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Probabilistic Game-Theoretic Traffic Routing
Emilio Benenati and Sergio Grammatico , Senior Member, IEEE

Abstract— We examine the routing problem for self-interested
vehicles using stochastic decision strategies. By approximating the
road latency functions and a non-linear variable transformation,
we frame the problem as an aggregative game. We characterize
the approximation error and we derive a new monotonicity condi-
tion for a broad category of games that encompasses the problem
under consideration. Next, we propose a semi-decentralized
algorithm to calculate the routing as a variational general-
ized Nash equilibrium and demonstrate the solution’s benefits
with numerical simulations. In the particular case of potential
games, which emerges for linear latency functions, we explore
a receding-horizon formulation of the routing problem, showing
asymptotic convergence to destinations and analysing closed-loop
performance dependence on horizon length through numerical
simulations.

Index Terms— Traffic control, game theory, variational
methods.

I. INTRODUCTION

TRAFFIC jams generate a heavy burden on the society [1]
and, as car traffic already makes up a large share of

the EU transport infrastructure costs [2], it is imperative to
mitigate the road congestion without expanding the existing
infrastructure. The increased availability of real-time informa-
tion on the state of the road network has the potential for a
more efficient traffic-aware route planning.

A. Related Work

Previous studies have considered routing strategies which
optimize a system-wide efficiency metrics [3], [4], [5].
A shortcoming of this approach is that the drivers can find
a more advantageous path than the one assigned and thus
they might not adhere to such an externally-imposed solution.
A workaround to this issue is to limit the inconvenience
caused to the users [4], [5]. However, this approach still does
not fully address the inherently competitive nature of the
problem, which is more properly modeled as a game, as noted
in the seminal work [6]. Crucially, under relatively loose
conditions, games admit a set of Nash equilibria (or Wardrop
equilibria, if the impact of each agent on the road latency is
assumed negligible), that is, a set of decision strategies from
which no agent has an incentive in unilaterally deviating and
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thus need no external imposition. Wardrop equilibium-based
routing methods have been studied first in [6], and in [7] it
is shown that they exhibit bounded system-level inefficiency.
The inclusion of capacity constraints was considered in [8].
The Wardrop equilibrium of the routing problem is typically
found by reformulating the problem as an equivalent optimiza-
tion problem [9] or variational inequality [10], and capacity
constraints can be handled by Lagrangian duality [11]. How-
ever, these reformulations require a pre-computation of every
route available between each origin-destination pair, which
can become cumbersome for large networks. By contrast,
[12], [13] propose a Markov Decision Process (MDP) model
that requires no pre-computation of the paths. This idea is
further elaborated in [14], where the problem is cast as a
(monotone, aggregative) generalized Nash equilibrium prob-
lem (GNEP). The latter approach is particularly appealing
from a computational perspective, as recent developments in
algorithmic game theory has made available a plethora of
efficient Nash equilibrium-seeking algorithms which allow for
a decentralized computation [15].

B. Contributions
Inspired by [14], we cast the vehicle routing problem as a

GNEP. Our contribution is threefold:
• In Section III, we demonstrate that commonly used

routing objective functions, e.g. [12], [14], and [13] and
this work, are an approximation of the expected traversing
time and we characterize the approximation error.

• In Section IV, we establish the monotonicity of the game
under a less restrictive condition than the one derived in
[14, Lemma 1]. Technically, we achieve this by carefully
characterizing the eigenvalues of a class of matrices
whose structure emerges in the pseudogradient’s Jacobian
(Lemma 8). We then solve the game via the Inertial
Forward-Reflected-Backward (I-FoRB) algorithm [15],
which does not require the pseudo-gradient to be coco-
ercive as does the algorithm adopted in [14] (namely,
the preconditioned forward-backward [16]) and thus it
converges without a quadratic regularization term [14,
Equation 5].

• In Section V, we propose a modified formulation of the
problem which allows one to progressively recompute the
agents’ paths in a receding horizon fashion (instead of
solving for the entire path in one computation) in the
particular case of a potential game [17]. This property
of the game allows one to cast the receding horizon
game as an MPC controller, and thus we show asymptotic
convergence by a careful choice of the terminal cost. This
novel approach allows one to reduce the decision horizon,
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thus reducing the computational burden as the vehicles
move forward.

Finally, in Section VI, we support the theoretical results by
comparative numerical simulations.

II. NOTATION

For a matrix X ,we denote its (i, j)-th element as [X ](i, j) and
its spectral norm as ∥ ·∥. The operators col(xi )i∈I , row(xi )i∈I
denote the column-wise and row-wise stack of (xi )i∈I ,
respectively. We denote the block-diagonal matrix with
blocks (X i )i∈I as diag(X i )i∈I . We define avg((xi )i∈I) :=

1
|I|

∑
i∈I xi . The vector in Rn with all elements 1 (0) is

denoted as 1n (0n). The subscript is omitted when the dimen-
sion is clear. We denote the partial gradient of f with respect
to x as ∇x f . If f is scalar, its first derivative is f ′. We denote
the Jacobian of F as DF . The Cartesian product is denoted
as × and the Minkowski sum as +.

A. Operator Theory

Given C ⊂ Rn , NC denotes its normal cone [18, Def. 6.38].
The Euclidean projection onto C is denoted by projC (x). For
an operator T : Rn ⇒ Rn , we denote zer(T ) := {x ∈ Rn

|0n ∈

T (x)}. The operator T : C → C is (m-strongly) monotone in
C if ⟨T (x) − T (y), x − y⟩ ≥ m∥x − y∥

2 for all x, y ∈ C , for
some m ≥ 0 (> 0).

B. Probability Theory

Given a probability space (�,F , P) with sample space
� and event set F , let A, B ∈ F . Then, P[A] denotes
the probability of A, P[A|B] denotes the probability of A
conditioned on B, P[A, B] denotes the joint probability of A
and B and E[X ] denotes the expected value of X : � → Rn ,
for some n ∈ N. We denote 1n

:= {x ∈ [0, 1]
n

: 1⊤
n x = 1}.

III. TRAFFIC ROUTING AS A GENERALIZED NASH
EQUILIBRIUM PROBLEM

Let R(N , E) a directed graph modelling a road network
whose nodes N represent the junctions and each edge (a, b) ∈

E represents the road from a to b. We study the problem of
routing N populations of vehicles I := {1, . . . , N }. Denote
I−i := I \ {i} for all i ∈ I. Each population is made up of V
vehicles, where vehicles in the same population i ∈ I share
the same initial position bi ∈ N and destination di ∈ N .

Remark 1: Each population contains the same number of
vehicles without loss of generality. In fact, let each population
contain (Vi )i∈I vehicles and let V ∈ N be such that Vi/V ∈ N
for all i . Then, we can split each population i into Vi/V
populations of equal size V .

Next, we ensure that each destination node can be reached:

Assumption 1: R(N , E) is strongly connected and (a, a) ∈

E for each a ∈ N .
The vehicles aim at reaching their destinations within a time

horizon T . The control action determines the probability for
the controlled vehicle to drive through a certain road and it is
the same for each vehicle in a population. In this setting, each
population acts as a single entity, thus, we refer to each of
them as an agent. We stress that the route of each vehicle is
a realization of the probabilistic control action, thus vehicles

represented by the same agent might take different routes.
To formalize this, let us denote the junction visited by the
v-th vehicle of agent i at time t as si,v

t , which is a stochastic
variable with event space N and probability vector ρi

t ∈ 1|N |,
that is, [ρi

t ]a := P[si
t = a] for any a ∈ N . The control actions

are the column-stochastic matrices 5i
t ∈ R|N |×|N |, defined as

[5i
t ](b,a) = P[si,v

t+1 = b|si,v
t = a] for all a, b ∈ N .

From the law of total probability,

ρi
t+1 = 5i

tρ
i
t for all i ∈ I. (1)

The initial state of agent i is ρi
1, with only non-zero element

[ρi
1]bi = 1. In the remainder of this section we show that,

under an appropriate reformulation of (1), the problem that
arises in the proposed setting can be cast as a GNEP.

A. Affine Formulation of the System Dynamics

Similarly to the approach in [19], we reformulate the
nonlinear dynamics in (1) in terms of the transformed variables

M i
t,(a,b) := [5i

t ](b,a)[ρ
i
t ]a (2)

defined for all i ∈ I, (a, b) ∈ E, t ∈ T := {1, . . . , T }. By the
definition of conditional probability, we have

M i
t,(a,b) = P[si,v

t+1 = b, si,v
t = a]. (3)

In words, M i
t,(a,b) represents the probability that, at time t ,

agent i traverses the road from a to b. Denoting T +
:= T ∪

{T + 1}, the decision variables of each agent are:

ωi :=

[
col(M i

t,(a,b))(a,b)∈E,t∈T
col

(
ρi

t
)

t∈T +

]
. (4)

Without loss of generality, ωi in (4) does not include any
variable corresponding to [5i

t ](b,a) with (a, b) /∈ E , since the
probability of traversing a non-existing road is zero. We denote
in boldface the concatenation over I and with boldface and
indexing −i the concatenation over I−i , e.g. ω := col(ωi )i∈I ,
ω−i := col(ω j ) j∈I−i . We also define nω := T |E |+(T +1)|N |.
The following lemma states that, by imposing appropriate
linear constraints on ω, the transformation in (2) can be
inverted and the resulting matrices 5i

t are coherent with the
dynamics in (1). All proofs are provided in the Appendix.

Lemma 1: Let ωi in (4) satisfy:∑
a:(a,b)∈E M i

t,(a,b) = [ρi
t+1]b for all b ∈N , t ∈ T ; (5a)∑

b:(a,b)∈E M i
t,(a,b) = [ρi

t ]a for all a ∈N , t ∈ T ; (5b)

M i
t,(a,b) ≥ 0 for all (a, b) ∈ E, t ∈ T ; (5c)

ρi
1 ∈ 1|N |, [ρi

1]bi = 1. (5d)

Then, ωi ∈ (1|E |)T
×(1|N |)(T +1) and a choice of (5i

t )i∈I,t∈T
such that ρi

t follows the dynamics in (1) is:

[5i
t ](b,a) =


1

|N |
if [ρi

t ]a = 0

M i
t,(a,b)

[ρi
t ]a

if [ρi
t ]a ̸= 0

(6)

for all (a, b) ∈ E, t ∈ T , i ∈ I.
Note that, in (6), the a-th column of 5i

t such that [ρi
t ]a = 0 can

be chosen to be anything that sums to 1, as those values do
not influence the evolution of the vehicle distribution.
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B. Control Objective and Constraints

We enforce the routing of each agent by constraining the
destination to be reached with high probability:[

ρi
T +1

]
di

≥ 1 − ε, (7)

where ε is a free design parameter. Let us introduce the latency
function ℓ(a,b) : R≥0 → R≥0, which maps the ratio of vehicles
on a road to its traversing time. A common model is the Bureau
of Public Transport (BPT) function [20]:

ℓBPT
(a,b)(σ ) := τ(a,b)

(
1 + 0.15

(
σ+ζ(a,b)

c(a,b)

)ξ+1
)

, (8)

where c(a,b) and τ(a,b) are the capacity and the free-flow
traversing time of (a, b), respectively, ζ(a,b) ≥ 0 is the number
of uncontrolled vehicles on the road normalized by V N and
ξ ≥ 0 is a parameter often set to ξ = 3, e.g. [5] and [20]. More
generally, we consider functions that satisfy the following:

Assumption 2: For each (a, b) ∈ E , the latency function
ℓ(a,b) is C2, non-negative, non-decreasing and convex.
The number of vehicles traversing road (a, b) at time t is
drawn from a Poisson’s binomial distribution with N V trials,
grouped into N groups of V trials with identical success
probability M i

t,(a,b), i ∈ {1, . . . , N }. Thus, its expected value is∑
i∈I V M i

t,(a,b) [21, Eq. 15] and the expected ratio of vehicles

on (a, b) is
∑

i M i
t,(a,b)

N =: σM
(a,b),t . Let σ̂M

t,(a,b) the (actual) ratio
of vehicles on road (a, b) at time t . The expected traversing
time is E[ℓ(a,b)(σ̂

M
(a,b),t )]. This is in general intractable to

compute: let us instead consider the first-order approximation
of ℓ(a,b) around the expected value of the argument.

E[ℓ(a,b)(σ̂
M
(a,b),t )] ≃ E

[
ℓ(a,b)(σ

M
(a,b),t )

+ ∇ℓ(a,b)(σ
M
(a,b),t )(σ̂

M
(a,b),t − σM

(a,b),t )
]

{1}
= ℓ(a,b)(σ

M
(a,b),t )+∇ℓ(a,b)(σ

M
(a,b),t)(E[σ̂M

(a,b),t]

− σM
(a,b),t )

{2}
= ℓ(a,b)(σ

M
(a,b),t ) (9)

where in (9), {1} follows from the linearity of the expected
value and from the fact that σM

(a,b),t is deterministic, while
{2} follows from E[σ̂M

(a,b),t ] = σM
(a,b),t . Although nonlinear

functions of the congestion were previously used as road
traversing cost [12], [13], [14], the interpretation provided
by (9) is novel, to the best of our knowledge. To justify the
approximation in (9), we leverage known results on the Taylor
series of stochastic functions [22, §6] in order to show that the
approximation error vanishes with the number of vehicles N V :

Proposition 1: Let each v in agent i draw the event (si,v
t+1 =

b, si,v
t = a) with probability M i

t,(a,b) independently from the
remaining vehicles. Then, (ℓ(a,b)(σ

M
(a,b),t )−ℓ(a,b)(σ̂

M
(a,b),t ))

2
=

yN V + zN V , where E[yN V ] ≤
1

4N V ∇ℓ(σM
(a,b),t )

2 and, for every
ϵ > 0, there exists Kϵ > 0 such that

supN V ∈N

(
P
[
|zN V | ≥

Kε

8(N V )3/2

])
≤ ϵ.

We now define the cost of traversing (a, b) at time t :

J(a,b)(M i
t,(a,b), M−i

t,(a,b)) :=M i
t,(a,b)ℓ(a,b)(σ

M
(a,b),t ). (10)

The objective pursued by each agent reads then as follows:

Ji := fi (ωi ) +
∑

(a,b)∈E,t∈T J(a,b)(M i
t,(a,b), M−i

t,(a,b)), (11)

where fi : Rnω → R encodes a local cost for agent i .
Quadratic costs are considered in [14, Eq. 5]. We consider
a more general class of functions.

Assumption 3: The functions ( fi )i∈I in (11) are convex and
C2.

Finally, we introduce the maximum capacity constraints∑
i∈I M i

t,(a,b) ≤ c̄(a,b) for all t ∈ T , (a, b) ∈ E (12)

which we recast via appropriately defined matrices (Ai )i∈I ,
Ai ∈ RT |E |×nω , b ∈ RT |E |, A := row(Ai )i∈I :∑

i∈I Aiωi = Aω ≤ b. (13)

C. Generalized Nash Equilibrium Problem

Formalizing the model derived in Sections III-A and III-B,
each agent solves the local optimization problem

∀i ∈ I :

{ min
ωi ∈�i

Ji (ωi , ω−i ) (14a)

s. t. Aiωi ≤ b −
∑

j∈I−i
A jω j , (14b)

where �i := {ω ∈ Rnω |(5), (7) hold} for all i . The coupling
between the N optimizations problems in (14) emerges both
in the cost functions and in the constraints, thus defining a
generalized game [23]. In particular, the game is aggregative
because the coupling between cost functions depends only on
the average decision σM

(a,b),t for all (a, b) and t . A desirable
solution is the generalized Nash equilibrium (GNE) ω∗, from
which no agent has an incentive to unilaterally deviate.

Definition 1: A collective strategy ω∗
∈ � :=(

i∈I�i
)⋂

{ω ∈ RNnω |Aω ≤ b} is a Nash equilibrium for
the game in (14) if, for each i ∈ I,

Ji
(
ω∗

i , ω∗

−i
)

≤ Ji
(
ωi , ω

∗

−i
)

for any ωi ∈ �i
⋂

{y ∈ Rnω |Ai y ≤ b −
∑

j∈I−i
A jω

∗

j }.

IV. GENERALIZED NASH EQUILIBRIUM SEEKING

We now turn our attention to the derivation of a distributed
algorithm to find a GNE of the problem in (14). Let us
formulate the following feasibility assumption:

Assumption 4: The set � is non-empty and it satisfies
Slater’s constraint qualification [18, Eq. 27.50].

� in Definition 1 is compact and convex because defined
by linear equations. Furthermore, the local cost functions are
convex, as formalized next:

Lemma 2: Let Assumption 2, 3 hold. For each i ∈ I,
Ji (ωi , ω−i ) is convex in ωi ∈ �i for all ω−i ∈ j∈I−i � j .

Under Assumption 4 and Lemma 2, we conclude that a
GNE exists [24, Prop. 12.11] if the game mapping

F(ω) := col
(
∇ωi Ji (ωi , ω−i )

)
i∈I (15)

is monotone. Monotonicity of the game mapping is one of
the mildest conditions under which effective GNE seeking
algorithms can be derived. The authors of [14] show that
monotonicity of the game defined using ℓBPT

(a,b) in (8) for all
(a, b) holds if enough non-controlled vehicles populate the
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roads [14, Eq. 18], with the caveat that this number must
increase proportionally with the number of controlled vehicles.
This might not be reasonable if the share of controlled vehicles
is large. In the following, we derive a milder condition.

A. Monotonicity of the Game

To study the monotonicity of the proposed formulation, let
us define for each road (a, b) and instant t the operators

F(a,b),t (M t,(a,b)):=col(J ′

(a,b)(·, M−i
t,(a,b))|M i

t,(a,b)
)i∈I (16)

where we compute

J ′

(a,b)(·, M−i
(b,a),t )|M i

t,(a,b)
= ℓ(a,b)(σ

M
(a,b),t )

+
1
N M i

t,(a,b)ℓ
′

(a,b)(σ
M
(a,b),t ). (17)

We now link the monotonicity of F to that of each F(a,b),t .
Lemma 3: The operator F in (15) is monotone if F(a,b),t

in (16) is monotone for each (a, b) and t.
For a particular class of ℓ(a,b) (which includes ℓBPT

(a,b) in (8)),
we find the following monotonicity condition:

Lemma 4: Let ℓ : R≥0 → R≥0 be defined as

ℓ(σ ) = τ +
k

ξ+1 (σ + ζ )ξ+1 (18)

for some τ, k, ξ, ζ ∈ R≥0. Let

T ( y) := col
(
ℓ(avg( y)) +

1
N yi∇ℓ(avg( y)

)
i∈I

. (19)

Then, T is monotone on [0, 1]
N if

ζ ≥ max
(

ξ2
−8

8N ,
ξ−2
2N

)
. (20)

Remark 2: (20) is satisfied for any ζ whenever ξ ≤ 2.
Remark 3: Let us compare the condition in (20) with the

previously known monotonicity condition derived in [14] for
the latency function ℓBPT

(a,b) with ξ = 3. Following (20) the
game is monotone if ζ(a,b) ≥

1
2N for all (a, b), which is

satisfied if at least V
2 uncontrolled vehicles traverse each road.

By contrast, taking into account that [14] considered V = 1,
the bound in [14, Eq. 18] requires 3N V

8 uncontrolled vehicles
on each road when translated to our setting. By applying
Lemma 4, one can then find more general conditions for the
convergence of [14, Alg. 1] than the ones specified in [14,
Thm. 1].

In view of Lemma 4, let us assume the following:

Assumption 5: For all (a, b) ∈ E , ℓ(a,b) in (10) is in the
form

ℓ(a,b)(σ ) = τ(a,b) +
k(a,b)

ξ+1 (σ + ζ(a,b))
ξ+1

where ξ , τ(a,b), k(a,b) ∈ R≥0 and ζ(a,b) satisfies (20).
Assumption 2 is implied by Assumption 5. For each (a, b) ∈

E , t ∈ T , F(a,b),t is in the form in (19), as can be seen by
substituting (17) in (16). Thus, F(a,b),t is monotone on [0, 1]

N

by Lemma 4. As � ⊂ [0, 1]
Nnω by Lemma 1, the following

result is immediate by Lemma 3:
Lemma 5: Under Assm. 5, F in (15) is monotone on �.
Lemma 5 is fundamental for guaranteeing the convergence

of the GNE-seeking algorithm proposed in Section IV-B.

B. Semi-Decentralized Equilibrium Seeking

To solve the game in (14), we focus on the computation of
a variational GNE (v-GNE) [23, Def. 3.10], that is, the subset
of GNEs which satisfy the KKT conditions[

ω

λ

]
∈ zer

([
i∈IN�i (ωi )+ F(ω)+col(A⊤

i λ)i
NR|E|

≥0
(λ)− Aω + b

])
(21)

where λ ∈ R|E |

≥0 is the dual variable associated to the shared
constraints in (12). The v-GNEs have desirable characteristics
of fairness between agents and there exist several efficient
algorithms for their computation. In particular, we adopt the
Inertial Forward-Reflected-Backward (I-FoRB) algorithm [15],
for its convergence speed and low computational complexity.
The I-FoRB algorithm converges in the general class of (non-
strictly) monotone games. On the contrary, the algorithm
proposed in [14] converges only if the game is strongly
monotone, thus an additive quadratic cost is necessary, which
is not needed in our model. The agents perform a reflected
projected-gradient descent of the Lagrangian function with an
inertial term (22b). Then, the agents communicate the primal
variable and auxiliary variables d to the aggregator. In turn,
the aggregator updates the aggregate variable and the dual
variable via a reflected dual ascent with inertia (23b) and
communicates them to the agents. We now state the main result
of this section, where we denote by L f

i the Lipschitz constant
of fi for all i ∈ I (which exist following Assumption 3 and
the compactness of �):

Proposition 2: Let Assumptions 3, 4, 5 hold and let

L(a,b) ≥
k(a,b)

N ((1 + ζ(a,b))
ξ

+ ξ(1 + ζ(a,b))
ξ−1)

L ≥ maxi (L f
i )+ max(a,b)∈E (L(a,b))

θ ∈ [0, 1
3 ), δ > 2L/(1 − 3θ).

Then, (ω(k), λ(k))k∈N generated by Algorithm 1 with stepsizes

0 < αi ≤ (∥Ai∥ + δ)−1 for all i ∈ I
0 < β ≤ N (

∑N
i=1 ∥Ai∥ + δ)−1

converges to col(ω∗, λ∗) where ω∗ is a v-GNE of (14).

V. RECEDING HORIZON GAME FORMULATION

Due to the constraint in (7), the problem in (14) admits
a solution only if, for all i , the destination di is reachable
from the starting node bi in T + 1 steps. In common appli-
cations, choosing a large enough T that guarantees feasibility
might lead to a heavy computational burden. In this section,
we propose an alternative formulation of the problem in (14)
without the constraint in (7) as N coupled Finite Horizon
Optimal Control Problems (FHOCPs), which we label Finite
Horizon Multi-Stage Game (FHMSG). Inspired by the Model
Predictive Control (MPC) literature, we propose to repeatedly
solve the FHMSG in receding horizon and to iteratively apply
the first input of the computed sequence. The agents are
directed to their destinations by means of a terminal cost which
penalizes the distance from their destination. Remarkably, the
introduction of a terminal cost is reminiscent of the classic
stability requirements of MPC [25, Sec. 2].
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Algorithm 1 I-FoRB GNE seeking for traffic routing

Initialization. ∀i ∈ I set ω
(0)
i , ω

(1)
i ∈ Rnω ; λ(1), λ(0)

∈ R|E |

≥0.
For k ∈ N:

1) Each agent i ∈ I receives σ (k), λ(k) and computes:

r (k)
i = 2∇ωi Ji (ω

(k)
i , ω

(k)
−i ) − ∇ωi Ji (ω

(k−1)
i , ω

(k−1)
−i )

(22a)

ω
(k+1)
i = proj�i

(ω
(k)
i − αi (r

(k)
i + A⊤

i λ(k))

+ θ(ω
(k)
i − ω

(k−1)
i )) (22b)

d(k+1)
i = 2Aiω

(k+1)
i − Aiω

(k)
i − bi . (22c)

2) The aggregator receives (ω(k+1), d(k+1)) and computes:

σ (k+1)
= avg(ω(k+1)) (23a)

λ(k+1)
= projR|E|

≥0
(λ(k)

+ βavg(d(k+1)) + θ(λ(k)
− λ(k−1)))

(23b)

A. Equivalent Finite Horizon Optimal Control Problem

Let us formalize the game under consideration, parametrized
in the initial distribution ρi

in ∈ 1|N |:

for all i ∈ I : min
ωi ∈Yi

Ji (ωi , ω−i ) (24)

where Yi :=
{
ω ∈ Rnω |(5a), (5b), (5c), ρi

1 = ρi
in
}
.

We emphasize that we do not include the constraint
in (12): due to the probabilistic control action, an unlucky
realization might lead the constraint (12) to be unfeasible
at the successive time steps. Instead, Yi is non-empty for
any ρi

in. The exclusion of (12) renders the problem in (24)
a (non-generalized) game. In this section, we show the
equivalence of the problem in (24) to a FHOCP. As a first
step, we rewrite the equations defining Yi as the state-space
representation of a constrained linear system. We define the
desired distribution ρi

eq as the one where every vehicle is
at their destination, that is, [ρi

eq]a = δdi (a), where δdi is a
Kronecker delta centered in di , and the associated equilibrium
input ui

eq := col(δdi (a)δdi (b))(a,b)∈E , that is, the vector of
edge transitions associated to remaining in the destination
node di with probability 1. We define the states x i

t ∈ Rnx

and inputs ui
t ∈ Rnu such that the origin coincides with the

desired distribution and equilibrium input, that is:

x i
t := ρi

t − ρi
eq (25)

ui
t := col(M i

t,(a,b))(a,b)∈E − ui
eq. (26)

We define the selection vectors S(a,b)
edge ∈ Rnu for all (a, b) ∈ E

such that (S(a,b)
edge )⊤(ui

t + ui
eq) = M i

t,(a,b), as well as

B := col(
∑

a:(a,b)∈E (S(a,b)
edge )⊤)b∈N

P := col(
∑

b:(a,b)∈E (S(a,b)
edge )⊤)a∈N .

It can be verified that Bui
eq = Pui

eq = ρi
eq and thus,

by substituting the definitions of B and P:

(5a) ⇔ x i
t+1 = Bui

t (27a)

(5b) ⇔ x i
t = Pui

t . (27b)

By substituting (26) in (27a), the desired state x i
t = 0 is an

equilibrium if the action M i
t,(di ,di )

= 1 is applied. We then
make sure that such action is cost-free for all agents (and thus,
trivially, a NE strategy) when the initial state is the origin by
assuming that the self-loops have no traversing cost. Another
restriction on the cost functions is supported by the following
lemma, which states that ℓ(a,b) must be affine for the game
in (14) to be potential [17, Sec. 2]. This property is crucial to
rewrite (24) as a single optimization problem.

Lemma 6: Let Assm. 2 hold. The game in (24) is potential
if and only if ℓ(a,b) in (10) is affine for each (a, b) ∈ E .

In view of these requirements, we formulate the following
assumption (which implies Assumption 5):

Assumption 6: For each (a, b) ∈ E , the congestion function
ℓ(a,b) is of the form ℓ(a,b)(σ ) = τ(a,b)+k(a,b)σ , with τ(a,a) = 0,
k(a,a) = 0 and τ(a,b) > 0 for all a ∈ N , b ∈ N \ {a}.

Linear(ized) edge traversing costs in traffic routing problems
are considered in [5] and [12] and in the numerical analysis
of [14]. Naturally, Assumption 6 implies that an optimal policy
for each agent is to remain at their initial state. We then impose
that the agents cannot choose to remain still in a node, unless
that node is their destination:

(S(a,a)
edge )⊤ui

t = 0 ∀ a ∈ N \ {di }, i ∈ I, t ∈ T . (28)

We can compactly rewrite Yi with the additional con-
straint (28) as the dynamics in (27a) with initial state x i

1 =

ρi
in − ρi

eq and constraint set Zi defined as

Xi := 1|N |
− {ρi

eq},

Ui := {u ∈ R|E |

≥0 − {ui
eq}|S

(a,a)⊤
edge u = 0 ∀a ∈ N \ {di }},

Zi := {(x, u) ∈ Xi × Ui |u ∈ null(P) + {P†x}}.

As a next step towards the formulation of the multi-stage
decision problem, we rewrite the cost Ji in terms of stage
cost, that is, as a sum of terms which only depends on the
variables at time step t ∈ T . We make the following technical
assumption, which is typical of multi-stage decision problems:

Assumption 7: The local cost fi (ωi ) is separable in t, that
is, fi (ωi ) =

∑
t∈T f S

i (x i
t , ui

t ) + f F
i (x i

T +1). Furthermore, f S
i

and f F
i are non-negative and f S

i (0, 0) = f F
i (0) = 0.

Let us collect the network parameters in τ̄ :=∑
(a,b) τ(a,b)S(a,b)

edge and C :=
∑

(a,b) k(a,b)S(a,b)
edge (S(a,b)

edge )⊤.
It can then be shown (see Appendix C) that under Assump-
tions 6, 7, Ji in (24) can be written in terms of stage costs
as:

Ji (x i
1, (ut )t∈T ) = f F

i (x i
T +1)

+
∑

t∈T f S
i (x i

t , ui
t )+τ̄⊤ui

t + avg(ut )
⊤Cui

t .

(29)

We then formulate the FHMSG G(x1) for any x i
1 ∈ Xi :

∀i :

 min
(ui

t )t∈T
Ji (x i

1, (ut )t∈T ) (30a)

s.t. (x i
t , ui

t ) ∈ Zi ∀t ∈ T , (30b)

which is equivalent to (24) with the additional constraint
in (28). Next, we show that the game in (30) is equivalent to a
FHOCP. Recall that xt = col(x i

t )i∈I and note that xt evolves
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according to the collective dynamics xk+1 = (IN ⊗ B)uk .
Define the constraint sets for the collective states and inputs:

X := {x|xi ∈ Xi for all i}

U := {u|ui ∈ Ui for all i}

Z := {(x, u)|(xi , ui ) ∈ Zi for all i}.

In the following Lemma 7 we find a common control objective
p that the agents unknowingly, but willingly, aim at minimiz-
ing when solving the game G:

Lemma 7: For any x1 ∈ X, the pseudogradient of G(x1)

in (30) is equal to ∇u p, where

pS(xt ,ut ):=
1

2N ∥ut∥
2
(IN +11⊤)⊗C

+
∑

i∈I f S
i (x i

t , ui
t )+τ̄⊤ui

t

(31a)

pF (xT +1) :=
∑

i∈I f F
i (xi ) (31b)

p(x1, (uτ )τ∈T ) := pF (xT +1) +
∑

t∈T pS(xt , ut ).

The potential function p allows us to conclude that, by
Lemma 7 and [26, Theorem 2], a NE of G(x1) is a solution
to the FHOCP O(x1), defined as:{

min
(ut )t∈T

p(x1, (uτ )τ∈T ) (32a)

s.t. (xt , ut ) ∈ Z ∀t ∈ T . (32b)

We now show the asymptotic stability of the receding horizon
solution of (32), and in turn of (30), via standard MPC results.

B. Stability of Receding Horizon Nash Equilibrium Control

At every time-step, the agents apply the first input corre-
sponding to a NE of the game in (30). This is formalized via
the following control actions:

κi : y 7→ ui∗
1 where col(ui∗

t )t∈T ,i∈I is a NE of G(y). (33)

Intuitively, κi leads the i-th agent to the desired equilibrium
if the agents have an high enough incentive to approach their
destinations. For this purpose, let us assume that each agent
knows a path to its destination, formalized by the mappings
(KPi )i∈I : N → N with the following characteristics:

KPi (di ) = di ; (a, KPi (a)) ∈ E;

∃ T P
i ∈ N such that KPt

i (a) := KPi ◦ . . . ◦ KPi︸ ︷︷ ︸
t times

(a) = di

for all a ∈ N , t ≥ T P
i .

An example is the shortest path computed with edge weights
τ̄ . We define the traversing time of the next edge along the
known path and for the whole path starting from each node:

τ
kp
i ∈ R|N |

≥0 ; [τ
kp
i ]a := τ(a,KPi (a)),

µ
kp
i ∈ R|N |

≥0 ; [µ
kp
i ]a :=

∑
∞

t=0[τ
kp
i ]KPt

i (a),

and the following auxiliary input, designed such that every
vehicle takes the next edge of the known path:

ukp
i : Xi → Ui for all i such that

S(a,b)⊤

edge ukp
i (xi ) =

{
[xi ]a − δdi (a) if b = KPi (a)

0 if b ̸= KPi (a).
(34)

We then postulate the following technical assumption, which
encodes the fact that each agent evaluates the distance of
the final state from the destination by means of the known
path:

Assumption 8: The local costs satisfy Assumption 7 with

f F
i (x) = σ F

i ((µ
kp
i )⊤x)

f S
i (x, ukp

i (x)) ≤ σ S
i ((τ

kp
i )⊤x),

where σ F
i is a m F -strongly monotone and σ S

i is a LS-Lipschitz
continuous functions for all i , with σ F

i (0) = σ S
i (0) = 0.

For example, Assumption 8 is satisfied by f F
i (x) =

γ1(µ
kp
i )⊤x , with γ1 > 0 and f S

i (x, u) = γ2(τ
kp
i )⊤x , with

γ2 ≥ 0. In the main result of this section we show that,
if the agents have a high enough incentive to reach the
destination (encoded by the strong monotonicity constant of
the terminal cost m F ), then the system in (27a) controlled
by the receding-horizon NE control (κi )i∈I defined in (33)
asymptotically reaches the origin (that is, the state at which
every vehicle is at its destination with probability 1). The
proof follows from the equivalence between (30) and (32).
Specifically, we show that pF is a control Lyapunov function
under control action ukp for the collective system whose map
from input to state is IN ⊗ B (cf. (27a)). We then apply a
known result in MPC theory [25, Theorem 2.19] to conclude
the asymptotic stability.

Theorem 1: Denote k̄ := max(a,b)(k(a,b)) and τmin :=

min(a,b),a ̸=b τ(a,b). Under Assumptions 1,3,6–8 and if

m F ≥ 1 + LS +
k̄(N+1)
2Nτmin

, (35)

then the origin is asymptotically stable for the systems x i
t+1 =

Bκi (xt ) for all i ∈ I, with κi as in (33).
Let us present the resulting approach in Algorithm 2.

VI. NUMERICAL STUDY1

We study the behavior of Algorithm 1 on multiple randomly
generated simple scenarios, in order to better observe the
characteristics of the solution. We implement a randomly
generated directed graph with 12 nodes and 27 edges for
N = 8 agents. We consider the case where the agents only take
the traversing time into account when choosing the road, and
thus we set fi ≡ 0 for all i . We set every road to have the same
length and capacity, by considering ℓ(a,b) to the BPT latency
function in (8) with τ(a,b) = 0.1, ζ(a,b) =

1
N , c(a,b) = 0.1 for

all (a, b) ∈ E and ξ = 3. The road limit in (12) is defined as
c(a,b) = 0.2. We solve the problem in (14) for 100 random
initial states and destinations of the agents. The solution to
the game in (14) is then compared to the routing obtained by
the shortest path with no traffic information, that is, with edge
weight τ(a,b) for all (a, b) ∈ E . We can conclude from Figure 1
that the baseline solution tends to overcrowd some roads (cf.
edge 6) and underutilize others (cf. edge 3), while the proposed
GNE routing, which exploits traffic information, obtains a
more uniform usage of the network. In Figure 2, we show the
normalized approximation error for the travel time computed
using (9). The approximation error for each link (a, b) ∈ E

1Code available at https://github.com/bemilio/MDP_traffic_nonlinear
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Algorithm 2 Receding horizon NE seeking for traffic routing

Initialization. Set ρi
1 as in (5d) for each i ∈ I.

For τ ∈ N:
1) Agents control computation:

a) A NE of G(ρτ )

([row(M i∗
t,(a,b))(a,b)∈E,t∈T , row(ρi∗⊤

t )t∈T + ]
⊤)i∈I

is computed using Algorithm 1, where each (�i )i∈I
in (22b) is substituted with {ωi ∈ Yi |(28) holds},
λ(1)

= 0 and the dual update (23b) is ignored.
b) Each agent i computes 5i∗

1 as in (6).
2) Vehicles node update:

For all v ∈ {1, . . . , V }, i ∈ I draw si,v
τ+1 ∈ N from the

probability distribution col([5i∗
1 ]

(b,si,v
τ )

)b∈N
3) Agents state update:

Each agent updates the empirical distribution:

πn,i = |{v ∈ {1, . . . , V } s.t. si,v
τ+1 = n}| for all n ∈ N

ρi
τ+1 = col(πn,i/V )n∈N

Fig. 1. maxt σ t
(a,b)

/c(a,b), compared to the congestion obtained by the
shortest path routing. The dotted line denotes c(a,b)/c(a,b). The dots show
the median values. The shaded area highlights the 95% confidence interval.
We show in red the performance of the shortest path solution (SP).

and instant t is computed as |ℓ(a,b)(σ
M
(a,b),t ) − ℓ(a,b)(σ̂

M
(a,b),t )|,

where σM
(a,b),t is the expected road occupation defined in

§ III-B and σ̂M
(a,b),t is the realized number of vehicles on

(a, b) at time t divided by N V . Evidently, increasing the
population size reduces the approximation error. We then
apply Algorithm 2 for τ ∈ {1, . . . , 10} with the terminal
cost f F

i (x) = γ (µ
kp
i )⊤x and γ as in the right hand side

of (35), which ensures that the assumptions of Theorem 1
are satisfied. The results are compared to the pre-computed
open-loop solution of problem (14) without the constraint
in (12), denoted by the ∞ horizon, in terms of the relative
total traversing time reduction with respect to the shortest-path
solution without traffic information. Figure 3 shows that the
traversing time experienced is reduced with respect to the
shortest path solution, and this advantage increases with the

Fig. 2. Difference between approximated and empirical travel time with
respect to V , the number of vehicles per population.

Fig. 3. Comparison of the total cost incurred by the agents, with respect to
the shortest path without traffic information.

time horizon. In a practical sense, the results in Figures 1,
3 show that the availability of real-time traffic information
allows to reduce the congestion on heavily utilized links and
the total traversing time experienced by the drivers.

VII. CONCLUSION

Traffic routing of multiple vehicles can be modelled as an
aggregative game with mixed strategies using a first-order
approximation of the latency function. The approximation
error decreases as the number of controlled vehicles increases.
The particular structure of the road latency function guarantees
the monotonicity of the game under mild conditions, allowing
for solution via existing equilibrium-seeking algorithms. If the
latency function is linear, then the game can be solved in
receding horizon whenever the local objective functions satisfy
a set of conditions inherited from the MPC literature. Numer-
ical simulations show that the proposed solution reduces the
overall network congestion and traversing time, compared to
the optimal routing computed without traffic information.

APPENDIX

Lemma 8: The only nonzero eigenvalues of a matrix

A( y) := 2(σ + ζ )1N 1⊤

N +
ξ
N ( y1⊤

N + 1N y⊤) (36)

where y ∈ RN
≥0, σ :=

1
N
∑

i [y]i , ζ ≥ 0, are λ− := ξσ + γ−

and λ+ := ξσ + γ+, where

γ± := N (σ +ζ )±

√
N 2(σ +ζ )2 +2Nξ(σ +ζ )σ +

ξ2
∥ y∥2

N .

(37)
Proof (sketch): As A( y) is a sum of 3 rank-1 matrices,
it is at most rank 3. We verify that λ± are eigenvalues with
eigenvectors ξ y+γ±1N . There is no third non-zero eigenvalue
as trace(A( y)) = λ− + λ+. ■

Authorized licensed use limited to: TU Delft Library. Downloaded on October 24,2024 at 07:23:29 UTC from IEEE Xplore.  Restrictions apply. 



BENENATI AND GRAMMATICO: PROBABILISTIC GAME-THEORETIC TRAFFIC ROUTING 13087

A. Proofs of Section III

Proof of Lemma 1: We prove that (1) and (2) hold true for
the matrices computed as in (6). We note that, if [ρi

t ]ā = 0 for
some ā ∈ N , by (5b)

∑
b:(ā,b)∈E M i

t,(ā,b) = 0 and, from (5c),
M i

t,(ā,b) = 0 for all b ∈ N . Substituting in (6), we obtain (2):

[5i
t ](b,a)[ρ

i
t ]a =

{
0 if [ρi

t ]a = 0
M i

t,(a,b) if [ρi
t ]a ̸= 0

= M i
t,(a,b)

By expanding the product 5i
tρ

i
t and by substituting the latter

and (5a), one obtains (1). Finally, we sum both sides of (5a)
and (5b) for all b ∈ N and a ∈ N , respectively, to obtain:∑

b∈N [ρi
t+1]b =

∑
(a,b)∈E M i

t,(a,b) =
∑

a∈N [ρi
t ]a .

By induction, ρi
t ∈ 1|N | and col(M i

t,(a,b))(a,b)∈E ∈ 1|E |. ■
Proof of Proposition 1: As σ̂M

(a,b),t is drawn from a Poisson
binomial distribution scaled by N V , from [21, Eq. 15] and
from M i

(a,b),t ∈ [0, 1],

Var(σ̂M
(a,b),t ) =

1
(N V )2

∑
i,v(1 − M i

(a,b),t )M i
(a,b),t ≤

1
4N V .

By the Chebyschev’s inequality, for any ϵ > 0 and Kϵ =
1

√
ϵ
,

P
[
(σM

(a,b),t − σ̂M
(a,b),t ) ≥

Kϵ

2
√

N V

]
≤ ϵ.

The result then follows from [22, Theorem 6.2.3] by using
rn =

1
2
√

N V
and a = σM

(a,b),t (in the reference notation). ■

B. Proofs of Section IV

Proof of Lemma 2 (sketch): Compute J ′′

(a,b)(·, M−i
(a,b),t ) for

a generic (a, b), t, i and note that it is non-negative using
Assumption 2. The result then follows by [18, Prop. 8.14,
8,17], and Assumption. 3. ■

Proof of Lemma 3: Let us compute F :

F(ω) = col (∇ fi (ωi ))i∈I

+ col

([
col

(
J ′

(a,b)(·, M−i
t,(a,b))|M i

t,(a,b)

)
(a,b),t

0|N |(T +1)

])
i∈I

, (38)

where the zero vector appears because the latency functions do
not depend on (ρi

t )t,i . From Assumption 3 and [18, Example
20.3], ∇ fi is monotone for each i . Then, col(∇ fi )i is mono-
tone by [18, Prop. 20.23]. Let us denote the second addend
in (38) as T (ω). From [18, Prop. 20.10], F is monotone if T
is monotone. Let us define the permutation matrix P such that

Pω =

[
col(M t,(a,b))(a,b)∈E,t∈T

col(ρt )t∈T +

]
.

It holds, from the definition of F(a,b),t ,

PT (ω) =

[
col(F(a,b),t (M t,(a,b)))(a,b)∈E,t∈T

0N |N |(T +1)

]
. (39)

As P P⊤
= I , for all ω, y:

⟨T (ω) − T ( y), ω − y⟩
= ⟨PT (ω) − PT ( y), Pω − P y⟩
=
∑

(a,b),t ⟨F(a,b),t |ω − F(a,b),t | y, M t,(b,a)|ω − M t,(b,a)| y⟩

which is non negative if F(a,b),t is monotone ∀(a, b), t . ■
Proof of Lemma 4: By [27, Prop. 12.3], T in (19) is

monotone if DT ( y) + DT ( y)⊤ ⪰ 0 ∀ y. Denote σ = avg( y).

DT ( y) =
1
N ℓ′(σ )(IN + 11⊤) +

1
N 2 ℓ′′(σ )( y1⊤). (40)

As ℓ′(σ ) = k(σ + ζ )ξ , ℓ′′(σ ) = kξ(σ + ζ )ξ−1, we compute

DT ( y) + DT ⊤( y) =
2k
N (σ + ζ )ξ IN

+
k
N (σ + ζ )ξ−1(2(σ + ζ )11⊤

+
ξ
N ( y1⊤

+ 1 y⊤)). (41)

By Lemma 8, DT ( y) + DT ⊤( y) ⪰ 0 if

2k
N (σ + ζ )ξ +

k
N (σ + ζ )ξ−1(ξσ + γ−( y)) ≥ 0, (42)

where γ− is defined in (37). Excluding the trivial case y =

0, ζ = 0, we divide by k
N (σ + ζ )ξ to obtain

(42) ⇔ 2 +
ξσ

σ+ζ
+

γ−( y)
σ+ζ

≥ 0

⇔ 2 +
ξσ

σ+ζ
+ N ≥

√
N 2 + 2 Nξσ

σ+ζ
+

ξ2
∥ y∥2

N (σ+ζ )2

⇔ 4 +
ξ2σ 2

(σ+ζ )2 +��N 2
+

4ξσ
σ+ζ

+ 4N +
�

��2Nξσ
σ+ζ

≥ ��N 2
+

�
��2Nξσ

σ+ζ
+

ξ2
∥ y∥2

N (σ+ζ )2

⇔ f ( y) := 4(N + 1) +
ξ2σ 2

(σ+ζ )2 +
4ξσ
σ+ζ

−
ξ2

∥ y∥2

N (σ+ζ )2 ≥ 0.

(43)

We look for the minimum of the left hand side of the latter
inequality. Notice that ∇ yσ =

1
N 1N . Then,

∇ f ( y) =
2ξ2

N
σ(σ+ζ )2

−σ 2(σ+ζ )

(σ+ζ )4 1N −
4ξ
N

ζ

(σ+ζ )2 1N

− ξ2 2N y(σ+ζ )2
−2(σ+ζ )∥ y∥21N

N 2(σ+ζ )4 .

Since ∇ f ( y) contain either terms that multiply 1N or y,
it must be y = α1N for some α ∈ (0, 1] for y to be a
stationary point. Therefore, the minimum of f ( y) is either
obtained for y = α1N or at an extreme point of [0, 1]

N , that
is, y =

∑
i∈Q ei , where ei ∈ RN with only non-zero element

[ei ]i = 1 and Q ⊂ {1, . . . ., N }. Let us study the two cases
separately:
Case y = α1N : In this case, σ = α and ∥ y∥2

= α2 N .
We substitute these values in (43) to find

f ( y) = 4(N + 1) +
�

�
�ξ2α2

(α+ζ )2 +
4ξα
α+ζ

−
��

��ξ2α2 N
N (α+ζ )2 ≥ 0.

Case y =
∑

i∈Q ei : In this case, define q := |Q|, we com-
pute σ =

q
N and ∥ y∥2

= q. We then substitute in (43)
to find

f ( y) = 4N + 4 +
ξ2q2

(q+Nζ )2 +
4ξq

q+Nζ
−

ξ2q N
(q+Nζ )2 ≥ 0.

A sufficient condition for the latter is that the first
addend is greater than the negative one, which is
true if

g(q) := 4(q + ζ N )2
− qξ2

≥ 0.

Let us study the first derivative of g:

g′(q) = 8 (q + ζ N ) − ξ2
≤ 0 ⇔ q ≤

ξ2

8 − ζ N .
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We conclude that g(q) has the minimum in q = 1 if ζ ≥
ξ2

−8
8N .

We then note that g(1) ≥ 0 if ζ ≥
ξ−2
2N . Therefore, g(q) ≥

0 for all q ∈ {1, . . . , N } if (20) holds true, which in turns
guarantees that (42) holds true for all y ∈ [0, 1]

N . ■
Proof of Proposition 2: As F(a,b),t in (16) is in the form

in (19), DF(a,b),t can be computed as in (40). Denote σ =

avg( y). For y ∈ [0, 1]
N , σ ≤ 1 and ∥ y∥2

≤ N . Thus,

∥ y1⊤

N ∥ =

√
λmax( y1⊤

N 1N y) =

√
N∥ y∥2 ≤ N

From subadditivity, ∥1N 1⊤

N ∥ = N and the latter,

max
y∈[0,1]N

∥DF(a,b),t ( y)∥

≤ max
y∈[0,1]N

1
N ℓ′

(a,b)(σ )∥I + 11⊤
∥ +

1
N 2 ℓ′′

(a,b)(σ )∥ y1⊤
∥

≤ max
y∈[0,1]N

1
N ℓ′

(a,b)(σ )(1 + N ) +
1

N 2 ℓ′′

(a,b)(σ )N

(σ≤1)
≤

k(a,b)

N ((1 + ζ(a,b))
ξ

+ ξ(1 + ζ(a,b))
ξ−1) = L(a,b).

F(a,b),t is therefore L(a,b)-Lipschitz continuous on [0, 1]
N

following [27, Thm. 9.2, 9.7]. As � ⊂ [0, 1]
Nnω , it can be

shown that the second addend of (38) is Lipschitz continuous
with constant max(a,b)∈E L(a,b) and thus F is L−Lipschitz
continuous. By Lemma 5 and [18, Cor. 20.28], F is maximally
monotone. Finally, by applying Lemma 2, all the assumptions
of [15, Thm. 1] are satisfied and the thesis follows. ■

C. Proofs of Section V

Proof of Lemma 6: Denote by F the pseudogradient of (24).
We compute

DF(ω)

= diag(∇2 fi (ωi ))i∈I

+
1
N (IN + 1N 1⊤

N ) ⊗

[
diag(ℓ′

(a,b))t∈T ,(a,b)∈E 0
0 0

]
+

1
N 2 col

(
1⊤

N ⊗

[
diag(M i

t,(a,b)ℓ
′′

(a,b))t∈T ,(a,b)∈E 0
0 0

])
i∈I

.

The arguments of col in the second addend are in general
different for each i ∈ I. Thus, DF(ω) is symmetric only if
ℓ′′

(a,b) ≡ 0. The thesis then follows from [17, Theorem 4.5]. ■

Derivation of (29): From Assm. 6 and 7 and S(a,b)⊤
edge (ui

t +

ui
eq) = M i

t,(a,b), we rewrite Ji in (11) as:

Ji (ωi ) = f F
i (x i

T +1) +
∑

t

{
f S
i (x i

t , ui
t ) +

∑
(a,b)

[(
τ(a,b)

+
k(a,b)

N
∑

j

[
S(a,b)⊤

edge (u j
t + u j

eq)
])

S(a,b)⊤
edge (ui

t + ui
eq)
]}

.

Using the definitions of C and τ̄ and rearranging,

Ji (x i
1, u) = f F

i (x i
T +1) +

∑
t f S

i (x i
t , ui

t )

+ (τ̄⊤
+ avg(ut + ueq)

⊤C)(ui
t + ui

eq).

From Assumption 6 and the definition of C and τ̄ , Cui
eq = 0,

τ̄⊤ui
eq = 0 for any i ∈ I, thus (29) follows. ■

Proof of Lemma 7: Let us denote ui
:= col(ui

t )t∈T ; u =

col(ui )i∈I .

We can rewrite the agent cost in (29) as

Ji (x i
1, u) = ( f F

i (x i
T +1) +

∑
t∈T f S

i (x i
t , ui

t ) + τ̄⊤ui
t )

+
∑

j∈I
1
N (u j )⊤(IT ⊗ C)ui

The pseudo-gradient of (30) reads then as [15, Eq. 32]

F(x1, u) = col(∇ui ( f F
i (x i

T +1)+
∑

t f S
i (x i

t , ui
t )+ τ̄⊤ui

t ))i∈I

+
1
N (IN + 1N 1⊤

N ) ⊗ (IT ⊗ C)u.

It can be verified by expanding the quadratic forms that∑N
t=1 ∥ut∥

2
1N 1⊤

N ⊗C
= ∥u∥

2
1N 1⊤

N ⊗(IT ⊗C)∑N
t=1 ∥ut∥

2
IN ⊗C = ∥u∥

2
IT N ⊗C

By substituting the latter in the definition of p, one obtains

p(x1, u) =
∑

i
(

f F
i (x i

T +1) +
∑

t f S
i (x i

t , ui
t ) + τ̄⊤ui

t
)
+

+
1

2N ∥u∥
2
(IN +1N 1⊤

N )⊗(IT ⊗C)
.

One can then compute ∇u p to verify that it reads as F . ■
Proof of Theorem 1: Theorem 1 follows by verifying the

hypothesis of [25, Thm. 2.19]. Namely, we prove a lower
bound for the stage cost (Lemma 10) and that the terminal
cost is a control Lyapunov function for the collective system
xt+1 = (IN ⊗B)ut (Lemma 11). We first show some technical
relations in Lemma 9:

Lemma 9: The following hold for all (x, u) ∈ Z, i ∈ I:∑
a ̸=b(S(a,b)

edge )⊤ui = −(S(di ,di )
edge )⊤ui ; (44a)

[xi ]di ≥ (S(di ,di )
edge )⊤ui ; (44b)

−[xi ]di ≥ max
a∈N

[xi ]a . (44c)

Proof. (44a): From the definition of Z, Pui = xi . Substituting
the definition of P and summing each row,∑

a
∑

b:(a,b)∈E S(a,b)⊤
edge ui =

∑
a[xi ]a = 0 (45)

where we used the definition of Xi and
∑

a∈N ρi
eq = 1. Using

the definition of U, (44a) follows by noting∑
a ̸=b S(a,b)⊤

edge ui=
∑

(a,b)∈E {S(a,b)⊤
edge ui } − S(di ,di )⊤

edge ui .

(44b): From ui ∈ R|E |

≥0 − {ui
eq} and [ui

eq]a = 0 for each a not
associated to the edge (di , di ), it follows (S(di ,b)

edge )⊤ui ≥ 0 for
all b ∈ N \ {di }. As xi = Pui , from the definition of P:

[xi ]di =
∑

b:(di ,b)∈E (S(di ,b)
edge )⊤ui ≥ (S(di ,di )

edge )⊤ui .

(44c): From xi + ρi
eq ∈ 1|N | and the definition of ρi

eq, it
follows [xi ]a ≥ 0 ∀ a ̸= di and [xi ]di ≤ 0. Thus,

−[xi ]di
(45)
=
∑

b∈N \{di }
[xi ]b ≥ [xi ]a ∀ a ∈ N . ■

Lemma 10: For all (x, u) ∈ Z, the stage cost in (31a)
satisfies

pS(x, u) ≥
τmin∥x∥

Nnx
. (46)

Proof: From C ⪰ 0 and Assm. 7, pS(x, u) ≥
∑

i τ̄⊤ui .
Thus,

pS(x, u) ≥
∑

i∈I
∑

(a,b)∈E τ(a,b)(S(a,b)
edge )⊤ui
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Ass. 6
≥ τmin

∑
i∈I

∑
(a,b)∈E,a ̸=b(S(a,b)

edge )⊤ui . (47)

We then note∑
a ̸=b S(a,b)⊤

edge ui
(44a)
= −S(di ,di )⊤

edge ui
(44b)
≥ −[x i

]di =|[x i
]di |.

Substituting in (47),

pS(x, u) ≥ τmin
∑

i∈I |[xi ]di |. (48)

From (44c), |[xi ]di | = ∥xi∥∞. Substituting in (48),

pS(x, u) ≥ τmin
∑

i∈I ∥xi∥∞.

We recall x = coli∈I(xi ), thus

∥x∥∞ = max
i,a

|[xi ]a | = max
i∈I

∥xi∥∞ ≤
∑

i∈I ∥xi∥∞.

We then obtain pS(x, u) ≥ τmin∥x∥∞. As for any y ∈ Rn ,
n∥y∥∞ ≥ ∥y∥2 and since x ∈ RNnx , we obtain (46).

Lemma 11: Let pF be as in (31b) and let Assumption 8
and Equation (35) hold true. For all x ∈ X, (x, ukp(x)) ∈ Z
and

pF ((IN ⊗ B)ukp(x)) − pF (x) ≤ −pS(x, ukp(x)). (49)
Proof: For compactness, we drop the dependencies of ukp

on x and we let x+
= (IN ⊗ B)ukp. Define the mapping from

each node to all parent nodes along the known path KPi :

PKi : N ⇒ N , PKi : b 7→ {a : b = KPi (a)}.

Then, from the definition of B and (34),

[x+

i ]b=
∑

a:(a,b)∈E (S(a,b)
edge )⊤ukp

i (xi )

=
∑

a∈PKi (b)[xi ]a − δdi (a).

From the definition of µ
kp
i ,

[µ
kp
i ]KPi (a) = [µ

kp
i ]a − [τ

kp
i ]a . for all a ∈ N . (50)

Then,

(µ
kp
i )⊤xi =

∑
a∈N [µ

kp
i ]a[xi ]a

=
∑

a∈N ([µ
kp
i ]KPi (a) + [τ

kp
i ]a)[xi ]a

= (τ
kp
i )⊤xi +

∑
a∈N [µ

kp
i ]KPi (a)[xi ]a

= (τ
kp
i )⊤xi +

∑
b∈N [µ

kp
i ]b

∑
a∈PKi (b)[xi ]a

= (τ
kp
i )⊤xi +

∑
b∈N [µ

kp
i ]b([x+

i ]b + δdi (b)).

We note that KPi (di ) = di , thus [µ
kp
i ]di = 0 from Assump-

tion 6, therefore [µ
kp
i ]bδdi (b) = 0 for all b. Thus,

(µ
kp
i )⊤xi = (τ

kp
i )⊤xi + (µ

kp
i )⊤x+

i

and, from Assumption 8,

pF (x)− pF (x+)

=
∑

i σ
F
i ((µ

kp
i )⊤xi )−σ F

i ((µ
kp
i )⊤x+

i )

≥ m F ((µkp)⊤x − (µkp)⊤x+) = m F (τ kp)⊤x. (51)

From the definition of τ̄ and from τ(di ,di ) = 0, ∀x ∈ X,

τ̄⊤ukp
i =

∑
(a,b) τ(a,b)(S(a,b)

edge )⊤ukp
i

(34)
=
∑

a∈N τ(a,KPi (a))([xi ]a − δdi (a))=(τ
kp
i )⊤xi .

By Assumption 8 and denoting C̄ = (IN + 11⊤) ⊗ C ,

pS(x, ukp) =
∥ukp

∥
2
C̄

2N +
∑

i f S
i (xi , ukp

i ) + (τ
kp
i )⊤xi

≤
∑

i∈I(L S + 1)(τ
kp
i )⊤xi +

1
2N ∥ukp

∥
2
C̄
. (52)

From (51) and (52), then (49) holds if

(m F − 1 − LS)(τ kp)⊤x ≥
1

2N ∥ukp
∥

2
C̄ . (53)

Let us find a lower bound for the LHS of (53).

(τ kp)⊤x=
∑

i,a[τ
kp
i ]a[xi ]a

Ass.6
=

∑
i
∑

a ̸=di
[τ

kp
i ]a[xi ]a

≥ τmin
∑

i
∑

a ̸=di
[xi ]a

(45)
= τmin

∑
i (−[xi ]di ). (54)

We now rewrite the RHS of (53):

∥ukp
∥

2
C̄ =

∑
i

(
(ukp

i )⊤Cukp
i +

∑
j

(
(ukp

j )⊤Cukp
i

))
. (55)

We then note that for all i, j ∈ N , from the definition of C :

(ukp
j )⊤Cukp

i =
∑

(a,b) k(a,b)(u
kp
j )⊤S(a,b)

edge (S(a,b)
edge )⊤ukp

i . (56)

From (34), (ukp
j )⊤S(a,b)

edge ≤ 1 for all (a, b) and (S(a,b)
edge )⊤ukp

i =

0 if b ̸= KPi (a). We continue from (56):

≤
∑

a∈N k(a,KPi (a))S(a,KPi (a))
edge ukp

i

=
∑

a∈N k(a,KPi (a))([xi ]a − δdi (a))

=
∑

a ̸=di
k(a,KPi (a))[xi ]a ≤ k̄

∑
a ̸=di

[xi ]a
(45):
= −k̄[xi ]di

where we noted k(di ,KPi (di )) = k(di ,di ) = 0 from Assumption 6.
Substituting the latter in (55),

∥ukp
∥

2
C̄ ≤ (N + 1)k̄

∑
i∈I(−[xi ]di ). (57)

From (57) and (54), (53) holds true under (35).
We are now ready to present the proof of Theorem 1:
Proof: By [26, Thm. 2], for any x ∈ X, a solution of G(x)

solves O(x). Then, col(κi (x))i is the first input of a sequence
which solves (32) with initial state x. Problem (32) satisfies
[25, Assm. 2.2, 2.3] under Assumptions 3 and 6. [25, Assm.
2.14a] follows from Lemma 11. By Assumption 3, pF is
Lipschitz continuous. Thus, [25, Assm. 2.14b] is satisfied by
Lemma 10. X is control invariant for ukp(·), as verified by
computing (I ⊗ B)ukp(x) for a generic x ∈ X. [25, Assm.
2.17] is then satisfied by applying [25, Prop. 2.16]. The thesis
follows from [25, Thm 2.19].
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