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ABSTRACT

Vibration isolation is essential for spacecraft payloads, where both launch loads and on-orbit
micro-vibrations can degrade performance. Passive isolators are favoured for their simplicity and
reliability but face trade-offs between low-frequency performance, stiffness, and compactness.
This thesis introduces a topology optimisation framework for designing passive viscoelastic vi-
bration isolators that distributes aluminium and nearly incompressible rubber within the design
domain, moving beyond conventional constrained-layer damping layouts used in literature.

The framework combines a modal design approach with a bi-material finite element formulation
using selective reduced integration to handle incompressibility. Modal objectives are defined
through rigid-body dominated eigenfrequencies of the combined isolator—payload system, with
damping enforced via Q-factor constraints.

Each optimised layout consists of a main load-carrying structure that provides stiffness and
smaller damping substructures that create localised regions of energy dissipation. They adapt
their shape and location to the inertial properties of the setup and targeted vibration mode, strate-
gically placing viscoelastic material where it contributes most to damping without compromising
stiffness. In doing so, the framework enables novel damping mechanisms and tunable multi-
directional performance, offering an insight for future passive isolation design in vibration-sensitive
applications.
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1 Introduction

1.1 Problem statement

Vibration isolation is essential in modern spacecraft, directly influencing the performance and
lifetime of sensitive payloads. Isolation systems protect instruments both during launch and in
orbit. During launch, vibrations originate from multiple sources, including rocket motor ignition
and shutdown, stage separation shocks, acoustic excitation during lift-off, and shock waves from
pyrotechnic device cut-off (Shi et al., 2024). A key structural element in mitigating these loads
is the Payload Attachment Fitting, which connects the satellite to the launch vehicle, providing
mechanical support while attenuating harmful vibrations.

In orbit, micro-vibration isolation has become increasingly important due to rising requirements
for payload stability and pointing precision, with some instruments demanding accuracies as high
as 0.03 arcseconds (Shi et al., 2024). Micro-vibrations are low-level mechanical disturbances in
a microgravity environment, typically spanning frequencies from below 1 Hz to 1 kHz (Zhang et
al., 2011). The dominant range for spacecraft is 0.1-300 Hz, where disturbances above 30 Hz are
classified as high frequency and those below as low frequency (Aglietti et al., 2004). In the near-
vacuum of Earth’s orbit, the absence of environmental damping allows such vibrations to persist,
degrading the performance of precision instruments (Luo et al., 2023). Common sources include
rotating components such as reaction wheels, control moment gyros, propulsion thrusters, solar
array drive mechanisms, and movable mirrors (Jafari, 2018; Shi et al., 2024), as well as micro-
thrusters and fluid flow within thermal control systems (Kwon et al., 2017). Since these subsys-
tems are integral to spacecraft operation, their vibration output cannot be eliminated. Therefore,
vibration isolation will remain a necessary component for ensuring the stability and accuracy of
high-precision instruments in space.

1.2 Background on vibration isolation
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Figure 1: Typical transmissibility curve for a single-degree-of-freedom system.



A vibration isolator is a mechanical system designed to decouple a vibrating structure from the
components mounted on it, reducing the transmission of dynamic loads to the payload by mod-
ifying the combined stiffness, damping, and mass properties of the system. These parameters
influence the natural frequency and overall dynamic behaviour, with stiffness and mass defining
the resonance point and damping controlling the magnitude of the response. The performance
of a vibration isolator is often characterised by the transmissibility 7'(w), defined as the ratio of
the response amplitude of the payload to the base excitation amplitude at frequency w. For an
ideal single-degree-of-freedom system, isolation occurs when the excitation frequency exceeds
the natural frequency by a sufficient margin. Below this point, transmissibility is dominated by
static stiffness, and near resonance, the response is amplified. The curve in Figure 1 illustrates
this typical behaviour, indicating regions of full, amplified, and attenuated transmission. Effective
isolation begins once the unity transmissibility level is surpassed, with the slope of attenuation
determined by the damping properties.
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Figure 2: There are four main types of vibration isolators, all of which can be modelled as passive

mass—spring—damper systems or with artificial stiffness and damping using a control loop.

Isolation strategies are generally classified as passive, active, semi-active, or active-passive, as
illustrated in Figure 2. Active isolators rely on sensors, actuators, and control loops to counteract
incoming vibrations, while active-passive systems combine such control with passive mechanical
elements to improve robustness. These approaches can adapt to varying excitation conditions
and provide effective attenuation at low frequencies, but they require continuous power and add
considerable complexity, mass, and potential failure modes (Liu et al., 2015; Shi et al., 2024).
Semi-active isolation represents a middle ground between active and passive techniques. By using
materials or mechanisms that adjust their properties in response to external stimuli, semi-active
systems offer tunable isolation performance with reduced energy consumption. Importantly, they
can revert to a passive mode in the event of control failure, providing a fail-safe fallback (Jafari,
2018). Despite these advantages, they still face challenges in low-frequency performance and
bring additional cost and system complexity (Liu et al., 2015).

In contrast, passive systems rely only on mechanical properties such as springs, viscoelastic el-
ements, or pneumatic mounts (Shi et al., 2024; Liu et al., 2015). They are valued in space ap-
plications for their simplicity, reliability, and zero power consumption, though their performance
is often limited at very low frequencies. Existing passive isolators face trade-offs between low-
frequency isolation and static load-bearing capacity. They are also sensitive to temperature vari-
ations, which can affect performance in orbit. In spacecraft applications, three prominent groups



of passive isolators can be identified: those that leverage the viscous properties of materials, those
that employ complex arrangements of mechanical springs, and those that utilise smart materials
to dampen vibrations. Examples of these systems are shown in Figure 3, with further discussion
of their strengths and drawbacks provided in Appendix A. For a broader overview of vibration
isolation technologies in spacecraft, readers are referred to recent review articles by Shi et al.
(2024) and Liu et al. (2015).
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Figure 3: Three groups of passive vibration isolators researched for space applications: viscous-material based,
mechanical spring arrangements, and smart-material systems (Kawak, 2017; Danh and Ahn, 2014; Luo et al., 2020;
Kwon et al., 2017; Elmadih, 2019).

In spacecraft applications, passive isolation remains the most common approach due to its relia-
bility and predictable behaviour in the space environment. Nevertheless, the demand for compact,
multi-directional, and thermally stable isolators is driving interest in new structural concepts and
material combinations. Within this context, this project focuses on the development of novel
passive isolators. One promising research direction is the application of topology optimisation
to vibration isolation. By tailoring both geometry and material distribution, topology-optimised
designs can create lightweight, mission-specific isolators that combine the compliance of me-
chanical spring systems with the damping capability of viscoelastic materials. The following
subsection 1.3 reviews the current state of the art in dynamic topology optimisation, the role of
viscoelastic materials in vibration control, and prior work combining these approaches.

1.3 State of the art

Improving the vibration performance of a structure through changes to its geometry has long been
of interest to engineers and scientists. Structural designers typically focus on meeting strength and
stiffness requirements, while control engineers are more concerned with the dynamic character-
istics of the structures they control (Ou and Kikuchi, 1996). Beyond controllability, dynamic
response relates to the ability to withstand time-varying loads, prevent fatigue, and avoid reso-
nance that can cause failure. In vibration-sensitive applications such as aerospace systems or pre-



cision manufacturing equipment, the ability to manage these characteristics is highly desirable.
Designing structures that can effectively isolate vibrations is an important step toward improving
performance and reliability in such systems. However, dynamic performance is more complex
to characterise than static behaviour, and various indicators are used for its evaluation, including
natural frequencies, frequency response, dynamic compliance, power flow response, and modal
loss factor (Niu et al., 2018).

Topology optimisation provides a systematic approach for generating material layouts tailored to
such performance objectives under defined constraints (Bendsge and Sigmund, 2003; Sigmund
and Maute, 2013). While early applications were primarily static, vibration-related topology op-
timisation has developed rapidly since the first study by Diaaz and Kikuchi (1992), which used
the homogenisation method to maximise the fundamental eigenfrequency of a structure. Early
work employed homogenisation and Evolutionary Structural Optimisation, with a key advance
made by Pedersen (2000), who proposed a method to eliminate spurious eigenmodes, enabling
broader use of the SIMP method for dynamic problems. Today, SIMP remains the most widely
used approach, though alternative methods have been used and are well documented in the re-
view by Zargham et al. (2016). These developments have created a mature set of methods for
tailoring dynamic behaviour in purely elastic structures. However, extending such methods to
systems that include viscoelastic materials introduces additional challenges, as their frequency-
and temperature-dependent properties demand more advanced modelling and may alter the for-
mulation of the optimisation problem. Previous research has addressed these challenges mainly
through the optimisation of damping layer layouts, with fewer works considering viscoelastic
materials as part of the structural domain. The following review first outlines the main develop-
ments in dynamic topology optimisation, then discusses modelling approaches for viscoelastic
materials, and finally reviews work combining these areas.

1.3.1  Work done in dynamic topology optimisation

Dynamic topology optimisation spans a range of objectives, from shaping frequency response and
minimising dynamic compliance to enhancing damping and tailoring eigenfrequencies (Zargham
et al., 2016). This review concentrates on eigenfrequency based formulations because natural fre-
quencies provide a compact description of dynamic behaviour, strongly influence low frequency
response, and correlate with structural stiffness (Zhu, 2019; Bendsge and Sigmund, 2003). Within
this focus, the literature divides into eigenvalue maximisation and frequency gap formulations,
alongside methods for addressing associated numerical issues.

Eigenvalue maximisation Natural frequencies are a compact descriptor of a structure’s dynamic
behaviour, with the fundamental eigenfrequency strongly influencing low-frequency response
(Zhu, 2019). Maximising this quantity is a well-established objective in topology optimisation
(Bendsge and Sigmund, 2003) and typically results in designs that are stiff both statically and
dynamically. The first vibration-related SIMP study, by Pedersen (2000), targeted the fundamen-



tal eigenfrequency in a MEMS device. An alternative formulation, the mean-eigenvalue method
introduced by Ma et al. (1995), optimises a weighted combination of several consecutive eigenfre-
quencies. This approach produces a more balanced improvement across the spectrum but yields
smaller gains in the fundamental value (Du and Olhoff, 2007). Multi-objective formulations have
also combined eigenvalue maximisation with static performance metrics, as in the missile struc-
ture design by Luo et al. (2006), where compliance and eigenfrequency were optimised simul-
taneously using a tolerance multilevel sequence approach. While maximising the fundamental
eigenfrequency improves stiffness and controllability, it also broadens the high-transmissibility
range below the first resonance, making it unsuitable for low-frequency vibration isolation. In
such cases, shaping the distribution of eigenvalues can be more effective.

Frequency gap objectives Another line of work focuses on increasing the separation between
consecutive eigenfrequencies. This reduces the likelihood of resonance within specific frequency
bands and has applications in vibration isolation (Lee and Youn, 2004), noise reduction (Zhang
and Kang, 2013), energy harvesting (Noh and Yoon, 2012), and phononic crystal design (Yi and
Youn, 2016). Jensen and Pedersen (2006) and Du and Olhoff (2005) developed formulations for
maximising either the difference or the ratio between adjacent eigenfrequencies, with sensitiv-
ity analysis tailored for these objectives. Later, Du and Olhoff (2007) extended the approach to
bi-material designs. More recently, Li et al. (2021) introduced differentiable frequency band con-
straints using a modified Heaviside function, enabling gradient-based optimisation while avoiding
resonance in multiple specified bands. This formulation is objective-independent, allowing it to
be applied alongside compliance, eigenfrequency, or volume constraints.

Numerical challenges Dynamic topology optimisation is prone to two recurring numerical is-
sues: localised eigenmodes and mode switching. Localised eigenmodes occur in low-density
regions where stiffness-to-mass ratios become very small, producing spurious modes that distort
the global response (Pedersen, 2000). Penalisation adjustments or replacing voids with weak ma-
terial (L1 et al., 2021) can mitigate this. Mode switching, where eigenvalues change order during
optimisation, leads to discontinuities in sensitivities and instability in the solution process. The
bound formulation (Olhoff, 1989) is widely used to address this, while weighted-sum eigenvalue
objectives (Ma et al., 1995) provide an alternative. Both have been extended to multi-mode and
frequency-gap problems (Jensen and Pedersen, 2006; Du and Olhoff, 2007).

1.3.2 Interlude: commonly used damping treatments

Practical damping applications of viscoelastic materials (VEMs) in structures are most commonly
implemented as surface treatments: free-layer damping, where a VEM is bonded to the host sur-
face and dissipates energy mainly through extensional deformation, and constrained-layer damp-
ing (CLD), where a stiff constraining layer forces shear in the VEM core and achieves high
damping with thin layers (Nakra, 1998; Moreira, 2014). CLD generally offers superior material



efficiency but requires models that resolve the shear strain field in the viscoelastic layer (Mor-
eira, 2014; Elmoghazy et al., 2024). These layouts, commonly referred to as sandwich layouts in
the literature, have been widely used since the late 20" century and remain the best-established
damping treatments (Johnson and Kienholz, 1982). Figure 4 shows the two classical layouts.
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Figure 4: Basic configurations for viscoelastic damping treatments: Free Layer Damping (FLD) and Constrained
Layer Damping (CLD). Adapted from Nakra (1998) and Moreira (2014).

1.3.3 Topology optimisation of viscoelastic damping treatments

Early work on free- and constrained-layer damping used linear viscoelastic models to place damp-
ing material where it is most effective. For free-layer damping on shells under harmonic loading,
Kang et al. (2012) reduced response amplitudes by optimising patch layouts in a reduced modal
space. Kim et al. (2013) then maximised modal loss factors and validated the predictions experi-
mentally. For constrained-layer damped plates, Fang and Zheng (2015) minimised peak resonant
displacement and showed that updating the modal damping ratio during optimisation improves
both damping and resonance suppression. Using sound radiation modes and modal strain energy,
Zheng et al. (2016) further demonstrated reductions in radiated sound power with good experi-
ment—simulation agreement. Together, these studies established that sandwich-type layouts are
effective when the VEM is confined to surface treatments.

Note on viscoelastic material properties

Viscoelastic materials combine elastic energy storage with viscous dissipation, and their
stiffness and damping vary strongly with excitation frequency and temperature. More
details are given in Appendix B. In this thesis, however, a frequency- and temperature-
independent viscoelastic model is adopted.

\.

More recent work has increasingly allowed the viscoelastic properties to vary with frequency
and/or temperature. Within CLD, Liu et al. (2018) co-optimised microstructure and layout, show-
ing the well-known trade-off that greater damping typically reduces natural frequencies. In the
eigenvalue-oriented stream, Li et al. (2022) formulated non-linear eigenvalue topology optimi-
sation with frequency-dependent material behaviour, and Wu et al. (2024c¢) combined that with



frequency-band constraints (Li et al., 2021) and isolated-structure suppression (Wu et al., 2024b),
yielding higher fundamental frequencies than those predicted by frequency-independent models.
Multi-scale and temperature-aware variants report that natural frequencies are relatively stable
across temperature, while modal loss factors are more sensitive to temperature (Wu et al., 2023;
Zhang et al., 2022; Wu et al., 2024a).

Only a few studies have moved beyond the conventional strategy of restricting viscoelastic ma-
terial to damping treatments. Among them, Inozume and Aihara (2021) applied multi-material
topology optimisation to design lightweight, highly damped structures for the automotive sec-
tor. Zhang and Khandelwal (2019) targeted dissipative structures optimised for damping at finite
strains, while Kolk et al. (2017) solved the complex eigenvalue problem to maximise the sum of
modal loss factors in freely vibrating structures. These works demonstrate that viscoelastic ma-
terial can be treated as a structural phase within the design domain, yet such approaches remain
rare compared to the dominant sandwich-based formulations.

1.4 Research gap

Passive isolation remains attractive for spacecraft because of its reliability and zero power de-
mand. However, existing designs still face persistent trade-offs between low-frequency attenua-
tion, static bearing capacity, temperature sensitivity, and the need for compact, multi-directional
performance (Liu et al., 2015; Shi et al., 2024). In parallel, topology optimisation for dynamic
behaviour has matured considerably, from eigenvalue-based objectives and gap or band formu-
lations to remedies for numerical artefacts. Yet nearly all damping-oriented studies continue to
confine the viscoelastic material to sandwich treatments such as free- or constrained-layer damp-
ing (Kang et al., 2012; Kim et al., 2013; Fang and Zheng, 2015; Zheng et al., 2016; Li et al.,
2022; Wu et al., 2024c; Wu et al., 2023; Zhang et al., 2022). Only a handful of works have
explored free placement of viscoelastic material within the structural domain, and these have
largely targeted applications outside vibration isolation. For spacecraft isolators, this remains
almost completely unstudied. This motivates further investigation into coupling structural and
damping phases directly, before addressing the added complexity of frequency- and temperature-
dependent viscoelastic properties.

In short, very few vibration isolators for micro-vibration attenuation have been designed via topol-
ogy optimisation, and existing studies overwhelmingly remain within sandwich layouts. Treating
viscoelastic material as a distributed structural phase for compact, multi-axis isolation is largely
unexplored.



1.5 Scope and assumptions

The following describes the scope and modelling assumptions adopted in this thesis for designing
passive vibration isolators:

System idealisation. The sensitive instrument’s elastic modes are assumed to lie well above the
rigid—body region of the combined isolator—instrument system. The instrument is therefore rep-
resented only by its lumped mass and inertia. No dynamic sub-structuring or frequency-response
coupling is included.

Dynamics assumptions. The analysis is restricted to small-amplitude, linear dynamics. Geo-
metric nonlinearities, contact effects, and large-strain viscoelastic behaviour are not considered.
Random excitation and broadband loads are also excluded and the focus is on modal response.

Configuration and design space. A single vibration isolator is placed beneath the instrument bed,
with load transfer through a fixed bolted interface. Bolt geometry is prescribed and not optimised.
Topologies are studied in both 2D and 3D, using a square (2D) or cubic (3D) design domain with
prescribed non-design mounting patches.

Material model. A bi-material design is considered: aluminium as the structural phase and a
damped, nearly incompressible rubber as the viscoelastic phase. Both materials are assumed
isotropic. Aluminium is modelled as linear elastic and lightly damped, while the rubber is repre-
sented by a frequency-independent complex modulus at reference conditions. Near-incompressibility
is handled by selective reduced integration in the finite element model.

Objectives and constraints. The optimisation targets the rigid-body dominated modes of the
combined isolator—payload system. The primary objective is to increase the associated eigenfre-
quencies, while ensuring sufficient damping by enforcing an upper limit on the modal Q-factor.
A volume constraint is applied to control material usage. Mass minimisation is not considered,
since only two fixed material phases are used (aluminium and rubber).

Out of scope. The following effects are not considered in this work: multi-isolator layouts, bolt
preload or creep, viscoelastic ageing, gravity unloading in orbit, launch-to-space loads, and man-
ufacturing constraints.

1.6 Thesis structure

The thesis is organised as follows. section 2 introduces the behaviour of elastic and viscoelas-
tic materials, their representation in terms of bulk and shear moduli, and the incorporation of



damping into finite element formulations, while section 3 addresses numerical instabilities from
nearly incompressible materials and their mitigation, with a comparative study against COMSOL
Multiphysics® presented in section 4. section 5 then outlines the topology optimisation algorithm,
and section 6 formulates the modal design approach for rigid-body dominated eigenfrequencies
and Q-factors. The optimisation results are reported in section 7, covering design strategies,
parameter studies, numerical issues, and combined-objective examples in 2D and 3D. Finally,
section 8 summarises the contributions, discusses limitations, and suggests directions for future
research, while the appendices provide supplementary reviews, an additional viscoelastic material
overview, and FEM validation details.

2 Material behaviour and finite element modelling

Accurate modelling of vibration isolation requires an understanding of both how materials re-
spond under dynamic loading and how these responses are represented in numerical analysis.
This chapter introduces the principles of elasticity and damping, with particular emphasis on
nearly incompressible damped materials, and explains how these concepts are incorporated into
finite element formulations.

2.1 Elasticity in isotropic materials

The elastic behaviour of isotropic materials can be expressed compactly using Hooke’s law, which
provides the link between stress and strain and underlies the conversion between different elastic
constants. Since the mechanical response of such materials is fully described by two independent
parameters, these are often chosen from Young’s modulus F, Poisson’s ratio v, bulk modulus K&,
and shear modulus GG. A general form of Hooke’s law for isotropic materials is:

1+v v
€ij = Tffz‘j - Eakkéij (1)
where ¢;; is the strain tensor, 0;; the stress tensor, oy, its trace, and ¢;; the Kronecker delta. This
expression separates the stress response into volumetric and deviatoric parts, directly relating to

the bulk modulus K and shear modulus G.

Depending on the dimensionality and boundary conditions of the problem, different assumptions
are applied. In two-dimensional formulations, two idealised cases are used:

* Plane strain: Assumes zero strain in the out-of-plane direction. Suitable for analysing thin
cross-sections located far from free edges of long structures, where thickness deformation
is constrained by surrounding material (e.g. dams, underground tunnels). Because plane
strain is derived by constraining one strain component of the three-dimensional law, the
conversion relations remain identical to the 3D case.



* Plane stress: Assumes zero stress in the out-of-plane direction. Suitable for thin structures
where stresses through the thickness are negligible (e.g. thin plates or membranes). This
assumption simplifies the material response by neglecting one stress component, which
leads to modified conversion relations compared with the full 3D case.

These assumptions influence how the elastic constants F, v and K, G are related. Plane stress
produces modified conversion formulas, while plane strain retains the same relations as three-
dimensional elasticity. The corresponding relations are summarised in Table 1.

Table 1: Relationships between bulk modulus K, shear modulus GG, Young’s modulus F, and Poisson’s ratio v for

plane stress, plane strain, and full three-dimensional elasticity.

Case K(E,v) | G(E,v) | E(K,G) | v(K,G)
E E 4KG 2K -G
Plane Stress
2(1-v) | 2(1+v) | 2K+G 2K +G
FE FE IKQG 3K -2G

Plane Strain / 3D

3(1-2v) | 2(1+v) | 3K+G | 23K +G)

Health warning:

In this work, material parameters are initially specified in terms of £ and v and are consis-

tently converted to K and G using the full 3D relations. Plane stress is only applied later
in the constitutive matrix (subsection 2.5) when required by the problem, but its modified
conversions are not used for material specification.

2.2 Material damping

When subjected to dynamic or cyclic loading, many materials exhibit internal energy dissipation,
commonly referred to as material damping. Unlike purely elastic materials that store mechanical
energy without loss, or purely viscous materials that dissipate energy as heat, most engineering
materials display a combination of both behaviours. This dual character is evident in viscoelas-
tic materials, which combine elastic and viscous behaviours and respond to loading with both
immediate elastic deformation and delayed, time-dependent flow.

Material damping arises from various microstructural mechanisms. In metals, for example, en-
ergy is lost primarily through the movement of dislocations within the crystal lattice. Ceramics
and glasses, on the other hand, are structurally rigid and dissipate very little energy, making them
lightly damped. Polymers and rubbers are markedly different: they exhibit significant damping
due to the internal friction caused by the movement and rearrangement of molecular chains. Ther-
moplastics allow for greater mobility of these chains and thus higher damping, while cross-linking
in thermosetting plastics restricts motion and leads to slightly lower energy dissipation.

When a damped material is harmonically loaded, its response is typically also harmonic but occurs
with a phase lag between the applied stress and resulting strain (Moreira et al., 2010). The stress-

10



strain curve under cyclic loading of VEMs displays a hysteresis loop, depicted in Figure 5, where
the enclosed area indicates the energy dissipated as heat. Due to the viscous properties, the
mechanical properties of viscoelastic materials are affected by the deformation rate. As a result,
their deformation behaviour at varying rates is depicted by a series of curves instead of a single
stress-strain curve (Elmoghazy et al., 2024). This behaviour allows damped rubbers to absorb and
dissipate energy, making them particularly valuable in applications requiring vibration damping
or dynamic load resistance (Moreira, 2014).
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Figure 6: Harmonic uniaxial stress-controlled excitation
Figure 5: Typical hysteresis loop from cyclic loading o4 (w) with phase-shifted longitudinal € 4 (w) and transver-
of VEMs. (Elmoghazy et al., 2024) sal strain e7(w) of real materials. (Fauser et al., 2025)

For materials like rubber, which are nearly incompressible, volumetric changes under load are
minimal. Damping occurs predominantly through shear deformation, with little to no energy loss
through bulk compression. This makes the traditional representation using Young’s modulus £
and Poisson’s ratio v less suitable. Instead, a more practical and physically meaningful approach
is to describe the material in terms of bulk modulus K and shear modulus G. These two pa-
rameters clearly distinguish between material’s resistance to volumetric deformations, such as
compression and expansion, and shearing behaviour. The relationship between these moduli is
given by Equation 2.

_9G
L. 3K-2G _ 3-2% 2
2BK+G) 2(3+%)

This equation reveals that the Poisson ratio is bounded within the interval —1 < v < 0.5. Materials
with very high G/K ratios, such as designed lattice structures or certain polymer foams, can exhibit
Poisson’s ratios close to the lower bound. On the other end of the scale, as the ratio G/ K tends to
zero, the Poisson ratio approaches its theoretical upper limit of 0.5. Materials with very low shear
stiffness relative to their bulk stiffness, therefore, approach the incompressibility limit. Rubber is
a typical example of such a material. The transverse deformation behaviour under axial loading
depends directly on the Poisson ratio. In dynamic applications, the response of incompressible
damped rubbers is further complicated by time-dependent phase shifts in both axial and transverse
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responses as shown in Figure 6. This phenomenon highlights the need for careful modelling when
designing with damping materials (Fauser et al., 2025).

2.3 Complex modulus and damping representation in structural dynamics

The dynamic behaviour of damped systems is traditionally described by a second-order differen-
tial equation of motion:
Mi + Ci + Kz = F(t) 3)

where M, C, and K are the mass, damping, and stiffness matrices respectively, and x is the
displacement vector, and F(¢) is the force vector. In this form, damping is introduced through
the matrix C, which is often assumed to represent viscous damping. However, for materials that
exhibit internal energy dissipation, it is common to model damping as a material property rather
than as a separate viscous force (Fauser et al., 2025). In such cases, where a single material
is used, damping can be assumed to be proportional to stiffness, so that C = nK, where 7 is
a dimensionless loss factor that quantifies the relative amount of energy dissipated per cycle.
Substituting this into Equation 3 gives:

Mi +K(1+in)z=0 4)

This formulation allows the damping effects to be condensed into a complex-valued stiffness
matrix K*, which simplifies the analysis of frequency-dependent behaviour. This matrix can be
constructed using the complex moduli of elasticity { £*, K*,G*}, each of which satisfies linear
viscoelastic theory for pure extension with the complex stress-strain relationship at the material
level:

o=FE¢c¢=(FE +iE")e=E'(1+in)e 4)

Here, £’ is the storage modulus, representing the material’s ability to store elastic (retrievable)

energy, while £ is the loss modulus, representing energy dissipation through internal friction.
E//
E
material damping are not well modelled by viscous damping, and so the damping ratio varies

The ratio n = is again the loss factor. Many microstructural processes that contribute to
with frequency, however it is assumed constant in the simplified material damping model used
throughout this work. The complex modulus representation naturally captures the lag between
stress and strain under harmonic excitation and remains consistent with the energy loss observed
in the hysteresis loops of viscoelastic materials.
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Health warning:

This approach relies on the assumption that damping is proportional to stiffness. While this
assumption does not strictly hold in heterogeneous or topology-optimised designs where
the distribution of stiff and damped materials varies spatially, it provides a convenient ap-
proximation for simulating internal energy dissipation.

2.4 Generalised complex eigenfrequency problem and damping metrics

In the context of finite element simulations, describing dynamical systems as presented in Equa-
tion 4 using a complex stiffness matrix K* enables modal or frequency-domain analysis with
damping included naturally. In particular, when solving the complex generalised eigenvalue prob-
lem,

(K*-XM)o,, =0, (6)

the eigenvectors ¢,, and eigenvalues ), of the n™ mode of vibration are complex. The eigenvec-
tors ¢,, represent complex-valued mode shapes, which describe the spatial distribution and phase
of displacements within the vibrating structure. In addition, the eigenvalues provide information
about its resonance frequency and modal damping. Each eigenvalue can be expressed as

)\n = Wn(l + ZZCn) = Wnreal T iwn,imagy (7)

where (,, is the modal damping ratio, and w, yea1 and w;, imag are the real and imaginary parts of
the damped natural frequency respectively. The damping ratio ¢,, quantifies the rate of modal
decay and relates to energy lost per cycle. The damping ratio (,, modal loss factor u,, and
quality factor (),, are interrelated as summarised in Table 2 and are commonly used to quantify
the dynamic response of damped systems. The loss factor p,, is particularly useful in frequency-
domain applications, as it directly corresponds to the energy dissipated relative to stored energy
over a radian of oscillation. Meanwhile, the quality factor (),, gives an intuitive measure of how
sharply a system resonates, with higher values indicating narrower resonance peaks and lower
damping.

Table 2: Common damping metrics in vibration and modal analysis

Property Symbol Expression Interpretation
: : Wn imag H :
Damping ratio Cn -5 Time-domain decay rate
2 im: .
Modal loss factor Lhn ﬁ Energy loss per radian
Quality factor Qn ML Sharpness of resonance
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2.5 Elasticity matrices and constitutive relations in FEM

In finite element analysis, the relationship between stress and strain is written compactly in Voigt
notation as
o=De, )

where o and € are the stress and strain vectors, and D is the elasticity matrix derived from
Hooke’s law. Its explicit form depends on the kinematic assumption: plane strain, plane stress, or
full three-dimensional elasticity.

For two-dimensional problems, the constitutive relations are shown in Equations 9 to 10. In each
case, part (a) gives the complete stress—strain relation in terms of (£, v/), while part (b) shows the
equivalent elasticity matrix expressed in terms of (K, G).

Plane strain

o1 5 1-v v 0 |[en K+3G K-2G 0

. A— 1- 0 9 D (K,G)=|K-2G K+4% 9%
0922 T (-2) v v o €92 (9a) ps ) 3G K+3G 0| (9b)
g12 0 0 5 2612 0 0 G

DPS(Evl/)
Plane stress

011 E 1 v 0 €11 K+G K-G 0

0929 :1_]/2 v 1 0 €22 (10a) Dpsl(KaG): K-G K+G 0 (10b)

o12 0 0 L2]|26 0 0 G

Dy« (E,v)

The full three-dimensional elasticity matrix follows the same constitutive relation (Equation 8),
but extends to six stress—strain components in Voigt notation:

Full 3D elasticity
En [1-v v 0 0 0 ][en]
099 v 1-v v 0 0 0 €22
033 E v v 1-v 0 0 0 €33
= 1o (11
012 (1+V)(1—2V) 0 0 0 2” 0 0 2€19
093 0 0 0 0 1722V 0 2623
[ 051 | | 0 0 0 0 0 =2Z]||2e]
DZSD(EaV)
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with the equivalent (K, G)) form

(K+3G K-%G K-%G 0 0 0

K-2G K+3iG K-2G 0 0 0

K-2G K-2G K+2G 0 0 0
D3D(K7G): 03 03 03 a o ol (12)

0 0 0 0 G 0

| 0 0 0 0 0 Gj

2.6 Application of the elasticity matrix in FEM

In finite element formulations, the elasticity matrix D determines how each element resists de-
formation by linking local strains to stresses through Hooke’s law. The stiffness contribution of a
finite element is given by

Ke:f B’ DBV (13)
Qe

where K(¢) is the element stiffness matrix, B is the strain-displacement matrix derived from
the element shape functions and geometry, and D is the constitutive matrix defined earlier in
subsection 2.5. This expression follows from the principle of virtual work and is standard in
linear elasticity-based FEM. For detailed derivations, see Zienkiewicz et al. (2010) or Bower
(2010).

In practice, this volume integral is evaluated numerically using Gauss quadrature. For linear
quadrilateral (2D) and brick (3D) elements, integration is performed over a reference coordinate
domain {1, &5, &3}. In this domain, each element is mapped to a standard square or cube, bounded
within [-1,1]2 or [-1, 1]3, as illustrated in Figure 7. The general quadrature rule in 2D is:

+1 +1 N N . .

Jo [, f@edadsa =y S (6.6) (14)
where N is the number of Gauss points used in each coordinate direction. In practice, linear
elements typically require only one or two points per direction, as higher-order integration (e.g.
three points) quickly increases computational cost, especially in 3D. For 3D problems, the same
rule extends by evaluating an additional sum over the third dimension. Applying this quadrature
rule to the integral in Equation 13, the element stiffness matrix is approximated as:

Tlep
K.~ ) w, BT () DB(¢) det J (£7) (15)

g=1
where 7 denotes the Gauss integration points (in coordinates &;, 2, and &3), w, are the corre-
sponding weights, and det J(&,) is the determinant of the Jacobian matrix that transforms refer-
ence coordinates to the physical element geometry. This process results in a stiffness matrix K,
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of size ngor X Ngor, Where ngor 1s the number of displacement degrees of freedom associated with
the element’s nodes.

§2 &
3 A s R bl B
: ' &
-1 \ N
&1 B
T
&1 3 &= Ne
1 2
(c) Optimal Gauss quadrature
(a) 2D Node Numbering (b) 3D Node Numbering point locations

Figure 7: Illustrations of node numbering in 2D and 3D elements, and integration points for Gaussian quadrature.

Once each K. is computed, the global stiffness matrix is assembled using standard finite element
procedures. Each element’s contribution is inserted at positions determined by the node connec-
tivity. Readers unfamiliar with the details of global assembly, shape function construction, or
matrix indexing are referred to standard texts such as Zienkiewicz et al. (2010), Cook and Cook
(2002), and Bower (2010).

3 Numerical instabilities in modelling incompressible materials

Modelling incompressible viscoelastic rubber using standard linear finite elements is likely to
encounter numerical challenges. Such challenges are often referred to as locking phenomena.
Finite elements are said to lock when they present an artificially stiff response to deformation,
causing significant inaccuracies and poor convergence in numerical models (Bower, 2010). In
general, there are two predominant types of numerical locking: shear locking and volumetric
locking.

3.1 Shear locking and solutions

Shear locking occurs primarily in finite elements subjected to bending loads, especially notice-
able in thin, elongated structures. Linear finite elements are limited by their straight edges, which
prevent them from accurately approximating the curved deformation fields found in pure bend-
ing conditions. As a result, these elements exhibit artificially large shear strains rather than the
expected bending deformation. This spurious shear strain significantly increases the element stiff-
ness, causing the numerical model to underestimate deflections (Bower, 2010; ABAQUS, 2004).

This behaviour can be analysed in more detail by observing the deformation of a linear and
second-order quadrilateral element subjected to pure bending. In the linear element seen in Fig-
ure 8, the line connecting the upper integration points elongates, indicating tensile longitudinal
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stress (011), while the lower line contracts, indicating compression in the same direction. Mean-
while, the vertical lines remain unchanged in length, confirming that the transverse normal stress
(092) remains zero, as expected for pure bending. However, the originally right-angled inter-
sections between dashed horizontal and vertical lines crossing Gauss integration points become
distorted, signalling the emergence of a spurious shear stress component (o12). The error origi-
nates from the inability of linear elements to curve, and the resulting strain energy is incorrectly
stored as shear deformation rather than bending. Consequently, the overall stiffness of the element
is overestimated, leading to reduced displacements. In contrast, quadratic quadrilateral elements,
as shown in Figure 8, are capable of approximating the correct curvature under bending. Their
edges can deform smoothly and capture intended bending behaviour without introducing spurious
shear stresses. (ABAQUS, 2004)

wC L] -»'

15t order element

I 011
M [ D -»
i

T order element

Figure 8: Linear quadrilateral element and quadratic quadrilateral element response under pure bending. Intersections
of dashed lines represent Gauss integration points. Adapted from ABAQUS (2004).

Several effective strategies exist to mitigate shear locking:

Second-order elements: Second-order (quadratic) elements are effective as they support higher-
order displacement interpolation and curved deformation modes. However, fully integrated,
quadratic elements can also lock under complex states of stress (ABAQUS, 2004).

Mesh Refinement: Shear locking can be detected and solved by using mesh refinement and
avoiding the use of elongated elements. However, it may significantly increase computational
cost if numerous elements are required to achieve the necessary accuracy. This is particularly
important for topology optimisation, where the iterative nature of the procedure amplifies the
computational cost of using a fine mesh.

Incompatible mode elements: Incompatible mode elements provide additional strain modes specif-
ically designed to capture bending deformation. These elements offer high accuracy at a lower
computational cost compared to quadratic elements but require careful consideration as they are
sensitive to element distortion. Interested readers are referred to Bower (2010) and ABAQUS
(2004) which contain additional details on the method’s formulation and example code imple-
menting the method onto quadrilateral elements.
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3.2 Volumetric locking and solutions

Volumetric locking arises when modelling nearly incompressible materials using standard displacement-
based finite elements. This phenomenon becomes increasingly problematic as the Poisson’s ratio

v approaches 0.5, and remedies should be considered at Poisson ratio values as low as 0.475
(ABAQUS, 2004). In this limit, the bulk modulus K (E, ) tends towards infinity, as indicated by

its expression in Table 1, meaning that even a small volumetric strain leads to disproportionately

high hydrostatic stress. The hydrostatic stress (or -pressure) is defined as the negative average of

the normal stresses:

1 1
p= —5(011 + 099 +033) = —gtr(a). (16)

In linear isotropic elasticity, it is also directly related to the volumetric strain by the constitutive
relation:
p=-Kéw, (17)

where e,0) = €11 +£99+&33 = tr(€). In a pure displacement formulation, volumetric strain is derived
from the displacement field, which is interpolated using shape functions. However, standard inter-
polation schemes cannot ensure zero volumetric strain at all integration points, especially under
full integration. As a result, even small inaccuracies in the displacement field may produce signif-
icant errors in volumetric strain. When scaled by a high bulk modulus as shown in Equation 17,
these errors manifest as unrealistic pressure fields and overly stiff structural behaviour (ANSYS,
2017). This effect is independent of mesh size and cannot be resolved through refinement alone
and specialised finite element formulations must be employed instead (Bower, 2010).

Several effective strategies exist to mitigate volumetric locking:

Reduced integration: Reduced integration is one of the simplest and most widely used tech-
niques for alleviating volumetric locking. The idea is to integrate the element stiffness matrix
using a lower-order quadrature rule than is normally required for exact integration. By reducing
the number of Gauss integration points, the formulation avoids over-constraining the volumetric
strain field, making it easier for the element to accommodate the near-incompressibility condi-
tion. This approach is highly effective in higher-order elements, such as quadratic quadrilaterals
or bricks, where reduced integration can eliminate volumetric locking entirely and even improve
the accuracy of the element (Bower, 2010).

In linear elements, such as four-node quadrilaterals or eight-node bricks, reduced integration leads
to a rank-deficient stiffness matrix, enabling non-physical zero-energy deformation modes. This
phenomenon is known as hourglassing due to the typical shape of the spurious mode. To stabilise
the formulation, additional control measures are required. Common approaches include Selective
Reduced Integration, B-bar Reduced Integration and Hourglass Control. The first two methods
modify the virtual work formulation to separate the stress response into volumetric and deviatoric
parts. The volumetric part, which is associated with the large bulk modulus K, is then averaged
or integrated with a reduced scheme, while the deviatoric part, associated with the shear modulus
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Gz, maintains full integration. This separation when deriving the finite element stiffness matrix
K(e)

ik €an be written as

ONe® ONb® 1 ONe QNP 1 ON® ONP
K :f OV ONT L, ONTONTY g f SO — S d0. (18
abk = Jqo. (Cjkl Ozr; Ox SCppkl ox; 8(17;) i Qe 3Cppkl Ox; 0xy (18)

deviatoric part — full integration volumetric part — reduced integration

where C;j; is the fourth-order elasticity tensor, N* and N b are the element shape functions, and
repeated indices imply summation. Using the full fourth-order tensor allows this formulation
to extend to finite strain problems. Here, however, only small strain elasticity is considered, so
the element stiffness reduces to its second-order tensor form Kéi) This form was applied in the
derivation of the finite element stiffness matrices presented in the thesis. For further theoretical
details and implementation examples, the reader is referred to Bower (2010).

Mixed formulation: In standard displacement-based elements, pressure is indirectly determined
from the volumetric strain, which in turn is derived from nodal displacements. However, for
incompressible or nearly incompressible materials, volume changes are constrained or entirely
prohibited, making it inappropriate to calculate pressure based solely on displacement data. As a
result, pure displacement formulations become inadequate for such materials (ABAQUS, 2004).
Mixed formulation attempts to remedy this by treating hydrostatic pressure of the solid as a pri-
mary variable and solve it explicitly using an additional degree of freedom. The displacement
field is then used only to evaluate the deviatoric (shear) part of the strain, while the pressure field
is interpolated separately and used to enforce the incompressibility constraint. This leads to a
coupled system of equations at both element and system matrix level:

[Kuu Kup] {Au} _ {AF} (19)
K, K| |Ap 0

In this system, the displacement increment Au governs deviatoric deformation, while the pressure
increment Ap applies a weak constraint on the volumetric strain. To ensure numerical stability,
the interpolation functions for pressure are of one order lower than the interpolation function of
strains or stresses (ANSYS, 2017). In linear elements, pressure is typically assumed to be constant

and defined at the element centroid. This corresponds to constant interpolation for pressure and
linear interpolation for displacements (Bower, 2010).

Second-order elements: Quadratic elements are generally less prone to volumetric locking be-
cause their higher-order interpolation allows them to represent complex deformation patterns,
including nearly volume-preserving strains. While second-order elements do not inherently sepa-
rate pressure and deviatoric responses like other advanced formulations do, their improved strain
accuracy helps reduce locking severity by improving the accuracy of both strain and stress pre-
dictions throughout the element domain.
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4 Finite element investigation on incompressibility

Rubber-like materials used in this thesis are nearly incompressible, which makes their finite el-
ement modelling prone to volumetric and shear locking. The topology optimisation framework
is built on a custom implementation in PyMOTO (Delissen, 2023), which by default employs
standard linear elements (quadrilaterals in 2D and bricks in 3D). While these elements are sim-
ple and efficient, they are also known to perform poorly for nearly incompressible materials, and
therefore require verification before being applied to viscoelastic rubber components. Without
such verification, optimisation outcomes could be dominated by numerical artefacts rather than
the intended material response.

To address this, a comparative eigenfrequency analysis was carried out between PyMOTO and
COMSOL Multiphysics®. The study examined benchmark models in two and three dimensions,
spanning materials from aluminium to highly incompressible damped rubber. In COMSOL, three
common locking mitigation techniques were systematically enabled or disabled:

* reduced integration
* mixed formulation

¢ second-order elements

The insights from this investigation guided the choice of volumetric locking mitigation scheme for
subsequent topology optimisation. The following subsection 4.1 describes the simulation setup
and the conventions used for comparing results.

4.1 Simulation setup and notation

Benchmark models: The verification was based on two simple benchmark geometries: a square
domain in 2D and a cube in 3D. Each model was discretised using a 40 x 40 mesh in 2D and a
10x 10 x 10 mesh in 3D. These mesh sizes were chosen to match those employed during topology
optimisation in the initial stages of this thesis. Fixed Dirichlet boundary conditions were applied
along the bottom edge (2D) or surface (3D), while the remaining boundaries were left free. In
PyMOTO, the domains were discretised using standard linear quadrilateral elements in 2D and
linear brick elements in 3D.

Material information: Five materials were included in the study: one reference material (alu-
minium) and four rubber-like materials with Poisson ratios v = {0.48,0.49,0.4999,0.499999}.
Their stiffness parameters are listed in Table 3. Aluminium was treated as a compressible (v =
0.3) lightly damped elastic material with a loss factor ( = 0.01) applied to both bulk and shear
moduli. The rubber materials were modelled using a viscoelastic formulation, with a real-valued
bulk modulus and a complex-valued shear modulus following the methodology described earlier
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Table 3: List of materials and their properties used for the incompressibility mitigation experiment

Material FE, [Pa] n, [-] v, [-] K, [Pa] G, [Pa]
Aluminium 68.900-10° 0.01 0.30 (5.741 + 6.3151) - 1011 (2.297 + 2.526i) - 10*°
Rubber, ¢ 4g) 2.462-107 1.1 0.48 2.052-10% (8.318 +9.150i) - 10°
Rubber ;- 49) 2.462-107 1.1 0.49 4.104-108 (8.262 +9.088i) - 106
Rubber(,_g 4999y ~ 2.462-107 1.1 0.4999 4.104-10% (8.207 +9.028i) - 106
Rubber(, g 499099) 2-462-107 1.1  0.499999 4.104-10%2 (8.207 +9.028i) - 106

in subsection 2.2. The rubber properties used in the simulations were derived from tensile tests
conducted at TNO on an aerospace-grade elastomer SCVBR® supplied by ERIKS. These tests
were performed at TNO across several temperatures, with the 20 °C data point selected for this
study.

Simulation labels: To enable systematic comparison between PyMOTO and COMSOL eigen-
frequency results, several conventions and definitions were adopted throughout the investigation.
The COMSOL simulations were configured to explore the impact of three commonly used locking
mitigation strategies: reduced integration, mixed formulation, and second-order elements. Each
of these settings was treated as a binary flag (ON/OFF), resulting in eight distinct combinations
per material. For clarity, each configuration is identified using a three-part label. For example,
ON-OFF-OFF denotes second-order elements enabled, reduced integration disabled, and mixed
formulation disabled. The gold standard was defined as the case where all three techniques were
active (ON-ON-ON). In total, approximately 80 simulation cases were completed, allowing for a
broad comparison of performance across locking mitigation methods, material types, and dimen-
sional assumptions.

Types of eigenmodes: In 2D, the first three eigenfrequencies were extracted, while six modes
were evaluated in 3D, as illustrated in Figure 9. This selection was intentional, since higher-
frequency modes typically involve local deformations that are less relevant for assessing vibration
isolators with a payload attached at the top boundary. The extracted modes were classified ac-
cording to their deformation characteristics and were found to maintain a consistent ordering by
frequency across all materials and constitutive assumptions. Three fundamental vibration modes
were common to both dimensions: lateral bending, axial tension/compression, and planar ro-
tation. Extending the structure from 2D to 3D introduces an additional spatial axis and more
axes of symmetry. This both duplicates some of the pre-existing modes and enables new ones
to emerge. In 3D, both lateral bending and planar rotation split into two orthogonal variants
due to the additional symmetry directions of the cube. More importantly, the third spatial axis
gives rise to a new type of motion: torsional rotation, which cannot exist in 2D. This progres-
sion illustrates how increasing dimensionality expands the vibrational landscape while retaining
equivalence with lower-dimensional analogues.
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(symmetry) (dimensionality)

Mode 1: Lateral Mode 2: Axial Mode 3: Planar
bending tension/compression rotation
Modes 1-2: Lateral Mode 3: Torsion Mode 4: Axial Modes 5-6: Planar
bending tension/compression rotation

Displacement

Figure 9: Lowest non-internal vibration modes of the bottom-fixed square (2D) and cube (3D). Three fundamental
modes are shared between 2D and 3D (lateral bending, axial tension/compression, planar rotation), while the addi-
tional spatial axis in 3D introduces duplicate bending directions and a new torsional rotation mode.

4.2 Results and recommendation for FEM integration

Figure 10 summarises the average errors of six non-internal eigenfrequencies of a 3D cube ob-
tained in PyMOTO and COMSOL across a range of Poisson ratios and locking mitigation settings.
Each configuration is labelled using the ON/OFF convention introduced in subsection 4.1, and er-
rors are reported relative to the COMSOL gold standard (ON—-ON-ON) reference. Supplementary
results for the plane strain assumption are provided in Appendix C. The findings show that all
three methods alleviated volumetric locking, but with different levels of accuracy and computa-
tional cost:

Reduced integration:

[+] Had the best stand-alone performance of all methods. Achieved near-exact agreement with
the COMSOL gold standard (ON-ON—-ON).

[+] Reliable in both 2D and 3D, across all Poisson ratio values.

[+] Introduced no additional degrees of freedom or matrix coupling. As a result, it is the most
computationally efficient method.

[+] Required minimal change to the FEM formulation, only element stiffness matrix integration
needs to be adjusted.

[-]1 Different reduced integration implementations are more accurate than others. As seen in
Figure 10, a small discrepancy can be seen between the OFF—~ON-OFF results obtained with
PyMOTO and COMSOL. PyMOTO used selective reduced integration, while COMSOL
applied a more advanced reduced integration scheme with automatic hourglass control. The
latter suppresses spurious zero-energy modes, leading to higher accuracy.
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1st order (OFF) 2nd order (ON)
Mixed (OFF
ixed (OFT) Mixed (ON) | Mixed (OFF) | Mixed (ON)
Python COMSOL
Tag OFF-OFF-OFF |OFF-OFF-OFF | OFF-OFF-ON| ON-OFF-OFF | ON-OFF-ON
v =03 0.90% 0.90% 0.62% 0.05% 0.02%
v = 048 3.43% 3.43% 0.93% 0.50% 0.07% Reduced
v = 0.49 5.40% 5.40% 0.95% 0.68% 0.07% | Integration
v = 0.4999 37.55% 37.55% 0.98% 1.08% 0.07% (OFF)
v = 0.499999 42.16% 42.16% 0.98% 1.08% 0.07%
Tag OFF-ON-OFF | OFF-ON-OFF | OFF-ON-ON | ON-ON-OFF | ON-ON-ON
v = 03 0.62% 0.18% 0.18% 0.02% 0.00%
duced
v = 0.48 0.93% 0.28% 0.28% 0.11% 0.00% Reduce
Intergation
v = 049 0.95% 0.29% 0.29% 0.29% 0.00% on
v = 0.4999 0.98% 0.29% 0.29% 0.12% 0.00% (ON)
v = 0.499999 0.98% 0.29% 0.29% 0.12% 0.00%

Average eigenfrequency relative error, [%)]
Low High

Figure 10: Results from 3D investigation on methods to improve volumetric locking.

Mixed formulation:

[+] Removed locking but at a slightly lower accuracy than reduced integration (OFF~OFF —ON).
[+] Reliable in both 2D and 3D, across all Poisson ratio values.

[-] Combining with reduced integration (OFF-ON-ON) provided no further accuracy gain over
using only reduced integration (OFF~ON-OFF).

[-] Introduced an additional pressure variable per element, complicating global matrix assem-
bly and increasing computational cost.

Second-order elements:

[+] Best accuracy for compressible material (aluminium). Second-order elements suffer less
from discretisation error at small mesh sizes.

[+] Improved accuracy in rubber materials across the full range of Poisson ratios, however by
less than other methods and had worse performance at very high Poisson ratios.

[+] In 3D, combining with reduced integration (ON—-ON-OFF') or mixed formulation (ON-OFF —ON)
had better agreement with the gold standard than any other stand-alone or two-method com-
bination.

[-1 Significantly increased the number of degrees of freedom and the global stiffness matrix
size. Added computational cost makes them impractical for topology optimisation, where
repeated assembly and solution are required.
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Recommendation. Selective reduced integration consistently provided the best balance between
numerical accuracy and computational efficiency. It performed reliably in both 2D and 3D, even
for highly incompressible rubber materials with Poisson ratios v — 0.5. Among all tested meth-
ods, it was the best stand-alone option in terms of its agreement with the COMSOL gold standard
configuration (ON-ON-ON) while keeping the formulation simple, with no additional degrees of
freedom and only a minor change in the element integration routine. Plane strain was adopted as
the 2D modelling assumption, since it better represents the boundary conditions of rubber com-
ponents than plane stress, while full 3D elasticity remains the most physically accurate option.
For these reasons, reduced integration was implemented in the PyMOTO FEM framework and
applied in all topology optimisation simulations presented in this thesis.

This study was not intended as a full characterisation of locking phenomena or FEM perfor-
mance in every context. It was based on simplified benchmarks without mesh refinement or
shear-locking analysis, using fixed boundary conditions representative of the optimisation
use case. The aim was to identify a material assumption and locking mitigation strategy
suitable for integration into the topology optimisation framework. Within this scope, the
chosen approach was adequate for the intended purpose.

24



5 Algorithm overview

Topology optimisation algorithms generally follow a common iterative workflow built around a
small set of components. The process begins with the definition of an objective function, con-
straints, material model, and governing physics. Although implementations differ in detail, most
share the same basic structure: a design domain is initialised,
misation, and equilibrium is enforced at each iteration. Convergence is declared once successive
designs change only marginally or 100 iterations take place.
builds on this structure, combining filtering and projection, material interpolation, finite element

analysis, sensitivity analysis, and iterative updates.
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Figure 11: A graphical depiction of a single iteration within the optimisation loop. In each design cycle, the optimiser
generates a new design vector X;,,;; based on the evaluated objective and constraint values. The specific steps involved

are described in detail in the relevant sections.
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A density filter for a structured mesh was applied to eliminate non-physical artefacts such as
checkerboard patterns and mesh-dependent designs (Bourdin, 2001). To further promote clear
material layouts, the filtered densities were passed through a Heaviside projection scheme, which
gradually sharpens intermediate values toward binary solutions (0 or 1) (Wang et al., 2011). The
projection operator defined as

tanh(S - t.) + tanh(8 - (z. - 0.5))

1ele) = (B 1) + tanh (B (1-1,))

(20)

where z. is the filtered density at an element and 5 controls the steepness of the projection,
with the cut-off threshold fixed at ¢, = 0.5. In the implementation used here, J was kept at 1
until iteration 30 and then progressively increased to 3 = 10 by iteration 100. This continuation
strategy prevents premature convergence while ensuring that the final designs are nearly binary.

After projection, the design variable vector x is transformed into physical material properties
using SIMP interpolation. The resulting layout is assembled and analysed using finite element
analysis. Objective and constraint values are then evaluated from the structural response.

The optimiser used in this work is the Method of Moving Asymptotes (MMA) introduced by
Svanberg (1987). Design updates rely on sensitivities of the objective and constraints with re-
spect to the densities. These sensitivities are calculated automatically in the PyYMOTO framework
(Delissen, 2023) using backpropagation, allowing the order of modules to be rearranged without
manual differentiation.

A schematic overview of a single iteration in the topology optimisation algorithm used in this
thesis to generate 2D topology optimised designs with aluminium and incompressible damped
rubber is shown in Figure 11. Equivalent 3D implementations were also realised during this work
and follow the same procedure, with additional eigenmodes and components contributing to the
strain energy density as discussed in Sections 7.5 and 6.3.

5.1 Implications of using bulk and shear modulus representation in SIMP

In traditional SIMP-based topology optimisation, material stiffness is interpolated using a single
modulus such as Young’s modulus £, while Poisson’s ratio v remains equal for both materials
and fixed. This leads to the familiar penalised interpolation scheme (Sigmund, 2001):

Esivp(pe) = Eo(1 - p2) + EypE, 20

where p, is the design variable, p is the penalisation power, and Fy, F; are the Young’s moduli
corresponding to the void (rubber) and solid (aluminium) materials. This interpolation works
well when stiffness is governed by a single scalar modulus such as E. In that case, the elasticity
matrix D can be factored as £ - D’, as shown in Equations 9, 10, and 11, where D’ contains only
geometric terms and a fixed Poisson’s ratio. This allows the element stiffness matrix to be scaled
directly by the interpolated Fgyyp(pe).
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However, when the constitutive model is expressed in terms of bulk modulus K and shear mod-
ulus G, which contribute independently to the volumetric, shear and off-diagonal components of
the elasticity matrix D (see Equations 9, 10, and 12). In other words, K and G appear in sepa-
rate positions within D and cannot be factored out, so SIMP interpolation cannot be applied to
the full matrix in one step as before. To accommodate this, unit element stiffness matrix K is
decomposed into two components:

K=K + K@, (22)

where KEK) is computed assuming K = 1,G = 0 and KEG) is computed with K = 0,G = 1. This
separation and use of unit modulus values allows the contribution of bulk and shear to be scaled
independently during global stiffness matrix assembly. Each contribution is interpolated using a
SIMP-style expression:

Ksimp(pe) = Ko(1 - p8) + Kqp%, (23)
Gsrvmp(pe) = Go(1=p2) + Gy 2. (24)

These interpolated values are then used to scale the precomputed element stiffness matrices during
global assembly:

Ke(ﬂe) = KSIMP(Pe) 'Ke(zK) + GSIMP(pe) : KEG)- (25)

Note that this separation applies only to stiffness interpolation. Since density does not differen-
tiate between volumetric and shear behaviour, no decomposition is required. Element material
density p, which contributes to the mass matrix, is interpolated directly:

Pp(pe) = po(L = pe) + p1pe (26)

here, pg and p; represent the densities of rubber and aluminium. The use of the stiffness matrix,
though, was used only for eigenfrequency analysis discussed in section 4.
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6 Modal topology optimisation design approach

When designing a vibration isolator for sensitive equipment, it is important to model how the
equipment and the isolator behave together as a single system. Considered separately, the equip-
ment table and the isolator each have their own natural frequencies and mode shapes. Once the
equipment is mounted on the isolator the dynamics change. The larger mass of the equipment
shifts the resonance frequencies of the isolator to lower values. Analysing the combined system
therefore provides a more realistic description of vibration transmission. The challenge is that
the system may have many modes, and it is not practical to optimise all of them at once. Modal
decomposition offers a solution by breaking the response into distinct modes that can be studied
independently.

Through modal decomposition, even a complex system with multiple resonance peaks can be
described as a sum of simple single-degree-of-freedom mass—spring—damper systems. Each mode
then has only one resonance peak. The modes of the instrument—isolator system fall into two
categories. Rigid body modes correspond to motion of the equipment table as a whole, with the
isolator acting as a flexible support. These are usually modelled under the assumption that the
isolator mass is negligible compared to the table. Internal modes involve deformation within
the isolator and/or the table itself, without rigid body motion of the table. Rigid body modes
appear at lower frequencies, while internal modes occur at higher ones, as shown in the combined
frequency response in Figure 12. When the internal modes lie far outside the frequency range of
interest, only the rigid body modes need to be considered in optimisation.

Figure 12 illustrates the approach. On the left, the rigid body motions of the combined system are
shown: vertical and horizontal translations and rotation of the instrument table. In reality these
motions are coupled, but after modal decomposition each is treated as an independent mode.
The middle plots show how the modes contribute individually to the frequency response, and the
right-hand sketches connect them to mechanical analogues with simple spring—damper diagrams.

Restricting optimisation to the rigid body modes makes the problem more manageable. In two
dimensions there are three such modes: two translations and one rotation. In three dimensions
there can be up to six. In ideal cases, where the instrument table and isolator layout are symmet-
rical, some of these modes are orthogonal and share identical eigenfrequencies. Each rigid body
mode and its damping can then be optimised independently. Optimisation can target the modes
most critical to performance, for example the horizontal translation mode if the equipment is es-
pecially sensitive to horizontal vibration. It is also possible to optimise several eigenfrequencies
together using a mean-eigenvalue method similar to that of Ma et al. (1995), and to set damping
constraints separately for each mode. In this way, isolators can be designed to perform well in the
relevant frequency ranges without unnecessary complexity.

28



IT — Instrument table Rigid body 4

VI - Vibration isolator modes Internal modes
/\ '\ rejected)

Combined rigid
body motion Frequency, [Hz]

| |

¢ 1 -}- B
e @ | m

Traginx e \ _E

direction
4 <=

1T
Translation in y
direction

[\
@-»

Rotation in xy plane

g8

1 s ke
&
g

E) % kyc"
&

 /

Figure 12: Modal Modelling Approach Outline. The combines isolator+instrument system is reduced into its rigid

body modes, each of the mode is represented by a linear or torsional mass-spring-damper system. Internal modes are

rejected from the analysis.

6.1 Equivalent stiffness extraction

In order to enable the modal topology optimisation, each isolator design has to be described as
an equivalent complex spring stiffness. Once a new freeform design is updated by the optimiser
it can by transformed into a complex scalar value to be further used as an objective or constraint.
The equivalent stiffness is obtained by using the direct stiffness extraction method, where a force
or torque is applied to a specific degree of freedom and the resulting displacement is measured.

To make the direct stiffness extraction more robust, a non-design region, referred to as the fasten-
ing bolt, is always included at the top of the design domain. This non-design region is set to house
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aluminium material at every iteration. The purpose of the bolt is to provide a realistic interface for
fastening the vibration isolator to the instrument table or to another system, as the isolator will be
clamped in place by fastening a bolt in this region. The bolt non-design area serves several roles:
it defines a stiff connection through which force and torque are transferred between components,
sets the width for the torque couple in rotational stiffness extraction, and ensures that the force
transfer happens over the entire bolt domain rather than a single node as shown in Figure 13. This
region is made from aluminium, has a width and depth of 1 cm and a height of 1.5cm, and is
centred within the top boundary of the 10 cm x 10 cm x 10 cm design domain.

X case Yy case Xy case XZ case

Figure 13: Deformation of finite element meshes during the extraction of equivalent stiffness for different loading
cases. Shows deformations for determining stiffness under translational loads in x, y and rotation load applied in the
planes zy and xz. The black material in the picture is aluminium and grey is rubber.

To estimate translational stiffness in the x, y, or z directions, a force of 1 N is applied at the centre
of the top boundary. The bottom boundary is fully fixed or constrained by additional bolts. The
resulting displacement of the loaded node u is then used to calculate the equivalent stiffness. For
example, in the case of = loading, the equivalent stiffness in the x direction, k,, is given by

ke =—, 27
where F), is the applied force in the = direction.

Rotational stiffness is determined using a torque couple. For planar rotation, equal and opposite
forces are applied at two points on the top boundary, producing a torque of 1 N m. The forces are
placed symmetrically about the centre, and the fastening bolt width wy, defines the lever arm, as
the forces act on the upper corners of the bolt. For torsional modes in 3D, two torque couples are
applied at four points on the top surface, positioned in the xz plane. This ensures that the rotation
of the top bolt due to the applied torque is symmetric.

The equivalent rotational stiffness is calculated from the induced rotation under the small-displacement
assumption, where tan @ ~ 6. For instance, the rotational stiffness in the xy plane is obtained from
k _ Txy wag
Ty = 5 T A
Oy  Auy

where T3, is the applied torque, 0,, is the resulting angular shift, wy, is the fastening bolt width,

(28)

and Aw, is the relative displacement in the y direction used to estimate 6. In the case of torsional
modes, the stiffness is evaluated using the average displacement difference from both torque
couples.
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6.2 Eigenfrequency of rigid body modes
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Figure 14: Equivalent 1 dimensional mass-spring models and instrument table dimensions used in the analysis.

The dynamic response of the topology-optimised designs is evaluated using an equivalent 1 di-
mensional mass—spring oscillator model, with all parameters extracted from the direct stiffness
method. For each mode, the equivalent stiffness is used together with the corresponding mass or
moment of inertia of the instrument table to calculate the complex eigenfrequency.

For axial modes, the system is represented as a single-degree-of-freedom mass—spring oscillator,
as shown in Figure 14a. For example, in the x case the complex eigenfrequency is given by

1 [k,
e —, (29)

“2r\V'm

where £, is the complex stiffness evaluated using the direct stiffness method for x loading and m
is the mass of the instrument.

For rotational modes, the equivalent system consists of a torsional spring and a rigid body with
a moment of inertia, as illustrated in Figure 14b. For example, once the equivalent rotational
stiffness k,, is determined as described in subsection 6.1, the eigenfrequency can is evaluated
using

1 [kyy
f xy = % I_xo7

where I, is the moment of inertia of the instrument table as it rotates around the axis of rotation

(30)

upon torsional loading in the zy plane. In this work the table is modelled as a solid cube as
shown in Figure 14c. Rotations in the zy and zy planes, as opposed to the xz plane, involve axes
of rotation located at different positions relative to the centre of gravity. As a result, different
expressions are required for the corresponding moments of inertia. The formulas used are given
below:
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I —m(ﬁ)2+im(d2+4h2) (1)

N2 12 ’

I, = %m(w2 +d?), (32)
M1,

I, =m(§) +Em(w +4h%). (33)

The numerical values used for the instrument table moments of inertia are listed in Table 4.

Table 4: Instrument table properties used for optimisation

. ) Moment of Inertia Moment of Inertia
Property Mass Height Width Depth ) .
(Lateral Bending) (Torsion)
Notation — m h w d I, I, I,

Value 5kg 02m 02m 02m 0.0833kgm? 0.0833kgm?  0.0333 kgm?

The Q-factor is evaluated from the ratio of the real and imaginary parts of the complex eigenfre-
quency:

Rel fi]
i =, 34
" 2Tl oY
where the subscript 7 identifies the type of system the eigenfrequency is evaluated for, i € {x,y, 2}
is used for axial modes and ¢ € {zy, zy, xz}.

6.3 Shear strain energy density

In this thesis, strain energy density is reported only for the shear contribution. This choice follows
from the fact that damping in the rubber phase is dominated by shear deformation, while bulk
deformations contribute negligibly to dissipation. The energy loss is proportional to the strain
energy stored, so regions with high strain energy density correspond to higher local dissipation.
Focusing on the shear part highlights where deformation directly translates into material damping
within the rubber material.

With complex-valued constitutive behaviour (to model damping), the elemental strain energy
density is defined using the Hermitian form

W=21e'D,e, (35)

1
2

where ¢ is the strain vector and D, is the complex constitutive matrix for element e. Similarly to
subsection 5.1, D, is assembled from separately interpolated bulk and shear contributions,

D. = Kgimp D + Gsivp Dg, (36)
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with Dg and D¢ being elasticity matrices computed using unit-bulk (K = 1,G = 0) and unit-
shear (K =0,G =1), and Kgnvp, Gsivp the complex interpolated moduli.

In the implementation, shear strain energy density was evaluated in the optimised designs pre-
sented in section 7. The shear components are extracted in Voigt form and the conjugate is taken
explicitly. In 2D this reduces to ,, only, while in 3D the vector [£,., €,., £, ] is used together
with the shear—shear block of D.. The real part of Wy,.,, visualises stored elastic energy and the
imaginary part visualises dissipated energy. Throughout this thesis, these fields are used solely
for visualisation of where deformation and dissipation concentrate in the optimised layouts.

2D case. Using Voigt ordering € = [, €4y, €4y )7 , the shear block reduces to the single compo-
nent £,, which equates to a scalar shear modulus Ggryp for isotropic materials. The shear strain
energy density simplifies to

Win = 3 Gsivp Exy Ezy> (37)

shear

where (-)* denotes complex conjugation.

3D case. With Voigt ordering € = [€,4, Eyy, Eszy Eyzs Eazs Eay ] the shear vector is defined as
€g = [ayz, Exzs 5wy]T. For isotropic materials, the shear—shear submatrix of D, reduces to

D; = Gsr L, (38)
where I is the 3 x 3 identity matrix. The shear strain energy density then reads as

Wi =1leiD,e,. (39)

shear

6.4 Topology optimisation problem statement

The topology optimisation problem is formulated to maximise the vibration isolation performance
of the design by targeting specific rigid body modes. The objective is to maximise the fundamental
eigenfrequencies of one or more targeted modes, subject to constraints on modal damping and
material usage. The optimisation problem described in Equation 40 reflects the approach used
throughout this work:

o 1
" R (0]
subject to : Qi(X) < Quax Vie S
40
Ve, “40)

0
0<l’min§l’j31 V]

The design variables x represent the element-wise material densities, bounded below by i,
to prevent singularities in the global stiffness matrix K. In this thesis, z,;, = 102 was used.

33



The functions f;(x) denote the complex eigenfrequencies of the targeted modes within the set S.
The set .S contains all of the rigid body modes to be optimised, possible choices for axial modes
include {x,y, z} and for rotational modes {xy, zy, xz}.

The objective minimises the sum of the inverses of the real parts of eigenfrequencies to be op-
timised for, following the harmonic mean approach of Ma et al. (1995), which is effective for
ensuring symmetry or balanced performance in multiple directions. This formulation emphasises
maximising the lowest eigenfrequency while also promoting increases in higher-order modes.

For each mode i in the selected set .S, the modal Q-factor must remain below the prescribed limit
(Qmax to ensure sufficient damping. Although Q-factor constraints are mainly applied to modes in
the objective, they can also be imposed on other modes if required. A volume constraint limits
the total material usage to a fraction v; of the design domain. A value of vy = 1.0 may be used
for analysis when key material placement locations for damped rubber need to be identified.

This formulation is flexible and can be applied to either a single eigenfrequency or to multiple
modes, depending on the requirements of the design problem. In this work, a single mode is
targeted unless symmetry or multi-directional performance is required, in which case the set of
included modes and corresponding constraints are adjusted. In this way, the optimiser can be
tailored to the specific isolation requirements of the instrument or application.

7 Optimisation results

7.1 Design strategy and case definitions

The design space is large and non-convex, and adding many assumptions or objectives at once
can trap the optimiser in local minima. This thesis adopts a staged strategy with as few early
assumptions as possible. First, a stiffness-only run with a low volume fraction v; (for example
vy = 0.4) and no imposed bolt locations reveals where the structure prefers to carry load and
highlights candidate support regions. Based on that evidence and the intended loading, bottom
bolt locations are then chosen (two corners in 2D, four corners in 3D by default). This method
is not limited to fastening options at the bottom of the design domain. If integration into the
larger system requires load paths to be transferred via side walls, the same procedure can be used
to place side-mounted bolts. Once these non-design bolt regions are fixed, the design space is
reduced and stricter goals are introduced: damping constraints, single or multimode objectives,
and symmetry where required.

The results focus on optimising the rigid body motions of the combined isolator-instrument sys-
tems introduced in section 6, during which the isolator deforms with eigenmodes classified in
subsection 4.1. Three cases are used throughout the 2D analysis. The x case targets the lateral
bending mode in which the fastening bolt moves along the global x direction. The y case targets
the axial tension/compression mode with dominant translation of the payload tip along y. The
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Figure 15: Optimised designs for x, y, and zy cases. Designs are optimised for eigenfrequency maximisation with
a Q-factor constraint. The top row depicts undeformed designs and the bottom row shows the same designs in
their displaced states under the targeted mode (note: grey colour is used for rubber to make their deformation more
apparent). Colour map indicates high shear strain energy density regions, highlighting where heat dissipation occurs

when the eigenmode is excited.

xy case targets the planar rotation mode, characterised by rotation in the xy plane about the z
axis. For each case, the mode used in the objective is the one with the largest participation of
the specified motion (z, y, xy) at the payload tip (or rotation of the top boundary) rather than by
frequency ordering alone.

Once the damping constraint is combined with an eigenfrequency objective, more intricate de-
signs emerge. While the overall layout still resembles stiffness-only solutions, new features
appear that exploit mechanism-like behaviour under the targeted mode. Figure 15 shows rep-
resentative examples for three core optimisation cases used in 2D (z, y, zy). Across all three
cases, CLD-like damping features can be seen, with parallel aluminium plates and rubber layers
between them. In many instances, the designs also incorporate hinge-like joints that act as com-
pliant mechanisms, amplifying local motion in the damping regions. The optimisation parameters
for these results are summarised in Table 5. The y-optimisation case is shown without Heaviside
projection, for reasons discussed in subsection 7.3.

7.2 Effects of varying Q-factor and volume fraction

Because the topology optimisation framework works with structural and damped materials, vol-
ume fraction vy and the damping limit ().« offer complementary lenses on the designs. A low
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Table 5: Optimisation parameters for the results in Figure 15.

Volume . Filter o Projection
Parameter Q-factor Resolution ) Heaviside
Fraction Radius Threshold
Notation vy Qmaa - T'min g T
1-10
Value 0.4 5 100 x 100 4.5

(iter. 30—100)

vy exposes the critical aluminium load paths. Relaxing v; and tightening () yax, in turn, shift the
focus on damping and highlights where rubber is most effective for dissipation. To investigate the
interplay between stiffness and damping in the optimised designs, a set of solutions was generated
for the  optimisation case while varying both the volume fraction v; and the maximum allowable
(max. The results are arranged as a grid in Figure 16, with v; increasing from top to bottom and
damping limit )., increasing from left to right, making the transition from damping-dominated
to stiffness-dominated designs easy to follow.

Qmax = 100 Qm\x - Qumx =2

Uf =0.4

fo= 2279, Quu =952 f, = 2228, Q.. = T5 = 196.8, Q=249 f,=149.9, Q=49  f, = 80.5, Q= 2.0

fo=2825, Q=992 f,=269.6, Q. =748 [fi=2357 Q=247 [, =1780,Q,,=49 f,=1038, Q=20

max

fo= 2962, Quu = 1000 f, = 2785, Q= 746 f, = 2375, Quu=245 f, = 1808, Q=49 f, = 106.7, Q. = 2.0

max

Figure 16: Grid of optimised designs to maximise the eigenfrequency of translational mode in the x direction. The
grid highlights the effect of volume fraction v and damping limit Q)max. The obtained eigenfrequency and Q-factor
for each optimization configuration are shown below the corresponding design.

At low volume fraction (v = 0.4), most of the available aluminium is used to form a stiff load-
carrying frame, leaving only a few key shear interfaces for damping. At moderate volume fraction
vy = 0.7, more of the domain is filled with stiff aluminium material, leaving smaller regions of rub-
ber. At this intermediate volume fraction, some of the rubber regions act as damping sites while
others serve mainly as weight-saving gaps. When volume fraction is unconstrained (vy = 1.0), alu-
minium dominates the domain and rubber is placed only in key areas for damping, forming fewer
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but enlarged or elongated regions of damping to satisfy the damping constraint. Varying () ax
shifts the balance between damping and stiffness. At high Q. (€.2. Qmax = 100), the damp-
ing constraint becomes negligible and the layouts revert to near-trivial compliance-minimising
forms. As Q. is reduced, minimal damping structures emerge at locations that are secondary
for stiffness but optimal for damping. Lowering () ..., further encourages thinner hinges and more
compliant motion that amplifies shear in the rubber. If pushed too far (e.g. Qunax = 2), stiffness
becomes secondary and extreme cases appear where the top bolt is essentially carried by rubber
alone. This family of designs is referred to as a detached head, meaning there is no aluminium
connectivity between the top fastening bolt and the base. Interestingly, this is when designs col-
lapse toward the familiar CLD damping treatment from the literature. However, the curved shape
and location of the CLD structure are still better adapted for the deformation caused by loading.
A clear trade-off runs across the grid. Reducing ()., improves damping but lowers achievable
eigenfrequencies, whereas increasing (., boosts stiffness at the expense of damping. Finally,
while higher vy increases mass, since both material phases are dense materials (py = 1500 kg/m3,
p1 = 2700 kg/m?), substantial weight reduction would require introducing a third, void-like ma-
terial phase to the formulation.
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7.3 Edge cases
7.3.1  Asymmetric designs

Some y-optimised runs converge to asymmetric layouts. This is most often observed when Heav-
iside projection is used, when the Poisson ratio is high (v > 0.49), or when moderate to high
volume fractions are applied (0.4 < vy < 1.0). This is noteworthy because most designs generated
for x and y cases are symmetric and produce displacement only along the required axis of trans-
lation or rotation. However, in y case optimisation runs once the damping requirement is satisfied
on one side, the remaining material is often allocated to a stiff connection elsewhere, which alters
the tip trajectory and introduces an = component of motion. The behaviour does not align with
the 1-DOF oscillator model in subsection 6.2. For asymmetric designs, the displacement under
a y-directed load now has two components (z and y), which increases the eigenvalue. However,
this is essentially an exploit of the absence of enforced symmetry constraints. The same effect is
observed in both 2D and 3D y case optimisation results as shown in Figure 17.

Low — High

damping | I i | | | damping

Shear strain density (imaginary part)

Figure 17: Asymmetric y-optimised designs in 2D and 3D. The 2D result is shown at a unperturbed (left) and
perturbed (middle) state. The 3D results (right) is shown at a perturbed state with a blue wireframe showing the
boundary of the unperturbed design.

7.3.2 Complications due to projection and incompressibility

This subsection examines the behaviour of the x-optimised case under near-incompressibility,
where v — (.5 amplifies the bulk response of the rubber and can interact strongly with projection.

The aim is to assess how projection influences the resulting layouts and whether path dependence
arises when v is varied. To this end, a sweep is performed with (). = 5 and no volume con-
straint, comparing projected and non-projected cases across v € {0.48, 0.49, 0.499, 0.49999, 0.499999}.
The resulting designs are summarised in Figure 18, which also includes reinitialised runs using

the v = 0.48 projected design as a starting point.
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v =0.48 v =049 v = 0.4999 v = 0.499999
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Figure 18: Grid of x-optimised designs for increasing Poisson ratio, QJmax = 5, no volume constraint. Top row:
direct optimisation without projection. Middle row: direct optimisation with projection. Bottom row: projected runs
reinitialised from the v = 0.48 design (highlighted in yellow).

Projection. Projection results in same designs with sharper boundaries and higher objective val-
ues. Designs also appear more trustworthy because the non-physical mixed aluminium-rubber
phase is reduced. However, projection can push otherwise stable z-case results into asymmetry,
as seen by comparing the v = 0.4999 results with and without projection in Figure 18. Projec-
tion also adds difficulty for the optimiser: the 5 continuation introduces small discontinuities that
perturb sensitivities and may drive solutions to local optima. An example of this effect is seen in
the v = 0.49 projected run, as it converges to a detached head layout, which has no aluminium
connectivity between the top fastening bolt and the bottom supports. Even though the v = 0.49
rubber is stiffer, the detached head solution yields a lower objective than the v = 0.48 variant.
The v = 0.499 projected run attains a higher objective, but this coincides with the rapid increase
of the bulk modulus of the rubber as v — (0.5, so comparisons across v must be interpreted with
care.

Poisson ratio. Across the sweep, designs at v = 0.48 are well-behaved, whereas for v > 0.49
many results converge to detached head layouts. At v € {0.4999, 0.499999} an amplified shear
substructure appears, in which motion at the top of the isolator is amplified below and imposes
strong shear on rubber above the bottom bolts.

Path dependence. The third row of Figure 18 reuses the v = 0.48 projected design as the initial
condition. At v € {0.49, 0.499} these reinitialised runs achieve higher objectives than the directly
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optimised detached head cases, indicating that the latter are likely local optima. For v > (0.4999,
however, the reinitialised runs yield lower objectives than direct optimisation, suggesting that the
detached head layouts represent the global optimum within this model.

Amplified shear substructure. Direct optimisation results for v > 0.4999 reveal a behaviour that
seems to exploit the computational model. Figure 19 highlights the damping mechanism that
emerges: a very thin rubber channel (two elements across) subjected to amplified motion as
the fastening bolt deflects. The local kinematics resemble incompressible fluid-like expulsion
or suction of rubber as the channel volume varies. This amplified shear mechanism combines
high stiffness (higher eigenvalues than attached head layouts) with high dissipation (large shear
strain energy density). Its extreme thinness suggests the optimiser may be exploiting numerical or
modelling limitations, potentially linked to element-scale resolution, shear locking, or the strong
bulk response at v ~ 0.5. In practice, such a configuration would be vulnerable to damage or loss
of adhesion, so the substructure is considered an unvalidated artefact rather than a viable design
feature.

Low High
damping | | — [ [ [ damping
Shear strain density (imaginary part)

Figure 19: Zoom-in of the amplified shear substructure at v = 0.499999 (projection on, Qnax = 5, no volume

constraint).

7.4 Damping substructures

Two main groups of damping substructures are identified: parallel plate and pinch. The parallel
plate type is the most common and generally the most effective. It is characterised by rela-
tive sliding motion during deformation, with the plate shape adapting to the dominant vibration
mode. Plates may be straight, curved along an arc, or elongated into channels. Their length typ-
ically scales with the damping requirement and available space in the region of largest motion.
Detached head variants also occur, in which parallel plates carry the top fastening bolt without
direct aluminium connectivity to the supports.
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Figure 20: Catalogue of identified damping substructures with representative examples.

The second group comprises pinch substructures, formed by two oblique aluminium boundaries
that compress or stretch a rubber layer between them as they come closer or move apart. This
produces a pinching action and shear in the rubber, promoting dissipation. Pinch substructures
can be reinforced by an intermediate island that further enhances shear. In some cases, regions of
rubber function less as damping sites and more as compliant zones that allow larger motion else-
where. A detached head variation of the pinch type was also noted, termed shear amplification,
and was introduced earlier in subsection 7.3.

Optimised designs often contain multiple damping substructures that engage simultaneously. Oc-
casionally, both parallel plate and pinch mechanisms are combined, distributing shear and dissi-
pation across the domain. This behaviour, however, is not universal and depends on optimisation
settings. The main damping substructures and their variants are summarised in Table 6 and illus-
trated in Figure 20.

Table 6: Classification of identified damping substructures

Variation Parallel plate Pinch
Flat plate; Curved plate; Pinch; Pinch (island variation);
Connected . .
Elongated channel Compliance region

fate: B
Detached head Curved plate; Elongated Shear amplification

channel
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7.5 Combined Objectives

So far, results have been limited to optimising a single eigenfrequency. However, as outlined
in subsection 6.4, the framework can accommodate multiple eigenfrequencies and damping con-
straints within a single run. The selection of which eigenfrequencies to maximise or constrain
can be tailored to the application or used to enforce symmetry, particularly in 3D designs.

In 3D, six rigid-body-dominated motions are relevant, but two pairs of them are equivalent. The
x case and z case correspond to lateral bending of the isolator in orthogonal directions, while
the xy case and zy case correspond to planar rotation about orthogonal axes. To ensure better
multi-directional performance, it is natural to optimise the eigenfrequencies of the x and z cases
together, or of the xy and zy cases, while also applying damping constraints to the targeted modes.

In 2D, one may choose to maximise two eigenfrequencies simultaneously, for example the x case
and xy case, while constraining damping in the remaining mode. Many such combinations are
possible depending on the intended application and the requirements of the design. Two repre-
sentative examples of multi-objective optimisation runs are shown in Figure 21. These results
are included as a brief demonstration of the broader capabilities of the framework, which are left
open for further exploration once more concrete case studies are established.

x + xy stiffness, xy damping xy + zy stiffness, xy + zy damping
y
k’c
z
Low High
damping | | I — | | | | damping

Shear strain density (imaginary part)

Figure 21: Examples of optimisation runs involving multiple eigenfrequencies and damping constraints.
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8 Conclusion and discussion

8.1 Main contributions

1. Framework development and implementation:

(a) Developed a topology optimisation framework that freely distributes damped and struc-
tural material within a structural domain, moving beyond conventional CLD sandwich
configurations that dominate literature.

(b) Enabled adaptability to boundary and loading conditions, including varied mounting
point locations.

(c) Integrated incompressible viscoelastic material damping properties into the finite ele-
ment formulation using a real bulk modulus and a complex shear modulus.

(d) Investigated remedies for numerical locking in FEM-based topology optimisation and
identified reduced integration as most effective.

(e) Applied incompressibility handling by implementing selective reduced integration into
the PyMOTO FEM modules.

(f) Developed a consistent method for visualising shear strain energy density in optimised
designs to identify high damping regions.

(g) Established a versatile design procedure, providing a basis for future research that
combines objectives and constraints for specific applications.

2. Findings and results:

(a) Framework generated unique, physically meaningful designs that have not been re-
ported in the literature before. The design region is not confined within the CLD layer,
however substructures similar to CLD now emerge within the isolator layout at strate-
gically placed locations.

(b) The choice of rigid body modes to optimise for within the topology optimisation rou-
tine can tune the isolator’s performance according to the inertial properties of the sen-
sitive instrument unit.

(c) Discovered and categorised damping substructures, including parallel plate, pinching,
and mixed mechanism configurations. Showed that these damping mechanisms are
case-specific and often non-intuitive, producing results unlikely to be conceived by a
human designer.

8.2 Limitations:

The framework and the assumptions on which it relies introduce a number of limitations and open
questions. These relate to the accuracy of the finite element modelling, the absence of manufac-
turing and practical constraints, the simplified treatment of viscoelastic material behaviour, and
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the idealised nature of modal topology optimisation approach and boundary conditions. Each of
these areas is discussed in turn below.

Accuracy The accuracy of the finite element modelling remains an important open question.
While the framework reproduces reference results for simple cubic or prismatic rubber blocks,
as discussed in section 4, it is less certain that this accuracy holds for the irregular and intricate
geometries produced by topology optimisation. Incompressibility is currently modelled using a
reduced integration approach, which mitigates but does not entirely eliminate volumetric lock-
ing, and localised locking effects may still occur in complex subregions. Shear locking has not
been systematically investigated, either in simple test blocks or in the optimised designs, leav-
ing another potential source of inaccuracy unquantified. The damping model itself, which treats
the bulk modulus as real and the shear modulus as complex, has a sound theoretical basis and
has been used in previous studies, but its validity in a topology-optimised setting remains to be
confirmed. Furthermore, the assumption of perfect adhesion between aluminium and rubber in
the model neglects practical issues such as limited interfacial bonding and differential thermal
expansion, which in real structures could lead to partial or complete de-bonding. Experimental
testing is therefore essential to confirm that the simulated dynamic behaviour is representative of
what would occur in practice.

Manufacturability The current optimisation framework does not include any manufacturability
constraints, meaning that some features in the resulting designs may be impractical or impossible
to produce. No stress constraints are imposed, so highly localised stress concentrations could
arise, leading to premature failure in real applications. Static or launch loading of the isolator has
also not been considered, even though sustained loads could influence both the structural integrity
of the aluminium regions and the long-term behaviour of the rubber. From a manufacturing per-
spective, the most feasible approach for these designs would likely involve casting or additive
manufacturing of the aluminium framework, followed by moulding rubber into the resulting cav-
ities. However, this process would be incompatible with certain configurations produced by the
optimiser, such as isolated aluminium islands or fully enclosed voids, which cannot be accessed
for rubber casting. Incorporating geometric constraints, penalisation schemes, or load-based re-
strictions to prevent such unmanufacturable or mechanically unstable features would therefore be
a necessary step towards transitioning the method from a purely academic tool to a design process
suitable for industrial use.

Viscoelasticity The framework also simplifies the behaviour of viscoelastic rubber, omitting
several effects that could significantly influence real-world performance. Frequency-dependent
properties are not included, even though the stiffness and damping characteristics of viscoelastic
materials can vary with excitation frequency. Capturing this behaviour would require solving a
non-linear eigenfrequency problem in which both the elastic moduli and the loss factor vary with
frequency. Temperature dependence has likewise been neglected, despite its relevance not only
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in satellite applications, where thermal gradients and fluctuations are common, but also due to
self-heating in the rubber during operation. As the damping substructures dissipate energy, their
temperature could rise, altering their mechanical properties in ways not captured by the current
model. Long-term effects such as creep, which can cause gradual shifts in geometry and material
properties under sustained loads, are also not represented. In some applications, pre-tensioning is
used to mitigate creep-induced changes, but this has not been considered here.

Modal decomposition The modal topology optimisation design approach described in section 6
rests on several simplifying assumptions. The connection between the vibration isolator and the
instrument table is modelled as acting solely through the mounting bolts, whereas in reality the
entire top surface of the isolator would be in contact with the instrument. This broader contact
area could introduce additional coupling effects and alter the dynamic response. The internal
modes of both the isolator and the instrument table are also disregarded, under the assumption
that they are far from the target modes of interest. However, in some cases these internal modes
could lie close enough in frequency to influence overall performance. A further simplification is
the reduction of the full geometry to a single complex stiffness value, following the one-degree-
of-freedom complex stiffness—mass oscillator model outlined in subsection 6.2. In this reduction,
the isolator mass is neglected, since it is replaced by an equivalent massless spring. While this
mapping is convenient, its accuracy for highly non-uniform, topology-optimised layouts remains
uncertain. In symmetric and homogeneously damped structures the approximation is often ad-
equate, but in designs where stiffness and damping are distributed unevenly, the reduction may
not fully capture the true dynamic behaviour. Additionally, some optimised designs, such as the
asymmetric ones, exhibit multi-directional motion when excited, deviating from the pure single-
axis behaviour assumed in the reduced model.

Lack of data Finally, the study was conducted in a largely academic context, with limited use
of real-world application data. The rubber properties used in the simulations were derived from
tensile tests on the aerospace-grade elastomer SCVBR® supplied by ERIKS. These tests were per-
formed at TNO across several temperatures, with the 20 °C data point selected for this study. The
mass and inertia values of the instrument table were likewise approximated, rather than obtained
from a specific hardware configuration.Representative micro-vibration spectra, which would ide-
ally serve as design targets, were not available for this project, as publicly accessible datasets
remain scarce and specifications are rarely shared in detail. Similarly, no constraints on size,
preferred mounting arrangement, or mass budget were imposed either. Consequently, the designs
explored here were shaped entirely by the optimisation objectives and constraints defined within
the study. This ensured a clear focus on the methodological aspects, while leaving scope for
future work to incorporate application-specific requirements and more detailed input data.
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A Strengths and drawbacks of passive vibration isolation methods

Table 7: Passive vibration isolation methods with their strengths and drawbacks. Adapted from Shi et al. (2024).

Isolation Method Strengths Drawbacks

Viscoelastic Low weight, size and cost, adaptable to Low performance at low fre-
materials small satellites quency, sensitive to temperature
Viscous  fluid High isolation performance, can be in- Viscous fluid dependence on
damper tegrated into Stewart hexapod or Octo- temperature, effect of vacuum

platforms environment on fluid properties

Mechanical Light weight, cost and simple to integrate =~ Trade-off between bearing ca-
Springs pacity and isolation performance

Quasi-zero stiff-

ness mechanism

Good isolation performance at low fre-

quencies, no effect of temperature varia-

Effective only with small exter-

nal excitation

tion on isolation performance, adaptability

to small satellite platforms

Shape memory Delamination in case of SMA blades In case of SMA washer, the

alloy tightening torque may affect the
characteristics of the washer
Folded beams Good suppression effect at high frequency, Low static stiffness to support
light weight load, poor performance at low
frequency
Metamaterials Light weight, small volume and easy to Limited bearing capacity

integrate, effective over wide frequency

range

B Temperature- and/or frequency-dependent viscoelastic material properties

Viscoelastic materials (VEMs) uniquely combine elastic and viscous behaviours, exhibiting both
instantaneous and time-dependent responses to external loads. Purely elastic materials store me-
chanical energy without dissipation, whereas purely viscous materials dissipate energy as heat.
In purely viscous materials, stress is proportional to the strain rate, whereas in elastic materials,
stress is proportional to strain (Yun and Youn, 2017). When harmonically loaded at a predefined
frequency, the material exhibits a harmonic response at the same frequency, but with a phase
lag between the applied load and the resulting strain. This phase lag is directly related to the
material’s damping characteristics (Moreira et al., 2010).

The stress-strain curve under cyclic loading of VEMs displays a hysteresis loop, depicted in
Figure 22, where the enclosed area indicates the energy dissipated as heat. Due to the viscous
properties, the mechanical properties of viscoelastic materials are affected by the deformation
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rate. As a result, their deformation behaviour at varying rates is depicted by a series of curves
instead of a single stress-strain curve (Elmoghazy et al., 2024). This behaviour allows VEMs to
absorb and dissipate energy, making them particularly valuable in applications requiring vibration
damping or dynamic load resistance (Moreira, 2014).

Glass plateau Glass-rubber Rubber plateau
T<Tg transition T>Tg
*f% ~Tg
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Figure 22: Typical hysteresis loop from cyclic ~ Figure 23: The influence of frequency and temperature on the stor-
loading of VEMs. (Elmoghazy et al., 2024) age modulus and loss factor. (Rade et al., 2019)

The material characteristics of viscoelastic materials have a clear non-linear dependency on fre-
quency and temperature (Moreira et al., 2010). The behaviour of VEMs as a function of temper-
ature can be divided into three distinct regions shown in Figure 23: the glassy state, the glass-
to-rubber transition zone, and the rubbery state. In the glassy state, the material exhibits a high
storage modulus and a low loss factor, indicative of its rigidity and minimal energy dissipation.
The glass-to-rubber transition zone is marked by a significant decrease in the storage modulus and
a peak in the loss factor, reflecting substantial energy dissipation and material softening. Finally,
in the rubbery state, both the storage modulus and the loss factor become low and nearly constant.
These changes are associated with different levels of mobility of the internal polymer chains. At
temperatures bellow glass transition temperature 7, and high frequency excitations the polymer
chains are rigid and result in high stiffness. When the frequency of applied load is reduced or the
material’s temperature is increased, polymer chains loosen resulting in a lower material stiffness
(Moreira et al., 2010). For engineering applications, viscoelastic materials are typically chosen to
operate within the transition zone or the rubber-like phase, as these regions offer the best damp-
ing performance (Rade et al., 2019). In applications, where temperature- or frequency- dependent
properties are to be considered, various viscoelastic material models can be used such as the gen-
eralised Maxwell model (Wu et al., 2023; Zhang et al., 2022) or the Golla-Hughes-McTavish (Wu
et al., 2024a; Li et al., 2022; Wu et al., 2024¢). However, the characterisation of these models
require experimental evaluation of parameters to fit the behaviour of a real-life VEMs to be used.

Time-temperature superposition principle

Interestingly, the dependencies on temperature and frequency exhibit a similar behaviour. In
particular, amorphous polymers, one of the most common classes of viscoelastic materials in en-

52



gineering, demonstrate an equivalence between time or frequency effects and temperature effects
above their glass transition temperature 7, (Rade et al., 2019). This equivalence is formally de-
scribed by the time-temperature superposition principle, which provides a framework to predict
material behaviour under varying temperature and frequency conditions. According to this princi-
ple, the material’s response at a specific time ¢ (or frequency w) and temperature 7' can be related
to its behaviour at a "reduced" time ¢, (or frequency w,) and a corresponding "reduced" temper-
ature 7;. (Dealy and Plazek, 2009). In the frequency domain, the time-temperature superposition
principle can be expressed as shown in Equation 41:

wr=ar (T, T,)w
E' (wn, T = ap (T, T,) E'(w, T) (41)
E"(w,T,)=ar (T,T,) E"(w,T)

where ar(T,T,) are horizontal shift coefficients applied to the isotherms of storage and loss
moduli at temperature 7' to estimate material properties at another temperature 7,.. Consequently,
by shifting along the frequency axes, the functions describing the storage modulus and loss fac-
tor at various temperatures can be combined into master curves, as shown in Figure 24. Time-
temperature superpositions allows to estimate viscoelastic material behaviour at any temperature
using test data gathered at other temperatures, which is useful for measuring material proper-
ties beyond the capabilities of the test setup (e.g. high temperatures) by testing at a decreased
frequency or vice versa.

(a) (b)
E’ E’

ar(T,T)

ar(L,T,)

Figure 24: Time-temperature superposition principle: (a) storage modulus and loss factor isotherms at temperatures
Ty, T, and T,. (11 > T, > T5), (b) temperature shifted storage modulus and loss factor at the reference temperature
of T,.. (Rade et al., 2019)
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C Additional results from FEM validation

The plane strain assumption was partially investigated to compare eigenfrequency errors across
Poisson ratios and mitigation methods. Due to technical limitations, complete results could not
be obtained, and a full set of plane stress results was not tabulated. The available data nonetheless
illustrate the tendency of plane strain models to exhibit locking at high Poisson ratios and the
effect of some locking mitigation techniques in 2D.

0’ (OFF) 0 (ON)
u-p (OFF)
u-p (ON) u-p (OFF) u-p (ON)
Python COMSOL
Tag OFF-OFF-OFF | OFF-OFF-OFF | OFF-OFF-ON | ON-OFF-OFF | ON-OFF-ON
v = 03 0.070% 0.070% 0.044% 0.000%
Reduced
v = 048 i
Integration
v = 049 0.600% 0.778% 0.098% 0.000% (OFF)
v = 0.4999 19.995% 19.995% 0.105% 0.000%
v = 0.499999 73.181% 73.185% 0.105% 0.000%
Tag OFF-ON-OFF | OFF-ON-OFF OFF-ON-ON ON-ON-OFF | ON-ON-ON
v = 03 0.037% 0.008% 0.008% Reduced
v = 048 educe
Intergation
v = 0.49 0.087% 0.003% 0.003% (ON)
v = 0.4999 -0.014% 0.003% 0.003%
v = 0.499999 -0.014% 0.002% 0.002%

Figure 25: Supplementary results for the plane strain assumption. Some data points are missing due to incomplete
simulations, but the overall trend illustrates increasing errors at higher Poisson ratios without locking mitigation.

Comment on material assumptions. For plane stress, eigenfrequencies were consistently lower
and largely insensitive to Poisson’s ratio, which agrees with the fact that the bulk modulus K (E, v/)
does not diverge as v — 0.5. However, plane stress neglects out-of-plane constraints and is
therefore not representative of rubber components. The partial plane strain results shown above
confirm the expected locking behaviour as v — 0.5, with large errors in the OFF—-OFF—-OFF
configuration. For completeness, the 3D case is included in the main text (Figure 10), where
similar trends appear together with additional discretisation error due to the coarser mesh. In
practice, plane strain was adopted as the 2D assumption, while full 3D elasticity remains the most
physically accurate representation.
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