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Incremental Model Based Heuristic Dynamic
Programming for Nonlinear Adaptive Flight Control

Y. Zhou∗, E. van Kampen, and Q. P. Chu
Delft University of Technology, 2629HS Delft, The Netherlands

ABSTRACT

This paper presents a new and effective ap-
proach, incremental model based heuristic dy-
namic programming, to design an adaptive near-
optimal controller without a-prior knowledge of
the dynamic model. Both traditional heuristic
dynamic programming algorithm and incremen-
tal model based heuristic dynamic programming
algorithm are provided and applied to an illus-
trative on-line learning task. The system dy-
namics are completely unknown at the begin-
ning, and the agent learns the local system mod-
els and the control policies on-line to follow a
reference signal. It was found that using in-
cremental models in heuristic dynamic program-
ming can avoid off-line learning of the system
model and help to accelerate the on-line learning.
This proposed method can potentially design a
near-optimal controller for autonomous flight of
unmanned aerial vehicles without a-prior knowl-
edge of the system dynamics.

1 INTRODUCTION

Control of a complex, nonlinear flying vehicle without
sufficient knowledge of the system dynamics is a challeng-
ing problem to maintain functionality and safety in aviation.
Until recent decades, adaptive control methods allow certain
levels of robustness and fault-tolerance to be achieved. These
methods in some form or another rely on off-line or/and on-
line identification of air vehicles’ dynamics and adaptation of
control laws when necessary. However, on-line identification
of unknown dynamical systems is not a trivial task especially
when the system is complex and highly nonlinear.

In recent years, Adaptive/Approximate Dynamic Pro-
gramming (ADP), which obtains approximately optimal so-
lutions of the Hamilton-Jacobi-Bellman (HJB) equations, has
been actively researched to solve nonlinear, optimal, fault-
tolerant control problems [1, 2, 3, 4, 5]. Different from tra-
ditional Reinforcement Learning (RL) methods, ADP applies
a function approximator with parameters to approximate the
value/cost function to solve optimality problems with large or
continuous state spaces on-line and to tackle the ‘curse of di-
mensionality’, which traditional RL methods often confront
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with [6, 7]. Adaptive Critic Designs (ACDs), which are also
known as actor-critic designs, constitute a class of ADP meth-
ods that separate evaluation and improvement using paramet-
ric structures [2].

The most basic form and widely used structure of ACD
is Heuristic Dynamic Programming (HDP). An action inde-
pendent heuristic dynamic programming controller consists
of an actor, a critic and an approximated plant structure con-
nected between the actor and the critic [2, 6, 7]. An alterna-
tive approach is Action Dependent Heuristic Dynamic Pro-
gramming (ADHDP), which does not need plant approxima-
tion, but has a direct connection from the output of the actor
network to the input of the critic network. However, from the
theoretical perspective, the actor output is not necessarily an
input to the critic for estimating the optimal value function.
From the practical point of view, extra input will increase the
complexity of the critic network. Furthermore, some research
has investigated the difference between HDP and ADHDP,
and found that HDP controller with the approximated plant
dynamics can operate in a wider range of flight conditions
and has a higher success learning ratio in controlling an F-16
model [8]. Therefore, in this paper, only HDP, which refers to
action independent heuristic dynamic programming, is con-
sidered.

Neural networks are most widely used as function ap-
proximators to approximate plants. However, this method
has two main drawbacks which may lead to failure when ap-
plied in practice. First, on-line identification of the plant us-
ing neural networks needs certain time to approximate fea-
sible model, which may even need an off-line identification
beforehand. Second, neural networks may add two sources
of errors. One is lacking adequate computing power when
neural networks are used to perform the least-square approx-
imation of the desired cost-to-go function. Another is that
the function approximator is trained from a simulation model
which might not be correct due to the unknown system [9].

Incremental methods are able to deal with system non-
linearity. These methods compute the required control incre-
ment instead of the total control input. However, some parts
of the system model are still required in order to complete the
design process [10, 11, 12]. Incremental Approximate Dy-
namic Programming (iADP) was developed for the first time
to control nonlinear unknown systems without using models.
This control strategy uses a quadratic function to approximate
the value function [13, 14].

In this paper, an action independent Heuristic Dynamic
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Programming controller using incremental models, which
is namedIncremental model based Heuristic Dynamic Pro-
gramming(IHDP), is developed as a model-free adaptive con-
trol approach for nonlinear unknown systems. This is called
a model-free approach, because it does not need any a priori
model information at the beginning of the algorithm nor on-
line identification of nonlinear systems, but only the on-line
identified linear incremental model. The incremental form of
a nonlinear dynamic system is actually a linear time-varying
approximation of the original system assuming sufficiently
high sample rate for discretization. As the plant to be con-
trolled in this paper is nonlinear, the IHDP is therefore devel-
oped based on the linearized incremental model of the origi-
nal nonlinear system. This algorithm can be seen as an exten-
sion to the algorithm developed in [13, 14] with more general
value function approximaters.

The rest of the paper is structured as follows. An HDP
algorithm with a widely used neural network plant approxi-
mator is introduced and designed in section 2. An IHDP algo-
rithm using incremental approach is first presented in section
3. Then, in section 4, the two algorithms are applied to an
illustrative application, and the results are compared anddis-
cussed, showing how much the IHDP method can improve
the performance. The last part concludes the advantages and
disadvantages of using the incremental approach with HDP,
and addresses the challenges and possibilities of the future
research.

2 HEURISTIC DYNAMIC PROGRAMMING

Similar to other ADP methods, action independent
Heuristic Dynamic Programming (HDP) algorithms operate
by alternating between two steps: policy evaluation, imple-
mented by the critic, and policy improvement, implemented
by the actor [14, 9]. Fig.1 is a schematic diagram of an HDP
controller, which uses 3 Neural Networks to approximate ac-
tor, critic, and system dynamics with weightswa, wc, and
wm, respectively.

Actor

Critic

System

Model

utxt, dt

xt, dt

xt+1

x̂t+1

em

V̂ (xt)

eaV ∗(x̂t+1)

V̂ (xt−1)− c(t)
ec
γ

xt

(1)

(2)
(3)

Figure 1: Architecture of HDP using Neural Networks to ap-
proximate system model

2.1 HDP using Neural Networks to approximate system
model

2.1.1 Critic

The critic network is used to approximate the state-value
functionV (xt), which is the cumulative future rewards from
any initial statext:

V µ(xt) =

∞∑

i=t

γi−tct, (1)

whereµ is thecurrent policyfor this algorithm,γ is called
discount factoror forgetting factor, which is a scalar with
0 < γ < 1, andct is theone-step cost function. The discount
factor ensures that the cost for any state is finite and provides
a reasonable evaluation and approximation to infinite-horizon
problems as well as problems involving a finite but very large
number of stages. By adjustingγ, it is able to control the
extent to which the short-term cost or long-term cost is con-
cerned [9].

To minimize the cost of the system approaching its goal,
the one-step cost function is defined quadratically as a func-
tion of the difference between the current state and the desired
state, as follows:

ct = c(xt,dt) = (xt − dt)
TQ(xt − dt), (2)

wheredt is the reference track,Q is a positive definite matrix.
To normalize the effect of each state, we usually use normal-
ization factors in theQ matrix. Thus, we letQ be a diagonal
matrix, and Eq. 2 can be rewritten as follows:

ct =
n∑

i=1

(ζi)
2 ·

(
xt,i − dt,i
xmax,i

)2

, (3)

whereζi is a given weight to indicate the importance of the
cost for thei-th state approaching the desired track.

Actor-Critic methods are on-policy Temporal Difference
(TD) methods, which continually estimate the cost-to-go for
the current policy by updating the critic, and change the pol-
icy towards greediness by updating the actor at the same time
[15]. The evaluation of the critic is the TD error:

ec(t) = ct−1 + γV̂ (xt)− V̂ (xt−1), (4)

whereV̂ (xt) is the approximated cost-to-go from statext un-
der current policy. Note that̂V is a function ofxt andwc(t)
with a static neural network structure. The target for the critic
update isct−1 + γV̂ (xt).

The critic network tries to minimize the defined error
function:

Ec(t) =
1

2
e2c(t). (5)

Therefore, the weights of the critic network are updated ac-
cording to a gradient-descent algorithm with a learning rate
ηc:

wc(t+ 1) = wc(t) + ∆wc(t), (6)



where

∆wc(t) = −ηc ·
∂Ec(t)

∂wc(t)

= −ηc ·
∂Ec(t)

∂V̂ (xt)
·
∂V̂ (xt)

∂wc(t)
.

(7)

With a fixed policy and converged critic, the neural network
parameterswc(t) will be constant.

2.1.2 Actor

The actor is used to find the policy which minimizes the dif-
ference between the defined cost-to-go functionV̂ (xt) and
the goalV ∗(t):

Ea(t) =
1

2
e2a(t), (8)

ea(t) = V̂ (xt)− V ∗(t), (9)

where the goalV ∗(t) is set to 0.
The policy is determined by the weights of the actor net-

work. However, updating the actor network is more compli-
cated, since it involves the critic network and the model net-
work. Fig. 1 shows that, through the 3rd back-propagation di-
rection, the actor weights affect cost-to-go functionV (xt+1)
through affectingxt+1 and ut. Thus, the actor network
weights can be updated according to the gradient-descent al-
gorithm with a learning rateηa:

wa(t+ 1) = wa(t) + ∆wa(t), (10)

where

∆wa(t) = −ηa ·
∂Ea(t+ 1)

∂wa(t)

= −ηa ·
∂Ea(t+ 1)

∂V̂ (xt+1)

∂V̂ (xt+1)

∂xt+1

∂xt+1

∂ut

∂ut

∂wa(t)
.

(11)

The approximated system model can be used to estimate the
next statext+1 with an inputut. This helps to get the use-
ful term ∂x̂(t+1)

∂ut
approximating∂xt+1

∂ut
in updating the actor

network [8]. Therefore, Eq. 11 can be rewritten as follows:

∆wa(t) = −ηa
∂Ea(t+ 1)

∂V̂ (x̂t+1)

∂V̂ (x̂t+1)

∂x̂t+1

∂x̂t+1

∂u(t)
∂u(t)
∂wa(t)

. (12)

2.1.3 Model

The model network approximates the system dynamics and
gives the estimated next statex̂t+1 as output. The next state
is a function of inputut and the network parameterswm(t)
with a fixed neural network structure:̂xt+1(ut,wm(t)). The
update of the model network is by minimizing the difference
between the measured statext and the estimated statêxt:

Em(t) =
1

2
e2m(t), (13)

where
em(t) = xt − x̂t. (14)

The model network weights are updated according to the
gradient-descent algorithm with a learning rateηm:

wm(t+ 1) = wm(t) + ∆wm(t), (15)

where

∆wm(t) = −ηm ·
∂Em(t+ 1)

∂wm(t)

= −ηm ·
∂Em(t+ 1)

∂x̂t+1

∂x̂t+1

∂wm(t)
.

(16)

2.2 HDP training by back-propagation

The actor, critic and model neural networks in this pa-
per are all Multilayer Perceptrons (MLP), which consist of
multiple, fully connected, and feedforward layers of nodes.
Each neural network has an input layer, a hidden layer and an
output layer. Each node in hidden layers is a neuron with a
continuous, nonlinear hyperbolic tangent activation function
σ:

σ(y) =
1− e−y

1 + e−y
. (17)

At each point, it has a positive derivative:

∂σ(y)

∂y
=

1

2
(1− σ(y)2). (18)

In fully connected multilayer neural networks, the input
of the (n + 1)-th layer consists of the outputs of then-th
layer and sometimes also a bias termbn. When the neural
network hasI inputs,J hidden neurons, andK outputs, the
neural network weight fromi-th input layer neuron toj-th
hidden layer neuron iswji(i = 1, ..., I + 1, j = 1, ..., J),
and the weight fromj-th hidden layer neuron tok-th output
layer neuron iswkj(j = 1, ..., J + 1, k = 1, ...,K). Thus,
the feedforward neural networks fromi-th input layer (noted
as superscriptin) neuron toj-th neuron of the hidden layer
(noted as superscripthi) can be described as follows:

σhi
j (t) =

1− e−yhi
j (t)

1 + e−yhi
j

(t)
, (19)

yhij (t) =

I+1∑

i=1

whi
ji (t)x

in
i (t), (20)

where,σhi
j (t) is the output of thej-th hidden layer neuron,

yhij (t) is the network input of thej-th hidden layer neuron,
whi

ji (t) is the weight from thei-th input neuron toj-th hidden
layer neuron at timet, andxin

i (t) is thei-th input of the hid-
den layer, which consistsI inputs of the system and the bias
termbin. The feedforward neural networks fromj-th hidden



layer neuron tok-th output layer (noted as superscriptout)
neuron can be described as follows:

youtk (t) =

J+1∑

j=1

wout
kj (t)xhi

j (t), (21)

where,youtk (t) is the output of thek-th output layer neuron,
wout

kj (t) is the weight from thej-th hidden layer neuron to
k-th output layer neuron at timet, andxhi

j (t) is thejth input
of output layer, which consistsJ outputs of the hidden layer
neurons and a bias termbhi.

Because the output of a hyperbolic tangent function is
bounded with(−1, 1), and the outputs of the neural network
is a summation with parameters, the neural network with bias
items can approximate any value theoretically. Thus, the out-
put of the neural networks is written asO(t):

O(t) = yout(t)

= [yout1 (t), yout2 (t), ..., youtK (t)]T .
(22)

2.2.1 Critic and Model

To update the critic and model network weights (through the
1st and 2nd back-propagation directions in Fig. 1) according
to Eq. 7 and Eq. 16, the partial derivative of the network
output with respect to the network weights is needed:

∂E

∂w
=

∂E

∂O(t)

∂O(t)

∂w(t)
. (23)

To be more specific, the partial derivative of each network
outputyoutk (t) with respect to the network weights from the
hidden layer to the output layerwout

kj (t) and the weights from
the input layer to the hidden layerwhi

ji (t) is shown below,
respectively:

∂youtk (t)

∂wout
kj (t)

= xhi
j (t), (24)

∂youtk (t)

∂whi
ji (t)

=
∂youtk (t)

∂σhi
j (t)

·
∂σhi

j (t)

∂yhij (t)
·
∂yhij (t)

∂whi
ji (t)

= wout
kj (t) ·

1

2
(1− σhi

j (t)2) · xin
i (t).

(25)

2.2.2 Actor

To update the actor network weights, the network errorEa

go through the critic network, model network, and finally the
actor network along the 3rd back-propagation directions in
Fig. 1. Thus, the partial derivative of the network output
with respect to the network inputxin

i (i = 1, ..., I) is also

needed for the term∂V̂ (̂xt+1)
∂x̂t+1

and ∂x̂t+1

∂u(t) in Eq. 12 to update
the weights:

∂O(t)

∂xin
=

∂O(t)

yout(t)
yout(t)

∂xin
. (26)

The partial derivative of thek-th output with respect to the
i-th input can be calculated as follows:

∂youtk (t)

∂xin
i

=

J∑

j=1

[
∂youtk (t)

∂σhi
j (t)

·
∂σhi

j (t)

∂xin
i

]

=

J∑

j=1

[
wout

kj (t) ·
1

2
(1− σhi

j (t)2)whi
ji (t)

]
.

(27)

3 INCREMENTAL HEURISTIC DYNAMIC

PROGRAMMING

Fig.2 is the diagram for implementation of an Incremental
model based Heuristic Dynamic Programming (IHDP) con-
troller. It uses 2 Neural Networks to approximate the actor
and critic with weightswa andwc, and an incremental model
to find the system dynamics at a certain moment. The updat-
ing of the critic weights is the same as updating critic in HDP
algorithm, which will not be reiterated in this section. This
section focus on the new idea of using the incremental ap-
proach to approximate∂x(t+1)

∂u(t) in Eq. 11 as part of updating
actor.

Actor

Critic

System

Incremental
Model

utxt, dt

xt, dt

xt+1

x̂t+1

V̂ (xt)

ea
V ∗(x̂t+1)

V̂ (xt−1)− c(t) ec
γ

xt

(1)

(2)
(3) Stored Data Set

Figure 2: Architecture of HDP using incremental approach to
approximate system model

3.1 HDP using incremental approach

3.1.1 Incremental Model

Many physical system, such as aircraft, are highly non-linear
and can be generally given as follows:

ẋ(t) = f [x(t),u(t)], (28)

y(t) = h[x(t)], (29)

where Eq. 28 is thekinematic state equation, in which
f [x(t),u(t)] ∈ Rn provides the physical evaluation of the
state vector over time, Eq. 29 is theoutput (observation)
equation, which can be measured using sensors,h[x(t)] ∈ Rp

is a vector denoting the measured output.



The system dynamics around the condition of the system
at timet0 can be linearized approximately by using the first-
order Taylor series expansion:

ẋ(t) ≃ f [x(t0),u(t0)]

+
∂f [x(t),u(t)]

∂x(t)
|x(t0),u(t0)[x(t)− x(t0)]

+
∂f [x(t),u(t)]

∂u(t)
|x(t0),u(t0)[u(t)− u(t0)]

= ẋ(t0) + F [x(t0),u(t0)][x(t)− x(t0)]

+G[x(t0),u(t0)][u(t)− u(t0)],

(30)

whereF [x(t),u(t)] = ∂f [x(t),u(t)]
∂x(t) ∈ Rn×n is thesystem ma-

trix at timet, andG[x(t),u(t)] = ∂f [x(t),u(t)]
∂u(t) ∈ Rn×m is the

control effectiveness matrixat timet.
We assume that the states and state derivatives of the sys-

tem are measurable, which means∆ẋ(t),∆x(t),∆u(t) are
measurable. Under this assumption, the model around time
t0 can be written in the incremental form:

∆ẋ(t) ≃ F [x(t0),u(t0)]∆x(t)

+G[x(t0),u(t0)]∆u(t).
(31)

This current incremental model can be identified using least
squares (LS) techniques and can be used to obtain an approx-
imated value of∂x(t+1)

∂u(t) without using model networks in pre-
vious section.

The physical systems are generally continuous, but the
data we collect are discrete samples. We assume that the
control system has a constant, sufficiently high sampling fre-
quency. With this constant data sampling rate, the non-linear
system can be written in a discrete form:

xt+1 = f(xt,ut), (32)

yt = h(xt), (33)

wheref(xt,ut) ∈ Rn provides thesystem dynamics, and
h(xt) ∈ Rp is a vector denoting the measuring system.

By taking the Taylor expansion, we can get the system
dynamics linearized aroundx0:

xt+1 = f(xt,ut)

≃ f(x0,u0) +
∂f(x,u)

∂x
|x0,u0

(xt − x0)

+
∂f(x,u)

∂u
|x0,u0

(ut − u0).

(34)

When ∆t is very small,xt−1 approximatesxt. Thus,
x0,u0 in Eq. 34 can be replaced byx0 = xt−1 andu0 = ut−1,
and we obtain the discrete incremental form of this non-linear
system:

xt+1 − xt ≃ F (xt−1,ut−1)(xt − xt−1)

+G(xt−1,ut−1)(ut − ut−1),
(35)

∆xt+1 ≃ F (xt−1,ut−1)∆xt +G(xt−1,ut−1)∆ut, (36)

where F (xt−1,ut−1) = ∂f(x,u)
∂x |xt−1,ut−1

∈ Rn×n

is the system transition matrix, and G(xt−1,ut−1) =
∂f(x,u)

∂u |xt−1,ut−1
∈ Rn×m is thecontrol effectiveness matrix

at time stept− 1. Because of the high frequency sample data
and the relatively slow-variant system assumption, the current
linearized model can be identified by using the measured data
in previousM steps.

3.1.2 Actor

The structure of the actor is the same as the one in HDP con-
troller. It is used to minimize the difference between the cost-
to-go functionV̂ (xt) and the goalV ∗(t). However, updating
this actor network is easier and faster than the one in HDP
controller, since it involves a critic network and an incremen-
tal model.

Through the 3rd back propagation direction in Fig. 2, the
actor weights affect cost-to-go functionV (xt+1) also through
affectingxt+1 andut. The actor network weights can be up-
dated according to the gradient-descent algorithm as shown
in Eq. 10 and Eq. 11. The incremental model of the system
can be used to approximate the derivative of the next state
with respect to the input,∂xt+1

∂ut
.

3.2 IHDP training by back-propagation and incremental
model identification

3.2.1 Incremental Model

Since∆x(t),∆u(t) are measurable as assumed,Ft−1, Gt−1

are identifiable by using the simple equation error method:

∆xi,t−k+1 = fi∆xt−k + gi∆ut−k

=
[
∆xT

t−k ∆uT
t−k

] [fTi
gTi

]
,

(37)

where∆xi,t−k+1 = xi,t−k+1 − xi,t−k is the increment of
ith state element,fi andgi are the elements ofith row vector
of Ft−1, Gt−1, andk = 1, 2...M denotes at which time the
historic information is available. Because there aren + m
parameters in theith row, M needs to satisfyM ≥ (n +
m). By using the Ordinary Least Squares (OLS) method, the
linearized system dynamics (ith row) can be identified from
M different data points:

[
fTi
gTi

]
= (AT

t At)
−1AT

t yt, (38)

where

At =



∆xTt−1 ∆uT

t−1
...

...
∆xTt−M ∆uT

t−M


 , yt =




∆xi,t

...
∆xi,t−M+1


 . (39)

Choosing a suitable number of dataM is also important.
The identified incremental model will be used and is only ca-
pable of describing the system behaviour within a small time



range. WhenM is very large, the identified model may not
represent the local linearized model of the nonlinear system.
However, whenM is too small, the linear system might be
ill-conditioned, especially at which point the excitationis not
sufficient. Thus, choosingM depends not only on the sam-
pling frequency and non-linearity, but also the intensity of the
excitation. In this paper,M is chosen to be2 · (n+m).

3.2.2 Actor

To update the actor network weights, the network errorEa go
through the critic network, incremental model, and the actor
network consequently along the 3rd back-propagation direc-
tions in Fig. 2. The partial derivative of the network output
with respect to the network weights (Eq. 23 to 25) and the
partial derivative of the network output with respect to the

network input (Eq. 26, 27) are needed for the term∂V̂ (xt+1)
∂xt+1

and term ∂ut

∂wa(t)
in Eq. 11, respectively.

With the linearized incremental model, the term∂x(t+1)
∂u(t)

can be easily approximated:

∂x(t+ 1)

∂u(t)
≃ ∂[xt + F (xt−1,ut−1)(xt − xt−1)

+G(xt−1,ut−1)(ut − ut−1)]/∂u(t)

= G(xt−1,ut−1).

(40)

This method simplified the approach of updating actor net-
work weights and accelerate the learning with direct on-line
identification of the incremental model.

4 APPLICATION

This section will present an illustrative application of both
the HDP and the IHDP algorithms on a simulation model for
validation. The flight control task is to track a changing refer-
ence, when there is input disturbances, which is a most basic
and important control task for air vehicles.

4.1 Air vehicle model

A nonlinear air vehicle simulation model will be used in
this section. Air vehicle models are highly nonlinear and can
be generally given as follows:

ẋ(t) = f [x(t),u(t) + w(t)], (41)

y(t) = h[x(t)], (42)

where Eq. 41 is the kinematic state equation,w(t) is the ex-
ternal disturbace, which is set to be caused only by the input
noise, and Eq. 42 is the output equation.

As an application for these control algorithms, only ele-
vator deflection will be regulated as pitch control to stabilize
the air vehicles. Thus, we are interested in two longitudi-
nal states,angle of attackα andpitch rateq (i.e. the system
variables arex = [α q]), and one control input,elevator de-
flection angleδe.

The nonlinear model in the pitch plane is simulated
around a steady wings-level flight condition:

α̇ = q +
q̄S

maVT

Cz(α, q,Ma, δe), (43)

q̇ =
q̄Sd

Iyy
Cm(α, q,Ma, δe), (44)

whereq̄ is dynamic pressure,S is reference area,ma is mass,
VT is speed,d is reference length,Iyy is pitching moment of
inertia,Cz is the aerodynamic force coefficient, andCm is
the aerodynamic moment coefficient.Cz andCm are highly
nonlinear functions of angle of attackα, pitch rateq, Mach
numberMa and elevator deflectionδe.

As a preliminary test, an air vehicle model (parameter
data) is taken in the pitch plane for−10o < α < 10o [16, 17]:

Cz(α, q,Ma, δe) = Cz1(α,Ma) +Bzδe,

Cm(α, q,Ma, δe) = Cm1(α,Ma) +Bmδe,

Bz = b1Ma + b2,

Bm = b3Ma + b4,

Cz1(α,Ma) = φz1(α) + φz2Ma,

Cz2(α,Ma) = φm1(α) + φm2Ma,

φz1(α) = h1α
3 + h2α|α|+ h3α,

φm1(α) = h4α
3 + h5α|α|+ h6α,

φz2 = h7α|α|+ h8α,

φm2 = h9α|α|+ h10α,

(45)

whereb1, ..., b4, h1, ..., h10 are validated constant coefficients
in the flight envelop [17].

To accomplish the reference tracking task, an adaptive
controller with the actor need to be found out by minimiz-
ing the cost-to-go functionV (xt) with a feasible critic and
model.

4.2 Results and Discussions

Two algorithms are applied to this problem: traditional
HDP uses a neural network to approximate the plant model
and IHDP uses the incremental approach. The identified
models are used 1) to predict the next states, which is used
to estimate the cost-to-go of the next state and its difference
from the minimal cost, and 2) to estimate the control effec-
tive matrix, which is used to update the actor during the error
back-propagation.

Fig.3 shows the one-step prediction ofα and q, when
there is a sine input excitation, using the on-line identified
neural network model and the incremental model. As illus-
trated in Fig.3 (a), the one-step state predictions using both
methods are feasible. However, the prediction using the neu-
ral network needs more time to learn at the beginning. When
having a close look at the prediction errors with Fig.3 (b)
and (c), the prediction using incremental approach has sig-
nificantly higher precision. Fig.4 presents the identification
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Figure 3: One-step prediction with on-line identified model
using neural networks and incremental approach.
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Figure 4: On-line identified control effective matrix using
neural networks and incremental approach.

results of the control effective matrix,G = [G1, G2]′, using
the two methods. It is apparent that the incremental method
has a substantially improved identified control effective ma-
trix, which is to approximate an important term∂xt+1

∂ut
in up-

dating Actors.
Fig.5 illustrates the performance of the traditional HDP

method and IHDP method when applied to an on-line track-
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Figure 5: On-line tracking problem using neural networks
and incremental approach.

ing problem. Comparing to traditional HDP method, IHDP
method can identify the local model and reject the disturbance
much quicker at the beginning, and follow the reference sig-
nal more precisely. A slow on-line training of model neural
network of traditional HDP may lead to a large overshoot and
lost control at the initial stage. In realistic cases, traditional
HDP needs an off-line training of the model before on-line
training of the controller to prevent failures. On the other
hand, IHDP does not need off-line learning because of a quick
linearized local model identification at the beginning, which
is very fast and accurate.

5 CONCLUSION

This paper proposed a new approach, incremental model
based heuristic dynamic programming, to design an adaptive
flight control method without sufficient a-prior knowledge of
the system dynamics. This method combines the advantages
of HDP methods, which are adaptive and use a more gen-
eral function approximator, and of incremental approaches,
which do not need off-line learning and accelerate the on-line
learning efficiently. The HDP method using a neural network
to approximate the system dynamics and the IHDP method
using incremental models are applied to a simple and illustra-
tive application. By comparing the results, it is apparent that
the presented IHDP method speeds up the on-line learning
at the beginning and has a significantly higher precision than
traditional HDP methods. To accelerate the on-line learning
when a-prior knowledge is unknown or the system dynamics
are changed suddenly is of great practical value.



As an extension of iADP method using a quadratic cost-
to-go function, the IHDP method presented in this paper
uses neural network functions with greater approximation
ability and separates the policy evaluation and improvement
with two approximators. This study generalized the use
and applications of the iADP methods. Further investigation
into different type of approximator and experimentation into
more complex and realistic applications are strongly recom-
mended.
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