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| Introduction

I.I Reason of the study

WL|Delft Hydraulics has been commissioned by the Road and Hydraulic Engineering
Division of Rijkswaterstaat (order AK 31507497 dated January 17, 2000) to derive design
formulas for conditions in granular filters consisting of a toplayer on base material

The study has been carried out within the framework of research on filter design formulas,
in which respect is referred to earlier studies (Verheij, 1998; Verheij, 1999a; Verheij,
1999b).

The project has been carried out by WL|Delft Hydraulics with technical assistance of
Geodelft. Ir. H.J.Verheij and ir. H.A.H.Petit of WL|Delft Hydraulics carried out the study
with Mr.Verheij being in charge of the project management; Dr. H. den Adel of GeoDelft
provided technical contributions. Dr. G.J.C.M. Hoffmans was the representative of the
Road and Hydraulic Engineering Division of Rijkswaterstaat and provided very useful
information in order to derive a practical model relation for designing geometrically open
filters (Hoffmans, 1996b).

1.2 Obijective and approach

Up to now the prediction potential of new design formulas was checked with experimental
data. However, the prediction potential was poor, except for those formulas which include
the presence of an assumed base term for the shear stress. The base term was introduced in
the foregoing studies in analogy with a base term in the formula representing the flow
conditions in the filter.

Since measurements point out that a base term is necessary to arrive at an agreement
between theory and measurements, the theory without such a base term is not correct.
Therefore, it was decided to derive formulas for the flow and the shear stress in which such
a base term is incorporated using mathematical methods. Such formulas will be derived for
granular filters consisting of a toplayer on base material for laminar as well as turbulent
flow conditions in the filter.

Summarizing, the objectives of the study are:

1. To derive shear stress equations for the flow conditions in the filter for laminar as well
as turbulent conditions,

2. To develop filter design formulas comparable with the Bakker/Konter-formula,

3. To calibrate the new formulas with available data of small-scale experiments.

The afore-mentioned objectives will be treated in the next chapters. In the last chapter
conclusions will be presented.

wi | delft hydraulics




Design formulas for granular filters Q2629 August, 2000

2 Derivation of shear stress formulas

2.1 General

The situation of a horizontal one-layer filter will be considered: a filterlayer with a
thickness d above base material. Above the filter structure water is flowing. At the interface
flow-filterlayer the flow velocity is u.

Figure 2.1 shows the situation and the various parameters.

h+d

To

|

filter ¥
base

,
EN_vyy
F)
v \

Note: The shear stress in the filter increases more gradually than in the base material. In the
filter the length scale equals with Dy, in the base material with Dy,s. Subsequently, this
influences the flow velocity at the interface at z = 0.

2.2 Derivation shear stress equations

The basis of the shear stress derivation are three equations, viz.:

e the Navier-Stokes equation for uniform flow in a filter,

e the Forchheimer equation relating the flow velocity in a poreus medium and the
hydraulic gradient, and

e asimple hypothesis relating flow velocity and shear stress.

The Navier-Stokes equation for uniform flow in filters reads:
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or

—+F+pgi=0 2.1

> P8 (2.1)
With the Forchheimer equation F' = — pg(au + buz) (2.2)
follows:

%--,ogau-pghu2 +pgi=0 (2.3)

The shear stress is assumed to be related to the flow velocity by:

ou
T= Jug (2.4)

where p is the product of density and viscosity.

Substituting results into:

y%—-pgau — pghu® + pgi =0 (2.5)

Eq.(2.6) is the starting point for the following derivations.

Tt -4y =0 26)
with: o = P& ,ﬁzﬁandyzﬁ
H H H

2.3 Laminar flow conditions
Assuming laminar conditions, e.g. 3 =0 and p = pu,, (with v,, = kinematic viscosity) in

(2.6), the resulting differential equation reads:

gj—?—cxu+y=0 2.7)

. a i
with: 0!=—g—-and}/=£-
v v

This equation can be solved resulting into:

u(z)=Ce™™ +Ce™ +y/a (2.8)

At the boundaries of the filter layer we have the boundary conditions (assumptions):
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atz=0: U= Uy 2.9
atz=d: u=1u, (2.10)

From these boundary conditions we find for the integration constants in the general solution
the following values:

(i ),
G- @
2o
a a
G = Ve _ g (2.12)

Finally, the stresses in the filter can be described with:

rrre Ny, e (2.13)
This equation equals a formula presented by Hoffmans in a fax (Hoffmans, 1999).
At the interface filter-base material the shear stress reads as (by assuming A =\ar) :

7(0) = 7y, + 7™ (2.14)

Details about the derivation are presented in Appendix A.

2.4 Turbulent flow conditions

Assuming turbulent conditions, e.g. a= 0 in eq.(2.2) and:

r:a,pu% (2.15)

the resulting differential equation reads:

2 r
uaz—f+(é‘-) _8b ., 8 (2.16)
174 174 a, a,

By substitution % = +/v into (2.16) the differential equation reduces to:

v _2gbv+2g1

=0. 217
& a a, | B0
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This equation has the general solution:

v=Ce " +Ce* +6 (2.18)
with £= |28 and 5=
a, b

The general solution of equation (2.18) can now be given as u = Jv:

u(z) = /Ce™ +Ce™ +6 (2.19)
For C; and C, similar equations may be presented as eq.(2.11) and (2.12):

5

(u;, - 5)e¢d - (u2 - 5)

C= T (2.20)

and
(usz - 5) - (u!ff = é')&""“’f
. = =7 (2.21)
e*” —e

Finally, at the interface filter-base material the shear stress reads as:

et 41, e (2.22)

T(O) = Thase + Toe—éd (2.23)
Reference is made to Appendix A for details on the derivation.
2.5 Value of damping parameters A and &
The coefficients a and b in the Forchheimer equation are defined as:

2
c,u l-n
a= m";(—z) with ¢, =160 (2.24)
n gDy s
@, .
b=——"— with ¢,=22
n nglS
This results for the term Ad in case of laminar flow into:
2
] =
2d = da =4 [%l=7) (2.25)

3
DJrls n

With ¢g= 160 and n =0.4:
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j 2d =30-2 (226)
D 15
For turbulent flow conditions, where we defined:
2b
£= ="
Q,
the result is (see also Verheij, 1998):
2
B = 2R L 2.27)
a, n D,

‘ Den Adel (1995) relates p in eq.(2.4) to u according: = & ;D ;pu (in analogy with
| Shimizu et al, 1990).

Comparing this with the applied relation eq.(2.15)): u=«a,pu

| it may be concluded that: &, = D,

\

Substituting oDy in eq.(2.27) instead of oy results in:

§d=i 26

(2.28)
| DfI s\a fnz

Den Adel also estimated a value of 0.9 for 0. Substituting this value into the equation for
Ad together with ¢; = 2.2 and n = 0.4 gives:

| £d=55-2
15

(2.29)
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3 Derivation of filter design formulas

Applying the shear stress equations derived in Chapter 2, filter design formulas for laminar
and turbulent flow conditions in a granular filter may be derived. At first, a design formula
with average load and strength conditions will be discussed. Secondly, formulas are derived
on the basis of the Hoffmans/Grass approach which takes into account statistical
distributions of load and strength.

The details are presented in Appendix B, while in Figures 3.1 and 3.2 additional
information is presented.

z

\_/"' flow velocity T

Mean load
g . . . . . . """""" Characteristic load

Figure 3.1 Distribution of the mean and characteristic load

A
probability A
density bty
function

!
I
!
load l,
uniform flow |
G

el
load ; ; \\
non-uniform / : !
flow // ; \
// : N
T = = = >
° 9 —» shearstress t
« o . 1.0 (load) y.o (strength)

Tok = Tek

A
v

Figure 3.2 Probability functions of the loading and strength parameters
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3.1 Average load and strength conditions

Laminar flow conditions
Equilibrium of load and strength at the interface between filter and base material reads as:

r!aad = r.rrrengrh (3 ’ l)
With the shear stress (see eq.(2.14)):

Troad = Thase + o€ (3.2)
and the strength of the base material

Tstrengh = Teg =W c,G,bAbpngSO (3.3)
and assuming 7,,, = 77, (3.4)
this results in:

Dfls _ DfIS 1 YeosDs

= (3.5)
Dy, Dpsyn+e . YearBy
For large values of Ad this changes into:
Dys _ Dyis 1 WegsBs (3.6)

Dy Dysy MW, .6 A,

The value of n will be determined in Chapter 5.

turbulent flow conditions
The resulting equation is the same as for laminar conditions, because the structure of the
formula for the shear stress is identical (not the values of Ad and £d):

DfIS _ DfIS 1 Veasls G.7)

Dy, DfSO n+e Voo Dy
which for large values of £d this changes into:

Df]S _ ths l Wc,c;,bAb
D5, Dfso n Wc,G,fAf

(3.6)
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3.2 Characteristic load and strength conditions

Laminar flow conditions
Similar to the preceeding derivation, however applying Grass’ concept, so replacing 7% by %

+ ¥: 0p (see Figﬁre 3.1) and substituting 7.4 for 7(0) eq.(2.14) can be written as:

T load =(To+J’rGo)(U+e'M) (3.8)

Note 1: Ty, = (7 +7,0,)

Note 2: The value of oy is not equal to 0, because spatial fluctuations in the load are still
present, but the value will be less than the value for turbulent flow because of the lack of
turbulence.

The strength of the base material may be written as:

Torength = Vo, ~V60cp = Ve ~V@epTec = Teo (1 = ba’c,b) =y c,G,bAbpngSO(l =¥ bac,b)

(3.9)
Substituting (3.8) and (3.9) into (3.1) and re-arranging results into:

Dtjt] _ 1 I_ybac,b WC,G,bAb (3 10)

Dy, n+ e ™ 1- Yl Veoa

This equation is a general formula with the implicit assumptions of Gaussian distributions
of load and strength, and a relationship based on uniform flow.

Assuming o, = &, and 3 = y and multiplying both sides with Dy;s/Dyso results in:

Dys _ Dys 1 Wegshs

; 3.11)
Dy, Dy mte . Ve
which changes for a one layer system into:
DflS _ D, 1 V650 (.12)

D,s, DfSO 77+3_M Vecrls

For large values of Ad the same equation results as for laminar flow conditions and average

load conditions:

Dy, _ Dy 1 yegs, (3.6)

Db‘SU Dy 1 W:,G,fAf
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Note that this expression does not depend on neither ¢ nor y and so this relation is
independent of the gradation of either toplayer or base material as long as these gradations
and the damage levels y are the same or nearly the same.

turbulent flow conditions
In analogy with the result for laminar conditions also for turbulent conditions the same

equation results (except &d in stead of Ad):

Dps _Dps 1 Weashs (3.13)
Dy, DfSO 77+e—¢d Wc,G,fAf

For large values of £d results:
Dy s _ Ds 1 WeapBs (3.6)
Dyso  Dyso MV /Af

These results are quite remarkable:

1. There is no influence in the ratio Dgs/Dyso for either type of flow

2. The assumption: simultaneous instability of both filter and base material leads to a ratio
Dgs/Dyso which depends on the fluctuations in strength only.

3. Although characteristic values for both load and strength are introduced, the resulting
ratio Dgs/Dpso is under certain conditions independent of the fluctuations in load and
strength. The reason is that instability of base and filter material has been assumed at the
same moment as well as equal values of the erosion level y and the ratios of & between

standard deviation and mean value.
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4 Discussion of results

The following aspects will be discussed in this chapter:
e applicability of the results

e comparison with other filter formulas

e value of u, (z=4d)

e value of u(z=0)

¢ influence gradation

applicability of the results

The parameters 8d and Ad can be expressed into the material parameters of the filter. The
values are equal to respectively about 5.5 and 30.d/Dys (see Section 2.5), which means that
for conditions in the filter in between laminar flow and turbulent flow, the value of the
exponent is somewhere in the range of (5.5 to 30)*d/Dys

The foregoing means that even for a filter that consists of only one layer of grains, the
influence of the open water flow is absolutely negligible. The derived formulas predict an
influence of the shear stress on a scale of Dgs/30 or Dgs/5.5. Such a length scale is much
smaller than the filter grains and so the continuum assumptions as in Forchheimers equation
are no longer valid.

As a conclusion, the theory predicts that the shear stress has little penetration depth. The
consequence is that the derived equations are valid for thin as well as thick filters.
Therefore, the flow in a granular bed protection is uniform. It may be considered as being
driven by a constant pressure gradient.

Nevertheless, mathematically the obtained solution is correct, but not fysically with respect
to the shear stresses near the interfaces. However, the shear stresses are only a tool to derive
a filter design formula to predict a stable filter.

The resulting formula, for, instance (3.6):

Dps  Dps 1 yoguA, (3.6)

Dy, Dfso nv.cA

can be written as (assuming W, gp = We s and A, = Ag):

Dps _1Dps @.1)
Dy, 1 Dysy

or
D 1 (4.2)
Dy, 1

The ressemblance with traditional design formulas with constant ratios for Dys¢/Dyso, for
instance:

wi | delft hydraulics 4-1
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D
—IN <5410 (4.3)
b50

is large. Comparing (4.1) and (4.2) results in n = 0.10 to 0.20.

In Chapter 5 the value of 1 will be calibrated resulting in 1 = 0.01, which is much smaller
than a value of 5 to 10. However, the reason for this difference is that eq.(4.3) holds for
geometrical sandtight filters which are overdimensioned with respect to the hydraulic load
at the interface, while eq.(4.2) is derived applying instanteneous instability of filter and
base material and implicitly takes into account the lower hydraulic load at the interface
filter/base material.

Summarizing: the final result is according to what may be expected, although the way to
derive this result is not quite correct.

The obtained results for a one layer system consisting of a filter layer on base material (see
Figure 2.1) may be applied also to a filter structure consisting of two filter layers. For
laminar flow conditions the set of equations can be solved mathematically, however, an
analytical solution for turbulent flow conditions is not possible (of course, numerically a
solution can be obtained).

Finally, it should be noted that the parameters C, and C; influence the behaviour of the flow
near the interface filter-base material, while the parameters C, and C, influence the
behaviour of the flow near the interface flow-filter.

Comparison with other filter design formulas

Earlier the so-called Bakker/Konter-formula, B/K-formula for short, has been derived
(Bakker et al, 1994):

Df15 _ 22 yA, R

= (4.4)
D5, ezco wA, Dis
with
Go=f [i,iJ @.5)
DISO DtSD

The B/K-formula depends on the water depth h (or R), and subsequently, is also related to
the large eddies in the flow. In the present study it is assumed:

B =75 (4.6)

which, in principle, assumes also a dependency with the large eddies in the flow with a
length scale equal to the water depth h or the hydraulic radius R.

Eq.(4.4) can also be written as (assuming again y, = ¢ and A, = Ay):

Dfls _ 2 R _ 22 R Df]s

== == (4.7)
Dy, €C, Dy, e G Dﬂs DfSO

Furthermore, a formula of Stephenson (1979) exists:
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D
Dr_g ¥y R o R (4.8)
» v, Dy Dy
which can be written as:
Dps _g R Dps (4.9)

Dy, D 150 DfSO

The structure of the resulting equations (4.7) and (4.9) is similar as eq.(4.1), although in
(4.7) and (4.9) the ratio depends on R/Dys.

Comparing the eq.(4.7) and (4.9) with eq.(4.1) the results for 1 is:

ezco Dfls _ eZC() Dfls DfSO

Bakker/Konter: 1=
22 R 22 D,, R

(4.10)

D
Stephenson: n= %—fﬂ (4.11)

Also Hoffmans (1996a; see also Van Os, 1998) presented implicitly a relation for n:

Thase = To Bl (4.12)
¢, h
or:
ﬁDfSO ﬂDfSO
Y tou W (4.13
T c h ¢ R )

t t

Summarizing, we have various formulas for the parameter 7. In Chapter 5 figures will be

presented and a conclusion will be drawn with respect to the value of 1.

value of u,
The shear stress at the interface flow/filter layer depends on the flow velocity ug:

z‘o-—-puw-\/E(u,—uf) (4.14)

Ty
or w0, =—Lom by,
po Na

In the flow the relationship holds:

(4.15)

Ty = Pk (4.16)

Substituting this result into the equation for u,:
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2

pu
u=—% vy 4.17)
po a7 (

With ue = i/a; and us® = ghi and substituting a value for Vo (see eq(2.24)) it is also possible
to change the equation for u; into:

uszu,?( : +L} (4.18)
gu,a gha

This means that the flow velocity at the interface flow-filter layer is larger than u-. This is
according our expectations, because at a permeable bed the flow velocity is higher than at
an impermeable bed.

The above equations are only valid for laminar flow conditions, however, the same holds
for turbulent flow.

Hauer (1996) presents a relationship between u; and u« based on Japanese test results and
theoretical considerations:

u;=(L.5t0 5) u. (4.19)
The first value has been derived by Hoffmans (1996b) for Japanese tests with glass beads.

Conclusion: The presence of the term pgi is essential, because it is responsible for the
average flow, not only in the water above the filter but also inside the filter. It creates an
extra driving force which is independent of the depth.

Nevertheless, the value of u, is an average value based on continuum principles. In reality,
the interface flow/filter layer consists of grains and open areas in between. Locally, in the
open areas the flow velocity will be higher than u,. As a result the value of u(0) will be
locally much higher than the predicted value as derived from continuum equations.

value of u(0)

At the interface filter-base material the flow velocity is assumed to be equal to:
u(z=0)=u, (4.20)
Different formulas may be assumed for uy, for instance:

u(z=0)=%(uf+ub) (4.21)

However, this assumption is not quite true. In stead of this assumption the following
assumption will be used:

u(z=0)=u, +Au (4.22)

with Au = part of the difference between ugand .
Assuming the flow reduces over a distance equal to (%Dgp + %Dyso) the following value for

Au can be derived:
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D
Au=(u, —u,)——2— (4.23)
Dygy + Dy
Subsequently resulting in:
D,
u(z =0)=u, +u, — 1, ) —2— (4.24)
( ) DbSO + DfSO

The value of (- us) depends on the permeability ratio of filter and base material, and thus
on the particle diameters. Smaller particles result in lesser permeability and thus a smaller
flow velocity. The term (u,- ;) can be described by:

D2
U~y = uf[l -3 (4.25)
Dﬂs
Furthermore, the value of u, may also be expressed as a function of u and material
diameters:
D;ES
Uy =ty — (4.26)
Dfis

Substituting (4.25) and (4.26) into (4.24) finally results into an equation which maybe used
instead of the assumption that the flow velocity at the interface is equal to u,.

2 2
uz=0)=u 2 4y 1 Dits | Dis (427)
D Df15 Dys, + Dst

After some rearranging, and assuming Dy;s/Dygs = Dyso/Dgso, the following equation results:

u(z =0)=[uu, (4.28)

Eq.(4.28) may also be derived analytically. However, the derivation is not presented here,
because it is considered to be out of the scope of this study.

influence of gradation

Eq.(3.10):
D,s _ 1 1=y, Veosls (3.10)
Dy, 7?"'@‘“ l-y.a., ¥.cA, .

is a tool to predict the maximally allowed ratio D¢/Dy, as a function of the gradation of filter

| and base material. This can be explained as follows:

o If the base material is broadly graded the value of o, is larger than o, 5. As a result the
required D¢Dy, is lower than for base and filter materials which are comparable in
gradation.

o If only the filter material is broadly graded, the value of o ¢is larger than o, so the
maximum value of D¢Dy is higher than for similar graded materials.
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These predictions are in agreement with what we expect. A broadly graded base material
has more fines than a more uniform base material. The filter must prevent erosion of the
fines as well, by reducing the water velocity. This can only be achieved by more fines in the
filter, so on average smaller particles: Dy/Dy, is lower than for uniform materials. A broadly
graded filter material has a lot of fines, which reduce the water velocity in the filter and so
the load on the base material. As a result the broadly graded filter material is allowed to
have an average grain size which is larger than for a uniform material.
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5 Calibration

The value of 1 will be calibrated with experimental results mentioned in Van Huijstee et al
(1991) as far as they concern simultaneous instability of filter and base material. In Table
5.1 the experimental results are mentioned.

Measured Dfi5/Dyso W Wy !
DflS/DbSD
132 0.667 0.047 0.035 0.0068
132 0.667 0.047 0.035 0.0068
99 0.75 0.047 0.035 0.0102
53 0.75 0.028 0.035 0.0235
53 0.75 0.028 0.035 0.0235
99 0.75 0.047 0.035 0.0102
40 0.602 0.022 0.035 0.0095
150 0.618 0.043 0.035 0.0051
214 0.789 0.043 0.035 0.0045
Table 5.1

In Table 5.1 also the value of 1 is presented which is calculated with:

_ Dfls / DfSO Wecsls

Df15 | Dysy W c,G,rAt

(5.1
This equation is derived from eq.(3.6).
From Table 5.1 can be calculated that the average value for ) is:

n=0.011
however, the range is large (1 between 0.005 and 0.024).
Applying (5.1) implies that the exponential term e™ or ¢* is ignored. This is possible
beacuse the values are very small compared to the value of 1 which can be shown as
follows.
Suppose d/Dgs = 3 (d/Dygsp = 2 and Dyse/Dps = 1.5) then £d = 16.5 and Ad = 90 and,
subsequently:

eM=68.10%and e =8.2. 10

Both values are much smaller than the calibrated value of = 0.011. Thus, neglecting the
exponentional term is allowed.

The value of m is defined with:

Thase = TI' Ty (52)

wL | delft hydraulics 5-1
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The base term represents the quasi-steady groundwater flow driven by the flow above the
toplayer. Instantaneous fluctuations are no longer present. With eq.(A.9) and (A.11) the
ratio Tpase/To can be derived:

u.u
S NS (53)

T, U

Assuming u; = 0(10™), ur=0(10") and u, = 0(10) a ratio can be determined of:

Towe 50,03
Ty
Similarly, this can be done for turbulent flow conditions with the eq.(A.29) and (A.31),
resulting in:
T u
—base _....f_z ~ 0.02 (5.4)
7, 05y

Summarizing, the order of magnitude is what we expect.

We may compare the result for n also with the values which can be calculated with the
other design formulas presented in Chapter 4.

Firstly, the Bakker/Konter-formula: substituting Co = 15 (Bakker et al, 1995), e = 0.24 and
assuming D s/Dyso = 0.67 and Dyso/R = 10 to 30, the result is:

D5,
n= 0.267 = 0.009 0 0.026
The result for the Stephenson formula reads:
D5,
n= O.IZST =0.004 t0 0.013

Finally, the Hoffmans formula with = 0.02 (bases on Shimizu’s tests) and ¢, = 0.08 (based
on Forchheimer) reads (Hoffmans, 1996b):

D
n=025 }fa . =0.008 10 0.025

With respect to the Bakker/Konter-formula the result was expected, because the underlying
data set is the same. However, with respect to the Stephenson formula and Hoffmans
formulas the datasets are different. Hoffmans, for instance, uses the dataset of Shimizu.

In addition to the Hoffmans formula is should be noted that experiments carried out by
Verheij (1997) with values for Dysp and R of 15.2 mm and 0.35 m respectively, results into

n=0.011.

Conclusion: An average value of n) equal to about 1 = 0.01 seems to be correct. However, it
is recommended to validate the value of n with other experimental results.
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6 Conclusions

The desk study allows the following conclusions:

¢ Formulas for the shear stress at the interface filter-base material including a base term
can be derived:

average load condition: 7(0) = 7,,, + 7,6 or 7(0)=7,,, + 7,
W'lth Tbase = ”TO
characteristic load condition:

T(O) = Thase T (TO '*‘J’rﬂ-o)e—’Mr or T(O) = Thase T (To +Y:0 )e_ﬁd

with7,,, = 77(70 +yt0'0)

The formulas are valid for laminar and turbulent flow conditions for thin and thick filters.
The values of £ and A are different.

e For average load and strength conditions the filter design formula reads:

Df!s _ Df]S l V.osB
Dy, DfSO U NY,

The parameter 1 is a damping parameter and related to the shear stress at the interface of
flow and filter layer.

For characteristic load and strength conditions the formula is:

Dfrs Df:s 1 -y, V.60

D,, Dy n+ 1-¥i0.s VeasAs

These relations are independent on the type of flow; they hold for both laminar and
turbulent flow.

e The value of 1 has been calibrated with experimental results which resulted into an
average value of:

n=0.01

This value is within the expected order of magnitude and ressembles very well with results
of other formulas based on other datasets.
However, it is recommended to validate the value of 1.
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e The obtained results are quite remarkable:

1. There is no influence in the ratio Dg5/Dyso for either type of flow

2. The assumption: simultaneous instability of both filter and base material leads to
a ratio Dg s/Dyso which depends on the fluctuations in strength only.

3. Although characteristic values for both load and strength are introduced, the
resulting ratio Dy 5/Dysp is under certain conditions independent of the
fluctuations in load and strength. The reason is that instability of base and filter
material has been assumed at the same moment as well as equal values of the
erosion level ¥ and the ratios of & between standard deviation and mean value.
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A Derivation of shear stress formulas
| Laminar flow conditions

In the absence of turbulence the stationary flow equation in the filter is given by:
&
pv—?~pgau+pgi=0 (A.1)
oz
which can be simplified to

Y au+y=0 (A2)

2
z

where @ = ga/v and y = gi/v.
This differential equation has a general solution:

u(z) = C,e"‘f‘; + Cze’*G +y/a (A.3)
At the boundaries of the filter layer we have the boundary conditions (assumptions):

at z=1): U= Uy (A4)
atz=d: uU=1u, (A.5)

We can thus write the boundary conditions as:

C+C+yla= Uy (A.6)
and
Ce V" + Ce™* +yla=u, (A7)

From these boundary conditions we find for the integration constants in the general solution
| the following values:

g =L (27 1) [ubf—”)edﬁ—[us—l)

_ o _ a a
| C = e _ g-dla = Ve _ gdla A8)
U —u e"”’rc_‘ - Z(1 - e"”ﬁ) (us = 1) — (ubf = z)ed‘r‘;
C = a I S g (A9)
2 Ve _ gV e _ pdda

for the stresses at the bottom of the layer we therefore find:
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rbme T(Z = O) — @ -
pv pv g
2u, — u,,f(ed‘g + e'd‘/‘;) - (2 gl o e‘d‘m)
a
Ja(C,-C)=a o
(A.10)
For large values of d Ja this can be approximated by:
fﬂfizﬁ(—ubf +1J (A.11)
pv a
In the case of laminar flow 7 5 U
a
z- ase
"—z\/E(uf—ubf) (A.12)

pv
At the top of the layer we find:

T, _tz=d)_Ju

pv pVv oz

z=d

5

U (e“f‘/E + e*‘i“g) = 2uy, + %

(2 o e‘dﬁ)

Va(Ce® - Ce ¥ = Va

For large values of d-+a this can be approximated by:

o al ~L s da(u, -,

eiVa _ gmdva

(A.13)

(A.14)

pv a
Using (A.10) and (A.13) we can determine C, and C, in terms of the stresses at the bottom
and the top of the layer:
dJa —dJa
Cl T pase € —Tq and C, = 7 pase € — 7y

B pv«/&(e"”a —e'”E) ’

For large values of d+/a we find the approximating values:

Ty —da

—€
pva

—F
G = base.  and C, =~

pvia
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St Ja(Ce'* —Ce ™), (A.17)
pv Iz

the total (approximating) solution for the stresses can now be given as:

T~ roe(”d)‘f'; + Ty e (A.18)

2 Turbulent flow conditions

approximated using
H=a,pu (A.19)

The (only significant) stress component can now be written as:

1'=¢:r,pué-li (A.20)
dz

\

|

In the case of turbulent flow we use the assumption that the turbulence viscousity can be
The flow equation now becomes:

2 .
ué‘z—?+(@) —ﬁu—g—bu2+£=0 (A.21)
074 a, a,

174

We assume the turbulent contribution in the Forchheimer terms to be dominant and
therefore ignore the linear term (by setting a =0 in (A.21)).

2 g
uaz—f+(é) B0 p . Bl _g (A22)
124 174 a, a,

By substitution u = Jv into (A.22) the differential equation reduces to:

Fv _2gb  2gi

= (). A23
& a, a, a3

This equation has the general solution:

| v=Ce ¥ +Ce** +6 (A.24)
where we defined: &£ = ib ds= !
a,

The general solution of equation (A.22) can now be given as u = v,

Again as in the laminar case we have the following boundary conditions for the velocity:
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at z= 0: U=ty - (A25)
atz=d: U= (A.26)

We implicitly assumed # > 0 and can thus write these boundary conditions as:

Uy =C;+Cy+6 (A.27)
and
w=Ce ' +Ce*+5 (A.28)

From these we can find:

2 —ul - 8(ef 1) (4, —6)e* —(ul -6
G =-2 e‘f‘*—e“f(d )=(”f ef)‘f-e'é!‘f ) (A29)

and

W —uie = s(1-e*) (££-8)-(up —S)e*
¢, = bfegd _e»§(d ) = ( e).fd (_Zr-gd ) (A.30)

For the stress at the bottom of the layer we now find:

T alpugz=0 = %afpgpo =1a,p4C,-C,)=
L 20 — uy (e +ee:i ); :z(z —ef—e¥) o
For large values of £d (say >10) this can be approximated by:
T buse z—a,p§(5+‘5uff)= —p2gba, (Ei+'7uff) (A.32)
For the stress at the top of the layer:
1 £, = a,pu%z_d =%a,p%z=d =%a,p§(C3e“f"-C4e‘f“’)=
\
%a‘,pfuj(egd +e'gd);iu%e-|:i(2—e'ﬁd —eﬁfd) D

For large values of £d this can be approximated by:

to~tapdul —5)=%p1/2gba,(uf —i—) (A.34)
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Without approximations we can find from (A.31) and (A.33):

cd -&d
2 Ty—Tue 2 Ty =Ty

G = and C, =
Papl el -et? YoapE Eh-et

For large values of £d we can use the approximations:

. 2 .
C3z-——?—— and C,n——1,e%

7 base
a,pé a,pé
For the stress inside the layer we can than use:

a1t g, e
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B Derivation of filter design relations

I Average load and strength

At the interface filter/base material equilibrium is assumed of load and strenght:

% joad = Ts!reng!h (Bl)
The shear stress equation reads:

T ot = Fras ¥ z'oe"u (B.2)
The strength of the base material may be written as:

Tsrrengrh = Tc,G = Wc,G,bAbpngSO (B3)
Assuming 7., = 17, (B.4)
Substituting (B.2), (B.3) and (B.4) into (B.1) results in:

To(ﬂ' + e_M) =V 6.:P80Dyso (B.5)
and after re-arranging:

1. W ecsP8A S — (B.6)

— Ve, b — :

D5 ’ r0( nte M)

Multiplying both sides with D;s; and assuming instantenous instability of filterlayer and

base material:

DfSO 1
—= =D VecsPBAv—FT— (B.7)
Diss ' ro(r]+ e )
Substituting for D;s:
v
D, = —0 (B.8)
Wc\G,:pgAt

at the rigth hand side of (B.8) and performing some re-arranging, finally results in an
explicit general relationship:
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DtSO — 1 WC,G.bAb (Bg)
D, n+e™ Voo

For large values of Ad this results into:

Dy _1 YeosBs (B.10)
Dy 7 WC,G,IAI

Formula (B.10) can easily be changed by multiplying both sides with D5 /Dy5o in:

D _ Dys 1 VepBs (B.11)
Dy, Dy Wc,G,IAr

For a one layer system (toplayer directly on base material) the subscript # may be replaced
by f resulting finally in the new formula:

D _ Dy 1 VeGsBs (B.12)
Dysy, Dy 1V, 6.A

2 Characteristic load and strength
The load is given by:
Tas = To( 71+ €7) (B.13)

which can be written by applying Grass’ concept, so replacing 7, by % + ¥, 0y and
substituting 7,,, for 7(0) as:

Tioaa = (To + 7,00 1+ ™) (B.14)

The strength of the base material may be written as:

Tomength = e V1P ep = Toig —V6Qep¥es = toi (1 - J’bac,b) = Wc,c,bAngDbso(l i J’bac,b)

(B.15)
Substituting (B.14) and (B.15) into (B.1) results in:

(To * 7:‘70)(’? + e—M) = 'f’c,G,ngAbDbso(l = ?’bac,b) (B.16)

and after re-arranging:
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1 1
=y, A -y, (B.17)
Dys, d b( ’ 'b)(fo +7:°’0)(77+3_M)
Multiplying both sides with D;s:
Dy, 1
P _p oy oeh(1-7,a, (B.18)
D,., s0 ¥ eGuP8 b( Vs ,5)(1_0 +7,0'o)(77+e_u)
Substituting for D,s:
Dy = T (B.19)

Wc,G,:pgAr(l . ac,;}’z)

at the rigth hand side of (B.19) and performing some re-arranging, finally results in an
explicit general relationship:

Dg _ 1 1-742; YeosBs (B.20)
Dy, n+ &¥ 1=~ Vi, 'f/c,G,:Ar

This equation is a general formula with the implicit assumptions of Gaussian distributions
of load and strength, and a relationship based on uniform flow.

Assuming &, = ¢, and y, = ¥ results in:

DfSO ]' Wc,G,bAb (B2 l)

D,s, 77“*'9—“ SRy

Note that this expression does not depend on ¢, and so this relation is independent of the

gradation of either toplayer or base material as long as these gradations are the same or
nearly the same.

Formula (B.21) can easily be changed by multiplying both sides with D;;5s /D;sy into:

Dys _Dys 1 VYeosBs

- (B.22)
D, Dy nte . Ve D

For a one layer system (toplayer directly on base material) the subscript # may be replaced
by f resulting finally in the new formula:

D, _ Dys 1 w.sd (B.23)

Dy, Dfso 77+9_M T PPIAY
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