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Introduction

A quantum computer is a computer which applies the properties described by quantum physics to
process information. It is thought to be a very promising new technology of which the development
forms one the main goals not only for Qutech at TU delft [1], but also for major computing
companies such as IBM [2], Microsoft [3] and goole [4]. So the question arises: Why is quantum
computing believed to be so promising? For this there are three main reasons [5]. The first
reason is that there already exist algorithms which, by making use of the principles of quantum
mechanics, are able to solve certain problems much faster than a classical computer can. The
most famous example for this is the problem of finding the (unique) prime factorization of large
integer numbers.1 While a classical computer may take years (exponential time in the context
of complexity theory) to crack this problem, an already developed algorithm, Shors algorithm, is
thought to be able to solve the problem much faster (in polynomial time) [6]. The second reason
is that for many other problems theoretical arguments for speedups exist, such as the simulation
of quantum systems or optimization problems [7]. The last is that, and this argument somewhat
implies the previous two, no classical computer can simulate a quantum computer, thus making it
a truly new thing.

The arguments mentioned above paint a picture of why the quantum computer is new and can
achieve things a classical computer never can. The next question then naturally follows: what can
the quantum computer be used for? For some mathematical operations clear speedups, such as the
before mentioned prime factorisation or for instance matrix inversion [5], are shown to be possible.
In physics the quantum computer shows promise in the simulation of quantum systems, making
it able to tackle unsolved problem in high energy physics and cosmology [8]. From a computer
science perspective the quantum computer shows great potential for machine learning and the
before mentioned optimization. Lastly the most important use for society is thought to be the
simulation of large molecules, which used in the development of medicine and new materials [3].

Theoretically, following the description given above, any quantum system can principally be
used to construct such a quantum computer. But of course not every quantum system forms a
sensible candidate. One of the main questions in trying to build a quantum computer is thus,
which quantum system to use to build it. To illustrate the relation between a quantum computer
and the system it is built from, it is useful to look at the case of classical computing. A classical
computer makes use of so called bits, which can be 0 or 1. Any two state system can be used to
represent the 0 and 1, for instance orientation of a helix of a strand of DNA or two sides of a coin,
but both of these systems are not very useful for computation. In classical computing the best
way to represent the bits was found to be a high-low voltage distinction. In a classical computer
the 1 bit represents a high voltage (a voltage higher than 2.2 Volt) and the 0 bit a low voltage
(a voltage lower that 0.4 Volt). These voltages can be swiftly manipulated by a resistor, making
the processing of information possible. Similarly, for the construction of a quantum computer a
suitable two level system has to be chosen. In this report such a possible representing system is
discussed.

So what makes this search for a suitable two level system so challenging? One of the reasons
for this stems from a fundamental property of quantum mechanical systems - a quantum system
cannot be measured without creating an uncontrollable disturbance in the system [5]. This has big
implication for controlling the quantum bits, qubits, of the quantum computer. Since the state of

1This problem is so hard for a classical computer that it forms the basis of most encryption schemes for protecting
data.
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a quantum system can be disturbed by the environment, the state of the qubit can change from
a 1 to a 0 state, causing an error in the calculation. The problem is now complicated by the fact
that the state can not be simply checked by doing a measurement on the qubits, since this would
disturb the calculation just as much as when it would be is going well. The problem is thus to not
only find a two level system, but also design it in a way where the errors in the calculation can be
detected and controlled.

The field of research interested in this question is called ’Quantum Error Correction’ and it
investigates, as the name implies, how to detect and correct errors (caused by the environment) in
quantum computing. In Quantum Error Correction there are two ways to approach the previously
mentioned problem. The first approach is to encode the information in more bits than originally
necessary such that when a qubit obtains an error, the other qubits can be used to detect this
error and obtain its original meaning. (This is somewhat similar to the technique used by CD’s
and DVD’s to still play the right sound or film even if there are some scratches on them.) The
second approach, and this is approach of this report, is to use error correction as one of the design
foundations of the quantum computer.

The aim of this report is to theoretically study an example of such an intrinsically error-
correcting design of the qubit. In the first three chapters some of the necessary theory for the
theoretical description of these quantum computer designs is discussed. The design discussed here
encodes the qubits in a rotor system. A rotor system is a system with rotational symmetry (and
which keeps this symmetry over time). A mathematical study of the variables describing the rotor
space, the angular momentum and angle of the position, and the relations between the two is
provided in Chapter 1. Chapter 2 introduces most of the basic concepts used to describe the
quantum computer. Special emphasis is placed on stabilizer measurements, which form the basis
of the error correcting design, and on universality of a gate set, a gate being an operation on the
qubit. Universality means every possible algorithm for the quantum computer can in principle
be implemented. Chapter 3 uses the concepts of a stabilizer measurement to introduce the main
concepts of an error correcting encoding design. The class of error correcting designs discussed here
is called shift resistant encodings. After introducing the main concepts of shift resistant encodings,
two examples are discussed. In Chapter 4 a theoretical shift resistant scheme of building a quantum
computer in a rotor space is provided. The novelty presented here is that the encoding, which was
constructed before in [9], is accompanied by a gate set which commutes with the small shift errors.
This means that the gate set presented here, preserves the error correcting qualities of the encoded
qubit. While this design is an interesting theoretical study, a possible realization is still far away.
To study the current level of encoding qubits a realizable qubit design is discussed in Chapter
5. While this scheme is not fully shift resistant, it still uses many of the same error correcting
principles in its design. The design expands on the concepts used to create the transmon qubit,
which is one of the most successful qubits at this moment [10]. The main goal of the chapter is
to study the Hamiltonian used to describe this new qubit design and learn what the eigenstates
are. Lastly, in Chapter 6 a short conclusion and summary of the main results of this report are
provided.

3



1. The rotor space

For the goal of encoding a qubit into a rotor system, it is important to have a full grasp of the
mathematical details describing a rotor. A rotor represents a physical system with rotational
symmetry, which, similar to the classical case, is best described using the angular momentum L̂
and the angle Θ̂. It is in terms of the eigenstates of these operators that we will encode the qubit
in chapter 4.

This Chapter is structured as follows. First the angular momentum operator is discussed along
with the relevant Hilbert spaces associated with the description of the rotor, after which the shift
operator and the floored angular momentum operator are introduced. After this the angle operator
is discussed. First some pitfalls in the relation between the angular momentum operator and the
angle operator are discussed, after which a construction of the angle operator is presented. This
concludes the discussion of the rotor. In the last section of the chapter is an intermezzo in the
discussion of encoding a qubit in a rotor. Here the related case of the number and time phase
operator of an harmonic oscillator is discussed.

1.1 The angular momentum operator

The angular momentum operator is easiest defined on the Hilbert space of l2pZq. This is the
Hilbert space of the two sided converging series al with l P Z such that

l2pZq “
 

a “ palq
8
´8,

8
ÿ

l“´8

|al|
2 ă 8

(

, (1.1)

where the inner-product is defined as pa|bq “
ř8

´8 albl (which is always finite by the Cauchy-
Schwartz inequality). Now for the series to represent a state we require that

ř8

l“´8 |al|
2 “ 1.

Here the angular momentum state |ly is defined to be the series with a 1 on the l’th position
and zeros everywhere else, meaning

|ly “

#

an “ 0, for n ‰ l,

an “ 1, for n “ l.
(1.2)

The angular momentum operator is now defined to act on this state by

L̂ |ly “ l |ly , l P Z (1.3)

and this definition is extended by linearity. With this extension we should however be careful,
because if we apply the operator on a series where

ř8

l“´8 |lal|
2 diverges the result is not in l2pZq

any more and thus undefined. This means that the operator L̂ is only well-defined on the domain
of

DpL̂q “

"

palq
8
l“´8 :

8
ÿ

l“´8

|lal|
2 ă 8

*

. (1.4)

With this choice of the domain, L̂ can be shown to be self-adjoint. This completes the definition
of the angular momentum operator.

Now we can use this definition to investigate the representation of the angular momentum
operator on the Hilbert space of L2p0, 2πq with the normalized Lebesgue measure dθ

2π (and the

4



standard innerproduct of pf |gq “
ş2π

0
fg dθ2π ). The Hilbert space of l

2pZq can be mapped to L2p0, 2πq
by the isometry given by the discrete Fourier transform of the series. This relation can be expressed
as

a “ p..., a´1, a0, a1, a2, ...q Ñ
8
ÿ

l“´8

ale
ilθ “ fapθq (1.5)

and this relation expresses an isometry since
8
ÿ

l“´8

|al|
2 “

1

2π

ż 2π

0

|fapθq|
2dθ. (1.6)

To see how the angular momentum operator acts on L2p0, 2πq we take the discrete Fourier trans-
form of equation 1.3. By following the transformation of equation 1.5 we can see that the state
|ly is represented by eilθ in L2p0, 2πq. This gives that the angular momentum should act, in its
representation on L2p0, 2πq, as

L̂eilθ “ leilθ, (1.7)

from which we can conclude that the angular momentum operator is given on L2p0, 2πq by

L̂ “ ´i
B

Bθ
, (1.8)

which is defined on the domain of

DpL̂q “ tf P L2p0, 2πq : f 1 P L2p0, 2πqu. (1.9)

This domain is equivalent to the domain of equation 1.4 by using the Fourier transform.

The ’floored’ angular momentum operators

In order to achieve a error resistant encoding we make use of angular momentum operators with
a floored eigenspectrum. These ’floored’ angular momentum operators (for any k P N) are defined
to act on the eigenstates of L̂ as

ˆZ

L

k

^

|ly “
Z

l

k

^

|ly , l P Z, k P N, (1.10)

and this definition is extended by linearity on the domain of the operator. Maybe somewhat
surprisingly, the domain of ˆXL

k

\

given by

DpL̂q “

"

palq
8
l“´8 :

8
ÿ

l“´8

|

Z

l

k

^

al|
2 ă 8

*

(1.11)

is the same as that of the ‘unfloored’ version of L̂. This means that we (mathematically) do not
loose any of the states allowed by L̂ by adding the floored angular momentum operators to our
arsenal of possible operators.

Here we will shortly prove this claim of DpL̂q “ Dp ˆXL
k

\

q for a fixed k P N. Firstly the case

of DpL̂q Ď Dp ˆXL
k

\

q is somewhat trivial. Since the eigenvalues of the flooring function, in absolute
value, are always smaller than the regular angular momentum, we obtain that

ř8

l“´8 |
X

l
k

\

al|
2 ď

ř8

l“´8 |lal|
2 ă 8. Therefore DpL̂q Ď Dp ˆXL

k

\

q. Secondly we prove the sightly harder case of

Dp ˆXL
k

\

q Ď DpL̂q, let palq8l“´8 P Dp ˆXL
k

\

q. Then, since
ř8

l“´8 |
X

l
k

\

al|
2 ă 8 and |

X

l
k

\

| ď |
X

l
k

\

|2, it
also holds that

ř8

l“´8 |p
X

l
k

\

˘ 1q|al|
2 ă 8. From this we can also conclude that k

ř8

l“´8 |p
X

l
k

\

˘

1q|2|al|
2 ă 8, leading to the final result of

ř8

l“´8 |pk
X

l
k

\

` signplqkq|2|al|
2 ă 8. Now we remark

that |k
X

l
k

\

` signplqk| ě |l| for all l P Z. Thus by the same argument as above we conclude that

Dp ˆXL
k

\

q Ď DpL̂q. Thereby we obtain the claimed result of DpL̂q “ Dp ˆXL
k

\

q.
Here we also note that the operator defined above can be shown to be self-adjoint, where the

prove is basically the same as the (unfloored) angular momentum operator L̂. We thereby conclude
the floored angular momentum operators to be legitimate quantum mechanical observables on the
domain DpL̂q.
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1.1.1 Shifts and Weyl relations
For the encoding of the qubit in a rotor setting some state operations need to be defined. The
main state operations on the rotor space are given by the state shift operator V̂ and the phase
shift operator eiαL̂. In this section both operators are introduced and their commutation relation
are shown.

The state and phase shift operator

For the angular momentum eigenstates the state shift operator V̂ can be defined as

V̂ |ly “ |l ` 1y . (1.12)

and can be extended by linearity as

V̂ p..., a´2, a´1, a0, a1, a2...q “ p..., a´3, a´2, a´1, a0, a1, ...q. (1.13)

Note that this operator retains the norm,
ř

nPZ |an|
2 “

ř

nPZ |an´1|
2, and acts surjectively on the

Hilbert space. This makes the state shift operator a unitary operator.

Since L̂ and ˆXL
k

\

are self adjoint they generate groups of unitary operators of the form eiα
ˆ

tLk u,
with α P R. Note that for k “ 1, the floored operator is simply the regular angular momentum
operator. These unitary operators act on the eigenstates as

eiα
ˆ

tLk u |ly “ eiαt lk u |ly , α P R. (1.14)

Because of this action these operators are called the phase shift operators.

The Weyl commutation relations

The commutation of the phase and the state shift operator is given by Weyl relations. These Weyl
relations are given by

eiα
ˆ

tLk upV̂ kqm “ eiαmpV̂ kqmeiα
ˆ

tLk u, k P N, m P Z, (1.15)

which is an expression very often used in calculating the error propagation. Here we want to prove
these Weyl relations.

This is easily done by applying both sides of the equation to the eigenstates. This gives that

eiα
ˆ

tLk upV̂ kqm |ly “ eiα
ˆ

tLk u |l ` kmy

“ eiαt l`kmk u |l ` kmy “ eiαpt
l
k u`mq |l ` kmy

“ eiαmeiαt lk u |l ` kmy and

(1.16a)

eiαmpV̂ kqmeiα
ˆ

tLk u |ly “ eiαmpV̂ kqmeiαt lk u |ly “ eiαmeiαt lk upV̂ kqm |ly

“ eiαmeiαt lk u |l ` kmy ,
(1.16b)

which proves equation 1.15.

1.2 The angle operator on l2pZq

The second observable, conjugate to the angular momentum operator, used to describe the rotor is
the angle operator Θ̂. This operator represents the angle of the position of the particle with respect
to the rotation axis. Most intuitively this operator is represented on the Hilbert space of L2p0, 2πq,
where it simply acts as a multiplication given by Θ̂fpθq “ θfpθq. But since the conserved states
are easily expressed by the angular momentum states, we want to find an expression of the angle
operator which acts in the l2pZq Hilbert space of the angular momentum.
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However this proves to be not an easy task, as is shown in the paragraph below. There we
show that a naïve construction of the angle operator by demanding rL̂, Θ̂s “ i will never work.
Instead their commutation needs to act on the Weyl level as presented above. These commutation
relations provide a candidate operator. We then show this operator to act as desired and explain
why the commutation relation of rL̂, Θ̂s “ i fails.

The pitfall of a naïve construction of the angle operator

The construction of the angle operator has some subtle problems. Since angular momentum and
angle mirror momentum and position, the naïve desire would be to construct a angle operator on
l2pZq satisfying the commutation relation

rL̂, Θ̂s “ i. (1.17)

However, this proves to be a dead end.
The reason for this is given by the application of the commutation to the |ly eigenstates. This

gives

@

l1
∣∣ rL̂, Θ̂s |ly “ i

@

l1
ˇ

ˇl
D

“ iδl1l, (1.18)

while at the same time, by the self-adjointness of L̂ (which gives xl1| L̂ “ l1 l̄1), we get
@

l1
∣∣ rL̂, Θ̂s |ly “ @

l1
∣∣ L̂Θ̂ |ly ´

@

l1
∣∣ Θ̂L̂ |ly “ pl1 ´ lq

@

l1
∣∣ Θ̂ |ly , (1.19)

which gives i = 0 if l’ = l, which is clearly wrong. (see also [11]). This shows that a more carefull
approach for the construction of the angle operator is required.

The construction of the angle operator

As noted before, because of the analogy with position and momentum, the angular momentum and
angle operator are expected to commute up to a phase. Only this commutation does not happen
on the ’operator level’ but instead on the set of unitary operators they generate. This commutation
is given by the Weyl relations. In this case of the angle and angular momentum this relation is
desired to take the form of

eiαL̂eikΘ̂ “ eikαeikΘ̂eiαL̂. (1.20)

The goal here is to construct a Θ̂ operator which satisfies this relation (see also [12]).
For this goal the shift operator reveals its value. The unitary shift is a unitary operator, which

satisfies the required relation of
eiαL̂V̂ k “ eikαV̂ keiαL̂. (1.21)

By the spectral theorem for normal (or unitary) operators [13], there must now be a self-adjoint
operator (conveniently named) Θ̂ such that V̂ k “ eikΘ̂ for k P Z.

In order to show that this conveniently named operator actually is the angular position operator,
we first off start with the definition of the angular position operator. The angular position operator
is defined to act as

Θ̂|θq “ θ|θq. (1.22)

These ‘eigenstates’ are actually improper eigenstates (improper because they are non-normalizable),
which is why they are not denoted by a regular ket symbol. They are given by1

|θq “
ÿ

lPZ
e´ilθ |ly . (1.23)

It is somewhat to be expected that the eigenstates of the angular position are improper, since the
angular position can take any value between 0 and 2π, which is an uncountable set, but is here
only represented by countably many numbers.

1The following manipulations can be made mathematically rigorous by the notion of approximative eigenvalues.
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From this definition we can further define the before mentioned eikΘ̂. For this we remark that
from the definition of equation 1.22 it follows that for n P N we get,

Θ̂n|θq “ θn|θq, (1.24)

with which we can define eiΘ̂ by

eiΘ̂ “
8
ÿ

n“0

iΘ̂n

n!
. (1.25)

This operator acts on the eigenstates in an expected manner as

eiΘ̂|θq “
8
ÿ

n“0

iθ̂n

n!
|θq “ eiθ|θq. (1.26)

Now in order to see the claimed relation between the operator eiΘ̂ and the shift operator from
above, we let the shift operator act on the eigenstates. Because the states do not converge, the
action of V̂ on the eigenstate is not properly defined, but can be understood by taking truncated
sums (for large M)

V̂
M
ÿ

l“´M

e´ilθ |ly “
M
ÿ

l“´M

e´ilθ |l ` 1y “
M`1
ÿ

l“´M`1

e´ipl´1qθ |ly “ eiθ
M`1
ÿ

l“´M`1

e´ilθ |ly . (1.27)

This gives that
V̂ |θq “ eiθ|θq “ eiΘ̂|θq, θ P r0, 2πq, (1.28)

showing the claimed relation of V̂ k “ eikΘ̂ to hold.
To gain a more explicit form of angular position Θ̂ operator, we again make use of the spectral

theorem. Since we know the spectrum of Θ̂ to be r0, 2πs the operator can be represented as

Θ̂ “

ż 2π

0

θ|θqpθ|
dθ

2π
, (1.29)

where the mathematically rigorous interpretation of the integral is as a spectral integral, with
|θqpθ| dθ2π as the spectral measure. Using this form of the operator, we can rewrite this to

ż 2π

0

θ|θqpθ|
dθ

2π
“

ż 2π

0

θp
ÿ

mPZ
e´imθ |myqp

ÿ

nPZ
e´inθ xn|q dθ

2π

“
1

2π

ż 2π

0

θ
ÿ

m,nPZ
eipn´mqθ |my xn| dθ

“
1

2π

ÿ

m,nPZ

ż 2π

0

θeipn´mqθdθ |my xn|

“
1

2π

ÿ

m‰n

ˆ

rθ
1

ipn´mq
eipn´mqθs2π0

´

ż 2π

0

1

ipn´mq
eipn´mqθdθq

˙

|my xn|´ 1

2π

ÿ

nPZ

ż 2π

0

θdθ |ny xn|

“
ÿ

m‰n

1

ipn´mq
|my xn|´ πÎ,

(1.30)

which results in
Θ̂ “

ÿ

m‰n

1

ipn´mq
|my xn|´ πÎ. (1.31)

This gives the required explicit form of the angular position operator.
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Why rL̂, Θ̂s “ i fails

So why does the naïve construction of the Θ̂ by rL̂, Θ̂s “ i fail then? For this we have to look at
the domain of Θ̂ (simply defined by ta P l2 : Θ̂a P l2pZqu). If Θ̂ acts on the eigenstates |ly on l2pZq
we obtain

Θ̂ |ly “ π |ly `
ÿ

m‰l

1

ipl ´mq
|my . (1.32)

This state is still in the l2pZq Hilbert space, but lies outside of the domain of L̂ given by equation
1.4. Thus we conclude that the image of Θ̂ acting on the eigenstates |ly and the domain of L̂ are
disjoint, making the expression xl1| L̂Θ̂ |ly non-sense, which leads to the contradictions from above
(meaning those from 1.19).

This means that although the standard indicator of two observables being conjugate, the com-
mutation relation rL̂, Θ̂s “ i, fails, the angle operator as an observable conjugate to the angular
momentum can still be constructed.

1.3 Intermezzo: The problems related with number and phase

As a short intermezzo in the discussion of the rotor space, we here to take a look at the related
case of the number n̂ and time phase operator φ̂. This time phase operator φ̂ was for a while
thought to be the conjugate observable of the number operator n̂, in somewhat analogous sense to
the relation between the angular momentum and angular position from above. The key difference
however is that in this case the associated Hilbert spaces are l2pNq and L2p0, 2πq. This difference
between l2pNq and l2pZq leads to the fact that the construction of a time phase operator, as a
variable conjugate to the number operator, as a ’standard’ quantum mechanical observable was
shown to not be possible [14]. But still this phase operator is used in the literature, as for example
in [15] (which will be discussed further in Chapter 3). In this section first the problems with the
construction of the phase operator as a ‘standard’ quantum mechanical observable is discussed,
after which some of the possible solutions, as are used in [15], are discussed.

1.3.1 The original idea of the phase time operator
The original idea of constructing a phase operator came from the well-known solution the differ-
ential equation of a classical harmonic oscillator, given by

X “ Reiφ `R˚e´iφ, (1.33)

with R the amplitude and φ the phase. The goal became to construct an operator which could
represent a measurement of this φ for the quantum mechanical harmonic oscillator. Mirroring the
classical result above is the quantum mechanical position operator Q̂ written in terms of the raising
operator â` and the lowering operator â´, given as

Q̂ “ â` ` â´. (1.34)

This let to the idea of trying to decompose the raising operator as

â` “ R̂eiφ̂, (1.35)

where R̂ was named the amplitude operator and φ̂ the time phase operator. The form of the
amplitude operator is easily derived to be

R̂2 “ R̂eiφ̂e´iφ̂R̂ “ â`â´ “ n̂. (1.36)

Thus goal became to decompose the raising operator as

â` “
?
n̂eiφ̂. (1.37)

This relation results in the commutation relation of

rn̂, â`s “ â` ùñ rn̂, eiφ̂s “ eiφ̂ ùñ rn̂, φ̂s “ i, (1.38)

where in the last step the supposed unitarity of eiφ̂ is used. This gave rise to the idea of a time
phase φ̂ operator conjugate to the number operator n̂ [14].
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The problems with these wishes

As mentioned in the introduction, the construction of a time phase operator φ̂ which satisfies the
requirements from above does not exist. As a first note, the commutation of equation 1.38 has
problems similar to equations 1.18 and 1.19, being

@

n1
∣∣ rn̂, φ̂s |ny “ i

@

n1
ˇ

ˇn
D

“ iδn1n, (1.39a)

@

n1
∣∣ rn̂, φ̂s |ly “ @

n1
∣∣ n̂φ̂ |ny ´ @

n1
∣∣ φ̂n̂ |ny “ pn1 ´ nq @n1∣∣ φ̂ |ny , (1.39b)

which again leads to i “ 0 for n1 “ n. This show direct construction from 1.38 to be impossible.
The second and more prominent of the problems can be seen by the effect of the lowering

operator on a number state |ny P l2pNq, which is given by â´ |ny “
?
n |n´ 1y for n ě 1. From

this it is concluded that (again for n ě 1)

â´ |ny “ e´iφ̂
?
n̂ |ny “

?
n |n´ 1y ùñ e´iφ̂ |ny “ |n´ 1y . (1.40)

Thus we see that e´iφ̂ is desired to act as left shift operator on l2pNq. In similar manner we can
derive that eiφ̂ is desired to act as the right shift operator, again on l2pNq.

The problem with these shift operators on l2pNq is that they are not unitary (as opposed to
the shift operator V̂ from above). That these operators are not unitary can be seen by taking
a state Ψ P l2pNq, with Ψ “ pa1, a2, a3, ..q, a1 ‰ 0, and letting the right shift operator defined
as Vrpa1, a2, a3, ...q “ p0, a1, a2, ...q (which is the supposed role of eiφ̂) and the left shift operator
defined as Vlpa1, a2, a3, ...q “ pa2, a3, a4...q (which is the supposed role of e´iφ̂) act in succession on
this state. This gives

VrVlΨ “ pa2, a3, ..q “ p0, a2, a3, ..q ‰ pa1, a2, a3, ..q “ Ψ, (1.41)

from which we conclude that eiφ̂e´iφ̂ ‰ Î. Thus we conclude that eiφ̂ is not unitary, from which
directly follows that there is no self-adjoint operator satisfying the decomposition of equation 1.35
(for more see [14] and [11]).

1.3.2 PVM’s and POVM’s
So how do we still say something about the time phase of a system, as is being done in [15]? The
solution is to use instead of the ‘standard’ quantum mechanical observable, which is represented by
a Projection Valued measure (PVM), a so-called (normalized) Positive Operator Valued Measure
or POVM. A POVM is used to describe an open system, meaning for example a system in which
the experimenter plays a role or a system which is a mixture of states, as opposed to a closed
system for which PVMs are used. The solution of formulating the time phase in terms of POVM
is a limited solution. While a ‘perfect’ phase observable can not be constructed, the description of
some measurements are possible with this POVM. Only in this limited sense of POVMs that can
we say something about the time phase of a system.

Here we first introduce the idea of a projection valued measure, which is the measure behind
the ‘standard’ quantum mechanics as described in for instance [16]. Understanding the measure of
‘standard’ quantum mechanics we can introduce the concept of a POVM. With an understanding
of this concept of a POVM some of the phase POVMs can be discussed in the next section.

The projection-valued measure

A projection valued (PV) measure is defined (from [13]) as follows.

Definition 1 (Projection Valued measure). A projection valued measure on a metric space M is a
mapping P : BpMq Ñ L pHq that assigns to every Borel subset B Ď M an orthogonal projection
(operator) PB :“ P pBq P L pHq with the following properties:

1. PM “ I
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2. for all x P H the mapping B Ñ xx, PBxy “ PxpBq , with B P BpMq, defines a measure on
M.

To place this definition in the context of quantum mechanics, we remark that in quantum
mechanics only norm 1 vectors are used, making the measure above a probability measure (by
condition 1 of theorem above, see [17]). To see how this acts as probability measure, note that we
calculate the probability of obtaining |Ψy as a measurement outcome of a system in state |ξy is
given by use of the projection operator of |Ψy as xξ| |Ψy xΨ| |ξy “ | xξ|Ψy |2, with 0 ď | xξ|Ψy |2 ď 1.

In the context of quantum mechanics as a probability theory, self-adjoint operators, which are
used to represent observables, assume the role of the expectation value. This can be seen by
the following theorem from [18], for which we first have to define self-adjointness for unbounded
operators (from [13]) as this will be an important distinction with POVMs later.

Definition 2 (self-adjoint operator). A densely defined operator Â on a Hilbert space H is called
self-adjoint if DpAq “ DpA˚q and Âh “ Â˚h for all h in this common domain, where Â˚ is the
adjoint operator of Â.

Theorem 1 (Spectral theorem for self-adjoint operators). Let a Â be a self-adjoint operator on
H, then there exists a unique projection-valued measure P on σpT q such that

Â “

ż

σpT q

λdP pλq (1.42)

with σpT q the spectrum of T and λ P σpT q.

Where the spectrum is the set of λ P C such that Â ´ λÎ is not invertible. The spectrum is a
concept closely related to eigenvalues and, as is the case for eigenvalues, for a self-adjoint operator
the spectrum is always real. Thus by this theorem we see that an observable is represented as a
self-adjoint operator, which can be decomposed as a ‘weighted sum’ of the projection operators
weighted by the spectrum of A (as in

ş

σpT q
λdP pλq).

To conclude: in ‘standard’ quantum quantum mechanics the probability of finding a state |Ψy
as measurement outcome when measuring a system in state |ξyis done by using the projection
operator P|Ψy on the inner-product as

@

ξ
ˇ

ˇP|Ψyξ
D

, which forms a probability measure. In this case
expectation values of observable can be represented by self-adjoint operators by use of the spectral
theorem.

Positive Operator Valued (POV) measures

In the paragraph above we saw how ‘standard’ quantum mechanics functions as a probability
theory. Here we do the same, but then we expand the setting to allow for mixtures of states. First
we shortly recap this way of doing quantum mechanics. After that the measure used for this is
presented and the paragraph is concluded with some characterizations of the observable in this
context.

The state of a system ρ is represented here as a an operator with trace 1, where the trace
is calculated for some finite dimensional Hilbert space as trrρs “

řN
i xφi|ρφiy, where φi is an

orthonormal basis. This trace does not depend on which orthonormal basis φi is used to calculate
the trace. This concept can then be broadened to the infinite dimensional case for all trace
class operators. An operator is trace class if the sum

ř8

i xφi||ρ|φiy converges for the operator
|ρ| “ pρ˚ρq

1
2 [13].

The measure behind this way of doing quantum mechanics is the already mentioned positive
operator valued measure. This measure is defined the following [12]

Definition 3 (Normalized Positive Operator Valued measure). A normalized positive operator
valued measure on a metric space M is a mapping E : BpMq Ñ L pHq that assigns to every Borel
subset B ĎM an operator EpBq with the following properties:

1. EpXq ě 0 for all X P BpMq (Where an operator Â ě 0, if
A

φ
ˇ

ˇ

ˇ
Âφ

E

ě 0 for all φ P H)

2. EpMq “ I
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3. EpYXiq “
ř

EpXiq for all disjoint sequences pXiq ĎM

This measure becomes a probability measure by use of the following theorem (based on [12]).
For this let T pHq be the set of trace class operators and let SpHq be the set of positive trace one
operators (thus the set of possible states), as

SpHq “
 

T P T pHq|T ě 0, trrT s “ 1
(

, (1.43)

then

Theorem 2. For any POV measure E : BpMq Ñ L pHq and any T P SpHq the mapping

pET : BpMq Ñ r0, 1s, X Ñ pET pXq “ trrTEpXqs (1.44)

is a probability measure.

Here we can interpret the number 0 ď pET pXq ď 1 as the probability that a measurement of the
observable E performed on the state T leads to a result in the set of measurement outcomes X.

So how can we think of these observable representing operators E? Where in the setting of
PV-measures observables were represented by self-adjoint operators, they are here represented by
symmetric operators, which are defined as follows

Definition 4. A densely defined operator Â on a Hilbert space H is called symmetric if
A

Âh
ˇ

ˇ

ˇ
h
E

“
A

h
ˇ

ˇ

ˇ
Âh

E

for all h P DpAq.

Do note that we here only require that DpÂq Ď DpÂ˚q, which is of-course a weaker require-
ment than DpÂq “ DpÂ˚q (as was required for self-adjoint operators). Thus we can see that a
broader class of observables is allowed here. We also see by this weaker requirement that every PV
measure is a POV measure, but not vice versa. For this symmetric operator we then calculate the
expectation value of a measurement of Â on the state ρ by xÂy “ TrrÂρs.

A second important result on these POV measures is a result somewhat mirroring the spec-
tral theorem voor unitary operators. Where the spectral theorem relates unitary operators and
self-adjoint operators (and thus to PV measures), this theorem relates contractions, meaning an
operator Ĉ such that ||Ĉh|| ď ||h|| for all h P H, to POV measures.

Theorem 3. For every contraction Ĉ acting on a Hilbert space there exists exactly one POV
measure F such that

Ĉn “

ż 2π

0

einxdF pxq (1.45)

for n = 0, 1, 2, .... If C is unitary then F is a PV measure.

With this broader context of contractions and POVMs an observable for the time phase can be
constructed.

Again as a short recap: in the setting where aside from just PVM also POVM are used to
calculate the probabilities of quantummechanical experiments, the state is represented by a positive
trace-1 operator. The probability of finding a measurement outcome in the set X is then given by
trrTEpXqs, where EpXq is the POVM associated to the measured observable, which are represented
by the broader class of symmetric operators. Lastly, for each contraction a unique POVM can be
constructed associated to this contraction.

1.3.3 The time phase observable as POVM
Here we use the theory of POVMs to construct a possible representation of measurement of the time
phase, as used in [15]. With this POVM we also construct a phase ‘observable’. This ‘observable’
does commute according to equation 1.38 on a dense domain, but is still limited in its use. This
section is based on [12].

12



We start again from the right V̂r and left V̂l shift operators from above and note here that
although these operators are not unitary, they are both contractions. Using the result from above
we obtain that there exists a unique POV such that

V̂ nl “

ż 2π

0

einφdMpφq. (1.46)

This somewhat mirrors the use of Stone’s theorem in the relation V̂ k “ eikΘ̂ from the angular
momentum case.

Somewhat mirroring the Weyl relation (equation 1.20) is the relation between the left shift and
the phase shift eiφn̂ associated to the number operator n̂, given by

eiφn̂V̂le
´iφn̂ “ eiφV̂l. (1.47)

This relation holds on all eigenstate |ny , n ě 1, but becomes somewhat trivial for |0y as both
sides will simply become the zero-function. By using V “

ş2π

0
eiφdMpxq (from equation 1.46 for

the case of n “ 1), this does result in

eiφ
1n̂

ż 2π

0

eiφdMpφqe´iφ
1n̂ “

ż 2π

0

eiφpeiφ
1n̂dMpφqe´iφ

1n̂q “

ż 2π

0

eipφ´φ
1
qdMpφq, (1.48)

where we see that
peiφ

1n̂dMpφqe´iφ
1n̂q “ dMpφ´ φ1q. (1.49)

Because then by substituting u “ φ´ φ1 we get
ż 2π

0

eiφdMpφ` φ1q “

ż 2π

0

eipu´φ
1
qdMpuq. (1.50)

This shows that the eiφ
1n̂ will in fact shift the phase, in the same way the eiαL̂ |θy “ |θ ´ αy.

With this result we can go on to try to construct the measure dMpφq in a more explicit form.
Consider the Hilbert space L2p0, 2πq, again with the normalized lebesgue measure dφ

2π , and the basis
|ξky “ eikφ with k P Z. Then the space of l2pNq can be mapped to L2p0, 2πq by the (isometric)
map

W : l2pNq Ñ L2p0, 2πq,W : Ψ Ñ

8
ÿ

k“0

eikφ xn|Ψy , (1.51)

which forms a Fourier series with only the positive terms. Here we interpreted W pΨq as the
representation of the state in the phase-space of L2p0, 2πq. Now we can define the probability of
finding the phase in the set X P Bp0, 2πq, denoted by MpXq, for any η, ψ P l2pNq by representing
them in the phase-space of L2p0, 2πq and using the indication function 1X . This procedure gives

xη|MpXqψy :“

ż 2π

0

1XW pηqWψ
dφ

2π

“

ż

X

`

8
ÿ

n“0

e´inφ xη|ny
˘`

8
ÿ

m“0

eimφ xm|Ψy
˘dφ

2π

“
1

2π

8
ÿ

n,m“0

ż

X

e´inφeimφdφ xη|ny xm|Ψy

“
1

2π

8
ÿ

n,m“0

ż

X

eipm´nqφdφ xη|ny xm|Ψy ,

(1.52)

where the sums and integral can be swapped due to the monotone convergence theorem [17]. Thus
we conclude that

MpXq “
1

2π

8
ÿ

n,m“0

ż

X

eipm´nqφdφ |ny xm| , (1.53)
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which is the POVM representation of a phase measurement as for instance used in [15].
With this POVM we can also construct a (somewhat limited) phase operator yφM1 , by taking

the first moment of the measure from above. This gives that

yφM1 :“

ż 2π

0

φMpdφq

“
1

2π

8
ÿ

n,m“0

ż 2π

0

φeipm´nqπdφ |ny xm|

“
1

2π

8
ÿ

n“0

ż 2π

0

φdφ |ny xn|` 1

2π

8
ÿ

n‰m

ż 2π

0

φeipm´nqφdφ |ny xm|

“
1

2π
2π2 |ny xn|` 1

2π

8
ÿ

n‰m

ˆ

r
1

ipm´ nq
φeipm´nqφs2π0 ´

ż 2π

0

1

ipm´ nq
eipm´nqπdφ

˙

|ny xm|

“ π |ny xn|` 1

2π

8
ÿ

n‰m

1

ipm´ nq
2πeipm´nq2π |ny xm|

“ πÎ ´ i
8
ÿ

n‰m

1

pm´ nq
|ny xm| .

(1.54)
This operator has been presented as a candidate operator for the ‘phase operator’ in [19].

In a very similar manner we can derive the second moment operator of the measure MpXq.
This gives [12]

yφM2 :“

ż 2π

0

φ2Mpdφq

“ ... “
3

4
π2 `

ÿ

m‰n

` 2πi

pn´mq
`

2

pn´mq2
˘

|ny xm| .
(1.55)

The derivation is omitted here due its length and similarity to the case from above. But more
importantly, we remark that for this operator it holds that

pyφM1q2 “

ˆ

πÎ ´ i
8
ÿ

n‰m

1

pm´ nq
|ny xm|

˙2

‰

3

4
π2 `

ÿ

m‰n

ˆ

2πi

pn´mq
`

2

pn´mq2

˙

|ny xm| “ yφM2 , (1.56)

as can clearly be seen from the prefactor of the identity operator. This shows how this ‘phase
observable’ is limited by being a POVM.

The big virtue of this operator however is that yφM1 actually satisfies the commutation relation
of

rn̂, yφM1sΨ “ ´iΨ (1.57)

on the domain of

Dcommutation “ tΨ P l2pNq|
8
ÿ

n“0

n|an|
2 ă 8,

8
ÿ

n“0

an “ 0u (1.58)

which is dense in the domain of n̂, given by Dpn̂q “ tΨ “ pa1, a2, ...q P l
2pNq|

ř8

n“1 n|an|
2 ď 8u,

as is proven in [19]. Note that |ny R Dcommutation, which shows that the result of equation 1.39
is not properly defined. For the proof of the relation 1.57, let |Ψy “

ř8

k“0 ak |ky P Dcommutation,
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then

rn̂, yφM1s |Ψy “ n̂yφM1 |Ψy ´ yφM1 n̂ |Ψy

“ n̂

ˆ

πÎ ´ i
8
ÿ

n‰m

1

pm´ nq
|ny xm|

˙

|Ψy ´
ˆ

πÎ ´ i
8
ÿ

n‰m

1

pm´ nq
|ny xm|

˙

n̂ |Ψy

“ n̂πÎ |Ψy ´ πÎn̂ |Ψy ´ n̂
ˆ

i
8
ÿ

n‰m

1

pm´ nq
|ny xm|

˙

|Ψy `
ˆ

i
8
ÿ

n‰m

1

pm´ nq
|ny xm|

˙

n̂ |Ψy

“ ´n̂

ˆ

i
8
ÿ

n‰m

1

pm´ nq
|ny xm|

˙ 8
ÿ

k“0

ak |ky `
ˆ

i
8
ÿ

n‰m

1

pm´ nq
|ny xm|

˙

n̂
8
ÿ

k“0

ak |ky

“ ´n̂

ˆ

i
8
ÿ

n‰m

1

pm´ nq
|ny

8
ÿ

k“0

ak xm|ky

˙

`

ˆ

i
8
ÿ

n‰m

1

pm´ nq
|ny xm|

˙ 8
ÿ

k“0

kak |ky

“ ´n̂

ˆ

i
8
ÿ

n‰m

1

pm´ nq
am |ny

˙

`

ˆ

i
8
ÿ

n‰m

1

pm´ nq
|ny

8
ÿ

k“0

kak xm|ky

˙

“ ´

ˆ

i
8
ÿ

n‰m

amn

pm´ nq
|ny

˙

`

ˆ

i
8
ÿ

n‰m

mam
pm´ nq

|ny
˙

“ ´i
8
ÿ

n‰m

pn´mqam
pm´ nq

|ny

“ i
8
ÿ

n‰m

am |ny “ i
8
ÿ

n“0

ˆ 8
ÿ

m‰n

am

˙

|ny “ ´i
8
ÿ

n“0

an |ny “ ´i |Ψy ,

(1.59)
where in the last step it was used that

ř8

n“0 an “ 0 ô
ř8

n‰m an “ ´am `
ř8

n“0 an “ ´am. We
do remark here however that this commutation does not extend to a commutation on the Weyl
level (as was the case with the angular position operator) [19].

This phase operator from equation 1.54 does however have some limited use. Firstly, since
a POV measure was used the moments are not the operator applied multiple times, meaning
pyφM1ql ‰

ş2π

0
φlMpdφq for l ě 2, l P Z, as was shown for the case of l “ 2. Secondly, it carries

a non-uniqueness, by freedom in the choice of the origin, due to the shifts of equation 1.49. (For
more on this, see [12].) Therefore the POVM is mostly used for phase measurement with M(X) and
not for the determination of the expectation of the phase with yφM1 , as could be seen for instance
in [15].

The idea of a phase operator started with the decomposition of the raising operator as â` “
?
n̂eiφ̂, where φ̂ was thought to be the time phase operator of an harmonic oscillator. From

the properties of the raising operator we concluded that the eiφ̂ operator should act as the right
shift operator on l2pNq. Since this operator is not unitary, no self-adjoint operator φ̂ could be
constructed (analogous to the method used for the angular momentum operator). But since the
right shift operator was a contraction, we shifted from using the standard projection valued (PV)
measure to using a positive operator valued (POV) measure. This positive operator valued measure
made it possible to perform phase measurements, as are used in [15]. By taking the first moment of
this POVM a phase observable was constructed which did commute with the n̂ on the Heisenberg
level, but was limited by its use to determine higher moments and its non-uniqueness.

This derivation show that although L̂ and n̂ act very similar, the difference in the Hilbert
between l2pZq and l2pNq has large consequence for the construction of their conjugate variable.
Where in the former case the resulting operator can be represented in the standard form as a
PV measure, for the latter the POV measures had to be introduced to still make measurements
possible.
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2. Basic theory of quantum comput-
ing

In order to implement quantum computing in a rotor setting and to understand the advantage of
doing so some basic concepts from the theory on quantum computing need to be introduced. The
first is the introduction of stabilizers from the theory of quantum error correction. The setting
is the following: Due to the environment the state of the qubits can alter, causing errors in the
computation. In order to achieve stable and reliable quantum computation these errors need to be
detected and corrected. The goal of the field of quantum error correction is to do this detection
and correction in the most efficient way possible, without destroying the superposition of the
computationally relevant states a (logical) measurement. A short introduction presenting some
crucial results from this field, namely the use of stabilizers, will form the first part of this chapter.

The second introduction is in the theory on complete gate sets. All computers, be it classical
or quantum, have two basic components: bits and gates. The bits hold the information used in the
computation and the gates alter the state of the bits. By reading out the alteration of the qubits
the result of the calculation can be concluded. By sequencing the operations of different gates, new
operations can be achieved. The main focus of the part of the chapter will be to find the minimal
number of gates necessary to perform every unitary bit operation. Here such a complete gate set
is presented and it consists (amazingly) of only 4 gates.

2.1 Quantum computing: The basics

In order to reach the goals stated above, some general concepts about the theoretical setting of
quantum computing need to be introduced first.

The qubit

The most basic component of the quantum computer is a qubit. The qubit represented on the
Hilbert space of C2 by vector with norm 1. For the computation with qubit 2 orthonormal bases
|0y , |1y and |`y , |´y are most commonly used. |0y and |1y are commonly denoted by

|0y “
„

1
0



, |1y “
„

0
1



. (2.1)

For these bases the following relations hold

|`y “ 1
?

2
p|0y ` |1yq, |´y “ 1

?
2
p|0y ´ |1yq. (2.2)

As noted in the introduction, the qubit is used as a representation of an underlying physical state
in the language of computer science.

Since the total quantum state is invariant under global phase shifts (meaning
@

eiφΨ
∣∣A ∣∣eiφΨ

D

is the same for all φ P r0, 2πs), the qubit can be represented on a sphere called the Bloch sphere.
For a graphical representation see figure 2.1 below. This Bloch sphere is mainly used to track the
effects of bit operations. Bit operations are represented by unitary matrices, which, due to their
unitarity, can be represented by a rotation of this Bloch sphere.
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Figure 2.1: The Bloch sphere

The Pauli group

The most basic operations on the Bloch sphere are the rotations around the x-, y- and z- axes.
These operations are given by the Pauli operators, a name taken from the Pauli spin operators and
form a group generated by two elements. These generating operators are the bit-flip operatorX̂,
with eigenbasis t|`y , |´yu, and the phase-flip operator Z, with eigenbasis t|0y , |1yu. The operators
X̂ andẐare represented in the basis form equation 2.1 by

X̂ “

„

0 1
1 0



, hatZ “

„

1 0
0 ´1



. (2.3)

The Pauli group for 1 qubit is then given by

P1 “ t˘Î ,˘iÎ,˘X̂,˘iX,˘Ŷ ,˘iŶ ,˘hatZ,˘ihatZu “ xX̂, iI, Ẑy. (2.4)

For more qubits the generators are the generators of the single qubit case acting on each qubit
separately. So 1 qubit generator xX̂y for 2 qubits would be replaced by xX̂ b I, I b X̂y.

2.2 Quantum Error Correction: Stabilizers

As mentioned in the introduction the difficult thing about quantum error corrections is that an
error has to be detected without disturbing superpositions by a measurement. The solution to
this problem is provided by stabilizer measurements. Here a basic introduction into the theory of
stabilizers is provided.

Stabilizers

The goal of a quantum error correcting scheme is to be able to check whether the qubit is in the
desired state without disturbing the state if it actually is. This means that a measurement S is
required with the following property

Ŝ |Ψydesired “ |Ψydesired . (2.5)

This measurement S is called a stabilizer of |Ψy. Clearly the identity operator always fits this
requirement. But if S is not the identity operator, then there exist |ψy ‰ |ψyrequired such that will
give S |ψy1 “ c |ψy2. This means that a non-1 measurement will signal that the state is not in the
desired state. Meaning that an error has been detected. But if there is no error, the state stays
in the desired state. So a stabilizer measurement acts as the identity on the required state, but
differs for other states.

An example of a stabilizer measurement is given by the Pauli Ẑ operator on |0y. Letting Ẑ
work on |0y, we get Ẑ |0y “ |0y, thus Ẑ acts as an identity here. But letting Ẑ work on |1y
gives Ẑ |1y “ ´ |1y, so if the state collapses under a Ẑ measurement to |1y this can be detected
as a non +1-measurement. As a consequence if the desired state is |0y any deviation in the
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superposition can be detected, since for |Ψy “ α |0y ` β |1y with α, β P C, |α|2 ` |β|2 “ 1, |α|2 ‰ 1
we get Z |Ψy “ α |0y ´ β |1y ‰ |Ψy. This means that Ẑ can be used to detect any change in the
superposition, but fails to detect any change in the phase (since Ẑ |Ψy “ |Ψy for any |α|2 “ 1).

The theory on stabilizer measurement can be split up in two parts, one part where the stabilizer
measurements S are fixed and the other part where the state |Ψy is fixed. First the effect of fixing
the stabilizer S is discussed. Here it is noted that if two linearly independent vectors |ψy1 , |ψy2
are stabilized by the measurement S, then a linear combination is also stabilized by S. (Since
Spa |ψ1y` b |ψ2yq “ aS |ψ1y` bS |ψ2y “ a |ψ1y` b |ψ2y). So for every stabilizer operator S, there is
an associated linear subspace VS which contains all the states stabilized by S. Using the previous
example we saw that VZ “ t|Ψy “ α |0y , α P C, |α|2 “ 1, u.

This has two important consequences. First by combining two stabilizer measurement S1 ‰ S2,
by applying them for instance as S1S2 |ψy, the intersection of the two subspaces can be stabilized.
In formal terms: let VS1

X VS2
‰ H, then for any |Ψy P VS1

X VS2
it holds that S1S2 |ψy “ |ψy.

Secondly if an operator C commutes with the stabilizer S, then applying C will not move the
state out of the subspace fixed by S. Moreover if C commutes with all the elements from a set of
stabilizers Ms, C will again not move the state out of the stabilized subspace. In conclusion any
unitary operator S with at least one degenerate eigenvalue λ “ 1 can be used to fix an associated
linear subspace VS on which any commuting operator can act without moving the states out of
the subspace.

Secondly the effect of fixing the state |Ψy is discussed. Here it is noted that the norm-1 vectors
|Ψy P N1 “ t|Ψy P C2, | |Ψy |2 “ 1u and the bit operations by the group of unitary matrices
U “ tU P GLp2,Cq, U unitaryu form a group action (see [20] for more on group actions). Now for
a fixed |Ψy P N1 the stabilizer of |Ψy in U is defined as

S|Ψy “ tU P U : U |Ψy “ |Ψyu. (2.6)

There are two important results from group theory in this definition. The first is that is that the
stabilizer set as defined above forms a subgroup in the larger group of U for any |Ψy P N1. Since
the intersection of two subgroups always forms a subgroup, it becomes meaningful to talk about a
group of stabilizer S = Xni“1S|Ψyi . The second result is that for |Ψy2 “ U |Ψy1 with U P U it holds
that S|Ψy2 “ US|Ψy1U

´1 “ tUSU´1, S P S|Ψy1u, making it easy to calculate the need stabilizers
after a bit operation.

In conclusion, a group of stabilizers can be used to detect when the state moves out the linear
subspace associated to the group of stabilizers. Any operator commuting with all the individual
stabilizers will keep the state in this associated linear subspace and can thus be used ‘freely’ on
the subspace.

2.3 Quantum computation: Universality

As presented above the Pauli operators play a central role in quantum computation, this central
role is emphasized further here. The role of the Pauli subgroup in the group of all unitary operators
is crucial in achieving universal quantum computation. Universality, in this context, means that
every possible bit operation, represented by a unitary operator, should be possible to implement
on the quantum computer. Here a very surprising fact is discovered: every unitary operator U can
be approximated by V (also unitary), under the norm EpU, V q “ max|ψyp||pU ´ V q |ψy ||q, where
V is in a set generated by only four unitary operators (or gates). Meaning that only four gates
are required to achieve this universality under approximation. This set is given by the following
theorem [21]:

Theorem 4 (universality). The Clifford group together with any other gate not in the Clifford
group form a universal set of quantum gates.

The Clifford group

The Clifford group Cn is the normalizer group of the Pauli group Pn in the group of unitary
operators. This means that Cn “ tU unitary and @p1 P Pn, Dp2 P Pn : Up1U

: “ p2u. As has
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Figure 2.2: The group actions of the Clifford group on the Bloch sphere are denoted by the
rotational symmetries of a cube. The different colours of the dots denote the different types
rotational axes of the rotational symmetries.

been noted above, any unitary transformation can be seen as a rotation on the Bloch sphere. The
Clifford group acting on a single qubit corresponds in this picture to the rotation symmetries of
a (3d) cube (see figure 2.2). This can be used to prove that by adding a non-Clifford gate this
gates set provides universality for a single qubit. All the possible computations done by only using
the Clifford group can be easily simulated on a classical computer. This is shown by the following
theorem:

Theorem 5 (Gottesman - Knill theorem). Any quantum computation involving only:

1. state preparation in the computational basis

2. Clifford group operations

3. measurements in the standard basis

4. any classical control conditioned on the measurement outcomes

can be perfectly simulated in polynomial time on a probabilistic classical computer.

Thus the addition of a gate which is not in the Clifford group actually “promotes” the computer
to the quantum level.

The Clifford group forms again a finite group and is generated by only three of its elements.
These generating gates are the Hadamard gate H, the Phase gate P and the controlled-ROT (Ĉrot)
gate. Thus the Clifford group is represented by xĤ, Ŝ, Ĉroty. The Hadamard gate and the Phase
gate are single qubit operations and thus are best represented by a matrix. The matrices, using
the basis given by 2.1, are given by:

Ĥ “
1

2

„

1 1
1 ´1



, Ŝ “

„

1 0
0 i



(2.7)

The Ĉrot gate acts on two qubits: a control bit and a target bit. The operation of the Ĉrot gate is
best described in the following way. If the control bit is |0y, then it does nothing. If the control bit
is |1y, then it applies the phase-flip operator Ẑ on the target bit. Important to note here is that
Ĉrot gate does not measure the state of the control bit, but can act on a superposition states.

The extra element: the T-gate

Theorem 4 gives us that once the Clifford group is obtained only one non-Clifford has to be added.
Since the Clifford group is finite and the group of unitary gates is uncountable, there is a plethora
of options. Here we presented only one option, namely the T-gate. The gate acts as the square
root of the phase gate, meaning T̂ 2 “ Ŝ. The matrix representation of the T-gate is given by

T̂ “

„

1 0
0 ei

π
4



. (2.8)
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In the rotor encoding presented in chapter 4, the T-gate will form the non-Clifford element to
complete the universal gate set.

To conclude: by describing how the Clifford gates and the T-gate gate can be constructed, a
universal quantum computer can be build.
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3. Shift resistant codes

One of the main questions when building a quantum computer is what physical system to use to
represent the quantum bits. In classical computing a high-low voltage difference is used to represent
the 0 and 1 bit states. What the most effective physical system to represent (to encode) these bits
for quantum computing is, as was mentioned in the introduction, is still an open question. A first
idea was to use a simple two level quantum system, such as for example electron spin [22] or the
polarization of photons [23]. In this case however the challenge of building a quantum computer is
to make the bits as stable as possible, but any actual measuring and correcting of potential errors
has to be done by encoding the information into multiple bits. This naturally gives rise to the
question whether an encoding is possible, where the detection and correction of errors is part of
the qubit design itself.

This can, at least theoretically, be done in the form of shift resistant codes. These encodings take
a large superposition of states with a high degree of symmetry as its physical system to represent
its qubit, as opposed to a single spin state. This symmetry results in invariance under certain
operations, which is then used to detect small errors in the encoding by measuring asymmetries.
This idea forms the fundamental motivation of building a quantum computer in a rotor space, or
any shift resistant encoding. The inspiration of encoding a qubit into a rotor space comes from
important previous work, where a qubit was encoded in the position and momentum of quantum
harmonic oscillator and the number of bosons. In this chapter both of the previous methods are
presented in order to show their relation to the encoding in the rotor setting.

3.1 The central idea of shift resistant quantum codes

As stated in the introduction, the most crucial step is to take a superposition of states with some
symmetry to represent a qubit, in order to allow for the detection and correction of small errors
in the encoding itself. This idea is best understood in a smaller toy model and then expanded to
the larger, more realistic scenarios, such as a harmonic oscillator. (Courtesy of [24].)

The toy model

The smaller toy model consists of an 18 dimensional system. The possible states are given by |jy,
with j P t1, 2, ..17, 18u. On these states two operators, Ŝ (shift) and P̂ (phase), act as

Ŝ |jy “ |j ` 1 mod 18y (3.1a)

P̂ |jy “ ωj |jy , ω “ e
i2π
18 (3.1b)

The goal is to encode states which are resistant to errors of the following type: ŜaP̂ b with a, b P
t´1, 0, 1u. Here Ŝ0, P̂ 0 are defined to be the identity operator.

For this purpose the qubit could be represented as

|0̄y “ 1
?

3
p|0y ` |6y ` |12yq, (3.2a)

|1̄y “ 1
?

3
p|3y ` |9y ` |15yq. (3.2b)
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The stabilizer of the qubits

These states could then be stabilized by Ŝ6, P̂ 6. This combination of states and stabilizer protects
the qubit from the small shifts mentioned above. To show this first it is proven that the qubit is
actually stabilized by Ŝ6, P̂ 6, after which it is shown how error are detected using these stabilizers.

Here we shortly prove that the states given by equation 3.2 are stabilized by Ŝ6, P̂ 6, meaning
that the qubit states from above are a +1-eigenvalue states of Ŝ6, P̂ 6. First we note that all the
states differ by 6, thus Ŝ6 |0̄y “ |0̄y and Ŝ6 |1̄y “ |1̄y. Also note that the states numbers k “ |ky all
form multiples of 3, so 18 is a divisor of 6k for any non-zero k, resulting in the fact that w6k “ 1.
So these states are invariant under applying the operator P̂ 6. (Note that P̂ acts as an identity on
the |0y state.) Showing the claimed Ŝ6, P̂ 6 to be stabilizers.

Now in order to detect the errors of the form ŜaP̂ b with a, b P t´1, 0, 1u, the following commu-
tation relations are used

pŜaP̂ bqŜ6 “ ω6bŜbpŜaP̂ bq (3.3a)

pŜaP̂ bqP̂ 6 “ ω6aP̂ bpŜaP̂ bq. (3.3b)

Since for the errors 6b or 6a will never form a multiple of 18, this gives that ω6a, ω6b ‰ 1.
Therefore we can detect whether an error has occurred. Now since we have only allowed errors
of the type ŜaP̂ b with a, b P t´1, 0, 1u, we can not only detect the error, but also identify which
error has occurred and correct it by applying the inverse of the error. This makes the encoding
fully protected against these errors. The case of errors other than the type mentioned above will
be discussed later on.

Relations between the errors

The encoding protects the bits from small errors in both the “main dimension”, meaning state
alterations by operator Ŝ, and the Fourier transformed domain, meaning phase shifts by operator
P̂ . This Fourier relation between the two error types holds for all shift resistant encodings. As for
instance in a harmonic oscillators, where both errors in position |qy as in its Fourier transformed
domain the momentum |py are likely to happen.

As a consequence of this Fourier relation, more protection against one type of error means less
protection against the other. By spacing out the |jy states more, the encoding can be protected
against larger state shifts (meaning Ŝ-type errors). But, since the total number of available states
in any physical system is for practical applications always bounded, a larger spacing always means
a smaller protection against phase shift errors of the P̂ -kind.

As an example of this trade-off, a different encoding of the qubit in the toy model from above
could be given by

|0̄y “ |0y , (3.4a)

|1̄y “ |9y . (3.4b)

This encoding is stabilized by Ŝ18 and P̂ 2 (as can be checked with the same method as above).
In this case errors would be detected using the commutation relations of

pŜaP̂ bqŜ18 “ ω18bŜbpŜaP̂ bq (3.5a)

pŜaP̂ bqP̂ 2 “ ω2aP̂ 2pŜaP̂ bq. (3.5b)

In this case the qubit would be protected against errors of Ŝa with a P t´4,´3, ..., 0, ..., 3, 4u.
But, as can again be seen from equation 3.5, it loses all protection against phase shift errors (since
ω18b “ 1 for any b). This shows how more protection against one type error, here the shift errors,
directly implies less protection against the other type, here phase type errors.

A consequence of this trade-off leads to a central design choice when constructing shift resistant
encodings, referred to as the the spacing of the states. How far the states, in the case of the toy
model the |jy states, should be apart, has to be decided upon by how the errors in each domain
relate. Say a P̂ -type error happens a tenth of the Ŝ-errors, then we have to construct the code

22



accordingly by taking a larger shift spacing. Thus in this case the encoding of equation 3.4 would
be justified. But if the errors happen with equal probability, the encoding of equation 3.2 would
be a better choice.

Logical operators and errors

In order to define the most basic bit operations the logical operators X and Z need to be defined
for the encoded states (to obtain the Pauli-group, see chapter 2). In the case of the first encoding
(meaning equation 3.2) these logical operators can be encoded as

X̄ “ Ŝ3, Z̄ “ P̂ 3. (3.6)

Crucially these operators satisfy the commutation relation of

Ŝ3P̂ 3 “ ´P̂ 3Ŝ3 ñ X̄Z̄ “ ´Z̄X̄. (3.7)

As was discussed in Chapter 2, these logical operators need to commute with the stabilizers,
such that the code remains in the linear subspace stabilized by Ŝ6, P̂ 6 after their application. This
does however mean that the shift resistant error protection does not protect against a full “logical
error”. A logical error, in this setting, is seen as an accumulation of smaller shift errors against
which the code is protected. The central idea is that a large enough shift to truly disturb the state
would be so unlikely, that the these logical errors are rare enough for all practical purposes.

Other types of errors

In the discussion of the encoding presented by equation 3.2, it was mentioned that this encoding is
protected from errors of the type ŜaP̂ b with a, b P t´1, 0, 1u, but the effect of other type of errors
was still open. Here we revisit that question. Here two remaining error types are distinguished:
large shifts and local shifts. As mentioned in the section above, large shift result in logical errors,
and the encoding can neither detect large shifts as errors nor correct them accordingly (since they
are interpreted as a logical operation, not as an error). With a local shift an operator is meant
which swaps two states and acts on the rest as the identity. As example would be an operator
which swaps |3y and |4y. The effect of this errors on |1̄y would be |1̄yerror “

1?
3
p|4y ` |9y ` |15yq.

The encoding can detected this class of errors, but cannot correct them.
To see the encoding can only detect and not correct the local shift, the difference is shortly

discussed here. An error is detectable, if it does not commute with one of the stabilizers. As can
can easily be checked, Êswap,3,4P̂ 6 ‰ P̂ 6Êswap,3,4, thus these local swap errors are detectable. A
set of errors is correctable, when all the errors satisfy the so-called Knill-Laflamme conditions (see
also [25]). These conditions are given by

x0̄| ÊiÊj |0̄y “ x1̄| ÊiÊj |1̄y (3.8a)

x0̄| ÊiÊj |1̄y “ x1̄| ÊiÊj |0̄y “ 0 (3.8b)

for all the errors Êi, Êj in the set of errors. Adding the local swap errors to the set of correctable
errors would not satisfy the first condition (take for example Êi “ I and Êj “ Êswap,3,4). Thus a
local swap is only detectable. In this case the calculation would have to be restarted. Luckily these
local errors often lack a physical meaning and are disregarded in the discussion of a shift resistant
encoding.

Conclusions from the toy model

As can be seen from the toy model, to obtain a shift resistant encoding three elements, the qubit,
stabilizers and logicals, need to specified. These elements relate in the following way: both of
the stabilizers need to act as an identity on the encoded states and the logicals need to act as
desired on the encoded state (meaning ˆ̄Z |0y “ |0y, ˆ̄X |`y “ |`y, etc.) plus commute with the
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stabilizers. These relations lead to there only being one degree of freedom in choosing the shift
resistant encoding, namely the spacing of the states. This spacing of the states, which specifies the
range of the correctable errors in both the X and Z domains, should be chosen according to the
error frequency in each domain. Once this spacing is specified the qubit, stabilizers and logicals
can be constructed and the encoding is fixed. For a realistic encoding the states are not as ideal
as in this toy model, where every state could be achieved with infinite precision. The last step of
the encoding is then to specify a form of approximating the ideal states. This procedure describes
the recipe to obtain a shift resistant encoding.

3.2 Encoding in a quantum harmonic oscillator: The GKP
code

The most important example of these shift resistant encodings is the so-called the GKP1 code.
The GKP code encodes a qubit in a harmonic oscillator. Here the theoretical construction and
practical implementation of the GKP code, following the recipe from above, are discussed. This
section is based on [24] and [26].

The setting of the GKP code

The GKP code makes use of the well-known position Q̂ and momentum P̂ operators. Since both
operators are self-adjoint operators, they generate the unitary operators eiαP̂ and eiβQ̂ for any real
α, β by Stone’s theorem. These operators function in the following way on the eigenstates

eiαP̂ |py “ eiαp |py , (3.9a)

eiβQ̂ |qy “ eiβq |qy , (3.9b)

and their commutation relation is given by the Weyl relation

eiβQ̂eiαP̂ “ e´iαβeiαP̂ eiβQ̂. (3.10)

By a smart choice of α and β these operators provide a setting for quantum computation.
As noted in the conclusion of the toy model, the construction of a shift resistant encoding has

three related elements, the logicals, the qubit and the stabilizers. The critical requirement for the
GKP encoding is that for the logical operators the smart choice of α and β (in the context from
above) is given by αlogicalβlogical “ π. The ratio of αlogical and βlogical defines the spacing of the
states and is chosen according to the ratio of errors in the respective domains. In most practical
cases these errors will have the same strength. This will be used as a design requirement in the
remainder of this section. In order to get this equal spacing we choose αlogical “ βlogical “

?
π.

The logical, qubit and stabilizers

With the spacing fixed, the logicals, qubit and stabilizers can be specified. The logicals in this case
are given by

ˆ̄Z “ ei
?
πQ̂, (3.11a)

ˆ̄X “ ei
?
πP̂ (3.11b)

By using the Weyl equation from above and αβ “ π, these operators obey the commutation
relation of

ˆ̄Z ˆ̄X “ ´ ˆ̄X ˆ̄Z. (3.12)

1After its inventors Daniel Gottesman, Alexei Kitaev, and John Preskill
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For these logical operators, the states which satisfy the required eigenvalue relations to repre-
sented the qubit, are given by

|0̄y “
ÿ

kPZ

∣∣q “ 2k
?
π
D

(3.13a)

|1̄y “
ÿ

kPZ

∣∣q “ p2k ` 1q
?
πk

D

. (3.13b)

By using equations 3.9 it can be checked, that these states satisfy the required Ẑ |0y “ |0y and
Ẑ |1y “ ´ |1y as well as the required X̂ relations, which can be checked by taking the Fourier
transform of the states form 3.13 and applying 3.11b.

The second step is to construct the stabilizer measurements. The 2
?
π periodicity of the

qubit states already hints at the form of the stabilizer. For a general encoding it is required that
αstabilizerβstabilizer “ 2πk, with k P Z αstabilizer “ 2αlogical. Again with the design choice of equal
space and choosing k “ 2, the stabilizer operator are of the following form:

ŜQ “ ei2
?
πQ̂ (3.14a)

ŜP “ ei2
?
πP̂ (3.14b)

These operators would, in the ideal case, detect any deviation from the delta peaks and keep the
code perfectly stable.

The approximation of the ideal scenario

The ideal case from equation 3.13 is not very realistic. The states from 3.13 are non-normalizable,
they require infinite space and momentum and the creation of delta peaks in space or momentum
costs infinite energy. This representation is thus mostly used to understand many of the codes
characteristics, but not practically feasible.

In order to achieve a physical representation of these states two approximations are used. The
first approximation is to approximate the delta peaks by a small Gaussian function in order to
achieve a state which requires finite energy to create, the second is to place over these peaks a
Gaussian envelope in order to make the total state normalizable. A crucial property of the Gaussian
functions is that they remain Gaussian under the Fourier transform, so the approximation works
both in the space and in the momentum domain. The approximate states in this case are given
by:

xx|0̄y “ N0

”

ÿ

kPZ

e´
px´2kαq2

2κ2

ı

e´
x2

2∆2 (3.15a)

xx|1̄y “ N1

”

ÿ

kPZ

e´
px´p2k`1qαq2

2κ2

ı

e´
x2

2∆2 (3.15b)

Where N0, N1 are normalization constants, κ stands for the width of the Gaussian functions
approximating the delta peaks and ∆ stands for the width of the overlapping Gaussian function.
Here both the values of κ and ∆ ”cost” energy and are directly responsible for the quality of the
approximation. A plot of these approximate states is presented in figure 3.1.

Error modelling

The central motivation of constructing a shift resistant code is that small errors, which in any
physical system are accumulated over time, can be detected and corrected. This gives rise to the
questions: which errors can be corrected for the GKP encoding? And what error is introduced by
the approximation of the ideal states?

First the problem of which errors are correctable. The easiest way to look at this problem is
graphically. For this see the figure below.
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Figure 3.1: The approximate states of the encoding of the zero |0y and one |1y bit in the GKP
harmonic oscillator encoding. Here α “

?
π, the width of the peaks is given by κ “ 0.25 and is

given by the width of the Gaussian envelope ∆ “ 6.

Figure 3.2: A small portion of the q-space in which 3 delta peaks from the ideal GKP states (which
are an infinite sum of delta peaks spaced by

?
π) are presented. The two red states are part of the

1 bit state, the blue part of the 0 bit state. The dotted line enclosing the blue 0 bit state shows
the region of correctable errors for the |q “ 0y part of the zero bit state.

Since the ideal states can never be created, for deciding whether the measured outcome is a |0y
or a |1y when measuring the position of the state Q̂, the following rule is used: if the outcome is
closer to an ideal |0y-peak then to a |1y-peak, the state is a |0y and vice versa. As can be seen in
the figure above, any outcome with q P p´

?
π

2 ,
?
π

2 q is considered a |0y state. Since this scheme is
repeated periodically, the encoding can protect the state against shifts of ˆeiεP with |ε| ă

?
π

2 . The
same idea can be applied in the momentum space, so the encoding is also protected against shift
of ˆeiδQ with |δ| ă

?
π

2 .
The values above are for an encoding with equal spacing. If there is unequal spacing the

correctable errors are |ε| ă αlogical
2 and |δ| ă π

2αlogical
. This shows the already mentioned trade-off,

a larger spacing in the space domain means more error protection there, but less protection from
momentum shift error (and vise versa).

Now in order to calculate the probability of finding the in the wrong state, using the approx-
imation given above, the same idea can be used. Calculating the probability that the particle is
outside of the correctable region will provide the error probability of the approximate state. This
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means that

pep|0yq “
ÿ

kPZ

ż p2k`1 1
2 q
?
π

p2k` 1
2 q
?
π

ˆ

N0

”

ÿ

kPZ

e´
px´2kαq2

2κ

ı

e´
x2

2∆2 q

˙2

dx. (3.16)

By taking ∆ “ 1
κ this error probability is about 1% for ∆ “ 0.5, but already 10´6 for ∆ “ 0.25. [24]

3.3 Encoding in rotation-symmetric bosonic system

A second important example of shift resistant encoding is given by encoding the qubit using the
number of bosons in a harmonic oscillator. The state of the number of bosons is given by two
conjugate variables: the number of bosons, measured by the number operator n̂, and the phase
of the bosons, described by the phase operator φ̂. The main advantage of this encoding that
a lot of progress is made in manipulating these bosonic states. The main disadvantage is that
the phase operator φ̂ does not exist as a standard quantum mechanical observable and has to be
approximated by a POV-measurement (for more on this, see section 1.3). This encoding behaves
very similar to the encoding in a rotor space and thus it is fruitful to study this setting in detail.

Again for the construction of an encoding three ingredients are necessary: logical operators,
stabilizer measurements and approximated qubit states. Due to the problems of the phase measure-
ment the focus will first be on number eigenspace. Here the logical ˆ̄Z and its associated stabilizer
measurement (in the same way Sq and ˆ̄Z where related for the GKP code) are constructed, after
which the code states for this situation will be introduced. Again these states will be ideal, but
non-physical. Given this information the conjugate phase domain will come into the picture and
the idealized state will be presented in terms of phase states. Using these idealized states the
logical operator ˆ̄X and stabilizer in the phase domain can be constructed. With all the stabilizer
and logical operators done, the approximated states can be made to complete the encoding of the
qubit. This section is based on [15].

The idealized encoding

In the previous example the main design choice was given by picking the value of α, which was
responsible for the spacing (and thus the level of protection) of the states in both the p- and
q-domain. For this encoding, the analogue variable is given by the variable N, which represents
the spacing of the number states. The encoding is named a rotation symmetric encoding, this is
because the stabilizer in the Z-domain is given by

R̂N “ ei
2π
N n̂, (3.17)

where ˆ
ei

2π
N n is a unitary operator generated by the self-adjoint number operator n̂ given by Stone’s

theorem (see equation 3.9 for how these operator act on the eigenvalues). The qubit is encoded in
the subspace of the all states which have a `1 eigenvalue, i.e. the states having n “ 0 mod N .

For these states the logical ˆ̄Z is given by

ˆ̄Z “ ei
π
N n̂. (3.18)

In this case the ideal shift resistant qubit encoding is given by

|0y “
8
ÿ

n“0

f2kN |2kNy , (3.19a)

|1y “
8
ÿ

n“0

fp2k`1qN |p2k ` 1qNy . (3.19b)

This encoding protects against shifts number state shifts Vn, with Vn |ky “ |k ` 1y of size pVnqα
with α P t´

X

N´1
2

\

,´
X

N´1
2

\

` 1, ...,
X

N´1
2

\

u. If there would be no conjugate phase domain, this
would be the full story and any choice fkN with

ř8

n“0 |f2kN |
2 “

ř8

n“0 |fp2k`1qN |
2 “ 1 would

suffice.
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But this is not the case. The states can also obtain phase-errors, against which the protection
further specifies the states. The states presented above are represented in the φ-domain by

|0y “
2N´1
ÿ

m“0

∣∣∣φ “ mπ

N

E

, (3.20a)

|1y “
2N´1
ÿ

m“0

p´1qm
∣∣∣φ “ mπ

N

E

, (3.20b)

where

|φy “ 1
?

2π

8
ÿ

n“0

einφ |ny , (3.21)

from which the fkN are specified.
As in the GKP example, these ideal states are non-normalizable. These states do however

provide great insight in the structure of the encoding. As can be seen from expression 3.20 the
states are protected from “phase” shifts eiαn̂ of |α| ă π

2N , which again shows the trade-off made
in choosing the value of N. A second use for these expression is their use in defining the logical
operator on the conjugate domain given by ˆ̄X. For this choice of fkN the states of |0y and |1y are
translation invariant under the operator

ˆÿ

N

“

2N´1
ÿ

m“0

|my xm` 2N | “ Ŝ, (3.22)

which is the stabilizer of the conjugate domain phase domain (meaning Ŝ |0̄y “ |0̄y and Ŝ |1̄y “ |1̄y).
The ˆ̄X is now given by

ˆ̄X “

2N´1
ÿ

m“0

|my xm`N | . (3.23)

As can be checked on the |ny eigenstates, the logical operators satisfy the required commutation
relation of ˆ̄X ˆ̄Z “ ´ ˆ̄Z ˆ̄X. For the encoding to function properly, the approximated states require
(under approximation) the same shift-invariance for both stabilizer operators.

Approximated states

In the previous section the idealized states were presented as “phase” eigenstates, which is a sketchy
affair since the phase-space is not properly defined. This was said to be the main disadvantage
of this encoding. In the approximation of these states this encoding shows its strength. For the
approximation there are multiple options which approach ∆pφq Ñ 0 as the available maximum
of number-states increases to infinity. In any realistic system these infinite sums would then be
approximated by truncated sums. The coefficient fkN , as in equation 3.19, for three encoding
options are presented in the table below:

Table 3.1: The coefficient of three approximations for the bosonic encoding. The first column
gives their names, with their associated symbol in the second column. In the third column the
coefficients fkN are presented, as function of the variable associated with each approximation
(α,K and s respectively). The fourth gives the limit for the encoding were the minimal number of
states are used, called the trivial encoding. This encoding is easiest to realize, but lacks any error
correcting capability. The fifth column is the limit where an infinite number of states are used,
which is impossible to realize but can perfectly correct the errors. For the last limit the coefficients
fkN are explicitly given in the last column. From [15].
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To better understand the functioning of these approximations, it helps to see them in a plotted
form. This is presented in the figure below:

Figure 3.3: The approximation of the state: 1?
2
p|0y ` |1yq by the three different approximations

from the table above. The average measured number state, here called a Fock state, is xn̂y “ 19.5
and the spacing of the number, or Fock, states N is given by N = 3 for each of the approximations.
the parameters for the respective approximation are given by α “ 4.416, K “ 13 and s “ 42.
From [15].

A first note on these approximations is that, as seen in the GKP encoding, two of the approxi-
mations again approach a Gaussian profile as the quality of the approximation increases. A second
note is that as the quality, represented by parameters α,K and s respectively increase, the energy
cost to realize the approximation increases. The relation between the number of available number
states increases and the quality of the approximation of ∆pφq Ñ 0, is given in the figure below.

Figure 3.4: The uncertainty in the phase domain, here denoted by ∆N pθq, as a function of xn̂y for
the three different approximations of table 3.1. The states approximate the state of 1?

2
p|0y ` |1yq.

For this approximation the spacing between the numberstates is taken to be N = 3 and the
parameters for the approximation are as in figure 3.3, meaning α “ 4.416, K “ 13 and s “ 42.
From [15].

Conclusion

In this chapter the concept of a shift resistant encoding was introduced. This encoding makes
use of two conjugate variables connected by the Fourier transform. The encoding protects the
qubit against small shift error in both domains. The ratio of the probabilities of the errors in both
domains leads to an optimal spacing coefficient, on which the whole design of the encoding is based.
For this spacing coefficient the stabilizer, logical operators and an ideal representation of the qubit
can be specified. Since a system can never be kept in the ideal state, for which the encoding is
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protected against both error types, the last step is to find a suitable, implementable approximation
to complete the encoding. These encodings then form the basis of a quantum computation scheme,
with error correcting properties build into the design of the hardware.
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4. Quantum computation in a rotor
system

In this chapter one of the main results of this report is presented, a quantum computing scheme for
a quantum mechanical rotor system. But our goal is not only to achieve quantum computation, but
to theoretically design this in way that it is resistant to small shift errors on the system. This goal
is first achieved on the level on the encoding of the qubits, by presenting a shift resistant encoding
(for more on shift resistant encodings, see the previous chapter). With this encoding small errors
can be detected by using the stabilizers, without disturbing the state of the . Presenting this
encoding will form the first part of this chapter. This resistance to small errors is also taken to the
level of the quantum gates. The gates are designed to commute with the correctable errors, thus
making it possible to correct the errors at any stage during the computation. The presentation of
the error resistant gates forms the second part of this chapter.

4.1 Encoding a qubit in a rotor

In this section the shift resistant encoding of the qubit in a rotor system is presented. A shift
resistant encoding has three parts: logicals, the stabilizers and the representation of the qubit.
As noted in the previous chapter, a shift resistant encoding is fixed by the spacing between the
representing states. The encoding in a rotor takes its simplest form when taking a spacing between
the angular momentum states of zero, therefore this case is first discussed in an idealized, but
unrealistic, form. This encoding is then expanded to an encoding for any angular momentum
spacing, which forms the second part of this section. In order to obtain a realistic encoding the
last part of this section focuses on approximating the idealized encodings as mentioned before.
This section is based on [9].

The ideal encoding for “zero” angular momentum spacing

This encoding assumes that errors in the angular momentum space happen with negligible prob-
ability and offers no protection to these errors. It however provides maximal protection against
shifts in the angular position, up to shifts of π2 . Since the encoding assumes no angular momentum
errors, the even and odd integer angular momentum states are used to encode the qubit. For “zero”
spacing this gives an idealized representation of

|0̄y “
ÿ

lPZ
|2ly , (4.1a)

|1̄y “
ÿ

lPZ
|2l ` 1y . (4.1b)

As mentioned in chapter 1, the states in the angular momentum domain of L̂ and the angular po-
sition of Θ̂ are related by the discrete Fourier transform. By taking this discrete Fourier transform
on the states above, the states are expressed in the angular position space by

|0̄y “ |θ “ 0y ` |θ “ πy , (4.2a)
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|1̄y “ |θ “ 0y ´ |θ “ πy . (4.2b)

For these states the logical operations and stabilizers can be specified. The logical ˆ̄Z is given
by

ˆ̄Z “ eiπL̂ (4.3)

and the stabilizer associated with this operator is given by

ŜL “ ei2πL̂. (4.4)

These operations represent rotations of the system over the angle π (radians) for ˆ̄Z and 2π for
the stabilizer. Thus the stabilizer for zero spacing leaves the whole angular momentum space
unchanged. Because it is assumed that there are no errors in the angular momentum states, the
stabilizer does not need to detect any errors.

For the construction of the ˆ̄X operator two options exist. The two candidate operators are
given by

ˆ̄X “ V̂ (4.5a)

ˆ̄X “
1

2
ppÎ ` ˆ̄ZqV̂ : ` V̂ pÎ ` ˆ̄Zqq. (4.5b)

Both form valid options, since both satisfy the required commutation relation of X̂Ẑ “ ´ẐX̂ and
perform the required state operations on the encoded states. The difference is that the latter has
the advantage of satisfying the property of ˆ̄X2 “ Î in any case, while the former only satisfies this
property on the subspace of the ideal encoding. The first on the other hand has a much simpler
form, which can lead to an easier implementation.

In any case the stabilizer is given by

Ŝθ “ V̂ 2. (4.6)

This stabilizer is used to correct the only allowed errors in this case, shifts in angular position
given by eiαL̂. These errors can be detected using the commutation relation (from Chapter 1)

V̂ 2eiαL̂ “ e´i2αeiαL̂V̂ 2 (4.7)

and are corrected by making the smallest shift needed to re-obtain a +1 eigenvalue for the stabilizer
Ŝθ. Thus in this case errors can be corrected with |α| ă π

2 , as was claimed above. Any shift larger
than this range, meaning |α| ą π

2 , results in a logical error.

The ideal encoding for non-zero spacing

The encoding above assumes that shifts in angular momentum happen only with a negligible
probability. When this is not the case, the encoding has to be protected against these shifts. The
encoding presented here is protected against shifts of

V̂ n, n P
!

Z

´N ` 1

2

^

,´

Z

´N ` 2

2

^

, ...,

Z

N ´ 1

2

^

)

. (4.8)

with N an odd integer. There are two things to note about the set above. First is that the set
above always has size N. Second is that the “zero” spacing case corresponds to the case of N “ 1
and in this case only V̂ 0 “ I is a correctable error (thus no actual shift errors can be corrected for,
as is in line with what was mentioned above).

The qubit is here encoded as

|0̄y “
ÿ

lPZ
|2Nly “

2N´1
ÿ

m“0

∣∣∣θ “ mπ

N

E

(4.9a)
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|1̄y “
ÿ

lPZ
|2Nl `Ny “

2N´1
ÿ

m“0

p´1qm
∣∣∣θ “ mπ

N

E

. (4.9b)

Here we interpreted a state in between the |Nly states as the encoded state it is closest to and
correct it by applying angular momentum shifts accordingly.

For the logical Ẑ operator there are two possible candidates, given by

ˆ̄Z “ ei
π
N L̂ or (4.10a)

ˆ̄Z “ ei
ˆ

t LN uπ (4.10b)

Where the first option is easier to implement, but single shifts can influence the logical state of
the qubit, meaning that V̂ ˆ̄ZV̂ : ‰ ˆ̄Z. The second option is error resistant to small shifts, but is
harder to implement then the first (because of the ˆX L

N

\

operator). In any case the stabilizer is
given by

ŜL “ ei
2π
N L̂. (4.11)

Associated to each of the options from above a logical X̂ operator can be constructed. These two
options are given by

ˆ̄X “ V̂ N or (4.12a)

ˆ̄X “
1

2
ppÎ ` ˆ̄ZqV̂ :N ` V̂ N pÎ ` ˆ̄Zqq, (4.12b)

where 4.12a is related to 4.10a, sharing the easy to implementation, and 4.12b is related to 4.10b
(in the sense of being small shift error resistant). In this case there is no clear preference between
the two, since it depends on how achievable to the second option is for the physical system in which
the encoding is implemented. In any case the stabilizer is given by

Ŝθ “ V̂ 2N . (4.13)

This completes the encoding in a rotor space.

The approximate encodings and error analysis

As seen before in chapter 3 the states used here to encode the qubit are nonphysical. The states
are non-normalizable in the angular momentum space and represented by impossible to realize
delta-peaks in the angular position space. Thus in order to realize the scheme presented above,
these states need to be approximated.

Since the angular position variable θ is a continuous variable (as opposed to the angular mo-
mentum being discrete), the approximation is easiest done in the angular position space. For the
approximation any sharply peaked, periodic function (with period 2π) will suffice. Two examples
are given by

|θ “ θ0y “ N0

ż 2π

0

ÿ

mPZ
e´

ξ2

2 pθ´θ0`m2πq2 |θy dθ and (4.14a)

|θ “ θ0y “ N1

ż 2π

0

cosγp
θ ´ θ0

2
q |θy dθ (4.14b)

Where N1 and N1 are normalization constants and both the parameters ξ and γ are responsible
for the quality of the approximation.1 The representation of the states in the angular momentum
states is obtained by taking the Fourier transform.

The errors induced by this approximation are also best calculated in the angular position space.
For the logical X̂ (ideal) eigenstates |`y and |´y this is done most easily, since they are represented

1Note that the first example is not in r0, 2πs, on the whole of R. Since e´ξ2
is in it itself not a periodic function

the function is repeated here to still represent periodic function.
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by a single delta-peak of |`y “ |θ “ 0y and |´y “ |θ “ πy in the case of zero spacing. For these
eigenstates the following projection method is used: the state is interpreted to be the delta peak
it is closest to (compare this to the GKP code in 3.2). This method divides the r0, 2πs angular
position space into equal parts representing the |`y and |´y states, which is graphically represented
in the figure below.

Figure 4.1: The error correcting states projection in the angular position domain for N = 1 in (a)
and N = 3 in (b).

Equipped with this state projection method, the errors introduced by the approximation can
be calculated. This is simply done by calculating the probability of finding the states on the other
side of the division. This means that if the state should, for example, be in the |`y state for a
spacing of N “ 1, the error is calculated by the probability of finding the angular position in the
state denoted by the red parts of figure 4.1(a). Thus let Ψ`pθq “ xθ|`y be the approximation of
the |`y “ |θ “ 0y state, then the error introduced by the approximation is given by

pep|`yq “
ż ´π2

´π

|Ψ`pθq|
2dθ `

ż π

π
2

|Ψ`pθq|
2dθ (4.15)

and in similar manner for |´y the error is given by

pep|´yq “
ż π

2

´π2

|Ψ´pθq|
2dθ. (4.16)

With these expressions the error in any superposition can be calculated by expressing the super-
position in the |`y and |´y basis.

As holds for general shift resistant encodings, making the spacing (and thus error resistance)
in one domain larger the spacing in the other domain decreases. Here we see that by making
the spacing between the angular position larger the part of the circle representing an ideal angular
position peak gets smaller. As an example using the setting from figure 4.1, for zero spacing, which
corresponds to N “ 1 in the context of equation 4.9, the angular position |θ “ 0y has any state
between

∣∣θ “ ´π
2

D

and
∣∣θ “ π

2

D

to represent it. If the spacing is increased to N “ 3 (again in the
context of 4.9) the angular position state |θ “ 0y is only represented by state between

∣∣θ “ ´π
6

D

and
∣∣θ “ π

6

D

. This range of angular position states used to approximate an ideal peak is referred to
as the correctable error range (in the angular position domain). The correctable error range scales
with the spacing as π

N . This correctable error range corresponds to protection against angular
position shifts scales of eiαL̂ with |α| ă π

2N . This shows the ‘cost’ of increasing the spacing in the
angular momentum domain.
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4.2 Quantum gates for the rotor space

In this section the complete set of quantum gates for the rotor encoding are presented. Here the
complete set is given by the gates discussed in chapter 2, meaning the gates

tĈrot, Ĥ, Ŝu Y tT̂ u. (4.17)

First the gates are introduced for the setting where the spacing between the angular momentum
states is zero, meaning all even states encode |0̄y and all uneven states encodes |1̄y. These are then
generalized to serve as gates for any spacing between the states.

The gates presented here are designed to be resistant to the correctable errors, by which we
mean that the occurrence of a correctable error does not alter the effect of the gate. This propery is
referred to here as ‘small shift error resistant’. This concept is not quite the same as fault-tolerance,
which requires a quantification of the error probability and that is absent here, but the concepts of
fault-tolerance and small shift error resistance are very closely related. (For more on the precise,
formal meaning of fault-tolerance, see [27].)

4.2.1 The gate set for N = 1

For the construction of these gates we note that the L̂1-operator denotes the angular momentum
operator for the first qubit and L̂2 the angular momentum for the second. The gates are presented
in order of 4.17.

Controlled rotation gate

The Ĉrot for this encoding is given by

Ĉrot “
ˆ

eiπ
ˆL1

ˆL2 (4.18)

By letting Ĉrot act on a angular momentum eigenstate, the gates acts as

Ĉrot |l1y |l2y “ eiπL̂1
ˆL21 |l1y |l2y “ eiπl1l2 |l1y |l2y “ p´1ql1l2 |l1y |l2y . (4.19)

The desired characteristic of the gate is given by

p´1ql1l2 “

#

´1, if l1 and l2 odd,
1, else.

(4.20)

This makes the gate only induce a phase shift if both states are in |1̄y, proving the desired effect.

The Hadamard gate

The Hadamard gate is the hardest to construct in this setting, since it is the only non-diagonal
matrix of the four gates. Thereby the Hadamard gate is introduced using a qubit teleportation
scheme, this means that the original qubit is measured and its information transplanted on an
ancilla (or ‘helper’) qubit. The implementation of the the Hadamard gate is schematically given
in the figure below.

Figure 4.2: Schematic implementation of the Hadamard gate using a qubit teleportation scheme.
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To prove this scheme take an arbitrary state, |Ψy “ α |0y` β |1y. The two qubit state can then
be expressed as

|Ψstarty “ |Ψy |`y “ 1
?

2
pα |0y |0y ` α |0y |1y ` β |1y |0y ` β |1y |1yq. (4.21)

where the |Ψy is in the first Hilbert space and the |`y in the second. Now we apply Ĉrot and
reorder results in

Ĉrot |Ψstarty “
1
?

2
pα |0y |0y ` α |0y |1y ` β |1y |0y ´ β |1y |1yq

“
1

2
pαp|´y |0y ` |`yq ` αp|´y ` |`yq |0y ` βp|´y ´ |`yq |1y ´ βp|´y ´ |`yqq |1y

“
1

2
p|`y pαp|0y ` |1yq ` βp|0y ´ |1yqq ` |´y pαp|0y ` |1yq ´ βp|0y ´ |1yqq

(4.22)
Now when measuring in the X-basis on the first qubit, two options arise. The first option is that
|`y is measured. This directly gives the required state on the second qubit.

1

2
pαp|0y ` |1yq ` βp|0y ´ |1yqq “ 1

?
2
pα |`y ` β |´yq (4.23)

The second option is for when |´y is found. To obtain the required state in this case theX-operator
is applied to the second qubit. This gives the required state:

X
1

2
pαp|0y ` |1yq ´ βp|0y ´ |1yqq “ 1

2
pαp|1y ` |0yq ´ βp|1y ´ |0yqq “ 1

?
2
pα |`y ` β |´yq, (4.24)

which shows how the schematic applies the Hadamard gate. The measurement in the X-basis is
easiest done in terms of a angular position measurement, after which a controlled angular momen-
tum shift operation (as ˆ̄X) is performed as described above.

The phase and T gate

The phase gate Ŝ and magic T gate T̂ act as diagonal matrices and thus are much easier to
implement. Since the phase gate is simply the T̂ -gate applied twice, we only show how to implement
the T̂ gate, but an expression is provided for both

T̂ “ ei
π
4 L̂e´i

π
2

ˆ
tL2 u, (4.25a)

Ŝ “ ei
π
2 L̂e´iπ

ˆ
tL2 u. (4.25b)

In order to prove the desired functioning of the T̂ -gate it is noted that the function acts on l
modulo 8 (ei

π
4 l “ ei

π
4 pl`8q). The desired behaviour can be seen, by looking at the effect both

operator have on these residue classes. This gives the following relations:

ei
π
4 l “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1, l ” 0 mod 8

ei
π
4 , l ” 1 mod 8

i, l ” 2 mod 4

iei
π
4 , l ” 3 mod 8

´1, l ” 4 mod 8

´ei
π
4 , l ” 5 mod 8

´i, l ” 6 mod 8

´iei
π
4 , l ” 7 mod 8

(4.26a)
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e´i
π
2 t l2 u “

$

’

’

’

&

’

’

’

%

1, l ” 0, 1 mod 8

´i, l ” 2, 3 mod 8

´1, l ” 4, 5 mod 8

i, l ” 6, 7 mod 8

(4.26b)

Now by multiplication it is obtained, that

ei
π
4 le´i

π
2 t l2 u |ly “

#

|ly , l even,

ei
π
4 |ly , l uneven.

(4.27)

The Ŝ gate can be derived in similar fashion and thus is omitted here, but do also note that
T̂ 2 “ Ŝ. This completes the universal gate set.

As a last note, it is remarked that these gates are small shift error resistant. Since only errors
in the angular position space are allowed for the case of N “ 1, we note that three of the gates
are of the eiαL̂ form. For the Hadamard gate it is noted that the measurement in ˆ̄X-basis spans
the the whole correctable error range, thus this gate is also fault tolerant for the correctable angle
errors.

4.2.2 The gate set for general N spacing
The gates given above are now easily extended to an encoding with spacing N. This encoding
protects the code against shift errors as in equation 4.8. To prove the fault tolerance of the gates
against shift error, it is used that for these angular momentum shifts of size n the following relation
holds

[

n`
X

N
2

\

N

_

“ 0 (4.28)

This is used to prove the shift tolerance of the N-spaced gates. The gates are still tolerant to
angle errors by the same argument as presented above (only the correctable range diminishes as
noted above), so only the resistance to shift errors needs to be proven.

The Controlled rotation gate

The shift tolerant Ĉrot gate for N spacing is given by

Ĉrot,N “
“

V̂1
tN2 u

b V̂2
tN2 u‰:

eiπ
ˆ

t
L1
N u

ˆ
t
L2
N u

“

V̂1
tN2 u

b V̂2
tN2 u‰

. (4.29)

Here V̂1, L̂1 act on the first Hilbert and V̂2, L̂2 act on the second Hilbert space. Since for both
qubits most likely the same physical representation is used, their (angular momentum) spacing (in
the context of equation 4.9) is taken to both be N.

In order to obtain a small shift error resistant Ĉrot-gate we require that if the encoded state
obtains a shift error V̂ n1 V̂ m2 within the correctable error range as in equation 4.8, the action of the
gate is the same as on the state without any error. The states, on which such an error has occurred,
are of the form V̂ n1 V̂

m
2 |kNy |lNy “ |kN ` ny |lN `my (with n,m in the correctable range of shift

errors). Here we can not take m “ n, since both system can obtain errors independently.
The Ĉrot gate presented above fulfills this requirement of acting the same on |kN ` ny |lN `my,
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for any n,m within the correctable shift error range. This is shown as follows:

Ĉrot,N |kN ` ny |lN `my “
“

V̂1
tN2 u

b V̂2
tN2 u‰:

eiπ
ˆ

t
L1
N u

ˆ
t
L2
N u

“

V̂1
tN2 u

b V̂2
tN2 u‰ |kN ` ny |lN `my

“
“

V̂1
tN2 u

b V̂2
tN2 u‰:

eiπ
ˆ

t
L1
N u

ˆ
t
L2
N u

‰

∣∣∣∣kN `

Z

N

2

^

` n

F
∣∣∣∣lN ` Z

N

2

^

`m

F

“
“

V̂1
tN2 u

b V̂2
tN2 u‰:

eiπt
kN`tN2 u`n

N ut
lN`tN2 u`m

N u

∣∣∣∣kN `

Z

N

2

^

` n

F
∣∣∣∣lN ` Z

N

2

^

`m

F

“ eiπt
kN`tN2 u`n

N ut
lN`tN2 u`m

N u
“

V̂1
tN2 u

b V̂2
tN2 u‰:

∣∣∣∣kN `

Z

N

2

^

` n

F
∣∣∣∣lN ` Z

N

2

^

`m

F

“ eiπt
kN`tN2 u`n

N ut
lN`tN2 u`m

N u |kN ` ny |lN `my

“ eiπpk`t
tN2 u`n

N uqpl`t
tN2 u`m

N uq |kN ` ny |lN `my
“ eiπkl |kN ` ny |lN `my

(4.30)
Where in the second to last step equation 4.28 is used. Since the last form mirrors that of equation
4.20, the Ĉrot-gate acts as desired and the gate is unaffected by angular momentum shift within
the correctable error range. This proves the claimed fault tolerant behaviour of the gate.

An alternative option for a Ĉrot would be given by

Ĉrot “ eiπ
L̂1L̂2
N2 . (4.31)

This gate is much simpler in form than the gate from equation 4.29, which most likely leads a sim-

pler implementation, and acts as desired on the encoded states in equation 4.9, since eiπ
L̂1L̂2
N2 |kNy |lNy “

eiπkl |kNy |lNy. This gate does however alter its effect if the encoded state obtained a shift error.
Even an encoded with the error of V̂1 already shows this,

ĈrotV̂1 |kNy |lNy “ eiπ
L̂1L̂2
N2 |kN ` 1y |lNy “ eiπ

kN`1
N l |kN ` 1y |lNy ‰ eiπkl |kN ` 1y |lNy . (4.32)

Thus this gate is not small shift resistant.

The Hadamard gate

For the Hadamard gate the same argument as above is used. We first note here that the Ĉrot-
gate is shown to be fault tolerant. Secondly we note that the measurement in the X̂-basis is a
measurement in the angle domain. The outcome of this measurement is not affected by angular
momentum state shifts, which acts as phase shifts in the angular position space and thereby does
not affect the measurement. This means that the teleportation scheme from above still works small
shift error resistantly. Do however note that the correctable angle shift range is now reduced due
to the larger angular position spacing (for more on the correctable range see the section on error
analysis from above).

The Phase and magic T gate

For the Phase and magic T gates a trick very similar to the Ĉrot-gate is used. Their expression for
a spacing of N now looks the following:

T̂ “ rV̂ tN2 us:ei
π
4

ˆ
t LN ue´i

π
2

ˆ
t

t L
N

u

2 uV̂ tN2 u (4.33a)

Ŝ “ rV̂ tN2 us:ei
π
2 t L̂N ue´iπt

t L̂
N

u

2 uV̂ tN2 u (4.33b)

Here again we require the gate to produce the same effect even if a shift error V̂ n, which is in
the set of the correctable shift error range as in equation 4.8, has occurred. We prove the effect
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of the T̂ -gate by letting it act on the state on which an such an error has occurred, given by
V̂ n |kNy “ |kN ` ny. This gives:

T̂ |kN ` ny “ “ rV̂ tN2 us:ei
π
4

ˆ
t LN ue´i

π
2

ˆ
t

t L
N

u

2 uV̂ tN2 u |kN ` ny

“ rV̂ tN2 us:ei
π
4

ˆ
t LN ue´i

π
2

ˆ
t

t L
N

u

2 u

∣∣∣∣kN `

Z

N

2

^

` n

F

“ rV̂ tN2 us:ei
π
4 t
kN`tN2 u`n

N ue´i
π
2 t

t
kN`tN2 u`n

N
u

2 u

∣∣∣∣kN `

Z

N

2

^

` n

F

“ ei
π
4 t
kN`tN2 u`n

N ue´i
π
2 t

t
kN`tN2 u`n

N
u

2 u |kN ` ny

“ ei
π
4 pk`t

tN2 u`n
N uqe´i

π
2 pt

k`t
tN2 u`n

N
u

2 uq |kN ` ny

“ ei
π
4 ke´i

π
2 t k2 uq |kN ` ny

(4.34)

Which acts as desired by the same argument as in equation 4.27. Concluding the small shift
resistant gate set for an N spaced encoding.

Conclusion

As a small recap: the ideal shift resistant encoding of the rotor space is given by

|0̄y “
ÿ

lPZ
|2Nly “

2N´1
ÿ

m“0

∣∣∣θ “ mπ

N

E

,

|1̄y “
ÿ

lPZ
|2Nl `Ny “

2N´1
ÿ

m“0

p´1qm
∣∣∣θ “ mπ

N

E

.

Where N is an odd positive integer and is responsible for the spacing between the states. For
this encoding a complete fault tolerant gate set is provided by

ˆCrot,N “
“

V̂1
tN2 u

b V̂2
tM2 u‰:

eiπ
ˆ

t
L1
N u

ˆ
t
L2
M u

“

V̂1
tN2 u

b V̂2
tM2 u‰

,

T̂ “ rV̂ tN2 us:ei
π
4

ˆ
t LN ue´i

π
2

ˆ
t

t L
N

u

2 uV̂ tN2 u,

with Ŝ “ T̂ 2 and where the Hadamard gate is implemented via a qubit teleportation scheme.
For the Hadamard first a Ĉrot gate is applied to qubit as control and an ancilla in the |`y state.
The state of the control is then measured in the X-basis. Lastly a X̂ operator is applied to the
ancilla , depending on the outcome of the measurement. These four gates form a complete gate set.
This means that this encoding and these gates together provide a theoretical scheme for building
a quantum computer.
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5. Physical realisation: superconduct-
ing qubits

In the previous chapter a theoretical outline of a quantum computation scheme in a rotor system
was outlined. In this chapter a class of physical systems, called the superconducting qubits, are
discussed. Because these qubits make use of a Josephson junctions in a superconducting circuit
and the description of these Josephson junction is very similar to that of the rotor, the scheme of
the previous chapter could eventually be realized on such a system. The control and development
of these systems however is not far developed enough to directly realize the scheme of the previous
chapter, so in this chapter the focus is on some recent results in the field.

The main focus of this chapter will be on a new superconducting qubit scheme which makes
use of two-Cooper-pair tunneling. This qubit design uses a Josephson junction, the basic theory
of which forms the first part of this chapter, and uses ideas from the successful formula of the
transmon qubit, of which a short introduction forms the second part of this chapter. The chapter
is then concluded by a discussion of this two-Cooper-pair qubit.

What makes the two-Cooper-pair qubit exciting, is that it improves upon the successful formula
of the transmon by having a nearly degenerate ground-state. This near degeneracy results in good
predicted relaxation and dephasing times, meaning that the qubits should have longer controlled
quantum effects (thus making for better possible quantum computation) [10]. A full discussion
of these two-Cooper-pair qubits goes beyond the scope of this project, such that we mainly focus
here on the Hamiltonian and deriving some properties of the eigenstates.

5.1 The Josephson junction

In the simplest terms a Josephson junction is explained as a very small piece of insulating metal
between the superconducting wires in a circuit. Since the electrons classically can not move through
the insulating piece of metal, they have to tunnel, describing the quantum mechanical behavior
of the system. A picture and schematic representation of the junction is presented below. This
section is based on [28].

Figure 5.1: (a) a schematic representation of a Josephson junction. The grey metal is a supercon-
ductor and the yellow metal is an insulator, thus this demonstrates that the Josephson junction is
a superconductor-insulator-superconductor tunnel junction. (b) A microscopic picture of a Joseph-
son junction. The junction is here created with an Aluminium-Aluminiumoxide-Aluminium stack.
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As noted above, the Josephson junction divides two superconducting wires. These supercon-
ducting wires show a quantum mechanical behaviour which can be described using the number of
Cooper pairs and the phase. The derivation of this fact is lengthy and irrelevant for the rest of the
section, thus we refer to [28]. The main point is that the state can be described as

|Ψsuperconductory “

8
ÿ

n“0

|λn|e
iφn2 |ny (5.1)

Where |ny denotes the number of electrons in the wire and φ refers to the phase associated of the
superconductor.

Now in order to describe the effect of the junction the difference between the two superconduct-
ing states is used. To describe the effect of the junction on the number of electrons the difference
in number of Cooper pairs (as result of tunneling) is introduced, this is defined by

|my “ |Nr ´my |Nl `my , (5.2)

where Nr is the number of Cooper pairs one side of the junction. here called the right side, and
Nl the number on the other, here the left. Important to note is that while the number of Cooper
pair states is always a positive integers, the difference in number states can also be negative (by
there being more Cooper pair tunneled to the right), such that m P Z. Secondly to describe the
effect of the junction on the phases of the wires the difference in the phase of the two states is also
introduced, this is defined as

φ “ ∆φ “ φwire,1 ´ φwire,2. (5.3)

Because only the phase difference is an important parameter, this is commonly referred to as the
phase of whole junction (although it is actually a phase difference between the two sides of the
junction).

These parameters behave analogous to a rotor system. In this analogy the difference in the
number of electrons |my plays the role the angular momentum states |ly and the phase φ plays the
role of the angular position θ. The Hilbert spaces of |my P l2pZq and |φy P L2pr0, 2πsq, as in the
rotor case, are related by the discrete Fourier transform. (For more on these operators see chapter
1.)

Now to calculate the effect of the junction on the Hamiltonian of the system, the amount of
energy stored in the junction is of interest. The amount of current that will flow through the
junction is given by

Ijunc “ Icsinpφq, (5.4)

where Ic is the maximal current the junction can support. The Voltage bias of the junction is
given by

Vjunc “
~
2e

dφ

dt
. (5.5)

Combining these results the energy stored in the junction can calculated by

Hj “

ż

IjuncVjuncdt “

ż

Icsinpφq
~
2e

dφ

dt
dt “

~Ic
2e

ż

sinpφqdφ “ const.´ Ejcospφq, (5.6)

with the Josephson energy Ej “ ~Ic
2e .

To summarize, the Josephson junction is described using the difference in Cooper pairs |my
and the phase (difference) φ, which function analogously to the angular momentum and angular
position of a rotor. The energy stored in the Junction is given by ´Ejcospφq, with Ej “ ~Ic

2e .

5.2 The transmon qubit

As noted in the introduction, the transmon qubit design is one of the most successful supercon-
ducting qubits. In this section the encoding and idea behind a transmon qubit is only shortly
reviewed, since the main focus of the chapter is on the two-Cooper-pair qubit. For a full discussion
of the transmon qubit see [29]. This section, being somewhat more elementary, is based on [30]
and [28].
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The building of the transmon started as the idea of encoding a qubit in an harmonic oscillator.
These qubits are however not encoded like in section 3.2, for which the level of control is not yet
high enough, but are encoded in a simpler fashion by taking the two lowest energy levels of the
oscillator. By only using these two states, this subsystem behaves like a qubit system.

The attractiveness of this idea comes from how easy the system is to obtain. A simple LC-
circuit (see the figure below) behaves like an harmonic oscillator and the gap between energy levels
of the system can be very easily engineered. Since En “ p 1

2 ` nq~ωr with ωr “ 1?
LC

, any energy
spacing can be obtained. The problem with building a qubit in an harmonic oscillator is that
the energy difference between all the energy levels is the same. As a consequence the process of
changing the state from |0y to |1y costs the same as |1y to |2y. This forms a problem, because any
external energy supply used to operate the qubit operations (for instance microwave radiation) can
move both |0y Ñ |1y and |1y Ñ |2y at the same time. This means that the state leaks out of the
required two lowest levels, which leads to errors in the computation.

Figure 5.2: (a) a schematic representation of a LC-circuit and (b) the equal spaced energy states
of the harmonic oscillator.

The innovation of the transmon qubit is to get around this problem by introducing an anhar-
monious element in the oscillator by replacing the inductance by a Josephson junction (see the
figure below). This anharmonious element causes the states to be spaced unevenly, which makes
it possible to find a regime where the states have a good coherence time and do not leak too easily
into the states of |2y and up (but leakage can still happen).

Figure 5.3: (a) a simplified schematic representation of a transmon circuit and (b) the unequal
spaced energy states introduced by the Josephson junction.

The Hamiltonian of this system is given by

Ĥtransmon “ 4Ecpn̂´ ng Îq
2 ´ Ejcospφ̂q. (5.7)

Here n̂ is related the charge state operator (by Q̂ “ 2en̂) and it acts on the Cooper pair difference
of the Josephson junction as n̂ |my “ m |my. ng is the gate charge offset in the system and as
previously discussed Ej ˆcospφq is the energy in the junction.

Now to see the power of the transmon the effect of the energy ratio Ec
Ej

is crucial. The effect
of this ratio is twofold. On increasing the ratio on the one hand the effect of the charge noise in
the form of ng is decreased, which fluctuates as it is induced by some external Voltage Vg, but on
the other hand the level of anharmonicity of the system decreases (thus increasing leakage in the
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system). But since the first effect decreases exponentially and the second only algebraically, there
exist an optimal regime for the ratio. In this regime, the qubit is quite well protected from charge
noise, having a decoherence time roughly between 10µs´ 100µs for realistic parameters [28], and
the states are divided well enough to avoid (too much) leakage. This central property makes the
transmon a very successful qubit encoding.

5.3 Two-Cooper-pair qubit

The new two-Cooper-pair qubit takes many of its ideas from the original transmon (especially the
way in which it avoids charge noise is very similar) and improves upon the formula by having
the two lowest energy states be nearly degenerate. This improvement should allow the circuit to
have even longer coherence times, since the phase-difference obtained over time, given pE1´E0qt

~
(remember that for any stationary state Ψnptq “ Ψnp0qe

´iEnt~ ), is even smaller. But since the
scheme of this qubit is so recently designed, there are no experimental results as of the moment of
writing.

For these qubits first a short overview is presented of the circuit used to create the two-Cooper-
pair tunneling. After this an in depth discussion of the Hamiltonian describing the system is
presented. The circuit and Hamiltonian are from [10].

The circuit

The circuit of the two-Cooper-pair qubit makes use of an inductive element and a capacitance in
parallel as in the LC and in the transmon circuits. Here the inductive element consists of two
Josephson junctions placed in parallel, both placed in the middle of two superinductances (see the
figure below). This parallel composition only allows for the tunneling of two Cooper-pair electrons
at the same time.

Figure 5.4: (a) a simplified schematic representation of a two-Cooper-pair tunneling circuit and
(b) the unequal, nearly degenerate, spaced energy states introduced by the circuit. The energies
in (b) are not representative of the exact scale, but provide some idea of the energy spectrum.

The Hamiltonian

The Hamiltonian of the circuit is approximated by [10]

Ĥ “ 4Ecpn̂´ ng Îq
2 ´ Ejcosp2φ̂q, (5.8)

where the operators mean the same as in equation 5.7. The only difference between the two
Hamiltonians is that the cospφq from the transmon is now replaced by a cosp2φq.

First the question of where the cosp2φq element comes from. The cosp2φq element is a direct
consequence of only letting two Cooper pairs tunnel at same time. This can be seen as follows. As
noted before, the energy of the Josephson junction is given by ´Ejcospφ̂q. Now by Euler’s formula
note that cospφ̂q “ 1

2 pe
iφ̂ ` e´iφ̂q “ 1

2 pV̂ ` V̂ :q (see chapter 1), thus letting a Cooper-pair tunnel
is represented as a right and a left shift in the difference of electrons. By letting only two Cooper-
pairs tunnel the result is twice the shift, this gives 1

2 pV̂
2` V̂ :2q “ 1

2 pe
i2φ̂`e´i2φ̂q “ cosp2φ̂q, which

shows how the ˆcosp2φq is obtained.

43



Using the representation 1
2 pV̂

2 ` V̂ :2q of the two-Cooper-pair element and the commutation
relation from chapter 1 of

V̂ keiαn̂ “ eikαeiαn̂V̂ k, (5.9)

the following commutation can be derived (since ei2π “ 1)

eiπn̂Ĥe´iπn̂ “ Ĥ. (5.10)

From this commutation it can be concluded that ˆeiπL and Ĥ share eigenfunctions. This means
that the eigenfunctions of Ĥ are given by either even or odd number of Cooper states. These
eigenstates will have nearly the same energy and be orthogonal for each energy level.

To further study the eigenfunctions, the Hamiltonian is represented on the phase space of
L2pr0, 2πsq. After using separation of variables the time-independent form of the Schrödinger
equation is given by

4Ec p´
B2Ψpφq

Bφ2
´ 2ngi

BΨpφq

Bφ
` n2

g

¯

´ Ejcosp2φqΨpφq “ EΨpφq, (5.11)

which is a differential equation with periodic boundary conditions Ψpφq “ Ψpφ` 2πq. Now using
the substitution of gpφq “ eiφngΨpφq, the differential equation reduces to

B2gpφq

Bφ2
`

´ E

4Ec
´

Ej
4Ec

cosp2φq
¯

gpφq “ 0. (5.12)

This differential equation is known as the Mathieu equation. From the substitution above, it
can be concluded that the solutions of the Mathieu equation will provide the eigenfunctions and
eigenvalues of the original Hamiltonian.

First the eigenvalues are discussed. In order to find a physical solution, the solution of the state
has to be bounded (to be normalizable), or “stable”. A stability chart of the Mathieu functions is
given in the figure below.

Figure 5.5: The stability chart of the Mathieu function for different values of a “ E
4Ec

and q “ Ej
8Ec

.
The region with stable solutions is denoted by the orange surface in the plot. The orange region
depicts four bands of stable solutions here. The figure is from [31].

Any eigenvalue of the original equation has to be in the orange region. The solutions are even
further fixed by the boundary conditions for gpφq, obtained by the original Ψpφq “ Ψpφ ` 2πq,
given by

gpφq “ e´i2ngπgpφ` 2πq. (5.13)

From this boundary condition it follows that there are only two energy value per band (more on
this later). With this information an upper bound to the difference between the energy level in
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a band can be obtained, since the energy difference will be smaller than the height of the energy
band of the bands in figure 5.5. Hereby the following result is obtained for large Ej

Ec
(from [31]

section 28.8)

∆E ď
24m`5

m!

c

2

π

ˆ

Ej
8Ec

˙

2m`3
4

e´
b

2Ej
Ec

ˆ

1´
p6m2 ` 14m` 7q

a

8Ej

32
?
Ec

`O

ˆ

Ec
Ej

˙˙

. (5.14)

Where m P N0 denotes the number of the energy band. This shows, that the two lowest energy
levels, by taking m = 0, for large Ej

Ec
, are nearly degenerate as claimed before.

Now for the eigenfunctions associated to these energies, things become a lot more tricky. The
Mathieu equation has no solutions in a closed form, meaning some expression of the form fpxq “ ...
does not exist. Still the equation has been studied thoroughly (see [32] and [31]) and therefore a
lot of properties of the solution are known. (A nice discussion of the Mathieu functions for this
Hamiltonian is also given in [33], though it is unpublished work.) Here some of these properties,
those relevant to this Hamiltonian, are discussed.

First it is noted that equation 5.12 is periodic in φ, with period π. Now by Floquet’s or Bloch’s
theorem any solution has to be of the form

gpφ` πq “ eiπνgpφq, (5.15)

with ν P R the characteristic exponent (Floquet) or the wave vector (Bloch). By equation 5.13 it
can be concluded that ν can only take the form of

ν “ ´ng ` k, k P Z (5.16)

This result has some important consequences. First two general properties of the solutions.
The result of 5.16 implies that for any charge offset ng the solution Ψmpφq is either periodic or
anti-periodic in φ with period π, meaning

Ψmpφ` πq “ p´1qmΨmpφq, (5.17)

where m P N labels the eigenfunctions.
A second general property is the already mentioned two solutions per energy band. While a

formal proof is given in [33], this can easiest be understood graphically in the figure below.

Figure 5.6: The eigenvalues E
4Ec

values on the y-axis versus the Floquet exponent on the x-axis
for the Hamiltonian of 5.11 at Ej

8Ec
“ 30. This graph depicts relation between the eigenvalues and

the Floquet exponent for a general Mathieu equation, thus all values for the Floquet exponent are
possible. In the case of the Hamiltonian from equation 5.11 the possible Floquet exponents are
further fixed by equation 5.16.

When fixing a value of ng, it can easily be seen that a displacement of k P Z places the Floquet
exponent each time in a new band. But more importantly the degenerate solutions are for each
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ng separated by a an odd number of displacements (meaning m “ 2k ` 1 for some k P Z) and
that these two solutions exhaust all solutions in the energy band [33]. This property is crucial for
proving some error resistant characteristics of the system.

The second consequence from result 5.16 lies in the form of the degenerate eigenfunctions. The
eigenfunctions of the Mathieu equation are called the Mathieu functions and are for ν P R denoted
by mepnqν pφq, where n P N labels associated the energy bands. Using the properties of the Mathieu
functions it is proven here that the eigenfunctions in the same energy band are of the same form
on r0, πs, but differ only in their (anti-)periodicity.

Following the reasoning used in [32], we use an expansion of the Mathieu function for a general
Mathieu equation. Let t “ eiπν , where the choice of ν is only restricted by having to imply a stable
solution (since we are talking here about the Mathieu equation in its general form). The function
vnpz, tq “ me

pnq
ν pzq is an analytic function on the ring R : 1 ´ δ ď |t| ď 1 ` δ with δ P R small

(such that the solutions exists on the whole ring). Thus vnpz, tq has a Laurent decomposition of

vnpz, tq “
ÿ

mPZ
apnqm pzqtm (5.18)

which leads by taking using the Cauchy integral theorem on

apnqm pzq “
1

2πi

¿

vnpz, τq

τm ` 1
dτ (5.19)

to the decomposition of menν pzq of

mepnqν pzq “
ÿ

mPZ
apnqm pzqeimπν . (5.20)

Since mepnqν pzq has to satisfy the condition of 5.15, this decomposition can be simplified to

mepnqν pzq “
ÿ

mPZ
a
pnq
0 pz ´mπqeimπν . (5.21)

(see also [32] sect. 2.34.). This decomposition holds for any Mathieu equation [32].
Using this decomposition we will prove that, for the Hamiltonian of equation 5.11, one solution

in an energy band is periodic if and only if the other solution anti-periodic. Here we use that for
this Hamiltonian it holds that (as was noted above) given that the Floquet exponent ν1 is a solution
to the original equation of 5.12, the other solution in the same energy band can be obtained by
filling in ν1` l for some odd l. Also it was remarked that these two solutions form all the solutions
in the energy band. Now suppose that mepnqν1 pzq is a solution of equation 5.12. Filling the Floquet
exponent ν2 “ ν1` l of the other solution in the decomposition of equation 5.21 it is obtained that
the degenerate solutions are of the form

mepnqν1
pzq “

ÿ

mPZ
a
pnq
0 pz ´mπqeimπν1 and (5.22a)

mepnqν2
pzq “ me

pnq
ν1`l

pzq “
ÿ

mPZ
a
pnq
0 pz ´mπqeimπpν1`lq,

“
ÿ

mPZ
a
pnq
0 pz ´mπqpeiπqmleimπν1 ,

“
ÿ

mPZ
a
pnq
0 pz ´mπqp´1qmeimπν1 ,

(5.22b)

using in the second step that ml is odd if and only if m is odd, since l has to be odd. From
these decompositions of the two solutions we conclude that the solutions in a given energy band
are the same on r0, πs, with one being periodic over π and the other anti-periodic over π. Since
these solutions exhaust all possible solutions in a given energy band, the proof is complete.

Since for degenerate eigenfunctions the solutions only differ in their (anti-)periodicity, it is
concluded that their orthogonality is stable under a small shift. This means that if Ψ0,Ψ1 are the
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normalized solutions in the same energy band that for a small shift eiαL̂ with α P R small, it holds
that xΨ0| eiαL̂ |Ψ1y « 0. Secondly the superpositions of Ψ˘ “

1?
2
pΨ0 ˘ Ψ1q have zero support

on rπ, 2πs for Ψ` and r0, πs for Ψ´. For the lowest energy state the states will then be localised
near 0, π respectively, since the potential energy is lowest at 0, π and for the lowest energy there
is little tunneling. For this reason also their orthogonality is stable under small shifts, meaning
xΨ`| eiαL̂ |Ψ´y « 0. This shows some of the error resistant qualities of the system.

Thus from the analysis of the Hamilton 5.11 the following results can be concluded. The two
lowest energy states are nearly degenerate, where their degeneracy scales with a dominant term of

e´
b

2Ej
Ec for large Ej

Ec
. This degeneracy means that the lowest energy states will only obtain a very

small phase difference over time, which is an important property for long coherence times. Secondly
the solutions in the same energy band have the same form on p0, πq and differ on pπ, 2πq only by
their (anti-)periodicity. This means that the superpositions Ψ˘ “

1?
2
pΨ0˘Ψ1q are localized close

to 0, π respectively. This means that the two Cooper pair qubit already shows some promise for
realizing the zero spacing encoding from the previous chapter (see 4.1) and since it inherits the
same techniques as the transmon to protect the qubit from charge noises (which corresponds to
angular momentum shifts in the rotor picture) this zero spacing is a justified assumption here.
Thus, while a full realization of the scheme from chapter 4 still are far away, the encoding for zero
angular momentum spacing seems realizable.
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Conclusion

As said in the introduction, the goal of this report was to study error correcting encodings of
qubits in a rotor space. The rotor space was described using the angular momentum L̂ and the
angular position Θ̂, where the expressions of the states in the different bases were related by the
discrete Fourier transform. The possible errors on the states in the rotor space were given by
shifts, V̂ the angular momentum shift and eiαL̂ the angular position shift. To protect the encoding
a shift resistant encoding was used. Here small shift in the code can be detected by a stabilizing
measurement and then corrected. Since large errors are seen as the accumulation of small errors,
the encoding should be error resistant.

The ideal shift resistant encoding of the rotor space was given by

|0̄y “
ÿ

lPZ
|2Nly “

2N´1
ÿ

m“0

∣∣∣θ “ mπ

N

E

,

|1̄y “
ÿ

lPZ
|2Nl `Ny “

2N´1
ÿ

m“0

p´1qm
∣∣∣θ “ mπ

N

E

.

Where the spacing between the states is given by an odd positive integer N. For a zero spacing
N “ 1 is used. For this encoding a complete fault tolerant gate set was provided by

ˆCrot,N “
“

V̂1
tN2 u

b V̂2
tM2 u‰: ˆ

eiπt
L1
N ut

L2
M u

“

V̂1
tN2 u

b V̂2
tM2 u‰

,

T̂ “ rV̂ tN2 us:
ˆ

ei
π
4 t LN u

ˆ
e´i

π
2 t

t L
N

u

2 uV̂ tN2 u,

with Ŝ “ T̂ 2 and where the Hadamard gate is implemented via a bit teleportation bit scheme.
For the Hadamard first a ˆCrot gate is applied, then a measurement in the X-basis on the original
and lastly the X operator is applied controlled by the measurement. These four gates formed a
complete gate set. This means that this encoding and these gates together provide a theoretical
scheme for building a quantum computer.

While the construction of an actual quantum computer following the scheme from above is still
far away, because of the high level of state preparation and the hard to realize floored angular
momentum operator (given by ˆ

tLk u with k P Z). A recent superconducting qubit scheme shows
some promise in parts of the realization. This two-Cooper-pair qubit allows only pairs of Cooper
pairs to tunnel through a Josephson junction. The resulting state is described by the difference in
Cooper pairs between the sides of the junction, which was described using the same Hilbert space
as angular momentum, and the phase across the junction, which was analogue to the angular
position state. In this two-Cooper pair scheme, the two lowest energy states are nearly degenerate,
are similar on p0, πq and differ on pπ, 2πq only by their (anti-)periodicity. Of the two states one
consisted of only an even difference in Cooper pairs and the other of only an odd difference, which
corresponds roughly to the |0y , |1y in the zero spacing encoding from above. Using these lowest
energy states a superpositions localized near 0 and π can be constructed, which corresponds to the
|˘y p“ 1?

2
p|0y˘ |1yqq in the zero spacing scheme from the encoding above. This means that, while

the implementation of the fault tolerant gate set seems very far away, the two-cooper-pair qubit is
able to replicate the zero space encoding presented above.
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