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Architectural Intelligence

A machine learning framework 
for early‑stage dementia‑friendly architectural 
design evaluation using visual access metrics
Feras Alsaggaf1*   , AnneMarie Eijkelenboom1   , Martijn Lugten1    and Michela Turrin1    

Abstract 

The growing population of people living with dementia demands innovative architectural solutions that prioritize 
wellbeing. Floor layouts significantly affect the quality of life for people living with dementia, but the nuances of per-
ceived user experience remain a challenging criterion to evaluate during the early design stages. Visual sightlines are 
one of the key aspects for dementia-inclusive design where machine learning (ML) provides decision-support means 
to validate early-stage designs. In this study, an isovist-based quantification scheme is proposed to capture visual 
access data to evaluate the extent of compliance of floor layouts with respect to dementia design principles (DDP). 
The visual access quality labels are determined by the number of isovists that satisfy the visual access requirement 
for their respective DDPs, thereby ensuring a consistent and objective measurement of visual access. 18 unique spatial 
features were tested using feature filtering methods to predict visual access quality labels. The framework bridges 
qualitative design principles with quantitative methods, introducing a scalable approach for evaluating visual access 
in the context of dementia-friendly design. The ML model was evaluated using individual class output and multi-
output evaluation metrics based on 7 feature inputs and 2 class outputs, achieving 84–87% accuracy on an individual 
class and 72% on the subset accuracy metric. The results suggest a viable pathway for developing ML support tools 
to provide feedback on DDP compliance at an early design stage.

Keywords  Dementia design principles, Visual access, Isovist, ML support tools, Dementia-friendly architecture

1  Introduction
Dementia, a progressive neurodegenerative disease typi-
cally associated with memory loss and diminished ability 
to perform daily tasks independently, is the leading cause 
for disability and dependency among older demographics 
globally (GBD, 2019 Dementia Forecasting Collaborators, 
2022). At its core, dementia challenges the essence of per-
sonal identity and autonomy which results in difficulties 
maintaining pre-dementia lifestyle (Fuchs, 2020). As a 
result, living with dementia will have major implications 

on a person’s ability to maintain the same quality of life 
due to psychological, physical, sensory, and overall cogni-
tive decline (Akpınar Söylemez et al., 2020). Considering 
these unique requirements, dementia-friendly architec-
ture is explored in the literature to provide guidelines for 
spatial designers to create spaces that enhances the qual-
ity of life for the end-user.

Dementia introduces distinct challenges, encompass-
ing sensory impairments in vision, hearing, sight, smell, 
and spatial awareness, characterized by an “impaired 
identification of incoming stimuli (perceptual deficits), 
resulting in distorted perceptions” (van Hoof et al., 2010); 
therefore, it necessitates a thorough understanding on 
how space support high quality of life. In the context of 
residential care facilities, personal autonomy, the ability 
to exert a level of control performing daily activities with 
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some degree of independence, can be realized by preserv-
ing the end-user’s existing habits and values which allows 
them to cope better with symptoms of dementia (Serb-
ser-Koal et al., 2024). The preservation of one’s personal 
habits and values also increases quality of life by feeling 
more at home at a residential care facility (Rijnaard et al., 
2016).

The design of layouts in residential care facilities can 
affect the degree of independence that people affected by 
dementia can maintain. Layouts designed without con-
sidering the special needs of people affected by dementia 
can hinder the ability to independently navigate indoor 
environments and becomes a barrier to preserving per-
sonal autonomy. Human navigation includes the cogni-
tive decision process about where to go (wayfinding) and 
the capacity to physically move across spaces and obsta-
cles (locomotion) (Kuliga et  al., 2021). Wayfinding in 
dementia context is defined as the ability to know one’s 
position in space, while knowing the destination, plan-
ning, and following the best route towards it, recogniz-
ing the destination upon arrival, and finding the way back 
(Marquardt, 2011). The neurodegeneration that develops 
in persons affected by dementia often causes cognitive 
impairments that increase challenges in wayfinding. This 
includes difficulties with path integration (thus, reduced 
awareness about own position, speed and trajectory) and 
cognitive mapping (thus, mental capacity of representing 
space) (Kuliga et al., 2021).

Occupants who are affected by Alzheimer also have 
more difficulties to accurately identify relevant visual 
information to perform a cognitive task than those with-
out Alzheimer (Foldi et al., 2005). Besides the risk of get-
ting lost, challenges in wayfinding imply also emotional 
consequences, such as anxiety. Limited spatial orienta-
tion can affect behavioural, emotional, and social reac-
tions of occupant who suffer from Alzheimer (Kleibusch, 
2018). The physical environment can support wayfinding 
abilities of people living with dementia while reducing 
confusion and agitation (Marquardt & Schmieg, 2009; 
van Buuren & Mohammadi, 2022).

One of the main principles to facilitating a greater 
degree of independence for people affected by demen-
tia is adhering to the Dementia Design Principle (DDP) 
allowing people to see and be seen (Chen et al., 2023; Lee, 
2003). Clear sightlines in the building layout factors with 
the largest effect on autonomy for persons with dementia 
in hospitals (Kirch & Marquardt., 2023). Visual sightlines 
are vital because they can compensate cognitive limita-
tions connected to mental representation of spatial situ-
ations that the end-user cannot directly see. Therefore, 
key relevant spaces to daily activities should allow for 
sufficient visual access (Marquardt, 2011). Also, seeing 
amenities can facilitate certain activities that contribute 

to positive experiences of people who suffer from demen-
tia (Hammink et al., 2024). This principle closely relates 
with building layouts and can be measured by direct lines 
of sight, known as visual access.

The state-of-the-art research and practice provide sev-
eral design guidelines and references expanding on our 
understanding on how the physical environment creates 
dementia-inclusive spaces, and an evaluation framework 
using various assessment indicators and tools. For exam-
ple, how much a certain space facilitates or challenges 
wayfinding has been assessed by considering the pres-
ence or absence of certain factors, such as recognisable 
tactile or acoustic stimuli (Fleming et  al., 2017; Kuliga 
et al., 2021). Several studies on dementia have shown that 
architectural design can facilitate or challenge wayfind-
ing based on spatial arrangements, circulation spaces 
and visual connections (Marquardt & Schmieg, 2009; van 
Buuren et al., 2025).

Besides design guidelines, the state-of-the-art research 
and practice also offer an increasingly vast and reliable 
range of computational methods and related tools that 
can support designers and decision makers to implement 
the guidelines. ML support tools, for instance, enable 
early-stage validation by analyzing spatial configurations 
and predicting compliance with dementia-friendly design 
principles. These tools streamline iteration and enhance 
decision-making by offering data-driven insights into 
key outcomes such as personal autonomy and social 
integration.

The state-of-the-art research and practice provide 
several design guidelines on visual access and other 
principles. Computational methods that are potentially 
useful as decision-making tools during the early stages 
of design, are well developed. However, the evaluation 
frameworks of dementia-friendly design face also cur-
rent gaps. When focusing on visual access, quantification 
methods are missing. With respect to quantification, the 
state-of-the-art lacks a consistent measurement scheme 
for visual access data in terms of how the information is 
captured and how they relate to the evaluation of spatial 
quality. Moreover, the potential of Machine Learning 
(ML) methods remains vastly unexploited. There is an 
absence of ML tools and computational frameworks that 
bridge qualitative user experiences in dementia care with 
quantitative, data-driven methods. Such tools can fill in 
a critical gap in architectural decision-support systems 
during the early design stages.

This study proposes a novel ML-based framework to 
assist in decision-making during the early stages of design 
with providing feedback on floor layouts in relation to 
DDP compliance when such information is difficult or 
not possible to obtain due to time constraints or limited 
expertise on dementia-friendly design principles during 
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those stages. Floor plan representations are commonly 
utilized in early-stage ideation; therefore, it is the means 
of representation selected for this study. The intended 
ML assessment model works by entering (spatial) feature 
inputs derived from floor plan geometry information to 
provide feedback on the extent of compliance with the 
DDPs of interest, allowing designers to iterate and com-
pare design options prior to the expert validation stage. 
The focus is on the DDPs that can be quantified using 
visual access, an indicator for environments that promote 
easier wayfinding skills for people living with dementia 
that leads to higher degree of independence. More specif-
ically, this study focuses on a proof-of-concept computa-
tional tool to evaluate the floor plan quality by analyzing 
geometry features of a floor layout and produce a score 
representing the degree of compliance with certain DDP 
criteria. The purpose of the proof-of-concept computa-
tional tool is to identify optimal and suboptimal layouts. 
Ultimately, the aim of the study is to define the scope of 
the dataset requirements for the development of a ML 
assessment framework on the DDP provisions that have a 
high impact on the quality of spaces. A proof-of-concept 
ML model on a limited set of DDP criteria is included in 
the study.

A computational framework for the quantification of 
visual access data is proposed for the purpose of scor-
ing and ranking layouts based on numeric metrics to fill 
in the discovered gap found in the literature relating to 
consistent measurement scheme. Measuring clear lines 
of sight can give an indication of how spaces are visu-
ally connected. A methodical approach to assess visual 
access can relieve the burden for the evaluator of decision 
on position(s) in the floor plan that are critical to meas-
ure, thereby mitigating the element of subjectivity in the 
assessment. Some key locations can be considered where 
clear lines of sights are critical to establish, but due to the 
evolving information from early design stages to devel-
oped designs, it is difficult to conclude with high degree 
of certainty where the key locations are in a given space 
or based on a furniture layout that may change over the 
lifespan of a building. Deciding on when a clear line of 
sight is considered acceptable could be defined in terms 
of range and field of view. Current literature does not 
provide specific information on these aspects. Therefore, 
the proposed quantification scheme ensures the repro-
ducibility of the assessment, while introducing a consist-
ent data metric that best represents the perceived visual 
access quality (VAQ).

This paper is structured as following. After this intro-
duction section, Sect. 2 highlights the state-of-the-art for 
environmental assessment of dementia-friendly spaces 
and for related computational methods. Section  3 pre-
sents the research methodology followed during this 

research. Section  4 presents the work developed dur-
ing the research, with focus on the quantification of vis-
ual access and on the ML model framework to support 
design decision-making. Section 5 shows the results and 
discussions. Finally ending in Sect.  6 with concluding 
remarks and recommendations.

2 � Background studies
2.1 � Environmental assessment of dementia‑friendly 

spaces
Previous studies highlighted the factors in physical envi-
ronments supporting independence and higher quality of 
life for people affected by dementia. This culminated in 
several assessment tools, one of them being the Environ-
mental Assessment Tool (EAT) by Fleming which enables 
the quantification for the quality of the built environment 
to accommodate people living with dementia in home-
like care facilities (Fleming, 2011). The assessment tools 
were further expanded upon, resulting in the Environ-
mental Assessment Tool Handbook (Fleming & Bennett, 
2021) introducing a systematic way to evaluating care 
facilities with respect to 10 DDPs. The EAT includes an 
assessment model that can provide additional actionable 
insights for the evaluator towards improving care facili-
ties. Recently the EAT was adapted for evaluating floor 
plans, called the Plan-EAT (Quirke et al., 2021) demon-
strating an evidence-based approach for assessing spatial 
quality using floor plan information for evaluating exist-
ing facilities, but also in the design proposal phase as a 
means for design validation.

The third EAT principle of allow people to see and be 
seen touches on the ability to clearly see the surround-
ing environment which can be measured by visual 
access metrics. This DDP allows end-users to make 
decisions, based on the received visual information, 
on where they want to go. This boosts the confidence 
of end-users to explore their own environments inde-
pendently with the added benefit of increased oppor-
tunities for spontaneous social interaction between 
residents including caregivers (Fleming & Bennett, 
2021). In the EAT evaluation scheme, visual access is 
assessed by comparing direct visual sightlines between 
most frequented spaces such as living to kitchen, liv-
ing to dining, dining to toilet, and so on. Direct sight-
lines between key spaces improves recognition of 
adjacent rooms and might lead users to occupy spaces 
that might otherwise not have remembered, thereby 
increasing their use and facilitate wayfinding (Passini 
et al., 2000). This improved recognition and facilitated 
wayfinding is particularly critical because dementia 
commonly affects the ability to recall spatial layouts or 
plan routes. Seeing the destination directly reduces the 
cognitive load associated with navigation.



Page 4 of 19Alsaggaf et al. Architectural Intelligence            (2025) 4:11 

Several studies regarding dementia correlate direct 
visual connection with facilitated wayfinding. Largely, 
they ground on the principle that visual access of a des-
tination increases chances one can reach the destination 
(Marquardt, 2011; van Buuren & Mohammadi, 2022). 
Recent research using eye-tracking technology highlights 
that individuals with mild cognitive impairment may 
rely on different visual cues for wayfinding compared to 
cognitively healthy older adults. Specifically, cognitively 
healthy older adults tend to focus more on identify-
ing informative signs, while others with mild cognitive 
decline prioritize directional signs and architectural fea-
tures, suggesting these elements may be particularly 
impactful for navigation support in this population 
(Ghamari & Golshany, 2025). The use of visible architec-
tural features, such as plants or decorative objects, serves 
as mental landmark to support successful wayfinding for 
users affected by dementia (Faith et al., 2015).

Visually salient landmarks suggest to support route-
following and functional independence for users affected 
by dementia (Carton et  al., 2024; Davis et  al., 2016). 
Navigation is based on two principal systems: path inte-
gration and landmark-based navigation (Zhao & War-
ren, 2015). Path integration is the process of updating 
information on one’s movement while keeping track of 
position and orientation during travel, whereas land-
mark-based navigation relies on mental landmark and 
other environmental cues for orientation and wayfinding 
(Wiener & Pazzaglia, 2021). The visually-differentiated 
environments creates more landmarks which influences 
perceived complexity and supports landmark-based 
navigation in combination with visual cues (De Cock 
et al., 2021). A study states “Visual access to destinations 
while within corridors is now a core feature of dementia-
friendly designs” (Carton et al., 2024).

Quantifying the effects of visual access on user experi-
ence is a topic explored in the literature. A study examin-
ing 3 care facilities in Australia tackled visual connection 
by utilizing the isovist method developed by Clifford 
Tandy in 1967 which was later expanded on as an ana-
lytical method for quantitative description of space (Ben-
edikt, 1979). Isovists were used as a measure taken from 
the domestic kitchen of the 3 care facilities to rank the 
designs from good, better, and best to quantify visual 
connection (Chau et  al., 2018). Visual access is also rel-
evant for social interaction. Ferdous and Moore (2014) 
employed quantitative methods like visibility graph 
analysis, derived from space syntax, to measure spa-
tial configurations, including visibility and accessibility 
within care environments for people living with demen-
tia. Their findings on visual access extends beyond way-
finding, citing that the degree of visibility has direct 
influence on social dynamics, and did not confirm space 

syntax hypothesis that spatial layout with high visibility 
increased social interaction (Ferdous & Moore, 2014). 
These studies underscore the interplay between quan-
titative visual access metrics and user experience. They 
provide a deeper understanding of how visual access 
influences user behaviour in residential care settings to 
inform evidence-based quantitative assessment frame-
works and design guidelines.

A set of design criteria for design typologies support-
ing wayfinding is further investigated in a recent paper 
outlining direct measurement criteria with correspond-
ing weights and possible scores for design evaluation (van 
Buuren & Mohammadi, 2022). Several design criteria 
relating to spatial orientation are included, ranging from 
spatial hierarchy, visual access, length of routes, shape of 
corridor, moments of decisions along a route, daylight, 
and position of doors along the corridor. The evalua-
tion scheme is designed to improve spatial orientation 
and wayfinding skills for people affected by dementia, 
assessed qualitatively resulting to possible scores rang-
ing from bad, neutral, good, very good, excellent, and a 
few others quantitatively such as length of route, num-
ber of decision points and doors along a corridor. The 
study tackles visual connections for example between the 
entrance hall and the living room, the living room and 
the corridor, the door of the sanitary room from the bed 
in the individual room.

A qualitative observational study highlights the role 
of visual connection in supporting habitual activities 
(Chen et al., 2023). The study observed how spatial lay-
outs with clear sightlines between frequently used spaces 
facilitated autonomy and spontaneous interactions. 
Strategic placement of furniture and activity spaces was 
found to encourage both nonverbal and verbal interac-
tions between residents and caregivers, fostering a sense 
of community and enhancing the homelike atmosphere. 
Views from within and out of the building through the 
use of internal glazed screens and windows has been 
shown to offer assistance in wayfinding as a result of 
improve visual connection allowing users to see a room 
or garden without going in (Faith et al., 2015).

Visual access have additional benefits to care staff 
members to facilitate monitoring and supervision of 
spaces in long-term care facilities (Faith et  al., 2015). A 
recent study published survey results from caregivers of 
older adults affected by dementia to better understand 
the end-user’s wayfinding experience in relation to 22 
design elements found from the literature related to way-
finding (Alam & Kim, 2023). The caregivers highlighted 
the importance of visual connection between residents 
and caregivers which can help them respond more effec-
tively when an older adult is lost in their way. The survey 
results from caregivers show visibility as among the most 
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important, and the satisfaction of wayfinding design ele-
ment. Visibility increases the satisfaction of caregivers 
but also has been shown to improve wayfinding skills of 
older adults.

Visual connection is not the only factor affecting way-
finding. Other factors include for example proportions 
and dimensions of spaces, where some studies highlight 
small spaces may facilitate wayfinding possibly in rela-
tion to feelings of safety and facilitate social interaction 
(Leung et al., 2024; Marquardt, 2011). The exact effect of 
visual connection is also yet to be fully understood, where 
some study report the emergence of conflicting informa-
tion. This includes observations on wayfinding behav-
iours that suggest increased confusion and decreased 
social interaction in places with high visibility (Ferdous 
& Moore, 2014; van Buuren et al., 2025). Finally, a point 
of attention is the difference between physical and cog-
nitive perception, where physical visibility may not suf-
fice to guarantee understanding and location awareness. 
Despite the complexity and interrelations, and despite 
there are still knowledge gaps and limited understanding, 
visual connection is acknowledged beneficial for a rele-
vant range of cases. As such, it also increasingly analysed 
via several methods.

2.2 � Computational methods and machine learning models
Several computational methods have been developed 
to quantify visual connection. Visibility-based analysis 
applies to various scales of the built environment and 
uses various techniques. Visibility graphs and isovist 
are among the most established ones. Visibility graphs 
record relationships of mutual visibility in a space and 
enable further analysis (Azizi & Sulaimany, 2024). Recent 
examples of applications in the built environment include 
outdoor paths (Omrani Azizabad et  al., 2024), indoors 
of multi-story buildings (Zhou et al., 2022); commercial 
spaces (Ayesha et al., 2023). Isovist of a point is defined as 
all points visible from it (Davis & Benedikt, 1979). Its ori-
gins dates back to the late seventies (Benedikt, 1979) and 
its applications in the built environment includes recent 
examples on residential buildings (Parhizkari et al., 2023; 
Esfandiari et  al., 2020) traditional gardens (Chen et  al., 
2024), indoor localisation (Triantafyllou et  al., 2024), 
among others. With regard to spatial quality in nurs-
ing homes, a study (Wei & Li, 2021) on a computational 
model to quantify visual environmental properties of 
bedrooms in care-facilities for the elderly outstands 
among recent works. The study uses viewing distance, 
viewing angle, and viewing field as variables of the com-
putational model.

Among the computational techniques employed to 
model visual properties and specifically visual connec-
tion, Machine Learning (ML) techniques are emerging 

rapidly. ML are computer systems capable of learning 
from past examples and can make predictions based on 
the patterns observed in the training data (Sedlmeier & 
Feld, 2018). The ML method can be exploited to learn 
from recurring patterns found in floor plan geometry to 
classify designs according to their spatial qualities derived 
from visual access data. There are several ML algorithms 
and categories. Supervised learning algorithms learn a 
function based on a given pair of inputs and correspond-
ing unknown output label to solve regression or classifi-
cation problems (Sedlmeier & Feld, 2018). The algorithm 
extracts hidden relationships between target variables 
and find the coefficient function based on the related 
problem. It tests for the accuracy of its correctness on 
the training data (Alloghani et  al., 2020). A few of the 
most common classification algorithms include decision 
trees, random forests, and support vector machine (Ross 
et al., 2023). Random forest (RF) classifier is a statistical 
ML algorithm for prediction (Breiman, 2001) based on a 
collection of decision trees involving recursive partition-
ing of data into two groups, that stops once the prede-
termined condition is met (Schonlau & Zou, 2020). RF 
classifiers can give insights on the important features in 
the model as exhibited in a study examining conditions 
influencing patient satisfaction in a hospital setting with 
respect to indoor environmental quality measures (Ali 
et al., 2022).

One of the key Artificial Intelligence (AI) support 
tools for early design ideation is demonstrated by Fos-
ter + Partners to support the decision-making process 
for optimal workplace layouts (Tarabishy et al., 2020). In 
this work the ML model is a surrogate model. It can iden-
tify spatial and visual connectivity potential of a space 
by visualizing it on an image representing floor layouts 
overlaid with a visual or spatial connectivity heatmap. 
The dataset contains 6000 floor plan images of 100 × 100 
pixels generated from Grasshopper where each pixel 
represents 1 square meter. The plans are analyzed using 
both visual and spatial connectivity with Dijkstra’s algo-
rithm to find average shortest path between every other 
location according to visibility graph analysis techniques 
described in Turner et al.’s article (2001). The end-prod-
uct gives designers the ability to iterate designs in the 
early stages by producing heatmap visualizations to make 
decisions on the layout of workspaces based on visual 
and spatial connectivity that would otherwise be both 
time and computationally expensive to simulate for each 
design option especially when considering the resolution 
of the isovist and the sizes of floor plans.

In recent studies, the combination of ML and isovists is 
also explored as means to describe spatial data numeri-
cally. Spatial quality data can be used to predict a cer-
tain aspect of architectural experience. ML models were 
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studied to classify to explore the relationship between 
geometry and spatial awareness, by classification of 
spaces through their isovist properties (Ferrando, 2018). 
The data was acquired from a database of vernacular 
French farmhouses to train a model on predicting levels 
of privacy according to its isovist features.

Capturing spatial quality based on the principles of 
isovist is also shown to have potential in generative AI 
models. ML frameworks using spatial encoder, latent 
semantics, and generative isovist transformer, fill in the 
missing modality of spatiality in the ML and AI approach 
in architectural design (Johanes, 2024). The methodol-
ogy of Johanes and Huang (2022) can be summarized in 
4 steps: isovist sampling on dataset of floor plans, genera-
tive adversarial networks (GAN) training and inversion, 
latent space interpretation, and architectural decoding 
(Johanes & Huang, 2022). This allows for the evaluation 
of design qualities according to their isovist signature by 
comparing latent space for regularity, the degree of simi-
larity between isovist signature in the latent space, and 
uniqueness, i.e. the degree of difference to other isovist 
signature in the latent space. The present study highlights 
the potential of neural networks as means for architec-
tural representation based on isovist signatures for ana-
lyzing and generating designs.

3 � Research methodology
The literature review on existing studies addressing 
dementia-friendly design criteria, AI support tools, and 
ML methods highlights the potentials of AI-augmented 
design and yet the lack of computational support in early 
design stages for dementia care facilities. With focus on 
visual connection, the aim of this study is to investigate 
the feasibility of a ML model for early-stage assessment 
that can use features of floor plan geometry to produce 
feedback on DDP compliance. The study was organized 
in multiple phases. First, the role of visual connection 
was framed, as one of the key soft design criteria in DDP 
compliance. The most important soft criteria to measure 
in the early stages of design include personal autonomy 
and sense of connection, which are influenced early on 
based on the floor layout scheme. To support the impor-
tant decisions made in the early design process and their 
relation with soft design criteria, various quantification 
methods were considered. The choice of the techniques 
used in this study took into account the possibility to 
further implement a more holistic AI-augmented sup-
port to later extend the assessment beyond visual con-
nection only. Another important criterion included the 
opportunity for designers to work directly with visual 
representations of floor plans. Thus, the methodology 
included measuring visual access data on a dataset of 
floor plans  (Alsaggaf, 2024). To develop the proposed 

workflow, an existing dataset of floor plans was used. The 
dataset includes a variety of residential floor plans not 
of dementia care facilities but rather of standard dwell-
ing to allow higher availability of data at this stage. The 
dataset is extracted from the Swiss Dwellings Dataset 
v3.0.01 (Standfest et  al., 2022). The full Swiss Dwellings 
dataset is publicly available on Zenodo, an open-source 
library of datasets containing detailed building informa-
tion data on over 42 thousand apartments, nearly a total 
of 242 thousand rooms in over 3000 buildings. Working 
on this dataset, the first step was assigning quality labels 
based on visual access metrics on a small selection of the 
data. Then, the data for building geometry, visual access, 
and simulation features were combined into a dataset.2 
The assembled dataset is then imported in a new Jupy-
ter Notebook using Python ML libraries to prepare the 
data including ML model settings, feature selection, and 
evaluation metrics (see Fig.  1 for the workflow of ML 
model). This methodology allows for isovist sampling 
on floor plan data and selecting features to evaluate ML 
performance.

4 � Computational framework to assess visual 
access

The allow to see and be seen DDP provides a range of 
benefits for people affected by dementia, namely it can 
contribute to higher degree of independence and encour-
age spontaneous interaction (Fleming & Bennett, 2021). 
Within the EAT evaluation framework across all the DDP 
categories, the total possible points related to visual sight-
lines add up to 33 points out of 112, a significant 29.5% 
of the final score’s weight, signifying the importance of 
visual access for dementia-inclusive design. Direct visual 
sightlines are measured using the isovist method. Using 
this visual access metric, the spatial experience can be 
quantified and then be used in the formal assessment of 
visual access using numeric values.

4.1 � Measuring visual access with isovists
A numeric approach to measuring floor plan’s visual 
access is done by drawing direct lines between two dif-
ferent spaces. This is done using the isovist method, the 
area visible from a vantage point (Benedikt, 1979) which 
is best suited for describing perception of space. A field 
of isovists populated in space can give an indication on 
visual access taken from multiple vantage points in a 
room, providing consistent and more granular assess-
ment for how subtle changes in layout might affect visual 
access criteria.

1  Swiss Dwellings Dataset: https://​zenodo.​org/​recor​ds/​70709​52
2  Training dataset: https://​github.​com/​feras​ongit​hub/…

https://zenodo.org/records/7070952
https://github.com/ferasongithub/
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The living room, or broadly the common lounge area, 
was chosen as the primary room function to collect vis-
ual access in the scope of this study because of its impor-
tance in maintaining visual access to 7 key spaces: direct 
sightlines from lounge to dining, kitchen, garden, corri-
dor, toilets, staff supervision point, and bedroom doors, 

see Fig. 2 (Fleming & Bennett, 2021; Quirke et al., 2021; 
van Buuren & Mohammadi, 2022).

The measurement for visual access is conducted by 
applying an isovist field in the living space and then 
checking for direct lines of sights from all possible posi-
tions in the room. The test grid resolution is adjustable 
and can be set to 1-m apart from the wall and between 
each test point to approximate a human-scale grid 
(Turner et  al., 2001). Each vertex from the living room 
will radially generate a pre-determined number of iso-
vists and checks if intersections are made between the 
living room and other spaces, returning a true or false 
value for each point, respectively “seen” or “not seen”. 
The percentage of ‘satisfactory’ isovists is calculated to 
determine the visual access quality (VAQ) score; whether 
insufficient, where not many points maintain visual 
access, sufficient, where some points satisfy visual access, 
and preferred, most points satisfy visual access. The pre-
cise threshold on when the requirements are satisfied for 
visual access leading to improved personal autonomy and 
improved wayfinding is not mentioned in the literature 
which warrants further investigation to understand the 
relationship between visual access and the wayfinding 
skills of people affected by dementia. For this study, the 
thresholds set in Fig. 3 was selected in order to produce 
a balanced dataset from poor to good sample layouts for 
the ML training step.

Additional checks can also be considered relating to 
the direct lines of sight maintained in a room such as the 
distance of the sight line and extent of blind spots where 
visual access suffers in comparison to the rest of the 
space (see Fig. 4). The sight line distance is averaged to a 
single value and the average distance between closest sat-
isfactory test point is the indicator for fragmented visual 
access within the space.

The threshold scale yielded a balanced distribution 
of labels on the floor plan training set that measured 
direct lines of sight between living to kitchen. In the 
case of nearest toilet visibility, any satisfactory sightline 
to the nearest toilet is labelled as sufficient, yielding even 
results (see Fig.  5). The selected thresholds are a result 
of the limitation of the dataset, ultimately these thresh-
olds should be determined based on user testing to bet-
ter describe the nuance relationship between changes in 
visual access and perceived user experience.

4.2 � Generating visual access data
The original Swiss Dwellings Dataset v3.0.0 (Standfest 
et al., 2022) was filtered using Python and Pandas library. 
First, selecting only single-story apartments by counting 
the unique floor_id values and matching it to unit_id to 
make a selection of units existing only on one floor. Then, 
a subsequent selection is made to choose units containing 

Fig. 1  The ML workflow of this study
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both “living”, “corridor”, and “kitchen” as entity_subtype 
which indicates that kitchens have a defined zone. Then, 
a selection was made to allow for dwellings that have 
more than 3-bedroom entity_subtype to corresponding 
unit_id to exclude studios and small apartments yielding 
to 500 unique apartment_id. The duplicate layouts were 
removed through a manual filtering process, adding up to 
256 dwellings in the end. This subset of floor plans was 
imported into Grasshopper and automatically generates 
the visual access data. The Grasshopper script populates 
entity_subtype = LIVING with the isovist field, checks 
for intersections made with kitchen and toilets, records 
the number of isovists with intersections, and calculates 
the percentage of points satisfying direct line of sight 
condition.

In the scope of this study, direct lines of sight from 
the living room to the kitchen and nearest toilet were 
recorded. The raw isovist data was processed in Python 
to assign the class of the VAQ for one of the three pos-
sible scores: insufficient, sufficient, and preferred. Subse-
quently, the assigned classes model was combined with a 
list of spatial features from the simulations file, resulting 

Fig. 2  Direct lines of sight queries mentioned in assessment schemes (Fleming & Bennett, 2021; Quirke et al., 2021; van Buuren & Mohammadi, 
2022)

Fig. 3  Visual access quality (VAQ) scores
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in a dataset containing building information, visual 
access data, and spatial features.

The final data output included two visual access met-
rics: living to kitchen with three possible outcomes, and 
living to nearest toilet with two possible outcomes.

4.3 � Model and feature selection
The features from the simulations file were approximately 
360 features related to sun, noise, views to outside, area 
features, geometry features, area adjacencies, and con-
nectivity (see Table  1 for actions taken in the filtering 
steps). Sun, noise, and views to outside features were 
removed as the focus of this study did not include climate 
or noise factors. Given that the study aims to predict 
visual access quality—a direct consequence of spatial lay-
out—features related to geometry, area, and spatial topol-
ogy were prioritized, while environmental factors like 
sun, noise, and views were excluded in this initial phase 
to isolate the impact of the layout itself. This resulted in 
reduction from the initial feature pool of roughly 360 fea-
tures down to 70 unique spatial features (see Fig. 6). The 
remaining features with weak correlations were removed 
upon inspecting histogram and scatter plots at an explor-
atory analysis step. Features with visible correlations to 
each label output were prioritized for the feature subset 
(example shown in Fig.  7). Some features are described 
in multiple numeric representation that convey one con-
cept such as connectivity_eigen_centrality which included 
statistical mean, min, max, standard deviation, median, 
20 th percentile, and 80 th percentile. Only the 20 th and 
80 th percentile values were taken in to reduce computa-
tional cost leading to the final 18 feature subset.

The final feature subset for consideration included 
spatial features such as compactness, which expresses 
the relationship between area and perimeter relative to 
a circle (Schneider & Koenig, 2012), eigen centrality, a 

Fig. 4  Additional quality checks

Fig. 5  Distribution of the VAQ labels
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measure of the influence of a node in the network (Agry-
zkov et  al., 2019), betweenness centrality, expresses the 
extent to which a node lies on the shortest paths between 
other nodes in the network (Xiaohuan et al., 2022), and 
closeness centrality, expresses how close the node is to 
all other nodes in the network (Zhang et al., 2024). Other 
features included layout wall lengths, layout perimeter, 
distance to entrance door, and distances to different 
spaces measured from the living room.

A wrapper-based feature selection was implemented on 
a feature set to define the optimal feature subset accord-
ing to the highest subset accuracy performance. This 
method is based on the ‘greedy/exhaustive search method’ 
because it considers every feature set selection possibility 
with respect to the evaluation criteria using a pre-deter-
mined classifier such as random forests (Balogun et  al., 
2020). Although it provides a thorough search, it is com-
putationally expensive and was only tested on a small sub-
set of features. Forward and backward sequential feature 
selection is less computationally expensive and was used 
by evaluating the subset accuracy of the model by sequen-
tially adding or removing one feature at a time.

The RF classifier learning algorithm was used in the fea-
ture selection process to predict VAQ based on the fea-
tures subset. The model was built to take multiple inputs, 
called features, and produce two multiclass classification 
outputs, the VAQ label. The model’s hyperparameters were 
selected using a pre-defined range of hyperparameters by 
executing a GridSearchCV on the selected feature subset. 
The dataset was split into 70% training (179 dwellings) 
and 30% testing (77 dwellings). A fivefold cross-validation 
was applied to the training data during feature selection, 
hyperparameter grid search, and model evaluation to miti-
gate overfitting issues due to the limited data size.

4.4 � Model evaluation metrics
The model is evaluated using confusion matrix, accuracy 
(1), precision (2), recall (3), and F1 score (4) metrics to give 
an idea of the performance of the model on an individual 
class. Accuracy describes the overall accuracy of correct 

prediction whereas precision focuses on the proportions of 
positive predictions which are correct. F1 score is a single 
metric value representing the harmonic mean of precision 
and recall (Abhishek & Abdelaziz, 2023). The confusion 
matrix breaks down the model’s predictions into true posi-
tives, true negatives, false positives, and false negatives for 
classification output, offering a more granular understand-
ing of where the model succeeds and fails compared to 
overall accuracy.

The model utilizes the multi-output classification—the 
key distinction from the single-output counterpart is that 
the model takes a set of features to classify instances into 
two or more labels that measure different concepts and 
solved concurrently, whereas single output produces a 
single-output prediction (Linusson, 2013). The model is 
evaluated using subset accuracy (5) and hamming loss (6) 
metrics providing an indication on how the model is over-
all performing with respect to multiple outputs (see overall 
model evaluation scheme in Fig. 8). The subset accuracy is 

Table 1  Main features filtering steps was to remove uncorrelated features and reduce its size to lower computational cost for 
subsequent feature selection step

Filtering Stage Action Taken Number 
of 
Features

Feature Pool Import all simulation features from the dataset 360

Feature Set Removed sun, noise, and view to outside features 71

Feature Subset Uncorrelated features to VAQ were qualitatively filtered out during exploratory 
analysis step

42

Smaller Feature Subset For features with multiple statistical representations, only P20 and P80 were kept 18

Fig. 6  Feature pool to feature subset filtering steps
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a strict metric where it captures the percentage of instances 
where the model accurately predicted all class outputs 
(Jamthikar et  al., 2022; Romeo et  al., 2021). In evaluating 
VAQ, it is important to minimize the false positives where 
the subset accuracy can provide a metric on this. Hamming 

loss, on the other hand, is the less stringent criteria meas-
uring the fraction of incorrectly predicted labels by the 
model (Yang et al., 2020).

Fig. 7  Example of exploratory data analysis plots. (left) scatter plot with KDE contours; (right) histogram distribution

Fig. 8  ML evaluation metrics for feature selection
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where:
tpos : true positives.
tneg : true negatives.
fpos : false positives.
fneg : false negatives

where:
N  : total number of samples in the dataset.
yi : the true label set for i-th sample.
ŷi : predicted label set of the i-th sample.
|A| : the total number of labels in the multi-label 

problem.

(1)Accuracy =
tpos + tneg

tpos + tneg + fpos + fneg

(2)Precision =
tpos

tpos + fpos

(3)Recall =
tpos

tpos + fneg

(4)F1 Score = 2×
Precision× Recall

Precision+ Recall

(5)Accuracysubset(yi, yi) =
1

N

N

i=1

1(yi = yi)

(6)Hamming Loss
(
yi, ŷi

)
=

1

N

N∑

i=1

|ŷi�yi|

|A|

� : symmetric difference between predicted and true 
labels.

5 � Results and discussion
Topological features derived from building geometry 
correlate with two visual access quality labels measured 
using isovist fields as the basis of the quality label. The 
ML model shows reasonable accuracy on an individual 
class, exceeding 80% for both outputs, and 70–80% when 
combined as multi-input, multi-output model. The fea-
ture subset chosen using forward sequential feature 
selection included in no particular order: (1) layout com-
pactness, (2) layout door perimeter, (3) layout number of 
doors, (4) connectivity-bathroom-distance-P20, (5) con-
nectivity-kitchen-distance-P20, (6) connectivity-kitchen-
distance-P80, (7) layout biggest rectangle-width which 
are the results of the forward sequential feature selector 
(Fig. 9).

5.1 � Feature subset
The topological features correlating to VAQ labels show 
that the model can relate the quality labels to building 
geometry features (see Fig. 10). The connectivity features 
are among the best indicators for visual access quality 
between living to kitchen, followed by layout geometry 
features.

The feature selection was optimized for subset accu-
racy where the model iterates through different feature-
set combinations and favors the feature subset resulting 
into highest subset accuracy score. An exhaustive feature 

Fig. 9  Forward and backward sequential feature selection



Page 13 of 19Alsaggaf et al. Architectural Intelligence            (2025) 4:11 	

search confirmed topological feature combinations yield-
ing the best results on the accuracy metric (Fig. 11).

5.2 � Model evaluation
The model was evaluated using a confusion matrix (see 
Fig.  12) giving more insight into how well the model is 
predicting the labels, see classification report Table 2. For 
VAQ label from living to kitchen, the accuracy is 0.87. 
This means that in about 87% of cases, the model cor-
rectly predicted the label associated with visual access 
between the living area and the kitchen. VAQ label from 
living to nearest toilet has an accuracy of 0.84 which is 
slightly lower.

For the living-to-kitchen scenario, the “preferred” 
and “insufficient” classes show high precision and 
recall compared to “sufficient” prediction. The lay-
out with “sufficient” label is slightly more difficult to 
detect. For the living-to-toilet scenario, performance 
is balanced between “Insufficient” and “Sufficient,” 
with F1 scores around 0.80–0.85. This suggests the 
model handles both classes reasonably well but not as 
strongly as in the three-class scenario.

These reports suggest the model is learning from the 
data and the metrics indicate that spaces with “suffi-
cient” visual access is somewhat harder to predict.

5.3 � Limitations and future work
Dementia-friendly architectural design is multifac-
eted involving many variables in determining quality 
of spaces. This becomes especially more complex when 
additional factors are considered such as cultural back-
ground, varying experienced symptoms, and subjective 
preferences of people affected by dementia. While visual 
access is broadly known to support independent naviga-
tion by virtue of improving intelligibility of spatial lay-
out, there are additional factors that have effects on ease 
of wayfinding, excluded from this study. These include 
articulation of the corridor, spatial hierarchy, position 
of common areas in relation to the corridor, number of 
doors along a corridor, corridor path length, and so on. It 
is imperative to consider all measurable aspects of a floor 
layout that can be related to increased higher degree of 
independence for a thorough evaluation. Also, non-visual 
aspects, such as acoustical quality, contribute to demen-
tia-friendly design. This warrants future investigation on 

Fig. 10  Importance ranking for multi-output RF model

Fig. 11  Exhaustive search on limited subset of features
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the quantification approach for non-visual data to estab-
lish consistent measuring scheme for all DDP criteria. 
The addition of more DDPs to the quantification scheme 
will likely have an impact on the feature selection pro-
cess. It is expected that evaluation metrics from other 
DDPs use different set of features for the evaluation, or 
that assessment models are separated by DDP catego-
ries. More work on the quantification of other DDP is 
required for holistic assessment of dementia-friendly 
spaces.

The floor plans sourced from the Swiss Dwellings data-
set allowed for the development of a proof-of-concept 
ML model that would have been otherwise difficult to 
test. Although the dataset was useful for isovist sam-
pling, it is limited in terms of quantity and typological 
variations. The layouts derived from the dataset naturally 
had varying degree of visual access between the living 
to kitchen and nearest toilet allowing for diverse distri-
bution of labels. The ML model showed results on Swiss 
residential typology, and generalizability of the train-
ing data on other typologies is not viable. However, the 
workflow of this study can be applied for a dataset more 
resembling dementia care setting. Future investigation 
on suitable means to source or generate synthetic train-
ing data that closely align with residential dementia care 
typology at a given geographic location is therefore rec-
ommended as future steps to increase both quantity and 
variety of the layouts.

The feature pool obtained from the Swiss Dwellings 
dataset was a good starting point, and the topological 
features were the most relevant features to correlate 
with the VAQ labels. The feature subset was derived 
from the Swiss Dwellings dataset, but it does not go in 
detail how the features were generated, posing a critical 
question on the feature extraction step between floor 

plan geometry into ML model feature inputs. Future 
possibilities in generating useful topological features 
correlating to DDP compliance remains unexplored. 
The possibility of using feature extraction algorithms to 
directly use floor plans as inputs, such as from building 
information models, to relate topological features with 
DDP compliance could play a pivotal role in making the 
ML model more accessible and useful during the design 
process. The current model can be applied as means to 
guide the design towards DDP-compliance when con-
sidering wider range of design options. This process 
complements the expert validation step where a design 
option was already vetted through the ML model (see 
Table  3 for comparison between existing methods to 
the proposed ML approach). Currently it is possible to 
visualize the analysis (as displayed in Fig. 13), however, 

Fig. 12  Confusion matrix for VAQ label outputs

Table 2  Classification reports

Accuracy for VAQ label from living to kitchen: 0.87
Classification report

Precision Recall f1-score support

Insufficient 0.88 0.93 0.90 30

Sufficient 0.76 0.83 0.79 23

Preferred 1.00 0.83 0.91 24

Macro avg 0.88 0.86 0.87 77

Weighted avg 0.88 0.87 0.87 77

Accuracy for VAQ label from living to nearest toilet: 0.84
Classification report

Precision Recall f1-score support

Insufficient 0.84 0.90 0.85 39

Sufficient 0.88 0.79 0.83 38

Macro avg 0.85 0.84 0.84 77

Weighted avg 0.85 0.84 0.84 77

Subset accuracy: 0.73

Hamming Loss: 0.14
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more work needs to be done to integrate insights into 
the software packages to deliver actionable insights to 
the designer.

The ML framework provides several other oppor-
tunities as a design-support tool to assess the visual 
comfort of people living with dementia including light 
quality and contrast, as sight of elderly can be limited 
(Habell, 2012). Moreover, the effects of acoustic qual-
ity in relation to space could be further investigated as 
it has effects on wayfinding abilities for people affected 
by dementia (Alam & Kim, 2023; Fleming & Bennett, 
2021). User testing and validation on the indoor spatial 
qualities, that affect user experiences, should therefore 
be examined. Such validation can provide more insights 
in quantification approaches, to determine in which 
contexts these are applicable. Furthermore, validation 
with users is required to determine relevant thresholds, 
such as sufficiency of sightlines, that can contribute 
to national regulations and dementia environmental 
assessment tools. The assessment could also be specific 
to user abilities, including people with mobility chal-
lenges, as well as layout considerations based on staff 
and caregivers’priorities in effectively delivering care 
and meeting their functional needs.

Measuring dementia-friendly design criteria is a multi-
faceted process making it challenging to capture all 
aspects on floor plans, especially when considering key 
wellbeing metrics of interest such as personal autonomy 
or social integration, which can be prone to subjectiv-
ity, differ between persons, and are inherently difficult 
to quantify. Realizing the full potential of this framework 
will require collaboration across disciplines. Architects, 
care professionals, facility managers, caregivers, and ML 

experts must work together to refine the methodology, 
ensuring that it aligns with the lived experiences of peo-
ple affected by dementia and the practical needs of care 
providers. By incorporating their insights, the framework 
can better address real-world challenges and deliver tan-
gible benefits. ML models have demonstrated their util-
ity in various areas of architectural design, making them 
well-suited for supporting architects with insights into 
design quality.

This framework has the potential to improve the lives 
of people affected by dementia by creating spaces that 
foster autonomy and social integration, reducing confu-
sion and stress. For architects, it can offer an accessible 
tool to evaluate designs in real-time, enhancing work-
flows and promoting data-driven decision-making early 
in the design process. The adoption of this framework in 
architectural practice will require integration with exist-
ing design tools, such as BIM platforms or generative 
design systems. By addressing these practical considera-
tions, the framework can become a transformative asset 
in the pursuit of dementia-friendly architecture.

6 � Conclusion
This study introduced a novel approach to dementia-
friendly architectural design by integrating ML and 
isovist-based metrics—a combination not previously 
explored in the context of dementia-friendly design. By 
leveraging isovists to quantify visual access and apply-
ing ML to assess layout quality, the research bridges 
qualitative aspects of user experience with quantitative 
evaluation methods. This unique framework can pro-
vide architects with an early-stage decision-support tool 
that delivers actionable feedback on compliance with 

Fig. 13  A sample of the floor layouts showing the model’s prediction of visual access between living to kitchen. In top row are correctly labelled 
floor layouts showing the isovist field of view in relation to the living room test points
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DDPs, which are traditionally assessed much later in the 
process.

The integration of isovists with ML offers a scalable, 
data-driven solution. This framework enhances the pre-
cision and consistency of spatial evaluations, enabling 
nuanced insights into the relationship between building 
geometry and user experience. Moreover, the methodol-
ogy’s adaptability to other design contexts highlights its 
potential to redefine how architectural layouts are evalu-
ated and iterated during the design process. During the 
early stages of design, when time or expertise in demen-
tia-specific design is limited, AI can play a pivotal role in 
bridging the gap between concept ideation and profes-
sional assessment.

The visual access quantification metrics proposed in 
this study provide a consistent measurement scheme, 
offering a foundation for improving standards for visual 
access, underpinned by numerical values. Topological 
features derived from building geometry strongly corre-
late with the visual access quality labels identified in this 
research, highlighting the relevance of spatial geometry 
in dementia-friendly design.

Developing a numerical quantification approach to 
capture spatial qualities has significant potential for 
advancing AI and ML models capable of analyzing and 
generating dementia-friendly architectural designs.
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