sufficiently small that they may be
treated by linearized theory (transonic or hypersonic mean
flows are thereby excluded). Following the arguments of
Lighthill (ref. 7) and Benjamin (ref, 9), the mean flow is
idealized in the first approximation as a rotational plane
parallel shear flow in the x-direction with uniform static
pressure p_ and arbitrary variations of demnsity pol(y), velocity
Up(y), Mach number My(y) and temperature Toly) in the normal
(y) direction. The steady perturbations are taken to be caused
by & stationary rippled surface yw(x) =¢sina lying in the x=-2z plar
as schematically illustrated in Fig. 1, where § = x sin¢=zcos?
is the coordinate perpendicular to the crests, ¢ the sweep

angle of the ripple pattern (here taken as arbitrary), e the



amplitude and a = %; the reciprocal wave length,
Each of the total flow properties is expreséed as
the sum of the mean value and & small perturbation harmonic

in gg; denoting E = exp(igg) we thus write

U= Up(y) + & Uly)

V=E Viy)

W= E W(y)
p=p, +E P(y)
o = poly) + ER(y)
T = Toly) + ET(y)

where it is understood that only the real parts of these gene-
rally-complex quantities are of ultimate physical interest,
In addition, we introduce the following velocity variables

resolved in the g-direction:

qp = Ugsing

~

Q = Using = Wcosy

wh = W secg¢

Then substituting these expressions into the general compressible
Navier-Stokes equations, applying the aforementioned simplifying
assumptions, retaining only first order perturbations and in the
case of turbulent flow making the assumption of quasi-laminar
behavior in the perturbation field (ref., 10), one finally

obtains the following set of ordinary differential equations

governing the perturbation distribution functions Q, 5, 5, etc:
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where y; and u are the mean and pertu

ties, respectively, and where the ener

(6)

rbation effective viscosi=

gy equation (4) has been

written in terms of the mean total enthalpy HO = CPTO + (U§/2)

and its perturbation H = CPT + UOU

CpT + qOUcos¢.

Now it can be seen that if the effects of viscous

dissipation

heating on the temperatu

re field (as represented



by the last two terms of eq. 4) are neglected, the foregoing
equations become independent of the wavy wall sweep angle ¢ and
the parallel mean flow approximation has thus resulted in re=-
ducing the original three-dimensional disturbance problem to

an equivalent two-dimensional one in the direction normal to
the surface waves, Correspondingly, it is noted that this
resolved perturbation problem is independent of the lateral
velocity variable w“, which can be subsequently found from eq.6
after the other equations are first solved. Both Lees and
Reshotko (ref, 11) and Brown (ref. 12) heve shown that the
parallel flow and negligible viscous dissipation approximations
are acceptable at moderate supersonic speeds but can break

down in strongly hypersonic boundary layers,

The formulation is completed by a specification of
the boundary conditions. Consider first the outer edge y = §
of the boundary layer where the mean flow gradients vanish,
Here the viscous effects on the perturbation field are taken
to vanish exponentially (ref., 11) while the remaining inviscid
solutions are assumed to be bounded and free from any exter-
nally-imposed disturbances such as inward-running shock waves,

Thus denoting MeN = Mesin¢ we have the requirements

H(é) = 0 (1)
2_5 (s) =-i(/Me§-1)£>(s) (8)

which imply, respectively, that the perturbations become
adiabatic and that the corresponding pressure field involves

either simple Mach waves (Me,_ > 1) or exponentially-decaying

N

signals (Me, < 1), Now consider the inner boundary conditions

N
on the wall in the general case where there may be mass
transfer across it, taking viscous and heat conduction effects

into account. By overall mass conservation across the gas=-solid

interface, we have that

p mW0+Amw ) Myo
L"&;o‘(x"z'y»r)""°s pso(x'z'o)

vix, zoyw)




. » o
where mwo 1s the mean surface mass loss rate, Amw its corres=-

ponding perturbation due to ablative response to boundary layer
heat transfer perturbations (as calculated below), and pg the
density in the gas phase, In terms of the foregoing complex

notation, this boundary condition becomes

A£1 My, : dH

v _ W ie 0 =
V) = 5oy - e oy (e & (0 + e (0) (9)

The presence of viscosity requires the no slip conditions which
under the present approximations are that W(x,z,yw) = U(x,z,yw)
= 0; hence we obtain the single equivalent condition

T
(0) = ie (
U

- dq0 |

0
3 ) (10)

wo

Finally, there are the thermal boundary conditions on the
surface, If it is non-ablating and held at some fixed temperam

ture Two we require on the mean line that

dTO
T'(x,2,0) = -yw(E§—) or
- dHg
H(O) = ie -7 (0) (11a)

whereas if the surface heat transfer rate is considered fixed,

we require

- - dHg (0)
oy, 9%§Ql + u(0) s = 0 (11v)

However, if the surface is undergoing rapid equilibrium steady-
state sublimative ablation at some "ablation temperature"
(Tw)abl. such that the mass fraction of the ablation specie

in the gas adjacent to the wall is essentially unity (i.e.,

the partial pressure is approximately equal to the total gas
pressure), then neglecting gas phase chemical reactions leads

to the condition that



or

-p_)

dhabl
h(x.z.yw) = ho(x,z,yw) + (—d..P—)Q (Pw

- dHy(0) dh
H(0) = ie p £

P(0) (11c)

2
dh R T
where the Clausius - Clapyron relationship abl . _abl abl

dp pL
vap
gives the equilibrium ablation temperature as a function of

pressure, the ablation material gas constant R p1 @nd the heat

of vaporization Lvap' It is noted that the foregoing boundary
conditions must be replaced by an alternative set of conditions
when only the inviscid part of the perturbation solution is

sought, as discussed below,

Once the perturbation equations are solved, the
results can be used to calculate a number of important physical

features of the flow. Thus, for example, the skin friction is

du . dw
= (y ==) sing = (u =) COoB¢
dy dy
W w

which yields in the present approximation the perturbation

-~

T - TN, = Re(At expiag) vhere

= dqo (O) and
Ny ~ YHw, Ty
~ ~ dq

aq + 0

= — + .
At bw, Oy (0) + u(o0) e (0) (12)
Correspondingly, the net perturbation in he transfer to the

surface from the gas (allowing in the general case for heat

convection due to ablation) is

4 :
Aq. = Re(Aqw exp iag) where

~ " dH
. d e 0 . e v
88, = wo, 57 (0) + u(0) =2(0) ~ h, H(0) - mo,ak,  (13)



2.2 Inviscid solutions

Consider now the inviscid part of the disturbance
field as determined by discarding the viscous terms on the
right hand sides of eqs (2-4). Lighthill (ref. T7) has shown from
these equations that the pressure field 5 can be described
independently of the velocity, density and temperature by the
following second order linear differential equation involving

only the mean flow Mach number profile:

2 dM_/dy g .
B e B e 4 G(H, « 1)} P m D (1k)
dy? Mo dy oN

Once this equation is solvea, the corresponding inviscid
velocity and enthalpy perturbations follow directly from egs.

(2=4), In particular eq. (L) yields the interesting result that

E(y) —<M>'l—(> (15)
Y/inviscid a Qs ¥ 2

which shows that the total enthalpy perturbation in the in-
viscid flow is proportional to the local mean flow total en-
thalpy gracdient and the local perturbed streamline slope and
has a maximum exactly in the streamline valleys (i.e., ﬁ leads

V by %) regardless of the eage Mach number,

The solution of eq. (11) must satisfy the outer
boundary condition (8); the proper inner boundary condition
to use, however, requires some care since the solution possesses
a singularity at y = O where My » O (refs. T7,8). This difficulty
can be avoided by imposing a kinematical tangency condition
v! = qo(dyw/dx) = saqo(yf)cosag for a wavy wall placed at some
appropriate level yp > O (sush that qo(yf) > 0)above the actual
surface; thus, substituting V = egaqy into the inviscid form of
eqe. (3), one finds the equivalent inner inviscid boundary

condition:

daP r 2
E? (yf) = - 1eu2(ooq0) (16)
inviscid Ve
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On physical grounds, this "out-off" distance Yy represents
the viscous displacement effect due to the influence of vis=-
cosity (no slip) on the perturbation velocity field near the
surface; it can be specified by a consideration of these

viscous effects, as described below,

Various methods of solution to eq. (14) have been
studied by previous investigators. Lighthill (ref. 7) examined
the general analytical structure of its two linearly-inde=-
pendent solutions, and also discussed closed form asymptotic
solutions in the limits of either small or large oé values.,
Application to a highly-idealized wavy wall problem, wherein
the boundary layer is approximated by a Mach number discon-
tinuity so as to obtain a closed form solution, has been
studied by Inger (ref. 13). The results indicated that the
mean boundary layer vorticity can significantly influence the
wall pressure signature and hence that a more detailed
numerical study of solutions to eq. (1l4) for realistic boundary
layer profiles was warranted. Some preliminary results of
such a study have been obtained for a continuous Mach number
distribution representative of a turbulent boundary layer
(ref, 14)., An important feature of the study was the develop-
ment of a novel "top down" integration scheme whereby the
split boundary value problem for eq. (1l4) is converted into
an equivalent but more tractible initial value problem., In
this scheme, a downward integration is initiated at y = § with
the known solution for uniform flow past a wavy wall; then,
at any O <y < 6 within the boundary layer, the resulting P(y)
defines a streamline via eq. (3) to which an effective wavy
wall of different amplitude and phase (relative to those at
the outer edge) can be matched. By simply correcting for these
known amplitude and phase distortions, the true pressure
signature on a wavy wall of amplitude ¢ placed at the desired
level can be determined. The inward march of this top down

calculation is truncated at the effective wall position y = Yee
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Numerical solutions of eg. (1ll4) by the aforementioned
"topdown" integration method have been obtained for turbulent
boundary layer Mach number profiles appropriate to available wavy
wall experiments (ref. 6). An accurate analytical representation
of these profiles for this purpose was obtained based on the
theoretical model of Sontowski (ref. 15) as described in ref. 6.
Figure 2 shows some typical variations of the pressure amplitude
(relative to uniform potential flow) across the boundary layer,
including details of the behavior approaching the cut-off near
the surface., It is seen that the non-uniform velocity field of
the boundary layer causes a large decrease of this relative
amplitude at transonic edge Mach numbers, It is also interesting
to note that, in agreement with the predictions of Inger's
simplified model solution (ref, 13), there is evidently some
special Mach number in the vicinity of M, Y2 where virtually
no amplitude change occurs across the layer., Figure 3 illustrates
the corresponding phase variations of the pressure across the
boundary layer. A significant shift of the pressure maximum
toward the wavy wall valley 1is seen to occur as a result of
the wave reflections from the boundary layer profile when
Me < 2, Clearly, the nonunifom flow can cause a predomiantly
subsonic pressure signature to exist on a wavy wall when the

external inviscid flow is weakly -to- moderately supersonic,

2.3 Viscous and heat conduction effects in

the boundary layer

We now consider the solution of the full egs. (1=5),
Numerical solutions of this formidable set of equations have
been studied by Brown (ref. 12) and Lew and Li (ref, 16);
however, in the present work, we shall seek to illuminate the
essential physics of the viscous sublayer behavior by means of
approximate analytical solutions. To this end, we introduce
the following simplifying assumptions:
(a) Viscous dissipation heating effects on both the mean and
perturbed flows are neglected, which is consistent with the

already-accepted limitation to moderate supersonic Mach numbers;



o 1l -

(b) Viscosity and heat conduction effects on the perturbation
field lie essentially within a thin "frictional sublayer" whose
thickness Gf is small compared to the boundary layer thickness;
(¢) In the case of turbulent motion, this friction sublayer lies
within the so-called laminar sublayer such that the mean velocity
and temperature profiles are approximately linear;

(d) The frictional sublayer is also small compared to the dis-
turbance wavelength such that (a éf)z << 1, which is quite
accurate for conditions of practical interest;

(e) Although compressibility effects due to heat transfer on the
mean flow are taken into account by an appropriate coordinate

transformation, the density and viscosity perturbations are

still neglected, an approximation validatgd by the work of Lew
and Li (ref, 16);
(f) We take pyup, = constant.

Introducing the compressibility transformations

Yy p
Y = f (=} dy (17)
OOW
0
~ Oov
vE o= — (18)
DOw

and the aforementioned assumptions into egs. (1-5), they greatly

simplify to the following :

- o
. dav
i1aQ + F = 0 (19)
- dq K .z Lo~
; 02 0 P d2
laqgQ + (-E?)V* + (K_-) ;a = vy, — (20)
Ow 0 ay?
- dHg 2§
iaqoH + (EY-)V* = Vo, 2—% (21)
dyY
with $E « O, (ise.y, P is constant across the friction layer
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as determined by the inviscid solution described above) and

where
T. Y
(dQO) No
qo = musman Y ~
AdY v UVO

2

H dH,
Rt (‘?rvz—)v/how)‘f

and vy is the kinematic viscosity. Note that the energy equation
(21) has been uncoupled from the others, The outer boundary
conditions to impose are that the viscous parts of the sqlutions
for é, Q, and H decay exponentially as y >> 6f, whereas the
inner boundary conditions are given by egs (9-11) with

-~

i = p =0 and V¥, Y replacing V,y respectively.

In connection with the foregoing equations, it is
poted that all terms explicitly involving the mean surface mass
flow that would otherwise appear have been neglected even though
we do in fact allow such a mass flow to be present, Not only is
such an approximation consistent with our basic parallel mean
flow model but it is also known to be & reasonable engineering
approximation in estimating ablation material reéponse to boun-

dary layer disturbances (rer. 17).

The solution for the velocity perturbation field is
obtained as follows., Combining eqs.(19) and (20) by differen=
tiation so as to eliminate (, we obtain a non-homogeneous

Orr-Sommerfeld equation for V alone:

——

d2 ) TNO dzvié 02 d}io/dY(O) .
{vow —_— - 1la Y} = 5 o P(0) (22)
ay? Mo ay?2 Oy 0y

where the new non-homogeneous term on the right side represents
the influence of the mean flow heat transfer on the perturbation
pressure gradient, It is immediately seen that the characteristic

thickness of the frictional sublayer must be
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2 1/3
§p = (uo/porNoa) .
Now by introducing ¢ = y/df, the homogeneous part of eq. (22)
assumes the form of an Airy equation in d2V/dz2, whose solution
is of the form
V = A + Br + cx(z)
where

x(g) = JC

is an exponentially-decaying function having the properties

4 (1) :
J 1/2 2 (ig)3/2] dg| dg (23)

H1/3 (3

x(®) = 0 and x(0) = 2n/3

fL%%% -1.29 exp(%})

"(0)
x' (0

!"(0) _ . _T_T_i
))(L—“-Z_O—y = =7.29 1 exp(- 3 e

The corresponding particular non-homogeneous solution of eq.

-1.067 exp(%})

(22) can be constructed by analogy with the analysis given by
Holstein (ref. 18) such that the complete solution can be

written as

3 i g dH0/dY e

v = A+ Bp + ¢ + ( ) P(O) » I (2k)
(z) p x(z) b0, \3q,7d% 1(z)

where I = fgg G dgdeg and G is a function defined and

tabulated by Holstein with the properties that G(g) = z~! as

z >> 1, G(0) = 1,285 i and G'(0) = ,937. Application of the
inner boundary conditions (9) and (10), using eq. (19) serves
to determine the constants A and B and thereby to re-express v

in terms of the single constant C = -cyx'(0). Then, requiring
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that the resulting solution for Q from egs. (19.) and (24) match
at ¢ >> 1 with the inviscid solution given by the left hand
side of eq. 2 evaluated near the surface, and making use of the
asymptotic property that I +z{1l- %%) + +.939i for ¢ >> 1, one
finds the value of C to be

T

N, : §. dH
" g i/6 . f 0
C = 1,29 1ea6f (uwo) Qp e"= (l+.9391 (E;;) E?_(O)) (25)

where QP = aéi P(O)/eTN is the ratio of pressure to viscous
0 -
forces in the perturbation field. Hence the V™ solution assumes

the final form

T
N 5
~ ~ 0
Vx-vi(o) = gaqp(Y) + l.29eu6f (=) @ e7"1/6
Vwo
uE= 8 dH

- . (_f
(o - 5y - 176 e °) (1 + L9301 (5-) 7 () +

- § dH

77 J 5 0
+ .TT6e £e) (5=) g72(0) (26)

The first term on the right is the inviscid part of the solution
which satisfies the kinematic tangency condition on a wavy wall
placed a distance Y above the mean surface. The second term
represents the visous displacement effect discussed by Lighthill
(ref. 8), here generalized to include the effect of compressi=-
bility due to heat transfer in the mean flows Following
Lighthill and viewing this second term from a large distance
from the wall when ¢ >> 1 (x - 03 I » zang , it effectively

vanishes at

N mi =1

T 6 & aH,
ri ATOE i o g (0)
i w
Cf = ,776e K3 1 + ( ) Lng (27)

§ dH,

4 ) i
l+°9391(EF;) v (0)
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which thereby defines an effective friction sublayer thickness
or equivalent wall position in a purely inviscid solution which
1/3

is proportional to (uf,o/pow rNca) + Thus, eq. (27) provides

the effective cut-off distance for the inviscid solution

discussed earlier.,

The complex shear stress perturbation in the present

approximation is found to be

. 3 iug, g2y*
8T = uo, ¥ (0) = —= 9—%—40)
o day
L. i
e 3 17w -_— § dHj
= 1,37 1, —= e (1+1.62e 3 (mi) — (0)) (28)
No (Sf how ay

whose amplitude is proportional to the mean shear stress and
the inverse of the friction sublayer thickness with a phase
which lags the pressure by an angle ranging from 120° in the
case of a very weak mean heat transfer rate to 60° in the
opposite limit of large heat transfer. This result forcefully
illustrates the error associated with the frequently-made a

priori assumption that ' ~ p',

Turn now to a consideration of the energy transfer
within the friction sublayer, a feature of the sinusoidal
perturbation problem heretofore ignored in the literature., To
this end, it is convenient to recast eq. (21) in terms of the
new Crocco-like enthalpy variable g* = 8 - COQ where

Co = (dHp/dy), is a kind of Reynolds analogy factor

(dqg/ay),,

and the mean flow obeys the Crocco relation Hy(Y) = h0w+Coqo(Y).
Then multiplying eq. (20) by C; and subtracting the result
from eq. (21) yields

T . - T
) No . ]‘.GCOP NO
IR oy P R i hy +Cq(=——)Y (29)
Ow Y 0 0
Y= Mo POy~ 0y v Mo
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from which V® has now been elimimated. Appropriate to eq. (29)
we have the following wall boundary condition options in terms

of the variable H*:

H®(0) = 0 (fixed wall temperature) (304)

an* g

i (0) = =Cy 7 (0) (fixed heat transfer) (30B)

. c_T? Bie) A

H*(0) = L—u (rapidly ablating wall)  (30C)
vep abl Po

-~

The appropriate boundary condition on H® at large ¢ (as in=-

ferred from eq. 13) is that
C 5 a62C ;
* ~ % 0 £70

i = H. . 3 = = 1
inviscid roNy/vow MOy, (31)

Now & comparison of eqs. (22) and (29) shows that the comple-
mentary homogeneous solution of the latter is proportional to
G", and hence x", which decays exponentially for g >> 1.
Furthermore, taking ; = constant across the friction sublayer,
a particular non-homogeneous integral of eq., (29) which satis=-
fies the outer conaition (31) can be readily found to be pro-

portional to the functional combination:

Coé

0 To

¢+ —= (X)),
Ow Hoy

Hence, the complete solution can be written as

.
ad CoP C To [
e g 0" Yy f
HE* = Dy"(g) + - (6(z) + ———mem (32)
0W Ow Ow

where D is a constant determined by the aforementioned boundary
conditions (30). Hence, in the case of a fixed wall temperature,

we find that the complex heat transfer perturbation to the




surface 1is

b 137wi
- dH : 3 mi 6, dHg 30
b, = .h33qu EY—-(O) E; QP e [l+5.h0(3;;) v e ) (33)

wvhere the second term in brackets represents the compressibility
effect of the mean flow heat transfer., Since the right side is
proportional to the mean heat transfer rate, eq. (33) shows

that when the mean boundary layer flow is adiabatic, so will be
the motion in the frictional sublayer. Furthermore, this equa=
tion shows that the heat transfer perturbation laés the pressure
(QP) by an angle ranging from 120° in the weak mean heat
transfer case to about 42° in the case of strong heat transfer.
Hence, the frequently used a priori assumption that Aiw'vp'

can be appreciably in error,

Turning to the case of a prescribed heating
rate to tne wall, eqs. (30B) and (32) yield the surface tempe=-

rature perturbation as

- . dH,
CpT(yw)= H(O) = ie T (0)
mi
dH, 3 §p  dlp «4337mi
«595¢ 3y (0) Qp e (l+5.h0(gg;) i (0) e )

(33)

Thus for a small fixed rate of heat loss from the surface

(dl,/dY < 0), as was the case in the wavy wall experiments of ref.6
described below, eq. (33) predicts in the leading approximation
that the wall temperature perturbation leads the pressure by

only 30°, i.e., that Téax and péax are strongly correlated,

This is corroborated by temperature-sensitive liquid crystal

paint observations (ref. 6).

Finally, in the ablating wall case, eqgs. (30C) and
(32) yield the following gas phase relations that will be

useful later :
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2 ~

. dHg R C_T
H(O) = ic = (0) + (—R%) ~ Z20) (34)
abl, D
vap ©
T3 -
dH e - . GHp A,
ay (0) =129 3= (A(0)-ie )+ (g (35)

Y0/ eq.33

Figure L4 gives a schematic summary of the main
qualitative results of the present analysis on the relative
phasing of the surface pressure, shear and heat transfer per-
turbations for the case of fixed surface temperature. In
general, there are two different physical extremes: the first
pertains to either subsonic external flow or supersonic ex-
ternal flow with a relatively thick boundary layer adg > 1
such that the flow near the wall is effectively subsonic; the
second pertains to supersonic external flow with ady << 1
such that the pressure field is effectively an inviscid super-
sonic one. In the former regime, the maximum pressure occurs
in the surface valleys while the shear and heat transfer maxima
lie either slightly downstream of the maximum slope points in
the case of weak mean heat transfer (in agreement with Benjamin's
analysis (ref., 9)) or between the valleys and the maximum slope
points in the opposite case of large heat transfer, Clearly,
when the heat transfer rate and a§; are both sufficiently large,
the heat transfer perturbation can have a significant component
in the valleys of the surface., In the other regime where
ady << 1, all these maxima have shifted downstream so as to
place the pressure maximum at its 'linearized' supersonic posi=-
tion and the shear and heat transfer maxima around the surface
crests, In all cases, it is noted that the shear and heat

transfer perturbations are nearly in phase,



- 19 =

3., DISTURBANCES WITHIN A RAPIDLY

ABLATING WAVY WALL

3.1 General considerations

The foregoing analysis presents a set of approximate
relations governing the gas dynamic disturbances within the
boundary layer adjacent to a wavy wall, including the possi=
bility of mass loss from the surface, In this section, we now
seek to examine the corresponding ablative response of the
wall material to these boundary layer disturbances and the

resulting interaction (and possible resonance) of the two.,

The interaction between ithe boundary layer and the
ablating material is described by an energy flux conservation
relation across the gas-so0lid interface on the wavy wall

surface, which reads

. . ar_ .
(u E;) = By hg,w = A (dy ) - My ¢ hs,w (36)

where A is the thermal conductivity of the wall material,

assumed constant, Ts its temperature and ﬁwg = ﬁws =m, by
interfacial mass conservation. Accompanying eq. (36) is the
requirement that the temperature be continuous acroes the
interface, 1.e., that Tgw = Hw/Cpg = Tsw' Now application of

eq. (36) to the mean surface yields

dHg aT

s - m - = bl
wooar (0 - m, o (B (0) =g (0)) =, —2t (0) (37)
where h - h = éCp =Cy )T + L is the effective ener
gO 5, ‘ PS Pg wa.bl vap 8y

absorbed by the mean ablation rate., Furthermore, when applied
to the first order perturbation effects on both sides of the

interface, after subtracting out eq. (37) and transferring to

the mean surface, eq. (36) yields in the present approximation
that
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- - dHg - : ~
dH ® . . .
Mo ar (0) - mwO(H(O)-le T (0)-CPSTS(O)}{hSO(O)-héo(O)) bm_
dTS
= A Fra (0) (38)
where Té = Ts'Ts = Re(Ts expiaf) is the material temperature
0

distribution perturbation and where use has been made of the
approximation d%Hy/dY2(0) = 0 and the faét (see below) that
As(dszo/dyZ)w = ﬁwOCps(deo/dy)w. Once the heat conduction
equation for the ablating solid is solved for the mean and
perturbed material temperature fields, the corresponding
ablative mass losses from the surface can be determined from

eqs. (37) and (38).

3.2 Perturbation analysis of the heat

conduction eguation

Within the solid material presumed to underly the
stationary rippled surface illustrated in fig., 1, the tempera-
ture distribution Ts(x,y,z)‘ in the presence of a quasi-steady
ablative mass loss at the surface is given by the three

dirensional heat conduction equations

d2 g2 s A
Ag * i Ts = 0y T3
dx?2 dy? qz? y

(39)

where we assume that deep within the material (y - -w)Ts ap=-
proaches some fixed interior value Tsye Guided by considera=
tions similar to those used in treating the boundary layer gas
phase perturbations, we write T, » Tg (y) + Re (is(y) expiag)
and by substituting into eq. (39) fand that the mean and per-
turbation temperature fields, respectively, are governed by

the relations

dZTSO ar

° SO
Ag dy 2 - CPs mwo dy (ko)
a2T_ = dT_ " R
- 2 - g R
Ag a?T ) = Cp vy A9 (Cp, 5 Am, (L1)




- 9] =
where it is noted that the term azTS on the left eide of eq.(Ll)
represents the effect of heat conduction in the g-direction,
while the non-homogeneous term on the right side is due to the
convective heat loss associated with the surface ablation rate

perturbation., The solution of eq. (L4O) subject to the boundary

conditions T (0) = B and ?g (=) = Tg. is the well=-known
. 0 abl 0 .
exponential
T (y) - T .
S y S . my o )
o) = 7T = exp (A o ) (424)
S 0 i
i
with
dTgg .
A - (0) = m C (T -T ) . (L2B)
s ay wg Ps Vool Si

The corresponding solution ef eq. (41) which vanishes exponen-
tially far below the surface is readily found and yields the
following expression for the complex conductive heat transfer

perturbation at the surface:

-~

aT C, T (0) e -
3 . V1+k2-1 :
3 & 2 s S : n(X2TE =1 -
‘e T3 (0) (1+d1+%2) = Bt 2( > ) Cp (T e Tsi)Amw
(43)

where TS(O) = 1e(deo/dy)w + (H(O)-le(dHo/dy)wL//;Pg by virtue

of temperature continuity across the interface and where the
parameter. k = 2Asa/CpS&wO ~ (streamwise heat conduction/abla-
tive heat loss) is introduced directly by the second term on
the left of eq. 41l. As inspection of eq. 43 shows, this para-
meter is an important one in controlling the contribution of

the ablation rate perturbation to the interfacial heat balance,
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3.3 Ablation rate perturbation

Combining eqs. (37) and (42B) serves to determine

the mean surface mass loss rate in terms of known guantities as

dH
P My, (dHo/ay) by T (0) (41
vo hSO(O) = By Lvap CpgTabl
since Tabl >> Tsi' Thus from (42B) the mean heat conduction into

the solid is but a small fraction of the boundary layer heat

transfer to the surface

A (dTg /ay) hg o =hg; C, T

Ps “abl
= ) = (L5)
qu(dHO/dsﬂw hgo-h L

81 vap+CPgTabl

Turning to the perturbation problem, eq. (38) and (L43) yield
the following expression governing Aﬁw upon using egs. (33)=(35)
and (45) :

1371

om % mi T30 6, aH,
P 3 (l+ak) = .)433QP e (1+5.’40 e (-ﬁ-—-)(a—?—)w)
wo f 8w
Ii
c M hg 2 ) dH
Pg "Wy I £ 0
= 2\ (O) ( 1+k? -1) e (E")(EY_‘) (M6A)
s w W
Ti
3 §,  dHg
729 e+ ( ) ( )
t o )

where a, = (h., /h,. ) (2(/l+k2-l)/k2) - and the parameter
k 80" &g

Q Ti f’(O)/pw
B = —LLva JETvCom (LEB)
P abl

represents the ratio of the ablation material enthalpy change

from , a pressure disturbance to the ablative energy absorption
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caused by the boundary layer heat transfer perturbation. Since
hso << hgo, ay is always small compared to unity for all values
of k and hence is not a significant parameter. Similarly, under
the conditions of strong ablation and heat transfer to which
the present approximations pertain, the parameter B is small
compared to unity and can therefore be dropped from eq. (L46A)

with little error.

In the limit of strong heat transrfer, eq. (46A) can
thus be simplified to the following leading approximation:

s dH _ Ini XL
Am e = (0) | 30 Eo PergBg L O) 2

LA, " 2.,34a_ e s s A (/1+k2-1)e (47)
o h, (0) P 2x h, (0)

wo g0 s &

Without resorting to a detailed parametric study of this equa-
tion, & qualitative analysis can be made which demonstrates the
existence of a resonant interaction between the boundary layer
and ablation perturbations at one particular wavelength or
"eigenvalue" ady. Consider the component of mass loss perturba=-
tion in the surface valleys (i.e., the imaginary part of (4T))

which in terms of 2, = IQplel¢p is proportional to

(/1+k2-1) (48)
2xg hgo(o)

2.3h|nplsin(¢P-h2°) -

Now in the thin boundary layer limit ady << 1 where ¢_= O and
k v ad » 0O, eq. (48) shows that the valley mass loss perturba-
tion is negative,However,in the opposite limit ady >> 1 where
o - %, & positive value can appear depending on the magnitude

b
of the streamwise heat conduction parameter k., Since k itself

is proportional to a and numerical results indicate that(ref.6,1h4)

QP + constant when aé R 0(1), it is seen that a maximum posi=
tive walue of eq. (48) must occur at one particular value of

adg (on the order of unity). This is illustrated by the sketch
in fig. 5 which shows the qualitative behavior of eq. 48 as

a function of aéy with % as & parameter, Provided the streamwise

heat conduction within the ablation material is taken into
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account, the present theory indicates that there is a critical
wavelength of the surface waves (depending on the combined gas
dynamic and wall material properties) at which the ablation rate
in the valleys is a maximum and hence at which a self-perpetua-
ting resonant interaction between the boundary layer and abla-
tion surface perturbations can occur., Such a result is of
obvious importance in possibly explaining the occurance of
ablation surface cross hatching patterns (ref, 5) and also in
suggesting how they may be eliminated by alrering the surface

material to change the magnitude of the significant parameter k.
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L, COMPARISONS WITH EXPERIMENT

Recently, a set of experiments were carried out (ref.6)
on 2-dimensional compressible turbulent boundary layer flow past
a wavy wall. Since these experiments afford an opportunity to
evaluate a number of important aspects of the present theore-
tical analysis, a short account of them and comparisons of the

results with theory will be presented here.,

L,1 Brief description of tests

The purpose of the experiment was to measure the
pressure and temperature along a simulated doubly-infinite
sinusoidal surface 1in the presence of a fully-developed tur-
bulent boundary layer at transonic and low supersonic speeds.
It was carried out in a standard industrial-type "Trisonic"
wind tunnel, a standard blowdown-to-atmosphere facility with
a one foot square test. section in which the Mach number 1is
continuously variable from .3 to 1,25 and is obtainable from
l.4 to 3.5 by the use of fixed nozzle blocks., An aluminum wavy
wall model replaced the entire vertical side wall and was
centered about the transonic viewing window in the opposite
side. The model incorporated a three cycle, two-dimensional
sine wave which spanned the test section from top to bottom
normal to the wind tunnel free stream flow, The wave pattern
had a one inch wavelength with an amplitude of ,030 inch., The
transonic test section was used at all times, the remaining
three walls being porous for the transonic runs but replaced
with solid surfaces for the supersonic runs, Overall tests
were conducted in a Mach number range from 0.8 to 1.8 with

unit Reynolds numbers from .5 to 1.5 millions per inch,

The wavy wall region was instrumented with thirty
0,030 inch diameter pressure taps distributed so as to measure
the phase shift of the peak pressure and to determine if the
phasing is identical along two adjacent waves, Five scanivalves

with five psi pressure transducers accurate to one percent were
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used to measure these pressures., In addition, the temperature
distribution along the surface was measured by means of a
liquid crystal paint strip on a L" wide by 12" long acrylic
insert on one side of the wavy wall model parallel to the
pressure taps., This paint has the advantage of reversibility,
fast response and the ability to map finer details which cannot
be derived from thermocouples even at far greater expense (ref,
19). The temperature distributions were recorded with 35 mm
camera placed normal to the plane of the model, It is noted
that the typical free stream total temperatures in these tests
were higher than the corresponding wall recovery temperatures;
consequently, the wall was being cooled rather than being heated

as in flight.

In addition to these measurements and prior to the
wavy wall tests, surveys of the undisturbed boundary layer
profile for eacn test condition were made using a standagd
twenty-tube survey rake. These surveys showed that the boundary
layer was in a fully developed turbulent state in all cases.,
Some typiecal experimental Mach number profiles are shown here
in fig. 6 while values of the measured boundary layer thickness
are shewn in fig. T. Further details on the experimental arran-

gements and techniques can be found in ref, 6.

4,2 Pressure distribution results

One of the principal objectives of the wavy wall
tests was to check the theoretically-predicted phase shift in
pressure across the boundary layer due to the non-uniform flow
(simple uniform supersonic inviscid flow theory places the maxi=-
mum pressure at the maximum wall slope point). A comparispon of
the theoretical and experimental phase shifts over the complete
range of test conditions is given in fig. 8. Qualitatively,
the agreement is quite good as to trends with respect to both
Mach and Reynolds number; quantitatively, the theory tends to
overestimate the phase shift angle by about 20° in the transonic

regime Me < 1.4, A comparison of the corresponding results for
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pressure amplitude is presented in fig. 9. It is seen that the
magnitude of the pressure perturbation in the transonic regime
is overestimated by the theory by a factor of two, although the
main qualitative trends are again in good agreement with expe=-
riment. This is to be expected in view of the linearized nature
of the theory (although it is to be noted that its inclusion of
a noneuniform mean flow eliminates the M = 3 singularity other-
wise associated with the linearized solution in uniform flow).
Indeed, McClure (ref., 20) has found that noz=linear effects
were large enough even for only a three percent amplitude ratio
% to reduce the peak pressures by as much as a factor of two.

His results also agree with ours in showing & decrease of this

discrepancy with increasing Mach number,

An interesting feature of these experiments is the
occurance of a pronounced non-sinusoidal variation or cusping
at transonic speeds, Near Mach one, the absolute value of the
negative pressure coefficient becomes double that of the posi=-
tive pressure. This can be seen in fig.l0 where the effect of
Mach number on this cusping trend is elearly illustrated. Since
the spacing of static pressure orifices was chosen to define
the phase shift of the peak positive pressure, the details of
these unexpectedly-cusped shapes are not too well defined, Some
suggestion of this phenomenon is given by Hosokawa's treatment

of transonic flow past a wavy wall (ref, 21).

4,3 Surface temperature results

As discussed above, the wall temperature variation
along the wavy wall portion of the model shown on the figure
was estimated directly from the color photograph and the liquid
crystal color code., In all cases, an unmistakable oscillatery
temperature variation in the streamwise direction was observed
which was wall correlated with the pressure disturbances., A
typical example is shown in fig.ll , where the corresponding
wall temperature and pressure coefficient variations of a given

nun are compared. Note that the pressure and temperature varia-
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tions very nearly coincide, in gqualitative agreement with the
predictions of the theoretical analysis of Section 2., Although
it is usually assumed without proof that heat transfer and
insulated wall temperature disturbances are in phase with the
corresponding pressure perturbations, it is believed that is
the first time it has been theoretically proven and experiment-

ally confirmed.
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2. CONCLUDING REMARKS

The‘significant results of this investigation can be

sumnarized as follows.,

l. As a consequence of the parallel mean flow and small distur-

bance approximations, it was shown that a neglect of hypersonic
viscous dissipation heating effects permits the swept wayy wall
problem to be treated in terms of an equivalent two-dimensional

flow perpendicular to the wave crests.,

2. Theory and experiment agree in showing that large changes
in phase and amplitude of the pressure and temperature pertur-
bations can occur across a turbulent boundary layer along a
wavy wall when the wavelength and boundary layer thickness are
of the same order. Consequently, a subsonic wall pressure dise
tribution can exist even when the Jocal inviscid flow is mode=-

rately supersonic.

3. The present generalization of Lighthill's earlier work on
viscous sublayer effects to include heat transfer and compres=-
sibility effects has shown that the heat transfer perturbations
on a solid wall of fixed surface temperature can be significantly
out of phase (60° to 120°) with the corresponding pressure per
turbations, in cougrast to what is often assumed a priori, In

the case of a wall with a given small heat transfer loss from

the surface, the theory predicts a close correlation between p'

and T' and this has been confirmed by experiment.

L. In the case of a rapidly ablating wavy wall of a sublimative
material, an approximate analysis shows that a resonant inter=
action between the gas dynamic and ablative material disturban-
ces can occur at one particular wavelength provided streamwise
heat conduction within the surface is taken into account. The

o
parameter k A ————ge— involving both the material and boundary

c m
Ps "w
layer properties is thus an important one in determining possible

cross hatching on an ablation surface.,
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In conclusion, the present work suggests several

areas for further investigation.

a. Extension of the viscous sublayer analysis to inckude the
case where the mean flow profiles are nonlinear, i.e.,, when
this sublayer no longer lies within the laminar sublayer of a

turbulent boundary layer flow,

b. Improvement of the theoretical model of the ablating wall
to include partial ablation conditions (ablative specie mass

fraction significantly less than unity).

ce A comprehensive parametric study of the present heat
transfer and ablative wall solutions over a range of ad;, Me
and (especially) sweep angles ¢ to obtain specific numerical

values of the resonance wavelength as a function of k.,

d. Non-ablating wavy wall experiments in the case of a fixed
surface temperature in which the heat transfer perturbations

can be measured and compered with theory.
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