Fuzzing for concurrent programs under
C/C++ weak memory model

Master’s Thesis

Luan Li

Fuzzing for concurrent programs under
C/C++ weak memory model

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
EMBEDDED SYSTEMS
by

Luan Li
born in Liaoning, China

]
TUDelft

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewl.tudelft.nl

www.ewi.tudelft.nl

© 2024 Luan Li. Note that this notice is for demonstration purposes and that the BIFX style
and document source are free to use as basis for your MSc thesis.

Fuzzing for concurrent programs under
C/C++ weak memory model

Author: Luan Li

Abstract

Fuzzing has been a popular approach in the domain of software testing due to
its efficiency and capability to uncover unexpected bugs. Fuzz testing was originally
developed in the days of sequential programs. With the rise of multi-core devices
and increasing demand for computational efficiency, the prevalence of concurrent pro-
gramming has led to a new wave of research applying fuzz testing techniques. In recent
years, several fuzzers have been proposed for sequentially consistent multi-threading
programs, a subset of concurrent programs, using thread interleaving semantics. How-
ever, exploration of fuzzing techniques for weak memory concurrency remains limited.

This thesis presents a novel fuzzing approach for programs under weak memory
models. It generates test cases as execution graphs instead of thread schedules, and
performs mutations on the execution graphs to generate new test cases.

We implement the fuzzer based on two state-of-the-art testing tools: C11Tester and
GenMC. Different mutation strategies are explored for comparison. Benchmark results
demonstrate that our fuzzer explores a broader range of execution graphs compared to
naive random testing, resulting in improved bug detection.

Key Words: fuzz testing, weak memory model, execution graph, concurrency bug

Thesis Committee:

Chair: Dr. Prof. Arie van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. Burcu Kulahcioglu Ozkan, Faculty EEMCS, TU Delft
External supervisor: Dr. Ori Lahav, School of Computer Science, Tel Aviv University
Committee Member: Dr. Jeremie Decouchant, Faculty EEMCS, TU Delft

External Committee Member: Dr. Michalis Kokologiannakis, ETH Zurich

Preface

First of all, I would like to thank Dr. Burcu Ozkan, Dr. Ori Lahav, and Dr. Michalis Kokolo-
giannakis, who have provided me with extensive guidance. Without their supervision and
support, I would not have been able to conduct this research project. It has been a great
honor to learn from and work with such outstanding individuals. I would also like to ex-
press my sincere thanks to Dr. Prof. Arie van Deursen and Dr. Jeremie Decouchant for their
invaluable support to this thesis project.

I am grateful for my two years as an MSc student at TU Delft. I would like to thank the
professors and teaching assistants for providing incredible lectures and learning materials.
I understand that it takes ten minutes of class time for every ten hours of preparation.”
I would also like to thank Dr. Jonas Thies for supervising my research internship, which
was a truly memorable experience. I am thankful to the EEMCS faculty for offering such a
supportive platform with so many kind people and fascinating research opportunities.

I would like to thank my family for their constant support, both mentally and financially.
I wish them a joyful and fulfilling life. I also want to thank my friends; it has been a great
fortune to have them with me throughout this journey.

Last but not least, knowing oneself is as difficult as knowing others. Learning to get
along with and befriend myself has always been an important lesson. ’Be the water clear, it
can wash my tassels; be the water muddy, it can wash my feet.” I hope I never stop exploring
this wonderful world.

Luan Li
Delft, the Netherlands
September 11, 2024

iii

[TIntroductionl

2 Background|

2.2 Weak Memory Models|
2.3 Execution graphs|
24 C/C++11 Memory Model|

4.2 Customization points of C11Tester]|

4.3 Fuzzer implementation|
44 Benchmarks/
Evaluation and di onf.

D.1 Overviewof GenMCl
[5.2 Customization points of GenMC|
5.3 Fuzzer implementation|

Contents

iii

vii

CONTENTS

6 Related Workl
6.1 Memorymodels|. L

....................................
6.3 Model Checking|. o o oo

[7__Conclusions and Future Work
...................................

Futur rkl e

|IA.1 Fuzzer implementation in Cl1Tester)
|[A.2 " Fuzzer implementationmm GenMC| L0,

B Requirements and Guidelines|
[B. Requirements|

vi

55
55
56
56

59
59
59
61

63

71
71
71

List of Figures

2.1 Execution graphexample| 7
22 XopsemOFSB|. . oo 8
PR3 Xiimess OTSB| o o o 9
24 Not-allowedof SBI 10
3.1 Valid execution graphsof SB| L. 12
3.2 Randomdecisiontreel 13
3.3 Mutationl. e e e e e e e e e e e e e e e e 14
[3.4 Construction of an execution graph| 15
[3.5 Mutate the previous execution graph and re-explore| 15
4.1 Frequencies of execution graphs| 27
B2 Buffindingplots| 28
4.3 Coverageplots (1)|. e 30
4.4 Coverageplots (2)|. 31
4.5 Cl1Fuzzer vs PCTWM| 33
5.1 The execution graphtobecut. 41
[5.2 Revisitcutoutput] 42
5.3 Minimalcutoutputf 42
5.4 Maximalcutoutput] 42
[5.5 Coverageplots| 46
[5.6 'Time elapsed by various strategies|o L. 47
5.7 Number of executions found in I minutel 48
[5.8 Average iterations to detectthe bugs| oL oL 49
[5.9 Average time to detectthebugs|. L. 50
[5.10 Average iterations to detectthebug|. 52
[5.11T Average time to detectthebug| 52
[5.12 Average iterations to detect the bug (varying assertion)[. 53
[5.13 Average time to detect the bug (varying assertion)| 54

vii

Chapter 1

Introduction

As software systems continue to grow in size and complexity, the occurrence of software
bugs becomes an inevitable challenge. Industry experience shows that software often con-
tains 1-25 bugs per thousand lines of code[S1]] and the number of bugs increases quadrati-
cally with the size of the codebase[11]. Software bugs can lead to critical program errors or
even crashes, which, in turn, may result in significant financial losses[50, S]] or pose serious
risks to safety and life[21}, 30, 45]]. To address the threat posed by bugs or vulnerability of
programs, researchers have investigated a variety of bug detection techniques.

There are two major ways to detect bugs: formal verification methods and testing meth-
ods. Formal verification techniques, such as axiomatic approaches, use mathematical de-
duction to prove the absence of bugs. These approaches heavily rely on the expertise of
developers and normally require a significant amount of time and effort[33]. Formal meth-
ods can sometimes produce false positives, which further increases the complexity and time
cost of verification. Automated testing, on the other hand, has for long been of great im-
portance for its scalability and efficiency. Although testing cannot prove full correctness
of a program, it is very effective in finding real bugs. Various testing methods have been
developed over the years, including static analysis[12}, 9] and dynamic testing tools[69, [68]].
However, due to the complexity of the programs being tested, static analysis tools do not
always report bugs comprehensively or correctly. Dynamic testing, on the other hand, of-
ten requires high-quality test cases to cover a large portion of program behaviors, which
may demand a deep understanding of the program under test, can be time-consuming, and
requires significant effort to complete.

Fuzz testing has become increasingly popular in recent years. It repeatedly executes the
tested program by generating random inputs and monitors for any observed buggy behav-
iors. These approaches are usually easy to apply and scale well. Fuzzers can be classified
into three categories based on the level of knowledge they use from the tested programs:
black-box, grey-box, and white-box fuzzers. A fuzzer typically has a feedback loop. It
maintains a set of seeds as program inputs to execute the program. The information about
the execution is collected to determine whether a seed is interesting, which means the seed
has triggered new interested behaviors, such as covering new code branches. The interest-
ing seeds will be used for generating new seeds during repeated executions. One of the
most popular fuzzing tool is AFL[78]], a coverage-guided mutation-based grey-box fuzzer

1

1. INTRODUCTION

which achieves superior efficiency than previous black-box fuzzers. Since then, researchers
have developed various techniques to improve the code coverage and accelerate the bug
detection.

Entering the multi-core era, concurrent programming has gained increasing signifi-
cance. The need for testing concurrent programs has also grown considerably. Researchers
have developed various testing techniques, and fuzzing for concurrent programs has gained
increasing attention. Traditional coverage-guided approaches face challenges in detecting
concurrency bugs, as code coverage information does not reflect thread interleavings, which
can lead to such bugs. Therefore, thread-relevant instrumentation is needed to provide con-
currency feedback information in the fuzzing loop. Another problem is that, assuming
sequential consistency, both the program input and the thread interleavings (or schedules)
determine the program’s behavior. Hence existing concurrency fuzzers can be classified
into two types: fuzzers aiming for generating seeds[16] and thread interleavings[54} 29].

However, current concurrency fuzzers mainly focus on testing for programs under se-
quential consistency memory model. Modern computer architectures, such as Power[l67]]
and ARM|[22, |64], often allow speculative and out-of-order executions and introduce cache
hierarchies to reduce memory access latency. On the one hand, although sequential consis-
tency is easy to understand by programmers, achieving it is very expensive. On the other
hand, by relaxing the memory order and allowing for weak memory behaviors, the effi-
ciency of execution can be significantly improved. However, both developing and testing
programs under weak memory have been notoriously hard. Given the success that fuzzing
has achieved on sequential programs and multi-threading programs under SC memory, it is
reasonable to believe fuzzing can also be helpful for weak memory testing.

In this thesis, we propose a novel fuzzing approach designed to support weak memory
models. Unlike existing fuzzers that rely on random seeds or thread schedules, our approach
mutates execution graphs to generate test cases. Due to the generality of execution graphs,
our fuzzer also supports programs under the sequential consistency memory model. We
then present two implementations in both C11Tester and GenMC, which are state-of-the-art
platforms for testing weak memory programs.

The rest of this thesis is structured as follows: Chapter 2| provides the background in-
formation on fuzzers, weak memory models, execution graphs, and the C/C++11 memory
model. Chapter [3|presents the intuition and a high level overview of the fuzzing algorithm.
Chapter [] describes the implementation on C11Tester, with the evaluation results and dis-
cussion. Chapter [5] describes the implementation on GenMC and the evaluation of three
mutation strategies. Chapter [6] briefly summarizes some other related work on fuzzing,
memory models and model checking, etc. Chapter [/| concludes this thesis and discusses
possible future work.

Chapter 2

Background

2.1 Fuzzers

A fuzzer is a program that performs fuzz testing, or fuzzing. The idea of fuzzing was
proposed by Miller et al. [S5] in the late 1980s. They developed a program called "Fuzz”
that generates random input strings for testing programs that have special requirements
on inputs. If the generated input string can pass the program’s input check but results in
unexpected errors, a bug is detected. The fuzzing technique can automate software testing
procedures and has been advanced significantly over the past years.

Fuzzers can be classified into three categories: black box, gray box, and white box
fuzzers. Early fuzzers that came after Fuzz were primarily black box fuzzers. Black box
fuzzing is I/O-driven fuzzing, which only tracks the input and the corresponding output
data from a program, without knowledge of its internal states and their relationships with
the input. Therefore, it is relatively simple to design and deploy black box fuzzers for a
wide range of programs, especially for those that are not open-sourced because black box
fuzzing can be performed non-intrusively. The drawback of black box fuzzing is that, be-
cause it does not have internal information about the program, it may expend significant
effort generating irrelevant inputs and achieve low testing coverage. On the other hand,
white box fuzzing usually has sufficient knowledge of the program’s internal information.
The first white box fuzzer was SAGE[25]], which starts from a well-formed input and exe-
cutes the program while collecting alternative branches along the path. These branches can
be used to constrain the input generation and guide to cover new execution paths. Since
white box fuzzing has full knowledge of the tested program, it can generate high-quality in-
puts that cover a large fraction of the execution paths. However, such approaches typically
use symbolic execution techniques and constraint solvers, which usually consume large
computation resources and face the challenge of state explosion. To balance the benefits of
these two approaches, gray box fuzzing utilizes a small amount of the internal information
and has become popular since the success of AFL[78]]. Instead of using symbolic execution,
it performs program instrumentation to collect the coverage information. It uses a genetic
search algorithm to pick seeds and mutations that yield positive edge coverage. Since then,
a large number of fuzzers based on AFL have been proposed[57, (39, (71 23]].

3

2. BACKGROUND

From another perspective, we could also categorize fuzzers with respect to their target
programs. Consider the following three categories: sequential programs, sequentially con-
sistent (SC) concurrent programs and concurrent programs under weak memory models.
Traditional fuzzers are usually designed for sequential programs. For a single-threaded,
deterministic program, a fixed input will produce a fixed output. Therefore fuzzers only
generate and mutate program inputs. Take AFL for example, it generates program inputs,
or seeds, that trigger interesting execution paths. For SC concurrent programs, program
behaviors are determined by both program input and thread interleavings, hence fuzzers for
such programs can have two respective targets. For example, MUZZ][16] targets program
inputs, especially those that can cover thread-relevant execution paths of the program. It
conducts static analysis on the program and instruments it in a biased manner on the con-
current parts of the code, such as the code between the thread creation and joining and
outside critical sections, instead of uniformly instrumenting the code like AFL does. The
biased instrumentation can guide the fuzzer to generate more thread-relevant inputs that can
be used to detect concurrency bugs, such as data races. Conzzer[29]], on the other hand,
searches for thread schedules that cause bugs. It collects pairs of function call stacks as
seeds and picks adjacent functions to generate new function call pairs. It proactively con-
trols the scheduling and forces the selected call pair to be executed concurrently. RFF[54]]
uses reads-from pairs, consisting of a read instruction and its corresponding write, as seeds
and enforces selected read-from pairs by prioritizing the read thread. After the read is ex-
ecuted, it then prioritizes the write thread. Both Conzzer and RFF are targeted at thread
interleavings. Table [2.1] summarizes the aforementioned fuzzers and their definitions of
fuzzing concepts, such as seeds and mutations.

Fuzzers target (seed) mutation
AFL program input xor, bit shift, hashing etc
MUZZ | thread-relevant program input xor, bit shift, hashing etc
Conzzer function call pairs pick adjacent functions
RFF reads-from pairs changing rf pairs

Table 2.1: Fuzzers with their seeds and mutations

As illustrated in Table [2.2] to the best of our knowledge, while many fuzzers exist for
sequential programs, there are only three fuzzers specifically designed for concurrent pro-
grams. However, none of these have been developed to address concurrent programs under
weak memory models. In the field of weak memory concurrency research, program behav-
ior is usually modeled by execution graphs. In this project, we develop a fuzzing approach
based on execution graph semantics, using the graph prefix as seeds and changing reads-
from relations as mutations. The details of the fuzzing algorithm and its implementation are
provided in later chapters.

4

2.2. Weak Memory Models

program fuzzers
single-threaded SAGE, AFL, TriforceAFL, kAFL, Driller, CollAFL, etc
SC multi-threaded | MUZZ, Conzzer, RFF
weak multi-threaded | ??

Table 2.2: Fuzzers with their application domains

2.2 Weak Memory Models

In concurrent programming, shared memory is used to share data and pass messages among
threads. Memory models are essential for programmers to reason about their code and for
compilers and hardware manufacturers to implement low-level support infrastructure. The
earliest memory model, proposed by Lamport[41] in 1979, is the Sequential Consistency
Model (SC) . Under the SC model, intra-thread instructions are executed following their
program order and threads can interleave in any order. A read operation can only read the
most recent value written to the same memory location. The SC model is also known as the
strong memory model, while other memory models are referred to as weak memory models.

Consider the store buffer (SB) example, where x, y are shared variables, and r1, r2
are local variables, all initialized with 0. Under SC, none of the possible thread interleavings
(i.e. abcd, acbd, acdb, cadb, cdab, cabd) result in both r1 and r2 reading the value 0.

x = 0;
y = 0;
void threadl () {
= 1;
rl = y;

}
void thread2 () {

y =1;
r2 = Xx;

Listing 2.1: Store Buffer (SB) program

However, this behavior may be allowed by some weak memory models provided by
hardware architectures and programming languages. For example, consider TSO (Total
Store Order) [[70], which is supported by x86 architectures. In the TSO model, each thread
has a local store buffer. Values written to shared memory are first stored in the buffer and
at some time in the future, will be flushed to the shared memory. The store buffer has the
FIFO property, hence the ordering of all writes in the same thread will not be broken.

In the SB example, if the memory model is TSO, it is possible that after executing
assignments a and b, the values are buffered, followed by r1 and r2 reading 0, and finally
the buffered values flushed to the shared memory.

Some weak memory behaviors can be forbidden by one weak memory model but al-
lowed by another. In the following message passing (MP) example, after data is set
to 1, the sender thread initializes the pointer, p, with the address of data, hoping that the

5

2. BACKGROUND

receiver thread uses the data only after the pointer is initialized (indicating that data is set).
Under TSO, due to the FIFO property of store buffers, the shared variable p is initialized
only after the data update is complete. However, this is not guaranteed under the PSO (Par-
tial Store Order) model [72]. In PSO, each memory location has a separate FIFO store
buffer in a thread. In this case, the ordering of moving the values of data and p from their
buffers to the shared memory is not restricted. The receiver thread may read y=1 when data
has not been updated yet.

p = nullptr;

data = 1;

void sender () {
data = 1;
p = &data;
}

void receiver () {
while (p == nullptr) {;}
use (*p) ;

Listing 2.2: Message Passing (MP) program

There are a variety of other weak memory models, such as the ARMv8 [64] memory
model, supporting out-of-order executions and speculative executions, and language-level
memory models, including the Java memory model[48]] and C++ memory model. The rest
of this paper primarily discusses the C/C++11 memory model[8]], which provides weakly-
ordered atomic operations to support weak memory behaviors.

2.3 Execution graphs

Execution graphs(7,156,16] are directed graph representations of program executions. Under
the SC model, program executions can always be represented by a single sequence of events,
as SC enforces that operations execute as if they occur sequentially by definition. While
under weak memory models, programs can exhibit more complicated behaviors, where ex-
ecution graphs are helpful in capturing a wider range of possible executions.

The nodes in an execution graph represent events or actions within a program, while
the edges connecting them depict relationships as defined by the memory model. In this
thesis, the terms “event” and “action” are used interchangeably. An event refers to a basic
operation related to memory. For example, the line of code y = x + 1 involves two events:
aread event for the variable x and a write event for the variable y. Typically, not all variables
are included in the graph—only those related to shared memory accesses, such as reads and
writes to shared variables, since others may be irrelevant to understanding the program’s
behavior. Reads and writes to local variables that do not affect other threads are usually
omitted from the graph. For instance, if a = x reads the value of a shared variable x and
assigns it to a local variable a, this is often represented in the graph as a single event: the
read of x.

2.4. C/C++11 Memory Model

The edges in the execution graph encode the event relations specified by the memory
model. For example, if two events, e and e,, have a sequenced-before (sb) relation, i.e. e;
is sequenced before e,, an arrow will be drawn in the graph from e; to e;. As with events,
not all relations are always depicted in the graph. For instance, if two events have multiple
relations in the same direction, some less important ones may be omitted for simplicity or
clarity. In the execution graphs presented in this thesis, edges of the same color represent
the same type of relation when their names are omitted. Further details about these relations
are discussed in the next section.

We use an example to introduce the notations used in execution graphs in this thesis.
Figure[2.T|shows a possible execution graph of the SB program?2.1] The five nodes represent
five different events in the program. The directed edges are annotated with the names of the
relations between these events. For instance, consider the node W(x, 1): W stands for a
write operation, and W (x, 1) represents writing the value 1 to the variable x (a). In the case
of R (x), R stands for a read operation. This node represents a read event for x (d), with the
value being omitted because it can be obtained from the node from which the read-from (rf)
edge originates.

[init]

s/ \gb
W(z,1) /' W(y,1)
Sbl rf rf lsb

¥ N

R(y) R(z)

Figure 2.1: Execution graph example

The semantics of a program is a set of consistent graphs. Events within a graph cannot
be connected arbitrarily by relations. Instead, the graphs should be consistent to the memory
model. Consistency is specific to each memory model. An execution graph that is consistent
to one memory model may not be consistent to another. In the SB example, the execution
graph shown in Figure is consistent under the SC model, but not under TSO. The next
section will introduce the consistency specifications under the C/C++11 memory model.

24 C/C++11 Memory Model

C/C++11 provides additional concurrency primitives, including atomics, mutex, threads
and fences, along with an extensive specification of its memory model. The first C/C++11
memory model was described in a proposal[10] in 2008, which was refined and formalized
by [8]. The following contents use the notations and definitions in [8]], unless otherwise
specified.

The memory model can be defined as a function, taking a set of candidate executions X
as input. These executions must be allowed by the operational semantics and are consistent,

7

2. BACKGROUND

denoted as pre-executions. The function returns "NONE” if any executions have undefined
behaviors; otherwise, it returns "SOME” pre-executions.

A candidate execution X contains two components, X = (X, psem,XW,-tness), where X, psem
is determined by the operational semantics and X, iess 1S an existential witness of some
further data. Both components are composed of memory actions (or actions for short) and
relations. An action can be a non-atomic read or write, atomic operations, mutex operations
and fences, represented by jaid, tid, type, location, value;. The X, s.m contains three types
of relations:

* sequenced-before (sb): A relation between intra-thread actions given by C/C++ lan-
guage specifications, also referred to as program order. When two separate actions
are written in two separate statements, the former is sequenced before the latter.

* data-dependency (dd): The dd is provided by the operational semantics, primarily
used for release/consume atomics. For example, a store to a pointer and the use of
the pointed data have a dd relation.

In the SB example, assuming that x and y are atomic variables, the X, s, of a candidate
execution can be drawn as in Figure 2.2]

[init x]
S¢b
[init y]

Figure 2.2: X, psem of SB

The Xyimess part contains three additional relations. These relations are not uniquely
determined by the operational semantics. Therefore, given a program p, the candidate exe-
cution X can have only one X, sem, but multiple possible X,,;1.5s configurations.

* read-from (rf): Anrf edge is established from a write action (non-atomic write, atomic
write, or read-modify-write) to a read action (non-atomic read, atomic read, or read-
modify-write) if the read action retrieves a value from the write action. Additionally,
an rf edge is established between a lock action and its immediately preceding unlock
action for the same mutex. The rf reads-from map is a function that includes all these
rf relations in the execution.

* modification-order (mo): This represents a total order of all writes to the same atomic
location. Each location can have its own independent mo “chain,” which is unrelated
to chains for other locations.

2.4. C/C++11 Memory Model

* sequentially-consistent (sc): This totally orders all mutex actions and actions with
mo_seqg_cst memory order.

In the SB example, assuming the initializations are non-atomic and other writes and
reads are mo_seq_cst, a possible X,,itness for the SB example can be shown in Figure

[init = y]

2N
W(x,1) ————W(y,1)

lsb Tt s lsb

S N
R(y -

Figure 2.3: X, iness of SB

There are some derived relations defined based on the above six relations. These derived
relations will help to define the memory model and rule out illegal executions.

* synchronizes-with (sw): Every unlock action of a mutex has an sw edge pointing to
the lock ordered after it in the sc order mentioned above. A read-acquire (read with
memory_order_acquire) reading from a write-release gives rise to a sw relation.
More generally, when the read-acquire R reads from a write W, it also synchronizes-
with other write-release that is ordered before W in the modification order. However,
not all write-releases preceding W can have sw relations with W, only those contained
by the release sequence of W. The definition of release sequence is omitted here.

* happens-before (hb): If the execution has no consume operations, the hb relation is
a transitive closure of sb Usw. More generally, hb is defined as the union of sb and
inter-thread-happens-before, which includes the sw relation.

The three relations in X,j,ess (rf, mo and sc) cannot be arbitrarily composed to make an
execution. Instead, they have to satisfy some constraints, called coherence. The coherence
constraints have the form ”A-B Coherence”, or CoAB, where both A and B are either reads
or writes, and A 0B, As illustrated previously, the hb is derived from sb and sw, where
sw is derived from sc and rf. The constraints on hb, mo and rf will ultimately constrain the
combinations of rf, mo and sc. The coherence constraints are listed below:

* Read-Read Coherence (CoRR): Two reads ordered by hb cannot read from two writes
ordered by mo in the other direction.

* Write-Read Coherence (CoWR): When a write, w, happens before a read r, » cannot
read from a write that precedes w in mo.

2. BACKGROUND

e Write-Write Coherence (CoWW): The mo and hb relations of two writes, w; and w»,
. . hb .
should have same directions. For instance, w e wy Awy — wq is not allowed.

* Read-Write Coherence (CoORW): When a read happens before a write w, it cannot
read from a write that is ordered after w in mo. This forbids the rf U hb U mo to be
cyclic.

Consider the SB example. If the reads and writes are SC atomic operations, the exe-
cution shown in Figure where both reads read the value 0, is not allowed because this
execution violates the CoWR constraint. However, if the reads and writes are relaxed, then
both reads reading the value 0 from the initializations is permitted.

[init x y]
Wx,1) /r£ ' W(y,1)
sb’ 3 I ﬁsb
% SC N
R(y) R(z)

Figure 2.4: Not-allowed of SB

The C/C++11 memory model described above is an axiomatic model that specifies
which executions are allowed and which are not. However, this model has some flaws.
Firstly, the data-dependency relation and those associated with consume-release atomics
are specified but are not implemented on most platforms, where they are typically treated
as acquire-release atomic operations. Furthermore, there are some executions that are al-
lowed by the model but should be ruled out in principle. For instance, consider a load buffer
(LB) program where two threads load from different locations and store the loaded values
to the other location. If all the atomic operations have a relaxed memory order, any loaded
value is allowed by the model. This issue is known as the out-of-thin-air (OOTA) problem.
Since the model was proposed, numerous efforts have been made to revise it, which will be
summarized in Section [6l

10

Chapter 3

Fuzzing

In this chapter, we describe our high-level algorithm for fuzzing weak memory programs.
The next two sections will implement mutations for test generation differently.

3.1 Motivation

As discussed before, weak memory programs can produce nontrivial set of possible execu-
tions and testing the program behavior under weak memory models is challenging. Here is a
summary of several characteristics associated with random-based testing for weak memory
programs, which we will illustrate with examples:

* The program behavior depends not only on scheduling decisions but also weak mem-
ory behaviors.

* Different scheduling decisions made by the test generator can lead to the same exe-
cutions.

* The search space of execution graphs is typically large, often larger than in strong
memory models.

* The probability of finding specific executions is not uniform, with some execution
graphs being infrequent.

Firstly, weak memory models usually allow more behaviors which are not permitted in
the SC model. For example, under a certain schedule, a read event may have more than one
write events to read from. This presents challenges for testing weak memory programs, as
their behaviors are not uniquely determined by scheduling decisions. Take SB for example,
assuming all operations are relaxed, suppose a tester’s scheduler adds events to an execution
graph in the following order: [init] — W(x, 1) = W(y, 1) — R(y). WhenR (y) is added,
it has two reads-from options: [init] and W(y, 1). This is not possible in the SC model,
because under this schedule, [init] happens before W(y, 1), which in turn happens before
R(y). Hence, R (y) can only read from the most recent write in this happen-before order. In

11

3. FuzzING

the weak memory model, however, since both W(y, 1) and [init] are relaxed, there is no
happen-before relationship between them to constrain the read options for R (y) .

Secondly, different orders of adding events and forming relations can result in the same
executions. For example, consider Listing [3.1] where two groups of threads are updating
their flags. The test generator might first add events from threads in group 1 and then from
those in group 2, or it might choose to add events from group 2 first. Since the threads
in the two groups do not interact with each other, both cases can result in same execution
graphs.

atomic<int> x = {};
atomic<int> vy {1

void threadl () { x = 1; }
void thread2 () { if(x == 1) {x = 0; b}
void thread3 () { y = 1; }
void threadd4 () { if(y == 1) {y = 0; bl

Listing 3.1: P6

Thirdly, the search space, which is the set of all possible execution graphs, can become
very large or even infinite due to various combinations of relations, control flow branches,
and loops. For simplicity, assume a single-threaded random test generator is used, which
takes one step at a time—either adding a node to the graph or forming a relation between two
nodes. Additionally, the test generator has a mechanism to ensure that the steps taken are
valid according to the memory model. For example, consider the SB example: if all atomic
operations are relaxed, the four execution graphs shown in Figure are all allowed. In
contrast, under the SC model, only the first three executions are permitted.

[init] [i7[n’t} [lﬂ\lt] [l?’/L\Zt]
SN IR 0N SO\
W(z,1) W(y,1) W(z,1) /re W(y,1) W(z,1) \W(y, 1 Wz, 1),/
sbl A/"E%/\ lsb sbl ‘/k\\fn lsb sbl /{ﬁrf\\ l sbl ‘/rf *f
R(y) © R() R(y) R(@) R(y) R(z) R(y)

Figure 3.1: Valid execution graphs of SB

Lastly, the probability of encountering different executions is not uniformly distributed.
Some execution graphs are more likely to be found, while others may have a lower proba-
bility of being discovered. Consider the example shown in Listing[3.2] where two threads
update their corresponding flags x1 and x2, and a third thread reads them. Suppose the test
generator makes random decisions uniformly when adding events. The program printing
’A’ requires one of the following orders shown in Table with a total probability of %,
while printing ’B’ has a probability of %.

atomic<int> x1 = {};

12

3.1. Motivation

order probability
wl > w2 > rl —r2 %x%:%
w2 > wl —>rl —>1r2 %x%:%
wl —rl = w2 = r2 Ixixi=4

Table 3.1: Probabilities of each order

atomic<int> x2

{};

void threadl () {
x1l = 1;

}

void thread2 () {
x2 = 1;

void thread3 () {
if(x1 == 1 && x2 == 1)
print ("A");
assert (false);

}
else |
print ("B");

Listing 3.2: P2

The process of the random walk test generation procedure is similar to the Galton board
experiment. Consider the following 7 level decision tree, from top to bottom, each step has
two choices, either going left or right. Each node represents a state and the edges represent
the decisions. There are some states that can be reached from multiple paths. Take the
middle state in the second level for example, it can be reached by first choosing left then
right, or by first choosing right then left. There are also some other states that have more
strict requirements on the decision making. For example, the state circled in red requires
always select the left choices to reach, with the probability of zin

A\
AN
A NN

4\

-

Figure 3.2: Random decision tree

13

3. FuzzING

If each time we start from the top and randomly make decisions, those states in the
middle will be reached more frequently than those in the corners. However, if we can start
from some middle states, it would be easier to reach some corner states, and hence the states
reached in the end will be more diverse. This is where our fuzzer come to help. An intuitive
description of the fuzzer is: whenever the fuzzer reaches a new state (i.e. finds an interesting
execution graph), it mutates one of the decisions made. For the next iteration, the fuzzer
replays the decision making until the mutated point, change the decision as mutated, and
continues randomly afterwards. As shown in Figure (a), suppose the red path is the
previous exploration and the fuzzer mutates the second decision from going right to left
(b). Then for the next exploration, it replays until the mutated choice and the probability of
reaching the left corner state becomes 21—1,2 (©).

9 A ¢
A\ YA\ JAWAN
ANNA ANAN =R AN

A\ A\ 4\

Figure 3.3: Mutation

Relating this to the randomized testing procedure, each parent node in the decision
tree represents an intermediate state in the process of constructing a graph, while the leaf
nodes represent completed graphs. The edges correspond to the scheduling or rf decisions
made during exploration. Each time, the random walk tester restarts from the beginning
(top of the tree) and randomly generates execution graphs independently. However, due to
the previously listed challenges, it often tends to generate a subset of frequently occurring
execution graphs, sometimes repeatedly, leaving hard-to-find executions unexplored. We
consider this approach inefficient and utilize fuzzing techniques to improve this.

The fuzzer aims to improve the performance of randomized testing approaches. Some
random testers, such as Cl1Tester or GenMC in its estimation mode, use random walk
testing. In contrast, exhaustive model checkers like GenMC explore all possible executions.
Exhaustive checkers are useful when the search space is limited, typically when the program
under test is not too large. Randomized testers are usually employed for testing larger
programs. However, the drawback of this approach is that it does not retain state information
between explorations, leading to redundant efforts. In our fuzzing algorithm, we track the
explored execution graphs and mutate infrequent ones to guide the tester in covering a larger
fraction of the graph search space.

3.2 Example

In this section, we present an example of the fuzzing approach on the execution graphs,
using the [3.3|program with release-acquire pairs.

14

3.3. Overview

atomic<int> x = {};

void threadl () {
X.store(l, release);
x.store (2, release);

}

void thread2 () {
auto rl = x.load(acquire);
auto r2 = x.load(acquire);

Listing 3.3: Fuzzing example

Suppose during exploration, one execution graph is constructed as shown in Figure 3.4}

where the labels of events and relations are omitted. The read values in thread?2 are both
2. In this execution, r2 has only choice to read from, which is w2, since r1 has already read
from w2 and r2 reading from w1 will introduce a cycle in the graph. However, r1 can have
two choices: w1l and w2. If the fuzzer consider this execution as interesting and change the
rf choice for r1, a new execution can be revealed in the next iteration, as shown in Figure

[init] e /
Jinit] Va W(z, 1) W(,1) R(rl,z) Wiz, 1) R(rlz) W(,1) R(rl,z)
(1) | | [| T
W(z,2) Wi(z,2) W(z,2) W(z,2) R(r2z)

Figure 3.4: Construction of an execution graph

[init] [init] [init] [init]
[init] / / 7N\
[init] / W(x, 1) W(z,1) R(rl,z) W(x,1)-->R(rl,z) W(z,1)-->R(rl,z)
(1) | 1
W(z,2) W(z,2) W(z,2) W(z,2) R(r2,z)

Figure 3.5: Mutate the previous execution graph and re-explore

3.3 Overview

-

W(x,2) >R(r2,z)

This section provides a high-level overview of the fuzzing algorithm. The implementation
details and evaluation results will be presented in later chapters.

The fuzzer uses partially constructed graphs, represented by “prefixes” in the following

context, as guidance for further explorations. As shown in Algorithm[I] the fuzzer executes
the program P a total of N times (line [T)), generating an execution graph each time after
exploring the search space. It maintains a set of prefixes, initially empty (line [3). At the
beginning of each exploration, it picks a prefix from the prefix set (line[7). If no prefixes are
available in the set, the exploration will be entirely random (line[I0). With a selected prefix,
the fuzzer replays the execution up to the end of the prefix and randomly constructs the re-
maining part of the execution graph (line [8). When the exploration is finished, an execution

15

3. FuzzING

graph is constructed, and the fuzzer determines whether this graph is interesting according
to certain metrics (line[T2)). A graph is considered interesting if it is a new execution graph
or contains new relations or events. The interesting graph is then mutated to generate new
prefixes (line[T3)). These new prefixes are added to the prefix set for future use (line[T4)). For
example, the fuzzer might modify a reads-from relation in the graph and remove the invalid
portion following that relation to create a prefix. The fuzzer may also dynamically discard
some prefixes based on their effectiveness in finding new interesting graphs. New graphs
are added to the graph set (line and are ultimately outputted at the end (line[I8).

Algorithm 1 Fuzzing algorithm
1: Input: Program P and number of explorations N

2: Output: N execution graphs

3: prefix_set «— 0

4: graphs < 0

5: fori< 1toN do

6: if prefix_set # 0 then

7: p < get_prefix(prefix_set)
8: g + explore_from_prefix(p)
9: else
10: g + explore_randomly()
11: endif
12: if is_interesting(g) then
13: p’' < mutate(g)
14: prefix_set + prefix_set Up’
15: endif
16: graphs < graphsUg
17: end for

18: return graphs

The following are a few notes regarding this algorithm.

N as an input parameter The number of unique execution graphs in the outputted graph
set is a major metric for evaluating the fuzzer’s searching ability. The algorithm takes a
fixed number of iterations, N, as an input parameter. This facilitates the comparison of
algorithmic efficiencies regardless of implementation details. In practice, execution time
is also an important consideration. In our fuzzer implemented with GenMC, described in
Chapter [5} we also evaluate the fuzzer by running it for a fixed time budget and count the
number of unique executions found.

Counting the number of unique graphs In order to count the number of execution
graphs, we will also need a hash function that maps the set of graphs, G, to a subset of
integers, H. This hash function, 2 : G — H should be a bijection. That is, it should satisfy
the following properties:

16

3.3. Overview

* h is surjective: The same execution graphs should always have the same hash val-
ues. This requires the hash function to exclude irrelevant information, such as the
timestamps of events, which is related to specific explorations.

* h is injective: Different execution graphs should have different hash values. This
requires the hash function to include enough information from the graphs, such as the
rf relations. Ideally, there should be no hash collisions, but as this is a low-probability
event, it can be ignored within the scope of our work.

If & is bijective, the size of the set of hashes, |H|, equals that of execution graphs (i.e.
they are equinumerous), and can thus be used to count the number of distinct graphs. In
our implementations, we use different hash functions due to the differing internals of the
C11Tester and GenMC, but both are considered bijective functions.

The is_interesting Function This function evaluates execution graphs as a feedback met-
ric in the fuzzing loop. Conceptually, it serves as a connecting point between the beginning
and end of the exploration procedure in two folds:

* Backwards: It assesses the performance of mutated prefixes based on their ability
to find interesting graphs. Prefixes that lead to more interesting graphs should be
prioritized for use.

* Forwards: It determines whether an execution graph is interesting, which helps the
fuzzer decide whether to mutate it. An interesting execution graph indicates the po-
tential for discovering other interesting graphs through mutation.

In the following chapters, we present two fuzzers based on C11Tester and GenMC, both
of which implement the fuzzing algorithm, with different implementations for functions
such as is_interesting, mutate, explore_from_prefix and the hash function.

17

Chapter 4

Fuzzing with C11Tester

Cl1Tester is an automatic testing tool that supports a large fragment of the C/C++ weak
memory model. This chapter presents an overview of C11Tester and customization points
of its pluggable framework. It then describes the fuzzer’s implementation. Finally, we show
the evaluation results on several benchmarks.

4.1 Overview of C11Tester

C11Tester contains the following basic constructs: instrumentation, scheduler, consistency
checker and race detector.

Cll1Tester uses an LLVM pass, CDSPass, to instrument all atomic operations, non-
atomic accesses to shared memory locations, thread functions, mutex operations, and fence
operations by inserting corresponding function calls. The compiled program is linked with
a dynamic library containing these function calls. C11Tester implements a thread library
that supports the same APIs of C++’s standard library and POSIX thread library. The user’s
thread function calls will be mapped into user space fibers, instead of kernel space threads.
Thus, all threads are executed sequentially, with scheduling managed by a central scheduler
provided by Cl1Tester. A context-switching approach is used to simulate thread interleav-
ings and improve efficiency. Each atomic operation, thread creation and joining, mutex
locks and unlocks, and memory fences will create an Action object, containing its type,
value, memory order, thread ID and other runtime information. Since all threads are se-
quenced during execution, each action has a unique sequence number. The relations be-
tween actions, such as read from and synchronized with, are also maintained by the Action
class.

Although C/C++ programs under weak memory models do not use scheduling seman-
tics, Cl1Tester does contain a central scheduler. It is worth noting that the scheduler does
not simulate schedulings of threads, instead, it is designed to check actions of different
threads in a total order. This is based on the implementation of mapping user’s threads into
fibers and checking them sequentially. All actions within the same thread will be checked
following their sequence order, as a step, and the scheduler decides whether to check ac-
tions of other threads in the next step. Hence, two decisions will be made at each step, the

19

4. FuzzING WITH C11TESTER

behavior of the current action and the next thread to select. If the current action is a read,
Cl1Tester will choose a write action for it to read from. Since the read-modify-write oper-
ations are instrumented with two functions, a read and a write, the scheduler ensures these
two actions are atomic, i.e. they are checked without switching to other threads in between.

Memory locations are divided into two types: atomic locations and non-atomic loca-
tions. Non-atomic access to shared memory locations is the source of data races. C11Tester
implements a race detector to check data races. The race detector allocates a chunk of
shadow memory for each of the non-atomic memory locations. Loading from or writing to
non-atomic shared variables is instrumented with specific functions, which will register the
current thread’s state to the shadow memory. When multiple concurrent accesses to some
shared non-atomic memory with at least one of them being a write is detected, a data race
will be reported.

Here, we use an example to demonstrate the process of Cl1Tester’s random testing
procedure. In the following content, we use the word ’consume’ to mean that the tester
executes an action without pausing to make scheduling and rf decisions.

#include "librace.h"

#include <atomic>

#include <thread>

uint8_t data = {};
std::atomic<int> flag = { 1 };

void t2 () {
store_8 (&data, 0);
flag.store(l, mo_release);

void t3() {
if (flag.load(mo_acquire))
store_8 (&data, 1);

int main () {
std::thread thrd2(t2);
std::thread thrd3(t3);
thrd2.join () ;
thrd3. join () ;

Listing 4.1: P3
In this program, there are two shared variables: a non-atomic variable data and an
atomic flag. The 1ibrace.h header is provided by C11Tester and contains the instrumented
function store_8 for non-atomic variables. The initialization of f1ag, which is non-atomic,

deliberately uses 1 as the initial value. Since the C++ standard thread library internally

20

4.1. Overview of C11Tester

calls POSIX APIs, the thread-related function calls will be hooked by C11Tester’s dynamic
library.

After compilation, the random tester launches the program. After initializing the global
variables, the checker creates the first thread, which is the main thread, and assigns an tid,
1, to it. The first event is the creation of thrd2. After thrd2 is created and assigned an
tid of 2, two threads, main and thrd2, are active. The tester will randomly pick a thread to
continue. Suppose the main thread is selected; the next event of it is the creation of thrd3.
After creating thrd3, the next event of main is joining thrd2, making main inactive. Now,
the current active threads are: thrd2 and thrd3.

If the tester selects thrd2, the two events in it, writing to data and flag, will be con-
sumed, and the thrd2 is finished. Now, thrd2 becomes joinable and the currently active
threads are: main and thrd3. Suppose main is selected and after joining thrd2 it becomes
inactive again. Then, thrd3 becomes the only active thread so it will be executed without
the need to make a choice. The first event in thrd3 is loading the value of flag. Since
the store of flag in thrd2 has already been explored, the non-atomic initialization of flag
is not the latest in the modification order. Hence, only the atomic store is visible to this
load, and the reads-from relation also forms a synchronization-with relation between the
two thread. When writing to the non-atomic data, the race detector checks previous access
to that location. The store in thrd2 happens before the read in the current thread, which
happens before the current store, so all events are totally ordered and no data race will be
reported.

Considering another case, suppose the tester selects thrd3 after after both threads have
been created. The load of flag will be executed and only the initialization of data is
visible to it. After reading the initial value, the store of data is consumed. When thrd3
is finished, the stores in thrd2 will be executed. When writing to data, the race detector
checks previous actions related to that memory location. The store in thrd3 has already
been explored, and it has no synchronization with the current store. Therefore, the two
stores are concurrent, and a data race is reported.

One optimization implemented by C11Tester is that it will consume writes with release
and relaxed memory orders, only pausing on SC writes. This is because the sc order is
part of the C/C++11 memory model, so different sc order will result in different executions.

Moreover, consuming weak writes does not prevent covering possible executions. Consider
the following examplefd.2]

std::atomic<int> var = {};
void t2 () {
auto _ = var.load(acquire);
}
void t3() {

var.store(l, sc);
var.store (2, release);
var.store (3, release);

Listing 4.2: P4

21

4. FuzzING WITH C11TESTER

after creating two threads, if t2 is selected first, r1 can only read from the initial value.
If t3 is selected, the first event, w1, in this thread will be executed. The next two events
are release writes, so the tester will not re-select threads after executing wl. Instead, it will
execute w2 and w3 until t3 is finished. Then, it finds that the only active thread is t2, so it
selects t2. Now, the set of available writes for r1 to read from becomes: wl, w2 and w3,
and r1 is free to randomly select one of them. Although making thread decisions after each
event is also feasible, the optimized version is more efficient and still able to cover all four
possible executions.

Another optimization performed by C11Tester is that it avoids backtracking during ex-
ploration. To achieve this, it performs consistency checking at each step to ensure that it is
valid. It makes decisions based on the implications of the memory model and the already
explored events. In[4.2] for example, if t3 has been explored, when choosing the rf relation
for r1in t2, the rf-set only contains w1, w2 and w3, where w0 is excluded. If r1 had selected
w0 and the random tester continued until some point where the execution graph is found to
be infeasible under the memory model, it would have to perform backtracking to make a
different choice for r1. Consider another example {.3]

std::atomic<int> var = {};

void t2 () |
auto _1 = var.load(acquire);
auto _2 = var.load(acquire);
}
void t3() {

var.store(l, sc);
var.store (2, release);
var.store (3, release);

Listing 4.3: P5

if r1 has already selected w3 to read from, only w3 will be included in the rf-set for r2,

because w3 L r2 implies that w0-2 are modification-ordered before w3 and thus should not
be visible to r2, which is sequence ordered after r1. Otherwise, the RR coherence will be
violated. Excluding infeasible writes from the rf-set ensures the rf’s to be valid, which in
turn avoids the backtracking efforts.

To summarize, C11Tester will execute the program from beginning to end, randomly
picking threads and writes, with the optimizations of consuming weak writes and constrain-
ing rf-sets.

4.2 Customization points of C11Tester

In Cl1Tester the scheduler only controls where reads can read from, and which thread to
run next. These two functions can be overwritten to implement new fuzzers. The provided
set already excludes invalid choices, so it is safe to select from the remaining choices in the
set. Thus, we can define two types of mutations: changing the next thread to be added or
changing the write from which a read event reads.

22

4.3. Fuzzer implementation

4.3 Fuzzer implementation

To implement a fuzzer as described in Algorithm [I] several specific functions need to be
defined:

* A hash function that computes a unique identifier for an execution graph, which is
used to indicate whether the execution graph has been encountered before and to
count the number of unique executions that are found in the end of N iterations.

* A function that returns a boolean indicating whether the execution graph is interest-
ing.

* A function that mutates the previous execution graph and produces a prefix of the
mutated graph.

* A function that enforces the prefix, i.e. replays until the mutated choice.

The hash function for execution graph encodes: event types, memory orders, and reads-
from relations. It first iterates through threads by their thread IDs, and for each event in each
thread, it computes the hash of its event type and memory order (for atomic operations). If
the event is a read event, it also combines the hash of the write event it reads from. Note
that in this hash function, the modification order is not included, although it is part of the
execution graph under many memory models. This is because the hash function only cares
about observable behaviors, such as read values, which may be influenced by modification
orders. However, changing some modification orders may or may not change the observable
behaviors. The hash function is defined in Algorithm 2] as follows:

Algorithm 2 Hash of execution graphs
1: Input: Execution graph g

2: Output: Hash value &

3: h«0

4: for each i from 0 to g.max_tid() do
5. events = g.get_events_in_thread(i)
6: for each e € events do

7: h < hash_combine(h, e.type)
8: h <+ hash_combine(h, e.memory_order)
9: if e is a read event then

10: h < hash_combine(h, e.rf)
11: end if

12: end for

13: end for
14: return h

The is_interesting function returns true if the hash of the current execution graph is not
covered in previous explorations. This is the least restrictive metric, alternatively, it can be
defined as returning true if new rf relations has been covered. Another possible definition is

23

4. FuzzING WITH C11TESTER

to check whether the execution graph reveals a new bug, which is biased toward searching
for bugs. In our definition, we aim to find more new executions, with more new buggy
executions being a by-product.

The mutate function uniformly picks a fixed number of decisions, including threads and
rf’s, from multiple choices in the provided set. For each of them, it mutates the selected
decision and discards the rest decisions to produce a prefix. Since randomness is used only
in the functions for controlling rf and selecting the next thread, the choices of threads and
writes will be uniquely mapped to an execution graph. Hence, the prefix of a decision trace
also defines a prefix of an execution graph.

The mutated prefixes will be added to a prefix set. The replaying function chooses a
prefix from the set and enforces C11Tester to make the same decisions in that prefix. After
enforcing the prefix, C11Tester switches to random mode and continues random exploration
until the graph is completed.

4.4 Benchmarks

The fuzzer and C11Tester are tested under the benchmarks described below. Some of them
are collected from open source libraries, others come from the original C11Tester’s bench-
mark set, which are also taken from open source libraries, internet discussions and papers.
Here is a list of descriptions for these benchmarks:

barrier It comes from a solution of StackOverflow discussion. It implements a spinning
barrier that halts a fixed number of threads and releases the barrier when all threads are
waiting. It maintains a counter for the number of threads that are waiting currently and a
step state that counts the number of barrier synchronizations. It was injected with a bug of
using the relaxed memory order of the counter.

chase-lev-deque An implementation of the Chase-Lev deque data structure using C11
primitives. It was published in [42] but was found to have a bug in its implementation, due
to the use of relaxed operations of fences.

mpmc-queue A multi-producer, multi-consumer queue implementation from a blog post
[14].

linuxrwlocks A reader-writer lock implementation from the Linux kernel. An rwlock
only allows one writer at a time but can allow multiple readers to access the protected data.

mes-lock A list-based contention-free lock originally proposed by Mellor-Crummey and
Scott[53]. The implementation comes from [[13]]. In this data structure, each thread main-
tains a node of a queue. When a thread wants to acquire the lock, it asks the mutex to set its
tail of the queue to be the thread’s node. When other threads lock, they have to wait for the
tail to be removed by the mutex.

24

4.5. Evaluation and discussion

dekker A Dekker’s critical section algorithm implemented with fences [/4]. This algo-
rithm ensures only one thread can enter critical section at a time. A shared turn variable
records which thread is taking its turn. Each thread has a flag variable to indicate its state.
Before entering the critical section, a thread should first raise its own flag and then check
whether the turn is set. All atomic operations on the turn and flags are relaxed but fences
are used to synchronize concurrent accesses.

rwlock Another rwlock implementation similar to linuxrwlocks.

seqlock A sequence lock implementation. The lock protects some shared data using an
atomic counter, initialized to 0. A writer increments the counter twice, both at the beginning
and end of writing. Hence whenever the counter is odd, there must be some other thread
modifying the data, so other threads have to wait.

bipartite-buf A single-producer-single-consumer test for a bipartite buffer implementa-
tion written in C++11, customazed from [58]]. The bipartite buffer is a variation of the ring
buffer which allows in-place processing with linear space guarantee.

left-right A generic implementation [65] of the LiftRight algorithm[/66]]. The algorithm
functions similarly to the reader-writer lock but ensures non-blocking for reads. It uses two
instances for the protected data, one of which is used by all reader threads. The writer thread
will work on the other instance and after writing is finished, two instances are switched.

ring-buf A ring buffer that supports adding or removing multiple objects simultaneously
[58]]. It maintains two indexes, a read index and a write index of the buffer. After adding or
removing, these two indexes will be updated to appropriate values.

4.5 Evaluation and discussion

Research questions The following research questions are listed to evaluate the fuzzing
algorithm.

RQ1 Does the fuzzer detect the bug ealier than the random tester?

RQ2 Is the fuzzer able to cover a larger range of execution graphs compared to other
random-based exploration strategies?

RQ3 When the program has bugs, does the ability to detect more bugs come as a byproduct
of covering more execution graphs?

RQ4 How does the fuzzer introduce overhead in C11Tester in real-world applications?

To address the research questions, we use the benchmarks to test our fuzzer and other
approaches with same number of iterations, N, and compare their results. Unless otherwise
stated, N = 10000.

25

4. FuzzING WITH C11TESTER

4.5.1 RQ1: Fuzzer vs Cl11Tester

One important metric for a fuzzer is whether it is able to detect the bug effectively. In this
section, we use several programs with some hard-to-find bugs and examine the iterations
taken to find a bug for the first time, denoted as Np,g1. The smaller Ny, is, the more
effective the fuzzer or the tester is. We run both the fuzzer and the random tester for 20
times and record their average iterations taken to find the bugs. Table shows Ny, for
the fuzzer and the random tester, where the dash indicates that the bug was not detected in
all tests.

Benchmarks | long-race mp P1 reorder_10
Cl1Tester - 686 678 176
C11Fuzzer 453 210 48 81

Table 4.1: Iterations taken to detect the first bug

Take the long-race benchmark, for example. This benchmark is taken from the rff’s
repository, customized with relaxed memory operations, as shown in Listing [4.4]

std::atomic<size_t> sum{ 0 };
std::atomic<size_t> dif{ 0 };

void* sub_worker (void* arg) {
if (sum.load(relaxed) == 1
dif.fetch_sub (1, relaxed);
if (sum.load(relaxed) == 2) {
dif.fetch_sub (1, relaxed);
if (sum.load(relaxed) ==
dif.fetch_sub (1, relaxe
if (sum.load(relaxed) == 4) {
dif.fetch_sub (1, relaxed);

)
)

o w~

}
return NULL;

void* add_worker (void* arg) {
sum++;
if (dif.load(relaxed) == -1) {
sum. fetch_add (1, relaxed);
if (dif.load(relaxed) == -2) {
sum. fetch_add (1, relaxed);
if (dif.load(relaxed) == -3) {
sum. fetch_add (1, relaxed);
if (dif.load(relaxed) == -4) {

26

4.5. Evaluation and discussion

fprintf (stderr, "Bug found\n");
abort ();

}
return NULL;

Listing 4.4: long-race

Hitting the bug requires two workers to alternately modify the shared variable in a very
strict order (we also tested the long-race benchmark with rff, and it took 15 thousand it-
erations to detect it). There are a total of 9 different possible executions of this program.
Figure [4.5.1] shows how many times each execution graph are explored in N iterations. It
can be observed that the random tester is heavily biased towards the first and second execu-
tions, which together take up 96.5% of N. In contrast, the fuzzer exhibits a more “flattened”
frequency plot on executions and covers all 9 execution graphs. This more even distribution
is due to mutations that target those infrequent executions during exploration.

Figure shows the number of unique executions and bugs found in first 1000 iter-
ations. It can be observed that the fuzzer detects the bug earlier than C11Tester and also
covers a higher range of executions.

Cl1Tester Frequency Distribution C11Fuzzer Frequency Distribution

Figure 4.1: Frequencies of execution graphs

27

4. FuzzING WITH C11TESTER

reorder_10 long-race

—— CllTester —— CllTester
Cl1Fuzzer Cl1Fuzzer
25 — CllTester-bug —— CllTester-bug
—— Cl1Fuzzerbug —— Cl1Fuzzerbug

®

o

Number of graphs and buggy graphs
G
Number of graphs and buggy graphs

4 4
10

ay

54

0 0

0 200 400 600 800 1000 0 200 400 600 800 1000
Number of iterations Number of iterations
mp P1

—— Cl1Tester
Cl11Fuzzer

—— Cl1Tester-bug

—— CllFuzzerbug

—— CllTester
Cl1Fuzzer

—— Cl1Tester-bug

151 —— Cl1Fuzzer-bug

] 2
i e——
04 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of iterations Number of iterations

Number of graphs and buggy graphs
Number of graphs and buggy graphs
£y

Figure 4.2: Buf finding plots

4.5.2 RQ2: Fuzzer vs Cl1Tester

Using the 11 benchmarks, we evaluate the ability of both the fuzzer and C11Tester to find
unique execution graphs. The metric used is the number of different execution graphs dis-
covered over N iterations. Table 4.2 and Table [4.3] show the number of unique executions
found by two approaches. It can be seen that the fuzzer is able to find a larger num-
ber of different execution graphs in a fixed number of iterations than C11Tester with the
random-based searching strategy in most of the benchmarks, with the average improvement
of 27.0%. The improvements are calculated by:

Net1Fuzzer — Nel1Tester x 100%,

Rim =
provement N
cl1Tester

where N;11Fuzzer and Nep17ester are the number of unique execution graphs found by C11Tester
and C11Fuzzer, respectively.

Figure[d.4)and Figure[4.4draw the coverage plots for each benchmark, with orange lines
representing the fuzzer and blue lines representing the random tester. It can be observed
that in all of these cases, the fuzzer is able to find more unique executions. In addition, in
some benchmarks, such as chase-lev-deque or mpmc-queue, the fuzzer’s speed of finding
executions (the slop of coverage plost) does not significantly slow down as the number of
found executions grows. Some coverage plots of the fuzzer, such as those in bipartite-buf

28

4.5. Evaluation and discussion

Benchmarks | barrier chase-lev-deque mpmc-queue linuxrwlocks mcs-lock
Cl1Tester 6969 6244 4185 981 9703
C11Fuzzer 7741 8505 6373 1225 9994

Improvement | 11.1% 36.2% 52.3% 24.9% 3.0%

Table 4.2: Benchmarks (1)

Benchmarks | dekker rwlock-test seqlock-test bipartite-buf left-right ring-buf
Cl1Tester 395 9998 6137 297 5378 328
C11Fuzzer 494 9997 7962 340 6678 576

Improvement | 25.1% -0.0% 29.7% 14.5% 24.2% 75.6%

Table 4.3: Benchmarks (2)

and ring-buf, also have some “bumps” which the random tester do not have. Such bumps
are caused by some prefixes that guide to a group of new interesting executions.

29

4. FuzzING WITH C11TESTER

barrier

8000 A

70004

Number of unique execution graphs
Now oA w o
S & o 9 o
s 8 & 8 9o
s &8 & &8 o

1000 1

—— Cl1Tester
~— Cl1Fuzzer

0 2000 4000 6000 8000 10000
Number of iterations

mpmc-queue

6000

N w IS v
=1 S S o
S S S 153
3 3 3 3

Number of unique execution graphs

H
o
S
s

—— Cl1Tester
~——— Cl1Fuzzer

0 2000 4000 6000 8000 10000
Number of iterations

mcs-lock

10000

8000 1

6000 1

40001

20001

Number of unique execution graphs

—— Cl1Tester
~—— Cl1Fuzzer

30

0 2000 4000 6000 8000 10000
Number of iterations

Number of unique execution graphs

Number of unique execution graphs

8000

6000

4000

2000

1200

1000

®
S
S

@
]
)

»
S
S

~
o
S

chase-lev-deque

—— Cl1Tester
~— Cl1Fuzzer

0 2000 4000 6000 8000 10000
Number of iterations

linuxrwlocks

—— Cl1Tester
~——— C11Fuzzer

0 2000 4000 6000 8000 10000
Number of iterations

Figure 4.3: Coverage plots (1)

4.5. Evaluation and discussion

dekker-change rwlock-test

5001 — CllTester 100001 —— CllTester
C11Fuzzer C11Fuzzer

IS
S
3

8000 1

w
S
S

6000 q

N
=]
s

4000

=
o
S

2000

Number of unique execution graphs
Number of unique execution graphs

4 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of iterations Number of iterations
seqlock-test bipartite_buf
80001 —— CllTester 307 Cirester
Cl1Fuzzer Cl1Fuzzer
& 7000 , 3001
2 2
s s
o o
% 6000 © 250
c c
s s
3 s000 El
] g 200
3]
o 4000 g
s 2 1501
5 3000 E
s % 100
3 2000 2
H €
5 5
2 10004 2 50

)
o

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of iterations Number of iterations
left_right ring_buf
7000 600
—— CllTester —— CllTester

6000 C11Fuzzer Cl1Fuzzer
w 500
2 E
s 5
g g
5 5000 5
5 5 400
El -1
2 4000 2
% &
3 3 300
v M
3 3000 s
€ €
N < 200
2 2000 5
]]
H] K]
€ / E 4
2 1000 / g 3 100

0 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Number of iterations Number of iterations

Figure 4.4: Coverage plots (2)

4.5.3 RQ2: C11Fuzzer vs PCTWM

PCTWM [24] is a state-of-the-art weak concurrency tester that expands the idea of PCT,
which constrains the cope of exploring executions. It is expected that PCTWM will cover
a smaller range of execution graphs than C11Tester, which performs an unbounded random
search. A subset of the benchmarks described above is tested with the same configurations
of bug depth and communication events, as shown in Table

Figure[d.5|shows the coverage plots of number of unique executions found by PCTWM,
C11Fuzzer and Cl1Tester. It can be observed that PCTWM’s bounded searching scope is

31

4. FuzzING WITH C11TESTER

Benchmark bug depth (d) communication (k) history (h)
barrier 1 10 2
chase-lev-deque 2 56 1
mcs-lock 1 16 1
seqlock-test 4 18 1
linuxrwlocks 5 100 10
mpmc-queue 2 17 2

Table 4.4: PCTWM parameters

usually smaller than C11Tester’s unbounded random searching scope, which is smaller than
C11Fuzzer’s.

32

4.5. Evaluation and discussion

Number of unique execution graphs

10000

Number of unique execution graphs

Number of unique execution graphs

8000 A

7000 4

6000

a2 u
S o
s 9
s S

30001

N
]
S
3

1000 4

®
3
S
s

o
3
S
S

»
S
S
3

N
]
S
3

1200

,_.
1)
S
S

@
S
s

o
]
s

barrier
—— CllTester
Cl1Fuzzer
—— PCTWM
0 2000 4000 6000 8000 10000
Number of iterations
mcs-lock
—— CllTester

C11Fuzzer

—— PCTWM

0 2000 4000 6000 8000 10000
Number of iterations

linuxrwlocks
—— CllTester
Cl1Fuzzer
—— PCTWM
|
0 2000 4000 6000 8000 10000

Number of iterations

Number of unique execution graphs

bl

Number of unique execution graphs

A

Number of unique execution graphs

8000 1

6000

40001

20001

8000

7000 1

6000 1

5000 1

4000 1

30001

20001

1000 4

6000 4

50001

40001

30004

2000

1000 4

chase-lev-deque

—— Cl1Tester
C11Fuzzer
—— PCTWM

0 2000 4000 6000 8000 10000
Number of iterations

seglock-test

—— Cl1Tester
C11Fuzzer
— PCTWM

0 2000 4000 6000 8000 10000
Number of iterations

mpmc-queue

—— Cl1Tester
Cl11Fuzzer
—— PCTWM

0 2000 4000 6000 8000 10000
Number of iterations

Figure 4.5: C11Fuzzer vs PCTWM

4.5.4 RQ3: Distinct bug hitting rate

Nbug
)

The design of the fuzzer is not biased towards finding bugs, but it is also interested whether
covering a wider range of execution graphs will improve the bug hitting rate. Some of the
above benchmarks contain injected bugs, such as the inappropriate use of synchronization
primitives, which can introduce either data races or assertion failures. The distinct bug
hitting rate is computed as:

4. FuzzING WITH C11TESTER

where Ny, is the number of distinct buggy executions found over N iterations. Since all
benchmarks are executed N times, a higher number of distinct bugs found indicates a higher
distinct bug hitting rate. We focus on this distinct bug rate instead of a naive bug rate because
the latter does not reflect the fuzzer’s ability to discover more bugs. It could repeatedly hit
the same bug and still show a high bug hitting rate. Table4.5]and Table .6 show the results
from the benchmarks.

Benchmarks | barrier chase-lev-deque mpmc-queue linuxrwlocks mcs-lock
Cl1Tester 5789 5895 2341 976 8525
Cl1Fuzzer | 6993 5858 5858 1220 9418
Table 4.5: Distinct bug hitting rate (1)
Benchmarks | dekker rwlock-test seqlock-test bipartite-buf left-right ring-buf
Cl1Tester 5 4697 3872 297 1478 328
C11Fuzzer 5 4736 5009 340 1488 576

Table 4.6: Distinct bug hitting rate (2)

It can be observed that except for dekker benchmark, which in total has 5 different bugs,
C11Fuzzer is able to find more distinct bugs in other benchmarks.

4.5.5 RQ4: Real-world applications

The fuzzer is composed of a python script that performs mutation and file IO’s and a com-
piled binary that is hooked to the executed program. For overhead evaluation, several things
are measured:

* The scripting overhead of the random version and the fuzzing version. Substracting
them yields the overhead of mutation and IO’s.

* The time used by the binary to load the decisions for replay.
* The time used for the binary to execute.

We test our fuzzer using a real-world application, iris, which is an asynchronous logging
library that makes extensive use of atomic operations. Both C11Tester and C11Fuzzer are
tested N = 100 times and an average of the overhead per execution is taken. Table.7|shows
the measurement results. It can be seen that the mutation takes up most of the overhead, 7.4
seconds for each execution. A future improvement could be writing the fuzzer in a compiled
language and transfer the heavy file IO into memory.

34

4.5. Evaluation and discussion

Items script binary mutation load-replay
CllTester | 1.50s 39.51s 0Os 0Os
Cl1Fuzzer | 89s 40.5s 7.4s 2.9s

Table 4.7: Overhead (per execution)

35

Chapter 5

Fuzzing with GenMC

In this chapter we first present an overview of GenMC. Then we present three different
mutation strategies and show their effectiveness in the end.

5.1 Overview of GenMC

GenMC is an model checker for C programs, supporting a variaty of memory models, in-
cluding RC11[40], IMM[63]] and LKMM|60] memory models. It uses Kater[35]] to auto-
matically generate axiomatic memory models that provides the specified interfaces. The
memory models to be checked can be selected by the user via command line arguments,
with RC11 being the default model. It incorporates an LLVM-based interpreter that com-
piles the target program into LLVM-IR (intermediate representation) and generates execu-
tion graphs in accordance with the specified memory model. Data races, assertion failures
and other errors will be reported when detected. GenMC has two modes: estimation mode
and verification mode. In estimation mode, the GenMC driver randomly collects a sample
of execution graphs, independently, to get an estimation of the size of the search space and
time to finish verification. After estimation, the driver performs an exhaustive enumeration
of execution graphs in the verification mode and halts when errors are encountered. The
estimation mode can be disabled by command line options, too.

Both the estimation and verification modes share the same set of interfaces, with some
functionality turned off during estimation. Since the fuzzer aims to improve randomized
testing, here we mainly describe GenMC'’s estimation mode and show its customization
points for our fuzzer.

The core component of GenMC is its driver. The driver is responsible for calling the
interpreter to transform the target program into LLVM-IR, constructing execution graphs,
checking consistency, and reporting errors. The interpreter is used to interpret the source
code and keep relevant execution information. The interpreter will ask the scheduler of
the driver to fetch the next instruction. Normally, the scheduler randomly picks the next
thread and fetches the next instruction of that thread, with some special cases such as RMW
instructions, prioritized threads, or reads that need to be rescheduled. Then the interpreter
handles each instruction following the visitor pattern.

37

5. FuzzING WITH GENMC

The execution graph is composed of events, each having a label indicating its position
in the graph and other information about the event itself. An event can be looked up using
its position, which is a pair of thread ID and its index in that thread. Both the stamp and the
position uniquely identify an event in a single graph; however, the stamp is determined by
the order of adding events to the graph and hence will vary across explorations, while the
position is determined by the source code of the tested program.

The driver has a stack of executions, called execStack. Each execution has an execution
graph instance and a workqueue. The workqueue stores the exploration operations, called
Reyvisit, to be conducted, on the corresponding graph. The driver fetches an item each time
from the workqueue and revisits it. When the workqueue is empty, the driver pops out the
current execution from the execStack and continues with other executions. In estimation
mode, only one kind of Revisit, RerunForwardRevisit, is used, which indicates the driver to
reset the execution graph to its initial state and start over the next iteration.

The above mentioned exploration procedure is listed in Algorithm 3]

Algorithm 3 GenMC driver explore
1: EE < getInterpreter()

2: execStack « ||
3: while not isHalting() do
4: /* Continue with the current graph */
5: EE.run()
6: r < RerunForwardRevisit
7 stamp < 0
8 pushRevisit(execStack[last], r, stamp)
9: validExecution < false
10: while not validExecution do
11: [stamp,item] < getNextltem(execStack[last].workqueue)
12: if item is empty then
13: execStack.pop()
14: if not execStack.empty() then
15: continue
16: else
17: return
18: end if
19: else
20: g < execStack]last].graph
21: cutToStamp(g, stamp)
22: validExecution < isConsistent(g) /*always true for graphs cut from RerunFor-
wardRevisit*/
23: end if

24: end while
25: end while

38

5.2. Customization points of GenMC

5.2 Customization points of GenMC

In the estimation mode, the driver pushes a RerunForwardRevisit and a zero stamp to the
workqueue at the end of each execution, so the graph will always be reset to an empty state,
which stays at the end of execStack. It is also viable to push other Revisit objects to the
workqueue and the driver will cut the graph accordingly. In addition, we could also cut the
graph manually and push it together with a latest stamp so the driver will not cut it again.
If the manually cut graph is consistent, the interpreter will continue and finish exploration
with it. Both pushing other Revisit and manually cutting the graph serve as the mutation
part of our fuzzer. The driver has a function, getRfsApproximation, that can provide a list
of stores that a read can read from, so the fuzzer can pick a different store from that list.

5.3 Fuzzer implementation

Similar to what is discussed in section[4.3] several functions need to be implemented.

* A hash function that computes a unique identifier for an execution graph.

* A function that mutate the previous execution graph and produces a prefix of the
mutated graph.

* A function that judges whether an execution is interesting.

5.3.1 Hash function for execution graphs

Firstly the hash function for a single event should be defined, as shown in Algorithm 4]

Algorithm 4 Hashing an EventLabel
1: Input: EventLabel [ab
Output: Hash value & = hash(lab)
h+<0
pos < lab.getPos()
hash_combine(h, pos.thread)
hash_combine(h, pos.index)
if [ab is a ReadLabel then
if lab.getRf() is not empty then
slab < lab.getRf()
hash_combine(, hash(slab))
end if
. end if
: return h

R A o

—_— = =

Then the events are iterated by thread ID and indices to compute the hash value of the
graph, as listed in Algorithm 3]

39

5. FuzzING WITH GENMC

Algorithm 5 Hashing an ExecutionGraph

1: Input: ExecutionGraph g

2: Output: Hash value /& = hash(g)

3 h+0

4: for i < 0to g.getNumThreads() — 1 do
5. for j <+ Oto g.getThreadSize(i) — 1 do
6
7
8
9

lab < g.getEventLabel(Event(i, j))
hash_combine(h, hash(lab))
end for
: end for
10: return h

5.3.2 Mutation methods

The mutation process is composed of two steps: changing an rf relation and cutting the
graph. The driver has provided a function, getRfsApproximation, that calculates a list of
possible stores given a read event. It first collects a list of coherent stores restricted by the
memory model. In RC11, it selects all concurrent stores and the latest store in mo before
the provided read. The fuzzer first picks out all read events that have multiple store choices
and pairs each read with each of its alternative stores. Then the fuzzer randomly selects one
of these pairs for mutation. Here we denote the selected read event as R, its original store
as S,;4, and the newly selected store as S. In accordance to GenMC'’s terminology, the word
“view” is used to represent a subset of events in an execution graph. Here a “cut view”
represents the view of the current graph to be kept in the following cutting strategies, which
serves as a prefix defined in Algorithm |1} Additionally, we use the following notations in
the descriptions below:

* preds,: All events in a graph that has smaller stamps than event e.
* pporf.: All events in a graph that are porf predecessors of event e.

The fuzzer implements three different cutting strategies, described as follows:

Revisit cut It constructs the ReadForwardRevisit and BackwardRevisit objects and pushes
them to the workqueue directly. These two kinds of Revisit’s are defined in GenMC, used
in its verification mode. We first compare the timestamps of R and S. If R has a greater
stamp, a ReadForwardRevisit will be constructed. When the driver retrieves a ReadFor-
wardRevisit from the workqueue, it removes all events whose stamps are greater than R.
Since S’s stamp is smaller, it will be kept. Additionally, the read becomes the latest event
added to the graph, hence the events that may no longer be valid due to the change in R’s rf
will not be retained. This cut view can be denoted as predsg. On the other hand, if S has
a greater stamp, a BackwardRevisit will be constructed. The driver first collects all events
that has smaller stamps than R, i.e. predsg, similar as did in ReadForwardRevisit. Since S
has a greater stamp this time, it will not be included in predsg. Then the driver computes

40

5.3. Fuzzer implementation

all events that are porf predecessors of S, denoted as pporfs. The cut view is the union of
the two sets of events, predsg U ppor fs and the rest of the graph will be cut.

Minimal cut This cut strategy aims to retain as little events as possible. It only keeps
those events that are both porf predecessors of R and S. The events in unrelated threads
(concurrent events) will be dropped. The minimal cut view can be written as pporfr U

pporfs

Maximal cut This cut strategy aims to retain as many events as possible. In maximal
cut, the unrelated events, which are removed in minimal cut, will be kept. It only removes
the events that are porf successors of the read. To get this set of events, the fuzzer iterates
through all events in the graph. For each event, if the R is not a porf predecessor of it, it will
be added into the set. Because the maximal cut will include more events into the cut view,
some special attention needs to be paid to the “pair relations”. For example, if a thread-join
event is to be added into the view, both itself and its corresponding thread’s thread-finish
event should not be porf successors of R. The maximal cut view can be represented by
{e € G|R ¢ pporf., R & pporfospair} UR, where G is the current graph to be mutated.

We use an example to illustrate the above mutations. Suppose the execution graph shown
in Figure [5.1]is the graph to be mutated, assuming all operations are relaxed. The numbers
on the shoulder of R’s and W’s are the timestamps given to the events. The select read event
is R7(x), reading from event W3 (x, 1).

Wi(z,0)
J
W (y,0)
y
W3(z,0)
N
Wiy, 1) We(z, 1) We(z, 1)
Vrf” i
3751‘) We(y,2) W (y,4)
Wio(z,2)

Figure 5.1: The execution graph to be cut

For revisit cut, since the read event has the greater stamp, the graph will be simply cut
up until stamp = 7, shown in Figure

For minimal cut, the fuzzer counts the porf predecessors of R’(x) and W*(x,1). The
events in the third thread (the rightmost column) will be removed. W!%(z,2) and W8(y,2)
are removed since they porf successors of porf successors of R (x) and W>(x, 1), respec-
tively. The resulting graph is shown in Figure cut:minimal.

For maximal cut, only the porf successors of the read, R’(x), will be removed. In this
graph, Wlo(z, 2) will be removed with all other events remained, shown in Figure

41

5. FuzzING WITH GENMC

wh(z,0) wh(z,0) W(z,0)
V
W (y,0) W (y,0) W(y,0)
| | |
w3(2,0) w3(z,0) Ww3(z,0)
N ' N
Wy, 1) Wz, 1) We(z,1) Wiy, 1) w(z,1) Wiy, 1) We(x, 1) we(z,1)
1 o J s drf” i
R (2)* R (2)* R7(z) Wo(y,2) Wo(y,4)

Figure 5.2: Revisit cut out- Figure 5.3: Minimal cut Figure 5.4: Maximal cut
put output output

5.3.3 The is_interesting function

The is_interesting function is defined as follows: we first compute the relative frequency
for a graph:

I

frei(g) = M7

where fg, is the frequency of occurrences of the execution graph g; in the set of explored
graphs G. For example, if the fuzzer explores graphs g, g2, and g3 2, 3, and 5 times
respectively in 10 total explorations, the relative frequency of g is:

22
~0.32
(22432+52)/3 ’
and for g3, it is:
52
1.97.

(22432 52)/3

If the relative frequency is below a certain threshold, the corresponding execution graph is
considered “interesting.” For example, with a threshold of 0.4, g; is considered interesting,
while g3 is not.

This computation provides more granularity than simply checking if a graph is new. If
we only flagged a graph as interesting when it’s new, it could only be considered interesting
once. By using frequencies, we refine this process. However, just using frequency is not
always sufficient. For example, with a threshold of 0.2 in the above case, none of the graphs
would be considered interesting, even though g; has a lower frequency than the others.
In this case, the threshold of 0.2 is too low. In another scenario, if the fuzzer discovers
100 different graphs with frequencies like 0.01, 0.02, 0.015, etc., all lower than 0.1, they
would all be considered interesting. But it would be reasonable to only prioritize those
with relatively lower frequencies. In other words, the threshold is too high in this case.
To address these issues, we use the relative frequency, which takes into account both the
graph’s frequency and those of others. Squaring the frequencies amplifies differences and
avoids discarding the sum, which is always 1.

42

5.4. Benchmarks

5.4 Benchmarks

We use the following benchmarks to evaluate the fuzzer.

ring-buffer A ring buffer implementation in FreeBSD 8.0.0. Each thread enqueues a mes-
sage and dequeues one from the buffer. The program checks the correctness and integrity
of the messages. The ring buffer uses an array to store data. The enqueue and dequeue
operations use compare-and-swap loops to update the queue head and tail pointers.

mpmc-queue A multi-producer multi-consumer bounded queue implementation. It main-
tains three state variables that keeps track of the number of reads and writes that have been
started and finished. Each writer obtains an index in the queue’s array buffer using cas loop
and write to that position. The readers will increment the reading index and read the data.
In the test, 2 readers and 4 writers are spawned.

ttaslock A spinlock called Test-and-Test-and-Set (TTAS) lock. The lock has an atomic
state variable shared by multiple threads. Before locking it, a thread first loads the flag and
wait until it is not set. Locking is implemented using a loop that exchanges the state value
until the old value of it is not set. In the benchmark, two threads are luanched to update a
non-atomic shared variable and asserts they read their values in the critical section.

treiber-stack A treiber stack[15] implementation using compare-and-swap for pushing
and popping nodes.

ms-queue An ms-queue implementation similar to that in the previous chapter, written in
C.

linuxrwlocks The reader-writer lock implementation of linux kernel, similar to that in the
previous chapter but written in C.

P1 One thread continues to modify a shared variable and the other thread checks whether
it is equal to a certain value once.

stack bug A treiber stack with an injected bug.
long_race The same benchmark to that used in the previous chapter, in C.

mp A message passing program where multiple threads update a shared flag variable. The
bug is triggered when the flag ends up with a certain value.

stack_oddeven A concurrent stack benchmark with threads pushing odd and even num-
bers, injected with a bug by using store operation to replace a cas loop.

43

5. FuzzING WITH GENMC

stack_oddeven2 The same stack used in stack_oddeven but injected with a different bug,
by using exchange operation to replace the cas loop.

buggy_queue An ms_queue benchmark injected with a bug while pushing items to the
queue.

buf ring bug A concurrent ring buffer benchmark injected a bug by disabling the memory
barrier during enqueuing.

long-assert A test case that has a complicated assertion that is hard to trigger. One thread
checks the assertion involving two shared variables and the other thread modifies one of
them after doing some exponential work.

5.5 Evaluation and discussion
Research questions Below lists the research questions we want to explore.

RQ5 Is the fuzzer able to explore more distinct execution graphs in a fixed number of
iterations than the random tester?

RQ6 Among the three mutation strategies, which performs best? Why?

RQ7 What’s the runtime performance of the fuzzer with different mutations, comparing
with random testing?

RQ8 Can the fuzzer detect bugs faster compared to the random walk tester?

RQ9 Is the fuzzer able to find bugs faster than the model checker?

5.5.1 RQS: Fuzzer vs random tester on search space coverage

To address this question, we run both the fuzzer and the GenMC in its estimation mode
for 10 thousand iterations. Using the hash function defined in section we count the
number of distinct execution graphs they found. Table [5.5.1] shows the results of each
benchmark. The improvements are computed by:

1
3 (N revisit +]vminimal + N, maximal) —N, random

x 100%.
Nrandom

Rimprovemem‘ =

It can be observed that for all of the above benchmarks, the fuzzer is able to explore
higher number of execution graphs than the random tester does. The average improvement,
computed by

- 1
Rimprovement = Z Zlvimprovement

is 181.62%.

44

5.5. Evaluation and discussion

Benchmark Strategy random revisit cut minimal cut maximal cut | Ripprovement
ring-buffer 6953 16449 30803 49290 362.83%
linuxrwlocks 9658 10699 27459 20666 103.02%
mpmc-queue 23145 49506 53003 66422 143.29%
ms-queue 13746 31404 23078 32792 111.63%
treiber-stack 9029 28005 41201 53892 354.45%
ttaslock 8633 8982 10430 10245 14.51%

Table 5.1: Number of unique execution graphs of each exploration strategy

5.5.2 RQ6: Revisit cut vs minimal cut vs maximal cut

Figure [5.5] shows the execution graph coverage plots of random testing and fuzzing with
three mutation strategies. It can be seen that in 5 of these benchmarks, the maximal cut finds
the greatest number of execution graphs. The revisit cut performs the best in 2 benchmarks.

It is hypothesized that the performance is related to the number of events that remain
in the mutated graph. Generally, the more events that are preserved in the mutated graph,
the closer their relations tend to be. The random strategy, for example, can be seen as
a method that cuts out the whole portion of the graph, resulting in the fewest remaining
events. To better understand this relationship, we measured the average number of events in
execution graphs for each benchmark, as well as the average number of events that remain
after applying each cutting strategy, as shown in Table [5.5.2] The data shows that, in the
benchmarks linuxrwlocks and ttaslock, the revisit cut strategy retains the highest number
of events in their mutated graphs and performs best in discovering more execution graphs.
Similarly, in other benchmarks, the maximal cut strategy retains the highest number of
events and explores the largest number of distinct graphs. Overall, the results indicate that
the number of explored execution graphs is positively correlated with the number of events
remaining in the mutation strategies.

Strategy . . .
total revisit cut minimal cut maximal cut
Benchmark

ring-buffer 102.18 81.88 41.15 94.11
linuxrwlocks 77.26 59.79 30.79 54.03
mpmc-queue 85.24 59.57 31.75 73.95

ms-queue 172.85 136.00 66.13 159.68
treiber-stack 113.50 83.98 53.51 99.49

ttaslock 65.35 59.41 21.76 51.88

Table 5.2: Number of events in original graphs and mutated graphs, on average

45

5. FuzzING WITH GENMC

@
=

4%

8%

14%

12%

10%

8%

6%

0%

4%

3%

N
ES

1%

buf_ring
500009 — random ;
revisit J
—— minimal cut /
400004 —— maximal cut J
——-y=X S
0 t=5164s
30000
£
5
3
5]
20000
10000
04
T T T T T —. 0%
0 20000 40000 60000 80000 100000
Iteration
mpmc-queue
—— random %
revisit 7
60000 . /
—— minimal cut 0
—— maximal cut 7
500001 -== y=Xx S
o0 t=19.18s
40000 1
8
€
5
8§ 30000
20000
10000
04
0 20000 40000 60000 80000 100000
Iteration
treiber_stack
—— random /
50000 revisit J/
—— minimal cut /
—— maximal cut /
400004 ~"" Y =X S
0 t=3473s
£ 300001
€
]
3
o
20000
10000 1
04
T T T T T v 0%
0 20000 40000 60000 80000 100000
Iteration

Coverage (%)

Coverage (%)

Coverage (%)

Counts

Counts

25000

20000

15000

10000

5000

10000

8000

6000

4000

2000

Coverage (%)

Coverage (%)

linuxrwlocks
— random
revisit 10%
—— minimal cut
—— maximal cut
TThy=Ex 8%
o t=37.87s
6%
k4%
k2%
T T T T —L- 0%
20000 40000 60000 80000 100000
Iteration
ms_queue
F30%
F25%
F20%
F15%
—— random .
revisit [10%
—— minimal cut
— maximal cut | 5o,
——ye=x
o t=3717s
0%
0 20000 40000 60000 80000 100000
Iteration
ttaslock
t20%
F18%
F15%
i
i
{ 12%
i
i
! 10%
i
i
| F 8%
h — random o
i
y revisit
L 59
—— minimal cut [5%
—— maximal cut
——y=x k2%
o t=2317s
T T r r —L 0%
0 20000 40000 60000 80000 100000
Iteration

Figure 5.5: Coverage plots

5.5.3 RQ7: Runtime overhead and efficiency of 3 mutations

We examine the total time elapsed for exploring 100 thousand iterations, shown in Fig-
ure [5.6] The random testing is taken as a baseline for evaluating the overhead. It can be
seen that random testing does not always take the shortest time. This is due to the mecha-
nism of GenMC. When adding events to the graph, the GenMC driver first inspects whether
there is already an event in that position. If so, it continues without the need to check con-
sistency, pick rf’s, or arrange it in the coherence order. Although the maximal cut takes
many steps to compute the cut view, it still takes the shortest time in one of the benchmarks

46

Coverage (%)

5.5. Evaluation and discussion

since the driver can save effort on those remaining events. Overall, all three mutations have
insignificant effects on the runtime performance, with affordable overheads.

Benchmark times for different scenarios

== random 100.72
1007 mm revisit
= minimal

== maximal 9094 90.94

Time (s)

buf_ring linuxrwlocks mpmc-queue ms_queue treiber_stack buf_ring
Benchmark

Figure 5.6: Time elapsed by various strategies

In addition, it is possible that one strategy may find more execution graphs in a fixed
number of iterations than another but takes more time to complete. Therefore another con-
cern is the efficiency of various mutations, defined as 67 = @, where Ng;qpp is the num-
ber of distinct execution graphs, and ¢ is a fixed time. Note that this ratio is not a constant
value over time, as it becomes increasingly difficult to explore new execution graphs as
time progresses. Here we set T to be 1 minute and count the number of different execution
graphs explored. The results are shown in Figure[5.7] Our results indicate that the maximal
cut has the highest efficiency in a majority of benchmarks, while the random tester generally

has the lowest efficiency.

5.5.4 RQS8: Fuzzer vs random tester on bug detection

We use several buggy benchmarks to test the bug detection capabilities of both our fuzzer
and the random tester. For each benchmark, we run the fuzzer and the random tester for a
fixed number of iterations, N. When a bug is detected for the first time, we stop the testers
and record the current iteration number and the elapsed time. For ease of comparison, if
the bug is not detected within N iterations, we assign a placeholder iteration number equal
to N. Each technique is run 20 times on each benchmark, and we calculate the averages
of iterations and time, as shown in Figure [5.8] and Figure [5.9] The results indicate that the
fuzzer detects bugs faster and requires fewer iterations in the majority of benchmarks.

5.5.5 RQ9: Fuzzer vs model checker

Model checkers are also used to verify the correctness of programs and detect bugs. The
GenMC model checker implements an optimal algorithm that ensures no duplication while

47

5. FuzzING WITH GENMC

buf_ring linuxrwlocks
20000
—— random —— random
50000 o
revisit revisit
. 17500
—— minimal cut —— minimal cut
—— maximal cut —— maximal cut
40000 4 15000
12500
« 30000 «
€ € 10000
3 2
S S
20000 7500
5000
10000 1
2500
0+ 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)
mpmc-queue ms_queue
—— random —— random
revisit revisit
80000{ —— minimal cut 80000{ —— minimal cut
—— maximal cut —— maximal cut
60000 60000
8 2
€ €
5 5
3 3
© 40000 © 40000
20000 20000
04 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)
treiber_stack ttaslock
12000
35000, — random —— random
revisit revisit
—— minimal cut 10000 { —— minimal cut
300009 — maximal cut — maximal cut
25000 8000
20000 4 2
€ S 6000
5 5
S S
15000 4
4000
10000
2000
5000 1
04 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)

Figure 5.7: Number of executions found in 1 minute

enumerating execution graphs. However, we would like to demonstrate that in some cases,
introducing randomness can be more efficient in terms of the number of iterations taken and
the time elapsed for detecting a bug. Take the long-assert benchmark for example, as shown
in Listing[5.1] In order to violate the assertion, x should read from its initial value while y
reads the values 1, 2, 3, 4, and 5, sequentially. In the GenMC’s verification process of this
program, when the read of x event is added, the driver picks a value for it and pushes other
alternative choices to the workqueue, which will be revisited later. Suppose the driver picks
a non-zero value, the zero value will be tried again only after the drivers finish exploring

48

5.5. Evaluation and discussion

Average First Bug lter

P1 stack_bug
7205 T7eT0x
120
112557
10514 50000
100
k] g 40000
2 80 2
a 7233 |3
& # 30000
£ 60 v
3 8
g g
g 20000
2 a0 2
20 10000
38655 246.82 46055
o o
> N N > >
& & & < & & &
& < & & < & &
long_race mp
TU0EFT: TS
100000 600
8.36e+04
80000 500
2
2 400
60000 a
4
T 300
3
40000 g 226.90
g
Z 200
12533
20000 1.96e+04
1.23e+04 100 6552
. N . ||
s N N N > >
& & A & & & R
& < & & < & &
stack_oddeven stack_oddeven2
LR TaeTor
35000
317e+04
8000
300001 2.82e+04
o 6.69e+03 6.72e+03 N
£ 2
26000 g 25000
a 2
¥ Z 20000
S &
il 3.89e+03 3
- 8
g 4000 £ 15000
2 2
10000
2000 7.01e+03
5000
o o
s N > 5 > >
s & <« & o & & &
< & & & &
buggy_queue buf_ring_bug
a5 S6eFUT
140 25000
120
o . 20000
£ 100 £
2 89.91 8991 | o 1.66+04
3 82.00 3
& 80 % 15000
& &
& 3
g § 10000
E z 8.22e403
40
5.36e+03
5000
20
o 0
5 N N N > >
& & & & @_\\q & &
& & & <

Figure 5.8: Average iterations to detect the bugs

49

5. FuzzING WITH GENMC

50

Time Elapsed (s)

Time Elapsed (s)

Time Elapsed (s)

Time Elapsed (s)

025

0.05

stack_bug

>
B
&
&
&
long_race

kS _5

S,

pawi

Time Elapsed (s)
s & 8

&

& &
A° S
& &\&
stack_oddeven

T

Time Elapsed (s)

stack_oddeven2

3.43
s

7T
155 I

& &
& &
buggy_queue

Time Elapsed (s)
o N & o o 5 K &

1359

11.91

buf_ring_bug

14

Time Elapsed (s)

3.45

Figure 5.9: Average time to detect the bugs

5.5. Evaluation and discussion

graphs with the non-zero choice.

atomic_int x, y;

void* thread_0 (void*) {
x = 42;

}

void* thread_1 (void*) {
assert(x !'= 0[] v !'=1 |y !'=2 ||y !=31||vy

=4 |1y = 5);

}

void* thread_n (void* unused) {
atomic_fetch_add (&y, 1);

}

void* thread_2 (void* unused) {
pthread_t t([N];
for (int 1 = 0U; 1 < N; i++) {

pthread_create (&t[i], NULL, thread_n, NULL);
}
for (int i 0U; i < N; i++) |
pthread_join(t[i], NULL);

}
atomic_fetch_add(&x, 1);

}

int main () {
pthread_t t0, tl, t2;
pthread_create (&t0, NULL, thread_0, NULL);
pthread_create (&tl, NULL, thread_1, NULL);
pthread_create (&t2, NULL, thread_2, NULL);

Listing 5.1: long-assert

Comparing the model checker, the random tester, and the fuzzer with revisit, minimal
and maximal cuts, Figure [5.10|and Figure [5.11] show the average number of iterations (for
the model checker, this is the number of graphs prior to the buggy one) and the time taken
to find the bug, respectively, with N taken from 5 to 9. It can be observed that the random
tester and the fuzzer require fewer iterations to find the bug in all cases. When N is small,
the model checker is faster, but as N increases, the fuzzer and random tester become faster.

If we change the assertion to assert (x!=0||y!=1||y!=2]|...||y!=N), it becomes
increasingly difficult to find the bug as N gets larger. As shown in Figure and Fig-
ure [5.12] the fuzzer with different mutations can take less time and iterations than the ran-

51

FuzzING WITH GENMC

Average lterations

Average Time

N=5 N=6 N=7
600{ 582,00 3286.00 22308.00
3000 20000
500
2500
o 400 9 4 15000
H £ 2000 g
) H 1638.70 H
§ § oo § 10000
H H H
200 1018.10
1000
5000 416855
100 500 3108.45
))
& &
@*\e 5
S S
§ & &
N=8 o6 N=9
175240.00 1.6 {1557892.00
175000
14
150000
12
125000
g0
100000 9
s o8
g
75000 g
<06
50000 s
25000 02
8787.90 670775 528810

1329.75 18492.30 2015.35 15122.90 4923.25

°

>

<& L
S

& @(\ & £

& >
©
&

Average Time
Average Time

.4

851 80.95
80

2
g

g

N
&

5
Average Time

Average Time
w
g

8

Figure 5.11: Average time to detect the bug

52

5.5. Evaluation and discussion

dom tester. The model checker is not the most time consuming strategy this time but still
the revisit cut can take less time to find the bug.

Average Iterations

Average Iterations

582.00

3319.10 22318.00

3290.00

20000

17840.70
16900.10

2222.50

1799.35

10000

Average ltey

8664.10

5000
3219.10

& & & > <
& & & & &
& < S S
&8 <@ <& &
K
N=8 1e6 N=9
17526600 1.6 {1557974.00
175000
14
150000 1282023.82
12
125000
112709.05 a
10583735 210
100000 2 805159.69
S 08
g
75000 g
<06
49968.60
50000
04
289526.07
25000 18038.70 02 2002295
o 00
& > > S~ > >
& & & & @ & & & & @
& g & S 5 & & & & 5
S & & 3
& <@ & & <@ &
K K

Figure 5.12: Average iterations to detect the bug (varying assertion)

53

5. FuzzING WITH GENMC

N=5 N=6 N=7
0321 108 654
0.200
o 6 5.76
0175 0.17
5
0.150 08
0.14
go12s g 0.63 g4
s £ 06 s
& & 052 &
§ o100 § 23
2 2 z 264
0.075 0.07 04
0.06 2
0.050
112
o2 o1 0.15 N
0.025 061
0.000 00
< > s &
s & & & s & S &
% & & > $ & & &
< & < po; & < &
& < & < <
K K
N=8 N=9
313 63837

@ @ 400
E E
F F
@ 9
g g
g g 300
2 2

200

Figure 5.13: Average time to detect the bug (varying assertion)

54

Chapter 6

Related Work

Related work falls into three categories: memory models, fuzzing and model checking.

6.1 Memory models

In 1979 Lamport[41] proposed a memory model that models the behaviors of concurrent
programs, called sequentially consistent (SC) model. In SC model, multiple tasks or pro-
cesses can be deemed as if executing in a sequence, one after another. The SC model
is usually called the strong memory model, with other more relaxed models called weak
memory models. The total store order (TSO) model[[70]] enforces the total order restrictions
on all write events, relaxing the the read event orders. The C/C++11[8] is a language-level
memory model that specifies the semantics of the threading library constructs and atomic
operations. The RC11 model[40] repairs the flawness of the semantics of SC atomic op-
erations in the original C11 memory model which has too strong restrictions that forbids
the Power compilation and too weak SC fences. [32] introduces a denotational semantics
model that provides a replacement of execution graphs and axiomatic approaches. It defines
the denotations for programs based on pomsets of memory actions, which are then used to
define the semantics of data races. [[75] presents a operational model that performs logical
deduction on programs under RC11 memory model following the Owicki-Gries method.
[62] proposes a operational model that defines the thread states using event structures, in-
corporating a storage subsystem that communicates and synchronizes with the threads. The
promising semantics model (PS)[31]] introduces the concepts of promises and timestamps.
The write events are modeled as promises made by threads that should be fullfilled in the fu-
ture. The threads maintain timestamps for memory locations, restricting their read events to
read from writes with larger timestamps. Promise 2.0 (PS 2.0)[43] redesigns and refines the
PS 1.0 semantics to prevent the OTOA problem by adding a stronger restricton on certifying
promises.

55

6. RELATED WORK

6.2 Fuzzing

AFL[78] is a coverag guided grey-box fuzzer. The user program is intrumented with deputy
functions at the entry of basicblocks evenly. The deputy functions can collect runtime in-
formation for code coverage analysis. AFL mutates the input for the program to cover new
branches and execution paths. Since AFL is initially designed for sequential programs,
which has deterministic results when the input and random seed are fixed, it is unaware of
thread interleaving contexts. AFLFast[49] is an an extention of AFL, improving the effi-
ciency and speed using power schedules. It incorporates search strategies that orders the
seeds and controls their powers, i.e. the number of inputs generated by seeds, to reveal the
low frequency paths. FairFuzz[44] is a coverage guided fuzzer based on AFL that improves
the uniformity of covered code paths. It places fairness as the core criteria when generating
seeds, preventing code paths being biasedly explored. MOPT[47] proposes a automated
parameter optimization approach to improve mutation based fuzzers. It implements a dy-
namic mutation scheduling strategy to optimize the parameter settings, such as probability
distribution, for selecting mutation operators. Angora[l7]] is a coverage guided fuzzer that
aims to increase the branch coverage. It improves mutation based fuzzing, which is more
difficult to generate high quality seeds than symbolic execution, by dynamically tracking
program execution and counting branches to solve constraints for different paths, guiding
the generation of seeds in later executions. SlowFuzz[61] is aimed at algorithmic com-
plexity vulnerabilities, which are triggered when user input causes the program to exhibit
worst-case algorithmic behaviors. It searches worst-case inputs using the binary Muzz[|16]
thread-aware grey-box fuzzing tool for multithreaded programs. Instead of instrument the
user program evenly, Muzz conducts static analysis first to locate set of specific program
statements on which thread-interleavings may only happen, identified as suspicious inter-
leaving scopes. Then Muzz will instrument more deputy instructions inside these scopes.
During repeated execution, the inserted functions can collect thread context information,
hence the fuzzer is able to select interesting seeds that triggered unique thread interleav-
ings. Conzzer[29] is a context-sensitive and directional concurrency fuzzing tool for data-
race detection. It is motivated by the fact that some concurrent bugs only happen when two
specific functions with callstacks are executed concurrently. Conzzer uses context sensitive
concurrent function call pairs as the mutation target. Krace[76] fuzzes against data races
in kernel file systems. It sets the coverage metric at the concurrency dimension, generating
and mutating syscall sequences to detect possible data races, using a race detector based
on lockset and happens-before relations. Razzer[28]] applies the static analysis technique to
guide the fuzzer to reach potential racy states. It uses controlled scheduling generate deter-
ministic executions, by enforcing certain thread interleavings. RFF[54] uses the reads-from
pairs as seeds to explore thread schedules for bug detection. It analyze program executions
using abstract schedules to identify interesting seeds.

6.3 Model Checking

As the complexity of software systems grows, the demand for checking their correctness
and robustness also increases. In 1986, Clarke and Emerson [19] proposed a automated ver-

56

6.3. Model Checking

ification approach for finite state concurrent systems satisfying some certain temporal logic
specifications. Due to its efficiency over manually proving, model checking has been widely
applied in various domains, including computer architecture, control systems, concurrent
software and communication protocols. SPIN[27] is a model checker that formally verifies
concurrent and distributed systems. It uses a domain specific language, called Promela, to
describe the models, with the properties checked written in assertions or linear temporal
logic formulas. SMV[52] is a symbolic model checking tool for verifying finite state space
systems. It uses the specialized modeling language, named SMYV, to model the system be-
haviors. It uses boolean formulas instead of state graphs to verify the programs with the help
of binary decision diagram manipulations. NuSMV|[18]] is a reimplementation and enhanced
version of SMV. It inherits most of the basic functionalities of SMV with a number of ex-
tentions. It is developed for improving the scalability and flexibility of SMV. PRISM|[38]]
is a problisitic model checker supporting Markov chains and Markov Decision Processes,
modeling the undeterministic system behaviors. The tool provides both symbolic model
checking based on binary decision diagrams and sparse matrices based model checking. It
can be used for checking a wide range of applications, such as internet protocols, embedded
systems and biological systems. CDSchecker[359] is an exhaustive model checker explor-
ing the behaviors of concurrent code under the original C/C++11 memory model based on
stateless model-checking. A technique of constraint-based treatment of modification order
is introduced remove redundancy from the search space. A cycle in the modification order
graph corresponds to infeasibility of the constraints. CDSchecker uses depth-first search to
check for cycles by adding edges to the modification order graph and rolls back when the
constraints are unsatisfiable. The scalability limits and memory model support are extended
by the Cl1Tester. CBMCJ20] is a bounded model checker for C and C++ programs. It
verifies memory safety problems, undefined behaviors and assertion failures. It bounds the
searching space of programs by bounding the number of iteration for loops, limiting the
length of execution paths and restricting the variable values, etc. GenMC [34] is a stateless
model checker for C/C++ programs under weak memory models. It suports a variety of
memory models such as RC11, IMM, and LKMM, and is extendable for further axiomatic
memory models. The program is compiled into LLVM-IR for incorporating optimizations
including symmetry reduction and lock-aware partial order reduction, making it possible
to support different programming languages provided that its memory model is axiomatic
well defined. Civl[37]] is a formal verification tool for concurrent programs, supporting C,
C++ and Java. It staticly analyzes the program and perform a sequence of transformations
that simplifies the program based on its internal invariants. PAT[77] is a framework used
for automated system analysis based on process algebra CSP. It can be used for verifying
systems such as concurrent systems, real-time systems, network service models and prob-
abilistic systems. It verifies system properties including deadlock freedom, liveness, LTL
properties and can perform probabilistic model checking.

57

Chapter 7

Conclusions and Future Work

This chapter gives an overview of the project’s contributions. After this overview, we will
reflect on the results and draw some conclusions. Finally, some ideas for future work will
be discussed.

7.1 Summary

This project contributes a novel method of fuzzing C/C++ concurrent programs under weak
memory models. We first reviewed the existing fuzzing techniques and categorized them
according to their usage scenarios. As summarized before, fuzzing has been widely ap-
plied in sequential programs and sequentially consistent multi-threaded programs. Then we
pointed out the lack of research in fuzzing for weak memory concurrency. We porposed
a new fuzzing framework that utilizes execution graph semantics, as opposed to those us-
ing thread interleaving semantics. We set the metric to be the number of distinct execution
graphs explored in a fixed number of iterations when comparing our fuzzer with naive ran-
dom testers. We also proposed several different mutation strategies on a given execution
graph. we implemented our new fuzzer on two state-of-the-art software testing platforms:
C11Tester and GenMC. In both impelementations the fuzzing approach can explore a wider
range of execution graphs compared to randomized testing. It is also shown that fuzzing
is better at detecting rare executions while random testing tends to fall into ferquent exe-
cutions more biasedly. In the implementation on GenMC, we compared the three mutation
strategies according to their performance and efficiency. Our work has demonstrated that
the feasibility of fuzzing for weak concurrency and proved its superiority over randomized
testing.

7.2 Discussion/Reflection

The structure of our fuzzing framework differs slightly from some existing fuzzers, in the
mutation function. For example, AFL uses program inputs as seeds and mutates existing
interesting seeds to generate new ones. Similarly, RFF uses abstract schedules as seeds,
mutating old schedules to create new ones. The mutation functions in such fuzzers can

59

7. CONCLUSIONS AND FUTURE WORK

be expressed as fiurare : S — S, where S represents the set of seeds. In our framework,
however, since seeds are defined as execution graph prefixes, they are mutated directly from
execution graphs, which are also treated as the programs’ outputs. Hence the mutation
function is of the form: fuuae : G — S, where G denotes the set of execution graphs. In
some sense, our fuzzer “mutates the program outputs to generate inputs”, much resembling
a snake biting its own tail. This does not violate the principle of using fuzzing to guide
new testing procedures with historical information, which is expected to outperform naive
random testing that lacks any feedback and black-box fuzzing, as [25] suggests. Therefore,
one corresponding question to ask is: should we keep track of graphs or prefixes, when they
are connected in some way? Our design choice is to keep a list of prefixes, and evaluate their
scores according to some metric, just like the way AFL maintains its seeds and performs
power scheduling. However, it could be an alternative way to keep track of the execution
graphs.

Besides, another design choice we made was about the interesting metic. In our fuzzing
algorithm, we consider an execution to be interesting if its graph is new or rare. As a result,
the fuzzer will explore as many distinct execution graphs as it can. A question can be asked:
why not define interesting graphs as buggy execution graphs (or more interesting, at least),
i.e. being biased towards those executions with bugs? Since in software testing we often
care more about the bugs. One could argue that: 1, if no bugs have been found, the fuzzer
still wants to mutate from previous executions; 2, if the tester finds a bug, the user can fix
the bug and test it again, without the need of knowing more bugs. On the other hand, one
could also suggest: 1, the more, the better; 2, a software testing tool should try harder to
detect bugs in principle. In our fuzzer, we took the unbiased approach. Even it does not
detect any bug in the end, it can still provide more confidence on the correctness of the user
program due to its higher coverage of possible executions.

Thirdly, it is worth discussing whether to use model checking or fuzzing when test-
ing programs. Model checkers tend to utilize systematic algorithms to explore the search
space. GenMC, for example, implements an optimal algorithm that ensures each execution
it explores is unique. However, model checkers often face the challenge of state space ex-
plosion, which can cause the search process to take a long time to complete. One might
ask: why not run the model checker and stop it after a fixed amount of time or iterations?
This approach would prevent infinite waiting times while still ensuring that each execution
obtained is unique. Naively, suppose the checker uses a depth first search strategy. If the
first step yields two choices and the checker selects the left branch, the right branch will
only be explored after all subtrees of the left branch have been fully explored. If we stop
the search midway, we would only obtain results from the left branch. On the other hand,
random testing can be thought of as both unbiased and biased. It is unbiased in that it does
not have a predetermined preference for each exploration, but it is biased because some ex-
ecutions may have a lower probability of being explored than others. Our fuzzing approach,
compared to random testing, aims to be more biased in the sense that it prioritizes those in-
frequent executions, and more unbiased in the sense of obtaining a more evenly distributed
collection of results.

Regarding the prefix selection procedure, we currently maintain performance scores and
perform a random selection weighted by these scores. This procedure can also be related

60

7.3. Future work

to feedback control methods. For example, denote the probabilities of generating execution
graphs [g1,82,...,8n] starting with a prefix p; as [a1;,a2i,. . .,ay]. The fuzzing system can
then be modeled as: s = Au, where s = [Ng,,Nq,, ..., Ng,]” represents the number of each
execution graph output, A = {q;;} is a matrix with ¢;; denoting the probability of prefix p;
generating execution graph g;, and u = [Ny, Np,, ..., N,, |7 is the number of usages for each
prefix, with po representing an empty prefix, which is equivalent to a completely random
execution. By differencing both sides of the equation, we obtain: As = AAu. By setting
the desired output s; = [1,1,...,1]7 and performing an online estimation of A [26], one
may apply linear control methods, such as LQR, to determine which input prefix should be
selected in the next iteration.

Lastly, a few comments about the thread interleavings. It is known that in weak memory
concurrency we use execution graphs, instead of thread interleavings used in SC concur-
rency, to model executions. Since the SC memory model is a stronger model than weak
memory models, the executions allowed under SC should be also allowed by weak memory
models, therefore should be captured by execution graph semantics. In other words, using
only execution graphs is sufficient in a more general sense. However, many model checkers
also have a scheduler in their implementations. This scheduler is not the scheduler used for
determining thread interleavings under SC, but is used for scheduling the order of adding
events to execution graphs. Note that given a prefix P and the next event e in thread ¢, the
following two scenarios are equivalent: 1, set P as the prefix of next execution and force
the scheduler to pick thread ¢ first, e being the next event to be added; 2, add e to prefix P
to compose a new prefix P’ = PU{e} and let the scheduler to add other events randomly.
Hence, choosing which one of the two approaches is only an impelmentation issue, not an
algorithmic difference. In our implementation on C11Tester, we chose the first approach,
but that does not mean the fuzzer is still under the SC semantics.

7.3 Future work

In our current implementation, although the maximal cut performs best in a majority of
benchmarks, still other mutations can outperform maximal cut in other cases. One con-
tinuation of this work could be develop a compound strategy that dynamically adjusts its
preference on mutation methods. Besides the proposed mutation strategies, one could also
develop other language or model specific mutations. The current implementation mutates
the reads-from relation, including read-modify-writes. There could be other mutations tar-
geting on relations such as modification-orders or primitives such as atomic fences, cas
loops and atomic pointers. Besides, the fuzzing procedure relies on feedback from previ-
ous executions. As discussed before, the fuzzing approach can improve the random testing,
but it would be also possibel to derive some theoritical analysis on estimating how far it
improves from the baseline on a given benchmark. The current fuzzer considers execution
graphs to be interesting when they are unseen or rare. An alternative approach could be to
record certain relations, such as the reads-from relation, and consider a graph interesting
when it contains certain interesting relations.

61

(1]

(2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

Bibliography

Docker: Accelerated container application development. URL https://www.docker
.com/.

Extending genmc’s usability and performance (replication package). URL https:
//zenodo.orqg/records/10018136.

Vagrant community. URL https://www.vagrantup.com/.
Oracle vm virtualbox. URL https://www.virtualbox.org/.

External technical root cause analysis — channel file 291, 2024. URL
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-Fil
e-291-Incident-Root-Cause-Analysis-08.06.2024.pdfl

Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig. Software
verification for weak memory via program transformation. In Matthias Felleisen
and Philippa Gardner, editors, Programming Languages and Systems, pages 512-532,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-37036-6.

Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, sim-
ulation, testing, and data mining for weak memory. ACM Trans. Program. Lang.
Syst., 36(2), jul 2014. ISSN 0164-0925. doi: 10.1145/2627752. URL https:
//doi.org/10.1145/2627752,

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematiz-
ing c++ concurrency. SIGPLAN Not., 46(1):55-66, jan 2011. ISSN 0362-1340. doi:
10.1145/1925844.1926394. URL https://doi.org/10.1145/1925844.1926394.

Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. Racerd:
compositional static race detection. Proc. ACM Program. Lang., 2(OOPSLA), oct
2018. doi: 10.1145/3276514. URL https://doi.org/10.1145/3276514.

Hans-J. Boehm and Sarita V. Adve. Foundations of the c++ concurrency memory
model. SIGPLAN Not., 43(6):68-78, jun 2008. ISSN 0362-1340. doi: 10.1145/
1379022.1375591. URL https://doi.org/10.1145/1379022.1375591.

63

https://www.docker.com/
https://www.docker.com/
https://zenodo.org/records/10018136
https://zenodo.org/records/10018136
https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/3276514
https://doi.org/10.1145/1379022.1375591

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

64

Frederick P. Brooks. The mythical man-month — Essays on Software-Engineering.
Addison-Wesley, 1975.

Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier for
memory safety of ¢ programs. In Mihaela Bobaru, Klaus Havelund, Gerard J. Holz-
mann, and Rajeev Joshi, editors, NASA Formal Methods, pages 459—-465, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-20398-5.

cbloom. Mcs list-based lock, . URL https://cbloomrants.blogspot.com/2011/
07/07-18-11-mcs-1list-based-lock_18.htmll

cbloom. A look at some bounded queues - part 2, . URL https://cbloomrants.bl
ogspot.com/2011/07/07-30-11-1ook-at-some-bounded-queues.htmll

Thomas J. Watson IBM Research Center and R.K. Treiber. Systems Programming:
Coping with Parallelism. Research Report RJ. International Business Machines In-
corporated, Thomas J. Watson Research Center, 1986. URL |https://books.google
.nl/books?1d=YQg3HAAACAAJ.

Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang Li, Hai-
jun Wang, and Yang Liu. MUZZ: Thread-aware grey-box fuzzing for effective bug
hunting in multithreaded programs. In 29¢th USENIX Security Symposium (USENIX
Security 20), pages 2325-2342. USENIX Association, August 2020. ISBN 978-1-
939133-17-5. URL https://www.usenix.org/conference/usenixsecurity20/
presentation/chen-hongxu.

Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled search. CoRR,
abs/1803.01307, 2018. URL http://arxiv.orqg/abs/1803.01307.

A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic
model verifier. In N. Halbwachs and D. Peled, editors, Proceedings Eleventh Con-
ference on Computer-Aided Verification (CAV’99), number 1633 in Lecture Notes in
Computer Science, pages 495-499, Trento, Italy, July 1999. Springer.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst., 8(2):244-263, apr 1986. ISSN 0164-0925. doi: 10.1145/5397.5399. URL
https://doi.org/10.1145/5397.5399.

Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C
programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes
in Computer Science, pages 168—176. Springer, 2004. ISBN 3-540-21299-X.

Mark Dowson. The ariane 5 software failure. SIGSOFT Softw. Eng. Notes, 22(2):84,
mar 1997. ISSN 0163-5948. doi: 10.1145/251880.251992. URL |https://doi.org/
10.1145/251880.251992.

https://cbloomrants.blogspot.com/2011/07/07-18-11-mcs-list-based-lock_18.html
https://cbloomrants.blogspot.com/2011/07/07-18-11-mcs-list-based-lock_18.html
https://cbloomrants.blogspot.com/2011/07/07-30-11-look-at-some-bounded-queues.html
https://cbloomrants.blogspot.com/2011/07/07-30-11-look-at-some-bounded-queues.html
https://books.google.nl/books?id=YQg3HAAACAAJ
https://books.google.nl/books?id=YQg3HAAACAAJ
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hongxu
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hongxu
http://arxiv.org/abs/1803.01307
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/251880.251992
https://doi.org/10.1145/251880.251992

Bibliography

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc
Maranget, Will Deacon, and Peter Sewell. Modelling the armv8 architecture, oper-
ationally: concurrency and isa. SIGPLAN Not., 51(1):608-621, jan 2016. ISSN 0362-
1340. doi: 10.1145/2914770.2837615. URL https://doi.org/10.1145/2914770.
2837615.

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and Zuon-
ing Chen. Collafl: Path sensitive fuzzing. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 679-696, 2018. doi: 10.1109/SP.2018.00040.

Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan. Probabilistic con-
currency testing for weak memory programs. In Proceedings of the 28th ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS 2023, pages 603-616, New York, NY,
USA, 2023. Association for Computing Machinery. ISBN 9781450399166. doi:
10.1145/3575693.3575729. URL https://doi.orqg/10.1145/3575693.3575729.

Patrice Godefroid. Random testing for security: blackbox vs. whitebox fuzzing. In
Proceedings of the 2nd International Workshop on Random Testing: Co-Located with
the 22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE 2007), RT °07, page 1, New York, NY, USA, 2007. Association for Computing
Machinery. ISBN 9781595938817. doi: 10.1145/1292414.1292416. URL https:
//doi.org/10.1145/1292414.1292416.

G.C. Goodwin and K.S. Sin. Adaptive Filtering Prediction and Control. Dover Books
on Electrical Engineering. Dover Publications, 2009. ISBN 9780486469324. URL
https://books.google.nl/books?id=ITRCAWAAQBAJ.

G.J. Holzmann. The model checker spin. IEEE Transactions on Software Engineering,
23(5):279-295, 1997. doi: 10.1109/32.588521.

Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik
Shin. Razzer: Finding kernel race bugs through fuzzing. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 754-768, 2019. doi: 10.1109/SP.2019.00017.

Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu. Context-sensitive and di-
rectional concurrency fuzzing for data-race detection. 01 2022. doi: 10.14722/ndss
.2022.24296.

Phillip Johnston and R.L. Harris. The boeing 737 max saga: Lessons for software
organizations. Software Quality Professional Magazine, 21, 2019. URL https://ap
i.semanticscholar.orqg/CorpusID:195414546.

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A
promising semantics for relaxed-memory concurrency. SIGPLAN Not., 52(1):175-
189, jan 2017. ISSN 0362-1340. doi: 10.1145/3093333.3009850. URL https:
//doi.org/10.1145/3093333.3009850.

65

https://doi.org/10.1145/2914770.2837615
https://doi.org/10.1145/2914770.2837615
https://doi.org/10.1145/3575693.3575729
https://doi.org/10.1145/1292414.1292416
https://doi.org/10.1145/1292414.1292416
https://books.google.nl/books?id=IIRCAwAAQBAJ
https://api.semanticscholar.org/CorpusID:195414546
https://api.semanticscholar.org/CorpusID:195414546
https://doi.org/10.1145/3093333.3009850
https://doi.org/10.1145/3093333.3009850

BIBLIOGRAPHY

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

66

Ryan Kavanagh and Stephen D. Brookes. A denotational account of c11-style mem-
ory. ArXiv, abs/1804.04214, 2018. URL https://api.semanticscholar.org/Co
rpusID:4839024.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: formal verification of an
os kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Sys-
tems Principles, SOSP *09, pages 207-220, New York, NY, USA, 2009. Association
for Computing Machinery. ISBN 9781605587523. doi: 10.1145/1629575.1629596.
URL https://doi.org/10.1145/1629575.1629596.

Michalis Kokologiannakis and Viktor Vafeiadis. Genmc: A model checker for weak
memory models. In Alexandra Silva and K. Rustan M. Leino, editors, Computer
Aided Verification, pages 427-440, Cham, 2021. Springer International Publishing.
ISBN 978-3-030-81685-8.

Michalis Kokologiannakis, Ori Lahav, and Viktor Vafeiadis. Kater: Automating weak
memory model metatheory and consistency checking. Proc. ACM Program. Lang.,
7(POPL), jan 2023. doi: 10.1145/3571212. URL https://doi.org/10.1145/
3571212,

Michalis Kokologiannakis, Rupak Majumdar, and Viktor Vafeiadis. Enhancing
genmc’s usability and performance. In Bernd Finkbeiner and Laura Kovics, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 66—84,
Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-57249-4.

Bernhard Kragl and Shaz Qadeer. The civl verifier. In 2021 Formal Methods in
Computer Aided Design (FMCAD), pages 143-152, 2021. doi: 10.34727/2021/isbn
.978-3-85448-046-4_23.

Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: Probabilistic symbolic
model checker. In Tony Field, Peter G. Harrison, Jeremy Bradley, and Uli Harder,
editors, Computer Performance Evaluation: Modelling Techniques and Tools, pages
200-204, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-
46029-9.

Intel Labs. Hw-assisted feedback fuzzer for x86 vms. URL https://github.com/I
ntellabs/kAFL.

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Re-
pairing sequential consistency in c/c++11. SIGPLAN Not., 52(6):618-632, jun 2017.
ISSN 0362-1340. doi: 10.1145/3140587.3062352. URL https://doi.org/10.
1145/3140587.3062352.

Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Transactions on Computers, C-28(9):690-691, 1979. doi:
10.1109/TC.1979.1675439.

https://api.semanticscholar.org/CorpusID:4839024
https://api.semanticscholar.org/CorpusID:4839024
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3571212
https://doi.org/10.1145/3571212
https://github.com/IntelLabs/kAFL
https://github.com/IntelLabs/kAFL
https://doi.org/10.1145/3140587.3062352
https://doi.org/10.1145/3140587.3062352

Bibliography

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Nhat Minh Lé, Antoniu Pop, Albert Cohen, and Francesco Zappa Nardelli. Correct
and efficient work-stealing for weak memory models. SIGPLAN Not., 48(8):69-80,
feb 2013. ISSN 0362-1340. doi: 10.1145/2517327.2442524. URL https://doi.or
g/10.1145/2517327.2442524\

Sung Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung Kil Hur,
Ori Lahav, and Viktor Vafeiadis. Promising 2.0: Global optimizations in relaxed
memory concurrency. In Alastair F. Donaldson and Emina Torlak, editors, PLDI
2020 - Proceedings of the 41st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 362-376. As-
sociation for Computing Machinery, June 2020. doi: 10.1145/3385412.3386010. Pub-
lisher Copyright: © 2020 ACM.; 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020 ; Conference date: 15-06-2020
Through 20-06-2020.

Caroline Lemieux and Koushik Sen. Fairfuzz: a targeted mutation strategy for in-
creasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 18, page
475-485, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450359375. doi: 10.1145/3238147.3238176. URL https://doi.org/10.
1145/3238147.3238176l

N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents. Com-
puter, 26(7):18—41, jul 1993. ISSN 0018-9162. doi: 10.1109/MC.1993.274940. URL
https://doi.org/10.1109/MC.1993.274940.

Weiyu Luo and Brian Demsky. Clltester: a race detector for c/c++ atomics. In
Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS °21, pages 630-
646, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450383172. doi: 10.1145/3445814.3446711. URL https://doi.org/10.
1145/3445814.3446711.

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and Ra-
heem Beyah. MOPT: Optimized mutation scheduling for fuzzers. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1949-1966, Santa Clara, CA, Au-
gust 2019. USENIX Association. ISBN 978-1-939133-06-9. URL https://www.us

enix.org/conference/usenixsecurityl9/presentation/1lyul

Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. SIG-
PLAN Not., 40(1):378-391, jan 2005. ISSN 0362-1340. doi: 10.1145/1047659.
1040336. URL https://doi.org/10.1145/1047659.1040336.

Bohme Marcel and Zalewski Michal. Afifast, 2016. URL jhttps://github.com/m
boehme/aflfast!

67

https://doi.org/10.1145/2517327.2442524
https://doi.org/10.1145/2517327.2442524
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/3445814.3446711
https://doi.org/10.1145/3445814.3446711
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://doi.org/10.1145/1047659.1040336
https://github.com/mboehme/aflfast
https://github.com/mboehme/aflfast

BIBLIOGRAPHY

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

68

Arash Massoudi. Knight capital glitch loss hits $461m, 2012. URL https://www. ft
.com/content/928a1528-1859-11e2-80e9-00144feabdcO.

Steve McConnell. Code Complete, Second Edition. Microsoft Press, USA, 2004.
ISBN 0735619670.

Kenneth Lauchlin McMillan. Symbolic model checking: an approach to the state
explosion problem. PhD thesis, USA, 1992. UMI Order No. GAX92-24209.

John M. Mellor-Crummey and Michael L. Scott. Synchronization without contention.
SIGARCH Comput. Archit. News, 19(2):269-278, apr 1991. ISSN 0163-5964. doi:
10.1145/106975.106999. URL https://doi.org/10.1145/106975.106999.

Ruijie Meng, George Pirlea, Abhik Roychoudhury, and Ilya Sergey. Greybox fuzzing
of distributed systems. In Proceedings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 23, pages 1615-1629, New York, NY,
USA, 2023. Association for Computing Machinery. ISBN 9798400700507. doi:
10.1145/3576915.3623097. URL https://doi.org/10.1145/3576915.3623097.

Barton P Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability
of unix utilities. Communications of the ACM, 33(12):32—44, 1990.

Evgenii Moiseenko, Michalis Kokologiannakis, and Viktor Vafeiadis. Model checking
for a multi-execution memory model. Proc. ACM Program. Lang., 6(OOPSLA2), oct
2022. doi: 10.1145/3563315. URL https://doi.org/10.1145/3563315.

Nccgroup. Afl/gemu fuzzing with full-system emulation. URL https://github.c
om/nccgroup/TriforceAFL.

Djordje Nedic. lockfree. URL https://github.com/DNedic/lockfree.

Brian Norris and Brian Demsky. Cdschecker: checking concurrent data structures
written with c¢/c++ atomics. SIGPLAN Not., 48(10):131-150, oct 2013. ISSN 0362-
1340. doi: 10.1145/2544173.2509514. URL https://doi.org/10.1145/2544173.
2509514.

McKenney Paul, Weigand Ulrich, Parri Andrea, Feng Boqun, and Stern Alan. Linux-
kernel memory model, 2020. URL https://www.open-std.org/jtcl/sc22/wg
21/docs/papers/2020/p0124r7.htmll

Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. Slowfuzz:
Automated domain-independent detection of algorithmic complexity vulnerabilities.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’17, page 2155-2168, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450349468. doi: 10.1145/3133956.3134073.
URL https://doi.org/10.1145/3133956.3134073!

https://www.ft.com/content/928a1528-1859-11e2-80e9-00144feabdc0
https://www.ft.com/content/928a1528-1859-11e2-80e9-00144feabdc0
https://doi.org/10.1145/106975.106999
https://doi.org/10.1145/3576915.3623097
https://doi.org/10.1145/3563315
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://github.com/DNedic/lockfree
https://doi.org/10.1145/2544173.2509514
https://doi.org/10.1145/2544173.2509514
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0124r7.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0124r7.html
https://doi.org/10.1145/3133956.3134073

Bibliography

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

Jean Pichon-Pharabod and Peter Sewell. A concurrency semantics for relaxed atom-
ics that permits optimisation and avoids thin-air executions. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’16, page 622-633, New York, NY, USA, 2016. Association for Com-
puting Machinery. ISBN 9781450335492. doi: 10.1145/2837614.2837616. URL
https://doi.org/10.1145/2837614.2837616

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. Bridging the gap between pro-
gramming languages and hardware weak memory models. Proc. ACM Program.
Lang., 3(POPL), jan 2019. doi: 10.1145/3290382. URL https://doi.org/10.
1145/3290382.

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter
Sewell. Simplifying arm concurrency: multicopy-atomic axiomatic and operational
models for armv8. Proc. ACM Program. Lang., 2(POPL), dec 2017. doi: 10.1145/
3158107. URL https://doi.org/10.1145/3158107.

Manuel Poter. xenium. URL https://github.com/mpoeter/xenium.

Pedro Ramalhete and Andreia Correia. Brief Announcement: Left-Right - A Con-
currency Control Technique with Wait-Free Population Oblivious Reads. In Yoram
Moses and Matthieu Roy, editors, DISC 2015, volume LNCS 9363 of 29th Interna-
tional Symposium on Distributed Computing, Tokyo, Japan, October 2015. Toshim-
itsu Masuzawa and Koichi Wada, Springer-Verlag Berlin Heidelberg. URL https:
//hal.science/hal-01207881l

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Un-
derstanding power multiprocessors. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 11, page
175-186, New York, NY, USA, 2011. Association for Computing Machinery. ISBN
9781450306638. doi: 10.1145/1993498.1993520. URL https://doi.org/10.
1145/1993498.1993520.

Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer: data race detection
in practice. In Proceedings of the Workshop on Binary Instrumentation and Appli-
cations, WBIA °09, pages 62-71, New York, NY, USA, 2009. Association for Com-
puting Machinery. ISBN 9781605587936. doi: 10.1145/1791194.1791203. URL
https://doi.org/10.1145/1791194.1791203.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.
AddressSanitizer: A fast address sanity checker. In 2012 USENIX Annual Technical
Conference (USENIX ATC 12), pages 309-318, Boston, MA, June 2012. USENIX
Association. ISBN 978-931971-93-5. URL https://www.usenix.org/conferenc
e/atcl2/technical-sessions/presentation/serebryanyl

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O.
Myreen. x86-tso: a rigorous and usable programmer’s model for x86 multiprocessors.

69

https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/3290382
https://doi.org/10.1145/3290382
https://doi.org/10.1145/3158107
https://github.com/mpoeter/xenium
https://hal.science/hal-01207881
https://hal.science/hal-01207881
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1791194.1791203
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany

BIBLIOGRAPHY

[71]

[72]

[73]
[74]

[75]

[76]

[77]

(78]

70

Commun. ACM, 53(7):89-97, 2010. doi: 10.1145/1785414.1785443. URL https:
//doi.org/10.1145/1785414.1785443.

Shellphish. Driller: augmenting afl with symbolic execution! URL https://github
.com/shellphish/drillerl

CORPORATE SPARC International, Inc. The SPARC architecture manual: version 8.
Prentice-Hall, Inc., USA, 1992. ISBN 0138250014.

Colin Wheildon. Type & Layout. Strathmore Press, 1995. (ISBN 0 9624891 5 8).

Anthony Williams. Implementing dekker’s algorithm with fences. URL
https://www. justsoftwaresolutions.co.uk/threading/implementing_d
ekkers_algorithm with_fences.htmll

Daniel Wright, Mark Batty, and Brijesh Dongol. Owicki-gries reasoning for c11 pro-
grams with relaxed dependencies. In Marieke Huisman, Corina Pdsdreanu, and Naijun
Zhan, editors, Formal Methods, pages 237-254, Cham, 2021. Springer International
Publishing. ISBN 978-3-030-90870-6.

Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace: Data race
fuzzing for kernel file systems. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 1643-1660, 2020. doi: 10.1109/SP40000.2020.00078.

LIU YANG. Model checking concurrent and real-time systems : the pat approach.
URL https://scholarbank.nus.edu.sqg/handle/10635/17326.

Michal Zalewski. American fuzzy lop, 2014. URL https://lcamtuf.coredump.c
x/afl/l

https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://github.com/shellphish/driller
https://github.com/shellphish/driller
https://www.justsoftwaresolutions.co.uk/threading/implementing_dekkers_algorithm_with_fences.html
https://www.justsoftwaresolutions.co.uk/threading/implementing_dekkers_algorithm_with_fences.html
https://scholarbank.nus.edu.sg/handle/10635/17326
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

Appendix A

Source code

In this appendix we provide the source code repositories used in this thesis and instructions
on how to use them.

A.1 Fuzzer implementation in C11Tester
The source code is available at GitHub: https://github.com/lililuanluan/c11tester-fuzz.git.

¢ Download and install the vagrantBox[3]] and VirtualBox[4]].

* Download the C11Tester artifact following the instructions of the C11Tester[46] pa-
per.

* Download the fuzzer implementation from the GitHub link: https://github.com/lililuanluan/c11tester-
fuzz.gitand place the files in the c11tester/ folder. Gotothe c11tester/benchmarks/
folder and run the afuzzer.py script.

A.2 Fuzzer implementation in GenMC
The source code is available at GitHub: https://github.com/lililuanluan/genmc-fuzz.git.
* Download and install Docker][[1].
* Download the GenMC artifact from paper [36]] following the instructions in its artifact[2].

* Download the src/ and debug-1luan folders and place them in the /genmc-tool/
directory.

* Go to debug-luan/ and run the test . sh script.

71

https://github.com/lililuanluan/c11tester-fuzz.git
https://github.com/lililuanluan/c11tester-fuzz.git
https://github.com/lililuanluan/c11tester-fuzz.git
https://github.com/lililuanluan/genmc-fuzz.git

Appendix B

Requirements and Guidelines

This chapter details some requirements and guidelines for MSc theses submitted to the
Software Engineering Research Group.

B.1 Requirements

B.1.1 Layout

* Your thesis should contain the formal title pages included in this document (the page
with the TU Delft logo and the one that contains the abstract, student id and thesis
committee). Usually there is also a cover page containing the thesis title and the
author (this document has one) but this can be omitted if desired.

* Base font should be an 11 point serif font (such as Times, New Century Schoolbook
or Computer Modern). Do not use sans-serif fonts such as Arial or Helvetica. Sans-
serif type is intrinsically less legible than seriffed type [73].

* The final thesis and drafts submitted for reviewing should be printed double-sided on
A4 paper.

B.1.2 Content
* The thesis should contain the following chapters:

— Introduction.
Describes project context, goals and your research question(s). In addition it
contains an overview of how (the remainder of) your thesis is structured.

— One or (usually) more “main” chapters.
Present your work, the experiments conducted, tool(s) developed, case study
performed, etc.

— Overview of Related Work

Discusses scientific literature related to your work and describes how those ap-
proaches differ from what you did.

73

B. REQUIREMENTS AND GUIDELINES

— Discussion/Evaluation/Reflection

What went well, what went less well, what can be improved?
— Conclusions, Contributions, and (Recommendations for) Future Work

— Bibliography

B.1.3 Bibliography

B.2

74

Make sure you’ve included all required data such as journal, conference, publisher,
editor and page-numbers. When you’re using BIBTEX, this means that it won’t com-
plain when running bibtex your-main-tex-file.

Make sure you use proper bibliographic references. This especially means that you
should avoid references that only point at a website and not at a printed publication.

For example, it’s OK to add a URL with the entry for an article describing a tool to
point at its homepage, but it’s not OK to just use the URL and not mention the article.

Guidelines

The main chapters of a typical thesis contain approximately 50 pages.
A typical thesis contains approximately 50 bibliographic references.

Make sure your thesis structure is balanced (check this in the table of contents).

Typically the main chapters should be of equal length. If they aren’t, you might want
to revise your structure by merging or splitting some chapters/sections.

In addition, the (sub)section hierarchies with the chapters should typically be bal-
anced and of similar depth. If one or more are much deeper nested than others in the
same chapter this generally signals structuring problems.

Whenever you submit a draft of your thesis to your supervisor for reviewing, make
sure that you have checked the spelling and grammar. Moreover, read it yourself at
least once from start to end, before submitting to your supervisor.

Your supervisor is not a spelling/grammar checker!

Whenever you submit a second draft, include a short text which describes the changes
w.r.t. the previous version.

	Preface
	Contents
	List of Figures
	Introduction
	Background
	Fuzzers
	Weak Memory Models
	Execution graphs
	C/C++11 Memory Model

	Fuzzing
	Motivation
	Example
	Overview

	Fuzzing with C11Tester
	Overview of C11Tester
	Customization points of C11Tester
	Fuzzer implementation
	Benchmarks
	Evaluation and discussion

	Fuzzing with GenMC
	Overview of GenMC
	Customization points of GenMC
	Fuzzer implementation
	Benchmarks
	Evaluation and discussion

	Related Work
	Memory models
	Fuzzing
	Model Checking

	Conclusions and Future Work
	Summary
	Discussion/Reflection
	Future work

	Bibliography
	Source code
	Fuzzer implementation in C11Tester
	Fuzzer implementation in GenMC

	Requirements and Guidelines
	Requirements
	Guidelines

