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S U M M A R Y 

Bayesian-based data assimilation methods integ rate obser vational data into geophysical for- 
ward models to obtain the temporal evolution of an improved state vector, including its 
uncertainties. We explore the potential of a variant, a particle method, to estimate mechanical 
parameters of the overriding plate during the interseismic period. Here we assimilate vertical 
surface displacements into an elementary flexural model to estimate the elastic thickness of the 
overriding plate, and the locations and magnitudes of line loads acting on the overriding plate 
to produce flexure. Assimilation of synthetic observations sampled from a different forward 

model than is used in the particle method, reveal that synthetic seafloor data within 150 km from 

the trench are required to properly constrain parameters for long wavelength solutions of the 
upper plate (i.e. wavelength ∼500 km). Assimilation of synthetic observations sampled from 

the same flexural model used in the particle method shows remarkable convergence towards 
the true parameters with synthetic on-land data only for short to intermediate wavelength solu- 
tions (i.e. wavelengths between ∼100 and 300 km). In real-data assimilation experiments we 
assign representation errors due to discrepancies between our incorrect or incomplete physical 
model and the data. When assimilating continental data prior to the 2011 M w 

Tohoku-Oki 
earthquake (1997–2000), an unrealistically low effective elastic plate thickness for Tohoku of 
∼5–7 km is estimated. Our synthetic experiments suggest that improvements to the physical 
forward model, such as the inclusion of a slab, a megathrust interface and viscoelasticity of 
the mantle, including accurate seafloor data, and additional geodetic observations, may refine 
our estimates of the ef fecti ve elastic plate thickness. Overall, we demonstrate the potential 
of using the particle method to constrain geodynamic parameters by providing constraints 
on parameters and corresponding uncertainty values. Using the particle method, we provide 
insights into the data network sensitivity and identify parameter trade-offs. 

Key words: Inverse theory; Probabilistic forecasting; Statistical methods; Time-series anal- 
ysis; Lithospheric flexure; Subduction zone processes. 
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 I N T RO D U C T I O N  

easurements of surface deformation hav e evolv ed rapidly in pre-
ision, temporal and spatial resolution and global coverage with the
ntroduction of space-based methods, such as continuous Global
avigation Satellite System (GNSS) and interferometric synthetic

perture radar (InSAR) observ ations. Adv anced continuous geode-
ic networks are being used across tectonically activ e re gions, such
s the GNSS Ear th Obser vation Network System (GEONET) in
apan (Sagiya et al. 2000 ; Sagiya 2004 ) and the SCIGN network
n Souther n Califor nia (Bock et al. 1997 ). The utilization of space
eodetic observations has revolutionized our understanding of tec-
onic and seismic processes associated with the earthquake cycle
ver a broad range of spatial and temporal scales (e.g. Avouac 2015 ).
C © The Author(s) 2023. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
The obser ved cr ustal displacements reflect a superposition of
ectonic processes and geodynamic models can help us to under-
tand the driving forces of deformation. Models are continuously
mproved with faster computers and algorithms with lower computa-
ional cost, and by incorporating more (detailed) physical processes
Cohen 1999 ; Avouac 2015 ; Gerya 2022 ). Ho wever , the detailed im-
lementation of physical processes in the model is not al wa ys clear
rom the literature. It is common practice in numerical model stud-
es to vary parameters one-by-one within their uncertainty range,
hich provides an incomplete picture of the sensitivity of the best-
tting result to parameter variations (e.g. Saltelli & Annoni 2010 ).
n uncertainty assessment is important to distinguish rele v ant pro-

esses from less rele v ant or irrele v ant parameters, and to identify the
otential relationship between independently estimated parameters.
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
 the original work is properly cited. 1183 
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One class of methods aimed at constraining the uncertainties of 
the solution is Bayesian inference. It combines prior knowledge with 
information from observ ations stochasticall y. The solution is given 
in the form of a posterior probability density function (pdf), which 
naturally expresses model parameter uncertainties. Bayesian meth- 
ods have been used for a few decades in structural seismology (e.g. 
Tarantola 1984 ; Sambridge & Mose gaard 2002 ; Resovsk y & Tram- 
pert 2003 ) and earthquake seismology for finite-fault models (e.g. 
Fukuda & Johnson 2008 ; Fukuda et al. 2009 ; Minson et al. 2013 , 
2014 ; Jolivet et al. 2015 ; Duputel et al. 2015 ; Benavente et al. 2019 ). 
In recent years Bayesian methods have become increasingly popu- 
lar in geodynamic inverse problems as well. For example, Baumann 
et al. ( 2014 ); Baumann & Kaus ( 2015 ) estimated the rheology of 
the lithosphere using a Bayesian inv erse approach. Moreov er, proba- 
bilistic estimates of the interseismic coupling pattern were compiled 
for the central San Andreas Fault (Jolivet et al. 2015 ), the Main Hi- 
malayan Thrust (Dal Zilio et al. 2020 ), Lesser Antilles Arc (van 
Rijsingen et al. 2021 ) and South America subduction zone (Herman 
& Govers 2020 ). Fukuda & Johnson ( 2021 ) performed a Bayesian 
inversion for the stress-driven viscoelastic relaxation and afterslip 
model to estimate the coseismic slip distribution, constant fault 
frictional parameters and mantle viscosity. Bayesian methods es- 
sentially constrain the values and uncertainties of static parameters. 

Many data assimilation techniques can be seen as a subclass 
of Bayesian inference methods. Data assimilation techniques were 
originall y de veloped within meteorolo gy and oceano graphy for es- 
timating and forecasting evolving (‘dynamic’) states of physical 
systems (Talagrand 1997 ). The state vector in data assimilation, 
that is the vector containing the quantities to be estimated, can 
include the model prediction (or model state), model parameters, 
model errors, and controls (forcing; Evensen et al. 2022 ). The ele- 
ments of the state vector can consequently be dynamic (e.g. model 
states) or static (e.g. parameters, so they do not change in time). Data 
assimilation can combine noisy and spatially and temporally sparse 
data with imperfect dynamic models. Most data assimilation meth- 
ods use Bayesian approaches to estimate the state vector. The state 
vector typically contains the solution variables describing the initial 
condition of a dynamical system and their temporal evolution. Data 
assimilation has also been applied for estimating parameters. Pa- 
rameter estimation is especially common in petroleum engineering, 
where the properties of subsurface reservoirs are poorly known (e.g. 
Oliver et al. 2008 ). In addition to these applications, data assimila- 
tion has also been used in other fields of earth science and engineer- 
ing. For example, Bunge et al. ( 2003 ), Nolet ( 2008 ) and Fichtner 
( 2011 ) used data assimilation to constrain the mantle structure from 

seismolo gical observ ations. T ransient fault slips ha ve been recon- 
structed from GNSS time-series using data assimilation (Fukuda 
et al. 2004 , 2008 ). Kano et al. ( 2013 , 2015 , 2020 ) used data assim-
ilation to estimate frictional parameters and states that control slip 
behaviour at a fault. van Dinther et al. ( 2019 ), Hirahara & Nishikiori 
( 2019 ) and Banerjee et al. ( 2023 ) assimilate near-surface observa- 
tions into earthquake sequence models to estimate and forecast fault 
stresses and slip velocities. Our focus will be on data assimilation 
of geodetic observations in the interseismic phase of an earthquake 
cycle to estimate elastic parameters and flexural forces related to 
the overriding plate. 

Our understanding of the mechanics of deformation of the 
megathr ust ear thquake cycle (interseismic strain accumulation, co- 
seismic rupture and post-seismic relaxation) has greatly improved 
as continuous geodetic networks became available over the last 
decades (e.g. Wang et al. 2012 ; Avouac 2015 ; Govers et al. 2018 ). 
Recently, earthquake precursors (Mavrommatis et al. 2014 ; Yokota 
& Koketsu 2015 ; Socquet et al. 2017 ) and permanent deformation 
(Wesson et al. 2015 ) have been considered as part of the seismic 
c ycle. Driv ers for horizontal continental movements are understood 
relati vel y well (e.g. Diao et al. 2013 ; Sun et al. 2014 ; Sun & Wang 
2015 ), whereas vertical motions remain difficult to interpret and pre- 
dict (e.g. Hu et al. 2014 , 2016 ; Klein et al. 2016 ; Freed et al. 2017 ).
This is fur ther more complicated by the fact that vertical motions are 
more difficult to observe accurately than horizontal motions. How- 
e ver, the sensiti vity of vertical motion in the simulation to other 
aspects of earth process details and rheology hold the potential to 
more completely resolve the causes of observed surface deforma- 
tion. 

Here we explore the use of data assimilation to estimate model 
parameters, quantify their probabilistic uncertainties and identify 
parameter trade-offs. In this first study, we estimate physical quan- 
tities that are assumed to be static, that is parameters. We apply the 
particle method, a Monte Carlo sampling-based Bayesian method, 
to assimilate (synthetic) interseismic vertical surface displacements 
sequentially using a mechanical model. This model is intentionally 
incomplete, simple and numerically efficient, so that we can fo- 
cus on the performance of the particle method in our context. We 
also in vestigate ho w synthetic marine geodetic data help to further 
constrain model parameters. We seek to identify the origin of the 
difference between the spatially variable observations and the me- 
chanical model predictions. These differences can be due to errors 
in model parameters, processes that are not captured by the me- 
chanical model, representation errors or instrumentation errors. To 
e v aluate the particle method’s potential for real scientific challenges 
we apply the method to real observations prior to the 2011 Tohoku- 
Oki earthquake. From our results we conclude that data assimilation 
is very useful for our study region and therefore the method can be 
applied to other subduction zones. 

We begin by providing a brief introduction to sequential data 
assimilation (Section 2.1 ), followed by the basics of the sequential 
impor tance resampling (SIR) par ticle filter (Section 2.2 ). We iden- 
tify that deriv ed v ertical interseismic velocities prior to the 2011 
Tohoku-Oki earthquake (Section 3.1 ) can be explained by flexure 
of the overriding plate, which we describe using a 2-D conceptual 
model (Section 3.2 ). We apply a data-driven approach based on 
physics to estimate the observational error; a key component in our 
data assimilation (Section 3.3 ). Following the synthetic tests (Sec- 
tions 3.4 to 4.2.2 ), we conduct tests with real observations prior 
to the 2011 Tohoku-Oki earthquake (Section 4.3 ). We then discuss 
sev eral ke y aspects related to the importance of seafloor data, model 
and representation errors, and the feasibility of implementing the 
particle method in more complex tectonic models (Section 5 ). 

2  DA  TA  A S S I M I L A  T I O N  A N D  T H E  

PA RT I C L E  M E T H O D  

2.1 A short introduction to sequential data assimilation 

Data assimilation aims to estimate the probability of a state vector, 
given the available sparse and noisy observations. Generally, this 
state vector z may contain states, parameters, model errors, and 
controls. In this study, we focus on sequential data assimilation, 
and we apply Bayes’ theorem to condition the state vector to the 
observations. Prior estimates of dynamical models, including their 
parameters, and the likelihood of observations are combined to 
obtain posterior estimates of the parameters and the corresponding 
state evolution representing the physical process. In addition to 
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stimates of the parameters and the state evolution, the probabilistic
ramework provides estimates of their uncertainties. 

To estimate the updated state vector of the physical system, se-
uential data assimilation generally follo ws tw o steps at each time
tep number t : the forecast (also termed ‘propagation’) step and the
nalysis (also termed ‘update’) step and form one assimilation step.
n the forecast step, the estimate at time step t − 1 (termed ‘prior
istribution’) is propagated forward in time by the physical model
o time step t . In the analysis step, the estimate is updated using the
e w observ ations. 

In solid Earth Sciences, physical processes are not completely un-
erstood. The mathematical description of a physical system might
purposely) lack some key physics and therefore the physical model
s inherently imperfect. We therefore introduce a model error ηt to
epresent any unresolved processes not taken into account by the
odel, inaccurate boundary conditions, and discretization errors.
ith this, the state vector z a t−1 at time step t − 1 is evolved to a

orecast z f t : 

 

f 
t = M ( z a t−1 ) + ηt , (1) 

here superscripts f and a refer to the forecast and analysis, re-
pecti vel y, and M represents the model that incorporates our un-
erstanding of the physical system (which can be non-linear). Here,
e define the state vector z to contain states x and model parame-

ers � (i.e. z = [ x , � ] T ). Defining the model error is a challenge.
ften, the model error is treated as a stochastic additive term (e.g.
arrassi et al. 2018 ) or is assumed zero in perfect model tests (e.g.
an Dinther et al. 2019 ). The model error can also be included in
he state vector in some cases (e.g. Evensen 2019 ) or ascribed to
he observation error (e.g. Koohkan & Bocquet 2012 ) as is done
n this study (described below). The prior distribution of model
tates at time step t = 0 needs to be chosen by the user; either
ased on expert- or historical knowledge of the system. However,
he choice of the prior distribution at time step t = 0 likely affects
he results even after many assimilation steps (Wikle & Berliner
007 ). 

When observations are available for time step t , the forecast is ad-
usted by the analysis step. Subsequently, the posterior pdf obtained
rom the analysis step is used to propagate the model forward and
btain the prior pdf of the next assimilation step (i.e. the forecast).
he analysis z a t is conditioned by the available observations d t at

ime step t using Bayes’ theorem 

p m ( z 
a 
t | d 1: t ) = 

likelihood ︷ ︸︸ ︷ 
p d ( d t | z f t ) 

prior ︷ ︸︸ ︷ 
p m ( z 

f 
t | d 1: t−1 ) ∫ 

p d ( d t | z f t ) p m ( z 
f 
t | d 1: t−1 ) d z 

f 
t ︸ ︷︷ ︸ 

normalization constant: 1 
c 

= cp d ( d t | z f t ) p m ( z 
f 
t | d 1: t−1 ) , (2) 

here subscripts d and m denote the data and model, z t denotes
he unknown values of the state vector. d 1: t = { d 1 , d 2 , . . . , d t } and
d 1: t−1 = { d 1 , d 2 , . . . , d t−1 } are the set of observations up to the
resent time t and past time t − 1, respecti vel y. p m 

( z a t | d 1: t ) is the
osterior pdf given the observations d 1: t and represents the analysis.

p m 

( z f t | d 1: t−1 ) is the prior pdf, p d ( d t | z f t ) is the likelihood function
f the observations at time step t given the state vector at time
tep t . The result of the data assimilation, the posterior distribution

p m 

( z a t | d 1: t ) , is written as a marginal distribution which is computed
ecursi vel y for sequential approaches. 

In non-Gaussian and non-linear systems, an analytical solution
or the posterior pdf is not al wa ys possible. Instead, probabilistic
ampling with Monte Carlo methods can provide an estimate of
he posterior pdf. It is assumed that the state follows a first-order
arkov process: the prediction at time t only depends on the state
t time t − 1 (e.g. Evensen et al. 2022 ). We can then use Bayes’
heorem and calculate the posterior probability as being proportional
o the product of the likelihood and the prior pdf (last term in
q. 2 ). 

We can relate the observations at time step t ( d t ) and the ‘true’
tate vector through: 

d t = H( ̃  z f t ) + ε t , (3) 

here the observation-operator H maps the ‘true’ state vector ̃  z f t 

o the observation space, and the vector ε t contains the observa-
ion errors with standard deviation σ t . Observation errors consist
f instrumentation- and representation errors (Janji ́c et al. 2017 ).
epresentation errors arise from unresolved scales and processes,

rom the observation-operator H and pre-processing or quality con-
rol of observations. Even though unresolved scales and processes
re actually captured by the model error ( ηt ), they are frequently
scribed to the observation error (e.g. Koohkan & Bocquet 2012 ).
ften, the representation error is based on expert knowledge, which

s the same for each observation (in space and time). 
Sequential Monte Carlo-based methods for non-linear problems

nclude methods such as the Ensemble Kalman Filter (EnKF;
vensen 1994 ) and the particle filter (PF; van Leeuwen 2009 ).
onte Carlo-based methods represent the prior probability distri-

ution p m 

( z f t | d 1: t−1 ) with a finite number of random samples or
ensemble members’ or ‘particles’. A PF-based method has been
mplemented to estimate the fault slip evolution from GNSS time-
eries (Fukuda et al. 2004 , 2008 ). The EnKF has recently gained
ttention in solid-earth dynamics for the estimation of processes
uch as fault stress and slip evolution (Hirahara & Nishikiori 2019 ;
an Dinther et al. 2019 ). The EnKF assumes Gaussian error statis-
ics and applies partial linearization of the observation prediction to
educe computational costs. For a comparison of different assimi-
ation methods, we refer the reader to Evensen et al. ( 2022 ). In this
tudy, we use a numerical model that is computationally fast, which
llows us to run a large number of simulations to sample the prior
istribution and apply the PF (or particle method) to sample the
rior distribution. When the number of particles is limited, the PF
ay suffer from particle or ensemble de generac y (see Section 2.2 ;
nyder et al. 2008 ). In such a case, the use of other methods may be
referred. 

.2 The particle method 

n this study we explore the applicability of the particle method. The
ey idea of the particle method is to use a Monte Carlo approach
o represent an arbitrary probability density function as a number
f discrete weighted samples. Each particle contains one set of
alues of the state vector elements. A selected data set is fed to
he particle method algorithm, which sequentially assimilates data
nto the model using a number of time steps (which can also be a
ingle step) and produces posterior distributions of the state vector
Fig. 1 a). We use the sequential importance resampling (SIR) PF in
ur anal ysis (e.g. v an Leeuwen 2009 ; Fig. 1 b). The basic steps of
he SIR PF for a single assimilation window include propagation
i.e. the forecast step), importance weighting (i.e. the analysis step),
esampling and jittering (Fig. 1 b). The details of the SIR PF are
xplained in detail below. 

The SIR PF starts with initializing the state vectors for all parti-
les { z i t= 0 } i= 1 , ... ,N e , with N e being the number of particles. The initial
articles represent the prior probability distribution at t = 0. The
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Figure 1. (a) Overview of how data assimilation is related to the (synthetic) data, forward model and posterior distribution. In our synthetic tests, data is either 
sampled from the finite element model (FEM) or the same forward model used in data assimilation. In real-data experiments we use interseismic velocities 
derived from GNSS prior to the Tohoku-Oki earthquake. Data are assimilated using the particle method into the forward model to obtain posterior estimates of 
the state vector. (b) Schematic of the sequential importance resampling particle filter. Crossing of the black lines in step 1 corresponds the case where a state 
is propagated forward in time and thus a different state is obtained. The blue curve is the observation likelihood function p d ( d t | z f t ) . The size of the circles 
denotes the weight of the particles. White, green and orange colours of the circles denote the time steps t − 1, t and t + 1, respecti vel y. 
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initialization is based on prior knowledge of the model parame- 
ters or initial conditions. Subsequently, each particle is propagated 
forward in time (from t − 1 to t , eq. 1 ) to obtain the prior prob- 
ability distribution at time step t , p m 

( z f t | d 1: t−1 ) (Fig. 1 b step 1). 
In our parameter -estimation prob lem, we purposely let parameters 
vary with time, but assume that parameters do not vary as much 
as states and that parameters will converge over time. For the first 
time step, we thus propagate from z t = 0 = [ x t = 0 , � t = 0 ] T to z 

f 
t= 1 = 

[ x f t= 1 , � 

f 
t= 1 ] T

 . The forward model in our problem requires param- 
eters from the previous time step as input and only propagates the 
states to the next time step such that � 

f 
t= 1 : = � t= 0 . The operator 

M thus does not affect the value of the parameters. As a conse- 
quence, we only need to initialize parameters at t = 0. Then, each 
particle is weighted by its fit to the observations d t at time step t to 
obtain particles that represent the posterior probability distribution 
at time step t , p m 

( z a | d 1: t ) (Fig. 1 b step 2), which is represented by
t 
a weighted sum of Dirac-delta functions (van Leeuwen 2009 ): 

p m 

( z a t | d 1: t ) = 

N e ∑ 

i= 1 
w 

i δ

(
z f t −

(
z f t 

)i 
)

, (4) 

where for each particle i the importance- or particle weight w 

i 
t at 

time step t is computed with 

w 

i 
t = 

p d 

(
d t | 

(
z f t 

)i 
)

∑ N e 
j= 1 p d 

(
d t | 

(
z f t 

) j 
) . (5) 

Particles with a better fit to the observations obtain a relatively 
higher weight. For our parameter -estimation prob lem, the analysis 
is only applied on the parameters � 

f 
t . 

The user of the SIR PF can choose a function to represent the 
probability density of the observ ations, p d ( d | z f ) . Typicall y, this 

art/ggad450_f1.eps
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unction is assumed to be Gaussian, but we use a Lorentz density
n our analysis. The shape of the Lorentz density is very similar to
 Gaussian density, but provides broader tails. Broader tails ensure
hat fewer particles have a negligible weight, such that they can
e considered in the analysis. The likelihood at time step t for
bservation d t is given by the Lorentz density: 

p d ( d t | z f t ) = 

1 

1 + 

[ d t −H( z f t )] 
2 

σ 2 
t 

, (6) 

n which H is the observation-operator and σ t is the standard devi-
tion of the observation error. In our problem, the dynamic model
quations directly translate the model parameters into model out-
uts in the obser vation space. Thus, the par t of H that relates to
he states performs a direct mapping of the states to the observation
pace. The parameters in the state vector are not being observed and
herefore disregarded by the observation-operator H (see eq. 16 ). 

One of the potential drawbacks of the PF can be that only a
ew particles have a large weight and the remaining particles have
ear-zero weight (e.g. van Leeuwen 2009 ). This phenomenon is
alled particle de generac y (or ensemble de generac y, see Inde x and
ynonyms). This means that the particles do not represent the de-
ired probability function of the model parameters anymore and the
erformance of the PF deteriorates. The statistical information of
he estimation thus becomes insubstantial. With a Lorentz density
escribed above it is less probable to have particle degeneracy (van
eeuwen 2003 ; Vossepoel & van Leeuwen 2007 ). Resampling is a
easure in the SIR filtering process to avoid de generac y of impor-

ance weights. There are many resampling techniques available, as
e vie wed b y Douc & Cappe ( 2005 ). We use residual resampling,
hich distinguishes itself by reducing the variance due to sam-
ling (Lui & Chen 1998 ). Particles with high weight are duplicated
nd particles with low weight are not copied, while the number of
articles, N e , remains constant (Fig. 1 b step 3, see Supplementary
ext S1 for details). Resampling generates equally weighted par-
icles representing the posterior probability distribution at time t ,
p m 

( z a t | d 1: t ) (Fig. 1 b step 3). 
Resampling aims to reduce the diversity of particles (i.e. fewer

nique state values) to decrease the ensemble variance, but the re-
uction can be too large. Another disadvantage of resampling is that
t requires costly interprocessor communication, as the resampling
tep requires all weights to be known. Therefore, it is desired to
inimise the number of resampling steps. Commonly, resampling

nly occurs when the variance of the weights is larger than a pre-
efined threshold. A measure of particle de generac y is the ef fecti ve
ample size (ESS). The ESS is defined as the number of samples
equired to match the precision if we were randomly sampling from
he target distribution (Kong 1992 ; Kong et al. 1994 ): 

E SS ≈ 1 ∑ N e 
i= 1 w 

2 
i 

. (7) 

 commonly used threshold, N T , is that resampling occurs if the
SS is smaller than half the number of particles ( N T = N e /2)

Doucet & Johansen 2008 ), which we will use throughout our
xperiments. 

Resampling may lead to particle de generac y due to the reduction
f the number of distinct particles. 

Increasing the number of particles to improve the diversity of the
articles is not an ideal solution as it also results in larger com-
utational times. To alleviate this, we apply a small perturbation
‘jittering’) to the particles after resampling which increases the
pread of the particles (Fig. 1 b step 4; Gordon et al. 1993 ), such that
t does not significantly alter the posterior distribution. There is no
onsensus on how to choose the jitter. Conventionally, jitter is de-
ermined by trial and error (as done in Section 4.2.1 ). In that case,
he random perturbation for the jittering is drawn from a normal
istribution with zero mean ∼ N (0 , σ ′ 2 ) , in which σ ′ is a number
hat must be specified by the user. Alternatively, the jitter can be a
raction of the ensemble variance, where the scaling factor C is de-
ermined by trial and error (as done in Sections 4.2.2 and 4.3 ). The
andom perturbation for the jittering is subsequently drawn from a
ormal distribution with zero mean ∼ N (0 , C 

2 σ 2 
ens ) , in which σ ens is

he standard deviation of the ensemble and the scaling factor C must
e specified by the user. Ho wever , in this study, we sometimes pur-
osely choose relatively large perturbations when new observations
re available to help steer the evolution of the parameter estimates,
uch that the filter can ef fecti vel y decrease the misfit between model
redictions and observations (as done in Section 4.1.2 ). Note that
ittering is generally not needed when models have a stochastic com-
onent (often in atmospheric and oceanography studies), in which
ase the same starting condition can result in different trajectories.
ecause our models, as most solid earth geophysical models, lead to

he same trajectory with the same starting conditions, we choose to
pply jittering. The particles obtained after jittering are propagated
o the next time step, p m 

( z f t+ 1 | d 1: t ) (orange colours, Fig. 1 b step 5).
hen applying jittering the posterior distribution at the last time

tep may may not overlap with the prior distribution initialized at
he beginning of the assimilation, which can be useful when there
s little or incorrect prior knowledge of the unknown state vector
lements. 

 I N T E R S E I S M I C  V E RT I C A L  

E F O R M A  T I O N  A  T  A  S U B D U C T I O N  

A RG I N  

.1 Geodetic observations 

e anal yse dail y site coordinate solutions (Nakagaw a 2009 ) pro-
essed in ITRF2008 (Altamimi et al. 2011 ), operated by the Geospa-
ial Information Authority (GSI) of Japan. We extract time-series
rior to the 2011 Tohoku-Oki earthquake between January 1997 and
ay 2000. Just as Loveless & Meade ( 2010 ), we end the time-series

n mid-2000, due to seismic swarms from June to August 2000 off-
hore central Japan (Hamada 2000 ), the 2003 M w 8.0 Tokachi-Oki
arthquake (Yamanaka & Kikuchi 2003 ), the 2003 M w 6.8 earth-
uake off Fukushima (Ozawa et al. 2012 ) and the 2005 M w 7.2
iyagi earthquake (Okada et al. 2005 ). The time-series do include

ffects from two significant events in March 1997 and May 1998
Nishimura et al. 2007 ; Loveless & Meade 2010 ), but our paramet-
ic model used to fit the position time-series isolates the coseismic
ignal (described below). 

We extract the deformation by means of a least-squares fit to
 parametric model, which consists of a linear trend, annual and
emi-annual effects and possible offsets due to sudden events (e.g.
oseismic deformation and instrument- and antenna changes). The
isplacement time-series at site i is expressed as: 

u 

i ( t) = a i + b i t + c i cos (2 π t) + d i sin (2 π t) + e i cos (4 π t) 

+ f i sin (4 π t) + 

K ∑ 

k= 1 
g i θ ( t k − t) , (8) 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad450#supplementary-data
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where u is the displacement vector composed of east-, north- and 
vertical components at date t ; a is the displacement at time 0; 
b is the slope representing the interseismic strain accumulation; 
c − f are annual and semi-annual seasonal coefficients; g is the 
change in deformation due to a sudden event; θ is the Heaviside 
function and t k is the time of a sudden event. Then, we reference 
all displacements relative to the GNSS station FUKUE (station ID: 
950462, 128.8 ◦E, 32.7 ◦N) as we regard this reference station as 
being on the stable Amurian Plate. As part of our data processing, 
we find estimates for the unknown coefficient vectors a , b , c , d , e , f 
and g for each GNSS time-series. Note that in our data assimilation, 
we assimilate daily vertical displacements u 

i ( t ) - u 

FUKUE ( t ) and use 
these coefficient vectors to address processes that we do not model 
(see Section 3.3 ). 

A transect coinciding with the centre of the pre-seismic locked 
region in Loveless & Meade ( 2010 ) is defined (solid black line in 
Fig. 2 a). Geodetic observations are selected within 30 km (i.e. the 
half swath width) both north and south of the transect to create a 2- 
D profile of surface displacements (Fig. 2 c). Surface displacements 
show a clear coherent landward motion during the interseismic 
phase (Figs 2 a and b). The eastern side along the transect exhibits 
subsidence, and the western side exhibits uplift (Fig. 2 c). 

3.2 Interseismic deformation model and data assimilation 

implementation 

GNSS data in Fig. 2 c predominantly show forearc subsidence and 
uplift of the arc and backarc, suggesting flexure at a large scale. 
Interseismic deformation of the overriding plate is dri ven b y plate 
convergence via locking of asperities and flow in the mantle wedge. 
Interseismic deformation of the overriding plate is largely recovered 
during megathr ust ear thquakes (Mazzotti et al. 2002 ). Therefore, we 
hypothesize that the large-scale vertical deformation reflects flexure 
of an elastic plate. We thus apply an elastic flexure model (Vening 
Meinesz 1931 ; Walcott 1970 ) in the forecast step of our PF. 

The 2-D analytical model consists of an elastic overriding plate 
of thickness H , where buoyancy forces are provided by the astheno- 
spheric mantle with density ρm 

= 3200 kg m 

−3 (Fig. 3 a). At least 
two basal forces/tractions are needed to generate the observed uplift 
and subsidence zones (Fig. 2 c). In our forward model we apply two 
vertical line loads on the base of our overriding plate (Fig. 3 a). Our 
data assimilation scheme aims to constrain the elastic plate thick- 
ness H , the locations of the line loads y 1 and y 2 and their magnitudes 
q 1 and q 2 . 

As we use an elastic flexure model to estimate the vertical de- 
flection of the upper plate, the response to forcings are by definition 
instantaneous. Ho wever , for our data assimilation problem, we need 
to introduce a temporal component to our parameters and states. The 
vertical deflection of the upper plate without horizontal forcing sat- 
isfies the following four th-order ordinar y differential equation with 
a temporal component (modified from Turcotte et al. 1978 ): 

D( t ) 
d 4 d y ( x, t ) 

d x 4 
+ ( ρm 

− ρi ) gd y ( x, t) = q( x, t) (9) 

in which x is the horizontal coordinate, t is time, ρm 

is the as- 
thenospheric density, ρ i is the density above the surface, g is the 
gravitational acceleration, d y ( x , t ) is the deflection of the upper plate, 
q ( x , t ) describes the vertical loads, D ( t ) = EH 

3 ( t )/(12(1 − ν2 )) is
the flexural rigidity, E is Young’s modulus, H is the ef fecti ve elastic 
thickness of the lithosphere and ν is Poisson’s ratio. Variations in 
flexural rigidity of the lithosphere are largely determined by H due 
to its dependency on the cube of H . We therefore fix the elasticity 
parameters and only solve for H . Our model input parameters are 
depicted in Table S2 . The solution to eq. 9 is given by the following 
forward model 

d y ( x, t) = 

∫ ∞ 

−∞ 

q( y, t) G ( x, y, t) d y (10) 

G ( x , y , t) = 

2 π
λ

exp 
(
− 2 π

λ
| x − y | 

)
2 g( ρm − ρi ) 

[
cos 

(
2 π

λ
| x − y | 

)
+ sin 

(
2 π

λ
| x − y | 

)]
(11)

in which λ( t ) ≡ 2 π /([( ρm − ρ i ) g /(4 D ( t ))] 1/4 ) is the wavelength. 
G ( x , y , t ) represents the vertical surface displacement at horizontal 
coordinate x due to a unit line load acting at horizontal coordinate y . 
We estimate H from D (and thus λ) and the time-dependency of G 

derives from the time dependency of λ and y . The Green’s function 
is convolved with a load function q ( x , t ) (Fig. 3 a, eq. 10 ): 

q( x, t) = q 1 ( t) δ( x − y 1 ( t)) − q 2 ( t) δ( x − y 2 ( t)) (12) 

In our data assimilation problem, we also need a mapping from 

the previous time step to the next time step for the forecast step 
(eq. 1 ). For our data assimilation experiments where we assimilate 
displacement time-series, eq. 10 is adapted as follows to include a 
mapping from time step t − 1 to time step t : 

d y ( x, t) = 

∫ ∞ 

−∞ 

q( y, t − 1) G ( x, y, t − 1) d y. (13) 

Here, we use model parameters � from time step t − 1 to esti- 
mate the displacements d y (i.e. states x ) at time step t . We also 
conduct time-invariant data assimilation prob lems, w here we as- 
similate velocities. These data assimilation experiments consist of 
one assimilation step and parameters do not vary with time (see 
Supplementary Text S4 for modified data assimilation equations). 
For this time-invariant problem (see Section 4.1.1 ), eqs 10 and 12 
are modified to exclude the temporal component and allow for an 
estimation of vertical velocities: 

v y ( x) = 

∫ ∞ 

−∞ 

q̇ ( y) G ( x, y) d y (14) 

and 

q̇ ( x) = q̇ 1 δ( x − y 1 ) − q̇ 2 δ( x − y 2 ) , (15) 

respecti vel y, where v y is the deflection rate of the upper plate and q̇ 
is the loading rate. Moreover, we also adopt a time-invariant plate 
thickness H , which can be derived from the wavelength (eq. 11 ). 

Depending on the data assimilation experiment (Section 3.4 ), the 
vector � consists of a combination of the parameters H , y 1 , y 2 , ẏ 1 , 
ẏ 2 , ̇q 1 or ̇q 2 , listed in the third column of Table 1 . The state x contains 
either the predicted displacements d y or velocities v y at all the GNSS 

station locations. In the forecast step, eq. 13 is used to propagate the 
state x from time step t − 1 to t in the time-variant problem. For the 
time-invariant problem, eq. 14 is used to estimate the forecast state 
from the initial guess. The model error η is assumed zero for both 
the states x and model parameters � . Our models directly translate 
the parameters into predicted displacements or velocities at the same 
locations as the actual observations. The model equations do not af- 
fect the parameter values. Thus, in our problem we set the parameter 
values of the next time step to that of the previous time step after 
resampling (and jittering). Therefore, the part of H that relates to 
the states performs a direct mapping of the states to the observation 
space and the parameters are disregarded. The observation-operator 
H is approximated by the linear observation-operator H : 

H = 

[
I S x S O S x P 

O P x S O P x P 

]
, (16) 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad450#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad450#supplementary-data
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Figure 2. (a) Vertical and horizontal velocities in Northeastern Japan between January 1997 and May 2000. Displacements are referenced to GNSS station 
FUKUE (station ID: 950462, 128.8 ◦E, 32.7 ◦N). The selected transect (solid black line) coincides with the largest pre-seismic coupling fraction perpendicular 
to the trench following Loveless & Meade ( 2010 ). The dotted lines show the upper and lower bounds of the swath profile; 30 km north and south of the solid 
line. Black vectors indicate the horizontal GNSS velocities, whereas coloured squares denote the magnitude of the vertical velocities. (b) Time-series of the 
nor th-, east- and ver tical surface displacements for station 950175 denoted by the red outlined square is shown in panel (a). (c) Vertical rate as a function of 
distance from trench along swath profiles with half width 30, 50, 70 and 100 km. We select data from a 30 km half width swath as data within a larger swath 
deviate from the flexural pattern. Error bars correspond to uncertainty bands of the linear trend. 
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here S is the number of states and P is the number of parameters
n the state vector. 

.3 Quantitative constraints on errors in real data and 

odel 

he length of the data time-series allows us to estimate the linear
rend with a small uncertainty. For example, the uncertainty in the
elocity (in b in eq. 8 ) for station 950175 is 0.3 mm yr −1 in the ver-
ical direction (Fig. 2 b). Ho wever , the differences between the least
quares fit and the data remain relati vel y large (i.e. the differences
etween grey dots and black line, Fig. 2 b). These differences are due
o noise in the data and processes not considered in the parametriza-
ion. Moreover, there are possibly other linear processes present in
he data that are not related to fle xure. Our fle xural model aims to
eproduce the linear trend. It is clear that the velocities derived from
he data in Fig. 2 c (i.e. the black error bars) cannot be fitted well
y a simple flexural model like the visual guide. The uncertainty in
he velocity is not representative of the discrepancies between our
odelled observations and real geodetic observations, which are

ttributed to instrumentation and representation errors. Represen-
ation errors are generally based on expert knowledge and do not
ary in space and time. For our synthetic data experiments we draw
he observation error from a random distribution and are thus more
r less constant in space and time (except for Experiment 5, Sec-
ions 3.4 and 4.2.2 ). Because the discrepancies between our model
orecast and the actual data are relati vel y large (Fig. 2 c), we need
o properly address the representation error to vary both temporally
nd spatially, which is explained further below. 

The data times-series contain signals from various processes.
e can isolate some of these processes (i.e. linear trend, annual

nd semi-annual components and steps) from a parametrization
f the data time-series, as explained in Section 3.1 . Next to these

art/ggad450_f2.eps
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Figure 3. (a) Forward model setup depicting elastic flexure. The two line loads δ( x − y 1 ) and δ( x − y 2 ) at y 1 and y 2 , respecti vel y, act on an infinite elastic plate 
with thicknesses H 1 and H 2 . The elastic plate is underlain by an asthenospheric mantle, resulting in a hydrostatic restoring force ρm gd y and driving surface 
force ρi gd y . The green line is the integrated result of the responses by the two line loads. (b) Geometry of the finite element model from Govers et al. ( 2018 ) 
used to generate synthetic data for Experiments 1–3 (Table 1 ). H 1 and H 2 are the plate thickness right and left of where the taper in thickness of the upper plate 
ends in the finite element model (b), respecti vel y. 

Table 1. Overview of data assimilation experiments. Our forward models either assimilate time-invariant surface velocities or time-variant 
surface displacements. 

Experiment 
number 

Velocity/displacement 
outputs Parameters Data Figures and Tables 

1 Velocity H , y 1 , y 2 , q̇ 1 , q̇ 2 FE model Figs 4 –6 , Table 2 
2 Velocity H 1 , H 2 , y 1 , y 2 , q̇ 1 , q̇ 2 FE model Fig. 4 , Table 2 
3 Displacement H , y 1 , y 2 , q̇ 1 FE model Figs 7 , 8 , Table 3 
4 Displacement { dH k } k = 1, . . . , 16 Synthetic (identical twin) Fig. 9 
5 Displacement H , y 1 , y 2 , q̇ 1 Synthetic (identical twin) with Figs 10 , 11 

realistic representation errors 
6 Displacement H , y 1 , y 2 , q̇ 1 Tohoku interseismic velocities Figs 12 , 13 

Note : H is the uniform elastic thickness of the overriding plate, y 1 and y 2 are the locations of the two line loads, ̇q 1 and ̇q 2 are the magnitudes 
of the two line load rates. d H is the deviation from a uniform plate thickness H . 
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processes, the data time-series may also contain spatially correlated 

errors. To analyse these spatially correlated errors, we first retrieve 
the GNSS residual time-series x ij by subtracting the least squares 
fit from the observation time-series, with i = 1 , . . . , n time steps at 
j = 1 , . . . , p locations. The GNSS residual time-series are highly 
correlated as shown by a mean Pearson correlation coefficient of 
0.7 (Fig. S2 ). The strong spatial correlation among the residual 
time-series may be caused by the sum of various systematic errors, 
which are commonly referred to as the common-mode error (CME; 
Dong et al. 2006 ; Kumar et al. 2020 ). Even though we do not fully 
understand the nature of these systematic errors, we can isolate them 

given their spatial correlation. We seek to identify the common- 
mode error to properly address the systematic errors in our data 
assimilation simulations. 

We perform an empirical orthogonal function (EOF) analysis 
(Preisendorfer 1988 ) to reveal the internal structure of our data, 
which we use to identify (1) a bias (the common-mode error) in the 
GNSS network explaining a large portion of the variance in the data 

art/ggad450_f3.eps
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad450#supplementary-data
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nd (2) a noise term that we identify as the instrumentation error
see Supplementary Text S2 ). The structures found in the spatial
imension are the EOFs and temporal structures are the principal
omponents (PCs). The first mode contributes most to the variance,
he second mode explains most of the remaining variance, and so on.

e define the first mode as the systematic common-mode error. We
ssume that the remaining modes are due to noise from instrumental
ncertainties. 

We assume that the total observation error is the sum of errors
rom the linear trend, annual- and semi-annual components, steps,
ommon-mode- and instrumentation errors in our real-data assim-
lation experiments. The variance of the total observation error for
he real observations as a function of time ( σ 2 

t in eq. 6 ) is then given
y: 

parameterisation EOF ︷ ︸︸ ︷ ︷ ︸︸ ︷ 
2 
t = σ 2 

t, linear + σ 2 
t, season + σ 2 

t, step + σ 2 
t, CME + σ 2 

t, noise ︸ ︷︷ ︸ 
representation 

(17) 

n which σ t, linear is the standard deviation (SD) of errors due to the
ncertainty in the linear trend, σ t, season is the SD of errors due to
easonal effects, σ t, step is the SD of errors due to abrupt changes in
he time-series (e.g. coseismic signals), σ t, CME is the SD of errors
orresponding to a common-mode error, and σ t, noise is the SD of
nstrumentation errors. Results show that the common-mode error
s the largest component of our total estimated representation error
e.g. approximately 76 per cent for station 940032, Fig. S3 ). 

.4 Setup of data assimilation experiments 

e perform three types of data assimilation experiments, two types
f experiments with synthetic observations (identical and non-
dentical experiments) and a third type with real observations. All
ata assimilation experiments use the simple flexural model de-
cribed in Section 3.2 and Fig. 3 a. A non-identical twin experiment
nvolves synthetic data sampled from a different geophysical model
han the model that we use to assimilate the data, specifically the fi-
ite element (FE) model of Govers et al. ( 2018 ) (Fig. 3 b, explained
n Section 4.1.1 ). Model parameters (i.e. the ‘truth’) of the FE
odel are known, facilitating a direct comparison with parameters

stimated from data assimilation. In an identical twin experiment,
ynthetic data is generated with the same geophysical model as used
n the data assimilation (Fig. 3 a), hence the ‘truth’ is known also.
aussian noise is added to the synthetic data. The mean of the Gaus-

ian prior at the beginning of the data assimilation that is specified
y the user, should be different than the true model parameter. 

In all data assimilation experiments we define the state vector z
s a set of model states and parameters used to describe the system
hrough model equations. The set of parameters for each experiment
s shown in Table 1 . The selected prior distributions are shown in Ta-
le S1 and choices regarding the total observational error, jittering
nd number of particles are explained in Supplementary Text S3 .
n this research we do not include model errors in the state vector.
o wever , an assumption of a zero model error in eq. 1 may not be
alid for our real-data experiments. Discrepancies between obser-
ations and the predicted observations will consequently be mapped
nto representation errors (Section 3.3 ). Representation errors are
efined as errors that occur as a result of the model not being repre-
entative for the actual physics. Note that instrumentation errors are
imultaneously estimated with representation errors (Section 3.3 ).
he PF uses a likelihood that is based on the combined instrumen-

ation and representation error. Thus, the standard deviation of the
otal observational error (instrumentation + representation) is the

t value in eq. 6 . 

 R E S U LT S  A N D  A NA LY S I S  

.1 Non-identical twin experiments 

.1.1 Assimilation of time-independent synthetic data 
Experiments 1 and 2) 

ata assimilation Experiments 1 and 2 are non-identical twin exper-
ments. Here, we use constant velocities to estimate model parame-
ers. We use eqs 11 , 14 and 15 to describe the system and assimilate
elocities and do not let parameters vary over time. As the problem
s no w time-in variant, the data assimilation equations need to be
lightly modified to be time-independent (see Supplementary Text
4 ). These experiments exist of a single assimilation step without
esampling or jittering. 

The synthetic data are sampled from the reference model of Gov-
rs et al. ( 2018 ) (Fig. 3 b). Their FE model is build using the code
TECTON (Melosh & Raefsky 1983 ; Govers & Wortel 1993 ),
hich solves the momentum equation for plane strain. The FE
odel consists of an elastic overriding plate and slab, and a vis-

oelastic mantle wedge and oceanic mantle with a Maxwell vis-
oelastic rheology (see Fig. 3 b). The FE model predicts the surface
isplacements throughout the earthquake cycle, where the duration
f one earthquake cycle is 200 yr and the relaxation time ( τ ) is 8 yr.
he thickness of the overriding plate is taken to represent the true

hickness in our flexure model. The true location and magnitude of
he line loads are unknown. We only sample from the model output
f steadily evolving vertical surface displacements corresponding
o the interseismic phase, between 15 τ and 24 τ after the last earth-
uake. We purposely do not superimpose noise on samples from the
odel output. Although this is inconsistent with the assumptions in

he data-assimilation formulation, this allows us to determine if our
onceptual model can reproduce results for similar model param-
ters as the FE model, without noisy data potentiall y af fecting the
esults. We do ascribe a standard deviation of the observational er-
ors of 1 mm yr −1 to Experiments 1–2 to allow for small differences
etween our model and the FE model (this is the σ value in eq. 6 ). 

We first sample synthetic velocity observations from the FE
odel at ∼15 km intervals in both continental and marine domains.

n Japan, this is currently a realistic interval for the onshore GNSS
etwork. In Experiment 1, vertical velocities are assimilated with a
odel with a uniform plate (Table 1 ). This yields a plate thickness

f 37.3 ± 2.0 km (Table 2 ), which is slightly smaller than the truth
f 40 km. Experiment 2 is based on the recognition that the over-
iding plate thickness linearly decreases towards zero at the trench
Fig. 3 b). We therefore estimate two thicknesses in Experiment 2,
hickness H 1 between the trench and the coast ( ∼86 km from the
rench) and thickness H 2 for the land part of the model. The results
how no significant difference between the estimated H 2 and the
ruth (Table 2 ). Ho wever , H 1 differs substantially from the average
alue of the truth in that it is approximately 1 per cent thicker than
 2 . This can be explained by the fact that isostatic support by the

lab in the FE model reduces the vertical surface velocity, which
esults in a stiffer, thicker plate estimate from the data assimila-
ion. Relative to Experiment 1, standard deviations of the thickness
stimates are larger because fewer observations are available per
arameter to constrain it. The two line loads are estimated to be
ocated at approximately 35 and 325 km from the trench (Table 2 ). 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad450#supplementary-data
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Table 2. Estimated model parameters and their standard deviations from Experiments 1–2. The true parameters correspond to 
the parameters used in the reference model of Govers et al. ( 2018 ). See text for symbol definitions. 

Model 
Experiment 

number H 1 (km) H 2 (km) y 1 (km) y 2 (km) 
q̇ 1 

(Pa m 

−1 s −1 ) 
q̇ 2 

(Pa m 

−1 s −1 ) 

Truth 
FE – Taper from 40.0 — — — —

40.0 to 0.0 
Regularly distributed synthetic data in continent and ocean 

Uniform 1 37.3 ± 2.0 37.3 ± 2.0 35.6 ± 1.7 326.5 ± 4.7 2065 ± 16 711 ± 16 
Two plates 2 38.1 ± 4.6 37.7 ± 4.6 35.6 ± 2.8 325.2 ± 6.6 2068 ± 20 716 ± 15 

Synthetic continental data only 
Uniform 1 39.6 ± 2.8 39.6 ± 2.8 27.1 ± 4.4 325.0 ± 4.9 2060 ± 16 717 ± 16 

Synthetic continental and near trench data 
Uniform 1 37.6 ± 2.0 37.6 ± 2.0 34.7 ± 2.5 324.8 ± 4.3 2064 ± 16 707 ± 15 
Two plates 2 38.8 ± 4.8 37.3 ± 4.5 34.4 ± 3.5 323.7 ± 6.8 2062 ± 20 712 ± 15 
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Ne xt, we inv estigate the sensitivity of the parameter estimation 
to network aperture. We apply data assimilation to both the uni- 
form and two-plate model, to test if any of the model parame- 
ters are sensitive to the choice of the data distribution. The re- 
sults of a uniform plate experiment where only continental data 
are assimilated show that most parameter estimates are similar, 
except for the line load location y 1 , which is underestimated by 
more than 20 per cent compared to the case where seafloor data 
is used (Table 2 ). The two experiments (uniform plate and two- 
plate) using continental and near-trench (marine) observations only 
(see Fig. 4 for locations) intend to mimic the availability of the 
present GNSS and GNSS/A observations. The resulting parameters 
estimates are similar to the estimates for complete data coverage, 
highlighting the rele v ance of marine geodetic observations near the 
trench. 

Finally, we investigate the ratio between the number of synthetic 
on- and offshore data and the optimal positioning of the synthetic 
seafloor stations. We fix the number of onshore data stations to 10 
which are spaced approximately every 15 km. The number of syn- 
thetic seafloor stations varies between 2 and 15 stations (Fig. 5 ). 
We find that the parameters y 2 , q̇ 1 , q̇ 2 are not sensitive to the ratio 
between the number of synthetic on- and offshore data as long as the 
synthetic seafloor data are e venl y distributed (Fig. 5 ). Parameters 
H and y 1 are somewhat sensitive to the ratio between the number 
of synthetic on- and offshore data, but in all cases (Figs 5 a–d) the 
estimates overlap within one standard deviation. In another test, we 
keep the same number of onshore stations fixed, include a single 
synthetic offshore station and vary the position of the single syn- 
thetic offshore station. Similarly, we find that the estimates for the 
parameters y 2 , q̇ 1 and q̇ 2 are insensitive to the addition of a single 
of fshore observ ation (Figs 6 c–e). For parameter H , all estimates 
mostly overlap with the estimate obtained with e venl y distributed 
data (Fig. 6 a). Ho wever , the strongest correspondence is found when 
the observation is located between 25 and 100 km from the trench. 
For parameter y 1 , the optimal range of the observation location is be- 
tween 50 and 150 km if we assume that the truth is better described 
when we include e venl y distributed data (Fig. 6 b). These results 
highlight the importance of near-trench data and that the fit does 
not simply improve with the use of more data. When only continen- 
tal data is used, the estimate for particularly y 1 deteriorates, if we 
assume that the truth is better described when we include e venl y dis- 
tributed data, and its uncertainty decreases (Table 2 ). Subsequently, 
the range of model outputs near the trench becomes larger. Hence, 
the predicted model outcomes and parameter estimates improve 
with the inclusion of near-trench data. 
4.1.2 Assimilation of synthetic time-series (Experiment 3) 

Experimental setup 

For non-identical twin Experiment 3 we include an evolving state 
and use synthetic surface displacement time-series (i.e. the for- 
ward model is time-dependent). We assume a standard deviation 
of the observation error of 4 mm. Experiment 3 consists of 67 
time/assimilation steps and each time step is equi v alent to 0.125 τ
in the FE model. We use eqs 11 , 12 and 13 to describe the sys- 
tem to assimilate displacements. The line loads in eq. 12 are time- 
dependent and are expressed in Pa m 

−1 to produce surface displace- 
ment outputs. We assume that q ( y , t ) varies linearly with time due 
to interseismic deformation after many data assimilation steps. We 
estimate the slope of this linear relation, that is q̇ ( y, t) (Pa m 

−1 s −1 ) 
and assume that its estimate converges with time so that q ( y , t ) varies 
linearly. Parameters q̇ 1 and q̇ 2 control the magnitude of maximum 

uplift and subsidence. From Experiments 1 and 2 we found that the 
ratio between q̇ 1 and q̇ 2 is around 2.9. We saw that the ratio between 
the loads tends to be stationary, which suggests that the value of 
these loads are coupled. The same ratio (2.9) can be found when we 
divide the maximum uplift by the maximum subsidence resulting 
from the FE model. Thus, we use a simple relation, q̇ 2 = 2 . 9 ̇q 1 , to 
determine q̇ 2 , and reduce the number of parameters to be estimated 
in Experiment 3. 

Comparison of Experiment 3 to Experiments 1–2 

Firstly, we investigate if we can get similar parameter estimates 
for the time-variant problem as the time-invariant problem (Ex- 
periments 1–2). We use the same synthetic data distributions as 
in Experiments 1–2: (1) e venl y distributed data every 15 km, (2) 
only continental data and (3) continental- and near-trench data (see 
Fig. 7 e for the data locations of the latter case). We start the assim- 
ilation at t = 15.25 τ . For the experiments with e venl y distributed 
data and continental data only, we include data at all times during the 
assimilation. For the experiment with continental- and near-trench 
data we introduce near-trench data after 23 assimilation steps at t 
= 18.125 τ . For the e venl y spaced data, estimates of the plate thick- 
ness and the two line load locations are similar to Experiments 1–2, 
but have smaller uncertainties (Tables 2 and 3 ). The plate thickness 
estimate excludes the truth more explicitly than before, that is the 
plate thickness is more precisely but inaccurately estimated. The 
estimates from Experiment 3 are more tightly constrained due to 
the larger amount of data and assimilation steps than in Experiments 
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Figure 4. Assimilation results obtained for uniform plate (1P) and two-plate (2P) models with une venl y distributed data using a non-identical twin experiment 
(Experiment 1–2). The experiments with the 1P model either only use synthetic- continental data (1P.CN) or continental and seafloor data (1P.CN + SF) in the 
assimilation procedure. The 2P model experiments use continental and seafloor data (2P.CN + SF). The dotted lines show the FE model results and the black 
dots in the upper panel on the x -axis indicate the data locations. The estimated parameters are shown in Table 2 . 

Figure 5. Assimilation results for the uniform plate model (1P) with different distributions of synthetic seafloor observation locations (Experiment 1). Each 
panel shows the weighted vertical velocities and lists the estimated model parameters and 1-standard deviation for different numbers of synthetic continental 
(CN) and seafloor (SF) data stations. For example, 1P.10CN + 15SF in panel (a) means that 10 synthetic continental and 15 seafloor observations were used to 
calibrate the 1P model. 
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Figure 6. Assimilation results with 10 synthetic onshore data locations and one location for a synthetic seafloor data point, which we vary in the experiment, 
obtained with the uniform plate model (Experiment 1). Blue lines show the parameter results for the case where the location of the synthetic seafloor data point 
is varied. Pink lines show the estimated parameter results for the case where regularly distributed synthetic data in continent and ocean are used with a uniform 

plate model (shown in Table 2 ). 
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1–2. We note that the modelled displacements are remarkably sim- 
ilar to the FE model displacements and differences are smaller than 
30 mm at the last time step where the accumulated deformation is 
approximately 100 cm for both the case where the data consists of 
synthetic continental- and near-trench data (Figs 7 e and f) and for 
e venl y spaced data (Figs S4e and f ). If we exclude seafloor data and 
thus only feed continental data to the assimilation, then y 1 is near- 
zero, H and q̇ 1 are overestimated by more than 26 and 12 per cent, 
respecti vel y, in comparison to the cases where seafloor data is used 
(Tab le 3 ). Moreover, w hen excluding seafloor data, we see that q̇ 1 
and y 1 estimates increase steadily over time with a steadily decreas- 
ing y 2 (Fig. S5 ). Hence, the model parameters have not converged 
and cannot be well constrained with continental data only, similar 
to Experiment 1. Convergence occurs after approximately 15 out 
of 67 assimilation steps for e venl y spaced data (Fig. S4 ) and after 
approximately 40 steps (only for the plate thickness) for continental 
data only (Fig. S5 ). 

Influence and timing of synthetic seafloor data 

In Japan, GNSS/A stations were later additions to the observation 
network. We analyse the effect of adding synthetic seafloor data 
to the assimilation process and how the timing of adding synthetic 
seafloor data influences the results. We start the assimilation again 
at t = 15.25 τ with only continental data and add synthetic seafloor 
data after 23 assimilation steps at t = 18.125 τ (see Fig. 7 e for the 
data distribution). Up until t = 18.125 τ we see a strongly increas- 
ing plate thickness, while the rate q̇ 1 slowly increases and y 1 shifts 
trench-ward, as no seafloor data is added up until this time (Figs 7 b 
and d). y 1 reaches ne gativ e values, which shows that physically un- 
realistic combinations result in a good fit with the measured surface 
displacements (Fig. 7 b). Once synthetic seafloor observations are 
added to the assimilation, all parameters con verge to w ards dif ferent 
values (Figs 7 a–d). The inclusion of seafloor data leads to conver- 
gence in the time-dependent tests with a slightly underestimated 
elastic plate thickness, similar to the time-independent tests with 
seafloor data. Notably, y 1 obtains a more realistic value ( ∼33 km, 
F ig. 7 b, Tab le 3 ), w hich shows the added value of seafloor data. 
We repeated the experiment with e venl y spaced data where syn- 
thetic seafloor data are added at the beginning of the assimilation 
process and obtained similar estimates (Table 3 and Fig. S4 ). The 
near-trench line load rate, q̇ 1 , is also more tightly constrained by 
seafloor displacements than without seafloor data. In the case where 
no seafloor data is added (Fig. S5 ), the plate thickness estimate in- 
creases steadily over time with a steadily increasing line load rate 
magnitude, which again shows that the parameter y 1 cannot be 
well constrained with continental data only. The timing of adding 
seafloor data is also rele v ant for achie ving convergence. Similar 
values for the plate thickness could be achieved if seafloor data is 
added before t = 19.4 τ within the considered time (Fig. S6 ). 

Influence of jittering magnitude 

Jittering is applied after resampling to increase the spread of the 
particles (Section 2.2 ) and the value of the jitter is based on trial 
and error in this experiment. As done pre viousl y, we start the assim- 
ilation at t = 15.25 τ with only continental data and add synthetic 
seafloor data after 23 assimilation steps at t = 18.125 τ . We start 
with a standard deviation of the jitter of 1, 2, 5 km and 3 Pa m 

−1 s −1 ,
for H , y 1 , y 2 and q̇ 1 , respecti vel y. Large jitters can influence the pos- 
terior distribution. For example, the spread of y 1 is somewhat larger 
than in Experiments 1 and 2 (between 1.7 and 4.4 km in Experiments 
1–2 and between 5.0 and 5.5 in Experiment 3, Tables 2 and 3 ), as a 
larger jitter was implemented to ensure that the data assimilation can 
correct the parameter estimation when seafloor data is added to the 
process. Particularly, for the parameters H , y 1 and y 2 , the relati vel y 
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Figure 7. Evolution of model parameters estimates and uncertainties as a function of time (Experiment 3). Time is expressed as a multiple of the characteristic 
relaxation time τ . (a) plate thickness H , truth indicated by the orange line, (b) forearc line load location y 1 , (c) backarc line load location y 2 and (d) line load 
rate magnitude ̇q 1 . (e) displacements ( d y ) of the FE model (solid lines) and the analysis (squares) at selected time steps. (f) differences ( � d y ) between the truth 
(FE model) and the analysis. At the start ( t = 15.25 τ ) only synthetic continental data are fed to the assimilation procedure. At t = 18.125 τ synthetic seafloor 
data are added to the assimilation procedure. 

Table 3. Assimilation results at the last time step for the time-dependent model with observations generated from a finite element 
model, with different data distributions (Experiment 3). See text for symbol definitions. The second line load rate, ̇q 2 , is a function 
of q̇ 1 : q̇ 2 = 2 . 9 ̇q 1 . 

Data distribution 
Experiment 

number H (km) y 1 (km) y 2 (km) 
q̇ 1 

(Pa m 

−1 s −1 ) 

Truth (FE model) – 40.0 — — —
Evenly spaced (15 km) 3 36.7 ± 1.1 32.8 ± 2.1 323.0 ± 2.3 2122 ± 13 
Only synthetic continental 3 46.8 ± 1.3 −0.2 ± 5.5 328.9 ± 2.4 2391 ± 23 
Synthetic continental + near-trench 3 37.1 ± 1.2 32.8 ± 5.0 324.4 ± 2.5 2122 ± 14 
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arge standard deviation of jittering (1, 2 and 5 km, respecti vel y)
nfluences the posterior distribution after synthetic seafloor data are
dded to the assimilation procedure (Fig. 8 ). When reducing the
tandard deviation of the jitter for y 1 to 1 km, the assimilation pro-
edure is unable to suf ficientl y correct the parameter estimation and
hus a bad fit is obtained at the synthetic seafloor locations (case 4
n F ig. S7 ). Similarly, w hen reducing the standard deviation of the
itter for H to 0.1 km, the assimilation procedure obtains a worse fit
rior to the addition of synthetic seafloor data (case 2 in Fig. S7 ).
arger jitters are required for a good convergence of parameter es-

imates when synthetic seafloor data are added at a later time, at the
xpense of having a larger uncertainty of the posterior for H 1 , y 1 
nd y 2 (case 1 in Fig. S7 ). 
u  
.2 Identical twin experiments 

.2.1 Estimating lateral thickness variations from synthetic 
ime-series (Experiment 4) 

he FE model that constitutes the truth for the non-identical twin
xperiments that we considered thus far is limited to a uniform
verriding plate thickness, except for the taper toward the trench.
o wever , spatial variations in plate compliance (equivalent to thick-
ess) can influence surface displacements (Itoh et al. 2019 , 2021 ).
e therefore assess whether spatial variations in plate thickness can

e retrieved from noisy data (Experiment 4, Table 1 ). We use eqs 11 ,
2 and 13 to describe the system and assimilate displacements. We
se the same model to generate the synthetic data as the model that
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Figure 8. Scatter plots and posterior pdf plots for the plate thickness H , first line load location y 1 , second line load location y 2 and line load rate magnitude q̇ 1 
after importance weighting, resampling and jittering at select time steps (Experiment 3). Synthetic seafloor data is added after t = 18.125 τ to the assimilation 
procedure. Note the scaling on the two y -axes for the particle weight and probability density. The evolution of each parameter is depicted in Fig. 7 . 
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is used in the data assimilation in an identical twin experiment. In 
this model, the plate thickness varies spatially. Lateral variations are 
defined by a sine function, with the thickest plate (40 km) located 
∼300 km from the trench, tapering to a normal thickness (30 km) 
at ∼80 km away from this welt. With data assimilation we aim to 
estimate the plate thickness deviations d H relative to the normal 
thickness of 30 km (Experiment 4, Table 1 ). The flexural model is 
set up in such a way that the choice of the plate thickness at a cer- 
tain location only influences the model output at that same location. 
For our convenience, we discretize the plate thickness at the real 
GNSS locations with a 60 km s wath (F igs 2 a and c). The selection 
of the location of the plate thickness variation estimate is deter- 
mined by the locations of the real GNSS stations, that is resulting 
in 16 variations of the plate thickness. The remaining parameters 
(line load locations and rate magnitudes) are fixed and thus we do 
not estimate them using the PF method. We sample independent 
surface displacements from the truth and add relati vel y small Gaus- 
sian noise with zero mean and standard deviation of 1 mm (i.e. the 
the standard deviation of the observation error) to all observations. 
Experiment 4 consists of 144 time/assimilation steps and each time 
step is 1 week. 
The mean of the ensemble of models gives an estimate for the 
plate thickness after 3 yr that is close to the truth (Fig. 9 a). Most 
of the differences between the mean and the truth vary between 3 
and 8 per cent, whereas at one particular location at x = 289 km, 
a maximum error of the plate thickness of 19 per cent is obtained 
(Fig. 9 b). Interestingly, the truth is captured by the ensemble spread 
at all observation locations (Fig. 9 a). The ensemble spread is largest 
at ∼300 km from the trench and relati vel y large at the western and 
eastern coastlines ( ∼200 and ∼400 km from the trench) (Figs 9 a 
and b). Also, a smaller distribution of particle weights is seen where 
a larger spread in d H is obtained (Fig. 9 h), whereas this distribu- 
tion is much broader when a smaller range of plate thicknesses is 
obtained (Fig. 9 e, note the difference in scale on the x -axis). This 
means that a variety of plate thicknesses result in similar output 
displacements at locations where the displacements are small (of 
the same order as the observation uncertainty) which explains the 
narrower and broader widths of the density plots at x = 245 km and 
x = 289 km, respecti vel y (Figs 9 c and f). Additionally, parameter 
conv ergence is achiev ed at x = 245 km, where this is not the case 
for x = 289 km, which shows large oscillations (Figs 9 d and g). In- 
creasing the length of the time-series (up to 6 yr) did not reduce the 
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Figure 9. Time-dependent estimates of spatial variation in the overriding plate thickness using an identical twin experiment (Experiment 4). The number of 
particles is 100 000. (a) Deviation from a uniform plate thickness of 30 km; (b) absolute errors of the deviation in plate thickness; (c) density distribution of the 
plate thickness distribution at the start (blue, t = 0 yr) and at the end (purple, t = 3 yr) of the assimilation process at x = 245 km; (d) temporal evolution of the 
plate thickness deviation at x = 245 km; (e) particle weight versus vertical surface displacement at x = 245 km; (f) density distribution of the plate thickness 
distribution at the start (blue, t = 0 yr) and at the end (purple, t = 3 yr) of the assimilation process at x = 289 km; (g) temporal evolution of the plate thickness 
deviation at x = 289 km; (h) particle weight versus deformation at x = 289 km. Similar plots (c–h) at each station can be found in Figs S8 –S10 . 
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scillations. How well the truth was captured at the end of the time-
eries depends on the oscillation and when the time-series is ended.
ven though oscillations are high, the truth is captured within a 1 σ
r 2 σ uncertainty at all stations (Figs 9 d, g and S9 ). 

.2.2 Incorporating realistic representation errors (Experiment 5) 

he ver tical GNSS cr ustal obser vations are quite noisy (Fig. 2 b) and
ontain signals from many different processes. Ho wever , our con-
eptual model only accounts for the semi-monotonous component
n the observations. We account for the missing physics by incor-
orating time-varying representation errors in the data assimilation
as explained in Section 3.3 ). The representation error is the sum
f the linear-, seasonal components, steps and common-mode er-
or, which are derived from real GNSS observations (e.g. Fig. 2 b).
he representation error is assumed to be more realistic as they
re derived empirically, instead of drawing the total observation
rror from a random distribution which renders more or less time-
ndependent errors as in Experiments 1-4. We ne xt inv estigate the
ata assimilation performance in identical twin Experiment 5 where
oisy observations are mimicked by superimposing half of the rep-
esentation error on the truth (Table 1 ) which generates the missing
hysics. The data distribution is taken identical to the case of real
ata, where only continental data is available (shown in Fig. 2 a).
e use eqs 11 , 12 and 13 to describe the system and assimilate

isplacements. Experiment 5 consists of 994 assimilation steps and
ach time step is 1 day. Similar to Experiment 3 (Section 4.1.2 ),
e only estimate the parameters H , y 1 , y 2 and q̇ 1 using data as-

imilation and assume that q̇ 2 = q̇ 1 . We based this on the notion
hat the magnitude for the maximum uplift is similar to the magni-
ude of maximum subsidence, as suggested by the data in Fig. 2 c.
hereafter, the data assimilation is repeated with real observations

Experiment 6, Table 1 ). 
Pilot tests reveal that different combinations of plate thickness

nd the line load rate magnitude lead to similar surface deformation
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Figure 10. Time-series of the parameters (a) plate thickness H , (b) the line load rate magnitude q̇ 1 , (c) the first line load location y 1 and (d) the second line 
load location y 2 , obtained with the twin experiment (Experiment 5). The orange colours denote the long wavelength simulation in which H truth = 20 km and 
q̇ 1 truth = 350 P a m 

−1 s −1 (e xp. 1) and the green colours denote the short wavelength simulation in which H truth = 5 km and q̇ 1 truth = 150 P a m 

−1 s −1 (e xp. 2). 
In both cases, the true first- and second line locations are 250 and 350 km, respecti vel y. The number of particles is 10 000. 
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values. We set up two experiments to investigate whether we can 
separate the plate thickness and rate magnitude from each other. 
The true values for the first experiment are H truth = 5 km and 
q̇ 1 truth = 150 Pa m 

−1 s −1 (a short wavelength experiment) and for 
a second experiment H truth = 20 km and q̇ 1 truth = 350 Pa m 

−1 s −1 

(a long wavelength experiment). In both cases the true values of 
the other parameters are y 1 truth = 250 km and y 2 truth = 350 km. For 
the first experiment, we constrain H to be larger than 1 km to 
avoid extremely short wavelengths and unphysically ne gativ e H 

v alues. Specificall y, we correct v alues lower than 1 km for the plate 
thickness right after the jittering step (Fig. 1 b) to 1 km. 

In both the low- and high wavelength experiments the parameters 
e volve tow ards the truth, e ven when the truth is outside the initial 
prior distribution (Figs 10 a–d). The result of the long wavelength 
experiment shows larger uncertainties than the short wavelength 
experiment (see the spread of the time-series in Figs 10 a–d), which 
is acceptable as wavelengths are larger and thus model outputs 
are less sensitive to changes in plate thickness. To understand the 
correlation between parameters over time, we create scatter plots 
at select time steps (Figs 11 a–d). At the last time step we can 
observe that the long wavelength experiment has a wider range 
of plate thickness estimates than the short wavelength experiment 
(Figs 11 a and c insets and blue kernel density plots). For both the 
short- and long wavelength simulations, the particles come closer to 
the truth over time, although quicker for the short wavelength case 
(in approximately 0.2 and 1.0 yr for the short- and long wavelength 
simulations, respecti vel y, Fig. 10 ). There is a very strong correlation 
between the parameter pair H and q̇ 1 for the long wavelength case 
with a Pearson correlation of 0.90. The very strong correlation even 
at the end of the simulation indicates that there is a persistent trade- 
off between plate thickness and load line rate at such magnitudes. 
For the short wavelength case, the correlation drops to 0.40. 
4.3 Assimilation of geodetic displacement time-series 
prior to the Tohoku-Oki earthquake (Experiment 6) 

In a final set of data assimilation experiments (Experiment 6) we as- 
similate interseismic vertical displacements measured prior to the 
2011 M w 9.0 Tohoku-Oki earthquake (Section 3.1 , Fig. 2 ). Just 
as in Experiment 5 (Section 4.2.2 ), we use eqs 11 , 12 and 13 to 
describe the system, only estimate the parameters H , y 1 , y 2 and 
q̇ 1 using data assimilation and assume that q̇ 2 = q̇ 1 . We find that 
estimates of the ef fecti ve elastic plate thickness across Tohoku be- 
tween 3 and 7 km (Figs 12 a and 13 a) within a half swath width of 
30 km (Fig. 2 a). Increasing the half swath width to 50 km leads 
to similar estimates of the plate thickness between 5 and 10 km. 
Thus, we find that solutions for a relati vel y thin plate (low flexural 
rigidity and short wavelength) provide the best fit to real verti- 
cal displacement observ ations. Interestingl y, slightl y larger thick- 
nesses of 5–7 km have a larger weight (inset in Fig. 12 a) and 
thus give more accurate results (for both selections of the swath 
width). At the last time step, the correlation between H and q̇ 1 
is 0.40, which is lower than the long wavelength case and equiv- 
alent to the short wavelength case in the twin experiments (Sec- 
tion 4.2.2 ). The plate thickness H converges to values well above 
the applied constraint of 1 km (Fig. 13 ). To achieve parameter 
conv ergence ov er time the constraint on a minimum ef fecti ve elas- 
tic plate thickness is critical. Upon removal of the constraint H 

> 1 km, unphysical ne gativ e H values are obtained. Without ap- 
plying additional constraints, no parameter convergence can be 
achieved. 

The resulting estimates of the other parameters are such, that a 
low plate thickness is al wa ys obtained. The remaining parameters 
converge as well and the uncertainty of each parameter reduces 
over time (Fig. 13 ). The uncertainty values for the second line load 

art/ggad450_f10.eps
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Figure 11. Scatter and kernel density plots of (a, c) the plate thickness H and line load rate magnitude q̇ 1 and (b, d) the first line load location y 1 and line 
load rate magnitude q̇ 1 at various time steps with synthetic data using an identical twin experiment (Experiment 5). (a, b) diagrams resulting from the short 
wavelength simulation and (c, d) diagrams resulting from the long wavelength simulation. In plots (a) and (b) the posterior density at t = 3 yr (i.e. the end of 
the simulation) is almost a straight line visuall y, gi ven the scaling. The insets show the distribution of the particles at the end of the simulation ( t = 3 yr) with 
their weight, w i , denoted with colours. 
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ocation (373 ± 2 km) are approximately two times larger than that
f the first-line location (257 ± 1 km), because fewer observations
re available farther away from the trench in comparison to the
astern coast (Fig. S11 ). 

Experiments with synthetic observations sampled from the FE
odel of Govers et al. ( 2018 ) show that the plate thickness con-

erged towards the truth only upon the addition of seafloor data (Ex-
eriment 3, Fig. 7 ). Our identical twin experiments with continental
ata only and real representation errors also sho w con vergence to-
ards the truth for short- and long wavelength solutions (Fig. 10 ).
o wever , when we run our identical twin experiment with a true
late thickness of 40 km, convergence cannot be achieved with
ontinental data only. Similar values for the plate thickness around
0 km result in similar model outputs where GNSS stations are lo-
ated (between 200 approximately 200 and 400 km from the trench).
herefore, it becomes difficult to constrain the plate thickness for

ong wavelength solutions when only continental data is used. The
bsence of accurate convergence using a higher true plate thickness
onfirms that additional information, for example in the form of
eafloor data, is required for the real experiments to accurately con-
train model parameters of the conceptual model. Ho wever , we find
ow wavelength estimates (5–7 km) to explain the continental data,
nd thus convergence has been achieved without seafloor data. Even
hen excluding four continental data points closest to the trench

hat suggest little subsidence or even uplift (Fig. 2 ), similarly low
stimates of the plate thickness are obtained. 

art/ggad450_f11.eps
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Figure 12. Scatter and kernel density plots of (a) the plate thickness H and line load rate magnitude q̇ 1 and (b) the first line load location y 1 and line load rate 
magnitude ̇q 1 , estimated at various time steps from real data prior to the 2011 M w 9.0 Tohoku-Oki earthquake (Experiment 6). The grey, red, orange and green 
colours denote the distribution at t = 0, t = 0.5, t = 1.0, t = 2.0 yr after 1 January 1997. The blue-coloured densities are the posterior densities at t = 3.1 yr after 
1 January 1997 (i.e. the end of the simulation). The inset shows the distribution of the particles with their weight, w i , denoted with yellow and blue colours. 

Figure 13. Violin plots depicting estimates of (a) plate thickness H , (b) first line load location y 1 , (c) second line load location y 2 and (d) first line load rate 
magnitude q̇ 1 at selected times using real data prior to the Tohoku-Oki earthquake (Experiment 6). The curved line of each violin plot is the kernel density 
function, the white dot represents the median, the thick black line represents the data values between the first and third quartiles, and the edges of the thin black 
line are the lower and upper adjacent values. 
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5  D I S C U S S I O N  

5.1 Exploring the use of data assimilation 

5.1.1 Prior selection and imposing constraints 

An advantage of Bayesian-based data assimilation methods is that 
the truth can be recovered even when the chosen prior at the first 
time step does not include the truth as demonstrated in Experiment 
5 (Fig. 10 ). This is highly advantageous when there is little to no 
knowledge on the parameter range. This becomes visib le w hen new 

data are being assimilated and the evolution of our estimate is effec- 
ti vel y steered tow ards the truth, provided that we apply a jitter that 
is large enough (Experiment 3, Fig. 7 ). In some cases, constraints 
on the parameters are necessary, such as in Experiments 5 and 6. 
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e had to impose a minimum plate thickness of 1 km to avoid the
ata assimilation to estimate unphysically ne gativ e values for the
late thickness while not introducing a bias to the estimation. To test
hether our choice of prior thickness induced this beha viour, w e ran

dditional simulations where we selected a prior at the beginning of
he simulation to be closer to or containing the true plate thickness.
 narrow prior at the beginning of the simulation did not lead to
e gativ e values of the plate thickness (Fig. S12d). Ho wever , when
he prior at the beginning of the simulation is broader, or biased,
e gativ e values are obtained for the plate thickness (Figs S12a –c ).
his suggests that the ne gativ e values of our plate thickness esti-
ates result from an overshoot due to a large ensemble variance

eeded for the initial correction, to ef fecti vel y steer the evolution
f the plate thickness estimate towards the truth when the selected
rior is far from the truth. 

.1.2 Addressing missing physics 

he conceptual model lacks some key physical processes that af-
ect vertical displacements in subduction zones. Particularly, the
inematic description in terms of vertical line loads seems not to
epresent the governing physical processes well, as these are antici-
ated to result from horizontal compression during the interseismic
eriod. Moreover, the model does not account for a dipping, curved
egathrust interface, an accurate viscoelastic response of the mantle
edge and oceanic lithospheric mantle, as well as viscoelastic verti-
al layering and horizontal variation in compliance in the overriding
late (e.g. lithological stratification imposing a backstop). Several
f these missing processes are anticipated to shorten surface dis-
lacement w avelengths v an Dinther et al. ( 2019 ), as required by our
esults. Instead of implicitly dealing with the model error as part of
he observation error, model errors can also be estimated explicitly
y including model errors in the state vector as an additive variable
o the total deformation in eq. 12 . In our current setup, the plate
hickness and line load rate magnitude parameters are strongly cou-
led (Fig. 11 c), and this directly influences the ill-posedness of the
stimation problem. We tested a setup with model errors included in
ur state vector and obtained solutions with near-zero model defor-
ation outputs whilst model errors were fitted to the data (Fig. S13 ).
dding the model error to the state vector would consequently lead

o a stronger ill-posedness of the estimation problem. Dealing with
he estimation of model errors through data assimilation will be part
f our future research. 

.1.3 Data assimilation for more complex models 

ne of the potential drawbacks of the particle filter is that the com-
utational time increases with the number of unknowns. The number
f particles required to avoid particle de generac y increases expo-
entially with the dimensionality of the problem (Snyder et al. 2008 ).
n this paper we use a model that requires very little computational
ime, which makes the propagation step computationally inexpen-
ive. In Experiments 1–4 we required 10 000 particles to estimate
–6 parameters in several minutes on a Quad-core Core i7 machine.
ncreasing the dimension of the problem to 16 (Experiment 4) re-
uired 100 000 particles and increased the execution time tenfold.
n more complex models with more unknown parameters or state
ariables, more particles are required to avoid ensemble degen-
racy (Snyder et al. 2008 ). For example, with 10 5 –10 6 number of
nknowns, the execution time would roughly increase by more than
0 4 times. In the example of Snyder et al. ( 2008 ), 10 11 particles are
equired for a number of unknowns of 200. More realistic tectonic
odels require more computational costs and exploiting parallelism

n multicore or multithreading architectures and considering other
ata assimilation methods becomes important. Suitable alternative
olutions for parameter estimation to achieve that include ensemble
ethods such as the Ensemble Smoother-Multiple Data Assimila-

ion (ES-MDA; Emerick & Reynolds 2013 ). These methods may
e ef fecti ve with a distinctl y smaller number of realisations than re-
uired for a particle filter. This reduces computational effort at the
xpense of the ability to accurately deal with strongly non-Gaussian
rror distributions. For strongly non-linear processes, the particle
ow filter (Hu & van Leeuwen 2021 ) could be an alternative worth
xploring. 

.2 Importance of seafloor data 

ur results highlight the added value of seafloor data in estimating
odel parameters from vertical surface defor mation. Par ticularly,

nce synthetic seafloor data is added to the non-identical twin ex-
eriment, a quick convergence is seen to parameter estimates closer
o the truth (Figs 7 a and e). The addition of seafloor data effec-
i vel y steers the evolution of the forecast and results in a smaller
pread of the posterior ensemble and a smaller misfit of its mean
ith the truth than was the case for the prior ensemble. The optimal
osition of the synthetic seafloor data is within 150 km from the
rench to ensure satisfactory convergence of the plate thickness and
rst line load location estimates (Fig. 6 ). Note that the accuracy of

he seafloor observations in our synthetic simulations is taken to be
imilar to that of on-land observations. In our real-data experiments
e did not use seafloor data as this was not available during our

tudied period and we could obtain convergence for our short wave-
ength solutions. Nevertheless, seafloor data can provide additional
onstraints. 

Ho wever , there are some limitations to the applicability of actual
eafloor data in data assimilation procedures due to the accuracy
nd timing of the data. In northeast Japan, seafloor stations MYGI
 ∼100 km from the trench) and MYGW ( ∼150 km from the trench)
re located within our swath (Fig. 2 a) and show an interseismic
inear signal of 2.0 ± 2.1 and −0.2 ± 3.3 cm yr −1 (95 per cent
onfidence), respecti vel y (Watanabe et al. 2021 ). Ho wever , seafloor
ata contain larger measurement uncertainties than on-land data,
uch that the likelihood is lower and the PF method assigns a lower
eight to the seafloor observations. We test the effect of adding two

eafloor observations using the same setup as Experiment 6. We
omputed crustal seafloor displacements using the velocity values
or stations MYGI and MYGW (2.0 and −0.2 cm yr −1 , respecti vel y,

atanabe et al. ( 2021 ) and assume a standard deviation of 7.0 cm
or the uncertainty (Iinuma et al. 2021 ). Ho wever , our a posteriori
stimate generally does not change, indicating that low accuracy
eafloor data does not add much value. We also varied the seafloor
bser vation uncer tainty in our synthetic tests (Experiment 5). Ac-
ording to the synthetic tests, a maximum uncertainty of 28 mm is
equired for seafloor data when we assume a 4 mm uncertainty for
ur continental data to obtain similar model realizations if we as-
ume 4 mm for both data types. Additionally, the available seafloor
ata came online in the mid-2007s, whereas we selected GNSS
ata between 1997 and 2000. GNSS data including the mid-2007s
ust be filtered (which may not be straightforward) to remove co-

nd post-seismic signals from various M w ∼ 6–7 megathrust earth-
uakes in the region for data consistency. Therefore, filtering co- and
ost-seismic signals should be considered when combining seafloor
nd onland data prior to the Tohoku-Oki earthquake. 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad450#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad450#supplementary-data
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5.3 Elastic thickness estimates 

The data assimilation in this study renders relati vel y low v alues for 
the ef fecti ve elastic thickness between 5 and 7 km (Experiment 6). 
Estimates of the ef fecti ve elastic thickness from other studies vary 
from values as low as 3–10 km up to 50 km (Huang et al. 1998 ; 
Kudo et al. 2001 ; Muto 2011 ). To understand how these values 
compare, we need to consider that the ef fecti ve elastic thickness 
of the lithosphere can be defined by various criteria, which can 
be based on the seismogenic layer (Maggi et al. 2000 ), topography 
and gravity anomalies (Kudo et al. 2001 ), thermo-rheological mod- 
els (Tesauro et al. 2013 ) and bending moment of the lithosphere 
(Burov & Diament 1995 ). The continental ef fecti ve elastic thick- 
ness is considered to be dependent on the composition and thickness 
of the upper and lower crust and its geotherm (Burov & Diament 
1995 ). The ef fecti ve elastic thickness can help to understand (lat- 
eral) changes in rheology and temperature. Low seismic velocities 
and high seismic attenuation inferred beneath the volcanic arc of 
Northeast Japan (Wang & Zhao 2005 ; Liu et al. 2014 ) are indica- 
ti ve of mechanicall y weak materials in and below the lower crust 
(Ohzono et al. 2013 ) and thus a localized lower ef fecti ve elastic 
thickness. Viscosity maps by Muto ( 2011 ) based on heat flow, seis- 
mic tomography, and magnetotelluric data suggest that the (laterally 
v arying) ef fecti ve elastic thickness on time scales of the earthquake 
cycle should be between 15 and 25 km. Our estimates are consis- 
tent with values inferred from topography and gravity anomalies in 
Northeast Japan (3–10 km) (Kudo et al. 2001 ). Viscoelastic mate- 
rials behave predominantly viscous on larger time scales and the 
viscosity decreases with depth. Therefore, the ef fecti ve elastic plate 
thickness is expected to decrease over larger time scales. Consider- 
ing the shorter time scales in our estimation problem, our estimates 
for the ef fecti v e elastic thickness should hav e been larger than that 
of Kudo et al. ( 2001 ). Huang et al. ( 1998 ) find ef fecti ve elastic 
thicknesses across Northeast Japan between 10 and 50 km based 
on long-term subduction modelling, which are higher than our esti- 
mates. Mechanical subduction earthquake models typically assume 
a thicker elastic plate where the bottom of the overriding plate co- 
incides with the downdip of the seismogenic zone. In mechanical 
models where a uniform elastic plate is underlain by a viscous man- 
tle, the ef fecti ve elastic thickness (i.e. the elastic plate thickness) 
is between 40 and 50 km for Tohoku (Diao et al. 2013 ; Yamagiwa 
et al. 2015 ; Hu et al. 2016 ). The compliance of the upper plate has 
gained some attention in the last years in mechanical models. The 
addition of a cold nose (i.e., essentially an elastic forearc) would 
subsequently reduce the overriding plate thickness in the backarc to 
match observations (Luo & Wang 2021 ). Using a cold nose often 
requires a thinner ef fecti ve elastic thickness past the cold nose of 
the order 25–30 km (e.g. Sun et al. 2014 ; Fukuda & Johnson 2021 ; 
Luo & Wang 2021 ). Itoh et al. ( 2019 ) show that compliance in 
the overriding plate in the volcanic arc and backarc in Hokkaido is 
needed to match interseismic geodetic observations. They found a 
plate thickness of 25, 2.5 and 10 km in the forearc, volcanic arc, and 
backarc, respecti vel y, of which the latter two values are consistent 
with our estimated values. 

6  C O N C LU S I O N S  

The identical twin experiments show remarkable convergence to- 
wards the true model parameters using simulated GNSS data, even 
when we assume realistic observation errors, for short- and long 
wavelength solutions. In the non-identical twin experiments using 
data from a finite element subduction model, the addition of syn- 
thetic seafloor data appears to be instrumental to constrain model 
parameters well for long wavelength solutions. Our assimilation of 
GNSS data prior to the 2011 Tohoku-Oki earthquake (1997–2000) 
converges to unrealistically low estimates of the ef fecti ve elastic 
thickness of the overriding plate of 5–7 km. Interestingl y, trade-of fs 
in parameter values are identified with twin experiments, partic- 
ularly the overriding plate thickness and line load rate magnitude 
show a strong correlation. 

Overall, our results demonstrate the feasibility and potential ben- 
efits of combining observations with dynamical models using the 
particle method. We illustrate how data assimilation can estimate 
model parameters and uncertainty values, how it can provide in- 
sights into the data-network sensitivity, and how it can identify and 
quantify trade-offs between parameter values. 

I N D E X  A N D  S Y N O N Y M S  

Term Synonym(s) Defined in 

Analysis step Update step Section 2.1 , 
Section 2.2 

Ensemble collapse P article de generac y, filter 
de generac y 

Section 2.1 , 
Section 2.2 

Ensemble members Particles, samples Section 2.1 
Importance weight Particle weight Section 2.2 
Filter de generac y P article de generac y, ensemble 

collapse 
Section 2.1 , 
Section 2.2 

Forecast step Propagation step Section 2.1 , 
Section 2.2 

Particles Ensemble members, samples Section 2.1 
P article de generac y Ensemble collapse, filter 

de generac y 
Section 2.1 , 
Section 2.2 

Particle weight Importance weight Section 2.2 
Propagation step Forecast step Section 2.1 , 

Section 2.2 
Representation error Representativeness error Section 2.1 , 

Section 3.3 
Representativeness error Representation error Section 2.1 , 

Section 3.3 
Samples Ensemble members, particles Section 2.1 
Update step Analysis step Section 2.1 , 

Section 2.2 
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ATA  AVA I L A B I L I T Y  S TAT E M E N T  

nput and output files that were used for the models of this paper
re digitally stored in the Yoda repository of Utrecht University and
re accessible in compliance with FAIR (Findable, Accessible, In-
eroperab le, Reusab le) principles (doi:10.24416/UU01-1082KX).
he GNSS displacements used in this study are available upon re-
uest at https://www.gsi.go.jp/ENGLISH/geonet english.html , sub-
ect to the policies of the Geospatial Information Authority of Japan.
eneric Mapping Tools ( https://www. generic- mapping- tools.org/ )
ere used to prepare the map in Fig. 2 . 

U P P O RT I N G  I N F O R M AT I O N  

upplementary data are available at GJI online. 

uppl data 

lease note: Oxford University Press is not responsible for the con-
ent or functionality of any supporting materials supplied by the
uthors. Any queries (other than missing material) should be di-
ected to the corresponding author for the paper. 
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