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Introduction

Background and related research

For a shell structure, the geometric shape plays an impor-
tant role in its structural efficiency. The stress state occur-
ring in a shell depends strongly on its three-dimensional 
shape, and the ideal stress state for shells is pure compres-
sion. Therefore, to obtain a structurally efficient shell, its 
shape should depend on the flow of forces, and vice versa, 
its design requires a process of form-finding. For form-
finding of shells, physical models and many numerical 
methods have been developed by researchers, engineers, 
architects, or contractors over the past several decades.

In the pre-computer age, physical models based on the 
“form follows force” principle were widely used to design 
or construct shells. Nowadays, in most cases, physical 
models are being used in teaching activities to reveal the 
mechanical principles and in the construction process as 
moulds. As form-finding means, physical models are made 
of small pieces of flexible membranes or fabrics subject to 
certain loads and boundary conditions, and after evaluat-
ing and scaling them, efficient shapes of shells can be 
obtained. As moulds for construction, referring to pneu-
matic physical models in this article, they are made of 

flexible membranes but with real sizes, and afterward they 
would be covered with building materials. Based on their 
different manufacturing methods, these physical models 
can be divided into three groups.

Hanging models.  Based on its structural principle, the 
form of a hanging model is self-forming and capable of 
transferring its self-weight and area load solely by means 
of tension, and when it is turned upside down, a pure 
compression model arises. Heinz Isler (1926–2009)1,2 
developed a number of hanging models to determine suit-
able shapes of concrete shells, and Figure 1 shows one 
case with such a structure. In addition, Frei Otto (1925–
2015)3 used hanging chain models for designing grid 
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shells, and one example is the roof for the Multihalle in 
Mannheim shown in Figure 2.

Tension models.  These models, which are made of soap 
film or gauze, aim to find the equilibrium shape of a mini-
mal surface between preset boundaries. They represent a 
highly significant tool for exploring the shapes of tent con-
structions. However, tension models were also used for 
form-finding of shells. Frei Otto3 applied this kind of 
model in the design of the Stuttgart train station, demon-
strating the formal and structural novelty which derives 
from experiments with minimal surfaces, and Figure 3 
shows the suspension model for form-finding of the arches 
for this project. In addition, Sergio Musmeci (1926–1981)4 
designed the shell-supported slabs using physical models, 
and Figure 4 shows the Basento Viaduct in Potenza.

Pneumatic models.  For these models, the soap film or a 
piece of membrane (air tight or allowing very little air 
through) is blown in a certain shape possibly with a closed 
preset boundary, and the overpressure inside then forms an 
equilibrium shape. Pneumatic models can be adopted to 
determine the efficient shape of shells, and they can also 

be used as moulds for construction. Pneumatic models were 
also favored by Heinz Isler1,2 to design concrete shells, and 
one example with such structure is shown in Figure 5. As 
molds for construction, pneumatic models were exten-
sively used by Bini5 to design and construct reinforced 
concrete thin-shells (Figure 6), and were also applied by 
Kokawa6 to design and construct ice-shells (Figure 7).

From the above introduction, it can be observed that 
each group of physical models represents a typical type of 
static force equilibrium which obeys the “form follows 
force” principle. However, all these three groups of physi-
cal models maintain a pure tension state subject to certain 
loads and boundary conditions. When they are used as 
shapes of shells after some required measures (e.g. inver-
sion, scaling proportionally, section design) and construc-
tion, the shells will maintain a high structural efficiency.

Since the 1960s, with the development of analysis theo-
ries and computer techniques, numerical form-finding 
methods have become the most important means to gener-
ate structural forms of shells. These methods generate 
ideal shapes that are the results of stable force equilibrium. 

Figure 1.  Deitingen Service Station, Switzerland, 1968 
(https://structurae.net/structures/deitingen-service-station).

Figure 2.  Roof for Multihalle in Mannheim, Germany, 1975 
(https://www.pinterest.com/pin/457045062154696404/).

Figure 3.  Suspension model for form-finding of the arches of 
the new train station in Stuttgart, Germany, 2000 (https://www.
pinterest.com/pin/317011261243639594/).

Figure 4.  Basento Viaduct in Potenza, Italy, 1974 (https://
www.pinterest.com/pin/481111172670145006/).

https://structurae.net/structures/deitingen-service-station
https://www.pinterest.com/pin/457045062154696404/
https://www.pinterest.com/pin/317011261243639594/
https://www.pinterest.com/pin/317011261243639594/
https://www.pinterest.com/pin/481111172670145006/
https://www.pinterest.com/pin/481111172670145006/
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Among these many numerical methods, Dynamic Relaxa-
tion method7, Force Density method8,9, finite element 
based methods10, structural optimization based methods11, 
Vector Form Intrinsic Finite Element (VFIFE) method12–14, 
and Thrust Network Analysis method15 can be used to solve 
form-finding problems for cable or membrane structures 
and thus for shells. To know more about these numerical 

methods, Vizotto16 gave a more detailed summary of various 
form-finding methods and their applications, Veenendaal 
and Block17 conducted a comprehensive technical com-
parison of various form-finding methods, and an extensive 
overview of various form-finding techniques for shells is 
given in the book Shell Structures for Architecture: Form 
Finding and Optimization edited by Adriaenssens et al18.

Development of the VFIFE method

The VFIFE method is a relatively new numerical analysis 
method proposed by Ting et al.12,13 and Shih et al14. Other 
than the traditional numerical analysis methods which are 
based on continuum mechanics and variational principles, 
VFIFE is based on point value description and the vector 
mechanics theory. With the description of point values and 
path units, VFIFE describes the structural system com-
posed of particles whose motions are determined by 
Newton’s second law. During the calculation procedure, 
there is no need to integrate the structural stiffness matrix, 
and it can increase (or decrease) elements or change any 
property of the structural system. Therefore, VFIFE has a 
remarkable predominance in nonlinear problems and com-
plex behaviors of structures compared with the traditional 
numerical analysis methods.

Recently, many scholars19–23 are conducting research 
using VFIFE in the field of complicated behavior analysis 
of structures, including geometric nonlinearity, material 
nonlinearity, mechanism motion, dynamic responses, buck-
ling or wrinkles failure, and so forth. VFIFE has showed its 
great benefit in these fields. Moreover, based on VFIFE, 
Luo et al.24 and Yang et al.25 proposed a new method called 
the Finite Particle method to study the structural behavior 
analysis and form-finding of spatial structures.

VFIFE can be also used in the field of form-finding 
research. In this article, VFIFE is introduced to carry out 
form-finding of shells inspired by the three types of physi-
cal models.

Outline of this article

Taking the cable-link element as example, the basic con-
cepts and procedure of VFIFE are explained in the first 
two parts of section “The VFIFE method”. Subsequently, 
according to the above, a constant strain triangle element 
based on VFIFE is introduced, and relevant required equa-
tions are deduced.

In section “Numerical form-finding of shell structures”, 
using VFIFE, form-finding of shells which are generated 
from hanging models, tension models, and pneumatic 
models is discussed. One numerical example is presented 
in each kind of form-finding. Moreover, in order to verify 
the capability of VFIFE in finding optimal structural 
shapes for shells, structural analysis of these form-found 
shells is conducted, which present that a dominant 

Figure 5.  COOP storage and distribution center, Wangen, 
Switzerland, 19602.

Figure 6.  One Binishell in Ku-ring-gai High School (http://
www.khs82.com/dbpage.php?pg=khsphotos).

Figure 7.  An Ice Dome at Tomamu in Hokkaido, Japan, 20016.

http://www.khs82.com/dbpage.php?pg=khsphotos
http://www.khs82.com/dbpage.php?pg=khsphotos
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membrane stress state arises when the shell is subject to 
gravitational loading while out-of-plane stresses remain 
comparatively low.

Finally, some main conclusions concerning form-
finding of shells using VFIFE are shown in section 
“Conclusion”.

The VFIFE method

Basic concepts of VFIFE

VFIFE discretizes the structural system into particles, 
describes the deformation of the structural system by 
observing the motion of the particles based on Newton’s 
second law, and separates the pure deformation from the 
rigid body motions by introducing the concept of “reverse 
rigid body motion”. In this part, three basic concepts of 
VFIFE are demonstrated, including the point description, 
path unit, and reverse rigid body motion of the element.

Point description.  The point description can be regarded as 
a body composed of spatial particles linked by a set of ele-
ments. The motion and configuration of the body are deter-
mined by the particles. The elements are deformed 
following the moving particles, where internal forces arise 
from. The body configuration depends on the choice of 
interpolation functions. Therefore, the point description is 
an approximation of real structure. Shown in Figure 8, the 
motion and configuration (including the geometry and the 
spatial position) of a piece of cable can be described by 
discrete particles (a, b, c, d, and e), and each two adjacent 
particles are connected by one cable-link element.

Path unit.  To simplify the motion process of the particles, 
VFIFE disperses the continuous and complicated motion 
trajectory of particles into several simple motion pro-
cesses, each of which is called one path unit. Shown in 

Figure 9, taking particle c in Figure 8 as an example, it has 
a motion path moving from the initial state c1 to the finial 
state cn and disperses the whole time into finite time 
instants t1, t2 … tn. During this process, the motion process 
between each two time instants can be seen as a path unit 
as required. It should be noted that the motion of the parti-
cle is continuous in one path unit and obeys the governing 
equations which are based on Newton’s second law.

Reverse rigid body motion of the element.  There is a compli-
cated coupling relationship between the rigid body motion 
and the pure deformation of the element, and how to get 
the pure deformation is always the core of the calculation 
of internal forces. VFIFE estimates the rigid body motion 
which satisfies the required precision and obtains the pure 
deformation of the element by deducting the rigid body 
motion from the whole displacement with the concept of 
“reverse rigid body motion”. Shown in Figure 10, taking 
element ab in Figure 8 as an example, the pure deforma-
tion of it in time ti can be obtained in the following steps. 
First, translate and rotate the element aibi reversely to 
ai−1bi2 in time ti−1 and then obtain the value of the pure 
deformation of the element easily.

Basic procedure of VFIFE

With the above three concepts, VFIFE is different from the 
conventional finite element method which is based on con-
tinuum mechanics and variational principles. VFIFE mod-
els the structural system to be composed of finite particles, 
and Newton’s second law is applied to describe each parti-
cle’s motion. Therefore, the calculation of VFIFE evolves 
into a process of solving a set of uncoupled vector form 

Figure 8.  Discretion of the structural system.

Figure 9.  Schematic diagram of the path unit.
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equations, and the calculation procedure of this method is a 
step-by-step and particle-by-particle circular computation.

Figure 11 shows the flowchart of VFIFE. It can be 
described by the following steps:

1.	 The initial structural system is modeled with a set 
of particles, and each two adjacent particles are 
linked with one cable-link element.

2.	 The residual force of each particle, which is the 
sum of all the forces acting on a particle from the 
elements connected to it and the applied loads, is 
calculated.

3.	 The largest residual force of all the particles is 
checked whether it is smaller than the given toler-
ance which will determine the precision of the cal-
culation. If so, it can be assumed that the equilibrium 
state of the structural system is generated. 
Otherwise, continue with the steps below.

4.	 Analyze the motion of particles by the governing 
equations based on the Newton’s second law, and 
the displacement of each particle can be obtained.

5.	 Update the coordinates of each particle and return 
to step 2 initiating a new calculation looping. 
Continue the looping until the required precision is 
achieved.

In the above flowchart, each looping can be seen as one 
path unit. In each path unit, the motion of each particle is 
continuous and obeys the governing equations based on 
Newton’s second law. Moreover, two key steps are illus-
trated here, including the calculation of residual force of 
each particle and the governing equations of VFIFE.

Calculation of the residual force of each particle.  The residual 
force of each particle is the sum of all the forces acting on 
a particle from the elements connected to it and the applied 

Figure 10.  Schematic diagram of the pure deformation.

Figure 11.  Flowchart of VFIFE.
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loads. The internal force of the element obeys Hooke’s 
Law in the iteration process introducing the concept of 
reverse rigid body motion to determine the pure deforma-
tion of the element. Taking element ab in Figure 10 as an 
example, the internal force increment of the element ∆Fn in 
step n can be calculated by equation (1)

∆F
EAd

l
n

n

pure=
−1

	 (1)

where EA represents the tensile stiffness of the element, dpure 
represents the pure deformation of the element in step n, and 
ln−1 represents the length of the element in step n− 1.

After obtaining the force increment, the internal force 
of element ab in step n can be calculated by equation (2)

F F Fn n n= + −∆ 1 	 (2)

where Fn−1 is the internal force in step n − 1.
After collecting the internal forces of all the elements, 

the residual force of each particle can be calculated by the 
vectorial sum of all the forces acting on the particle. Shown 
in Figure 12, taking particle c in Figure 8 as an example, the 
residual force Fc in step n can be calculated by equation (3)

F = F + F + Pc bc cd c
	 (3)

where Fbc and Fcd represent the internal forces of elements 
bc and cd, and Pc represents the applied loading on particle c.

The governing equations of VFIFE.  The governing equations 
of VFIFE are based on a central difference expression of 
the Newton’s second law. In order to introduce the govern-
ing equations clearly, taking the motion of one particle in 
the x direction as example, the iteration equations of the 
displacement of the particle can be deduced by the follow-
ing steps.

According to Newton’s second law, there exists the fol-
lowing equation

F an n= m 	 (4)

The acceleration of the particle can be described using a 
central difference expression

a
v v

n =
−+ −n n

h
1 2 1 2/ / 	 (5)

and the velocities of the particle with a central difference 
expression

v
x x

n
n n

h
+

+=
−

1 2
1

/
	 (6)

v
x x

n
n n

h
−

−=
−

1 2
1

/
	 (7)

Plugging equations (6) and (7) into equation (5) and 
then into equation (4), the iteration equation of the dis-
placement of the particle can be described as follows

x F x xn n n n

h

m
+ −= + −1

2

12 	 (8)

However, when n= 1, x0 that appeared in equation (8) 
does not exist. While it noticed that

v x x1 2 0

1

2
= −( )

h
	 (9)

x0 can be described in another way. Finally, the iteration 
equations of VFIFE can be obtained, which is a Störmer–
Verlet integration

x F x v

x F x x

2

2

1 1 1

1

2

1

2
1

2 2

= + + =

= + −+ −










h

m
h n

h

m
nn n n n ⩾

	 (10)

When there exists damping in the structural system, and 
assuming that the damping force is proportional to the 
velocity and mass of the particle, we know

F v an n nm m− =ξ 	 (11)

where ξ is the damping-mass factor of the particle and it 
satisfies

ξ =
C

m
	 (12)

where C is the traditional structural damping factor in 
structural dynamics. However, in VFIFE, C need not to be 
the real damping factor of the structure, and Wang26 sug-
gests that ξ satisfies

⩽ξ
C

m
cr 	 (13)

Figure 12.  Residual force of particle c.
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where Ccr is the critical damping factor of the structure.
With some deduction as above, finally, the iteration 

equations of VFIFE with viscous damping can be obtained

x F x v

x F x x

2

2

1 1 1

1
1

2

1 1 2 1

2
1

22

2= + + =

= + −+ −
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

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h

m
C h n

n
C h

m
C C Cn n n n ⩾

	 (14)

C
h

C h1 2

1

1 0 5
1 0 5=

+
= −

.
, .

ξ
ξ 	 (15)

where m represents the mass of the particle, F represents 
the residual force of x direction acting on it, v represents 
the velocity of it in the x direction, x represents the coordi-
nate of it in the x direction, n represents the step, and h 
represents the step length.

It can be observed clearly that equation (14) is an 
explicit equation, which can get the unknowns from the 
known quantities. In VFIFE, if the initial coordinates and 
the initial velocities of the particles are known, it can 
describe the motion paths of the particles by stepwise deri-
vation using equation (14).

It should be noted that when considering the structural 
behavior under dead loads, for instance, form-finding 
problems, two strategies could be applied. One is taking 
the dead load as a very slowly increased living load (e.g. 
using an incremental loading method), and the other is 

adding virtual damping into the equations which aims to 
eliminate the dynamic effect. Moreover, in order to ensure 
a better convergence of VFIFE, there are some limits of 
the step length and the damping-mass factor adopted from-
Wang26, which will not be covered here.

The constant strain triangle element

When considering the form-finding of membrane struc-
tures and thus shells, a constant strain triangle element 
based on VFIFE, which is elastic and isotropic, is devel-
oped in this part. According to the framework above, the 
key point of developing a new element type based on 
VFIFE is the calculation of the internal force of the ele-
ment. For the triangular membrane element, two steps are 
introduced here to calculate its internal force, including the 
calculation of pure deformation of the element using the 
concept of reverse rigid body motion and the calculation of 
internal force increment using its pure deformation.

Calculation of pure deformation of the triangular membrane 
element.  The pure deformation of the triangular membrane 
element is calculated by introducing the concept of reverse 
rigid body motion. Shown in Figure 13, taking one trian-
gular membrane element in one path unit as an example, 
the element ABC moves from A0B0C0 to A1B1C1 but with 
an elastic deformation, where A, B, and C represent the 
names of the three particles. Figure 13 also shows the 
detailed process that translates and rotates the element 
reversely from A1B1C1 to A0B4C4.

Figure 13.  The process of reverse rigid body motion.
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The pure deformation of this element can be obtained 
by the following steps.

a.	 Taking −UA as the motion vector, reversely trans-
late the element from A1B1C1 to A0B2C2, where 
UA is the displacement vector of the particle A 
in the path unit. Through this process, the rigid 
body translation is removed from the whole dis-
placement, and as a result, A0B2C2 and A0B0C0 
coincide at point A0.

b.	 Taking −β
1
 as the motion angle, reversely rotate 

the element from A2B2C2 to A0B3C3, where β
1
 is 

the angle between the normal vectors of A1B1C1 
and A0B0C0. Through this process, the out-of-
plane rigid body rotation is removed from the 
whole displacement, and A0B3C3 and A0B0C0 are 
in the same plane.

c.	 Taking −β
2
 as the motion angle, reversely rotate 

the element from A0B3C3 to A0B4C4, where β
2
 

can be calculated by equation (16)

β
θ θ θ

2

1 2 3

3
=

+ +
	 (16)

	 In order to explain the meaning of θ
i

i( , , )= 1 2 3 ,  
shown in Figure 14, translate A0B4C4 to coin-
cide with the centroid of A0B0C0 and get A5B5C5, 
where points O0 and O5 are the centroids of 
A0B0C0 and A5B5C5, respectively, and θ

i
i( , , )= 1 2 3  

represents the angle of relevant midlines of  
the two triangles. Through this process, the  
in-plane rigid body rotation is removed from  
the whole displacement.

d.	 From the above steps, all the rigid body motions are 
removed from the whole displacement, A4B4C4 is 
compared with A0B0C0, and then the pure 

deformation of the element can be obtained easily, 
which can be described by three vectors ηη

A
, ηη

B
, and 

ηη
C

 as shown in Figure 15.

Calculation of the internal force increment of the triangular 
membrane element.  After obtaining the pure deformation 
of the element, VFIFE calculates the internal force incre-
ment by introducing the deformation coordinate system 
which transforms the space problem to a plane problem. 
Taking the element and its pure deformation of one path 
unit in Figure 15 as an example, the deformation coordi-
nate system can be set as follows

e B

B



1 =
ηη
ηη

	 (17)

e n

3 = 0
	 (18)

e e e  

2 3 1= ×× 	 (19)

where e1 ,  ̂e2 , and  ̂e3 represent the unit vectors in the x , y
, and z  directions of the deformation coordinate system, 
respectively, and the vector n0  is the normal vector of 
A0B0C0.

In such deformation coordinate system, where A0 is 
the point of origin and the  x y  plane is set at the plane of 
A0B0C0 (or A0B4C4), the displacement components and 
thus the force increment components in the z  direction 
are zero. Shown in Figure 16, the other displacement 
components of the displacement vector in this coordi-
nate system are represented as equations (20)–(22), 
respectively

u = v =A A 0 	 (20)

Figure 14.  Calculation of β2.
Figure 15.  Calculation of the pure deformation.



Li et al.	 19

u = v =B BηηB , 0 	 (21)

u = v =C Cηη ηηC C⋅ ⋅ e  e1 2, 	 (22)

where u and v represent the values in x  and y  directions, 
respectively.

After omitting the displacements components which are 
zero, the displacement vector of the element can be written as

u * [ ]= u u vB C C
T 	 (23)

So far, the problem of calculation of the internal force 
increment of the triangular membrane element is quite 
clear. The displacement vector of the element is known, 
and the question is to solve the six unknown force incre-
ment components of it. In order to solve this problem, the 
principle of virtual work is applied.

From the virtual work equation, we know (equation (24))

δ δ

 

u Fi

T

i A B C
i

V

T
dV( ) = ( )

=
∑ ∫

, ,

∆ ∆∆ εε σσ 	 (24)

where ui  and Fi  represent the displacement vector and the 
force increment vector of the particle i connected to the 
element, ∆ εε  and ∆ σσ  represent the stress increment vec-
tor and the strain increment vector of the element, and V 
represents the volume of the element.

On the contrary, we also understand the relationship of 
the stress increment and displacement increment of the 
element, which can be shown as follows (equation (25))

∆∆ ∆∆εεσσ 

= D = DB* u * 	 (25)

where D represents the elastic matrix of the element and 
isotropic material is just considered in this article, B* rep-
resents the strain–displacement relation matrix of the tri-
angular membrane element, and their concrete expressions 
are shown in equations (26) and (27), respectively

D =
E

1 2

1 0

1 0

0 0 1 2
−

−















υ

υ
υ

υ( ) /

	 (26)

where E represents the elastic modulus of this material, 
and υ represents Poisson’s ratio of it.

B* =
1

0

0 0




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 
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
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

	 (27)

where xB , yB , xC , and yC  represent the coordinates of 
point B0 and C0 in the deformation coordinate system.

After plugging equation (25) into equation (24) and 
simplifying it, the force increment vector which includes 
three force increment components of the element can be 
calculated by equation (28)

∆ ∆ ∆   F F FBx Cx Cy

T

A

d dA

















= ∫B DB*T u) *
	 (28)

where d and A represent the thickness and area of the trian-
gular element. Three of the six unknown force increment 
components have been solved so far. For solving the other 
three force increment components, establish the equilib-
rium equations of the element shown in equations (29)–
(31), which, respectively, represent that the sum of 
moments in point A0 and the sum of force component in 
the x  and y  directions are all equal to zero

MA∑ = 0 	 (29)

Fx∑ = 0 	 (30)

Fy∑ = 0 	 (31)

The other three force increment components can be cal-
culated by the following equations

∆ ∆ ∆ ∆













F F y F y F xBy
B

Bx B Cx C Cy C

x
= + −

1
( ) 	 (32)

∆ ∆ ∆  F F FAx Bx Cx= − +( ) 	 (33)

∆ ∆ ∆  F F FAy By Cy= − +( ) 	 (34)

However, it should be noted that the force increment 
components that we obtain now are described in the defor-
mation coordinate system. When they are involved in cal-
culating residual forces of the particles, all the force 
increment components should first be transformed from 

Figure 16.  Force increment components and displacement 
components in the deformation coordinate system.
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triangle A0B4C4 (which is in the deformation coordinate 
system) to triangle A1B1C1 (which is the end position of the 
path unit), and then to the global system.

In conclusion, the framework of VFIFE based on the 
cable-link element is explained first, and a constant strain 
triangle element is introduced subsequently. According to 
the above works, a common procedure in the platform of 
MATLAB is programmed in this article.

Numerical form-finding of shell 
structures

In this section, using VFIFE, form-finding of shells which 
are generated from hanging models, tension models, and 
pneumatic models is discussed. One numerical example is 
presented in each kind of form-finding. Moreover, in order 
to verify the capability of VFIFE in finding optimal struc-
tural shapes for shells, structural analysis of these form-
found shells is conducted.

Numerical form-finding of shells generated 
from hanging models

Hanging models represent a type of equilibrium state of 
flexible materials under their self-weight and certain con-
straint conditions with stress states in pure tension. When 
these equilibrium shapes are used as the geometry of rigid 
structures after inverting them, they will perform with an 
effective structural behavior under their self-weight or 
equally distributed loading.

Figure 17 shows the initial conditions of Example 1. The 
initial shape of this example is a hexagon in the XY plane 

with supports at the six corners, and the corners are beveled 
by lines AA′, BB′, CC′, DD′, EE′, and FF′. The plane area is 
64.30 m2 (hexagon with sides of 5.0 m). The initial numeri-
cal structural model is composed of particles and triangular 
membrane elements. The elastic modulus of the membrane 
material is 5.0E05 N/m2, Poisson’s ratio is 0.3, and the 
thickness of the membrane element is 0.001 m. In VFIFE, 
the mass of the structure is distributed to the particles; in 
this example, masses of the internal particles are 0.1 kg and 
those of the boundary particles are 0.05 kg.

With the above initial conditions, it uses VFIFE to carry 
out form-finding of this membrane structure under its self-
weight. In the calculation process, the step length h is set 
to 5.0E-03, the damping-mass factor ξ is set to 15.0, and 
the tolerance of the residual force is set to 0.001 N. After 
the calculation with 2211 steps, it approaches the equilib-
rium shape of the hanging membrane which meets the tol-
erance of the residual force in each particle, and Figure 18 
shows the inverted shape and its coordinate system. In 
order to demonstrate the calculation process, Figure 19 
shows the evolution curve of the biggest residual force of 
the particles by steps, in which the straight line represents 
that the load is using an incremental loading method in this 
static equilibrium problem.

Then, structural static analysis of this form-found shell 
under its self-weight is conducted using ANSYS software. 
The material of this shell is concrete, with an elastic modu-
lus of 2.10E4 MPa, Poisson’s Ratio of 0.20, and density of 
2500 kg/m3. The thickness of this shell is 0.04 m. The 
acceleration of gravity is 9.80 m/s2. The shell is simply 
supported at six corners. After analysis, Figures 20–22 
present the principal stresses (S1, S2 and S3) at the middle 
surface of the shell, and Figures 23 and 24 present vecto-
rial representations of the principal stresses. In these con-
tour plots, principal stresses S1, S2, and S3 are positive for 
the tension stress state and negative for the compression 
stress state. It can be observed that in the perpendicular 
directions of the shell principal stress, S1 is very small and 
tension stresses occur only at a very small part, while in 
the other two perpendicular principal directions in the 
plane tangent of the shell, principal stresses S2 and S3 are 
totally in compression stress states. This means the form-
found shell has a good shell behavior.

Numerical form-finding of shells generated 
from tension models

Tension models are typical “self-stressing” structural sys-
tems, with their stiffness resulting from a system of inter-
nal stresses in static equilibrium and with their stress 
conditions also being pure tension. These equilibrium 
shapes of tension models can also be used for the develop-
ment of geometries of shells.

Figure 25 shows the initial conditions of Example 2, 
most of which are the same as Example 1. However, the 

Figure 17.  Initial conditions of Example 1.
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gravity of each particle is not considered in this example. 
The membrane elements of this structural model have a 
pre-stress of 10.0 kPa. In the center of the initial shape, the 
particles in the boundary lines of the hexagon GHIJKL 
with sides of 0.75 m will be uplifted 5.0 m. Moreover, 
cable elements are applied in the boundary lines A′B, B′C, 
C′D, D′E, E′F and F′A, the elastic modulus of the cable is 
1.0E06 N/m2, the cross-sectional area of it is 0.01 m2, and 
the pre-stress of it is 50.0 kPa.

In the calculation process of VFIFE, except that the 
damping-mass factor ξ is set to 10.0, other parameters 
match with Example 1. After the calculation with 3336 
steps, it approaches the equilibrium shape of a tent struc-
ture, as shown in Figure 26. Figure 27 shows the evolution 

curve of the maximum value of residual force of the parti-
cles by steps.

Then, structural static analysis of this form-found shell 
under vertically downward load is conducted. The material 
and geometric parameters correlate with Example 1. In this 
analysis, the shell is simply supported at six corners, the 
load of 1.00 kN acts on the hexagon GHIJKL, and their 
lateral displacements are constrained; moreover, the self-
weight of this shell is not considered. After analysis, 
Figures 28–32 present the same results as Example 1. It 
can be seen that the principal stresses S1, S2 and S3 are 
totally in compression stress states, which means this 
form-found shell has a good shell behavior.

Numerical form-finding of shells generated 
from pneumatic models

Pneumatic models represent a type of equilibrium state of 
flexible materials under air pressure and certain constraint 
conditions, where stress states are in pure tension. These 
equilibrium shapes of pneumatic models can be used as the 
geometry of shells and can also be adopted as molds in the 
construction process.

Figure 33 shows the initial conditions of Example 3, 
and the overall conditions are the same as Example 1. 
However, all the boundary lines are constrained in this 
example. There is no pre-stress in the membrane elements. 
The air pressure applied to this membrane is 25.0 kPa. 
Similar to Example 2, the gravity of each particle is not 
considered in this example.

In the calculation process of VFIFE, all the parameters 
are the same as Example 2. After the iteration calculation 
(which includes 7559 steps), it finally approaches the equi-
librium shape of the pneumatic membrane structure, which 
is shown in Figure 34. Figure 35 shows the curve of evolu-
tion of the highest value of residual force of the particles by 

Figure 18.  Form-finding result of Example 1.

Figure 19.  The evolution curve of VFIFE of Example 1.
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Figure 20.  Principal stress S1 at the middle surface of the shell of Example 1 (Pa).

Figure 21.  Principal stress S2 at the middle surface of the shell of Example 1 (Pa).
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Figure 22.  Principal stress S3 at the middle surface of the shell of Example 1 (Pa).

Figure 23.  Vectorial representation of the principal stresses of the shell of Example 1.
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steps, in which the straight line represents that the air pres-
sure is applied by an incremental loading method.

Then, structural static analysis of this form-found 
shell under its self-weight is conducted. The material 

and geometric parameters are the same as Example 1. 
The shell is simply supported along the edges. After 
analysis, Figures 36–40 present similar results as 
Example 1. It can be seen that the principal stresses S1, 
S2 and S3 are totally in compression stress states, 
which means the form-found shell has a good shell 
behavior.

Characteristics of VFIFE in form-finding 
problems

From the above three form-finding examples that use ficti-
tious properties, it can be observed that VFIFE is feasible 
and accurate enough in all the three types of form-finding 
problems. And in this part, two main characteristics are 
introduced as follows:

1.	 In VEIFE, there is no need to establish the stiffness 
matrix in the calculation process, which overcomes 
problems such as stiffness matrix singularity and 
iterative convergence difficulty in the traditional 
finite element method. For form-finding problems, 
VFIFE can generate the equilibrium structural 
form from any unbalanced state with arbitrary and 
inaccurate specification of geometry, which brings 
great convenience for solving these kinds of prob-
lems with strong nonlinearity.

Figure 24.  Vectorial representation of the principal stresses of the shell of Example 1 (lateral view).

Figure 25.  Initial conditions of Example 2.
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Figure 26.  Form-finding result of Example 2.

Figure 27.  The evolution curve of VFIFE of Example 2.

some analysis problems including complex struc-
tural behavior, the complete deformation process 
might need to be observed. For instance, the infla-
tion process of the pneumatic model of Example 3 
can be obtained, and Figure 41 shows some inter-
mediate states during the whole calculation 
process.

Conclusion

This article introduces VFIFE to carry out form-finding of 
shells which are generated from physical models, and in 
order to demonstrate the capability of VFIFE in finding 
optimal structural shapes for shells, structural static analy-
ses of these form-found shells are conducted. The main 
works are the following:

1.	 Form-finding of shells generated from three 
kinds of physical models, which are hanging 
models, tension models and pneumatic models, 
is concluded in this article. Several typical pro-
jects generated from physical models and some 
numerical means for form-finding of shells are 
introduced.

2.	 Taking the cable-link element as example, the 
framework of VFIFE is explained with three basic 
concepts, including the point description, the path 
unit, and the reverse rigid body motion of the ele-
ment. According to this, a constant strain triangle 
element is introduced, and relevant required equa-
tions are deduced.

3.	 By simulating the equilibrium shapes of physi-
cal models using VFIFE, form-finding of shells 
is discussed in this article with three numerical 

2.	 According to its governing equations, VFIFE 
observes the structural behavior by describing the 
motion of the particles. Therefore, it can reflect the 
real physical motion process of the structures. For 
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Figure 28.  Principal stress S1 at the middle surface of the shell of Example 2 (Pa).

Figure 29.  Principal stress S2 at the middle surface of the shell of Example 2 (Pa).



Li et al.	 27

Figure 30.  Principal stress S3 at the middle surface of the shell of Example 2 (Pa).

Figure 31.  Vectorial representation of the principal stresses of the shell of Example 2.
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Figure 32.  Vectorial representation of the principal stresses of the shell of Example 2 (lateral view).

Figure 33.  Initial conditions of Example 3.

Figure 34.  Form-finding result of Example 3.

examples. After structural analysis of these 
form-found shells, the capability of VFIFE in 
finding optimal structural shapes for shells is 
verified.
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Figure 35.  The evolution curve of VFIFE of Example 3.

Figure 36.  Principal stress S1 at the middle surface of the shell of Example 3 (Pa).
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Figure 37.  Principal stress S2 at the middle surface of the shell of Example 3 (Pa).

Figure 38.  Principal stress S3 at the middle surface of the shell of Example 3 (Pa).
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Figure 39.  Vectorial representation of the principal stresses of the shell of Example 3.

Figure 40.  Vectorial representation of the principal stresses of the shell of Example 3 (lateral view).
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Figure 41.  Inflation process of the pneumatic model of Example 3.

In conclusion, VFIFE is a relatively new and promising 
method; it is successfully applied in form-finding prob-
lems of membrane structures and thus shells, which pro-
vides the researchers and designers with a new option to 
do relevant research.
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