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Abstract—Minimization of the maximum sidelobe level for
a given array geometry, amplitude distribution and nulling
sectors by phase-only adjustment of the element coefficients is
studied. Nonlinear optimization problem for phase distribution
is solved using a novel iterative convex optimization algorithm
which includes mutual coupling effects and exploits small phase
perturbations at each step. Superiority of the algorithm in terms
of the peak sidelobe level and nulling depth achieved over several
optimization methods reported in the most relevant literature
is demonstrated in several case studies. Finally, a case study is
performed to demonstrate added value of the algorithm for mm-
wave 5G application with phase-only radiation pattern forming.

Index Terms—convex optimization, fifth-generation (5G), in-
terference minimization, null steering, phased arrays, phase-only
control, phase tapering.

I. INTRODUCTION

The future 5G antenna systems are expected to serve
multiple users simultaneously in the same frequency band
using a single multi-beam array with Space Division Multiple
Access (SDMA) [1]. Since such systems are dominated by the
interference rather than the noise, suppressing the inter-user
interferences is very crucial for higher communication quality
and capacity [2].

In array synthesis with given element locations, interference
suppression by controlling the complex excitation weights
(amplitudes, phases) at each antenna element provides the most
degree of freedom and best pattern performances. However, it
is also the most expensive strategy due to the need of both a
phase shifter and a variable gain amplifier (or attenuator) per
element. Considering this drawback, phase-only tapering has
been introduced, which exploits the phase shifters used for
beam steering in phased arrays also to obtain low sidelobes
and nulls, while maintaining a relatively simpler feed network
and higher power efficiency as compared to the amplitude-
tapered arrays [3]. Such an approach is more attractive for the
5G market in which system cost is of extreme importance.

Being inherently nonlinear, phase-only pattern design prob-
lem has been studied in the literature by employing a large
variety of synthesis strategies. Phase-only pattern shaping with
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a pre-specified mask was studied using deterministic methods
[4], numerical approaches [5], [6] and population-based opti-
mization techniques like Genetic Algorithm [7]. In [8], best
common amplitude distribution was searched for several beam
shapes (flat-topped, cosecant, pencil) in reconfigurable arrays
with phase-only control using the Intersection Approach. The
same problem was addressed in [9], [10] using Convex Opti-
mization and in [11] using Vector Projection Approach.

Considering multi-user communication aspects, statistical
interference suppression via peak sidelobe level minimization
[12] with phase-only tapering was also studied using Steepest
Descent Method [3], Iterative Fast Fourier Transform [13]
and Iterative Projection Method [14]. Furthermore, it was
shown that, phase tapering is effective in pattern nulling of
both narrow [15] and wide [16] angular sectors. Recently, in
[17], a phase-only method based on Successive Alternating
Projections was used in uniform-amplitude arrays to create
Gaussian-shaped null regions for 5G applications.

In this letter, we propose a novel phase-only, mutual cou-
pling (MC) aware peak sidelobe level (SLL) minimization
and (simultaneous) pattern nulling technique that is based
on Iterative Convex Optimization. The nonlinear problem is
linearized by introducing small phase perturbations at each
iteration. The algorithm performance is compared with several
techniques reported in the literature and its superiority is shown
by examples. Finally, a case study is performed to demonstrate
added value of the algorithm for mm-wave 5G application with
phase-only radiation pattern forming. The rest of the paper
is organized as follows. Section II presents the formulation
of the optimization steps. Section III shows the comparative
simulation results. The conclusions are given in Section IV.

II. FORMULATION OF THE OPTIMIZATION PROBLEM

For an array with configuration given in Fig. 1, the far field,
f i,s, at the ith iteration of the algorithm for a scanned beam,
s, is given by

f i,s(θ, φ) =
N∑
n=1

fn(θ, φ)wi,sn

ejk0(xn sin θ cosφ+yn sin θ sinφ) (1)

where fn is the complex far-field of the nth element when
the field origin is at the element center, k0 is the wavenumber,
(xn, yn) denotes the position of the nth element and wi,sn is
the excitation weight of the nth element at the ith iteration for
a scanned beam, s. The excitation weights are given by

wi,sn = αne
j(Φi−1,s

n +Φi,s
n ) (2)
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Fig. 1. Schematic of a uniform planar array of N patch antennas. θ is the
elevation angle defined as the angle between the observation direction r̂ and
ẑ. The unit vector r̂′ is the projection of r̂ onto the x̂ŷ plane. φ is the azimuth
angle defined as the angle between r̂′ and x̂.

where αn is the pre-given amplitude and Φi,sn is the phase
variation of the nth element at the ith iteration (with respect
to the element phase at the previous iteration) for a scanned
beam, s.

Let us introduce the u-v coordinates as

u = sin θ cosφ, us = sin θs cosφs,

v = sin θ sinφ, vs = sin θs sinφs
(3)

where θs, φs (and the corresponding us, vs) represents the
desired beam pointing direction for a scanned beam, s.

Assuming |Φi,sn | �1, and using the first-order Taylor ex-
pansion, (1) can be approximated and written as

f i,s(u, v) =
N∑
n=1

fn(u, v)αne
jΦi−1,s

n (1 + jΦi,sn )

ejk0(xnu+ynv) (4)

The initial phases for the beam s are given by
Φ0,s
n = −k0(xnus + ynvs) (5)

Overall, the optimization problem at the ith iteration of the
algorithm becomes

min
Φi,s

ρi, s.t.


|f i,s({u, v}SL,s)| ≤ ρi
f i,s(us, vs) = 1

|f i,s({u, v}NR,s)| ≤ δ
|Φi,sn | ≤ µ, ∀n ∈ {1, 2, · · · , N}

(6)

where {u, v}SL,s and {u, v}NR,s define the sidelobe and null
regions, respectively. ρi is the maximum SLL to be minimized
at the ith iteration. δ is the suppression level in the null region.
µ defines the upper-bound of the phase perturbations such
that |Φi,sn | �1, which is needed to properly apply the Taylor
expansion in (4).

The optimization problem presented in (6) is a second-order
cone program (SOCP) problem where a linear function is
minimized over the intersection of an affine set and the product
of quadratic cones [18]. For a comprehensive introduction to
SOCP and its applications, the interested readers are referred
to [18], [19]. Many aprroaches exist in the literature to ef-
ficiently solve the SOCP problems. Some examples include

Interior-Point Method (IPM) [18], [20], Reduced-Augmented-
Equation Approach [21], Pivoting Method [22] and Parametric
Approach [23]. Today, SOCP problems can be easily solved in
polynomial time by available convex programming toolboxes
[24], [25] using IPM, which is commonly exploited by antenna
researchers [26]–[29]. In this paper, CVX, a MATLAB-based
modeling system for convex optimization, is used to formulate
and solve the problem in (6).

III. SYNTHESIS RESULTS

In this section, the proposed algorithm’s performance is
evaluated by comparative case studies presented in the related
literature with additional realistic, mutual coupling embedded
patterns and 5G-oriented examples. In the simulations, it is
assumed that µ = π/3 and δ = 0.0001. All numerical com-
putations have been carried out on an Intel(R) Core(TM) i7-
4710HQ 2.5GHz CPU, 16GB RAM computer. Each iteration
takes about a few seconds in the linear arrays and an hour in the
considered 64-element planar array for a uniform discretization
step of 0.01 in the u-v plane. It is also worthy to note that in
this work, we do not adopt a stop condition. Instead, we define
a maximum number of iterations and observe the behavior of
the maximum SLL to study its convergence. However, such a
condition can be specified considering the relative change in
the peak SLL in a few successive iterations so that the iterative
process stops when the maximum SLL no longer diminishes.
An example is to stop when 20log(ρi / ρi−1) ≤ 0.01, as applied
in [28]. If there is a peak SLL targeted for a system, it is also
possible to stop the iterations as soon as the aim is reached.

Case-1: First, the results of the presented convex opti-
mization method are compared with the phase-only synthesis
technique presented in [3]. Using the Steepest Descent Method,
the authors of [3] tried to minimize the peak SLL, which is
the same goal function that is used in this paper. As done in
[3], the synthesis is performed on the array factor (AF) where
αn is the same for all n and the phases are even-symmetric.
Note that the even-symmetry can be easily enforced using an
additional constraint, Φi,sn = Φi,sN−n+1 for even N, in (6). The
inter-element spacing, de, is equal to 0.5λ0. The maximum
iteration number is set to 20. The comparison is given in
terms of the maximum SLL, first-null beamwidth (FNBW),
half-power beamwidth (HPBW) and array efficiency (which is
defined as the ratio of the peak power density of the phase
(and/or amplitude) tapered array to the peak power density
of the uniformly excited array with progressive phase shifts

TABLE I. PERFORMANCE COMPARISON BETWEEN THE STEEPEST
DESCENT METHOD IN [3] AND THIS METHOD IN THE CASE OF
PHASE-ONLY ARRAY SYNTHESIS WITH UNIFORM AMPLITUDES.

Steepest Descent
Method in [3] This method

Number of
elements (N )

Peak
SLL
(dB)

FNBW
HPBW
(deg.)

Eff.
(%)

Peak
SLL
(dB)

FNBW
HPBW
(deg.)

Eff.
(%)

20 -15.8 12.5
5.4 81.8 -16.1 12.2

5.2 83.6

40 -17.9 6.3
2.6 76.6 -18.1 6.4

2.7 74.7

80 -20.1 3.4
1.4 69.6 -20.3 3.4

1.4 67.3
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Fig. 2. Results of Case-1 for N=40, (a) normalized array factor (at iteration
number 20), (b) even-symmetric element phases (at iteration number 20), (c)
iterative trend of the maximum SLL.

defined by the scan angle). Table I provides a summary of
the results for the linear array with N = 20, 40 and 80. It
can be seen that the convex optimization provides competitive
or better (especially for the relatively smaller array with N =
20) results. The synthesized array pattern, element phases and
maximum SLL convergence for N = 40 with the presented
method are also given in Fig. 2 for comparison with Case-2,
which is studied next.

Case-2: The AF-only optimization in Case-1 does not con-
sider the mutual coupling effects and may result in unreliable
patterns. In Case-2, full-wave simulations are performed using
a conventional pin-fed patch antenna in a 40-element λ0/2-
spaced E-plane array at a candidate 5G frequency of 28 GHz.
Upon using equi-amplitude element excitations, due to the
difference in the embedded patterns, the AF-only optimized
phases lead to a modified final pattern (compare Fig. 3(a) with
Fig. 2(a)), a maximum SLL of -17.7 dB instead of -18.1 dB and
an efficiency of 74.1% instead of 74.7% as reported in Table
I. By inserting the embedded patterns in the presented MC-
aware method, we are able to synthesize a reliable pattern with
a maximum SLL of -19.0 dB, but with an efficiency of 70.6%.
The maximum iteration number is now set to 25. The E-
field pattern, even-symmetric element phases and convergence
results of the MC-aware optimization with a 40-element E-
plane patch array are shown in Fig. 3.

Case-3: In this part, the aim is to compute the phases of
the array elements for a fixed subarray amplitude weighting in
order to minimize the maximum SLL, as studied in [14]. The
N -element array is partitioned into Q uniform and contiguous
subarrays with a Taylor taper. Two cases are studied here
for direct comparison with the results in [14]: i) N = 128,
Q = 8 and ii) N = 32, Q = 4. It is assumed that the
elements are isotropic and separated uniformly by λ0/2. The
phases are forced to be even-symmetric. For completeness,
the AF’s, element amplitudes and phases for (N,Q) = (128,
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Fig. 3. Results of Case-2 for N=40, (a) far E-field pattern (at iteration
number 25), (b) even-symmetric element phases (at iteration number 25), (c)
iterative trend of the maximum SLL.
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Fig. 4. Results of Case-3 for N=128, Q=8, (a) normalized array factor, (b)
even-symmetric element amplitudes, (c) even-symmetric element phases.
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Fig. 5. Results of Case-3 for N=32, Q=4, (a) normalized array factor, (b)
even-symmetric element amplitudes, (c) even-symmetric element phases.

8) and (N,Q) = (32, 4) are given here in Fig. 4 and Fig.
5, respectively. A comparison with the Iterative Projection
Method in [14] is provided in Table II. It can be seen that the
presented technique outperforms it in terms of the maximum
SLL and efficiency in the case of the large array with N = 128
elements. For the smaller array, the efficiency is 3.7% larger,
while the maximum SLL increases by 0.3 dB.

Case-4: Many pattern control methods in the literature study
pattern-nulling with pre-specified amplitude tapering for SLL
reduction and phase perturbation for creating the zeroes. Here,
we focus on pattern-nulling by phase-control for narrow-sector
interferers as studied in [15]. For fair comparison, we consider
N = 20 isotropic elements with 0.5λ0 regular spacing. Three
nulls are placed at u = {-0.5, 0.4, 0.61}. In [15], the Levenberg-
Marquardt algorithm was used by targeting the array pattern
as the envelope of the 30 dB Dolph-Chebyshev amplitude
taper. At the output, -80 dB null levels were obtained with
a maximum SLL of -25 dB. First, we assume a 30 dB
Chebyshev windowing and optimize the phases to minimize
the maximum SLL while nulling out the interferences. The
results in this case are summarized in Fig. 6. It is seen that
using the proposed method, the null levels become -92 dB
and the maximum SLL is reduced to -28 dB. Second, we
consider a phase-only tapering with equi-amplitude element
excitations for the same array topology and optimization goal,
which is more preferable for reduced design complexity and
increased efficiency. For the uniform-amplitude counterpart,
similar to the Chebyshev tapered array, -92 dB nulls are
observed. However, the maximum SLL becomes -15.6 dB.

Case-5: The problem of broad-sector nulling and simultane-
ous SLL minimization is considered in this part. The proposed
algorithm’s performance is illustrated using the numerical
example in [16] with N = 40 isotropic, λ0/2-spaced elements.
Two sector nulls at u = [-0.8 -0.76] and u = [0.38 0.42]
are desired. The phases are assumed to be odd-symmetric to
reduce the number of calculations as done in [16]. Using a
30-dB Chebyshev initial amplitude taper, sector depths around
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TABLE II. PERFORMANCE COMPARISON BETWEEN THE ITERATIVE PROJECTION METHOD IN [14] AND THIS METHOD IN THE CASE OF UNIFORM
SUBARRAYED ARRAY ANTENNAS.

No phase
taper

Iterative projection
method in [14] This method

Number of
elements (N )

Number of
sub-arrays (Q)

Peak
SLL
(dB)

HPBW
(deg.)

Eff.
(%)

Peak
SLL
(dB)

HPBW
(deg.)

Eff.
(%)

Peak
SLL
(dB)

HPBW
(deg.)

Eff.
(%)

128 8 -25.1 1.0 84.3 -29.2 1.1 78.5 -31.1 1.1 79.2
32 4 -18.6 3.9 86.3 -21.7 4.2 76.6 -21.4 4.0 80.3
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Fig. 6. Results of Case-4 for N=20 with phase-only control, (a) normalized
array factor, (b) element amplitudes, (c) element phases.
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Fig. 7. Results of Case-5 for N=40 with phase-only control, (a) normalized
array factor, (b) element amplitudes, (c) odd-symmetric element phases.

-70 dB and -80 dB were obtained in the linear programming
technique in [16] while having a maximum SLL around -19
dB. For the same initial settings, our method provides sector
depths of -75 dB while keeping the maximum SLL at -22 dB.
The results for this case are summarized in Fig. 7. For phase-
only tapering with a uniform amplitude array, our method is
able to decrease the maximum SLL to -16.2 dB, while keeping
the sector nulls at -75 dB.

Case-6: In the last case, we study SLL minimization for
an 8x8 λ0/2-spaced uniform-amplitude patch antenna array at
28 GHz considering a typical 5G angular cell sector (±15
deg. in elevation and ±60 deg. in azimuth) [30] and using our
phase-only tapering algorithm. The embedded far field pattern
of each patch element is computed to include the impact of
mutual coupling. The beam is steered towards the cell edge,
i.e. us = sin(π/3), vs = -sin(π/12). The maximum iteration
number is set to 25. Fig. 8(a) shows the pattern for the standard
progressive phase shifts, for which the maximum SLL is -9.1
dB. For SLL minimization everywhere in the visible region, the
pattern in Fig. 8(b) and the phases in Fig. 9(a) are observed
with a maximum SLL of -15.7 dB and efficiency of 55%.
For completeness, the convergence of the maximum SLL for
varying µ values is plotted in Fig. 10. It can be seen that the
chosen value of µ = π/3 provides a stable convergence within
a reasonable number of iterations (= 5). If the optimization is
done to minimize the interference in the sector, the pattern in
Fig. 8(c) is obtained with the phases given in Fig. 9(b). In this
case, the maximum SLL in the sector becomes as low as -18.5
dB, but the efficiency drops to 30%.

cell sector

(a)

cell sector

(b)

cell sector

(c)

Fig. 8. Far E-field patterns (in dBV/m) of the 8x8 patch array in Case-6 for a
beam scanned towards the 5G cell sector edge us=sin(π/3), vs=-sin(π/12) for
(a) progressive phases, (b) phases optimized for minimum SLL everywhere in
the visible region, (c) phases optimized for minimum SLL in the sector.
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Fig. 9. Element phases at iteration number 25 with µ = π/3 in Case-6 with
optimization for minimum SLL (a) everywhere in the visible region, (b) only
in the sector.
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IV. CONCLUSION

This paper presents a new phase-only peak SLL min-
imization and simultaneous pattern nulling algorithm. The
nonlinear optimization problem is linearized using an iterative
procedure by introducing small phase perturbations on the
element excitation coefficients at each iteration. Embedded
element patterns which are obtained via full-wave simulations
can be integrated into the optimization procedure. In terms of
the peak SLL reduction, the proposed approach outperforms
the existing methods when radiation pattern nulling in certain
sectors is required and achieves at least comparative results
in cases without nulling, as illustrated via the case studies.
The proposed phase-only radiation pattern control method is
promising for the initial, low-cost 5G base station antennas
serving multiple SDMA users at mm-waves.
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