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Abstract

Dependently-typed languages allow one to guarantee correctness of a program by
providing formal proofs. The type checkers of such languages elaborate the user-friendly
high-level surface language to a small and fully explicit core language. A lot of trust is
put into this elaboration process, even though it is rarely verified. One such elaboration
is elaborating dependent pattern matching to the low-level construction of eliminators.
This elaboration is done in two steps. First, the function defined by dependent pattern
matching is translated into a case tree, which can then be further translated to eliminators.
We present a generic, well-typed implementation of this second step in Agda, without the
use of metaprogramming and unsafe transformations, by providing a type-safe, correct-
by construction, generic definition of case trees and an evaluation function that, given
an interpretation of such a case tree and an interpretation of the telescope of function
arguments, evaluates the output term of the function using only eliminators. We only
allow case splits on variables from a fixed universe of data type descriptions, for which
we use techniques like basic analysis and specialization by unification.
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Chapter 1

Introduction

Type systems are used in programming languages to prevent bugs by ensuring that func-
tions are called with arguments of the correct type. Curry [16], and later Howard and de
Bruijn [24], were the first to notice a correlation between programs and proofs, called the
proposition-as-types principle, where propositions can be represented as a type, and a proof
of the proposition as a term of that type. Martin-Lof extended this notion to create the first
type system containing dependent types leading to a family of type theories called Martin-
Lof type theory [26]. Dependent types are types whose definition depends on a value, thus
enabling the programmer to assign types that restrain the set of possible values elements
of that type can take. Languages based on dependent type theory, such as Agda [2], Coq
[13], Idris [7], and Lean [17], allow us to provide precise specifications about the input and
output of a program, and write proofs that the program matches its specification. The type-
checker can then check these proofs automatically, thus guaranteeing that a program works
as intended.

Combining programs and proofs requires the language to be expressive enough such that it
is usable, but also simple enough to guarantee that it is sound. Therefore, these languages of-
ten have a high-level surface language, in which we code, and a core language that focuses on
simplicity, which is often very difficult to manipulate by hand. The typechecker elaborates
the high-level surface language into the low-level core language [32]. Errors in this elabora-
tion process might lead to proofs or programs being accepted, while its meaning changed
to something that was not intended [33]. For example, we might think we have proven a
theorem, while in reality, this is not the case at all. A lot of trust is put into this elaboration
process, even though it is rarely verified. To guarantee the correctness of these elaborations
we need to verify each part of the elaboration process independently.

One example of an elaboration process is the transformation of definitions by dependent
pattern matching [14], which provides a more user-friendly, high-level interface, to the low-
level construction of eliminators that express the induction principle for a data type [27] [15].
Agda translates a function defined by dependent pattern matching into a case tree [9], which
is a tree where each node corresponds to a case split of a variable and each leaf corresponds to
a clause of the function. If a translation from a function defined by dependent pattern match-
ing to a case tree is possible, then it is also possible to translate that function into a function
that uses only eliminators [23]. Because of this, Agda does not target eliminators in the elab-
oration process. However, in Coq an implementation of this step is written in the Equations
package [35], which translates a function defined by dependent pattern matching to a func-
tion that uses eliminators on a case-by-case basis. Coq’s type checker then checks whether
this translated function is type safe, meaning that there are no guarantees on whether this
translation is sound.



1. INTRODUCTION

In this thesis, we implement this translation in Agda in a correct-by-construction way by
tirst giving a generic definition of case trees. The evaluation function takes any such case
tree and evaluates to an output of the function type using only eliminators, ensuring that
this evaluation is possible for every case tree that can be defined using this generic defini-
tion. This implementation should be considered an interpreter rather than a translation, as
we immediately evaluate to an output value. We therefore do not rely on Agda’s type checker
to check anything other than the code we have written for the evaluation function.

To furthermore ensure that the implementation is type-safe, we do not make use of unsafe
transformations, which we enforce by using the --safe flag in Agda. This ensures that some
features in Agda are prohibited (e.g. accepting unfinished proofs or non-terminating pro-
grams), which could lead to inconsistencies in your code. These inconsistencies might al-
low one to (accidentally) prove false, which impacts the soundness of the code as we can
conclude anything we want. We also do not allow the use of metaprogramming, which is
type checked only on a case-by-case basis. Our approach is guaranteed to succeed for any
well-typed case tree. This implementation is a step forward in reducing the trusted base for
dependently-typed languages. The source code of this thesis can be found online.

1.1 Overview

The problem is split into three phases. We start by solving the problem for simple data
types, which here means data types that are not indexed on other data types. Then, we solve
the problem for one-indexed data types (data types that are indexed by simple data types).
Lastly, we solve the problem for fully-indexed data types (data types that are indexed by
other indexed data types). Each chapter discusses one aspect of the implementation:

e Chapter 2 provides a background on elaborating dependent pattern matching to elim-
inators. It introduces the concepts of dependent pattern matching, eliminators, unifi-
cation, and case trees.

e Chapter 3 introduces simple data types and their generic representation in the code. We
furthermore show that we can create a generic elimination principle and well-founded
recursion.

e Chapter 4 introduces telescopes, which are used to generically represent a series of
input arguments of a function and a series of constructor arguments. We furthermore
define operations on these telescopes.

e Chapter 5 provides the first contribution of this research: a generic representation of a
case tree for simple data types. We show how to define functions by pattern matching
using this representation.

e Chapter 6 shows the evaluation function on a case tree given by the generic represen-
tation discussed in Chapter 5 and discusses the soundness of this evaluation.

e Chapter 7 shows the representation of four unification rules (solution, deletion, conflict,
and injectivity) for simple data types, which is needed to deal with pattern matching
on indexed data types.

e Chapter 8 introduces one-indexed data types. We extend the previously defined elim-
ination principle, well-founded recursion, and telescope of constructor arguments to
work on these data types and update the case tree and evaluation function.

1https://github.com/kl'ieverse/case—trees—to—e11'm1'nators


https://github.com/klieverse/case-trees-to-eliminators

1.1. Overview

e Chapter 9 introduces indexed data types. We extend everything discussed in the previ-
ous sections to work for these data types and show that it is possible to solve functions
that make use of higher-dimensional unification [10].

In chapter 10 we discuss the strengths and limitations of the current implementation and in
chapter 11 we discuss related efforts in translating pattern matching to eliminators.






Chapter 2

Background: Dependent Pattern
Matching and Eliminators

This chapter introduces the concepts of dependent pattern matching, eliminators, unification,
and case trees. Readers already familiar with these concepts are recommended to only skim
through this chapter.

2.1 Pattern Matching

Data types declare types that are defined by a list of constructors that produce the type. In
Agda [2] we can declare data types using the data keyword. For example, natural numbers
are defined as such:

data IN : Set where
zero : IN

suc : IN -> IN

The first line states that we are introducing a new type called IN, which we define in the
type set. The type of types in Agda is set, which means that it is a type whose members
themselves are again type. After the where keyword, every line explains how to construct
values of type IN. Those are called the constructors of the data type. IN has two constructors:

e Constructor zero takes no argument and produces a natural number.

e Constructor suc takes one natural number as parameter and constructs a new natural
number: its successor.

This is known as the Peano encoding: natural numbers are encoded in unary. Every natural
number n is encoded as n applications of constructor suc to constructor zero. Agda allows
us to use regular numerical notation to write those natural numbers. For example, 0 maps
to zero, 1 maps to suc zero, and 2 maps to suc (suc zero).

Now that we have introduced a new data type, we can define operations on it. We do so
using pattern matching. For example, we can define the addition function for natural num-
bers as follows:

add : N > IN > IN
add zero m=m

add (suc n) m = suc (add n m)

The first line states that we are defining a function named add, which takes 2 natural numbers
as arguments and produces a natural number as output. The remaining lines are function
clauses. On the left-hand side of the equal sign we have patterns. If the input matches a

5
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given pattern, then the function returns the value on the right-hand side of the associated
clause.

e The first clause, or base case, states that by adding 0 to a number m, we can return that
number m.

e The second clause, or inductive case, states that by adding the successor of a number
n to another number m, we can return the successor of adding n and m.

This is an example of a recursive function, where the recursive call happens in the second
clause on a smaller input: the first argument decreases.

An example evaluation of the function add on the natural numbers 2 and 1 is as follows:

add 2 1 add (suc (suc zero)) (suc zero)

= suc (add (suc zero) (suc zero))
= suc (suc (add zero (suc zero)))
= suc (suc (suc zero))

=3

In the first line, the expression add (suc (suc zero)) (suc zero) matches the second clause
of the add function, reducing to the second line. The expression add (suc zero) (suc zero)
in the second line again matches against the second clause, reducing to the expression to suc
(add zero (suc zero)) inthe third line. The expression add zero (suc zero) in the third line
matches the first clause, reducing the expression to suc zero. There are no more expressions
that contain calls to the function add, so it evaluates to 3.

Data types can have parameters, which remain the same in the types of the constructors.
They are declared after the name of the data type, but before the colon. For example, we can
represent a data type of a list of arguments of type A as such:

data List (A : Set) : Set where
[1 : List A
_ A -> List A -> List A

In Agda, we can use underscores to denote where arguments go. For example, in the case of
the non-empty list, if we have two elements (a : A) and (as : List A), we can call its construc-
tor using a :: as.

Data types can also have indices that can differ from constructor to constructor, in constrast
to parameters. These are declared after the colon. For example, we can represent a data type
of a vector, which is a list of objects with a determined length, as such:

data Vec (A : Set) : IN -> Set where
nil : Vec A 0O
cons : (n : IN) => A -> Vec A n -> Vec A (suc n)

The parameter A represents the type of the objects in the vector and the index represents the
length of the vector. The first line vec (A : set) : IN — set tells us that for any type (A : set)
and any natural number n, we are declaring a new type vec A n, which belongs to the type
of set. Hence, we define a family of inductive types, rather than a single type [19].

e Constructor nil takes no arguments and produces the empty vector, where we denote
the length with 0.

e Constructor cons takes a natural number n, an element of type A, and a vector of length
n as parameters, and constructs a new vector where the length is the successor of n.



2.2. Eliminators

This is an example of a dependent data type: the set of values that an element of a certain type
can take is dependent on the interpretation of the indices of that type. This is important, as it
gives extra precision at compile-time about the correctness and safety of certain operations.
For example, if we want to take the first element of a vector, we can make sure that we only
perform such an operation on a non-empty vector, hence always producing a value:

head : {A : Set} {n : IN} -> Vec A (suc n) -> A
head (cons n a as) = a

Here, A and n are implicit arguments. Implicit arguments are denoted by {...} and allow
us to call the function without that argument, provided that the type checker can figure the
term out by itself. If we perform pattern matching on an element of type vec A (suc n), we
have the additional constraint that the vector must be non-empty, hence we cannot match on
constructor nil. Therefore, we only get one clause that states that we can get the head of a
vector, that contains a and the remaining vector as, by returning a.

2.2 Eliminators

Dependent pattern matching provides a more user friendly, high-level interface, to the low-
level construction of eliminators. In dependent type theory, each data type comes with an
elimination principle, or eliminator, which expresses the induction principle for that data
type, and enables the definition of functions operating on this data type. For example, if
we want to prove a property P on natural number, we can proceed by induction. First we
prove that the property holds for zero, and then we prove that, if the property holds for some
natural number £, it holds for its successor suc k. Then we can guarantee that the property
holds for any natural number:

VP — (Pzero) > (Vk—Pk— P(suck)) >Vn—Pn

We can define eliminators by hand in Agda using pattern matching. For example, the elimi-
nator for natural numbers is defined as such:

IN-elim : (P : IN -> Set)
-> (pZero : P zero)
-> (pSuc : ¥V k => P k -=> P (suc k))
> Y n->Pn
IN-elim P pZero pSuc zero = pZero
IN-elim P pZero pSuc (suc n) = pSuc n (IN-elim P pZero pSuc n)

We can create a function that expresses the induction principle for a predicate P on a natural
number n by supplying a proof pzero, where predicate P holds for zero, and a proof psuc,
where predicate P holds for suc k given that predicate P holds for k.

e If n is zero, we know that P zero holds by pzero.

o If n is suc n, we know that P (suc n) holds, by calling psuc with n. We can infer that
P n holds by calling the eliminator recursively for n.

We can use this eliminator to define functions on natural numbers. For example, we can
define the addition function using eliminators by performing induction on the first argument,
just like we did with the function defined by pattern matching:

add : N -> IN -> IN
add = N-elim (A n >IN -=> IN) (A m->m (A nhm->suc (hm))

The predicate takes a natural number n that it performs induction on and another natural
number m that we want to add to n, and returns a natural number.
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e For pzero we have that n is zero, thus we return m.

e For psuc we have a natural number n, a hypothesis & that takes a natural number m and
returns P n m, and a natural number m, thus we return the successor of m applied to
the hypothesis.

The eliminator for vectors expresses the induction principle for a predicate P on a vector
xs, which holds if we can supply a proof pNil, where predicate P holds for ni1l, and we can
supply a proof pcons, where predicate P holds for cons n a xs, given P holds for xs:

Vec-elim : (P : {n : IN} -> Vec A n -> Set)
=> (pNil : P nil)
-> (pCons : V {n} a xs -=> P xs -> P (cons n a xs))
-> VY {n} (xs : Vec An) -> P xs

Defining the head-function using only eliminators requires different techniques:

head : {A : Set} {n : IN} -> Vec A (suc n) -> A

head {n = n} xs = Vec-elim (A {n'} xs' -> n' = suc n -> A)
(A e > l-elim (conflict e))
(A axs He -> a) xs refl

e First, when we eliminate the vector zs, we require that the index »n’ of the vector we
replace it by is equivalent to the index suc n of the eliminated vector. In Agda, we
represent this equivalence using the identity type, which contains only one constructor
refl that holds when two terms are equal. However, if we have two element (z,y : A)
that are provably unequal, then z = y is an empty type:

data _=_ {A : Set} (x : A) : A —-> Set where
refl : x = x

To ensure that the indices of both vectors are equivalent, we use a technique called basic
analysis [28], where we add an additional constraint to the predicate P and fill in refl
whenever the constraint is satisfied.

e We then use a technique called specialization by unification [23] (denoted by conflict)
on the equivalence e in the case of pNil to derive that the type zero = suc n is empty.
On the empty type we can call L —elimto conclude anything we want (in this case that
an element of type A exists).

e In the case of pCons we simply fill in a.

Working with eliminators by hand can thus quickly become unmanageable and unreadable.
Therefore, some dependently-typed languages, like Agda, provide the high-level interface
of dependent pattern matching.

2.3 From Pattern Matching to Case Trees

When elaborating a function defined by dependent pattern matching, the function is trans-
lated into a case tree [4] [9]. A case tree is a tree where each node corresponds to a case
split and each leaf corresponds to a clause of the function. For example, the case tree of the
addition function would look as follows, where the brackets [] represent the variables used
in the patterns and n m represent the patterns. We underline the variables that a case split
is performed on:

[(m: N)] zerom — m
[(n” : N)(m : IN)] (suc n') m — suc (add n’ m)

[(n:]N)(m:]N)]nm{



2.4. Unification

We start with a node containing two natural numbers n and m that represent the input ar-
guments of the addition function. A case split is performed on n, resulting in two new case
trees (one for each constructor of n):

e If n maps to zero, the first clause of the addition function is reached, and thus we get a
leaf node containing the right-hand side of the clause.

e If n maps to suc n’ for a fresh variable n’, the second clause of the addition function is
reached, and thus we get a leaf node containing the right-hand side of the clause.

In the case where we split on a variable of an indexed data type, we need to check whether a
constructor is allowed to replace the variable based on the indices in the type of that variable
and the indices of the type of the constructor. For example, the case tree of the head-function
would be defined as follows:

[(n:IN)(zs : vec A (sucn))] xs{ [(n:IN)(a": A)(xs" : vec An)] (cons na xs') — d

That is, a case split is performed on variable zs of type vec A (suc n), leading to two possible
case trees (one for each constructor of xs):

e If xs maps to nil, we have to check whether zero (the index of nil) is equivalent to
suc n (the index of zs). We know that this is never possible and thus there is no case
tree for this mapping.

e If xs maps to cons n' a x5 for fresh variables n/, a, and xs’, we have to check whether
suc n’ is equivalent to suc n. If this is possible, we can also replace each occurence of
n’ by n, thereby removing »n’ from the variables that are used in the patterns. Now,
the clause of the head function is reached, and thus we get a leaf node containing the
right-hand side of said clause.

To check whether a constructor can be used when we split on elements of indexed datatypes,
we perform a process called unification.

2.4 Unification

When deriving a case tree, Agda performs unification on the data type indices. It constructs
a unification problem, which is a list of equations (e.g. (n : IN)(suc n L zero) or (n m :

IN)(sucn < suc m)) and applies the following unification transitions to simplify the problem
step by step:

? 1 .
e The solution rule solves an equation = = y if one side is a variable and = does not occur
freeiny, e.g.

(nm]N)(n;m) ~ (n:NN)
e The deletion rule removes an equation x e g.:
(n:N)(n<n)~ (n:N)

e The injectivity rule simplifies an equation where both sides use the same constructor,
by equating all constructor arguments instead, e.g.:

(nm: ]N)(sucn; sucm) >~ (nm: ]N)(n;m)
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e The conflict rule shows that it is not possible to have an equation where both sides use
different constructors, e. g.

(n:IN)(sucn z zero) ~ |

e The cycle rule shows that it is not possible to have an equation where one side occurs
in a constructor argument on the other side, e.g.:

(n:]N)(n;sucn) ~ |

If the unification process ends in L (which denotes the empty type), we can eliminate that
branch of the case tree. Hence, we can eliminate the case where xs maps to nilin the previous

example, as the unification problem (n : IN)(suc n L ze ro) ends in L (following the conflict
rule). If the unification process ends in success, we can update the variables in that branch
of the case tree. For example, in the case where xs maps to cons n’ @’ zs’ in the previous
example, we have the following unification problem:

(nn' :IN)(a’: A)(xs’ : vec An')(sucn’ < sucn)

)
~njectivity (1’ : N)(a' : A)(xs" : vec An')(n" = n)

~gotution (M : IN)(a’ : A)(xs" : vec An)

Hence, we get that xs maps to cons n o’ zs’ instead of cons n’ o’ x5’

2.5 From Case Trees to Eliminators

Agda does not translate a case tree back to a function using only eliminators, because on pa-
per it is proven that functions representable by a case tree can be translated to data type elim-
inators [23], thus admitting pattern matching in traditional type theory, which is equipped
only with the elimination principle.

In this thesis, we put this translation to the test by creating an evaluation function that takes
a case tree of a function and the input arguments of that function and evaluates the func-
tion for these input arguments using only eliminators. This will give more confidence in the
handwritten proof and reduce the trusted code base of Agda (and other proof assistents that
translate functions defined by pattern matching to case trees, but not to eliminators).

10



Chapter 3

Generic Simple Data Types

Because we want to implement a generic translation, that works for every data type, we need
a way to manipulate data type definitions using regular programs. This is knows as data
type-generic programming, where we use a universe of data type descriptions [5]. In this
chapter we focus on giving this representation for simple data types.

Simple data types are data types without indices. Examples of simple data types include
natural numbers and (parameterized) lists, which we both have seen in chapter 2. An exam-
ple of a data type that is not simple is the indexed data type of vector, which we have also
seen in chapter 2. What makes this data type not simple is that it is indexed.

In this chapter, we define a universe of data type descriptions (section 3.1) to give a generic
representation of simple data types in Agda (section 3.2). Then, we show the definition of
the elimination principle for an element of such a data type (section 3.3). Lastly, functions de-
fined by pattern matching often contain recursive calls. Eliminators only allow for structural
recursion, but we also want to allow the case tree to work for functions that use well-founded
recursion. Hence, we add a data type that captures all possible recursive calls for an element
of an arbitrary data type (section 3.4).

3.1 Universe of Data Type Descriptions

The generic representation of simple data types should contain all the information about the
structure of the data types: how many constructors they have, with how many arguments,
and types thereof. On these data types we want to define generic functions that allows us to
reason about them (e.g. elimintation principle, unification rules). If we use a fixed universe
of data type descriptions, we can derive these generic functions that work for every variable
whose type is a data type from this fixed universe [5]. Chapman [8] shows an implementa-
tion of this universe for simple data types:

data Desc : Set; where

one' : Desc
DI : (S : Set) (D : S -> Desc) -> Desc
indxX' : (D : Desc) —-> Desc

A description of a data type in this fixed universe of data type descriptions for simple data
types consists of three constructs:

e one' describes a constructor expecting no further arguments. An example is the empty
description for the case of [] for lists.

11
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e X' s Ddenotes branching constructors on values of type S, where D denotes a mapping
from each element in .S to a constructor description. This allows for encoding both dis-
tinct constructors (e.g. the data type declaration for lists where S is the set containing
two elements, one for each constructor) and a single constructor with the type of re-
maining arguments that depends on the first arguments (e.g. (a : A) in the case of
a::as for a list).

e ind x ' D denotes a constructor expecting a recursive arguments of the data type that
we are describing (e.g. (as : List A) in the case of a: :as for a list) and the remaining
constructor description b.

From these three constructs, we can describe any simple data type. For example, we can
describe the data type ListD, which is parameterized on a type A:

ListD : (A : Set) -> Desc
ListD A = X' (Fin 2) (A where
f0 -> one'
f1 -> X' A (A a -> indX"' one'))

e Weuse X' to branch on the constructors of ListD. The Finn data type contains n objects;
we denote them as fo, f1, ..., f(n — 1). Using this in X' allows us to create exactly n
branches, hence we can use it to branch on the constructors of the list data type. As
the list data type contains two constructors, we take Fin 2, which only contains the
elements fo and f1.

e We perform anonymous pattern matching on Fin 2 to provide the constructor descrip-
tions using the where syntax, where fo denotes the constructor [] and f1 denotes the
constructor _

e Constructor [] takes no arguments, so we take the empty description one'.

e Constructor _::_ takes an element (a : A), for which we use X', and a recursive
element, for which we use ind x '.

We now have a way to describe the structure of simple data types. We still need an inter-
pretation of these descriptions as actual Agda types. The action [D]X can be interpreted as
adding “one layer” of the data type, where every inductive reference refers to type X. For
example, elements of type [Listd A]X are either [] or a::X:

[_ﬂ : Desc -> Set -> Set

[ one' I x=T

[ ¥'spD [ x=%X[ses]1(Ds]x
[ indx' D] x=xx ([ D] X

e In the case where D is the empty constructor one' we return T, which is a type that
contains only one element tt.

e If Dis ¥ S D, we want an element of the dependent sum type, which means that we
have a pair (s, zs) where (s : S) and (zs : [D s]X)

e If D contains a recursive call, we want an element of the product type, which is the
type of non-dependent pairs, which means that we have a pair (z, zs) where (z : X)
and (zs : [D]X).

Now, we define the fixpoint of the action, meaning that we add infinitely many layers of the
action, which allows us to define a regular Agda type given a description:
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data @ (D : Desc) : Set where
(O :@:[Dp] (uo) -> po

For example, we can define an empty list as an element of type u (List A) by calling the
constructor of p with fe:

[1'" : p (ListD A)
1" =( fo , tt )

We can also define a non-empty list as an element of type p (List A), provided we have an
element of type A and another list, by calling the constructor of y with fi:

't A > u (ListD A) -> pu (ListD A)

x ::' xs = fl, x, xs , tt )

Agda furthermore allows us to define pattern synonyms using the pattern syntax, which are
declarations that can be used on the left-hand side of a function (when pattern matching), as
well as on the right-hand side (in expressions). This allows us to define functions on elements
of this universe of data type descriptions using regular pattern matching. For examples, we
can declare the following patterns for the constructors of elements of type p (List A):

pattern []' =( fo , tt )
pattern x ::' xs = { f1 , x , xs , tt )

We can moreover illustrate that ; (ListD A) behaves just like the data type List A from chapter
2 by showing that we can translate from an element of type y (ListD A) to an element of type
List A, using the pattern synonyms []' and z ' zs:

ListD->List : g (ListD A) -> List A
ListD->List []' =[]
ListD->List (x ::' xs) = x :: (ListD->List xs)

We can furthermore translate from an element of type List A back to an element of type
i (ListD A), and show that these functions are inverses of each other.

3.2 Simple Data Type Representation

The representation of Chapman uses ¥’ to denote both the different constructors and con-
structor arguments. This makes it impossible, given a description, to know exactly how many
constructors a data type is made of. But to perform a case split on a variable whose type is
a data type from this universe of data type descriptions, we need to be able to derive certain
properties. First, we need to know the number of different constructors to decide the number
of branches the case tree splits into. Secondly, we need to be able to derive all constructor ar-
guments for a specific constructor to decide which fresh variables are added in a new branch.
To allow for this, we seperate the description in a data type description (batabDesc) and a
constructor description (ConDesc) and add indices ¢, and a,, that denote the number of con-
structors and constructor arguments, respectively [3].

The constructor description remains more or less the same as the previous description, ex-
cept that we have added an extra index a,, that enforces a constant number of arguments for
a given constructor:

data ConDesc : IN -> Set; where

one' : ConDesc zero
L : (S : Set)(D : S -> ConDesc a,) -> ConDesc (suc ap)
indxX' : (D : ConDesc ap) -> ConDesc (suc ap)

13
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The data type description takes a natural number ¢, that enforces a constant number of con-
structors for a given data type, and requests a mapping from each element in Fin ¢, to a
constructor description:

DataDesc : IN -> Set;
DataDesc ¢, = Fin ¢, -> > IN ConDesc

We can now describe the data type of natural numbers in this universe as a data type de-
scription that contains 2 constructors. We then need a mapping from Fin 2 to a dependent
sum that contains the number of arguments for a constructor and its description. For the
zero constructor (at fo), we have the empty constructor, so we have 0 arguments and one
as constructor description. For the suc constructor (at f1), we have 1 (recursive) arguments,
so we take ind x ' one' as constructor description:

NatD : DataDesc 2
NatD fo = @ , one'
NatD f1 = 1 , indX' one'

The fixpoint does not require any changes, but we update the action of a data type description
D on a set X to be a dependent sum type from an constructor index c; of type Fin ¢, where
cn is the number of constructors, to the action of the ith constructor description on the set X,
which we get by getting the second element (72) of ¢; applied to D. The action of a set X on
a constructor description C'is denoted by [C]c X which is the same function as [D] X of the
previous section:

data pu (D : DataDesc cjp) : Set where
() :(d:[Dp] (D)) -> D

[_ﬂ : DataDesc cj -> Set -> Set
[L] {cn} DX =X[ci € Fincy, 1 ([ m2 (D ¢;) Je X)

We can again define pattern synonyms for the constructors zero and suc:

pattern zero' = { fo , tt )
pattern suc' n = fl , n, tt )

We can now define the addition function for two natural numbers using regular pattern
matching on the universe of data type descriptions for natural numbers:

_+_ ¢ i NatD -> pu NatD -> p NatD

zero' + m=m

suc' n + m = suc' (n + m)

3.3 The Elimination Principle

When we evaluate a case tree, we want to be able to reason about arbitrary elements in the
defined universe of data type descriptions. For this, we define the elimination principle that
works on a predicate P for any element of type 11 D for an arbitrary data type description D.
The elimination principle for an arbitrary data type has a fixed structure:

elim-p : (D : DataDesc cp)(P : u D -> Set)
> (p:d:[D] (D) ->2->pP{d)
-> (x ¢ @4 D) => P x

e We have a predicate P that goes from an element of a data type D to a set, which
contains the statement we want to prove.

14
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e For every constructor we need a proof p that, given all constructor arguments and a
proof that the predicate P holds for all inductive arguments (denoted by ?), shows
that P holds for the constructor arguments applied to the constructor function.

e Provided we have all these proofs, we can prove that P holds for any element of that
data type.

As we have a varying number of constructors, depending on how a data type in this universe
is defined, we need a way to encapsulate that P holds for all inductive arguments. For this,
we define an auxiliary data type A1l D x P d that states that (P : X — set) holds for ev-
ery subobject in D. For this, we use the product type whenever the constructor description
contains an inductive argument x to collect a proof P x:

All : (D : DataDesc cp)(X : Set)(P : X -> Set)(d : ﬂ D ﬂ X ) —-> Set
ALL D X P (c; , c) = ALLC (72 (D c;)) X P c

AL1C : (D : ConDesc ap) (X : Set)(P : X -> Set)(d : [ D Jc X) -> Set
A1lC one' X P tt =T

Al1C (X' S D) X P (s, d) = AllC (D s) X P d

A11C (indX' D) X P (x , d) = (P x) X (ALlLC D X P d)

Filling A1l D X P din at ?, we can get a proof that P z holds for an arbitrary x of type u D
if we apply x to p. We also need a proof that P holds for each inductive argument, which is
encapsulated in the all function. The all function applies the elimination principle recur-
sively whenever an inductive element is found in x to ensure that P holds for each inductive
argument.

all : (D E : DataDesc cp)(P : u E -> Set)
(p:(d:[E] (WE) ->ALLE (uE)Pd->P(d))
(d: D] (wE)) ->ALLD (u E) Pd

allLDEPp (s, d = allC (w2 (Ds)) EPpd

allC : (D : ConDesc ap)(E : DataDesc cp)(P : u E -> Set)
(p:(d:[E] (WE) ->ALLE (LE)Pd->P(d))
(d:[DJc (ueE))->ALlCD (uE)Pd

allC one' EPp tt = tt

allc (X' SD) EPp (s, d) =allc (Ds) EPpd

allC (indx' D) EPp (x , d) = elim-uw EP p x , allCDEPDPpd

We can use this generic elimination principle to define functions on any data type from the
universe of data types. For example, we can define the addition function for natural numbers
similar to how we have defined it in chapter 2 using only eliminators, except that we perform
anonymous pattern matching on p to differentiate between the two constructors:

add; : p NatD -> p NatD -> g NatD

add; = elim-p NatD (A n -> p NatD -> g NatD) (A where
(fe , tt) tt m -> m
(f1 , n, tt) (h , tt) m -> suc' (h m))

Using the generic eliminator we can also create a generic case-eliminator, which is a weaker
version of the generic eliminator where the inductive hypothesis for the recursive arguments
(ALl D X P d) is dropped:

case-f4 : (D : DataDesc cy)(P : u D -> Set)
> (p:(d:[D] (D)) ->P{d) ->(x:pub) ->P x
case-i4t D P pd=celimpu DP (Adh->pd)d
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3.4 Well-Founded Recursion

With a single call to the elimination principle, we can write functions that use structural recur-
sion, where we only use the value of the evaluation of the immediate predecessor. Another
form of recursion is well-founded recursion [37], where we may use the value of the eval-
uation of any of its predecessors. For example, the fibonacci function recursively calls the
function for both suc' n and n:

fib : @ NatD -> p NatD

fib zero' = zero'

fib (suc' zero') = suc' zero'

fib (suc' (suc' n)) fib (suc' n) + fib n

To write this function using eliminators, we need a way to capture all possible recursive
calls, which we can do by using a memoization technique [22] that inductively defines a
data structure Below that collects all possible recursive calls of a predicate P on an element
of data type D [29]. That is, for each inductive argument v in a constructor description, we
collect a proof that P holds for v and that P holds for everything below w:

Below : {D : DataDesc cp} (P : u D -> Set) -> (d : u D) -> Set
Below {D} P < Ci 5, C > = BelowC (72 (D c¢;)) c where

BelowC : (C : ConDesc ap)(c : ﬂ C Hc (uw D)) —> Set

BelowC one' tt = T

BelowC (X' S E) (s , c) = BelowC (E s) c

BelowC (indX' C) (u , ¢) = (P u X Below P u) X (BelowC C c)

We can create an element of this data type given that we have a proof p that states that P d
holds for an arbitrary d if we know that P holds for everything below d. For each inductive
argument u of a constructor we can prove that P holds for everything below u by creating
Below P u recursively and we can prove that P holds for u by calling p with u and the result
of the recursive call:

below : {D : DataDesc cp}(P : @ D -> Set)
-> (p : (d: puD) ->Below Pd->Pd)(d : pu D) -> Below P d
below {D} P p < ci 5, C > = belowC (72 (D c¢;)) c where
belowC : (C : ConDesc ap)(c : H C Hc (u D)) —-> BelowC C ¢
belowC one' tt = tt
belowC (X' S E) (s , c) = belowC (E s) c
belowC (indX' C) (u , c) = ((p u (below P p u) , below P p u ) , belowC C c)

We can now define the Fibonacci function by calling the generic case-x eliminators with the
Below data type that contains recursive calls to fib'. Then, we can take h and ' from this
data structure to get the recursive calls fib' (suc n') and fib' n', respectively:

fib' : (n : p NatD) -> Below (A n -> p NatD) n -> u NatD
fib' = case-p NatD (A n -> Below (A n -> g NatD) n -> p NatD) (A where
(fo , tt ) tt -> zero'
(F1 , n, tt) ((h , b) , tt) ->
case-ft NatD (A n -> Below (A n -> g NatD) n -> u NatD) (A where
(fo , tt ) tt -> suc' zero'
(FL , n' , tt) ((h' , b) , tt) => h + h') n b)

The actual fibonacci function is then a call to this helper function. To collect all recursive calls
we call the below function with the fibonacci helper to collect all recursive calls:

fib : (n : @ NatD) -> p NatD
fib n = fib' n (below (A n -> u NatD) fib' n)
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Chapter 4

Representing Telescopes

A telescope is a list of typed variable bindings where each type can depend on the previous
variables. For example, (n : IN)(p : n = zero) is a telescope containing a natural number n
and a proof p that n is equivalent to zero. We can use telescopes to denote the types of the
input variables of a function. For example, the telescope of input arguments for the addition
function for natural numbers can be defined as a telescope containing two natural numbers
(n: IN)(m : IN). Additionally, we can use telescopes to denote the arguments of a constructor.
For example, for the zero constructor for natural numbers, which has no constructor argu-
ments, we can use an empty telescope (denoted by the unit type T). In the case of the suc
constructor for natural numbers we have one argument (n : IN). Therefore, we can use a tele-
scope which contains one element of type IN and from that telescope we can create another
natural number by calling the suc constructor with that element in the telescope.

On telescopes we can define generic functions that allows us to easily replace, remove, and
add variables. It allows us to replace a variable in the telescope of input arguments by the
telescope of constructor arguments of the constructor that that variable maps to. For exam-
ple, if we take the addition function for natural numbers we start with a telescope of input
arguments containing two natural numbers n and m. Then, if we perform a case split on
n, we can replace n with an empty telescope if n maps to zero. If n maps to suc n/, we can
replace n by a telescope containing n'.

In this chapter, we give the representation of a telescope in Agda (section 4.1) and define
the telescope of constructor arguments for an arbitrary constructor and show that from such
a telescope we can create an element of that constructor (section 4.2). We also define an
expand operator that inserts a telescope at a given position in an input telescope (section
43).

4.1 Representing a Telescope

As each type in the telescope can depend on the previous variables, a telescope can be inter-
preted as an iterated dependent sum type, which means that if we have a set S the remainder
of the telescope may be dependent on an element s of S. To eliminate the possibility that we
try to perform a case split on an element in an empty telescope we need to be able to distin-
guish between an empty telescope and a non-empty telescope. For this, we add an index n
in the type of the telescope that maintains the number of elements inside that telescope. For
the empty telescope nil we have zero arguments and length zero. In the case of a non-empty
telescope cons we have a non-zero length suc n for arbitrary n : IN:

data Telescope : IN -> Set; where
nil : Telescope zero
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cons : (S : Set)(E : (s : S) -> Telescope n) -> Telescope (suc n)

The telescope of input arguments for the addition function for natural numbers would thus
contain two elements of type natural number:

A+ : Telescope 2
A+ = cons (o NatD) (A n -> cons (v NatD) (A m->nil))

We often use an alternative syntax s € S, E' to define a telescope, which would be equivalent
to cons S (A s — E). We can define the interpretation of a telescope by calling the unit type
for the empty telescope and a dependent sum type for a non-empty telescope:

[_]teld : (A : Telescope n) -> Set
[ nitl Jtetp = T
[ cons SEJtelp = X[ s € s ][ Es Jteld

The addition function for natural numbers can thus be defined by going from an interpreta-
tion of the telescope A+ to a natural number. We have two elements in the telescope n and
m and can perform pattern matching on n inside the telescope. In the case where n maps to
suc n, we can call the function recursively by creating a new interpretation of the telescope
(n,m, tt):

+ : [ A+ Jteld -> p NatD
+ (zero' , m, tt) =m
+ (suc' n , m, tt) = suc' (+ (n , m , tt))

To reason about particular variables in a telescope, we often want to know its exact type and
location. To do this, we define an auxiliary type TelAt that states that for a certain location
in a telescope of length n, we have an element of type B a that is dependent on an element a
of type A, which is derived from the first part of the telescope:

data TelAt (A : Set) (B : A -> Set) : Telescope n -> IN -> Sety where
here : {a : A}{E : (b : B a) -> Telescope n} -> TelAt AB (b€ B a, Ey) 0
there : {S : Set}{E : S -> Telescope (suc n)}
-> ((s : S) -> TelAt A B (E s) k) -> TelAt AB (s € S, E s) (suc k)

e Constructor here denotes that at this location in the telescope, we can create an element
a of type A, such that the type at this position in the telescope is B a.

e Constructor there denotes that we have not yet reached the location of type B a. There-
fore, we take and element s of the type at that location in the telescope (in this case S)
and use that s to construct TelAt for the remaining telescope (E s), which allows us to
use this s to create the element a at position k. Then we can state that we can create an
element of type B a, for some a, at position suc k.

We often use an alternative syntax A[k] : 3[A] B, which is equivalent to Telat A B A k. With
this data type we can provide a proof that the element at location 1 in the telescope of function
arguments for the addition function (A+) is of type p NatD. As the type p NatD does not
depend on other elements in the telescope, we can use the unit type in the place of D. The
element at location 0 (n) is also of type 1 NatD, so we first use the there constructor and then
here by filling in tt for the unit type:

INat1 : A+ [ 1 1:2[ T 1 (A _ -> p NatD)
INat1 = there (A n -> here tt)

Similarly, we define an auxiliary type Telat' A B C' A k, where (C : (a : A) > B a — Set),
which shows that the types at position £ and k + 1 in telescope A are B and C, respectively.
The alternative syntax for this data type is A[k] : X[A]B : C. For example, if we have a
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telescope that contains a natural number 7, an element m of type Fin n, and a proof e that
m is equivalent to itself, then we can show that at position 1 in the telescope, we have an
element of type Fin n and then and element of type m = m:

FinAtl,=At2 : (n € N , m € Finn , e Em =m , nil)
[11:XIINT An->Finn) : Anm->m= m)
FinAtl,=At2 = there (A n -> here n)

If we have a proof p that at index k in telescope A we have an element of type B a for some
a, and we have an interpretation of A, we can retrieve an element of type B a. In particular,
we retrieve the element from the interpretation of the telescope at that position, which gives
us an element of type B a, where a is the element in the TelAt data type, that is built from
the previous elements in the interpretation of the telescope:

lookup : {A : Telescope n} {A : Set} {B : A -> Set} (p : A [ k 1:2[ A ] B)
-> [ A Jtetp -> ¥ A B

lookup (here a) (b, _ ) a, b

lookup (there p) (s , xs) = lookup (p s) xs

The alternative syntax for lookup p xs is zs X[p].

4.2 Telescope of Constructor Arguments

To replace a variable in the telescope by the arguments of a specific constructor, we first need
to know what the telescope of constructor arguments looks like. For this, we create a function
that creates a telescope of the length equal to the number of constructor arguments for a
specific constructor C. If the constructor is empty we have an empty telescope. In the case
where the types of the other constructor arguments may depend on the current argument of
type S, we add S to the telescope and build the remaining telescope using an element s : S.
In the case where we have an inductive argument, we add an element of type X, which is a
set that is passed as an additional argument:

conTel : (X : Set)(C : ConDesc ap) -> Telescope a;,
conTel X (one' ) = nil

conTel X (X' SC) =s €S, conTel X (C s)
conTel X (indxX' C) = x € X , conTel X C

In the previous chapter we have said that [_]c is equivalent to the action defined on a data
type description from the works of Chapman [8]. We thus have the following function:

[[_]]c : ConDesc ap —-> Set -> Set

[ one' Je x =T

[ ¥"sD Jex=%X[ses1(Ds ]Jcx
[ indx' D Je x = x x ([ D Je X)

If we have a telescope of constructor arguments for a constructor description C' that works
on set X, we can create an element of that constructor description, which we show in the
function telToCon. If the constructor description is one', we have an empty telescope and
also an empty constructor description. If the constructor description is 3’ S C we have that
the interpretation of the constructor arguments telescope contains an element s : S and the
remaining telescope d is dependent on this s. To create an element of this constructor, we
need the element s : S and build the remainder of the description using d. If the constructor
description is ind x’ C, the telescope contains an element of type X, which is exactly what
we need to build the constructor:

telToCon : {X : Set}{C : ConDesc ap} -> [[ conTel X C ]]telD -> [[ C ]]c X
telToCon {C = one' T _ = tt
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telToCon {C = X' SC} (s, d =s , telToCon d
telToCon {C = indX' C} (x , d) = x , telToCon d

The reverse also holds. That is, if we have an element of the constructor description C' that
works on set X, we can create an element of the constructor arguments telescope. For the
empty constructor description we have the empty telescope. When the constructor descrip-
tionis X’ S C, we have an s : S in the element of the constructor description, which is what
the telescope requires. When the constructor description is ind x’ C, we have an element of
type X, which is exactly what the telescope requires:

conToTel : {X : Set}{C : ConDesc ap} -> ﬂ C ﬂc X => H conTel X C ﬂtelD
conToTel {C = one' } _ = tt

conToTel {C = X' SC3} (s, d) =s , conToTel d

conToTel {C indX' C} (x , d) = x , conToTel d

We can furthermore show that for any element of a constructor description C' that works
on set X, translating to the telescope of constructor arguments and translating that to the
constructor is equivalent to the original element. In the case of the empty constructor we
have to prove that tt = tt holds, which is trivially done with refl. When the constructor
description is X' S C, we have to prove that (s, telToCon (conToTel d)) = (s, d), for which we
can use cong that states that if we apply a function (in this case A\d — (s,d)) to equivalent
arguments, we get an equivalent result. We can prove that telToCon (conToTel d) = d by
calling the function recursively. When the constructor description is ind x’ C' we can do the
same trick except with z : X instead of s : S:

telToConoconToTel : {X : Set}{C : ConDesc a,} (args : ﬂ C Hc X)
-> telToCon (conToTel args) = args
telToConoconToTel {C = one' } tt = refl
telToConoconToTel {C = X' S C } (s , d) cong (s ,_) (telToConoconToTel d)
telToConoconToTel {C indxX' C} (x , d) cong (x ,_) (telToConoconToTel d)

4.3 Expanding a Telescope

When we perform a case split on a variable of a certain data type in the telescope of input
arguments, we want to replace that variable with the arguments of the constructor that the
variable splits into. We can define a function expandTel that, given a function f that creates
an element of the data type at position k£ from an interpretation of telescope Y telescope,
creates a telescope that removes the element at position £ and adds the m variables of the
telescope of function f:

expandTel : {A : Set} {B : A -> Set} (X : Telescope n) (Y : A -> Telescope m)
(p: X[ k1:X[A1B)(f:{a:A} —>[Yal]teld->B a)
-> Telescope (k + m + (n - suc k))

To create an interpretation of this telescope, we need an interpretation of the first part s,
which stays the same until we reach index k. Then, we want to merge an interpretation ys of
telescope Y z, where x is the value that creates the type of variable (y : B z) at location k in
xs. To merge ys, we need to ensure that the value we get from ys applied to the function f is
equivalent to the value y at location & in xs, such that the remainder of xs can be merged at
the end, which is encapsulated in the proof eq. The type of the function expand thus becomes:

expand : {A : Set} {B : A -> Set} {X : Telescope n} {Y : A -> Telescope m}
(p X[ kI1:XLATB(Ff: {a:A} ->[Ya]telD->B a)
(xs : ﬂ X ﬂtelD)(let (a , b) = lookup p xs)(ys : H Y a ﬂtelD)
(eq : fys =b) -> [ expandTel X Y p f JtelD
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We can also create a function shrink, that returns only the interpretation of telescope X from
an expanded telescope. Again, we keep the first part of the telescope the same, as it contains
variables from the interpretation of X. If we reach position k, we call function f with the first
part of the remaining telescope, to get an element of type B a, and keep the second part of
the remaining telescope the same. The type of the function is as follows:

shrink : {A : Set} {B : A -> Set} {X : Telescope n} {Y : A -> Telescope m}
(p: X[ k1:X[A]1B) {f:{a:A} ->[Y a]telD->B a}
-> [ expandTel X Y p f JteldD -> [ X [telD

Lastly, we can prove that shrink and expand is a section-retraction pair, meaning that shrink-
ing an expanded telescope results in the original interpretation xs of telescope X:

shrinkoexpand : {A : Set} {B : A -> Set} {X : Telescope n} {Y : A -> Telescope m}
(p : X[ kI1:X[LATIB{f:{a:A} > [Ya]telD->B a}
(xs : ﬂ X HtelD)(let (a , b) = lookup p xs)(ys : ﬂ Y a ﬂtelD)
(eq : f ys = b) -> shrink p (expand p f xs ys eq) = xs

With the expand function, we can replace elements of data types with their constructor argu-
ments. For example, if we have a telescope containing a natural number n and an equivalence
relationn = zero', we can define their expansion by pattern matching on the natural number
n. For constructor zero', we remove n and replace n in the equivalence relation by zero'. For
constructor suc', we replace n by a fresh variable and replace n in the equivalence relation
by suc' n:

expandNatTel : [ n € u NatD , e € n = zero' , nil JtelD -> ¥ IN Telescope
expandNatTel (zero' , _) = _ , e € zero' = zero' , nil
expandNatTel (suc' n , _) = _ , n € 4 NatD , e € suc' n = zero' , nil

We can show that these are their expansionsby using the expand function. If we have an
interpretation of a telescope containing a natural number n and an equivalence relation n =
zero', we can use the function expand on the first element in the telescope xs (denoted by here
tt), where Y is the telescope containing the arguments of the respective constructor (fe in
the case of constructor zero' and f1 in the case of constructor suc'). From an interpretation
of telescope Y, we can create an element of data type NatD by calling the function telToCon:

expandNat : (xs : ﬂ n € i NatDh , e € n = zero' , nil HtelD)
-> ﬂ 79 (expandNatTel xs) ﬂtelD
expandNat (zero' , e , tt) = expand {Y = A _ -> conTel (u NatD) (w2 (NatD f0))}
(here tt) (A args -> ( fo , telToCon args )) (zero' , e , tt) tt refl
expandNat (suc' n , e , tt) = expand {Y = A\ -> conTel (u NatD) (w9 (NatD f1))}

(here tt) (A args -> < fl , telToCon args >) (suc' n , e , tt) (n , tt) refl
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Chapter 5

Case Trees for Simple Data Types

To create an evaluation function that evaluates a case tree without the use of pattern match-
ing on simple data types, we need a generic representation of a case tree. A case tree for a
function f is a tree where each node corresponds to a case split and each leaf corresponds to
clause of f. In chapter 2 we showed an example of a translation from a function defined by
pattern matching to a case tree for the addition function for natural numbers. This chapter
provides the first contribution of this research: a generic representation of a case tree, where
we only allow the user to perform a case split on simple data types from the universe of data
type descriptions defined in chapter 3.

We first show the generic representation of the case tree in Agda (section 5.1). The remain-
der of the chapter is dedicated to example elaborations from functions defined by pattern
matching to this generic representation. Section 5.2 shows the case tree for the half-function
for natural numbers that divides a natural number by 2. Section 5.3 show the case tree for
the create-function that creates a vector of length n for an input natural number n.

5.1 Generic Case Trees

A case tree for a function f is a tree where each node corresponds to a case split and each leaf
corresponds to clause of f [4]. When performing a case split on a variable, the tree splits in
the number of branches equivalent to the number of constructors that the variable can split
into. That variable in the telescope of input arguments is then replaced in these branches by
the constructor arguments that belong to the constructor of said branch.

To represent this generically, we first need a generic representation for a function f. For
this, we use a telescope A of length n which represents the input arguments of the function.
The return type of the function may depend on the value of the input arguments (e.g. in
the create-function the return type is vec A n, where n is one of the input arguments), so we
have a function 7" that goes from an interpretation of the telescope of constructor arguments
to a certain type. Together, we can thus create a case tree for a function that has as telescope
of input arguments A and return type function 7™

data CaseTree (A : Telescope n)(T : [ A Jteld -> Set) : Set; where

In the leaf of a case tree, we do not split on any more variables, and we can fill in the clause
of the function following the splits taken to get to that leaf. Given the telescope at the leaf
A and a return type T based on an interpretation of this telescope, we can fill in a function
t, which contains a clause, that goes from the interpretation args of the telescope A to an
element of the return type dependent on this:

leaf : (t : (args : [ A Jteld) -> T args) -> CaseTree A T
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In the node of a case tree, we perform a case split on a variable in the telescope of input
arguments. To perform this split, we need to know the different constructors of that data
type and all their constructor arguments. To determine this we add a constraint that the type
of the variable may only be from the universe of data type descriptions specified in chapter
3. We use the data type TelAt from chapter 4 to determine that the variable at a location & is
of type 1 D in telescope A, which we store in variable p, and as ;¢ D does not depend on any
variables in the telescope (as it is a simple data type which is not indexed) we can fillin T as
presumption. Then, for each possible constructor from the data type (there are c,, possible
constructors, which we denote by the variable ¢;), we have to build a new case tree where
the variable of type 1 D is replaced by all constructor arguments in telescope A:

node : {D : DataDesc cp} (p : A [ k 1:3[ T 1 (A tt -> u D))
-> (bs : (¢; : Fin cp) -> CaseTree ? ?) -> CaseTree A T

To extend telescope A we can call expandTel from chapter 4 on the telescope where we replace
1 D with the telescope of constructor arguments conTel following constructor ¢; from data
type D. From this telescope of constructor arguments, we can create an element of ;1 D
by creating an element of the fixpoint using ¢; and the function telToCon on the telescope of
constructor arguments. As the telescope of input arguments A is updated after the case split,
we can not call the function T' directly, as it works on the original telescope A. Therefore, we
tirst have to use the function shrink to return to the original A. The final description of the
case tree is then as follows:

data CaseTree (A : Telescope n)(T : ﬂ A ﬂtelD -> Set) : Set; where
leaf : (t : (args : [ A Jteld) -> T args) -> CaseTree A T
node : {D : DataDesc cy} (p : A [ k 1:3[ T 1 (A tt -> u D))
-> (bs : (¢; : Fin cp) -> CaseTree (expandTel A
(A tt -> conTel (i D) (w2 (D ¢;))) p (X args -> { ¢; , telToCon args )))
(X args -> T (shrink p args))) -> CaseTree A T

We will now look at some example functions.

5.2 half-Function for Natural Numbers

The half-function for natural numbers that takes a natural number n and returns that number
divided by 2. In the case where n is 0 we return zero. In the case where n is 1 we cannot
divide any more by 2, so we also return 0. For any other number (suc (suc n)) we return
the successor of the half of n. Using the natural number data type description from chapter
3, we can thus define the function using pattern matching as follows:

half : pu NatD -> p NatD

half zero' = zero'

half (suc' zero') = zero'

half (suc' (suc' n)) = suc' (half n)
If we write this out in a case tree, we split on n to get the cases zero and suc n'. For zero
we can fill in the right-hand side of the equation and for suc m we again perform a case split

on m to get the cases suc zero and suc (suc k), for which we both fill in the right-hand side.
We underline the variables that we perform a case split on:

[ zero — zero

(NI )] (sue m) {

[] (suc zero) — zero

[(k: IN)] (suc (suc k)) — suc (half k)

Now, if we want to translate this using the generic representation of the case tree, we first
need to specify the telescope of input arguments and the return type. In the telescope of
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input arguments halfA we need the element n : 1 NatD. However, the case tree contains a
recursive call in the third leaf, which we do not want in the final case tree, as then we would
have no way to evaluate the case tree whilst ensuring that we do not use pattern matching.
Hence, we add an element of the Below type from section 3.4 to the telescope that stores this
recursive call:

halfA : Telescope 2
halfA = n € p Natb , b € Below (A n -=> g NatD) n , nil

As the return type does not depend on this telescope, we can state 1 NatD as return type:

halfT : [ halfA ]Jteld -> Set
halfT xs = @ NatD

Then, we can create the case tree using the generic representation as follows. We first per-
form a case split on the first variable in the telescope n (denoted by here tt). Then, we need
a function from all constructors of n (in this case zero' and suc') to a new case tree where
n is replaced by said constructor arguments. We have fo, which denotes the constructor
zero', where n is replaced by the empty telescope as zero' does not have any constructor
arguments and b is replaced by ¢t as there are no inductive arguments in zero'. This results
in a leaf node where the function from an interpretation of the updated telescope to y NatD
is simply a lambda-function that maps each entry to zero'.

For the constructor suc' m, denoted by f1, we have that n is replaced by m and b is updated
to contain Hm which contains all possible recursive calls for m and bm which contains all
possible recursive calls below m, as suc' contains one inductive argument. We perform an-
other case split on m, which is again the first variable in the telescope (denoted by here tt),
resulting again in two new case trees (one for each constructor). We have that suc' zero'
(denoted by fo) is a leaf node (where bm replaced by tt as zero' does not contain any in-
ductive calls), where the function from an interpretation of the updated telescope to y NatD
is simply a lambda-function that maps each entry to zero'. In the case of suc' (suc' k) (de-
noted by f1) we have that m is replaced by k and bm is replaced to contain Hk and bk. We
again have a leaf node and take the successor of the recursive call Hk from the interpretation
of the updated telescope. This results in the following case tree representation:

CTHalfRoot : CaseTree halfA halfT
CTHalfRoot = node (here tt) (A where
fo -> leaf (A where (tt , tt) -> zero')
f1 -> node (here tt) (A where
fo -> leaf (A where (((Hm , tt) , tt) , tt) -> zero')
f1 -> leaf (A where (k , (((Hm , ((Hk , bk) , tt)) , tt) , tt)) -> suc' Hk)))

5.3 create-Function for Vectors

We can describe the vec data type by indexing on a natural number ;. NatD:

data Vec (X : Set) : (n : pu NatD) -> Set where
nilV : Vec X zero'
consV : (n : f NatD) -> X -> Vec X n -> Vec X (suc' n)

The create-function for vectors takes a natural number n : u NatD and an element z : X and
return a vector of length n containing only the element x. If n is zero' we can thus return
the empty vector nilv and if n is suc' m we can return a non-empty vector consV containing
element z and perform a recursive call to create a vector of length m. We can thus define the
function using pattern matching as follows:
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create : {X : Set} (n : @ NatD) -> (x : X) -> Vec X n
create zero' X = nilV

create (suc' m) x = consV m x (create m x)

If we want to represent this function as a case tree using our generic representation, we first
need to specify the telescope of input arguments and the return type. In the telescope of
input arguments createA we have the natural number n and an element = : X. Note that
we again have a recursive call in the pattern matching function, so we add an element of the
below type that given a natural number n creates an element of type vec X n:

create/AA : {X : Set} -> Telescope 3
createA {X} = n € 1 NatD , x € X , b € Below (A n ->Vec X n) n, nil

The return type vec X nis dependent on the input element n, so the createT function uses
element n from the interpretation of the createA telescope:

createT : {X : Set} -> ﬂ createA {X} ﬂtelD -> Set
createT {X} (n , _) = Vec X n

In the case tree, we split on the natural number n, which is the first element in the telescope
(denoted by here tt). We then need a function from all constructors of n (zero' and suc' m)
to the updated case trees. In the case of zero' (denoted by fo) we have that n is replaced by
the empty telescope and in the return type n is also replaced by zero', so we need a vector
of length zero'. We reach a leaf node so we fill in the right-hand side nilv. In the case of
suc' m (denoted by f1) we have a telescope where n is replaced by suc' m (and thus n in the
return type as well) and b is updated to contain Hm, which contains all possible recursive
calls for m and bm which contains all possible recursive calls below m as suc' contains an
inductive call m. We again reach a leaf node, so we fill in the right-hand side, but instead of
the recursive call we use Hm:

CTCreateRoot : {X : Set} -> CaseTree (createA {X}) (createT {X})
CTCreateRoot {X} = node (here tt) (A where

fo -> leaf (A _ -> nilv)

f1 -> leaf (A where (m , (a , (((Hm , bm) , _) , _))) -> consV m a Hm))
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Chapter 6

From Case Trees to Eliminators

McBride [23] originally showed a translation on paper from a case tree to a function defined
by pattern matching. In this chapter we create a generic evaluation function for the generic
represention of the case tree presented in chapter 5 based on the proof by McBride. This
evaluation function is not allowed to use pattern matching, except on meta-level. For exam-
ple, we do allow pattern matching on the structure of the case tree and on the structure of a
telescope, but not on the structure of an element of a data type D. Section 6.1 introduces this
evaluation function and section 6.2 discusses the soundness of this evaluation.

6.1 Evaluation Function

Let f : (args : [A]teld) — T args be a function given by a case tree with telescope A that
contains the input arguments of the function and a return type 7' : [A]telD — Set. Then
we can evaluate this function using its case tree and an interpretation of the telescope of
input arguments args, where we return an element of type 7" args. To evaluate the case
tree we perform pattern matching on the case tree. In the case of a leaf we have a function
f i (args : [A]telp) — T args, so we can simply apply args to this function f to get an
element of the return type T" args:

eval : {A : Telescope n}{T : [[ A ]]te'LD -> Set}
-> (ct : CaseTree A T) -> (args : [[ A ]]telD) -> T args
eval (leaf f) args = f args

In the case of a node, we perform a case split on an element of type 12 D given a proof p, which
states that there is an element of type p D at position £ in telescope A. We use the case-p
eliminator to split the element at position k in the interpretation args (denoted by ret) of
telescope A (retrieved using the lookup operator from chapter 4). Now, we cannot simply
put Az — T args as predicate in this eliminator, as we lose information about the element
at location k in args. Hence, we use a technique called basic analysis [28] where we add the
constraint that the element at position & in telescope args is equivalent to x and fill in refl
to satisfy the constraint:

eval {T = T} (node {D = D} p bs) args
= case-l4 D (A x => ret = x -> T args) cs ret refl where
ret : u D
ret = mo (args X[ p 1)

Then, we need a function cs that, given an element x of the data type and the knowledge that
this x is equivalent to the element at position k in args, we can get an element of type T" args:

cst (x : [ D] (uD)) -> ret ={x)->Targs
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From z we can derive an element c; of type Fin ¢, that denotes the target constructor of x and
an element c of type [m2 (D ¢;)]c (i D) that denotes an interpretation of that constructor. We
can derive two properties. The first property ¢ states that an element of type n D created with
telToCon (conToTelc) is equivalent to the element at position k in the telescope args, which
we prove using the function telToCon o conToTel from chapter 4 and the equivalence relation
e:

q : < c; , telToCon (conToTel c) > = ret
q = trans (cong (A c —> < Ci 5, C >) (telToConoconToTel c)) (sym e)

The second property r states that we can retrieve an element of type 7" args’, where args’ is
the expanded and shrinked version of args by p, by recursively evaluating the c;th branch
with the expanded telescope. For this, we use property g to prove that the element at position
k in args is equivalent to conToTel ¢ applied to the function (Azs — {c¢;, telToCon zs)):

r : T (shrink p (expand p (A xs -> < c; , telToCon xs >) args (conToTel c) q))
r = eval (bs c¢;) (expand p _ args (conToTel c) q)

But we need an element of type T" args. In chapter 4 we showed that shrinking an expanded
telescope is equivalent to its original telescope in the function shrink o expand. If we thus
substitute args in T with this expanded telescope, we can use r directly to retrieve an element
of type T  args: Then, we can simply call this function with r to get an element of type 7" ¢:

cs: (x : [ D] (uD)) -> ret=(x)->T args
cs (c; , c) e = subst T (shrinkoexpand p args _ q) r

Thereby completing the evaluation function.

6.2 Soundness of Evaluation

As the case tree and evaluation function are written in Agda, we have proven that for any
function that is defined using the generic representation of the case tree from chapter 5 and
any interpretation of the respective telescope of input arguments, we can evaluate to an ele-
ment of the return type of the function, without the use of pattern matching.

Furthermore, on paper the computational behaviour of the evaluation function is proven
to be sound [23]. In other words, if we have a function defined by pattern matching f and
its respective case tree ct, where we have that f applied args results in a variable (z : T" args)
(i.e. f args = x), then we also have that eval ct args = x. We can check this for the example
case trees from chapter 5 by proving that the function eval and the function defined by pat-
tern matching, applied with the same input, have equivalent results.

An example for the half-function is as follows. We can create the proper telescope by calling
the below-function from chapter 3 with a proof that everything below n holds by a call to the
evaluation function with the same case tree:

half-tel : (n : u NatD) -> [ halfA [telD
half-tel n = n , below (A n -> pu NatD)
(A nb -> eval CTHalfRoot (n , b , tt)) n , tt

Then, we can show that for any natural number 7, the evaluation of the case tree of the half
function CT Hal f Root, with the previously defined telescope, is equivalent to the function
half applied with n. We can do this by pattern matching on n and filling in ref1 for the leaf
nodes and calling the function recursively for branches:

=-half : (n : p NatD) -> eval CTHalfRoot (half-tel n) = half n
=-half zero' = refl
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Similarly, we can prove it for the create-function:

To prove in Agda that the translation preserves the semantics of the original clause for every
function, we would require a generic definition of pattern matching and a translation from
that definition to the definition of case trees defined in chapter 5, which is not in the scope of
this thesis.
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Chapter 7

Unification

Something interesting is happening in Agda’s type checker when we use pattern matching
on indexed data types. As an example, let us look at the head-function defined by pattern
matching in chapter 2 using the vector data type from chapter 5, which is indexed on the
simple data type of natural numbers:

head' : {X : Set} (n : NI.u NatD) (xs : Vec X (suc' n)) -> X
head' n (consV n x xs) = x

Here, we only need to define the case for the consv constructor as xs will always be of non-
zero length and thus Agda can automatically infer that the case of nilv is not possible. Fur-
thermore, we can derive that the input n is the same n in the consv constructor. This is true
because Agda performs unification on the data type indices by constructing a unification
problem and applying one of five unification rules (see chapter 2 for more details) to sim-
plify the problem step by step. If a unification problem ends in | we can eliminate that case
and if a unification problem succeeds we update the variables.

This has consequences when defining the generic case tree for one-indexed data types, which
are data types indexed on simple data types, as we need a way to show that some branches
are not possible (e.g. the branch where xs maps to nilv should be eliminated). Furthermore,
we need to update the variables in the branches that are possible (e.g. the telescope in the
branch where xs maps to consv should contain only one natural number n instead of two nat-
ural numbers). Therefore, we define a unification algorithm that allows the user to specify a
unification trace in each branch of the case tree.

In this chapter, we first show the definition of an equivalence in type theory (section 7.1)
and then show the implementation of the solution rule (section 7.2), the deletion rule (sec-
tion 7.3), the conflict rule (section 7.4), and the injectivity rule (section 7.5) for simple data
types. Furthermore, we define the unification algorithm (section 7.6) and show how to de-
fine and solve the unification problem following this implementation for the head-function.
We leave out the cycle rule as it is not a rule that is commonly used.

7.1 Equivalences

The identity type © =4 y expresses the property that  and y are equal elements of type A
[26]. If x and y are definitionally equal (i.e. they both compute to the same term, denoted
by x = y), we have the term refl: x =4 y. However, if x and y are provably unequal, then
x =4 y is an empty type. If we have a term of type z =4 y, then z and y are propositionally
equal. The elimination rule for identity types x =4 y is called the J rule:

J:(P:(y:A) »z=qy—Set)(p: Pxrefl)(y: A)e:x=4y) > Pye
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That is, if we have a proof p of proposition P involving z, and we also know that (e : z =4 y),
we can infer a proposition that replaces the occurrences of z in P by (y : A) (ie. P ye).
The elimination rule for identity types x =4 z is called the K rule, which is equivalent to the
uniqueness of identity proofs:

K:(P:z=g42— Set)(p: Prefl)(e:x=42) > Pe

It states that any two proofs of x =4 y are equal. Cockx [12] showed that each unification
rule (defined in section 2) can be represented as equivalences complete with a correctness
proof, which is what we base the implementation on.

7.2 Solution Rule

The solution rule allows us to solve an equation (e : ¢t = x) if ¢ is a variable and ¢ does not
occur free in z. It thus maps x and e to an empty telescope:

solution : X[ x € A ] (t = x) > T
solution xe = tt

The function solution' maps an empty telescope back to a telescope containing ¢ and reft:

solution' : T -> Y[ x € A ] (t = x)
solution' {t = t} _ = t , refl

We can also prove that applying the result of solution' (solution ze) is equivalent to xe by
directly applying the J-rule on the equivalence relation in ze:

solution'osolution : X[ x € A ] (t = x) -> solution' (solution xe) = xe
solution'osolution xe

= J (A x e => solution' (solution (x , e)) = (x , e)) refl (my xe)

We could prove that applying the result of solution (solution' xe) is equivalent to ze, thereby
showing the solution' is the inverse of solution, but we do not need this for the evaluation.

The result of applying the solution rule to a telescope containing x and e is that we remove
x and e from the telescope and replace every occurence of = by ¢ and e by refl. To update
a telescope A we define a function doSolutionTel, which takes a proof that at index k we
can create an element a of type A, which the type B depends on, and an element of type
B a, which is the element ¢ we want to replace x by, such that the element at position k is an
element (z : B a), and the element at index k + 1 is an equivalence between this element x
and the element ¢. At position k we then remove the two elements z and e and replace each
occurrence of x by ¢ and each occurence of e by refl:

doSolutionTel : {A : Telescope n} {B : A -> Set}
> (p: A[k1:X[X[a€A] (Ba)]
(A at => B (1 at)) : (A at x -> (w9 at) = x))
-> Telescope (n + zero - 2)
doSolutionTel p = updateTelys p (A _ -> nil)
(A at -> solution) (A at -> solution') (A at -> solution'osolution)

We call the function updateTel,, which takes a proof of type Telat' and a telescope x5’ that
replaces the elements at index k and k£ + 1 (in the case of solution this is the empty telescope).
Provided we have the functions f, which takes the element at and the two elements at index
k and k+1 of an interpretation of telescope s and returns an interpretation of s, a function
/" which takes an interpretation of xs’ and returns elements with the types at index k and
k + 1 of telescope A, and a function f’ o f, which proves that f and f’ is a section-retraction
pair. With this telescope, we can move between an interpretation of A and an interpretation
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of updateTel, applied with A (using update; and update's), provided we supply the same
functions for f, f/,and f’ o f.

We make sure that B can depend on other elements in the telescope, using type A, such
that we can call the solution rule on any data type we want. For example, if we have a tele-
scope containing two natural number n, m, and two equivalence relations (e, e : n = m),
we could eliminate an equivalence relation (e : e; = e3), by calling the solution rule on e;
and e. To use updatey, we would have to use the type IN x IN in the place of A, to denote the
arguments n and m:

_:[neN,melN,e  €En=m, e €En=m, e€e =er, nil [teld
>[nelN,melN,een=m, nil JtelD

_ = updatey (there A n -> there A m -> there A\ e; -> here ((n , m) , e1))

(A a -> nil) (A xa -> solution) (A xa -> solution') (A xa -> solution'osolution)

7.3 Deletion Rule

The deletion rule removes an equation (e : t = t) from the telescope. It thus maps e to the
empty telescope:

deletion : (e : t = t) > T
deletion e = tt

The function deletion' maps an empty telescope back to reft:

deletion' : T -> t = t
deletion' = refl

Now we can prove that applying the result of deletion' (deletion e) is equivalent to e by
directly applying the K-rule:

deletion'odeletion : (e : t = t) -> deletion' (deletion e) = e
deletion'odeletion e = K (A e -> deletion' (deletion e) = e) refl e

The result of applying the deletion rule to a telescope containing e is that we remove e from
the telescope and replace every occurence of e by refl. If we have a telescope for which we
can create an element (fa : B a) at position k for some (a : A), we require the element at
position k to be (e : fa = fa), which is captured in proof p. At position k we then remove
the element e and replace each occurrence of e by refl in the remaining telescope:

doDeletionTel : {A : Telescope n} {B : A -> Set} (f : (a : A) -> B a)
p: A[KkI:X[A] ANa->fa=fa))

-> Telescope (n - 1)

7.4 Conflict Rule

The conflict rule captures that it is not possible to have an equivalence relation where both
sides of the equation use different constructors (e.g. suc n = zero). So, if we have two
elements x and y of data type D and a proof f that states that the constructor indices of x
and y are not equal (the function con; retrieves the constructor index of a data type), but we
have an element e that states that x and y are equivalent, we result in absurdity as we can
eliminate f with e where both sides are applied to con;:

conflict : {D : DataDesc cp} {xy : pu D} (f : — (con; x = con; y))
> (e:x=y) >X[be L]T
conflict f e = L-elim (f (cong con; e)) , tt
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The other way around is also possible. The function conflict' results in the equation z = y
from absurdity b by eliminating b:

conflict' : {D : DataDesc cp,} {x y : @ D} (f : — (con; x = con; y))
>X[bel]l1T->x=y
conflict' f b = L-elim b

We can prove that applying the result of conflict' f (conflict f e) is equivalent to e by again
eliminating f with e where both sides are applied to con;:

conflict'oconflict : {D : DataDesc cy} {x y : u D} (f : — (con; x = con; y))
-> (e : x = y) —> conflict' f (conflict f e) = e
conflict'oconflict f e = l-elim (f (cong con; e))

The result of applying the conflict rule to a telescope containing e is that we remove e from
the telescope and replace it with an element (b : L) and replace every occurence of e with
L — elim b. The conflict rule is used to remove elements of type zero = suc n where n is
defined earlier or in the telescope to be of type natural number, hence creating an element
of type u D may depend on some set A, so we take x and y to be of type A — p D. Then,
at position k in the telescope we should find an element of type za = ya for some (a : A).
Then, if we have a proof that for any (a : A) the constructor indices are not equal, then we
can replace the equation x a = y a at position £ with L:

doConflictTel : {A : Telescope n}{D : DataDesc c,}{x y : A —> u D}
> (p: A[kI:X[A] (Aa->xa=ya))

-> (f : (a : A) -> — (con; (x a) = con; (y s))) —> Telescope n

7.5 Injectivity Rule

The injectivity rule simplifies an equation where both sides use the same constructor, by
equating all constructor arguments instead. That is, we replace the equation with the tele-
scope injectivityTelc, which equates all constructor arguments given two elements of that
constructor. In the case of ¥/ S C we use this equation e to substitute y in ys by x:

injectivityTelC : {X : Set}{C : ConDesc ap} (x y : ﬂ C ﬂc X) -> Telescope ap
injectivityTelC {C one'} _ _ = nil
injectivityTelC {X = X} {C = X' SC3} (x , xs) (y , ys)

= e €x =y, injectivityTelC (subst (A x -> H C x ﬂc X) e xs) ys
injectivityTelC {C = indX"' C} (x , xs) (y , ys)

= e € x =y , injectivityTelC xs ys

To create this telescope from two elements = and y of data type D, we perform the case-y
operator on both elements and call the injectivityTelc function with the (7 z)th constructor
of data type D. Using the proof f which states that the constructors for both elements are
the same, we can substitute (7 y) by (7 z):

injectivityTel : {D : DataDesc cp} {x y : @ D} (f : con; x = con; y)
-> Telescope (con, X)
injectivityTel {D = D} {x} {y}
= case-t D (A x => (y : u D) -> con; x = con; y —> Telescope (cony, x))
(A x -> case-4t D (A y -> ] x = con; y —> Telescope (w1 (D (71 x))))
(A y e => injectivityTelC (my x)
(subst (A x > [ ™2 (D x) Jc (1 D)) (syme) (T2 y)))) x y

If we have a constructor z, we can create an interpretation of telescope injectivityTelC be-
tween these two constructors by filling in refl for each element:
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injectivityC : {X : Set}{C : ConDesc ap}(x : ﬂ C ﬂc X)
-> [ injectivityTelC x x [telD
injectivityC {C one'} x = tt
injectivityC {C = X' SD } (x , xs)
indX' C} (x , xs)

refl , injectivityC xs

injectivityC {C refl , injectivityC xs

Then, the injectivity rule states that if we have two elements x and y and we have a proof f that
states that both constructor indices are the same, we can replace the equivalence (e : z = y)
by the telescope of where all constructor arguments of = and y are equivalent. We perform
case analysis on z and y and the J-rule on e. Then we need the K rule to replace f by reft,
which allows us to create the interpretation of telescope from injectivitycC for constructor
x:

injectivity : {D : DataDesc ap} {x y : @ D} (f : con; x = con; y) (e : x = vy)
-> [ injectivityTel f ﬂtelD
injectivity {D = D} {x} f e
=3 (Aye->(f: con x =con; y) -> [ injectivityTel f [telD)
(A f -> K (A f-> [ injectivityTel f ]telD)
(case-pt D (A x => [ injectivityTel refl [teld) (A x -> injectivityC (w2 x))
x) f) e f

We can also derive the equivalence x = y from an interpretation of the injectivityTelc
telescope, by combining the existing equivalence e in the interpretation of injectivityTelc
with a recursive call on the remaining telescope. Here, ¥-create takes two equations a1 = a»
and by = by, with (ay,az : A)(by : B a1)(bs : B az) and builds a dependent sum equivalence
equivalence (a1,b1) = (ag,b2). x-create takes two equations a; = ag and b; = by, with
(a1,az : A)(b1,bs : B a1) and builds a product equivalence equivalence (a1,b1) = (a2, b2):

injectivityC' : {X : Set}{C : ConDesc ap} -> (x y : [ C ﬂc X)
-> [ injectivityTelC x y HtelD -> X =y
injectivityC' {C = one'} x y e = refl
injectivityC' {X = X} {C = X' SD'} (x , xs) (y , ys) (e , es)
= Y-create e (injectivityC' (subst (A's -> [ D' s Jc X) e xs) ys es)
injectivityC' {C = indX' C} (x , xs) (y , ys) (e , es)
= X-create e (injectivityC' xs ys es)

By again performing case analysis on x and y and using the J-rule on the equivalence be-
tween the constructor indices f, we can use injectivityC' to retrieve that the constructors x
and y are equivalent:

injectivity' : {D : DataDesc cyp} {x y : u D}(f : con; x = con; y)
-> [ injectivityTel f ﬂtelD > X =y
injectivity' {D = D} {x} {y} = case-u D (A x => (y : pn D) => (f : con; x = con; y)
-> [ injectivityTel f JtelD -> x = y) (A x -> case-;t D (A y
-> (f : M x = con; y) -> [ injectivityTel f Jteld -> ( x ) = y)
Ay f->3 Anye->(y:[m (Dn2) Jc (D))
-> [ injectivityTel e JtelD -> ( x y = (n2 , y ») (Ay xs —->
cong (A xs -> ( m x , xs )) (injectivityC' (w2 x) y xs)) f (w2 y))) x vy

We can then prove that applying the result of injectivityC' x x (injectivityC x) returns
refl for any element x of constructor C' using ref1 for each element = and calling the function
recursively for zs when = maps to (z, zs):

injectivityC'oinjectivityC : {X : Set}{C : ConDesc a,} (x : [ C Jc X)
-> dnjectivityC' x x (injectivityC x) = refl
injectivityC'oinjectivityC {C = one'} x = refl
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injectivityC'oinjectivityC {X = X} {C = X' S E} (x , xs)

= subst (A e -> Y-create refl e = e) (sym (injectivityC'oinjectivityC xs)) refl
injectivityC'oinjectivityC {C = indX' C'} (x , xs)

= subst (A e -> X-create refl e = e) (sym (injectivityC'oinjectivityC xs)) refl

We can prove that applying the result of injectivity' f (injectivity f e) is equivalent to e by
again performing case analysis on 2 and y and performing the J-rule on e. Then, we have use
the K-rule to replace f by refl which allows us to use cong and injectivityC' oinjectivityC:

injectivity'oinjectivity : {D : DataDesc c,} {x y : u D} (f : con; x = con; y)
-> (e : x = y) -> dinjectivity' f (injectivity f e) = e
injectivity'oinjectivity {D = D} {x} {y} f e
=3 (Aye->(f: con; x= con; y) -> injectivity' f (injectivity f e) = e)
(A f > K (A f -> injectivity' f (injectivity f refl) = refl)
(case-f4 D (A x -> injectivity' refl (injectivity refl refl) = refl)
(A x -> cong (cong (A xs -> { T x , x5 )))
(injectivityC'oinjectivityC (72 x))) x) f) e f

The result of applying the injectivity rule to a telescope containing e is that we remove e
from the telescope and replace it with the telescope of equivalent constructor arguments
injectivityTel. We then replace every occurence of e with injectivity' applied with this
added telescope. The injectivity rule is used to remove elements of type suc n = suc m where
the variable n and m are defined earlier or in the telescope, hence creating an element of type
1 D may depend on some set A, so we take x and y to be of type A — 1 D. Then, at position &
in the telescope we should find an element of type « a = y a for some a : A. Then, if we have
a proof f that for any a : A" we have that the constructor indices are equal, we can replace
the equation x a = y a at position & by a telescope of equivalent constructor arguments. But,
Agda thinks that the length of this telescope depends on the actual value of = a for some
a : A. In reality, we know that the value of this a cannot alter the constructor index, hence
we add an additional proof that states that for any a the number of constructor arguments of
a variable z a (denoted by the function cony) is always equal to a natural number a},, which
is the number of elements we add to the telescope:

doInjectivityTel : {A : Telescope n}{D : DataDesc cp}{x y : A -> 1 D}
-> (f : (@ : A) => con; (x a) = con; (y a))
-> {ap' : IN}(elN : (a : A) -> con, (x a) = a,")
> (p: A[KkI:X[A] (Aa->xa=ya))

-> Telescope (n + ap' - 1)

Note that we deviate from the literature here. In previous and related work concerning the
efforts of translating functions defined by dependent pattern matching to functions defined
by eliminators [14] [11] [35], the conflict and injectivity rule are both defined using the prin-
ciple of no confusion. The no confusion property captures that constructors are both injective
and disjoint. The reason that we do not need to define this property, is because of the specific
datatype encoding we use. An element of this encoding is a pair containing a constructor tag
and the collected constructor arguments. Hence, we can split up proof of the constructors be-
ing disjoint, which only needs to consider the first element of this pair, and injectivity, which
only needs the second pair of this pair assuming the first parts are equal. In other presen-
tations of datatypes the constructor and its arguments are seen as an indivisible whole, so
injectivity and disjointness need to be handled together.

7.6 Unification Algorithm

We have defined each unification rule individually and showed its effect on an already exist-
ing telescope. To make these useable to work with, we define a data type unification that
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contains a constructor for each unification rule and perform that unification rule on an arbi-
trary telescope A of length n. We start with a constructor UEnd which denotes the end of the
unification algorithm:

data Unification : (A : Telescope n) -> Setj; where
UEnd : (A : Telescope n) -> Unification A

Note that because the UEnd constructor does not put any requirements on the telescope, there
is no guarantee that a unification trace solves all the equations. This is however not a prob-
lem, because sometimes you do not have to solve all equivalence relations to get the result
you want. For example, in case of the function head, we would not need to solve the equiva-
lence suc n = suc m to retrieve the first element x from the telescope, as it is not dependent
on the indices of the vector.

For each unification rule, we add the requirements that is needed to update the telescope
(the full specification can be found in One_Indexed/unify.Agda). For example, for the solu-
tion rule we needed a telescope A and and a proof p that at location k£ we have an element
(x : B (m t)) and at position k£ + 1 we have an element (e : (w2 t) = z). We then require
the remaining unification algorithm call on the telescope updated with the doSolutionTel
function with this proof p:

Usolution : {B : A —-> Set}
> (p: A[k1:X[X[a€A] (Ba)]
(At > A (] t)) : (Atx > (mgt) = x))
-> Unification (doSolutionTel p)
-> Unification A

In a similar way, we add constructors Ubeletion, UConflict, and UInjectivity. We further-
more add a variant of the solution rule that works on an equivalence relation where = and
t are reversed. The unification rules that works for this are similar to that of the original
solution rule:

Usolution; : {B : A -> Set}
> (p: A[KkI]I:X[X[a€A] (Ba)]l
(At =>A (] t) : (Atx —>x= (mg t)))
-> Unification (doSolutionTely p)
-> Unification A

As we require the z and e in the solution rule to be adjacent to each other, we also add a
reorder rule that allows one to push back an element at position & in the telescope to a position
goal as long as the element at position k£ does not depend on any elements that come after
the goal place:

UReorder : (split : Fin i) (goal : Fin j)(p : (x : [[7T1 (splitTel split A) ]]te'LD)
-> (X[ X € Set ] ((ma (splitTel split A)) x) [ k 1: XL T 1 (A _ -> X))
-> Unification (reorderTel split A goal p)
-> Unification A

Following a series of unification rules Unification A for a telescope A, we can retrieve a
telescope where these rules are applied in order, by calling the function recursively on each
(u : Unification A’). When we reach UEnd, we return A"

unifyTel : {A : Telescope n}(u : Unification A) -> X IN Telescope

Given a series of unification rules uni fication A and an interpretation of telescope A, we can
retrieve an interpretation of the unified telescope by following each telescope update rule for
the respective unification rule. As we have shown that we can derive each seperate telescope
from a unification equation and vice versa, and because we have proven that this results in
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the same equation, it is possible to always retrieve the updated telescope from the original
and vice versa. Hence, we do now show each individual update rule:

unify : {A : Telescope n} (u : Unification A)(xs : [ A JtelD)
-> [ w2 (unifyTel u) ]telD

unify' : {A : Telescope n} (u : Unification A)(xs : [ m2 (unifyTel u) [telD)
-> [ A Jtelp

unify'ounify : {A : Telescope n}(u : Unification A)(xs : [ A ]telD)
=> unify' u (unify u xs) = xs

We can define a unification problem for a telescope that contains a natural number n and
an equivalence relation e between the constructors zero' and suc' n by calling the conflict
rule on the second element e, where we know that the constructor index of zero' (fo) is
not equal to the constructor index of suc' n (f1). The updated telescope then contains the
natural number n and an element b : L:

UnifyZero : Unification (n € NI.u NatD , e € zero' = suc' n , nil)
UnifyZero = UConflict (there A n -> here n) (A d ())
(UEnd (n € NI.u NatD , b € 1 , nil))

We can define a unification problem for a telescope that contains the natural number n and m
anelement (z : X'), avector (zs : vec X m), and an equivalence relation (e : suc' m = suc' n).
First, we reorder the telescope such that e is located after element m (that is at position 2).
Then, we can call injectivity on e where A is a set containing two natural numbers n and m.
We know that the constructor indices of suc' are the same so we fill in refl, and as we add
one equivalence relation, as suc' always contains one constructor element, so for eIN we can
also fill in refl. Then we perform the solution rule on m, e to replace every occurence of m
by n and we derive a telescope containing a natural number n, an element (z : X), and a
vector (xs : Vec X n):

UnifySuc : Unification (n € NI.u NatD , m € NI.p NatD , x € X , xs € Vec X m
, € €Esuc' m = suc' n, nil)
UnifySuc = UReorder f2 f0 (A x -> _ , there A _ -> there A _ -> here tt)
(UInjectivity (there A n -> there A m -> here (m , n)) (A_ -> refl) (A_ -> refl)
(Usolution; (there A n -> here n)
(UEnd (n € NI.y Nath , x € X , xs € Vec X n , nil))))
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Chapter 8

Extending to Generic One-Indexed
Data Types

We now extend everything from the previous chapters, except for unification, to work for
one-indexed data types. One-indexed data types are data types that are indexed on simple
data types. In chapter 3 we have seen what simple data types are. An example of a simple
data typeis that of natural numbers. An example of a one-indexed data type is that of vectors,
which is indexed on the simple data type natural numbers:

data Vec (A : Set) : (n : IN) -> Set where
nil : Vec A zero
cons : (n : IN) -=> A -> Vec A n -> Vec A (suc n)

Another example of a one-indexed data type is a natural number indexed on two other nat-
ural numbers, which is an inductive definition of equality on numbers:

data IN; : (ng n; : IN) -> Set where
zeroy : IN; zero zero
suci : {ng n1 : IN} -> INy np n; -> IN7 (suc ng) (suc np)

Here, the natural numbers n and n; are dependent on the choice of constructor. In the case
of zero; we have that both are zero and in the case of suc; we have that both are the successor
of some other natural numbers.

In this chapter we extend the data type descriptions, elimination principle, and well-founded
recursion of chapter 3 to allow for these simple indices (section 8.1). We furthermore extend
the telescope of constructor arguments from chapter 4 (section 8.2). Using the unification
algorithm from chapter 7 we extend the case tree from chapter 5 to allow us to perform case
splits on one-indexed data types (section 8.3) and extend the evaluation function from chap-
ter 6 to work with this case tree (section 8.4).

8.1 One-indexed Data Type Representation

One-indexed data types are data types that are indexed on a variable number of simple data
types. These simple data types do not depend on each other, as they are itself not indexed.
Therefore, we use an indexed list, or vector, represent the indices of a one-indexed data type.
Using a vector allows us to keep track of the number of indices that a one-indexed data type
is dependent on. The vector contains elements of the dependent sum type that goes from a
natural number, which denotes the number of constructors, to a simple data type description
(NI.DataDesc), which is indexed on its number of constructors:

DVec : IN -> Set;
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DVec = Vec (2 IN NI.DataDesc)

With this we can describe any vector of indices we want. For example, if we want to describe
the vec data type in our universe of data type descriptions, we can describe the vector of
indices to contain only one natural number. We use the natural number definition from
chapter 3:

VecTel : DVec 1
VecTel = (_ , NatD) :: []

An interpretation of a vector of indices contains fix-point elements of the simple data type
(NI.pu). Because the indices are not dependent on each other, we use the product type:

[_ﬂVec : (is : DVec 1ip) —-> Set
[_Jvec 11 =T
[_Jvec ((dy , D) :: dis) = (NI.p D) x ([ is Jvec)

For example, the interpretation of the vector of indices for constructor nilis (zero', tt). The
interpretation of the vector of indices for constructor suc is (suc' n, tt) for a natural number
n that is defined as a constructor argument:

nilVec : [ VecTel ﬂVec
nilVec = zero' , tt

nilvec : NI.u NatD -> [ VecTel ]vec
nilVec n = suc' n , tt

Now, we have to extend the constructor description from chapter 3 to allow for a constructor
to denote its specific indices. For example, for the vector data type we need to differentiate
between n is zero for constructor nil and suc n for constructor cons. To allow this, we add an
extra argument to the constructor one', that contains an interpretation of the vector of indices
is, which we add as an argument to the constructor description as the type of the indices will
never change. For inductive arguments (denoted by x’) we also need to specify the values
of the indices with which the data type is called:

data ConDesc (is : DVec 1ip) : IN -> Sety where

one' : [ is HVec -> ConDesc 1is 0
DI : (S : Set)(D : S -> ConDesc is ap) —-> ConDesc is (suc ap)
x' i [ is Jvec -> ConDesc is a, -> ConDesc is (suc ap)

The data type description remains the same, except that we now add the vector of indices of
that data type as an arguments:

DataDesc : DVec i, -> IN -> Set;
DataDesc is ¢, = Fin ¢, -> X IN (ConDesc is)

With this, we can describe any one-indexed data type. For example, we can describe the vec-
tor data type, which contains two constructors, given a parameter X that denotes the type of
the elements in the vector data type. For constructor nil' (denoted by fe), we have zero con-
structor arguments, so we call the empty constructor one', which now requires an additional
argument containing an interpretation of the vecTel, for which we use nilvec. For construc-
tor cons' (denoted by f1) we have 3 arguments, of which one is an inductive argument. So
we use ¥’ for the natural number n and an element (z : X). For the inductive argument we
use x’, which requires an additional argument stating the indices of the inductive call, for
which we use (n, tt). Then we reach the end of the constructor description, so we use one",
which again requires an interpretation of vecTel, for which we use consvec applied with n:

VecD : (X : Set) -> DataDesc VecTel 2
VecD X fO@ = _ , one' (zero' , tt)
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VecD X f1 = _ , ' (NI.g NatD) (A n -> X' X (A x —>
X' (n , tt) (one' (suc' n , tt))))

An action X on a data type description is dependent on the interpretation of its vector of data
type indices, because when we reach an inductive call we need to add the interpretation of
the vector of indices is on that action. Furthermore, if we reach the empty constructor we
need to make sure that the expected indices d are equivalent to the indices ¢ that we have
tried to perform the action on:

[_] : patabDesc is c, -> ([ is [vec -> Set) -> [ is Jvec —> Set
[.] fcn} DXt =3%X[c €Fincy 1 ([ m2 (D ¢;) Je X t)

[_]c : conDesc dis a, -> ([ is Jvec -> Set) -> [ is Jvec -> set
[ one' dlext=d=t

[ X' sDJcxt=%X[sesST ([Ds]cxt)

[ x*dbpJJext=xdx[DJecxt

To denote an element of the data type description we again use its fixpoint. However, now
an element of a certain data type is dependent on the variables of its indices. Hence, we add
an interpretation of the telescope of data type indices, which we pass to the action on the
data type description:

data @ (D : DataDesc 1is cp) : H is HVec -> Set where
() +{d:[is Jvect (x : [ D] (wuD)d) ->pubDd

Using this, we can create elements of the vec data type. For the nil' constructor we do not
have any constructor arguments, but as a result we get a vector with index zero'. If we call
the first constructor (using fo), we can show that the expected index zero' is equivalent to
the index of constructor nil' (namely also zero') by calling reft:

nil' : (X : Set) -> pu (VecD X) (zero' , tt)
nil' X = < fo , refl >

For the cons' constructor we need a natural number n, an element (z : X') and another vector
xs which is indexed on n. As a result we get a vector of length suc' n. If we call the second
constructor (using f1), we can then show we that the expected index suc' n is equivalent to
the index of constructor cons' (namely also suc' n) by calling refl:

cons' : (X : Set)(n : NI.p NatD)(x : X)(xs : p (VecD X) (n , tt))
-> i (VecD X) (suc' n , tt)
cons' X n x xs = < fi, (n, x , xs , refl) >

We can now define the head-function for vectors that, given a vector zs containing at least
one element (i.e. with a non-zero length), returns the first element of that vector. The only
constructor that first at the place of zs is cons' as we have specified that the length cannot be
zero', so we only need one case, and return the z in that constructor:

head' : (X : Set)(n : NI.x NatD)(xs : @ (VecD X) (suc' n , tt)) -> X
head' X n (cons' n x xs) = x

The elimination principle now works on a certain element x of type u D d, where d is an
interpretation of the vector of indices. Hence, we extend the predicate P and proof p to work
for a variable interpretation of the vector of indices d:

elim-py : (D : DataDesc is cp) (P : (d : ﬂ is HVec) -> D d -> Set)
> (p:(d: [dis]vec) (x : [D] (D) d) ->AlLD (uD) Pdx->Pd{x))
-> (d : [ is Jvec) => (x : p D d) -> P d x
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This also means that we need to extend the A1l data type and all function to contain this vari-
able d, which otherwise bears similarities with the data type defined in chapter 3. Similarly,
we create the generic case-eliminator by dropping the recursive arguments A1l D (i D) P d x
from the elimination principle.

Extending the Below type is done similary, by adding a variable d that denotes the inter-
pretation of the data type indices for an element of type i1 D d to the predicate P. Which
leads us to extending the function below to add this variable to the predicate P and proof p
as well.

Below : {D : DataDesc is cp} (P : (d : ﬂ is ﬂVec) -> i D d -> Set)
-> (d : [ is Jvec) -> u D d -> Set

8.2 Extending Telescope of Constructor Arguments

To replace a variable in the telescope by the arguments of a specific constructor after a case
split, we need to extend the telescope of constructor arguments from chapter 4 to contain the
indices that the variable expects (e.g. if we replace a vector with index suc n we do not want
to replace it with the ni1 constructor, which has index zero). We need this to be able to infer
that one' holds when we translate an interpretation of this telescope to an interpretation of
the constructor. Hence, we add an additional argument that contains the indices that the
variable expects and compare those to the indices stored in the end of the constructor:

conTel : {is : DVec ip}(X : ﬂ is ﬂVec -> Set) -> ConDesc 1is ap
-> ﬂ is HVec -> Telescope (ap + ip)

conTel X (one' i') i = vecTel 1i' i

conTel X (X' SC ) i=s€S, conTel X (C s) i

conTel X (X' i'" C) i = x € X i' , conTel X C i

In vecTel we state that each index from both vectors should be equivalent to each other:

vecTel : {is : DVec ip} (di do : ﬂ is ﬂVec) -> Telescope 1ip
vecTel {is = []} tt tt = nil
d :: ds} (dy , dsy) (d2 , dsg) = e € (di = d2) , vecTel ds; dsa

vecTel {is

When translating a telescope of constructor arguments to a constructor, we then need to show
that the index vectors d; and d3 are equivalent to each other, given a telescope that the index
of both vectors are equivalent to each other. To do this, we use the function x — create that
takes two equations a; = as and b; = by and builds a product equivalence (a1, b1) = (a2, b2):

telToCon : {X : [ is HVec -> Set} {C : ConDesc 1is ap}{i : [ is ﬂVec}
-> (t : [ conTel x C i Jteld) -> [ C Jc x 1

telToVec : {is : DVec ip}t{dy do : [ is ﬂVec}(t : ﬂ vecTel di do ﬂtelD)
-> d; = do

telToVec {is = [] } tt = refl

telToVec {is = d :: ds} (t , ts) = X-create t (telToVec ts)

When translating a constructor to a telescope, we have an equation d’ = d at the end of the
constructor description, from that we can create a telescope of indices by using the functions
projx1 and projxo that given an equation (a1,b1) = (ag,bs) return a; = ag and b; = by,
respectively:

conToTel : {X : ﬂ is HVec -> Set} {C : ConDesc is ap}{i : ﬂ is HVec}
> [ cJexd->] conTel x C i [telD
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vecToTel : {is : DVec ip}t{d; do : [[ is ]]Vec}(e : dy = dg) > [[ vecTel di do ]]telD
vecToTel {is = [] } e = tt
vecToTel {is = d :: ds} e = projXy e , (vecToTel (projXs e))

Now, all that is left to prove is that telTovec o vecToTel holds. If we reach the empty vector
of indices, we have to prove that refl = e where e : tt = tt. To do this, we use a variant of
the J-rule that, instead of proving that P y e holds if P = refl holds, proves that P z refl
holds if P y e holds. For a non-empty vector of indices, we have to prove that the following
statement holds:

X — create (proj x1 €) (telToVec (vecToTel (proj X2 €))) =e

We can substitute telTovec (vecToTel (proj x2 €)) by proj X2 e by calling the function re-
cursively with proj x2 e and then use a function create o projx that takes an equivalence
(e : (a1,b1) = (ag,b2)) and proves that creating a dependent sum from the first and second
projection of e is equivalent to the original e:

telToConoconToTel : {X : [[ is ]]Vec -> Set} {C : ConDesc is ap}t{i : [[ is ]]Vec}
-> (t : [[ C ]]c X d) -> telToCon (conToTel t) = t

telToVecovecToTel : {is : DVec ip}{d; do : [[ is ]]Vec} (e : di = d9)
-> telToVec (vecToTel e) = e
telToVecovecToTel {is [1} {d{ = tt} {do = tt} e = I' (A _e' -> e' = e) e refl
telToVecovecToTel {is = d :: ds} {d; = (d; , ds1)} {d2 = (d2 , ds2)} e
= subst (A f -> X-create (projXj e) f = e)
(sym (telToVecovecToTel (projXsg e))) (createoprojX e)

8.3 Extending the Case Tree

We extend the case tree from chapter 5 to allow case splits only on one-indexed data types
(as we can write simple indexed data types also as one-indexed data types but with an empty
vector of indices). This means that the type of the case tree and the leaf constructor stays the
same, but we have to alter the proof p, such that we there is an element in telescope A at
position k of type pu D d for some interpretation of the vector of indices (d : [is]vec). The
function bs that splits the case tree in ¢,, branches now maps to a dependent sum type, which
takes a unification algorithm u that is based on the extended telescope (which now contains
an equivalence relation between each element in d and the expected indices of the target
constructor). From this unification algorithm, we require a new case tree which takes the
unified telescope. As the updated telescope is unified, we not only have to shrink args, but
also reverse the unification process using the function unify':

data CaseTree (A : Telescope n)(T : [ A Jteld -> Set) : Set; where

leaf : (t : (args : [ A Jteld) -> T args) -> CaseTree A T
node : {D : DataDesc is cp} (p : A [ k 1:X[ [[ is ]]Vec 1 (u D))

-> (bs : (¢; : Fin cp)

-> Y[ u € Unification (expandTel A (conTel (w D) (m2 (D c;))) p
(\ args —> < c; , telToCon args >))]
(CaseTree (w2 (unifyTel u)) (A args -> T (shrink p (unify' u args)))))
-> CaseTree A T

We can now define the case tree for the head-function, where the telescope of input arguments
consists of a natural number n and a vector xs of non-zero length:

headA : (X : Set) -> Telescope 2
headA X = n € NI.j NatD , xs € pu (VecD X) (suc' n , tt) , nil

43



8. ExTeENDING TO GENERIC ONE-INDEXED DaTA TYPES

The return type is simply X as it does not depend on the telescope of input arguments:

headT : (X : Set) -> [ headA X ]telD -> Set
headT X _ = X

To create the case tree for the head function, we perform a case split on the vector s, which
has as index vector (suc' n, tt). If we split to the case nil' (denoted by fo), we have a tele-
scope containing (n : NI.x NatD) and (e : zero' = suc' n). We can perform the unification
function unifyZero from chapter 7 and then enter a leaf node, where as return function we
can eliminate the branch by calling 1 — elim on the element (b : L). If we split to the case
cons' (denoted by f1), we can use the function UnifySuc to retrieve a telescope containing
(n : NI.u NatD), (z : X), and (xs : p (VecD X) (suc' n , tt)) in the leaf node, where we can
simply return z:

CTHeadRoot : (X : Set) -> CaseTree (headA X) (headT X)

CTHeadRoot X = node (there A n -> here (suc' n , tt)) (A where
f0 -> UnifyZero , leaf (A where (n , b , _) -> |l -elim b)
f1 -> UnifySuc , leaf (A where (n , x , xs , _) —> x))

8.4 Extending the Translation

To extend the evaluation function, we use the updated case-. operator when evaluating an
internal node. We furthermore add that the indices d’ are equivalent to the indices of the
element at position k in the telescope (denoted by d):

eval {T} (node {is} {D} p bs) args
= case-f4 D (A d' x' -> (d' , x') = (d , ret) -> T args) cs d ret refl

To create the function cs, we have to update the property ¢ as the data type indices of c are
not necessarily equivalent to those of ret. Hence, the type of ¢ contains an extra substitution
property. To solve this, we use the J-rule to substitute e by refl (we replace some parts of
the code by _ for readability):

q : < c; , telToCon (conToTel (subst (ﬂ o (D ¢;) ﬂc (u D)) (cong 71 e) c)) > = ret
g=13_ (cong (A x -—>{k, x)) (telToConoconToTel x)) e

This problem extends to the property r as well. But for » we also have to account for the
unification algorithm of the data type indices. Hence, we extend its proof by calling unify
on u and the expanded telescope, where w is retrieved using m; (bs ¢;):

r : T (shrink p (unify' u (unify u (expand p _ _
(conToTel (subst ([ o (D ¢;) ﬂc (i D)) (cong 71 €) c)) q))))
r = eval (72 (bs ¢;)) (unify u (expand p _ _ _ q))

To create cs, we can then call r, by substituting args using unify' ounify and shrink o expand:

cs : (d' : [ dis Jvec) (x' : [ D] (D) d') -> (d'", {x'" ) = (d, ret) -> T args
cs d' (c; , ¢) e = subst T (subst _ (unify'ounify _ _) (shrinkoexpand _ _ _ q)) r

We can show that the computational behaviour of the evaluation function on the head-function
is sound by showing that, for any natural number n and vector v of length suc' n, the eval-
uation function applied with the case tree from the previous section evaluates to the same
result as the head'-function defined by pattern matching:

=Head : {X : Set}(n : NI.u NatD)(v : @ (VecD X) (suc' n , tt))
-> eval (CTHeadRoot X) (n , v , tt) = head' X n v
=Head n (cons' n x xs) = refl
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Chapter 9

Extending to Generic Indexed Data
Types

We now extend everything from the previous chapters to work for indexed data types. In-
dexed data types are data types that can be indexed on any other data type (including other
indexed data types). An example of this is the square data type, which is indexed on the

data type _ = _, which itself is indexed on a variable of type A:
data _=_ {A : Set} (a : A) : A -> Set where
idp : a = a

The square data type is then indexed on four equivalence relations (its edges) between the
four points a, b, c, d:

data Square {A : Set} {a : A} : {fbcd : A}(p : a =b)(g : c = d)
-> (r : a=<c) (s : b =4d) -> Set where
ids : Square {a = a} idp idp idp 1idp

In this chapter we extend everything from the previous chapter to work for indexed data
types (section 9.1). We furthermore extend the deletion and injectivity rules from chapter 7
to work for these indexed data types (section 9.2), as the solution and deletion rule already
work for any type, and we show that we can extend the work to incorporate new concepts
like higher-dimensional unification (section 9.3).

9.1 Generic Indexed Data Types Representation

Indexed data types are data types that are indexed on a variable number of other data types
that may be indexed itself, hence the data types that the data type is indexed on may depend
on each other. Therefore, we use a telescope A to represent the indices of an indexed data
type. Using the telescope data type furthermore allows us to keep track of the number of
indices that the indexed data type is dependent on:

DataDesc : Telescope i, -> IN -> Set;
DataDesc is cp = Fin ¢, -> 2 IN (ConDesc is)

An interpretation of the telescope of indices is the same as the interpretation of any other
telescope. To extend the constructor description of the previous chapter, we thus only have
to replace the interpretation of the vector of indices by an interpretation of the telescope of
indices:

data ConDesc (is : Telescope i) : IN -> Set; where

one' : [ is JteldD -> ConDesc is ©
' : (S : Set) (D : S -> ConDesc is a,) -> ConDesc is (suc ap)
X0 g [[ is ]]telD -> ConDesc 1is a, -> ConDesc 1is (suc ap)

45



9. ExTeENDING TO GENERIC INDEXED DATA TYPES

With this, we can describe any indexed data type. For example, we can describe the indexed
data type =D from the beginning of this chapter, parameterized on an element (a : A) and
indexed on another element (a’ : A), with one constructor where o’ is set to be a:

=D : A -> DataDesc (a € A , nil) 1
=D a f0 = _ , one' (a , tt)

Note that we could define this data type in the previous sections only if A was replaced
by a specific non-indexed data type. For example, we could define could define =NatD or
=ListD, but not this generic version. The fixpoint of an indexed data type remains the same
as the previous section, except that we change the interpretation of the vector of indices to
an interpretation of the telescope of indices. The action on an element for this data type also
remains the same. We can create an element of type p (=D a) (a, tt) for any (a : A) by calling
fo with refl:

idp : (a : A) -> u (=D a) (a , tt)
idp a = { fo , refl )

We can describe a data type SquareD that is indexed on this =b type, which is parameterized
by an element (a : A) and indexed on 3 elements (b,c,d : A) and 4 equivalence relations
between these elements and a. It consists of only one constructor where the interpretation
of the telescope of indices consist of the idp type:

SquareD : (a : A) -> DataDesc (b € A, c€ A, deA, p€epu (=Da) (b, tt) ,
g€ pu(=bc) (d, tt) , r e u (=D a) (c , tt) , s€ u (=D b) (d , tt) , nil) 1
SquareD a fo = _ , one' (@, a , a , idp a , idp a , idp a , idp a , tt)

We can create an element of type 1 (SquareD a) (a,a,a,idp a,idp a,idp a,idp a, tt) for any
(a : A) by calling fo with reft:

ids : (a : A) -> u (Squareb a) (a , a , a , idp a , idp a , idp a , idp a , tt)
ids a = ( fo , )

We can create a function flip on the Squarebd data type, that given an element (w : A) flips
the order of the points (w,z,y,z : A) to w,y, z, z by pattern matching on the input square,
which changes all elements z, y, z to w as ¢, b, [, r states that they should all be equal to w. We
can then create an element of ;1 (Squared w) (w, w, w,idp w,idp w,idp w,idp w, tt) by calling
constructor ids with w:

flip : (wxy z : A) (t: p (=Dw) (x, tt)) (b : p (=D y) (z , tt))
> (L:p (=Dw) (y, tt)) (r:p (=D x) (z, tt))
-> i (SquareD w) (x , vy , z , t,b, 1, r , tt)
-> u (Squareb w) (y , x , z , L, r , t, b, tt)

flipww w w (idp w) (idp w) (idp w) (idp w) (ids w) = 1dids w

The elimination principle and Below type from the previous chapter also stays the same, ex-
cept that we replace an interpretation of the vector of indices with an interpretation of the
telescope of indices. The case-u operator, for example, then gets the following type:

case-i4 : (D : DataDesc is cyp)(P : (d : [[ is ]]telD) -> pu D d -> Set)
-> (m: (d: [dis Jteld) -> (x : [ D] (wD)d) ->Pd<{x)
—>(d:[['is]]te1D)(x:,uDd)—>de

9.1.1 Extending Telescope of Constructor Arguments

To extend the telescope of constructor arguments from the previous chapter, we need to alter
the telescope of equivalent indices. That is, the function vecTel from chapter 8 was based on
the fact that each index was not dependent on each other. In a telescope of indices an index
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may depend on the previously declared indices. Hence, we have use the previous equation
e in vecTel to substitute the index in the remaining telescope of indices:

vecTel : {is : Telescope ip} (di do : [[ is ]]telD) -> Telescope 1ip

vecTel {is = nil } tt tt = nil

vecTel {is = cons S E} (di , dsy) (do , dsg) = e € (di = dg) ,
vecTel (subst (A s -> [[ E s ]]telD) e dsy) dso

This furthermore requires us to update the proofs for telTovec, vecToTel, and telToVec o
vecToTel by replacing x — create with 3 — create (which builds an equivalence between two
dependent sum types), replacing proj x; and proj x2 by proj3; and projXs (which projects
out an equivalence from an equivalence between two dependent sum types), respectively,
and replacing create o proj x by create o projX (which shows that creating an equivalence
between two dependent sum types from the projections out of an equivalence between two
dependent sum types results again in the original equivalence).

9.1.2 Extending the Case Tree and Evaluation Function

We extend the case tree from the previous chapter to allow case splits only on indexed data
types. This means that we have to replace the instance of the vector of indices of the data
type we perform a case split on, by an interpretation of the telescope of indices. We still want
to perform unification on these indices, so the remainder of the case tree remains the same:

data CaseTree (A : Telescope n)(T : [ A Jteld -> Set) : Set; where

leaf : (t : (args : [[A ]]te'LD) -> T args) -> CaseTree A T
node : {D : DataDesc is cp} (p : A [ k 1:X[ [[ is ]]telD 1 (u D))

-> (bs : (c; : Fin cp)

-> Y[ u € Unification (expandTel A (conTel (u D) (w9 (D c3))) p
(\ args —> < c; , telToCon args >))]
(CaseTree (79 (unifyTel u)) (X args -> T (shrink p (unify' u args)))))
-> CaseTree A T

We can define the case tree for the split-function, where we parameterize on (w : A). The
telescope of input arguments consists of (z,y,z : A), the equivalence relations ¢,b, [, r be-
tween w and z, y, 2, and a square s containing these arguments:

AFlip : (w : A) -> Telescope 8
AFlip {A=A}w=xEA, yEA,zEA, teEu (=Dw (x, tt) ,
bepu(=by) (z, tt) , LeE u (=Dw) (y, tt) , r € p (=D x) (z , tt) ,
s € 4 (Squarebw) (x , y , z, t,b, 1, r, tt) , nil
The return type is based on these arguments, where we replace x in the square by y and y
by x. This also means that we have to replace the order of equivalences to [, , ¢, b instead of
t,b,l,r:
TFlip : (w : A) —> [ AFlip w [telD -> Set
TFlipw (x , vy ,z,t,b,1,r,_)
= @ (SquareDw) (y , x , z, L, r , t, b, tt)
To create the case tree for the split-function, we perform a case split on the square s, which

has as index vector (x , y , z , t , b, 1, r , tt). There is only one case we can split
to, namely ids, where we get a telescope containing the following elements:

rep(=Dx)(ztt),ewr € w=x,ewy € W=y, ewz € w= z,

ewt € idp w =t,ewb € idp w = b, ewl € idp w = [, ewr € idp w = r,nil
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We can use the solution rule on each element i together with the equivalence relation ews,
eventually reducing to an empty telescope, which we store in the function unifyFlip. In
the return type, we thus replace every element of type A by w, and every element of the
equivalence type by ids w. The return type thus requires an element of type

7] (SquareD w)(w, w,w, ids w, ids w, ids w, ids w, tt)

So, we can call a leaf node and fill in ids w:

CTFlip : (w : A) -> CaseTree (AFlip w) (TFlip w)
CTFlip w = node (there A x -> there A\ y -> there A\ z -> there A t ->
there A b -> there A\ 1 -> there A r -=> here (x , vy , z , t , b, 1, r , tt))
(A where f0 -> unifyFlip , leaf (A _ -> dids w))

The evaluation function stays the same as that of the previous chapter. We can show that the
computational behaviour of the evaluation function on the split-function is sound by show-
ing that for any interpretation of the telescope of input arguments, the evaluation function
applied with the case tree evaluates to the same element as the function defined by pattern
matching:

=Flip : (wxy z : A) (t: pu (=EDw) (x, tt)) (b : u (=D y) (z , tt))

= (L:p (=Dw (y, tt) (r:p (=D x) (z, tt))

-> (s ¢ @ (Squarebw) (x ,y , z, t,b, 1, r, tt))

-> eval (CTFlipw) (x ,y , z, t,b,1,r,s, tt) =Fflipwxyztblrs
=Flipww w w (idp w) (idp w) (idp w) (idp w) (ids w) = refl

9.2 Extending Unification Rules

In the example from the previous section, we only need to use the solution rule to unify the
data type indices. But, the solution and deletion rule already work for any type, so we did
not have to change these to work for indexed data types. However, the conflict and injectivity
rule work for specific data types. Hence, in this section we update these rules to work for
indexed data types.

9.2.1 The Conflict Rule

We can index on other indexed data types. For example, we can have a data type that is
indexed on a vector. The vector data type can be represented similar as in chapter 8, except
that we replace the vector containing a natural number with a telescope containing a natural
number. We can also represent natural numbers as an indexed data type, by filling in the
empty telescope for is:

VecD : (X : Set) -> DataDesc (n € u NatD tt , nil) 2

VecD X f@ = _ , one' (zero' , tt)

VecD X f1 = _ , X' (u NatD tt) (A n -> X' X (A x -> X' (n , tt)
(one' (suc' n , tt))))

If we perform a case split on an element of a data type that is indexed on a vector, we might
reach a unification problem that wants to replace a vector of length at least one, by a vector of
zero length (see element ez). This problem would require another equation that states that
the telescope of indices of both vectors are equivalent (see element e ):

Aconflict : (X : Set) -> Telescope 5

Aconflict X = n € p NatD tt , x € X , xs € i (VecD X) (n , tt) ,
el € (suc' n , tt) = (zero' , tt) ,
ey € (subst (p (VecD X)) e1 (cons' n x xs)) = nil' , nil
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Now, our current definition of conflict is not sufficient, as we work with elements of data
types that are indexed on some vector d. Hence, if we want two elements to be equivalent,
their indices should also be equivalent. Therefore, we have to define the conflict rule with
equation e that combines these elements in a dependent sum type. With this, we can project
out the second element of both dependent sums to get the equivalence that negates f:

conflict : {D : DataDesc is cp}{d; do : [ is JtelD}{x : p D di}{y : p D da}
-> (f : — (con; x = con; y))(e : X[ e € dj = do ] (subst (4 D) e x = y))
> X[ be L 1T

conflict f (ed , ex)
= l-elim (f (cong (A dx -> con; (projs dx)) (X-create ed ex))) , tt

We thus require a proof p; that states that d; and dy are equivalent and, given py, a proof p,
that states that « and y are equivalent, then if the constructor numbers are not equivalent we
can use the conflict rule to replace p; and ps in the telescope by L:

UConflict : {D : DataDesc is cp} {d; : A -> [ is ]Jteld} {d2 : A -> [ is [telD}
=> {x : (a:A) > pub(d a)} {y : (a : A -> ubD (dg a)}
> (p: A[Kk]:X[A] NANa->dia=dya): (Aae—>
subst (4 D) e (x a) =y a)) (f: (a : A) -> — (con; (x a) = con; (y a)))
-> Unification (doConflictTel p f) -> Unification A

So, if we want to solve the unification problem Aconflict we gave earlier, we can simply use
the conflict rule on the 3rd position in the telescope, giving us a telescope containing only n,
z , zs, and an element of L:

unifyConflict : (X : Set) -> Unification (Aconflict X)
unifyConflict X = UConflict (there A n -> there A\ x -> there A\ xs ->
here (n , x , xs)) (A x ()) (UEnd
(n € w NatD tt , x €E X , xs € 4 (VecD X) (n , tt) , b e L , nil))

9.2.2 The Injectivity Rule

Another unification problem we might get when performing a case split on an element of
a data type that is indexed on a vector, is replacing two vectors of length at least one (see
element ey), which again requires another equation that states that the telescope of indices
of both vectors are equivalent (see element e ):

Adnjectivity : (X : Set) -> Telescope 8
A'inject'iV'ityX=n€,uNatDtt,mE,uNatDtt, X E X,y €EX,
xs € 4 (VecD X) (n , tt) , ys € 4 (VecD X) (m , tt) ,
el € (suc' n, tt) = (suc' m , tt) ,

ey € subst (4 (VecD X)) e; (cons' n x xs) = cons' my ys , nil

Now, our current definition of injectivity is not sufficient, as we again work with elements
of data types that are indexed on some vector d. Hence, if we want two elements z and y
to be equivalent, their indices should also be equivalent d; and ds, respectively. Therefore,
we have to define the injectivity rule with equation e that combines these elements in a
dependent sum type, where injectivityTel is similar to the function defined in chapter 7,
except that it works for indexed data types:
injectivity : {D : DataDesc is c,}{d; d2 : [ is [teld}{x : p D di}{y : p D da}
-> (f : con; x = con; y)(e : X[ e € di = dg ] (subst (4 D) e x = y))
-> [ injectivityTel f ]telD

We then again require a proof p; that states that d; and dy are equivalent and, given py, a
proof ps that states that = and y are equivalent, then we can use the same requirements for
the injectivity rule from the chapter 7 to replace p; and ps by injectivityTel:
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UInjectivity : {D : DataDesc is cp} {d; : A -> [ is [teld} {d2 : A -> [ is [telD}
-> {x : (a:A) > ubD(d a)) {y : (a:A) > D (d a)}
> (p: A[kI1I:X[A] Aa->dia=dya): (Aae—>
subst (D) e (x a) = vy a)){ap' : N}(elN : (a : A) -> con,, (x a) = a,')
-> (f : (@ : A) -> con; (x a) = con; (y a))
-> Unification (doinjectivityTel elN p f) -> Unification A

In the functions of the injectivity rule, we combine the proofs in e (using X-create) and ap-
ply that to the J-rule. In the converse of injectivity rule, we can furthermore derive that d;
is equivalent to ds from an interpretation of injectivityTel, because we have that each con-
structor variable from the two constructors are equivalent. From this we can thus derive that
their indices, which are built from these constructor variables, are equivalent.

Now, when we want to solve the unification problem Ainjectivity we gave earlier, we can
use the injectivity rule on the 8th position in the telescope replacing equation e; and e; by an
equation e; that states that n is equivalent to m, an equation e, that states that x is equivalent
to y, and an equation e3 that states that s is equivalent to ys given e;. However, in reality
we get the following telescope:

Adnjectivity; : (X : Set) -> Telescope 9
Adnjectivity; X = n € 4 NatD tt , m € i NatD tt , x € X , y € X ,
xs € (4 (VecD X) (n , tt) , ys € u (VecD X) (m , tt) ,
et En=m,
ey € proji (subst (A n' -> [[E' X (A xg => X' (n' , tt) (one' (suc' n' , tt)))
]]c (o (VecD X)) (sucy n , tt)) e1 (x , xs , refl {x = (suc' n) , tt})) =y ,
e3 € proji (subst (A x -> [ X' (projj (subst (A x; -> [ snd (VecD X x1) ]Jc
(e (VecD X)) (sucy m , tt )) (sym (refl {x = fo})) (m , y , ys , refl
{x = (suc' m) , tt})) , tt) (one' (suc' (proji (subst (X x; -> [[snd (VecD X
x1) Jc (@ (vecDd X)) (sucy m , tt )) (sym (refl {x = f1})) (m , y , ys
, refl {x = (suc' m) , tt}))) , tt)) ]]c (¢ (VecD X)) (sucy n , tt )) ez (snd
(subst (A x > [ X' X (A x1 => X' (x , tt) (one' (suc' x , tt))) Jc (u (VecD
X)) (sucy n, tt)) e1 (x , xs , refl {x = (suc' n) , tt})))) = proji (snd (snd
(subst (A x -> [[ snd (VecD X x) ]]c (o (VecD X)) (sucy m , tt)) (sym (refl {x =
f1})) (m , vy , ys , refl {x = (suc' m) , tt})))) , nil

Which can be explained by the injectivityTelc rule from chapter 7. Because the index n of
a vector is located in a ¥’ type, we replace the n in the remaining constructor element using
e1. But, because we project out the x in ey, which is not dependent on n, we can derive that
ez should be equivalent to = y. Hence, we use an additional unification rule UReplaceElem
that states that if two types By, B are equivalent, and there is an element of type B; located
in the telescope, we can replace By by Ba:

UReplaceElem : {B; By : A -> Set}(p : A [ k ]:X[ A ] By)
-> (f : (a: A) -> By a =By a)
-> Unification (replaceInTel By By A p f) -> Unification A
Using this rule, we replace e; and e3 to get the following telescope:
Adnjectivitys : (X : Set) -> Telescope 9
Adnjectivitys X = n € 4 NatD tt , m € i NatD tt , x € X , y € X ,
xs € (4 (VecD X) (n , tt) , ys € u (VecD X) (m , tt) , e En =m ,
e EX =y , e3 € subst (A n -> u (VecD X) (n , tt)) e; xs = ys , nil
Which we can then solve by applying the solution rule 3 times:
Adnjectivityg : (X : Set) -> Telescope 3
Adinjectivityy X = n € 1 Nath tt , x € X , xs € 4 (VecD X) (n , tt) , nil
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A limitation of this version of the injectivity rule, is that it can only be used if there are corre-
sponding equations that state the equivalence between the indices (e.g. in the example the
equation between the two vectors needs to be dependent on the proof suc' n = suc' m). If
we want to solve an equation that is not dependent on such a proof, for example if we want
to solve an equivalence between two vectors that have equivalent indices, we have to use
higher-dimensional unification.

9.3 Higher-Dimensional Unification

Cockx [10] introduced the notion of higher-dimensional unification, that allows us to use
the injectivity rule for equations where the indices of a data type are not fully general. An
example of this is solving the telescope AHoun1i fication where we have an equation e that is
an equivalence between two vectors of type Vec A (suc n):

AHOUnification : (X : Set) -> Telescope 6
AHOUnification X = n € NatD tt , x € X , y € X , xs € (VecD X) (n , tt) ,
2 2
ys € 4 (VecD X) (n , tt) , e € cons' X n x xs = cons' X ny ys , nil

In this case, it is not possible to apply the injectivity rule directly, as the index n is not fully
general, but it is possible to construct the equivalences (e : * = y) and (e3 : zs = ys).
We start by applying the solution rule in reverse to generalize the index n. We define an
additional unification rule u<-Solution that adds the equations (¢/ : a = a) and (p : € = refl)
to the telescope at index k and replaces the element (e : z = y), where (z,y : B a), at index
kEby (e:subst Be' x =y):

U<-Solution : {A' : Set}(B : A' -> Set)(f : A -> A')
> {xy:(a:A >B(fal(p:A[kI:X[A] Aa->xa=ya))
-> Unification (doSolution<-Tel B f p) -> Unification A

If we apply this new unification rule on AHounification, where we take f as a function that
maps n to (suc' n, tt) we getanew telescope AHOUni fication; that contains (¢/ : (suc' n, tt) =
(suc' n,tt)) and (p : €' = refl):

AHOUnification; : (X : Set) -> Telescope 8

AHOUnification; X = n € M NatD tt , x € X , y € X , xs € 4 (VecD X) (n , tt) ,
ys € 4 (VecD X) (n , tt) , e' € (suc' n , tt) = (suc' n , tt) ,
e € subst (u (VecD X)) e' (cons' X n x xs) = cons' X ny ys ,
p €e' = refl , nil

As the indices are now fully general, we can apply the injectivity rule on ¢’ and e to get
the telescope AHounificationz, which now contains an element e; that contains an equiv-
alence between the vector of indices we added when applying the solution rule in reverse,
the predicate p which is now updated to contain suc n, and the equations (e : z = y) and
(es : subst (i (Vecd X)) e1 s = ys):

AHOUnificationg : (X : Set) -> Telescope 9

AHOUnificationy X = n € u NatD tt , x E X , y € X , xs € 4 (VecD X) (n , tt) ,
ys € 4 (VecD X) (n , tt) , e1 € (n , tt) = (n , tt) ,
p € cong (A ntt -> suc' (projji ntt) , tt) ey = cong (A _ -> suc' n , tt) e ,
eg E X =y , e3 € subst (4 (VecD X)) e1 xs = ys , nil

Now, p is an equation between equality proofs, called a higher-dimensional equation, which
we need to solve to remove e;. What we can do is consider a one-dimensional version of this
problem, which takes a natural number n and contains a natural number w and a proof p
that (suc' w, tt) and (suc' n,tt) are equivalent (i.e. the functions in cong on both sides of the
equivalence in p):
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9. ExTeENDING TO GENERIC INDEXED DATA TYPES

AHOUnificationa' : (X : Set)(n : g NatD tt) -> Telescope 2
AHoUnificationg' X n = w € 4 NatD tt , p € (suc' w , tt) = (suc' n , tt) , nil

We can solve this problem by splitting p and removing t¢ = ¢t (using the injectivity rule for
T) and applying the injectivity rule on suc' w = suc' n. Then, using the solution rule we
can remove w and end up with an empty telescope. To use this for the higher-dimensional
problem, we can lift the previous equivalence to get a new equivalence where we replace e
and p by the the result of the unification of AHoUnificationy’, which results in the removal
of e; and p:

AHOUnificationg : (X : Set) -> Telescope 7
AHOUnifications X = n € y NatD tt , x €E X , y € X , xs € g (VecD X) (n , tt) ,
ys € 4 (VecD X) (n , tt) , e E X =y , e3 € xs = ys , nil

Then, we can simply use the solution rule on e; and e3 to get a telescope containing n, «, and
xs, thereby solving the unification problem:

AHOUnificationg : (X : Set) -> Telescope 3
AHOUnificationsy X = n € 1 NatD tt , x € X , xs € @ (VecD X) (n , tt) , nil

This lifting function is specified in Houni fication, which takes a unification algorithm f be-
tween two elements a and b that may be dependent on elements in telescope A. If we have
the elements u and v which are interpretations of telescope A, and we know that u applied
to a and b is equivalent and v applied to a and b is equivalent, we can replace the equivalence
e:u=wvand (p: cong(Axs — a(f' zs))e = cong (Axs — b (f' xzs)) e) by an equiva-
lence between the unification algorithm f applied to (u,r) and (v, s), for which the proof is
explained in detail in the work by Cockx [10].

HOUnification : {X Y : Set}(a b : X > Y)(f' : [ A Jtelp -> x)
-> (f : Unification (mergeTel A (A x -> (p € ax =b x , nil)) f'))
> (uv:[AJted) (r : a (f''u) =b (f' u)) (s : a (f' v) = b (f' v))
-> Y[ e €u=v] (subst (A ab -> proj; ab = projs ab) (X-create r s)
(cong (A xs -> a (f' xs)) e) = cong (A xs -> b (f' xs)) e)
-> unify f (merge u (r , tt)) = unify f (merge v (s , tt))

We can also create Houni fication' and HOUni fication'oHOUni fication following the proofsin
the same work. To use this in our work, we add unification rules that allow for the addition
of custom rules. For this, we define UAddRule; and UAddRule; that work on the data types
TelAt and TelAt' from chapter 4, respectively. For Hounification we use UAddRules, which
contains a proof p that states that at index k£ we have an element of type A and atindex £ + 1
we have an elements of type B. Then, if we have some resulting telescope fTel, a function f
that maps an element (a, b) to an interpretation of fTel, a function f’ that does the reverse,
and a proof f’o f that proves that applying f’ to f results in the original input, we can replace
the element at positions k and £ + 1 with fTel:

UAddRules : {X : Set}{A : X -> Set}{B : (x : X)(a : A x) —-> Set}
> (p: A[LKkI]:X[X] Ax->Ax): (Axa->Bxa))
-> (fTel : Telescope m)
> (f:(x:X) >X[a€Ax] (Bxa)->][ fTel JtelD)
= (f' ¢ (x : X) > [ fTel JtelD -> ¥[ a € A x ] (B x a))
=> (f'of : (x : X) => (e : X[ a€EAXx] (Bxa)) > f' x (f xe) =e)
-> Unification (updateTels p fTel f f' f'of)
-> Unification A

Then we can use Hounification in the place of f, where we use the unification algorithm
from AHounificationy” and refl for r and s.
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Chapter 10

Discussion

In chapter 9 we have shown that we can represent functions that perform pattern matching on
indexed data types from our universe of generic data type descriptions as an interpretation of
the generic case tree, and that we can use our generic evaluation function to evaluate such a
case tree without the use of pattern matching on these data type descriptions. In this chapter,
we show the strengths and limitations of this implementation.

10.1 Case Tree Strengths and Limitations

We have provided a generic representation of a case tree that performs case splits on data
types from our universe of generic data type descriptions. For any function that can be rep-
resented by this case tree, we can evaluate to an element of the proper return type using the
eval function. However, we can only represent functions that perform pattern matching on
an element of a data type that can be represented by the universe of generic data type descrip-
tions. This universe allows for indexed data types, but not other data types (e.g. higher-order
inductive types or coinductive data types). One can extend the case tree representation by
adding a branch that allows for other kinds of case splits without disrupting the current func-
tionality, provided that the evaluation function is also updated to deal with such branches.

Furthermore, each case tree has to be written by hand following the representation given
in chapter 9. This is a time consuming and error-prone ordeal. Especially when we count
in the fact that the unification algorithm requires the user to provide a unification trace. Re-
moving this requirement would require meta-programming, which goes against the goal
of having a correct-by-construction implementation. The unification algorithm allows us to
easily update or eliminate variables in the telescope of the branches. However, adding this
might not always be a trivial endeavor. We have provided four rules that Agda itself uses
when verifying a function defined by pattern matching to lessen this burden.

When defining a case tree, one should be wary not to call a function that uses pattern match-
ing in a leaf node, as we do not have any checks that could detect such calls. For defining
functions that contain recursive calls as a case tree we have provided a Below type that cap-
tures recursive calls to the evaluation function, but this should be manually added to the
telescope of input arguments which is time consuming. Furthermore, the Below type allows
us to define functions that use course-of-value iteration, but there are many other recursive
schemes that are not possible, for example mutual recursion, which are also not included in
the work by McBride [23] and Cockx [11], which we have based this work on.
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10.2 Unification Strengths and Limitations

We have provided four unification rules: solution, deletion, injectivity, and conflict (which
are also used by Agda’s compiler), which all work for elements of data types from our uni-
verse of generic data type descriptions. However, Agda’s compiler also uses the cycle rule.
This rule is not commonly used, and therefore not implemented. However, functions that
do require this rule can currently not be translated into a case tree. For example, if we want
to prove a function (n : p NatD tt)(e : u (=p n) (suc' n,tt)) — L, we would split on e,
resulting in the relation (e : n = suc' n), for which we would need to use the cycle rule to
show that it results in L. We do allow for the addition of other unification rules, as long as
they can provide and prove its converse.

The deletion and injectivity rule in this implementation make use of the K-axiom. This
axiom is not admissible in some type theories (e.g. homotopy type theory) and thus this
implementation is not be admissible in these type theories. It might be possible to define a
variant of the injectivity rule that does not rely on the K-axiom, which we will discuss some
more in chapter 12. The remainder of the code does not rely on this K-rule.

When working with the provided unification rules there are two problems that one will en-
counter fairly quickly, which could both be solved by using telescopic equality. The first
problem is encountered when extending the injectivity rule in chapter 9. Using the injec-
tivity rule on a constructor that has more than one variable results in verbose types. For
this, we provide a quick solution where one can replace equivalent types, but proving this
equivalence requires a lot of work from the user. Instead, we could have used the concept
of telescopic equality, where we only have one equivalence relation between two interpre-
tations of the same telescope of indices. For example, instead of (e; : suc n = zero)(ez :
subst (Vec A) e; (cons n x xs) = nil), we would have (e : (suc n,cons n x xs) = (zero,nil)).
Telescopic equality is hard to implement and would require us to rethink the current imple-
mentation of the unification rules, but it would make it easier to provide a unification trace.

Another problem that could be solved by using telescopic equality would be that the ubeletion
and Usolution have a very strict notion of two elements of the same data types being equiv-
alent. Namely that in the telescope we need one element e; which has as type that the two

telescope of indices are equivalent and an adjacent element that states that the elements of

the data type are equivalent given this e;. Therefore, if we have a telescope that contains sev-
eral elements that make up e;, we would first have to define a function that combine these

elements to form e; before we could use the deletion or solution rule.

10.3 Evaluation Strengths and Limitations

By implementing an evaluation function that works for any interpretation of the generic case
tree in compiled Agda, we have shown that we can always evaluate to an element of the re-
turn type of the case tree. However, only for the examples we have shown have we proven
that the computational behaviour of the function defined by pattern matching and the eval-
uation on the case tree is equivalent. As one has to define the case tree by hand, we cannot
make any claims about whether the semantics of the clause of the original function by depen-
dent pattern matching is preserved. What we could do, however, is give dynamic semantics
for the case tree, by defining the case tree in terms of an inductive relation. We can then prove
that the evaluation function follows these semantics. This would ensure that the semantics
are preserved, assuming that the translation from dependent pattern matching to the case
tree is correct.
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Furthermore, we can only manually check that the evaluation function does not use pat-
tern matching. We have allowed pattern matching on metaconstructs (e.g. case trees and
telescopes), but not on elements of the data types that we perform a case split on. We cannot
prove that this last part holds for the implementation.

We can call the evaluation function recursively on the remainder of the case tree, because
we have section-retraction pairs for all functions defined on telescopes, which means that for
any function f that we have defined on an interpretation zs of an arbitrary telescope, we have
a function f’ such that f’ (f xs) = xs This allows us to substitute, for example, the results
of expanding and shrinking the telescope with the original telescope. However, we often
have to solve functions that have nested section-retraction pairs. For example, to reduce a
function in the form ¢’ (f" (f (g xs))), where f and g are section-retraction pairs, we would
have to call the subst function with a predicate P that contains ¢/, an equivalence relation
e that contains a call to the proof that f and f’ is a section-retraction pair (which itself re-
quires the argument g s). To solve the remaining equation, we again have to call the subst
function to replace the section-retraction pair of g and ¢’. The more nested section-retraction
pairs we get, the more verbose the code will become. This is particularly a problem when
formalizing higher-dimensional unification. It would be better to have a generic way to re-
duce equations of these form to increase the readability of the proofs. This could be solved
using meta-programming, which we did not allow in this thesis.
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Chapter 11

Related Work

This thesis implements an evaluation function for a generic case tree in Agda. We discuss
related efforts for proving and implementing translations from dependent pattern matching
to eliminators and other elaborations.

11.1 Elaborating Dependent Pattern Matching

In Epigram, a compilation scheme for definitions by dependent pattern matching is given
[30]. In Cogq, this works has been elaborated for the Equations package [35] which translates
a given function defined by dependent pattern matching to eliminators on a case-by-case
basis. This translated function is then type checked by Coq’s type checker. They use con-
structors like NoConfusion and Below, similar as to what we have presented. In this work
however, we provide a generic evaluation function in pure Agda code, which gives the guar-
antee that we can evaluate any interpretation of the generic case tree to the output term. This
evaluation function is implemented in terms of generic eliminators only, even though this
can only be manually enforced.

Lean compiles definitions by dependent pattern matching into eliminators [17]. These com-
pilation methods are based on the same ideas that are used in this thesis and supports struc-
tural and well-founded recursion that work both with and without K. What makes the work
different from this thesis is that this compilation takes place outside of the trusted kernel
of Lean. This trusted kernel is based on dependent type theory and its main task is type
checking. This means that their compilation methods for definitions by dependent pattern
matching are not type checked, whilst in this work the entire evaluation is written in correct
Agda code.

The Generics library [20] derives generic properties from data types defined in Agda, such
as the elimination principle and the no confusion property. It does so by translating data
types in Agda to a generic universe of data type descriptions and defines the properties for
these descriptions. In this work, we have defined these properties for the universe of data
type descriptions only, thus not allowing the user to define data types the "Agda” way and
skipping the translation.

The original version of dependent pattern matching by Coquand [14] that is implemented
in this thesis is incompatible with homotopy type theory, due to the reliance on axiom K-
rule (or equivalently the uniqueness of identity proof) which is not admissible in homotopy
type theory [34]. On paper it is proven that the translation can be done without the use
of K [11], by altering the unification algorithm and changing the definition of structural
recursion. Here, we tried to avoid the use of K as much as possible (e.g. by introducing
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higher-dimensional unification), but still require its use for the deletion and injectivity rule.

11.2 Unification

The Equations package allows to work without K. But instead of using higher-dimensional
unification, they rely on a homogeneous no-confusion principle that works on any two terms
in the same instance of the inductive family [36]. This solution is more limited as it cannot
handle higher-dimensional equations, but the authors claim that it would be too general to
compare constructors of different inductive families. Using indexed data types is quite rare
in Coq, compared to Agda, so not having higher-dimensional unification is not as much of
a limitation. In this work, we do implement higher-dimensional unification for inductive
families.

11.3 Verifying Agda

Originally, everything in Agda’s compiler was implemented in unverified Haskell [32]. In
this work, we have verified that it is possible to evaluate a case tree without the use of de-
pendent pattern matching for indexed data types, which is part of the type checking pass.
Another pass in the compiler of Agda is scope checking, where references to names, such
as variable use, are checked to ensure that the corresponding definition is in scope. Recent
work has shown that it is possible to implement the scope checking pass in Agda itself [21],
thereby proving the correctness of its name resolution algorithm.
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Chapter 12

Conclusion

This thesis presents a generic, correct-by-construction implementation of an evaluation func-
tion of a case tree that performs case splits on indexed data types, without the use of metapro-
gramming and unsafe transformation. We provide a generic representation of a case tree that
allows case splits only on variables of indexed data types. For each constructor of that data
type we create a new case tree that, given a unification algorithm between the indices of the
variable and the constructor, updates the variables in the telescope of input arguments.

We use a fixed universe of data type descriptions to represent the data types that a case tree
can perform a case split on. This allows us to derive all the constructors that a variable can
split into and their arguments, which are added to the telescope of input arguments. Using
the provided Below type, we allow for functions that require course-of-value recursion to be
evaluated without the use of pattern matching.

Using unification, we can derive whether a constructor is possible for a given indexed data
type, thus allowing us to update the variables if a variable can be replaced by a constructor or
eliminate the branch of a case tree when the variable cannot be replaced by that constructor.
We provide an implementation for the solution, deletion, injectivity, and conflict rule, whilst
also allowing users to add their own unification rules, provided that they provide and prove
its converse. Furthermore, we have shown that higher-dimensional unification is compatible
with this work.

We can evaluate an interpretation of the generic case tree, given an interpretation of the tele-
scope of input arguments, by performing case analysis on a variable = that a case split is
performed on. We recursively evaluate the remaining case tree, or equivalently the branch
which corresponds to the constructor of z. We update the telescope of input arguments by
performing unification on the original telescope of input arguments with the arguments that
make up variable x. When a leaf node is reached we evaluate to the right-hand side of the
corresponding clause.

12.1 Future Work

While the evaluation function is type-safe for any case tree of the given representation, there
are still interesting ways to extend the scope and usability of this work.

12.1.1 Extending the Case Tree

Adding universe polymorphism to the data type descriptions, allows us to expand the range
of the data types that can be defined in the fixed universe of data type descriptions. Cur-
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rently, it is not possible to put an element of type set in a constructor description, as each
element should be of type set. For example, defining a vector where we index on a set A is
currently not possible. Adding universe polymorphism also requires us to update the defi-
nition of telescopes to allow for elements of type Set.

This thesis fixed on one definition of indexed data types that does not include higher-order
induction. More involved forms of data types include inductive-recursive data types [18]
and inductive-inductive data types [31]. An example of an inductive-inductive data type is
a sorted list, where we simultaneously define the set SortedList and a predicate < L that
works on SortedList that determines whether the elements in the list are sorted. Currently,
we do not have functionality to define mutual data types, but we could add seperate branches
to the case tree that handle case splits on these data types. However, these data types would
also require their own conflict and injectivity rules, as they currently only work for the given
universe of data type descriptions.

We could also extend the case tree by adding record types [6], which allows us to perform
copattern matching [1]. Record types are types that group values together. They have addi-
tional laws for equality of records (7-laws), which can be used to define additional unification
rules. This would also require us to extend the case tree to allow a case split on a record type
and extend the evaluation function.

It is possible that the unification algorithm for a certain case split requires the cycle rule.
This rule requires that the data types have a property called acyclicity, which means that a
term can never be structurally smaller than itself. Acyclicity holds for inductive data types,
but is quite hard to establish. It would be interesting to see this acyclicity property defined
for the universe of data type descriptions.

Furthermore, it would be interesting to see whether the Generics library [20], discussed in
chapter 11, can be integrated in this work, thus allowing us to create case trees where we
perform case splits on Agda data types. As this work uses a more involved universe of data
type descriptions, we would have to extend the current definition of the case tree and thus
also the evaluation function. But as both works use similar constructs on the universe of data
type descriptions (e.g. NoConfusion and eliminators) it should be feasible.

12.1.2 From Pattern Matching to Case Trees

We have stated in chapter 10 that we cannot make any claims about the computational be-
haviour of the evaluation function, because we have no notion of a function that uses de-
pendent pattern matching. This would be an interesting addition to this work, which would
require a generic definition of dependent pattern matching and an elaboration function to
the generic representation of the case tree. This elaboration is shown on paper [9] and is
implemented in Agda’s type checker.

Furthermore, it would be interesting to see if the defined case tree is compatable with the
case tree in Agda’s type checker. If this were to be true it would be possible to reduce Agda’s
trusted base. But because Agda allows for more data types than indexed data types, this
would require quite a significant amount of effort, as we would also have to prove the elabo-
ration holds for other data types that Agda allows for (e.g. record types). Similarly, we could
look into the elaboration process that Lean uses when compiling definitions by dependent
pattern matching, which uses the same constructs that we have used in this thesis, to make
the elaboration process admissible in their trusted kernel.
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Interpretations of the case tree and the unification trace both have to be defined by hand.
It would be interesting to see whether this can be generated by an elaborator from a function
defined by pattern matching. For this, we would require meta-programming to determine
where in the telescope of function arguments we have a data type that we perform a case
split on, and which unification rules we can apply on the remaining telescope of function
arguments.

12.1.3 Without K

In chapter 10 we have shown that our implementation is not compatable with homotopy
type theory, due to the reliance on axiom K in the unification rules. However, on paper it
is proven that this elaboration is possible without the use of K [11]. It would be interested
to extend this work to not use K. The most redundant reliance being the one in the injectiv-
ity rule, where we have to use the proof that the constructor number of both elements are
always equivalent regardless of the variables that are established earlier on in the telescope.
Cockx [11] proposes that we use a strict version of the injectivity rule, which is the one imple-
mented in this thesis. Consequently, we need to use higher-dimensional unification to not
exclude applying the injectivity rule on constructors like ref1, which we have already shown
is possible to implement without the use of K. Our reliance on the K rule is thus only in the
proof that the constructor number of both elements are always equivalent regardless of the
variables that are established earlier on in the telescope. As we use the Fin type to denote the
constructor number, which has a unique identity proof, it follows from Hedberg’s theorem
[25] that we could prove this without the use of K. Therefore, this rule should be able to
work without the use of K.

Another reliance is on the deletion rule, which relies directly on the K rule. Without K
we should prohibit the use of this rule. Following from Hedberg’s theorem, this should not
be a problem if we only allow types that satisfy the uniqueness of identity proof. However,
homotopy type theory is an example of a type theory where not all types have unique iden-
tity proofs, hence some functions cannot be translated to eliminators. In particular, functions
that split on constructor forms that are not linear (i.e. variables can occur more than once)
are not guaranteed to translate to eliminators.
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