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SUMMARY

Robots that are developed for applications which require a high stiffness-over-inertia ra-
tio, such as pick-and-place robots, machining robots, or haptic devices, are often based
on parallel manipulators. Parallel manipulators connect an end-effector to an inertial
base using multiple serial kinematic chains. This architecture enables the design of
robots with all actuators located at the base, which greatly reduces the effective iner-
tia with no detrimental effect on the stiffness, thus improving the stiffness-over-inertia
ratio.

One of the limitations of current parallel manipulators is that gripping requires an
additional, dedicated subsystem, which either degrades performance or can only han-
dle objects with a flat surface. A promising alternative solution for future gripping robots
are parallel manipulators with two end-effectors (PM2Es). These PM2Es facilitate me-
chanical gripping using an internal closed-loop chain, which enables gripping robots
that have all their actuators located at the base. As such, PM2Es combine mechanical
gripping with a favorable stiffness-over-inertia ratio. Because of the potential benefits
in both cost and hygiene, the integration of compliant joints is identified as a second
promising development for future gripping robots. The benefits of PM2Es and those of
compliant joints can be enjoyed simultaneously if compliant PM2Es are designed.

However, it is currently not possible to effectively design compliant PM2Es, because
existing stiffness analyses methods do not directly apply to PM2Es. To overcome this
limitation, in this thesis a stiffness analysis method is developed that is also valid for
compliant PM2Es.

In Chapter 2 insights from screw theory are used to develop a novel Jacobian-based
stiffness analysis method for parallel manipulators, which is more general than exist-
ing methods. The stiffness analysis method takes the influence of actuators, compliant
joints, as well as structural elements into account, and also considers the effect of load-
ing. Stiffness in the constrained directions of individual serial chains is represented us-
ing virtual joints, which allows structural compliance to be considered for any parallel
manipulator with non-redundant legs. This includes lower mobility parallel manipula-
tors, which have less than six degrees of freedom. Loading is taken into account using a
term that depends on the derivative of a Jacobian matrix.

The developed stiffness analysis method is experimentally validated in Chapter 3.
It is shown that the accuracy of a stiffness analysis improves if the effect of loading is
considered and also if structural compliance is included in the analysis. The example
stiffness matrices in Chapter 3 are all symmetric, which is in line with the definition of a
stiffness matrix.

In contrast, Griffis and Duffy (1993) found asymmetric stiffness matrices when they
analyzed two mechanisms under loading. Loading cannot be part of a stiffness analy-
sis if it can lead to asymmetric matrices, which explains the extensive discussions sur-
rounding their work. Chapter 4 demonstrates that the asymmetry in the work by Griffis

xi
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and Duffy can be explained as a modeling inconsistency. It is also shown that consistent
modeling results in symmetric matrices, which supports the notion that loading is an
integral part of a stiffness analysis of parallel manipulators.

Chapter 5 presents a systematic approach for the Jacobian analysis of PM2Es in order
to extend the Jacobian-based stiffness analysis method of Chapter 2 to PM2Es. Previ-
ously, Jacobian analyses of PM2Es have only been performed for specific examples, but
this thesis introduces structure to the Jacobian analysis of PM2Es by considering each
end-effector as a rigid body with its own six-dimensional motion vector, and by repre-
senting a PM2E as an organization of serial chains. In Chapter 5 it is also shown that the
structural compliance of internal serial chains must be considered in order to deal with
relative degrees of freedom that are constrained between the two end-effectors.

In Chapter 6 the stiffness analysis method of Chapter 2 and the Jacobian analysis of
Chapter 5 are integrated and the very first stiffness matrices of PM2Es are presented. An
experimental verification of these stiffness matrices demonstrates that the developed
stiffness analysis method also applies to compliant parallel manipulators with two end-
effectors. Therefore, the method introduced in this thesis is ready to be used for the
effective design of novel gripping robots.



SAMENVATTING

Robots die ontwikkeld worden voor toepassingen waarbij een hoge stijfheid-over-inertie
ratio vereist is, zoals pak-en-plaats robots, verspaningsmachines, of haptische appara-
ten, zijn vaak gebaseerd op parallelle manipulatoren. Parallelle manipulatoren verbin-
den een eindeffector, i.e. het lichaam dat bestuurd wordt, met een inerte basis door
middel van meerdere seriële kinematische ketens. Deze architectuur maakt het moge-
lijk om robots te ontwerpen waarbij alle actuatoren direct zijn bevestigd aan de inerte
basis. Een parallelle architectuur vermindert daarmee de effectieve inertie zonder nega-
tieve bijeffecten voor de stijfheid, zodat een hogere stijfheid-over-inertie ratio behaald
kan worden.

Eén van de beperkingen van bestaande parallelle manipulatoren is dat voor grijpta-
ken een extra, toegewijd subsysteem nodig is, wat de algehele prestatie vermindert dan
wel alleen werkbaar is in combinatie met objecten met een vlak oppervlak. Een veelbelo-
vende alternatieve oplossing voor toekomstige grijprobots zijn parallelle manipulatoren
met twee eindeffectoren (PM2Es). Deze PM2Es kunnen mechanische grijpacties uitvoe-
ren door middel van een interne gesloten kinematische keten, wat grijprobots mogelijk
maakt waarin alle actuatoren bevestigd zijn aan de inerte basis. Op deze wijze combi-
neren PM2Es mechanisch grijpen met een gunstige stijfheid-over-inertie ratio. Vanwege
de potentiële voordelen in termen van kosten en hygiëne is de integratie van compli-
ante mechanische gewrichten een tweede veelbelovende ontwikkeling voor toekomstige
grijprobots. De voordelen van PM2Es en compliante gewrichten kunnen gecombineerd
worden met het ontwerp van compliante PM2Es.

Echter is het momenteel niet mogelijk om compliante PM2Es effectief te ontwerpen,
omdat bestaande stijfheidsanalysemethoden niet direct toegepast kunnen worden op
PM2Es. Om deze beperking te overwinnen wordt er in dit proefschrift een stijfheidsana-
lysemethode ontwikkeld die ook geldig is voor compliante PM2Es.

In Hoofdstuk 2 worden inzichten uit screw theory gebruikt om een nieuwe stijfheids-
analysemethode te ontwikkelen voor parallelle manipulatoren die gebruik maakt van
Jacobiaanmatrices, en welke breder inzetbaar is dan bestaande methoden. Deze stijf-
heidsanalysemethode houdt rekening met de invloed van actuatoren, compliante me-
chanische gewrichten, en de compliantie in structurele elementen, waarbij ook het ef-
fect van belasting meegenomen wordt. Stijfheid in de onderdrukte vrijheidsgraden van
individuele seriële ketens wordt gepresenteerd door middel van virtuele mechanische
gewrichten. Dit concept staat het toe om de structurele compliantie te modelleren van
elke parallelle manipulator die is opgebouwd uit niet-redundante benen. Dit omvat pa-
rallelle manipulatoren waarin de eindeffector minder dan zes graden van vrijheid heeft.
Belasting wordt in de ontwikkelde methode meegenomen door middel van een term die
een functie is van de afgeleide van een Jacobiaanmatrix.

De ontwikkelde stijfheidsanalysemethode wordt experimenteel gevalideerd in Hoofd-
stuk 3. Daar wordt gevalideerd dat de nauwkeurigheid van een stijfheidsanalyse verbe-
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tert als het effect van belasting in ogenschouw wordt genomen en ook als structurele
compliantie onderdeel wordt gemaakt van de analyse. De voorbeelden van stijfheids-
matrices in Hoofdstuk 3 zijn allemaal symmetrisch, wat in lijn is met de definitie van
stijfheidsmatrices.

Daartegenover vonden Griffis en Duffy (1993) asymmetrische stijfheidsmatrices toen
zij twee mechanismen onder belasting analyseerden. Belasting kan geen integraal on-
derdeel van een stijfheidsanalyse zijn als het tot asymmetrische matrices kan leiden, wat
verklaart waarom die bevindingen ter discussie staan. Hoofdstuk 4 demonstreert dat
de asymmetrie in het werk van Griffis en Duffy verklaard kan worden door middel van
inconsistente modellering. In hetzelfde hoofstuk wordt ook aangetoond dat consistent
modelleren resulteert in symmetrische matrices, wat de notie ondersteunt dat belasting
een integraal onderdeel is van de stijfheidsanalyse van parallelle manipulatoren.

Hoofdstuk 5 presenteert een systematische aanpak voor de Jacobiaananalyse van
PM2Es om de stijfheidsanalysemethode uit Hoofdstuk 2 toe te kunnen passen op PM2Es.
Tot heden is de Jacobiaananalyse van PM2Es alleen uitgevoerd voor specifieke gevallen,
maar dit proefschrift brengt structuur aan in de Jacobiaananalyse van PM2Es door elke
eindeffector te beschouwen als een rigide lichaam met zijn eigen zes-dimensionale be-
wegingsvector, en door een PM2E te beschouwen als een organisatie van seriële ketens.
In Hoofdstuk 5 wordt het ook aangetoond dat de structurele compliantie van interne
seriële ketens meegenomen moet worden in de analyse om te kunnen omgaan met on-
derdrukte, relatieve graden van vrijheid tussen de twee eindeffectoren.

In Hoofdstuk 6 wordt de stijfheidsanalysemethode uit Hoofdstuk 2 gecombineerd
met de Jacobiaananalyse uit Hoofdstuk 5, waarna de eerste stijfheidsmatrices van PM2Es
worden gepresenteerd. Een experimentele verificatie van deze stijfheidsmatrices de-
monstreert dat de resulterende stijfheidsanalysemethode ook geldig is voor compliante
parallelle manipulatoren met twee eindeffectoren. De methode die geïntroduceerd is in
dit proefschrift is daarom klaar om gebruikt te worden voor het effectief ontwerpen van
nieuwe grijprobots.



PREFACE

Defying Newton’s gravitational law, I am not attracted to those bodies with the greatest
mass, but to those with complex motion. However, motion is relative and depends on
one’s reference frame, so before I could make a move Descartes had to make his point.
From that origin of geometry I made my way to Euler, where I turned around my three
axes to get his perspective on things. By now I was lost in both translation and rotation.
Confused by all this relativity I climbed up Lagrange’s hill, because I felt this had some
potential and was worth the kinetic energy. Indeed, from there I spotted Jacobi, who I
knew would not be indifferential to my pleas for an explanation. Although his explana-
tion was only partial, he introduced me to Ball who brought the whole story to a close.
He taught me how to Plück the day and screw the rest. Thus, although life looks like a set
of complex motions, it is nothing but a mindset.

If you’re not completely puzzled at this point, then you just might be my target audi-
ence. In this thesis I namely assume that you, the reader, have a firm understanding of
screw theory. I realize that this disqualifies this thesis as a coffee table book, but enough
coffee has already been spilled during its making.

The research that is described in this thesis was performed between April 2012 and
March 2016. It was performed at Delft University of Technology in Delft, the Netherlands,
except for the measurements, which were performed at Université Laval in Québec City,
Canada, between September 2014 and December 2014. The research was funded by the
H-Haptics programme, which is supported by the Dutch Technology Foundation STW
(project number 12158). For my stay in Canada I received additional support from the
Natural Sciences and Engineering Research Council of Canada (NSERC) as well as from
the De Breed Kreiken Innovatiefonds, which is managed by the Prins Bernhard Cultuur-
fonds.

Although my research was part of a project on the design of haptic devices, the meth-
ods that I developed and validated during my research are more generally applicable. In
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INTRODUCTION

What you don’t know
You can feel it somehow

Paul David Hewson
U2 - Beautiful Day

This chapter introduces the objective of this thesis within the context of current robotic
developments. Robots that are developed for applications which require high stiffness-
over-inertia, such as pick-and-place robots, machining robots, or haptic devices, are often
based on parallel manipulators. One of the limitations of current parallel manipulators is
that gripping requires an additional dedicated system, which either degrades performance
or reduces the range of objects that can be handled. This thesis identifies parallel manip-
ulators with two end-effectors as an opportunity for the high-speed handling of a wider
range of objects. In addition, the integration of compliant joints is considered, because
this has potential benefits in both cost and hygiene. Because stiffness is a key aspect in the
analysis and design of robotic manipulators, this thesis aims to develop a stiffness analysis
method that is also valid for compliant parallel manipulators with two end-effectors.

1
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a) b)

Figure 1.1: a) traditional serial manipulators connect an end-effector (the blue body) to the inertial base using
a single serial chain, where all joints are actuated, while b) parallel manipulators connect an end-effector to
the base using multiple serial chains, which allows all actuators (the dark gray dots) to be located at the base.

We live in a robotic age. Haptic devices and exoskeletons are breaking down the
boundaries between humans and robots, while behind factory doors a rising army of
robots continues to produce an increasing variety of our goods. Compared to humans,
robots can be simultaneously faster, more powerful, and more precise, which makes
them popular among manufacturers of products ranging from cars to foods and elec-
tronics [1]. In 2014, worldwide an estimated 220,000 new industrial robots were de-
ployed, bringing their total number to around 1.5 million [2]. According to the McKinsey
Global Institute, by 2025 this number could increase by another “15 million to 25 million
robots, requiring investments totaling about $900 billion to $1.2 trillion.” [3] Clearly, in-
dustrial robots represent a significant growth market. In order to address these growth
markets, Europe has drafted a roadmap [4] in which key focus areas for technological
development were identified. In this roadmap, flexible gripping was identified as an en-
abler to extend the reach of current industrial robots. This thesis contributes to that de-
velopment introducing novel analysis methods for a recently proposed type of gripping
robots.

1.1. STIFFNESS IS KEY FOR PARALLEL MANIPULATORS

T HIS thesis is about parallel manipulators (PMs) for applications where high dynamic
performance and high accuracy are required of a robotic manipulator, such as sta-

bilization platforms, flight simulators, machining robots, haptic devices, and pick-and-
place robots. Examples of such robotic manipulators are shown in Fig. 1.2. Parallel
manipulators are characterized by an end-effector that is connected to an inertial base
via multiple serial chains, as opposed to serial manipulators, where the end-effector is
connected to the base using a single serial chain. Figure 1.1 schematically shows this dif-
ference for the example of a planar manipulator. The individual serial chains that make
up a PM are often referred to as legs. The end-effector of a PM can only access points
which can be reached by all legs, so that its workspace is generally low compared to that
of a serial manipulator. On the other hand, the dynamic performance, e.g. achievable
position and force bandwidths, and accuracy of a PM are typically superior.
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a)

b) c)

d) e)

Photo: Ampelmann Operations BV

Photo: TU Delft Photo: Yin et al. (2015)

Photo: MOOG Photo: ABB

Figure 1.2: Parallel manipulators are applied in a wide range of applications, such as a) stabilization
platforms [5], b) flight simulators [6], c) machining [7], d) haptic devices [8], and e) pick-and-place robots [9]
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Photo: ABB Photo: ABB

Figure 1.3: a) Hygiene is an important characteristic for pick-and-place in the many industries, such as the
food industry [19]. b) Because in a PM the sensitive components are located at the base, the end-effector can
be easily cleaned [20].

Dynamic performance of PMs is superior to that of traditional serial manipulators
because in a PM the contribution of the actuators to the effective inertia is minimized.
In a PM the actuators can be located at the base, so that the stators of the actuators do not
contribute to the effective inertia, thereby minimizing their contribution. Serial manip-
ulators can also be designed with all motors located at the base, but this requires power
transmission using e.g. tendons or belts. Such transmission systems introduce flexibil-
ity, friction, and hysteresis [10], while the necessary guiding of the transmission lines
around joints complicates the design [11]. In PMs the power transmission is achieved by
the legs, which avoids these problems.

A reduced effective inertia has two main advantages. Firstly, a lower inertia results
in a lower gravitational force acting on the end-effector. Therefore, a PM requires less
power to carry its own weight and thereby can use the available power more effectively.
Secondly, reduced inertia means that higher stiffness-over-inertia ratios can be achieved.
Together, more available power and a higher stiffness-over-inertia ratio result in a higher
dynamic performance. This is an important argument behind the use of parallel manip-
ulators in the applications introduced in Fig. 1.2. The beneficial stiffness-over-inertia
ratio is therefore key to the success of PMs in highly dynamic applications.

The accuracy of a PM is superior to that of a serial manipulator because in a PM
measurement errors are averaged instead of added [12]. Accuracy in this case means ac-
curacy of the end-effector pose, which is a combination of position and orientation. In a
PM the pose is typically measured indirectly using sensors collocated with the actuators.
Given the measured actuator positions, the pose of the end-effector is then obtained as
an intersection of all remaining pose possibilities of the individual legs [13]. Because the
resulting pose error also corresponds to an intersection of individual errors, measure-
ment errors are averaged out. The pose can thus be determined with greater accuracy.
This gives haptic devices a smoother feel and it allows more accurate closed loop con-
trol, which is another reason why PMs are popular as machining robots, but also explains
their use as precision manipulators [14–16]. If a PM is under loading, the accuracy also
depends on the stiffness that can be achieved [17, 18].
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Figure 1.4: The Force Dimension Omega.7 is a 7-DoF haptic device with a dedicated motor at the end-effector
to facilitate gripping [21] (courtesy of Force Dimension, Switzerland).

1.2. OPPORTUNITIES FOR FUTURE GRIPPING ROBOTS

H YGIENE is another important reason why PMs are preferred over alternative options.
Because in a PM the sensitive components are located at the base, the end-effector

can be easily cleaned, for example with high pressure water [20]. This makes PMs ideal
for pick-and-place applications that have strict requirements on cleanliness or hygiene,
such as handling solar cells or pancakes (see Fig. 1.3). But gripping cannot be achieved
with a rigid end-effector, so that current PMs require an additional subsystem to perform
the gripping action. Existing PMs typically use a suction subsystem connected to their
end-effector to perform the gripping, such as the example shown in Fig. 1.3a.

Unfortunately, a suction gripper is only useful for flat and smooth surfaces, such as
solar cells or pancakes. These robots are therefore ill-suited for more advanced pick-
and-place tasks that require the high-speed handling of delicate and/or irregular objects.
One solution would be to attach an electromechanical gripper to the end-effector, as is
shown for the example of a haptic device in Fig. 1.4. However, this solution puts sensitive
components at the end-effector, which complicates cleaning, while particles released
through wear of these components may conflict with hygiene requirements.

A second solution to enable grasping, also applied in the field of haptics, is to use
two individual PMs simultaneously [22]. The downsides of the latter solution are the
introduction of unnecessary degrees of freedom (DoFs), significant additional control
complexity, and a doubling of the inertia. Therefore, neither a dedicated actuator at the
end-effector, nor the use of two PMs, is considered a viable solution to extend pick-and-
place robots beyond their current reach.

1.2.1. PARALLEL MANIPULATORS WITH TWO END-EFFECTORS

A promising alternative solution for opening up new markets for pick-and-place robots
is formed by a relatively novel class of PMs, which enable gripping through the intro-
duction of internal DoFs that are realized using an internal closed-loop chain [24–27].
The first example of such a mechanism was described in 2002 by Yi et al., who showed
that gripping robots can be designed with all motors located at the base, including those
required for gripping [24].



1

6 1. INTRODUCTION

Figure 1.5: A parallel manipulator with two end-effectors enables gripping through the introduction of an
internal closed-loop chain, here shown for a 7-DoF haptic device [23].

a)a) b)

Figure 1.6: a) Traditional joints require significant design effort to prevent play, friction, and backlash, while
they also suffer from wear. b) Compliant joints do not suffer from these effects and therefore pose an interest-
ing alternative (image adapted from Trease et al. [30]).

Gripping robots where all actuators are located at the base have two main advan-
tages. Firstly, placement of the actuators at the base reduces the effective inertia, which
is beneficial for the dynamic performance. Secondly, the fact that no actuators have
to be integrated at the end-effector is beneficial for both cleaning and hygiene. In the
literature, these manipulators have been referred to as parallel manipulators with con-
figurable platforms (PMCPs) [27, 28] and non-series parallel mechanisms [29]. Since
there is no established name for these robotic grippers, in this thesis these manipulators
will be referred to as parallel manipulators with multiple end-effectors (PMxEs) to em-
phasize the multipoint contact involved in gripping. Because gripping is usually done
using a two-point contact, this thesis focuses especially on Parallel Manipulators with
Two End-Effectors (PM2Es), of which Fig. 1.5 shows a recent example.

1.2.2. INTEGRATION OF COMPLIANT JOINTS

One disadvantage of PMs is that they typically contain many passive joints. Passive joints
are often realized using ball-bearings, which can introduce non-linear effects such as
play, friction, and backlash. These non-linear effects are detrimental for both the accu-
racy and the dynamic performance of the PM. If hygiene is important, the lubrication
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and wear of ball-bearings is also an issue, because released particles can contaminate
the object being manipulated.

To avoid the issues associated with ball-bearings, the integration of compliant joints
is a promising development. An example of a compliant joint is shown in Fig. 1.6b. Com-
pliant joints facilitate motion through the deformation of material and can therefore be
monolithic, which has several advantages [31]. Firstly, a monolithic joint does not re-
quire lubrication and has no wear so that no particles are produced, which is beneficial
for hygiene. Secondly, because compliant joints do not require complex assembly, as-
sembly costs can be greatly reduced. These properties make compliant joints interesting
for use in pick-and-place robots as well as in other applications.

However, the integration of compliant joints also introduces new design challenges.
One challenge is that they must be operated in their elastic range to ensure linear behav-
ior. Because the elastic range is limited, this poses a challenge in the design of an ade-
quate workspace. A second challenge is that the integration of compliant joints requires
a careful consideration of the elastic forces and moments that they introduce. This thesis
develops methods that enable the consideration of these forces and moments.

1.3. PROBLEM OF EXISTING STIFFNESS ANALYSIS METHODS

A S was discussed in Section 1.1, stiffness is one of the key parameters in parallel ma-
nipulator design. Stiffness is determined by the combination of kinematic design,

mechanical design and controlled actuator stiffness. The kinematic design describes
how the individual bodies in a manipulator move with respect to each other. Many ex-
isting stiffness analyses rely on the classical matrix structural analysis (MSA) [15, 32] or
its finer meshed brother of the computer age, the finite element method (FEM) [33].
These methods have been primarily developed for the analysis of mechanical structures
and rely on computationally intensive numerical schemes to take kinematic relations
into account. This makes these methods unsuitable for closed-loop control, where com-
puting time is critical, as well as optimization, where symbolical methods are preferred
because they provide “much more insight into the nature of the optimum design” com-
pared to numeric models [34].

A symbolic stiffness analysis can be achieved by including the kinematic relations
directly using Jacobian matrices. A Jacobian matrix describes how physical vectors, such
as velocities, differential displacements, force and moments, can be transformed from
a Cartesian space to a set of generalized coordinates and vice versa [35]. A set of gener-
alized coordinates that consists only of joint coordinates is referred to as a joint space
[36]. Jacobian matrices are symbolically expressed so that they can be evaluated at any
valid pose of the manipulator. This makes them extremely useful for manipulator design
and control, because the state of a robotic manipulator is often sensed in a joint space,
while a manipulator is generally controlled in a Cartesian space [37]. Jacobian matrices
are also at the basis of the standard symbolic expression of a PM’s stiffness matrix [38].

Unfortunately, standard Jacobian analysis methods for parallel manipulators have
not been extended to PM2Es, which thus prevents their effective design and control. A
second problem is that existing Jacobian-based stiffness analysis methods for traditional
PMs do not take the effect of loading into account, which is relevant if compliant joints
are considered, while they also struggle to take the structural stiffness of PMs fully into



1

8 REFERENCES

account. Both a complete stiffness analysis method and a Jacobian analysis are required
to optimize PM2Es or to enable an effective integration of compliant joints in PM2Es.
The absence of these analysis methods is thus blocking the road towards the optimal
design of novel robotic grippers based on PM2Es.

1.4. THESIS OBJECTIVE AND OUTLINE

B ECAUSE the opportunities posed by PM2Es as well as the integration of compliant
joints can only be fully seized if an appropriate stiffness analysis is available, the

objective of this thesis is

to develop a Jacobian-based stiffness analysis method for parallel manipulators that
is also valid for compliant parallel manipulators with two end-effectors.

The outline of this thesis is visually represented in Fig. 1.7. First, Chapter 2 develops
a novel Jacobian-based stiffness analysis method for parallel manipulators that is more
general than existing Jacobian-based stiffness analysis methods. This generalization is
required to extend Jacobian-based stiffness analysis to more complex mechanisms such
as PM2Es and to take all aspects of compliant joint integration into account. To confirm
that the mathematics in Chapter 2 are correct, the method is experimentally validated in
Chapter 3. Additionally, in this chapter examples of the obtained stiffness matrices are
presented, all of which are symmetric. This observation raises the question: why did pre-
vious research find asymmetric stiffness matrices? Chapter 4 answers that question by
identifying and correcting the modeling error in a much-cited work from 1993 by Griffis
and Duffy [39], which first reported such an asymmetric stiffness matrix.

The stiffness analysis that is proposed in Chapter 2 relies on Jacobian matrices. How-
ever, existing Jacobian analysis methods generally do not apply to PM2Es. Chapter 5
therefore develops a structured approach for the Jacobian analysis of PM2Es. Combina-
tion of this Jacobian analysis methods with the stiffness analysis method of Chapter 2
leads to a stiffness analysis method for PM2Es. In Chapter 6 it is verified for two partially
compliant PM2Es that the resulting stiffness analyses have an accuracy that is similar to
that of traditional PMs.
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2
JACOBIAN-BASED STIFFNESS

ANALYSIS METHOD FOR PARALLEL

MANIPULATORS WITH

NON-REDUNDANT LEGS

Throw a stone and watch the ripples flow
Moving out across the bay

David Gray
David Gray - Please forgive me

Stiffness is an important element in the model of a parallel manipulator. A complete stiff-
ness analysis includes the contributions of joints as well as structural elements. Parallel
manipulators potentially include both actuated joints, passive compliant joints, and zero
stiffness joints, while a leg may impose constraints on the end-effector in the case of lower
mobility parallel manipulators. Additionally, parallel manipulators are often designed to
interact with an environment, which means that an external wrench may be applied to
the end-effector. Also, the integration of compliant joints may introduce internal loading.
This chapter presents a Jacobian-based stiffness analysis method, based on screw theory,
that effectively considers all above aspects and which also applies to parallel manipulators
with non-redundant legs. As such, this chapter generalizes much of the existing Jacobian-
based stiffness analysis methods.

This chapter has been published in Proceedings of the Institution of Mechanical Engineers, Part C: Journal
of Mechanical Engineering Science (2015) [1]. Minor style and word changes have been made to facilitate
integration in this thesis.
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2.1. INTRODUCTION TO STIFFNESS ANALYSIS OF PARALLEL MA-
NIPULATORS

P ARALLEL manipulators consist of multiple serial chains that connect an end-effector
to an inertial base. Ever since parallel manipulators first entered the industrial mar-

ket, they have been praised for their high end-effector position accuracy and fast dy-
namics compared to traditional serial manipulators. To design and optimize a parallel
manipulator for the desired accuracy and dynamic performance, a mathematical model
is developed. An important parameter in this model is the Cartesian stiffness matrix,
which expresses the stiffness of the end-effector body relative to the inertial base.

The main elements in the stiffness analysis of parallel manipulators are the actuated
joints [2]. If the design includes passive compliant joints, where relative motion is due
to deformation of slender segments within the joint instead of relative motion between
rigid parts, their stiffness is also considered [3–5]. The structural stiffness of links has
been analysed for applications with fast and precise dynamics [6–8], as well as in the
analysis of compliant manipulators [9–14].

A symbolic expression of the Cartesian stiffness matrix is often valuable, e.g. for op-
timization purposes in the early design phase. A well-known method to symbolically
express the Cartesian stiffness matrix was introduced by Salisbury and Craig [15]. Their
method uses the Jacobian to map actuator stiffness from joint space to Cartesian space
and applies to serial manipulators in which all actuators are modelled as springs. Gos-
selin [16] developed an equivalent analysis for parallel manipulators. Chen and Kao [17]
extended the analysis that was presented by Salisbury and Craig to account for a change
in force transmission as a result of a small, finite deflection from the instantaneous pose.
Measurements by Alici and Shirinzadeh [18] confirmed this effect. Quennouelle and
Gosselin [19] later integrated these results in their stiffness analysis method for paral-
lel mechanisms, which also considered the presence of compliant joints.

More detailed stiffness analysis methods also consider the finite stiffness of links.
Symbolic expressions of structural stiffness matrices are typically developed using a com-
bination of linear beam theory and the rules for addition of elastic elements in series and
parallel. The variation lies in the implementation. If compliant parallel manipulators
are concerned, the implementation is relatively straightforward, because the Cartesian
stiffness matrices of individual legs are invertible [9, 10]. However, if a leg contains zero
stiffness joints, the Cartesian stiffness matrix of this leg will be singular. Therefore, of-
ten only the stiffness along the actuated load vector is considered [20–22]. In the Virtual
Joint Method (VJM) this is achieved through a lumped representation of the elasticity in
links by virtual joints (see Fig. 2.1) [23]. The VJM has also been applied to represent the
stiffness in constrained directions of lower mobility parallel manipulators (also known
as limited-DoF parallel manipulators) with a properly constrained passive leg [24, 25].
Using a comparable approach of stiffness mapping, Li and Xu [26] included the stiff-
ness in constrained directions for a 3-PUU manipulator. A method that uses the VJM to
analyse the stiffness of a general lower mobility parallel manipulators was developed by
Pashkevich et al. [27].

However, the method by Pashkevich et al. has its shortcomings. The first is that many
of the introduced virtual joint coordinates are dependent. As a result, their method re-
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Figure 2.1: a) The finite compliance of a link results in a deformation under loading. b) In the Virtual Joint
Method this distributed compliance is lumped and represented by a virtual spring with equivalent stiffness.

quires inversion of relatively large matrices, which is computational expensive. Methods
to alleviate the computational burden were proposed by Klimchik et al. [28], but at the
expense of an additional implementation effort. Secondly, the effect of an external load
applied at the end-effector is not considered in this method.

This chapter aims to develop a stiffness analysis method that is valid for lower mobil-
ity manipulators, and which considers the presence of compliant joints, the finite stiff-
ness of links, and also recognises the effect of an applied load. The structure of this
chapter is as following. First, a novel Jacobian-based stiffness analysis method will be
developed. Next, the developed stiffness analysis method will be applied to a 3-RRR
mechanism as an example. Finally, the analysis will be simplified for several specific
cases, followed by a discussion on the limitations of the presented analysis method.

2.2. NOVEL JACOBIAN-BASED STIFFNESS ANALYSIS METHOD

I N this section a stiffness analysis method will be developed, starting from the static
equilibrium equation. Insights from Jacobian analysis methods will be used to deal

with the possible presence of zero stiffness joints.

A parallel manipulator consists of multiple serial chains (in this thesis referred to as
legs) that connect the same end-effector to an inertial base. The displacement twist of
the end-effector is defined as $d = [dφ> dp>]>, where dφ and dp are the differential
rotational and linear displacements of the end-effector, considered at the point that co-
incides with the origin of a defined Cartesian end-effector reference frame.

The wrench whose transpose maps $d on the scalar field of work is $w = [m> f>]>,
where m is a moment applied on the end-effector at the point that coincides with the
origin of the Cartesian end-effector reference frame and f is a force applied to the end-
effector. In a static equilibrium

$w,pm =−$w,ext (2.1)

where $w,ext is the net wrench applied on the end-effector by the environment and
$w,pm is the net wrench applied on the end-effector by all legs of the parallel manip-
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ulator, so

$w,pm =
N∑

i=1
$w,i (2.2)

where $w,i is the wrench applied on the end-effector by leg i , for a parallel manipulator
with N legs.

In the remainder of this section, first the basic assumptions are listed. Next, an exist-
ing Jacobian analysis method is used to express joint torques as a wrench in the defined
Cartesian end-effector reference frame. A derivation of this wrench then leads to an ex-
pression for the Cartesian stiffness matrix.

2.2.1. BASIC ASSUMPTIONS
In the analysis presented in this chapter, several assumptions are made. Firstly, it is
assumed that the manipulator is in a static equilibrium and that all wrenches exerted
by the parallel manipulator on the end-effector are caused by elastic deformations, and
therefore are all conservative. As such, actuators are modelled as springs, which means
that proportional control is assumed to dominate the actuator torque. All other wrenches
acting on the end-effector are combined in a single external wrench.

It is also assumed that the vector τ, which is the vector containing all joint torques in
the parallel manipulator, can be determined based on the configuration of the manip-
ulator. This determination is a separate topic and will not be further discussed in this
chapter.

In addition it is assumed that the parallel manipulator has 0 < F ≤ 6 Degrees of Free-
dom (DoFs), with N ≥ F . It is further assumed that there are no redundant kinematic
joints in each leg (see Wang and Gosselin [29] for an example of a parallel manipulator
with redundant joints). Then, the number of 1-DoF joints in leg i is equal to its number
of kinematic degrees of freedom, which Joshi and Tsai [30] refer to as the leg’s connec-
tivity Ci .

Finally, while the finite structural stiffness of the legs will be included in the analysis,
it is assumed that the end-effector body and the inertial body are rigid.

2.2.2. FULL INVERSE JACOBIAN ANALYSIS
Typically, the various wrenches $w,i in Eq. (2.2) are not directly available, but are ex-
pressed as a function of a vector τi , which is the vector containing all joint torques in
leg i of the parallel manipulator. A Jacobian matrix is used to transformτi into $w,i . Here
we will briefly summarize the Jacobian analysis presented by Huang et al. [31], which is
an extension of work by Joshi and Tsai. [30]. The method is based on screw theory and
uses the reciprocity of twists and wrenches to define a set of six linearly independent
twists and a set of six linearly independent wrenches.1

Each of the linearly independent twists, as defined in Ref. [31], maps a single joint
velocity onto end-effector Cartesian space. With the assumptions made earlier in this
chapter, Ci of these twists can be associated with joints that are physically present in
the leg. These twists are referred to as the twists of permission. Another 6−Ci twists

1Earlier, Ling and Huang [32] came to a similar result, but due to its more intuitive interpretation, this chapter
will use the method developed by Huang et al. [31].
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real R-joint
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U-joint

virtual
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Figure 2.2: The constraints imposed by a leg can be represented by a set of virtual, locked joints, here illustrated
for a 3-RRR leg.

are referred to as the twists of restriction and are associated with the constrained direc-
tions. Because twists describe the instantaneous motion along a screw axis, the twists of
restriction allow the constrained directions of a leg to be presented by a set of instanta-
neous virtual, locked joints. This is illustrated for the example of a 3-RRR leg in Fig. 2.2.
Because the end-effector is the terminal link of each individual leg, the end-effector dis-
placement twist can be expressed as

$d =
Ci∑
j=1

d qai , j $̂t ai , j +
6−Ci∑
k=1

d qci ,k $̂tci ,k (2.3)

where $̂t ai , j is the twist of permission that maps a unit differential displacement of the j th

real joint of leg i onto $d , with d qai , j its intensity. The unit twist of restriction $̂tci ,k maps

the unit differential displacement of the kth virtual joint of leg i onto $d , with intensity
d qci ,k .

Together, these unit twists of permission and unit twists of restriction form a set of
six linearly independent unit twists. Such set can be defined for any non-redundant leg,
including those of lower mobility parallel manipulators. The unit twists of restriction
are generally not unique, but Huang et al. [33] describe how unique solutions can be
found through the introduction of some simple additional conditions, which hold for
most existing parallel manipulators.

Additionally, a set of six linearly independent unit wrenches can be defined, where
each unit wrench is associated with a single joint. Each of these wrenches is reciprocal
to all twists in Eq. (2.3) except one. Therefore, for each leg Ci unit wrenches of actuation
can be found, where each unit wrench of actuation is associated to a separate real joint.
Another 6−Ci unit wrenches can be found which are each associated with one of the
virtual joints, and are termed unit wrenches of constraint.

Based on the reciprocity relations between the defined twists and wrenches, left-
multiplication of both sides of Eq. (2.3) with the transpose of each of the unit wrenches
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of actuation and unit wrenches of constraint leads to the inverse Jacobian matrix of leg i
[31]

J−1
i $d = dqi (2.4)

with

dim(qi ) = 6 (2.5)

and

J−1
i =



$̂>
w ai ,1

/($̂>
w ai ,1

$̂t ai ,1 )

$̂>
w ai ,2

/($̂>
w ai ,2

$̂t ai ,2 )
...

$̂>
w ai ,Ci

/($̂>
w ai ,Ci

$̂t ai ,Ci
)

$̂>
wci ,1

/($̂>
wci ,1

$̂tci ,1 )

$̂>
wci ,2

/($̂>
wci ,2

$̂tci ,2 )
...

$̂>
wci ,6−Ci

/($̂>
wci ,6−Ci

$̂tci ,6−Ci
)


(2.6)

where $̂w ai , j is the unit wrench of actuation associated with the j th real joint, while $̂wci ,k

is the unit wrench of constraint associated with the kth virtual joint of leg i . See Huang
et al. [31] for more details.

The inverse Jacobian matrix presented in Eq. (2.6) transforms the end-effector dis-
placement twist into a vector containing the differential displacements of all joints of
leg i , both real and virtual. Because each row in J−1

i maps the end-effector displacement
twist onto one differential joint displacement, a given order in which the differential joint
displacements appear in dqi determines the order of the rows in J−1

i , or vice versa. The
inverse Jacobian expressed by Eq. (2.6) is a 6×6 matrix and will be referred to as the full
inverse Jacobian of leg i . It is a function of the instantaneous configuration of the parallel
manipulator.

Equation (2.4) applies to each individual leg, so that for the complete parallel manip-
ulator it holds that

J−1$d = dq (2.7)

with

J−1 =


J−1

1
J−1

2
...

J−1
N

 (2.8)

dq = [
dq1

> dq2
> · · · dqN

>]>
(2.9)

where J−1 is the full inverse Jacobian of the parallel manipulator and dq is the vector that
contains all differential joint displacements. As such, q is the vector containing all joint
coordinates, both real and virtual, with dim(q) = 6N .
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2.2.3. JACOBIAN OF ELASTICITY FOR PARALLEL MANIPULATOR
Because the work delivered by each leg is independent of the coordinate frame in which
it is expressed

$>
w,i $d =τ>i dqi (2.10)

where τi is thus the vector that maps dqi onto work. Combination of Eqs. (2.4) and
(2.10) results in

$>
w,i $d =τ>i J−1

i $d (2.11)

and therefore
$w,i = J−>i τi (2.12)

where the order of the joints associated to the torques in τi is thus equal to that of dqi .
In this chapter, all joints of the parallel manipulator are modelled as springs. How-

ever, different joints have different properties:

1. actuated joints have a stiffness that is controllable. The joint torque transferred
by an actuated joint is τa , which depends on its position, qa , with respect to a
controllable reference position.

2. passive, compliant joints have a finite stiffness that depends on the specific de-
sign. This type of joint transfers a joint torque τpc , related to its position qpc with
respect to its unloaded position.

3. passive, zero stiffness joints are not capable of transferring a torque, so τpz = 0
for all positions qpz . An example of a joint that can be modelled as a zero stiffness
joint is a ball-bearing joint.

4. virtual joints are a representation of the directions in which the leg is constrained.
They represent the instantaneous motion directions which are not permitted by
the kinematic model, but which are feasible in practice due to the finite structural
stiffness of joints and links. Then, the equivalent joint torque τc represents the
elastic force resulting from a deformation that can be represented by a deflection
d qc of the virtual joint. Because the virtual joints themselves are mere constructs,
as was illustrated in Fig. 2.2, they have no physical properties and are represented
in the kinematic model as locked joints, i.e. as joints with infinite stiffness, or zero
compliance.

Since the order in which joints appear in the joint coordinate vector is arbitrary, we can
define

qi =
[

q>
a,i q>

pc,i q>
pz,i q>

c,i

]>
(2.13)

Because Eq. (2.10), this also determines

τi =
[
τ>a,i τ>pc,i τ>pz,i τ>c,i

]>
(2.14)

The torque transferred by the zero stiffness joints is zero at all times, so if a leg con-
tains Zi zero stiffness joints, thenτpz,i = 0Zi×1. This means that the equivalent wrench in
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Cartesian end-effector space does not depend on τpz,i and Eq. (2.12) can also be written
as

$w,i = J−>e,i τe,i (2.15)

where

τe,i =
[
τ>a,i τ>pc,i τ>c,i

]>
(2.16)

and J−1
e,i is termed the inverse Jacobian of elasticity of leg i . It is obtained from J−1

i , ex-
pressed in Eq. (2.6), by removing the rows associated to the zero stiffness joints. With
this definition, it holds that

J−1
e,i $d = dqe,i (2.17)

with

dqe,i =
[

dq>
a,i dq>

pc,i dq>
c,i

]>
(2.18)

where qe,i is thus the vector containing all joint coordinates of leg i except those of the
zero stiffness joints. The components of the vector qe,i will be referred to as the elastic
joint coordinates of leg i and its associated unit twists are said to span the elastic joint
space.

Earlier we concluded that if a leg contains Ci real joints, the number of virtual joints
is 6−Ci , so that dim(qc,i ) = 6−Ci . If we now consider a leg with Ai actuated joints and
Zi zero stiffness joints, then dim(qa,i ) = Ai , dim(qpz,i ) = Zi , and thus dim(qpc,i ) = Ci −
Ai −Zi . As a result,

dim(qe,i ) = dim(τe,i ) = 6−Zi (2.19)

and J−1
e,i is a (6−Zi )×6 matrix.

Because the wrench that is applied by each leg on the end-effector is expressed by
Eq. (2.15), Eq. (2.2) can be rewritten in the form

$w,pm = J−>e τe (2.20)

where

J−>e = [
J−>e,1 J−>e,2 · · · J−>e,N

]
, (2.21)

τe =
[
τ>e,1 τ>e,2 · · · τ>e,N

]>
(2.22)

Equation (2.20) thus expresses the net wrench applied by the legs of the parallel manipu-
lator on the end-effector as a function of the instantaneous configuration of the parallel
manipulator and the torques of all joints except those with zero stiffness.

2.2.4. STIFFNESS ANALYSIS METHOD
Following the standard definition of positive stiffness, where a displacement results in an
opposing force, the Cartesian stiffness matrix of the manipulator is obtained by taking
the negative of the derivative of $w,pm with respect to the six basis vectors of Cartesian
space,

K =−d$w,pm

dx
(2.23)
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where K is the Cartesian stiffness matrix of the end-effector body relative to the inertial
base, expressed in the end-effector reference frame. This 6×6 tensor can only be defined
if the end-effector can indeed be displaced along all six basis vectors of Cartesian space
[34]. In this chapter the finite stiffness of the structural elements of a parallel manipu-
lator will be included in the analysis model, which means that the end-effector can be
displaced in any direction irrespective of the kinematic DoFs of the manipulator.

Combination of Eq. (2.20) and Eq. (2.23) gives

K =−d
(
J−>e τe

)
dx

(2.24)

Application of the chain rule then leads to

K =
(
−∂J−>e

∂q
τe

)
dq

dx
− J−>e

∂τe

∂q

dq

dx
(2.25)

Expressions for the required terms in Eq. (2.25) are developed below.

EXPRESSION FOR THE TERM
∂J−>e
∂q τe .

As is discussed in more detail by e.g. Chen and Kao [17],

∂J−>e

∂q
τe =

[
∂J−>e
∂q1,1

τe
∂J−>e
∂q1,2

τe · · · ∂J−>e
∂qN ,6

τe

]
(2.26)

where in this case each term (∂J−>e )/(∂qi ,m)τe is a 6×1 column vector, with i = 1. . . N ,
and where qi ,m is the mth element of the vector defined in Eq. (2.13).

EXPRESSION FOR THE TERM
∂τ>e
∂q

dq
dx .

Because all joint torques, including those associated to the virtual joints, are assumed to
be the result of elastic deformations, we can express τe as

τe =−
∫ q

q0

Kq dq (2.27)

where Kq is the stiffness matrix which maps a differential joint displacement vector dq
onto a differential joint torque vector dτe . Using Eq. (2.27) and the Leibniz integral rule

∂τe

∂q

dq

dx
=−Kq

dq

dx
(2.28)

In traditional stiffness analyses, in which links are assumed infinitely rigid, Kq is a di-
agonal matrix containing the individual joint stiffness values [35]. If the finite stiffness
of links is also included, this matrix will not be a diagonal matrix and will need to be
obtained using a different approach, as is outlined below.

To include the finite stiffness of links in the stiffness analysis, we make use of the
stiffness rules for series and parallel connections,

K =∑
i

Ki for parallel connections (2.29)

K−1 =∑
i

K−1
i for series connections (2.30)
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In a parallel manipulator, the matrix K is thus the summation of the stiffness matrices of
the individual parallel connections between the inertial base and the end-effector. Since
the inertial base and the end-effector were assumed rigid, each of these individual par-
allel connections is formed by one individual leg. If this summation is expressed in joint
space it becomes the block-diagonal concatenation of the stiffness matrices of individ-
ual legs, because each leg has its own set of joint coordinates. For a parallel manipulator
with N legs, Eq. (2.28) can then be written as

−Kq
dq

dx
=−


Kq,1 0 · · · 0

0 Kq,2 · · · 0
...

...
. . .

...
0 0 · · · Kq,N




dq1
dx

dq2
dx
...

dqN
dx

 (2.31)

where

Kq,i =
∂τe,i

∂qi
(2.32)

is the stiffness matrix of the i th leg, expressed in joint space. It is a tensor that maps a
differential joint displacement vector dqi onto a differential joint torque vector dτe,i .
Because Eqs. (2.5) and (2.19), each tensor Kq,i is a (6−Zi )×6 matrix. Thus, Kq,i is gener-
ally not a square matrix.

The fact that Kq,i generally is not a square matrix is problematic, because in this
paper it is obtained by inverting a matrix Kq,i

−1. The inverse of stiffness is called com-
pliance, so Eq. (2.30) states that the compliance matrix for an individual leg, K−1

q,i , can be

constructed by adding the compliance matrices of its serially connected parts. Then, to
obtain Kq,i , this matrix is inverted and should therefore be a non-singular square matrix.

In order to obtain a non-singular square stiffness matrix in joint space, the assump-
tion is made that

∂τe,i

∂qpz,i

dqpz,i

dx
≈ 0, (2.33)

which means that the change in joint torques caused by a displacement of a passive,
zero stiffness joint as a function of an end-effector displacement is negligible. With this
assumption in place, Kq,i only acts on the vector components of dqi associated to joints
with a non-zero stiffness. Because in Eq. (2.18) the vector that contains these joints was
defined as qe,i , the assumption presented in Eq. (2.33) allows Eq. (2.28) to be written as

∂τe

∂q

dq

dx
≈ ∂τe

∂qe

dqe

dx
=−Kq,e

dqe

dx
(2.34)

with

Kq,e =


Kq,e,1 0 · · · 0

0 Kq,e,2 · · · 0
...

...
. . .

...
0 0 · · · Kq,e,N

 (2.35)

and where each stiffness matrix Kq,e,i is an invertible (6− Zi )× (6− Zi ) matrix that acts
on dqe,i .
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To construct each matrix Kq,e,i , Eq. (2.30) is used. In this chapter it is chosen to
express this equation as a summation of two parts: one part that only includes the com-
pliance of all joints in their kinematic DoF, the kinematic compliance matrix, K−1

q,e,k,i , and

another part that represents the structural compliance matrix, K−1
q,e,s,i . Then

K−1
q,e,i = K−1

q,e,k,i +K−1
q,e,s,i (2.36)

The kinematic compliance matrix, K−1
q,e,k,i , is a (6−Zi )× (6−Zi ) diagonal matrix where

each term is the compliance of the respective actuated joint, passive compliant joint or
virtual joint. The compliance of actuated and passive compliant joints are real and non-
zero, while the compliance of virtual joints is zero, as was earlier discussed. It should
be noted that if the zero stiffness joints had not been removed from the analysis, this
would have introduced elements of infinite compliance in K−1

q,e,k,i . By expressing the

compliance matrix in elastic joint space, this problem was effectively avoided.
The structural compliance matrix of leg i can be thought of as the leg’s compliance

with all kinematic joints locked in place. The matrix K−1
q,e,s,i represents this structural

compliance matrix in elastic joint space. This matrix is obtained in two steps. First an
expression is obtained of the structural compliance matrix of leg i in end-effector Carte-
sian space, K−1

s,i . Secondly, this matrix is mapped onto elastic joint space.

An established method to obtain K−1
s,i is to use adjoint matrices to express the struc-

tural compliance matrix of each individual structural element in the Cartesian end-effector
reference frame [9, 10, 36], so that they can be added as in Eq. (2.30). This leads to

K−1
s,i =

∑
l

AdHee
i ,l

K−1
s,i ,l Ad>

Hee
i ,l

(2.37)

where K−1
s,i ,l is the 6×6 structural compliance matrix of the l th individual structural el-

ement of leg i . This matrix is typically expressed in a reference frame connected to the
respective structural body, so AdHee

i ,l
is the 6×6 adjoint matrix which transforms a vec-

tor from this reference frame into the Cartesian reference frame connected to the end-
effector.

Next, the transformation
K−1

q,e,s,i = J−1
e,i K−1

s,i J−>e,i (2.38)

is used to map K−1
s,i onto the elastic joint space of leg i . This transformation enables the

addition introduced in Eq. (2.36).
Equations (2.36)-(2.38) can be combined into a single expression,

K−1
q,e,i = K−1

q,e,k,i + J−1
e,i

(∑
l

AdHee
i ,l

K−1
s,i ,l Ad>

Hee
i ,l

)
J−>e,i (2.39)

It will generally be computationally intensive to invert this symbolic matrix directly and
obtain a symbolic expression for Kq,e,i . A more practical strategy will be to invert K−1

q,e,i
numerically for a given configuration. From Eq. (2.35) it follows that inversion of N
matrices, each of dimension (6− Zi )× (6− Zi ), is required to obtain an instantaneous
numerical expression of matrix Kq,e .
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CARTESIAN STIFFNESS ANALYSIS.
Considering the foregoing derivations and expressions, Eq. (2.25) can be rewritten by
inserting Eq. (2.34), which gives

K =
(
−∂J−>e

∂q
τe

)
dq

dx
+ J−>e Kq,e

dqe

dx
(2.40)

Then, because [35]
dq

dx
= J−1 (2.41)

and
dqe

dx
= J−1

e (2.42)

it is possible to express Eq. (2.40) in the form

K =
(
−∂J−>e

∂q
τe

)
J−1 + J−>e Kq,e J−1

e (2.43)

where J−1 was expressed in (2.8). Equation (2.43) is an expression for the Cartesian stiff-
ness matrix of a parallel manipulator with non-redundant legs under loading, which
takes the structural stiffness of the legs into account and which is also valid for lower
mobility parallel manipulators.2

2.3. EXAMPLE ANALYSIS OF A 1-DOF 3-RRR MANIPULATOR

I N this section the introduced stiffness analysis method is applied to a 3-RRR spatial
1-DoF manipulator with three identical legs, shown in Fig. 2.3. The manipulator only

allows linear motion along the Z-axis. Each leg consists of an actuated revolute joint
(indicated by R), a passive compliant revolute joint and a zero stiffness revolute joint.
The spatial manipulator is overconstrained in linear motion along the Y-axis as well as in
rotations around the X-axis and the Z-axis. Due to these characteristics, the manipulator
presented in Fig. 2.3 is considered as an example of a general parallel manipulator with
non-redundant legs.

To perform the stiffness analysis, for each leg first a set of six linearly independent
unit twists is determined, as well as the unit wrenches which each do work on only one
of the unit twists. All twists and wrenches are expressed in a right-handed Cartesian
reference frame connected to the end-effector at point O ′. The basis vectors of this ref-
erence frame are parallel to those of the inertial Cartesian reference frame with origin O .
Based on observation of the kinematic structure of an individual leg, and the properties

2Inserting the expression τe = −J>e $w,ext , which follows from Eqs. (2.1) and (2.20), and the rule
∂J−>e
∂q =−J−>e

∂J>e
∂q J−>e in Eq. (2.43) gives K = J−>e Kq,e J−1

e − J−>e
∂J>e
∂q $w,ext J−1. This equation is comparable to

expressions derived by Chen and Kao [17] and Quennouelle and Gosselin [37]. However, since a direct sym-
bolic expression for J>e is typically not available for a parallel manipulator, while such expression is typically
available for J−>e , Eq. (2.43) is preferred.
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Figure 2.3: A 3-RRR manipulator, where each leg consists of an actuated revolute joint, represented by a filled
drum, a passive compliant joint and a zero stiffness revolute joint. The only kinematically allowed DoF of this
spatial 1-DoF manipulator is a translation along the Z-axis.

described by Huang et al. [31], the unit twists of permission can be identified as

$̂t ai ,1 =
[

ŝi

−(l1r̂i ,1 + l2r̂i ,2 −ai )× ŝi

]
(2.44)

$̂t ai ,2 =
[

ŝi

−(l2r̂i ,2 −ai )× ŝi

]
(2.45)

$̂t ai ,3 =
[

ŝi

ai × ŝi

]
(2.46)

where $̂t ai ,1 , $̂t ai ,2 , and $̂t ai ,3 are the unit twists associated to the actuated joint, passive
compliant joint, and zero stiffness joint respectively. Furthermore, ŝ1 = −ê2, which is
the unit vector aligned with the negative Y -axis, ŝ2 = ê1, which is the unit vector aligned
with the X -axis, and ŝ3 = ê2, which is the unit vector aligned with the Y -axis. The other
vectors are illustrated in Fig. 2.3, where r̂i ,l is the unit vector pointing along the l th link
of leg i and âi is the vector pointing from O ′ to the center of the third joint of the i th leg.

Next, taking the conditions posed by Ref. [33] into account, a set of wrenches of
constraint can also be identified,

$̂wci ,1 =
[

03×1

ŝi

]
(2.47)

$̂wci ,2 =
[

ê3

03×1

]
(2.48)

$̂wci ,3 =
[

ê3 × ŝi

03×1

]
(2.49)

Following the methodology described by Huang et al. [31], these sets of unit twists of
permission and unit wrenches of constraint then enable the identification of a set of



2

26 2. JACOBIAN-BASED STIFFNESS ANALYSIS METHOD

unit wrenches of actuation

$̂w ai ,1 =
[

ai × r̂i ,2

r̂i ,2

]
(2.50)

$̂w ai ,2 =
[

ai × f̂i ,2

f̂i ,2

]
(2.51)

$̂w ai ,3 =
[−(l2r̂i ,2 −ai )× r̂i ,1

r̂i ,1

]
(2.52)

with

f̂i ,2 =
l1r̂i ,1 + l2r̂i ,2∣∣l1r̂i ,1 + l2r̂i ,2

∣∣
and finally also a set of unit twists of restriction can be identified,

$̂tci ,1 =
[

03×1

ŝi

]
(2.53)

$̂tci ,2 =
[

ê3

03×1

]
(2.54)

$̂tci ,3 =
[

ê3 × ŝi

03×1

]
(2.55)

From Eqs. (2.53)-(2.55) we can conclude that for each leg the constrained directions can
be visualised as a locked prismatic joint, positioned at O ′ and aligned with the vector ŝi ,
and two locked revolute joints, both also positioned at O ′ and aligned with the W-axis
and either the U- or V-axis, depending on the leg.

Equations (2.44)-(2.55) are then used to obtain the full inverse Jacobian for each leg
as in Eq. (2.6),

J−1
i =



$̂>
w ai ,1

/($̂>
w ai ,1

$̂t ai ,1 )

$̂>
w ai ,2

/($̂>
w ai ,2

$̂t ai ,2 )

$̂>
w ai ,3

/($̂>
w ai ,3

$̂t ai ,3 )

$̂>
wci ,1

/($̂>
wci ,1

$̂tci ,1 )

$̂>
wci ,2

/($̂>
wci ,2

$̂tci ,2 )

$̂>
wci ,3

/($̂>
wci ,3

$̂tci ,3 )


(2.56)

Because the third joint in each leg is a zero stiffness joint and the torque transferred by it
will be zero at all times, we can remove the associated row from J−1

i to form the inverse
Jacobian of elasticity, whose transpose,

J−>e,i =


$̂>

w ai ,1
/($̂>

w ai ,1
$̂t ai ,1 )

$̂>
w ai ,2

/($̂>
w ai ,2

$̂t ai ,2 )

$̂>
wci ,1

/($̂>
wci ,1

$̂tci ,1 )

$̂>
wci ,2

/($̂>
wci ,2

$̂tci ,2 )

$̂>
wci ,3

/($̂>
wci ,3

$̂tci ,3 )



>

(2.57)
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maps all non-zero torques transferred by leg i from joint space onto end-effector Carte-
sian space as in Eq. (2.15). Since each of the three legs includes one zero stiffness joint,
Zi = 1 for i = 1. . .3.

Because Zi 6= 0, the stiffness matrix of leg i , expressed as Kq,i in Eq. (2.32) is not a
square matrix. We will therefore make use of the assumption expressed in Eq. (2.33). The
resulting stiffness matrix Kq,e,i for each individual leg is invertible and can be developed
using Eqs. (2.36)-(2.38).

Equation (2.39) expresses K−1
q,e,i as a function of the matrices K−1

q,e,k,i and the com-

pliance matrices of individual structural elements K−1
s,i ,l . Using Eq. (2.16), and because

virtual joints are modelled with zero compliance

K−1
q,e,k,i =

 k−1
a,i 0 01×3

0 k−1
pc,i 01×3

03×1 03×1 03×3

 (2.58)

where, ka,i is the actuator stiffness and kpc,i is the stiffness of the compliant joint of leg i .
The symbolic matrices K−1

s,i ,l can be developed using linear beam theory [9, 10].
With above expressions, the Cartesian stiffness matrix can be obtained from Eq. (2.43),

which is repeated here for convenience

K =
(
−∂J−>e

∂q
τe

)
J−1 + J−>e Kq,e J−1

e

where for this example

J−1 =
J−1

1
J−1

2
J−1

3

 J−>e = [
J−>e,1 J−>e,2 J−>e,3

]
τe =

[
τ>e,1 τ>e,2 τ>e,3

]>
with J−1

i defined by Eq. (2.56), J−>e,i by Eq. (2.57), and

τe,i =
[
τa,i τpc,i τc,i ,1 τc,i ,2 τc,i ,3

]>
For the presented example, τa,i is controlled, τpc,i can be determined from the ma-
nipulator configuration and the properties of the implemented compliant joint, while
τc,i , j = 0 if the individual legs are not loaded in their respective constrained directions.
Finally, the matrix Kq,e is obtained using Eq. (2.35) as

Kq,e =
Kq,e,1 05×5 05×5

05×5 Kq,e,2 05×5

05×5 05×5 Kq,e,3


where each matrix Kq,e,i can thus be obtained by (numerically) inverting the symboli-
cally expressed matrix Kq,e,i

−1, which was expressed in Eq. (2.39).
Thus, all partial matrices necessary to determine K are directly available in symbolic

form, except Kq,e , which would in this example require the numerical inversion of three
5×5 matrices.
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2.4. DISCUSSION, SIMPLIFICATIONS AND LIMITATIONS

T HE presented Jacobian-based stiffness analysis method applies to a general paral-
lel manipulator with non-redundant legs in a loaded condition and takes both joint

compliance and structural compliance into account. Comparable existing analysis meth-
ods were either developed for more specific manipulators or did not consider loading,
which makes the presented analysis method more complete.

Besides its completeness, the presented method has two implementation advan-
tages over comparable existing methods. The first advantage is that the matrices that
need to be inverted are relatively small. To obtain the stiffness matrix of individual legs
requires an inversion of the corresponding compliance matrix. In the method by Pashke-
vich et al. [27] each of these matrices is of size (6+ Zi )× (6+ Zi ), while in the presented
method they are (6− Zi )× (6− Zi ) matrices. This size reduction is likely to result in a
computational advantage.

The second advantage of the presented analysis is that despite its completeness, its
structure allows for easy simplifications if desired. This makes the presented analysis
very flexible. To demonstrate this, three possible simplifications are discussed here.

2.4.1. NO LOADING

In case of no loading, τe = 0. Then, the first term after the equal sign in Eq. (2.43) is zero
and the stiffness analysis reduces to

K = J−T
e Kq,e J−1

e (2.59)

which is the transformation of the stiffness matrix from elastic joint space to Cartesian
space.

It should be noted that τe = 0 is not the same as $w,pm = 0. From Eq. (2.2) it can
be concluded that the latter only means that the net wrench is zero, which allows for
situations where the wrenches applied by individual legs are finite, but cancel each other
out. In that case internal loading occurs and τe 6= 0. Thus, a parallel manipulator can be
in a loaded condition, even if no external wrench is applied to the end-effector.

2.4.2. INFINITE STRUCTURAL STIFFNESS

If the structural stiffness is assumed infinite, the Cartesian stiffness matrix can only be
defined if none of the individual legs of a parallel manipulator are structurally constrained,
so for a 6-DoF parallel manipulator. This is because K is only well-defined if the end-
effector can be displaced along all six basis vectors of Cartesian space. This is not the
case for lower mobility manipulators with a structural stiffness that is assumed infinite,
because in that case the modeled stiffness in the constrained directions is infinite.

However, if none of the individual legs of a parallel manipulator are structurally con-
strained (e.g. a Stewart platform), the vector qc,i is the zero vector and the configuration
of each leg is defined by the vector which contains all real, kinematic joint coordinates

qi =
[

q>
a,i q>

pc,i q>
pz,i

]>
(2.60)
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Also for this class of manipulators Eq. (2.43) expresses the Cartesian stiffness matrix,

K =
(
−∂J−T

e

∂q
τe

)
J−1 + J−T

e Kq,e J−1
e ,

where the stiffness matrix Kq,e is expressed by Eq. (2.34). However, without elasticity
in the structural elements, K−1

q,e,s,i = 0 for each leg and thus Kq,e is simply the diagonal

matrix containing the stiffness values of all actuated joints and passive, compliant joints
of the manipulator.

2.4.3. COMPLIANT PARALLEL MANIPULATOR

Compliant parallel manipulators are parallel manipulators which do not contain any
passive, zero stiffness joints. Instead, all passive joints are compliant joints. In these
compliant parallel manipulators, the vector qpz,i is the zero vector for all legs and there-
fore

qi =
[

q>
a,i q>

pc,i q>
c,i

]>
(2.61)

so that

J−T
e,i = J−T

i (2.62)

In this case, Eq. (2.43) simplifies to

K =
(
−∂J−T

∂q
τe + J−T Kq,e

)
J−1 (2.63)

2.4.4. COMPLICATIONS AND LIMITATIONS

Although the presented analysis method is valid for a general parallel manipulator with
non-redundant legs, there are several factors which may complicate this analysis or limit
its use. Firstly, it is assumed that all joint torques are known, including those associated
to the virtual joints. Especially if a parallel manipulator is overconstrained, there may be
additional difficulties in determining the constraint torques.

Second, because both the Jacobian and the structural stiffness matrices are linear ap-
proximation, appropriate care should be taken if the presented stiffness analysis method
is used to quantitatively assess displacements as a result of external loads. Especially if
the parallel manipulator is close to a singularity or if displacements under loading be-
come relatively large, the predicted displacements will likely be less accurate. Another
limitation comes from the fact that we assumed the end-effector itself to be rigid. Thus,
users of this analysis method should verify that the compliance of the end-effector body
is indeed negligible.

Finally, if a parallel manipulator contains zero stiffness joints and the finite stiffness
of structural elements is included in the stiffness analysis, the assumption presented in
Eq. (2.33) was made. Although we consider it very unlikely that a deflection of a passive,
zero stiffness joint as a function of an end-effector deflection causes a significant change
in elastic joint torques, users of the presented analysis should keep this assumption in
mind.
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2.5. CONCLUSIONS ON THE DEVELOPED STIFFNESS ANALYSIS

METHOD

T HIS chapter has presented a novel3 Jacobian-based stiffness analysis method for par-
allel manipulators with non-redundant legs, based on the static equilibrium equa-

tion. Because parallel manipulators often interact with an environment, an external
wrench acting on the end-effector was included in this equilibrium equation. The method
is valid for both 6-DoF and lower mobility manipulators, and it considers the presence
of compliant joints and the finite stiffness of links.

The presented analysis uses an existing method based on screw theory to define for
each leg a set of six linearly dependent, instantaneous joint axes. Each axis is associated
to either an actuated joint, a passive compliant joint, a zero stiffness joint or a virtual
joint. Virtual joints represent the motion restricted by the kinematic joints of the leg in
question. The four different types of joints have different stiffness properties, and there-
fore affect the resulting end-effector stiffness in different ways. The joint coordinates
associated to actuated, passive flexure, and virtual joints are together referred to as elas-
tic joint coordinates.

The method presented in this chapter integrates a symbolic structural stiffness anal-
ysis method based on adjoint matrices with a stiffness analysis method that relies on the
transformation between a joint space and a Cartesian space. The resulting method is
also valid for parallel manipulators with zero stiffness joints, because this method uses
a mapping of the 6×6 structural stiffness matrix of a leg into the space spanned by its
elastic joint coordinates. The resulting matrix of reduced dimension can be inverted.

To demonstrate the presented stiffness analysis method, it has been aplied to a spa-
tial 1-DoF parallel manipulator. Additionally, to illustrate the generality of the method,
three specific cases were discussed. One case assumed the absence of loading, another
infinite structural stiffness, and a third considered the stiffness analysis of a compliant
parallel manipulator. The presented Cartesian stiffness analysis method therefore gen-
eralises much of the existing Jacobian-based stiffness analysis methods for parallel ma-
nipulators with non-redundant legs.
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3
EXPERIMENTAL VALIDATION OF

JACOBIAN-BASED STIFFNESS

ANALYSIS METHOD FOR

PARALLEL MANIPULATORS WITH

NON-REDUNDANT LEGS

Now take a look at what you see
Do a little walking in your sleep

Felix Riebl
The Cat Empire - Go

Chapter 2 introduced a novel Jacobian-based stiffness analysis method for parallel ma-
nipulators, in which both the effect of loading and the structural compliance of all ele-
ments was considered. This chapter presents the experimental validation of this method.
The experimental validation was performed by comparing differential wrench measure-
ments with predictions based on stiffness analyses with increasing levels of detail. For this
purpose two passive parallel mechanisms were designed, namely a planar 3-DoF mecha-
nism and a spatial 1-DoF mechanism. For these mechanisms it was shown that a stiffness
analysis becomes more accurate both if loading and structural compliance are considered.

This chapter has been published in ASME Journal of Mechanisms and Robotics (2015) [1]. Compared to the
initial publication, mistakes in Eqs. (3.22)-(3.23) have been corrected and minor style and word changes have
been made to facilitate integration in this thesis.
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3.1. PURPOSE OF EXPERIMENTAL VALIDATION

S TIFFNESS is an important parameter in the modeling of a parallel manipulator. It de-
scribes the relation between forces and displacements in the low frequency domain

and thereby affects a manipulator’s positioning accuracy under loading. Stiffness also
has a large influence on the achievable force- and position bandwidth. Of particular
interest for parallel manipulators is the Cartesian stiffness matrix which describes the
stiffness of the end-effector with respect to the inertial base. For early phase design and
optimization, symbolic stiffness analysis methods are preferred [2, 3].

If only actuator stiffness is considered, a compact symbolic expression of a paral-
lel manipulator’s Cartesian stiffness matrix can be obtained using Jacobian mappings
[4]. This expression can be extended to manipulators (or mechanisms) which include
compliant joints [5]. If a manipulator is loaded, a term including the derivative of the
Jacobian with respect to the joint coordinate vector can also be part of the analysis [5–8].

Several researchers have recently presented symbolic stiffness analysis methods which
also consider the finite structural stiffness of the legs. Some of these methods only con-
sider structural stiffness along the actuated load vectors [9, 10]. This approach is valid for
3-DoF planar parallel manipulators and 6-DoF spatial parallel manipulators in which all
passive joints are zero stiffness joints, because in that case no passive wrenches or con-
straint wrenches are transferred by the legs. Constraint wrenches can be transferred by
the legs of lower mobility parallel manipulators [11, 12], but if constrained directions are
ignored in the stiffness analysis a similar approach has also be applied for the stiffness
analysis of these lower mobility parallel manipulators [13, 14].

However, in general a lower mobility parallel manipulator can be loaded along its
constrained directions, which means that the stiffness along these constrained DoFs is
relevant. Stiffness analysis methods that consider constrained directions have been de-
veloped for specific types of lower mobility parallel manipulators, such as lower mobility
compliant manipulators [15], parallel manipulators with a properly constrained leg [16–
18], or a 3-PUU parallel manipulator [18]. Pashkevich et al. [19] presented a method that
applies to more general lower mobility parallel manipulators. Their method involves
the inversion of a (6+Zi )× (6+Zi ) matrix for each leg, where Zi is the number of zero
stiffness joints in leg i .

Chapter 2 as well as Sung Kim and Lipkin [20] have presented stiffness analysis meth-
ods that apply to more general lower mobility parallel manipulators, and which makes
use of the constraint relations in a Jacobian analysis. This has enabled them to reduce
the size of the matrix that needs to be inverted for each leg to (6− Zi )× (6− Zi ). Like
the method by Pashkevich et al. [19], the method presented by Sung Kim and Lipkin
[20] does not consider the effect of loading, while this effect is included in the analysis
method in Chapter 2.

Both Pashkevich et al. [19] and Sung Kim and Lipkin [20] validated the inclusion
of structural compliance in their analysis method by comparison with models obtained
using the finite element method (FEM). At the basis of FEM models lay inevitable ap-
proximations and assumptions, which may affect the results. Experimental validation
activities can improve the confidence in results obtained from FEM models.

Experimental validation activities have been performed for the stiffness analysis of
specific parallel manipulators, such as a compliant parallel manipulator [15], or a 6-DoF
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parallel manipulators [9]. Neither of these analyses considered the effect of loading.
Both Yi et al. [21] and Alici and Shirinzadeh [22] remark that the effect of loading on
accuracy can be significant, but they did not conclude whether this effect is positive or
negative.

The purpose of this research is to experimentally validate the stiffness analysis method
for parallel manipulators with non-redundant legs proposed in Chapter 2, which con-
siders both the effect of loading and structural compliance. Two main contributions are
foreseen. Firstly, it will be experimentally validated whether the accuracy of a stiffness
analysis improves if the effect of loading is considered, which has not been demonstrated
before. Secondly, experiments will be performed to determine whether the inclusion of
structural compliance based on the constraint relations in the Jacobian analysis leads
to valid results, which will support earlier conclusions based on comparison with FEM
models.

This chapter is structured as follows. First, in the Method section two passive mech-
anisms are introduced, for which stiffness models with different levels of detail are de-
scribed. The Method section also describes the measurement system and the data post-
processing, which enables a comparison of the accuracy of different stiffness models in
order to determine whether additional detail indeed increases accuracy. In the Results
section the processed measurements are presented together with examples of resulting
stiffness matrices for both mechanisms. Finally, the implications of these results are dis-
cussed.

3.2. EXPERIMENTAL VALIDATION METHOD

T HE central idea in this chapter is to develop dedicated mechanisms in tandem with
a dedicated measurement system to validate the stiffness analysis method as pre-

sented in Chapter 2. The formulation of that method consists of two independent terms,
and therefore two independent sets of data were collected so that the two terms could
be analyzed independently. To facilitate independent data sets, two passive mechanisms
were designed, each with a compliance that is tuned to the measurement accuracy.

In the remainder of this section first the general formulation of the stiffness analysis
as presented in Chapter 2 is summarized. Next, the two developed passive mechanisms
are introduced. Finally, the measurement system is presented, which consists of an in-
ertial measurement frame that was used to control the end-effector pose, and a reaction
wrench sensor.

3.2.1. GENERAL FORMULATION OF STIFFNESS ANALYSIS
A Cartesian stiffness matrix K is a 6×6 matrix that maps a displacement twist $d onto a
differential wrench d$w , where

$d =
[

dφ
dp

]
, d$w =

[
dm
df

]
in which dφ and dp are the differential angular and linear displacements of the end-
effector, and dm and df the resulting change in moment- and force vector applied by
the parallel manipulator to the end-effector.
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Figure 3.1: Mechanism I is a passive planar 3-RPR mechanism, where the interaction wrenches are the result
of elongation/contraction of the linear springs, depending on the pose of the end-effector. Here mechanism I
is shown in pose I-d as introduced in Table 3.1, where the pose is determined by a position of reference frame
E with respect to O and a rotation θ.

The general formulation of the stiffness analysis that is validated in this chapter was
presented in Chapter 2, and is repeated here for convenience,

K =
(
−∂J−>e

∂q
τe

)
J−1 + J−>e Kq,e J−1

e (3.1)

where for a parallel manipulator with N legs, q is the 6N × 1 vector that contains all
real and virtual joint coordinates (where the virtual joint coordinates represent the con-
strained directions in joint space), τe is the joint torque vector where all zero entries as-
sociated to zero stiffness joints were removed, J−1 is the 6N ×6 full inverse Jacobian. The
matrix J−1

e is the inverse Jacobian of elasticity, which corresponds to the matrix J−1 with
all rows associated to zero stiffness joints removed. As such, J−1

e maps an end-effector
displacement twist on the elastic joint deformation vector dqe . Finally, matrix Kq,e is the
stiffness matrix of the parallel manipulator expressed in the space spanned by the elastic
joint coordinates, which includes the effect of actuated joints, compliant joints, as well
as structural compliance.

Equation (3.1) shows that in the method presented in Chapter 2 the Cartesian stiff-
ness matrix is a summation of two terms. The effect of loading is covered by the first
term, which includes the derivative of J−>e with respect to q. The second term represents
the mapping of the stiffness matrix from the elastic joint space to the Cartesian space.

3.2.2. MECHANISM I: PASSIVE PLANAR 3-DOF
To validate whether the accuracy of a stiffness model increases when loading is taken
into account by means of a Jacobian-derivative term, a passive planar 3-DoF mechanism
was designed. This mechanism will be referred to as mechanism I and was kept as simple
as possible to avoid that uncertainties in the mechanical design affect the results.

MECHANICAL DESIGN OF MECHANISM I
The designed planar mechanism is a 3-RPR mechanism with zero stiffness revolute joints
and passive compliant prismatic joints constructed from linear springs. A schematic
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representation of mechanism I is shown in Fig. 3.1. Out-of-plane stiffness was not con-
sidered. The inverse kinematics of the mechanism are given in Appendix A. The stiffness
ki [N/m] and the zero length qi ,20 [m] of the linear spring in each leg were identified as

ki = 114.2, qi ,20 = 0.092 for i = 1,2,3 (3.2)

JACOBIAN ANALYSES OF MECHANISM I
To perform the planar stiffness analysis as in Eq. (3.1), two Jacobian matrices are re-
quired, namely the full inverse Jacobian and the inverse Jacobian of elasticity, see Section
2.2.3. To obtain these matrices, the Jacobian analysis method as presented by Huang et al.[12]
was used. For that, three unit twists of permission, and three unit wrenches of actuation
were identified for each leg. They are formulated in Appendix A, so that the planar full
inverse Jacobian for each leg of mechanism I can be obtained as

J−1
I ,i =

$̂>
w ai ,1

/($̂>
w ai ,1

$̂t ai ,1 )

$̂>
w ai ,2

/($̂>
w ai ,2

$̂t ai ,2 )

$̂>
w ai ,3

/($̂>
w ai ,3

$̂t ai ,3 )

 (3.3)

The full inverse Jacobian of mechanism I can then be assembled as

J−1
I =

J−1
I ,1

J−1
I ,2

J−1
I ,3

 (3.4)

where each matrix J−1
I ,i is expressed by Eq. (3.3).

The inverse Jacobian of elasticity of mechanism I, J−1
I ,e , is obtained by removing the

rows from Eq. (3.4) which are associated to zero stiffness joints. Because the first and
third joint of each leg are zero stiffness joints, the inverse Jacobian of elasticity for mech-
anism I is obtained as

J−1
I ,e =

$̂>
w a1,2

/($̂>
w a1,2

$̂t a1,2 )

$̂>
w a2,2

/($̂>
w a2,2

$̂t a2,2 )

$̂>
w a3,2

/($̂>
w a3,2

$̂t a3,2 )

 (3.5)

COMPETING STIFFNESS MODELS FOR MECHANISM I
For this mechanism the only compliance is in the linear springs, which are described by
Eq. (3.2). Then, the stiffness matrix in joint space is

KI ,q,e = diag([k1 k2 k3]) (3.6)

Inserting Eqs. (3.4)-(3.6) in Eq. (3.1) then gives

KI ,ld =
(
−
∂J−>I ,e

∂qI
τI ,e

)
J−1

I + J−>I ,e KI ,q,e J−1
I ,e (3.7)

where KI ,ld is the resulting stiffness matrix in which loading is considered. The vector
τI ,e is obtained as

τI ,e =
k1

(
q1,2 −q1,20

)
k2

(
q2,2 −q2,20

)
k3

(
q3,2 −q3,20

)
 (3.8)
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Figure 3.2: Mechanism II is a 1-DoF passive spatial 3-RRR mechanism, where the interaction wrenches are the
result of elastic deformation of the compliant joints that make up the second revolute joint of each leg. The
pose is determined by a position of reference frame E with respect to O .

where ki and qi ,20 were defined in Eq. (3.2).
Since KI ,q,e is the diagonal matrix introduced in Eq. (3.6), the last term of Eq. (3.7)

corresponds to the conventional stiffness mapping from joint space to Cartesian space
[4], which serves as the benchmark model,

KI ,bm = J−>I ,e KI ,q,e J−1
I ,e (3.9)

3.2.3. MECHANISM II: PASSIVE SPATIAL 1-DOF
A second mechanism was designed to validate whether inclusion of structural compli-
ance increases stiffness modeling accuracy. This mechanism will be referred to as mech-
anism II. Mechanism II was deliberately designed with significant structural compliance,
so that displacements could also be imposed in constrained directions and the reaction
wrenches resulting from these displacements were within the measurement range of the
wrench sensor.

MECHANICAL DESIGN OF MECHANISM II
The designed spatial mechanism is a passive 3-RRR mechanism, in which each second
revolute joint is a compliant joint. By positioning one of three legs perpendicularly to
the other two, mechanism II has become a 1-DoF mechanism that allows linear motion
along the Z-axis. A schematic representation of mechanism II is presented in Fig. 3.2.
The inverse kinematic equations are given in Appendix B. Stiffness in the second rev-
olute joints was realized by implementing cross-type compliant revolute joints, whose
stiffness in the kinematic DoF, ki (Nm/rad), was modeled by Trease et al. [23] as

ki =
( w

t
−0.373

) 4Gt 4

3L j
, for i = 1,2,3 (3.10)
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Figure 3.3: Reference frames used to express the structural compliance matrices of the spatial mechanism

where the designed cross-type compliant joint has width w = 9 mm, thickness t = 2
mm, length L j = 40 mm. The compliant joints were manufactured using a Stratasys
Dimension BST 1200es 3D printer with Stratasys ABSplus material, the shear modulus
of which was calculated as G = 740 ·106 N/m2 from

G = E/(2+2ν)

for which the Young’s modulus E = 1.95 ·109 N/m2 and the Poisson’s ratio ν= 0.32 were
determined as the average values of two tensile tests. Individual values for E had a 4%
difference from this value. The zero angle qi ,20 (rad) of each compliant joint was de-
signed as

qi ,20 =
3π

2
for i = 1,2,3 (3.11)

Structural compliance was deliberately introduced in the links so that relatively large
displacements could be imposed in constrained directions while the reaction wrenches
remained within the measurement range of the wrench sensor. Solid rectangular beams
were designed and linear beam theory was used to express the compliance of the point
coinciding with the origin of frame X Y Zi ,l with respect to the point coinciding with the
origin of frame X Y Zi ,l−1, as shown in Fig. 3.3. With twists and wrenches expressed in
frame X Y Zi ,l , link compliance can be expressed as

K−1
l i nk =



Li , j

G Ix
0 0 0 0 0

0
Li , j

E Iy
0 0 0

−L2
i , j

2E Iy

0 0
Li , j

E Iz
0

L2
i , j

2E Iz
0

0 0 0
Li , j

AE 0 0

0 0
L2

i , j

2E Iz
0

L3
i , j

3E Iz
0

0 − L2
i , j

2E Iy
0 0 0

L3
i , j

3E Iy


(3.12)

where Li ,1 = 0.135 m is the length of the first link in each leg and Li ,2 = 0.150 m is the
length of the second link in each leg (see Appendix B). The area and the area moments
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of inertia, respectively, are

A = bh

Ix = 1/12bh(h2 +b2)

Iy = 1/12bh3

Iz = 1/12b3h

with b = 3 mm and h = 16 mm. The links were manufactured using the same 3D-printer
and material as the compliant joints.

Because structural compliance in the constrained directions of a compliant joint may
not be negligible, this compliance was also considered. It is the unintended compliance
of the point connected to the origin of frame X Y Zi ,l−1 with respect to frame X Y Zi ,l−2 as
in Fig. 3.3. The structural compliance of the joint, so excluding kinematic compliance,
and with both displacement twist and reaction wrench expressed in frame X Y Zi ,l−1 ,
can be expressed as[23]

K−1
j oi nt = diag

([ 8E I
L j

0 8E I
L j

24E I
L3

j

2AE
L j

24E I
L3

j

])
(3.13)

where in this case the area moment of inertia I and area A are

I = 1/12
(
w t 3 + t w3 − t 4)

A = 2w t − t 2

Measurements were done within the elastic range of both joints and links.

JACOBIAN ANALYSES OF MECHANISM II
Each leg of mechanism II has three kinematic joints and three constrained directions.
The mechanism has the same kinematic structure as the example mechanism presented
in Chapter 2, in which the various unit twists and unit wrenches were described, as well
as the full inverse Jacobian. The full inverse Jacobian of mechanism II will be referred to
as J−1

I I .
The joint types of mechanism II are however slightly different from the mechanism

presented in Chapter 2. In the mechanism developed in this section there are no actu-
ated joints, but similar to the mechanism in Section 2.3, the second kinematic joint is a
compliant joint and stiffness in constrained directions is also considered. Therefore, the
Jacobian of elasticity for each leg becomes

J−1
I I ,e,i =


$̂>

w ai ,2
/($̂>

w ai ,2
$̂t ai ,2 )

$̂>
wci ,1

/($̂>
wci ,1

$̂tci ,1 )

$̂>
wci ,2

/($̂>
wci ,2

$̂tci ,2 )

$̂>
wci ,3

/($̂>
wci ,3

$̂tci ,3 )

 (3.14)

The full inverse Jacobian of elasticity for mechanism II is then constructed as

J−1
I I ,e =

J−1
I I ,e,1

J−1
I I ,e,2

J−1
I I ,e,3

 (3.15)

where each matrix J−1
I I ,e,i was expressed in (3.14).
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Figure 3.4: a) The end-effector was connected via the end-effector interface to the attachment beam, which is
part of the inertial measurement frame. A caliper was used to control the position of the end-effector interface
along b) the X-axis, c) the Y-axis, and d) the Z-axis, while e) screw holes in the end-effector interface allowed for
a discrete rotation of 1/8 radians about the Z-axis. This figure illustrates this concept for mechanism II, where
the caliper is outlined in white. The same concept holds for mechanism I, but because mechanism I is a planar
mechanism it was not displaced along the Z-axis.

COMPETING STIFFNESS MODELS FOR MECHANISM II
The 1-DoF 3-RRR mechanism was developed to experimentally validate a stiffness model
in which both loading and structural compliance are included as in Eq. (3.1). The ref-
erence model for this validation is the stiffness model in which only loading is consid-
ered. Replacing J−1, J−1

e and Kq,e in Eq. (3.1) with the inverse Jacobian from Section 2.3,
Eq. (3.15), and a matrix KI I ,q,e gives the expression

KI I =
(
−
∂J−>I I ,e

∂qI I
τI I ,e

)
J−1

I I + J−>I I ,e KI I ,q,e J−1
I I ,e (3.16)

where τI I ,e can be obtained similar to Eq. (3.8), but with ki and qi ,20 now expressed by
Eqs. (3.10) and (3.11). The matrix KI I ,q,e in (3.16) is expressed as

KI I ,q,e = diag
(
KI I ,q,e,1 KI I ,q,e,2 KI I ,q,e,3

)
(3.17)

with KI I ,q,e,i being the stiffness matrix of leg i in elastic joint space.
The two competing stiffness models differ in the description of matrices KI I ,q,e,i . For

the stiffness model in which only loading is considered and not structural compliance,
KI I ,q,e,i is a function of only the joint stiffness in the kinematic DoFs, which is written as

KI I ,q,e,ld ,i = diag([ki 0 0 0]) (3.18)

where ki was described by Eq. (3.10). In the competing stiffness analysis both loading
and structural compliance are considered. Because the individual elements of a leg are
connected in series, the compliance matrices of individual elements can be added. This
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summation of partial compliance matrices was expressed in Section 2.2.4 as

K−1
I I ,q,e,l d+sc,i = K−1

I I ,q,e,k,i + J−1
I I ,e,i

(∑
l

AdHE
i ,l

K−1
s,i ,l Ad>

HE
i ,l

)
J−>I I ,e,i (3.19)

where
K−1

I I ,q,e,k,i = diag([1/ki 0 0 0])

is the kinematic compliance matrix. The matrix K−1
s,i ,l is the invertible 6× 6 structural

compliance matrix of the l th individual structural element of leg i , which was expressed
in Eq. (3.12) for links and in Eq. (3.13) for compliant joints. Matrix AdHE

i ,l
is the 6×6 ad-

joint matrix which maps a vector from the reference frame in which K−1
s,i ,l was expressed

onto reference frame E , which is connected to the end-effector. See [24] for details on ad-
joint transformation. The compliance matrix obtained using (3.19) can be (numerically)
inverted to obtain KI I ,q,e,ld+sc,i so that it can be used to replace each matrix KI I ,q,e,i in
(3.17).

3.2.4. MEASUREMENT SYSTEM
Because there exists no such thing as a stiffness sensor, a Cartesian stiffness matrix can
only be validated by correlating a displacement twist with a differential reaction wrench.
Therefore, either the displacement twist or the differential reaction wrench needs to
be controlled, while the other is measured. In this research it was chosen to impose a
displacement twist and measure the change in reaction wrench using a wrench sensor.
Linear displacements were imposed in all three directions, while angular displacements
were only imposed about the Z-axis. The measurement system that was developed con-
sists of an adjustable inertial measurement frame and a wrench sensor, which are dis-
cussed below in more detail.

ADJUSTABLE INERTIAL MEASUREMENT FRAME

An inertial measurement frame was constructed using commercial OpenBeam compo-
nents and designed such that its compliance is negligible compared to the compliance of
the designed passive mechanisms. One at a time, mechanism I and mechanism II were
connected to this inertial measurement frame through their legs as well as their end-
effector, as shown in Fig. 3.4 for mechanism II. An attachment beam and an end-effector
interface, both considered part of the inertial reference frame, were used to control the
pose of the end-effector.

The considered stiffness analyses were validated by comparing the measured differ-
ential reaction wrench, i.e., the change in measured wrench before and after a discrete
displacement, with the differential reaction wrench as predicted by the considered stiff-
ness analyses. The reference position of the end-effector within the measurement frame
as well as the subsequently imposed linear displacements were manually controlled us-
ing a caliper, as also visualized in Fig. 3.4. The position of the end-effector along the
Y-axis was controlled by moving the end-effector interface along the attachment beam,
while the attachment beam itself was moveable in the X- and Z-directions. A digital lev-
eler was used to confirm that all beams in the inertial frame remained parallel to the
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end-e�ector
interface

wrench sensor

end-e�ector

Figure 3.5: To measure the interaction wrench, a wrench sensor is integrated between the end-effector body
and the end-effector interface, which is rigidly connected to the inertial frame, here shown for mechanism I.

inertial reference frame axes within a margin of 0.2 degrees. Furthermore, a discrete
rotation of 1/8 radians about the Z-axis was facilitated by the end-effector interface, as
shown in Fig. 3.4e.

Measurements were performed for a range of poses spread over the workspace of
each mechanism. This avoided the possibility that pose-specific stiffness behavior af-
fected the results. The poses were randomly selected, except for the pose in which the
net wrench on the end-effector is approximately zero. Each displacement was only im-
posed once, so no repetitive measurements were taken.

To determine whether additional detail in the stiffness analysis improved accuracy,
measurement errors had to be smaller than the difference between the predicted values
from competing stiffness models. This depended among others on the accuracy with
which displacement twist were imposed. It was estimated that the angular positioning
resolution ε∆φ [rad] and the linear positioning resolution ε∆p [m] were

ε∆φ = 1/80, ε∆p = 1/2000 (3.20)

REACTION WRENCH SENSOR

Reaction wrenches were measured using an ATI Mini40 sensor with SI-40-2 calibration,
whose compliance is negligible compared to the compliance in the mechanism. The
wrench sensor was connected in series between the end-effector and the end-effector
interface, as is shown in Fig. 3.5. The end-effector interface in turn was rigidly connected
to the attachment beam of the inertial measurement frame. As such, the wrench sensor
was displaced together with the end-effector body. Before the start of every measure-
ment series, the wrench sensor was initialized at the pose where the net elastic wrench
on the end-effector is approximately zero. The specified maximum moment resolution
εm [Nm] and force resolution ε f [N] of the wrench sensor are

εm = 1/4000, ε f = 1/100 (3.21)

Because this chapter aims to validate a stiffness analysis, only elastic wrenches are
of interest. The influence of gravity on the differential reaction wrench was ignored.
Since it is the difference in accuracy of competing stiffness models that is of interest, and
because neither model accounts for gravity, this was not expected to affect the results.
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attachment beams

Figure 3.6: Two attachment beams were required to put mechanism I at a reference pose where θ 6= 0.

Table 3.1: Poses at which displacements were imposed on mechanism I to measure the resulting change in
reaction wrench

Pose θ [rad] px [m] py [m]
I-a 0.00 0.180 0.147
I-b 0.00 0.180 0.180
I-c 0.00 0.150 0.150
I-d π/4 0.180 0.140
I-e −π/2 0.200 0.160
I-f 0.00 0.210 0.170
I-g −π/4 0.140 0.140
I-h 0.00 0.170 0.190

MEASUREMENT PLAN FOR MECHANISM I

For the planar 3-RPR mechanism three displacements were imposed at eight different
poses. The displacements are:

1. a 5 millimeter displacement along the X-axis, ∆x,

2. a 5 millimeter displacement along the Y-axis, ∆y , and

3. a rotation of 1/8 radians around the Z-axis, ∆θ.

The poses at which these displacements were imposed are listed in Table 3.1. Due to
the design of the measurement set-up two attachment beams were required to put the
mechanism at a pose where θ 6= 0, as shown in Fig. 3.6. Because it was expected that the
positioning accuracy would be significantly lower for these poses, only three such poses
were included. Also, since Mechanism I is a planar mechanism, only the components
mz , fx , and fy of the reaction wrenches were recorded.
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Table 3.2: Poses at which displacements were imposed on mechanism II to measure the resulting change in
reaction wrench

II-a II-b II-c II-d II-e II-f
pz [m] 0.197 0.170 0.180 0.190 0.210 0.220

 X

 Y
 X X Y  Y

 E
 B 

 E

 E

     B B

Figure 3.7: The end-effector reference frame E , the rotated measurement frame before imposing the dis-
placement, A , and the rotated measurement frame after imposing a displacement in the X-direction, B, for
mechanism I in pose I-d

MEASUREMENT PLAN FOR THE MECHANISM II
For the 1-DoF 3-RRR mechanism four displacements were imposed at six different poses.
The displacements are:

1. a 5 millimeter displacement along the X-axis, ∆x,

2. a 5 millimeter displacement along the Y-axis, ∆y ,

3. a 5 millimeter displacement along the Z-axis, ∆z, and

4. a rotation of 1/8 radians around the Z-axis, ∆θ.

These displacements span the allowed DoF (displacement 3), a simply constrained di-
rection (displacement 1), and two overconstrained directions (displacements 2 and 4).
The poses at which these displacements were imposed are listed in Table 3.2. Since the
only kinematic DoF of mechanism II is a linear displacement along the Z-coordinate,
this is the only variable that was changed between poses.

3.2.5. POST-PROCESSING OF MEASUREMENT DATA

To draw conclusions on the difference in accuracy between competing models raw mea-
surements were first post-processed. In the remainder of this section the various post-
processing steps are described, namely the transformation of measured wrenches, filter-
ing, and normalization.
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TRANSFORMATION OF MEASURED WRENCHES

The change between the reaction wrench before and after a displacement is ∆$w . Dis-
placements are assumed sufficiently small so that∆$w ≈ d$w . At each pose and for each
displacement, this differential wrench can be obtained both from the measurements and
from the developed stiffness analyses. To compare measured and predicted differential
wrenches, all wrenches were expressed in the end-effector reference frame, E , at the re-
spective reference pose. In order to prevent errors as described in Ref. [25], this required
some transformations for the case of the measured reaction wrenches, namely

∆$w,meas = AdHB
E

>$w,meas,B −AdHA
E

>$w,meas,A (3.22)

where $w,meas,A and $w,meas,B are the wrench measurements in the measurement frame
respectively before and after imposing the displacement (see Fig. 3.7), and AdHA

E
and

AdHB
E

are the 6×6 adjoint matrices that map vectors expressed in reference frame E into

reference frames A and B respectively. The homogenous matrices associated to these
adjoint matrices are expressed as

HA
E =


cosθ sinθ 0 0
−sinθ cosθ 0 0

0 0 1 0
0 0 0 1



HA
E =


cos(θ+∆θ) sin(θ+∆θ) 0 −cos(θ+∆θ)∆x − sin(θ+∆θ)∆y
−sin(θ+∆θ) cos(θ+∆θ) 0 sin(θ+∆θ)∆x −cos(θ+∆θ)∆y

0 0 1 −∆z
0 0 0 1


The differential wrench ∆$w can also be predicted using the Cartesian stiffness ma-

trix, evaluated at the pose in question, as

∆$w,pr ed =−K∆$d (3.23)

where the resulting ∆$w,pr ed is expressed in frame E , and ∆$d is the imposed displace-
ment twist.

FILTERING OF WRENCH ELEMENTS

The next step in the post-processing is to remove all elements below the measurement
threshold in each vector ∆$w,meas . The resulting moment- and force thresholds were
determined as

∆mthr es = kφ,mi nε∆φ+2εm (3.24)

∆ fthr es = kp,mi nε∆p +2ε f (3.25)

where kφ,mi n and kp,mi n are the minimum angular and linear values found on the diag-
onals of the stiffness matrices evaluated at all poses introduced in Table 3.1 or Table 3.2
respectively. The values for the angular and linear positioning resolution, ε∆φ and ε∆p ,
were introduced in (3.20). The moment and force measurement resolution values, εm
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and ε f , were introduced in Eq. (3.21) and are multiplied by two because ∆$w,meas is
the difference between two wrench measurements. The vector ∆$w,meas in which all
elements below the respective thresholds have been removed is labeled ∆$∗

w,meas . The
same elements can also be removed from ∆$w,pr ed to obtain ∆$∗

w,pr ed , such that

dim(∆$∗
w,pr ed ) = dim(∆$∗

w,meas ) ≤ 6

NORMALIZATION OF FILTERED WRENCH ELEMENTS

The difference between ∆$∗
w,meas and ∆$∗

w,pr ed gives the filtered differential wrench er-

ror. This vector contains force error values and moment error values. Because reaction
wrench magnitudes are highly mechanism-dependent, normalization was performed to
produce more general results. Normalization also allowed all data to be combined. Nor-
malization was performed with respect to ∆$∗

w,meas , namely

ε∆$∗
w
=

(
∆$∗

w,pr ed −∆$∗
w,meas

)> [
diag

(
∆$∗

w,meas

)]−1 (3.26)

where ε∆$∗
w

is a non-dimensional vector. It should be noted that if an element in∆$∗
w,pr ed

is zero, then the corresponding element in ε∆$∗
w

is minus unity.

3.3. PROCESSED MEASUREMENT RESULTS

B Ecause two independent validation activities have been executed using two separate
mechanisms, their results are also presented separately in this section. For both

mechanisms a box plot summarizes the normalized errors for the competing stiffness
models. In each box plot the central mark indicates the median and the size of the notch
shows the confidence interval around the median. If the notches of two box plots do
not overlap, this is a strong indication that their medians are significantly different. The
outer edges of each box indicate the 25th and 75th percentiles. Besides box plots, this
section also presents example matrices.

3.3.1. RESULTS ON EFFECT OF LOADING
For mechanism I in the poses presented in Table 3.1 it was found that kφ,mi n = 0.180 and
kp,mi n = 1.9 ·102. Then, Eqs. (3.24) and (3.25) result in

∆mthr es = 0.0027

∆ fthr es = 0.117

As a result of filtering with the above thresholds, 21 of initial 72 vector elements were
removed from further analysis. The raw data can be obtained from Ref. [26].

For all filtered differential wrenches, the corresponding normalized error vector ε∆$∗
w

can be determined using Eq. (3.26) for the two competing stiffness models introduced
in Eqs. (3.7) and (3.9). The individual values in all resulting normalized error vectors for
both the benchmark model introduced in Eq. (3.9) and the model including the effect
of loading, expressed in Eq. (3.7), have been combined in box plots, which are shown in
Fig. 3.8. The figure shows that the median of the normalized errors is closer to zero for
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Figure 3.8: Box plots of the normalized error values for the stiffness models without (benchmark model) and
with consideration of the effect of loading, as obtained from measurements on mechanism I.

the stiffness model which considers loading. A Wilcoxon rank-sum test demonstrates
that the null hypothesis that the two sets have equal medians can be rejected at the 5%
significance level. This means that the increase in accuracy caused by the inclusion of
the effect of loading in the stiffness analysis is significant.

To further illustrate the impact of loading on the stiffness behavior of a parallel mech-
anism, the stiffness matrix is evaluated at pose I-a, as introduced in Table 3.1, for both
stiffness models. The benchmark stiffness matrix, which only involves Jacobian trans-
formations, at this pose is

KI ,bm
∣∣

a =
0.02 1.83 0

1.83 218 0
0 0 125

 (3.27)

In pose I-a the net wrench applied by the three linear springs on the end-effector is
approximately zero. However, the internal loading is not zero, and as a result also the
Jacobian-derivative term is not zero. The stiffness matrix which includes this term is
evaluated as

KI ,ld
∣∣

a =
0.18 2.01 0

2.01 246 0
0 0 212

 (3.28)

The difference between Eqs. (3.27) and (3.28) is due to loading, captured by the Jacobian-
derivative term in Eq. (3.1).

3.3.2. RESULTS ON INCLUSION OF STRUCTURAL COMPLIANCE
For mechanism II in the poses presented in Table 3.2 it was found that kφ,mi n = 0.95 and
kp,mi n = 76. Then, Eqs. (3.24) and (3.25) result in

∆mthr es = 0.0124

∆ fthr es = 0.058

As a result of filtering with the above thresholds, 53 of initial 144 vector elements were
removed from further analysis. The raw data can be obtained from Ref. [26].
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Figure 3.9: Box plots of the normalized error values for the stiffness model which only considers loading and
for the stiffness model which also considers structural compliance, as obtained from measurements on mech-
anism II.

The values of all elements in the resulting normalized error vectors for the two com-
peting stiffness models expressed by Eqs. (3.16)-(3.19) are combined in box plots, which
can be found in Fig. 3.9. The median of the errors is closer to zero for the model which
also considers structural compliance. A Wilcoxon rank-sum test proves that this differ-
ence is significant; the null hypothesis that the two sets have equal medians can be re-
jected at the 5% significance level (in fact, it can be rejected at the 0.000001% significance
level).

To further illustrate the impact of the inclusion of structural stiffness, for both stiff-
ness models the stiffness matrix is evaluated at pose II-a, as introduced in Table 3.2. The
stiffness matrix which only includes the stiffness of the compliant joints in their kine-
matic DoF at this pose is

KI I ,l d
∣∣

a =



0.01 0 0 0 0.88 0.71
0 0.02 0 −1.77 0 0
0 0 0 0 0 0
0 −1.77 0 197 0 0

0.88 0 0 0 98.5 78.9
0.71 0 0 0 78.9 189

 (3.29)

The stiffness matrix based on the model which also considers structural compliance is
evaluated at pose II-a as

KI I ,ld+sc
∣∣

a =



2.74 0 0 0 21.1 0.66
0 1.38 −1.16 −11.8 0 0
0 −1.16 5.77 13.0 0 0
0 −11.8 13.0 296 0 0

21.1 0 0 0 319 73.0
0.66 0 0 0 73.0 175

 (3.30)

The difference between Eqs. (3.29) and (3.30) is due to the modeled structural stiffness
of the links and joints.
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3.4. SIGNIFICANCE OF THE RESULTS

F IGURES 3.8 and 3.9 have presented the main results of this chapter. Figure 3.8 demon-
strates for the passive planar mechanism shown in Fig. 3.1 that the accuracy of

the symbolic stiffness analysis improves significantly when the effect of loading is con-
sidered. Similarly, Fig. 3.9 shows that this accuracy also improves significantly when
structural compliance is considered for the lower mobility, overconstrained mechanism
shown in Fig. 3.2. Additionally, the matrix in Eq. (3.30) is full rank despite the fact that
the stiffness matrix of individual legs of mechanism II are singular due to the presence
of zero stiffness joints. As such, the considered stiffness analysis method has produced
valid results for both a very simple planar mechanism and for a more general spatial
mechanism.

The results in this chapter are based on measurements that were normalized in or-
der to make the results more general. One characteristic of normalization is that small
absolute error values correspond to large normalized error values if the measured value
is small. This has partially been alleviated by the applied filtering, but nonetheless this
effect is acknowledged by the authors. In fact, this only strengthens the results of this
chapter, because significant effects have been found despite this aggravation of mea-
surement errors through normalization. Also, it was pointed out that if an element in
∆$∗

w,pr ed is zero, then the corresponding element in ε∆$∗
w

is minus unity. This explains

the tendency towards minus unity in the box plots shown in Figs. 3.8 and 3.9.

As was also discussed in Chapter 2, even if the net wrench is zero, the Jacobian-
derivative term may still be significant due to internal loads, which are also a form of
loading. This effect is particularly relevant for mechanisms with compliant joints, as is
demonstrated by the difference between the matrices in Eqs. (3.27) and (3.28), which is
only due to the Jacobian-derivative term, while the net wrench is approximately zero in
the considered pose.

Both mechanisms that were introduced in this chapter are conservative systems,
which means that the stiffness matrices should be symmetric. However, for a mecha-
nism similar to mechanism I, an earlier research found an asymmetric stiffness matrix
when the effect of loading was considered [27]. The fact that all stiffness matrices pre-
sented in this chapter are symmetric is thus noteworthy.

3.5. CONCLUSIONS ON THE STIFFNESS ANALYSIS VALIDATION

T HIS chapter has made two main contributions. First, it has been demonstrated that
the inclusion of the effect of loading as presented in Chapter 2 can make a symbolic

stiffness analysis significantly more accurate, even for a simple mechanism. Secondly,
experimentally obtained results have shown that accuracy can also be significantly im-
proved if the structural compliance of a mechanism is considered as is done both in Ref.
[20] and Chapter 2, i.e., based on the constraint relations in the Jacobian analysis.

The above results were obtained as part of a set of activities to validate the Jacobian-
based stiffness analysis method presented in Chapter 2. Models with an increasing level
of detail were compared for two mechanisms, both specifically designed for this pur-
pose. The benchmark model was the stiffness analysis method based on the Jacobian
transformation from joint space to Cartesian space. Because it was shown that the ac-
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curacy of the resulting models increased with increasing level of detail, the considered
stiffness analysis method is considered valid.

For the first time, in this chapter it has been experimentally confirmed that inclusion
of the Jacobian-derivative term in a stiffness analysis has a positive effect on its accu-
racy. Since the Jacobian-derivative term represents the effect of loading this finding is
particularly relevant for the field of compliant parallel manipulator design. Also, in con-
trast to earlier reports, all stiffness matrices obtained throughout this research in which
loading was considered are symmetric. This symmetry is consistent with the fact that
the designed mechanisms are conservative systems.

Also the observed increase in accuracy when structural compliance is considered
in the Jacobian-based stiffness model is a relevant finding. This was demonstrated for
a lower mobility mechanism constructed from legs whose individual stiffness matrices
are singular due to the presence of zero stiffness joints. So far, Jacobian-based stiffness
analysis methods that can take the structural compliance of lower mobility parallel ma-
nipulators with zero stiffness joints into account have only been validated using FEM
models. This chapter has therefore presented the first experimental results in support of
these earlier validation activities.
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4
CONSISTENT MODELING RESOLVES

ASYMMETRY IN STIFFNESS

MATRICES

Alles komt weer goed,
Vannacht had ik een droom

Thomas Acda et al.
De Poemas - Bang dat dit het is

The example stiffness analyses performed in Chapter 3 produced symmetric Cartesian
stiffness matrices. In these analysis loading was captured by the Jacobian-derivative term
that is part of the stiffness analysis method developed in Chapter 2. However, early ex-
amples of stiffness analyses of parallel manipulators in which the effect of loading was
considered resulted in asymmetric stiffness matrices, which goes against the definition
of stiffness. By replicating those first analyses using the method presented in Chapter 2,
this chapter finds that the earlier observed asymmetry can be explained as a modeling
inconsistency. If that inconsistency is corrected, symmetric matrices are obtained, which
supports the notion that the Jacobian-derivative term is an integral part of the stiffness
analysis of robotic manipulators and mechanisms.

This chapter has been accepted by Mechanism and Machine Theory. Minor style and word changes have been
made to facilitate integration in this thesis.
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4.1. INTRODUCTION TO LOAD DEPENDENCE OF STIFFNESS

J ACOBIAN-BASED stiffness analysis methods are being used in the design and optimiza-
tion [1, 2], identification [3, 4] and control [5] of robotic manipulators. The popularity

of these methods is explained by their compact, symbolic formulation of the Cartesian
stiffness matrix as a function of a manipulator’s configuration and joint stiffness values.
Jacobian-based stiffness analysis methods have been developed both for serial manip-
ulators [6, 7] and parallel manipulators [8–12]. These stiffness analysis methods have
been used for the analysis of a wide range of parallel manipulators, such as machining
robots [1, 13, 14], haptic devices [15, 16], and precision manipulators [17, 18].

Several researchers have recognized that loading can have a significant effect on a
stiffness analysis [19, 20], which in turn can affect stability [21] and accuracy [22]. For
serial manipulators, this dependency on loading was expressed by Chen and Kao [23] in
a term that depends on the derivative of the Jacobian, and which represents the change
in the transmission of the already applied joint torques as a function of a displacement.
The effect of loading on the Cartesian stiffness matrix has also been expressed for parallel
manipulators [10, 12].

However, when Griffis and Duffy [24] performed the stiffness analysis of two mecha-
nisms under loading, they obtained asymmetric stiffness matrices. This is in contrast to
the definition of a stiffness matrix, which is necessarily symmetric.

Over the past decades, various researchers have analyzed the asymmetric stiffness
matrices presented by Griffis and Duffy [24]. Ciblak and Lipkin [25] introduced an ex-
plicit formulation for the skew-symmetric part of these asymmetric matrices, although
Chen [7] later argued that this formulation is not unique. Explanations for the asymme-
try have been sought mainly in the choice of basis twists [26–28]. Zefran et al. [26, 27]
concluded that asymmetry is a result of the Christoffel symbols not being symmetric,
which they explained by the fact that finite screw displacements in general do not com-
mute. Kövecses and Angeles [28] considered this to be the result of an inconsistent defi-
nition of twists and wrenches. They observed that if displacement twists are described in
the initial configuration, while differential wrenches are defined at the displaced manip-
ulator configuration, an asymmetric mapping occurs similar to those found in Ref. [27].
They argued that the considered mapping therefore does not properly represent a ma-
nipulator’s stiffness, which is a well-defined physical property at a specific configuration,
and which must be symmetric.

Several researchers have replicated the analyses in Ref. [24] using different meth-
ods. The stiffness matrices found by Sanger et al. [29] and Metzger et al. [30] confirmed
the results of Griffis and Duffy. On the other hand, the numerical method used by Huang
and Li [31] resulted in a stiffness matrix in which part of the asymmetry had disappeared.
Moreover, in Chapter 2 the Jacobian-derivative term was included in the analyses of two
compliant mechanisms, of which one is similar to the planar mechanism analyzed in
Ref. [24]. In these analyses only symmetric stiffness matrices were obtained. The fact
that different results have been obtained using different modeling methods raises the
question whether the observed asymmetry in Ref. [24] is not due to a modeling incon-
sistency rather than a fundamental problem in the analysis method.

The occurrence of asymmetry is in disagreement with the definition of stiffness, which
must be symmetric to comply with the principle of energy conservation. Thus, if the
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asymmetric stiffness matrices presented in the literature are correct, then the Jacobian-
derivative term cannot be considered as an integral part of the Cartesian stiffness analy-
sis. Understanding the cause of this asymmetry is therefore crucial for the further devel-
opment and use of the Jacobian-derivative term in stiffness analysis methods.

The goal of this chapter is to show that the asymmetric stiffness matrices in Ref. [24]
are the result of inconsistent modeling. For that, first the stiffness analyses in Ref. [24]
are replicated using the analysis method introduced in Chapter 2, which results in sym-
metric stiffness matrices. Next, it is shown that the asymmetry in Ref. [24] is accounted
for by an inconsistent expression of the moment arm vectors.

4.2. REPLICATION OF PREVIOUS ANALYSES

I N this section the analysis of the planar three degree of freedom (DoF) compliant
mechanism and the spatial 6-DoF mechanism presented in Ref. [24] are replicated

using the Jacobian-based stiffness analysis method introduced in Chapter 2. The gen-
eral formulation of this analysis method is repeated here for convenience, namely

K =
(
−∂J−>e

∂q
τe

)
J−1 + J−>e Kq,e J−1

e (4.1)

where K is the 6×6 Cartesian stiffness matrix, and for a parallel manipulator with N legs
q is the vector of size 6N , which contains all real and virtual joint coordinates. The vector
τe is the joint torque vector where all entries associated to zero stiffness joints were re-
moved (see Section 2.2 for more details), J−1 is the 6N ×6 full inverse Jacobian, and J−1

e is
the inverse Jacobian of elasticity that maps an end-effector displacement twist onto dqe ,
which is the joint displacement vector in which all entries associated to zero stiffness
joints are removed. Finally, matrix Kq,e is the stiffness matrix of the parallel manipulator
expressed in the space spanned by the elastic joint coordinates, which is a diagonal ma-
trix whose entries are the spring stiffness values if structural stiffness is not considered.
The matrix K acts on a displacement twist $d = [dφ> dp>]> and produces a differential
wrench d$w = [dm> df>]>, where dφ is a differential rotation vector, dp is a differen-
tial displacement vector, dm is a differential moment vector, and df is a differential force
vector.

Equation (4.1) consists of two terms, of which the second term covers the traditional
mapping of a joint stiffness matrix onto Cartesian space, e.g. as in Ref. [8]. The first term
represents the effect of loading, as derived in Section 2.2, and which is the topic of this
chapter. How to obtain the derivative of a Jacobian matrix multiplied by a joint torque
vector is explained in, for example, the appendix of Ref. [23]. Despite the fact that not
all joints necessarily have elastic properties, it is necessary to take the derivative of J−>e
with respect to all joint coordinates. This is because the wrench related to a specific joint
torque depends on the configuration of the manipulator and can therefore be a function
of other joint coordinates.

4.2.1. PLANAR 3DOF MECHANISM
The planar mechanism analyzed in Ref. [24] is a 3-RPR mechanism, shown in Fig. 4.1
in the configuration in which its stiffness matrix was evaluated. Because both revolute



4

60 4. CONSISTENT MODELING RESOLVES ASYMMETRY IN STIFFNESS MATRICES

X [m]
0 0.1 0.2 0.3 0.4

Y
 [m

]

0

0.1

0.2

0.3

0.4

0.5

 
1,1q

 
1,2 1,2 1ˆq =s a

 ϕ u
 ( ),p px y

 
3b

 
3k

Figure 4.1: The 3-RPR planar mechanism in the configuration in which its stiffness matrix was evaluated in
Ref. [24] with some example vectors indicated

joints in each leg are zero stiffness joints and each prismatic joint is modeled as a linear
spring, the vector τP,e is

τP,e =
−k1,2

(
q1,2 −q01,2

)
−k2,2

(
q2,2 −q02,2

)
−k3,2

(
q3,2 −q03,2

)
 (4.2)

where ki ,2 is the stiffness of the linear spring in leg i and q0i ,2 its free length. The matrix
Kq,e is the 3×3 diagonal matrix whose entries are the three stiffness values.

To develop J−1 and J−>e , it was necessary to describe for each leg a complete set of
twists of permission and wrenches of actuation, as introduced in Ref. [32]. The mech-
anism in Fig. 4.1 is similar in structure as mechanism I introduced in Section 3.2.2 and
therefore has the same twists of permission, which are for each leg

$̂P,t ai ,1 =
[

ŝi ,1

−(qi ,2ŝi ,2 −ai )× ê3

]
(4.3)

$̂P,t ai ,2 =
[

03×1

ŝi ,2

]
(4.4)

$̂P,t ai ,3 =
[

ŝi ,3

ai × ŝi ,3

]
(4.5)

where $̂P,t ai ,1 , $̂P,t ai ,2 , and $̂P,t ai ,3 are the unit twists associated respectively to the lower
zero stiffness revolute joint, the passive compliant prismatic joint, and the upper zero
stiffness revolute joint of the i th leg of the planar mechanism. The mechanism lies in the
XY-plane, so ŝi ,1 = ŝi ,3 = ê3, where ê3 is the unit vector aligned with the Z-axis (pointing
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out of the page). Furthermore,

ŝi ,2 =
cos qi ,1

sin qi ,1

0

 (4.6)

is the unit vector along the prismatic joint axis for each leg i , while ai is the vector that
describes the position of the connection point of the i th leg with respect to the point
on the end-effector which coincides with the origin of the inertial reference frame. An
example of this vector is included in Fig. 4.1. For each individual leg of the planar mech-
anism this vector is expressed as

a1 =
xp

yp

0

 , a2 = a3 =
xp +u cosφ

yp +u sinφ
0

 . (4.7)

Because the mechanism is considered in the XY-plane that contains the mechanism,
and because Eqs. (4.3)-(4.5) are linearly independent, no constraint wrenches can be
identified. Three unit wrenches of actuation can then be identified, which also lie in the
XY-plane, namely

$̂P,w ai ,1 =
[

ai × (ê3 × ŝi ,2)
(ê3 × ŝi ,2)

]
(4.8)

$̂P,w ai ,2 =
[

ai × ŝi ,2

ŝi ,2

]
(4.9)

$̂P,w ai ,3 =
[−(qi ,2ŝi ,2 −ai )× (ê3 × ŝi ,2)

(ê3 × ŝi ,2)

]
. (4.10)

Because the twists and wrenches in Eqs. (4.3)-(4.5) and (4.8)-(4.10) are six-dimensional,
while the mechanism has been analyzed in the XY-plane, each twist and wrench was
transformed into their equivalent two-dimensional twist and wrench. For that, the first,
second, and sixth entry of each twist and wrench was removed.

Next, the full inverse Jacobian of the planar mechanism can be assembled as

J−1
P =

J−1
P,1

J−1
P,2

J−1
P,3

 (4.11)

where each matrix J−1
P,i is expressed as

J−1
P,i =


$̂>

P,w ai ,1
/($̂>

P,w ai ,1
$̂P,t ai ,1 )

$̂>
P,w ai ,2

/($̂>
P,w ai ,2

$̂P,t ai ,2 )

$̂>
P,w ai ,3

/($̂>
P,w ai ,3

$̂P,t ai ,3 )

 (4.12)

with the various twists and wrenches defined in Eqs. (4.3)-(4.5) and (4.8)-(4.10).
Similar to Section 2.3, the inverse Jacobian of elasticity of the planar mechanism, J−1

P,e ,
is obtained by removing the rows from Eq. (4.11) which are associated to zero stiffness
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joints. Because the first and third joint of each leg are zero stiffness joints, the inverse
Jacobian of elasticity for the planar mechanism is obtained as

J−1
P,e =


$̂>

P,w a1,2
/($̂>

P,w a1,2
$̂P,t a1,2 )

$̂>
P,w a2,2

/($̂>
P,w a2,2

$̂P,t a2,2 )

$̂>
P,w a3,2

/($̂>
P,w a3,2

$̂P,t a3,2 )

 . (4.13)

The derivative of matrix J−1
P,e with respect to complete set of joint coordinates q multiplied

by τP,e , i.e. the first term in Eq. (4.1), was obtained as in the appendix of Ref. [23] and
using MATLAB’s diff function.

4.2.2. SPATIAL 6DOF MECHANISM

To replicate the analysis of the Stewart-Gough mechanism as in Ref. [24], a 6-UPS mech-
anism will be considered instead of the 6-SPS mechanism [33]. The reason is that in a
6-SPS mechanism each leg has seven independent joints, which means that there is one
redundant DoF in each leg, while the stiffness analysis method presented in Chapter 2
only applies to parallel manipulators with non-redundant legs. Therefore, in order to use
the method introduced in Chapter 2, the 6-UPS mechanism must be considered. This
will not change the results, because the wrench applied by the elastic prismatic joint is
not affected by a rotation around its own axis.

The 6-UPS mechanism in the configuration in which its stiffness matrix was evalu-
ated in Ref. [24] is shown in Fig. 4.2, including examples of vectors that are used in this
analysis. Because the universal joint and the spherical joint in each leg are zero stiffness
joints, while the third joint of each leg is a prismatic joint that is modeled as a linear
spring, the vector τe for the spatial mechanism is

τS,e =


−k1,3

(
q1,3 −q01,3

)
−k2,3

(
q2,3 −q02,3

)
...

−k6,3
(
q6,3 −q06,3

)

 (4.14)

where ki ,3 is the stiffness of the linear spring in leg i and q0i ,3 its free length. The matrix
Kq,e is the 6×6 diagonal matrix whose entries are the six stiffness values.

To develop J−1 and J−>e for the considered Stewart-Gough platform it was again nec-
essary to describe for each leg a complete set of twists of permission and wrenches of
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Figure 4.2: The 6-UPS spatial mechanism in the configuration in which the stiffness matrix was evaluated in
Ref. [24] with some example vectors indicated

actuation as in Ref. [32]. The twists of permission were identified as

$̂S,t ai ,1 =
[

ŝi ,1

−(qi ,3ŝi ,3 −ai )× ŝi ,1

]
, (4.15)

$̂S,t ai ,2 =
[

ŝi ,2

−(qi ,3ŝi ,3 −ai )× ŝi ,2

]
, (4.16)

$̂S,t ai ,3 =
[

03×1

ŝi ,3

]
, (4.17)

$̂S,t ai ,4 =
[

ŝi ,4

ai × ŝi ,4

]
, (4.18)

$̂S,t ai ,5 =
[

ŝi ,5

ai × ŝi ,5

]
, (4.19)

$̂S,t ai ,6 =
[

ŝi ,6

ai × ŝi ,6

]
(4.20)

where $̂S,t ai ,1 and $̂S,t ai ,2 are the two unit twists associated to the zero stiffness universal

joint, $̂S,t ai ,3 is the unit twists associated to the compliant prismatic joint, and $̂S,t ai ,4 ,

$̂S,t ai ,5 and $̂S,t ai ,6 are the unit twists associated to the zero stiffness spherical joint. Also
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for this mechanism ŝi ,1 = ê3, while

si ,2 = Rz (qi ,1)

0
1
0

 , si ,3 = Rz (qi ,1)Ry (qi ,2)

1
0
0

 ,

si ,4 = si ,3, si ,5 = Rz (qi ,1)Ry (qi ,2)Rx (qi ,4)

0
1
0

 ,

si ,6 = Rz (qi ,1)Ry (qi ,2)Rx (qi ,4)Ry (qi ,5)

0
0
1


where the matrices Rx (qi , j ), Ry (qi , j ), and Rz (qi , j ), are the rotation matrices that rotate a
vector by an angle qi , j around respectively the local X-, Y-, or Z-axis.

Finally, because the platform is an equilateral triangle with sides of length u, the var-
ious vectors ai for the Stewart-Gough platform are

a1 = a2 =
xp

yp

zp

+Rz (α)Rx (β)Rz (γ)

u
0
0

 ,

a3 = a4 =
xp

yp

zp

+Rz (α)Rx (β)Rz (γ)

u cos(π/3)
u sin(π/3)

0


a5 = a6 =

xp

yp

zp


where α, β and γ are the Euler angles corresponding to a Z X Z rotation convention.

Then, with the twists of permission as defined in Eq. (4.20), the wrenches of actuation
can be expressed as

$̂S,w ai ,1 =
[

ai × ŝi ,2

ŝi ,2

]
(4.21)

$̂S,w ai ,2 =
[

ai × (ŝi ,2 × ŝi ,3)
(ŝi ,2 × ŝi ,3)

]
(4.22)

$̂S,w ai ,3 =
[

ai × ŝi ,3

ŝi ,3

]
(4.23)

$̂S,w ai ,4 =
1

cw ai ,4

([
ŝi ,3

03×1

]
+ tan qi ,2

qi ,3

[
ai × ŝi ,2

ŝi ,2

]
+

tan qi ,5

qi ,3

[−(qi ,3ŝi ,3 −ai )× ŝi ,5

ŝi ,5

])
(4.24)

$̂S,w ai ,5 =
[−(qi ,3ŝi ,3 −ai )× (ŝi ,3 × ŝi ,5)

(ŝi ,3 × ŝi ,5)

]
(4.25)

$̂S,w ai ,6 =
[−(qi ,3ŝi ,3 −ai )× ŝi ,5

ŝi ,5

]
(4.26)
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where

cw ai ,4 =
∣∣∣∣ tan qi ,2

qi ,3
ŝi ,2 +

tan qi ,5

qi ,3
ŝi ,5

∣∣∣∣ .

Next, the full inverse Jacobian of the spatial mechanism can be assembled as

J−1
S =


J−1

S,1
J−1

S,2
...

J−1
S,6

 (4.27)

where each matrix J−1
S,i is expressed as

J−1
S,i =


$̂>

S,w ai ,1
/($̂>

S,w ai ,1
$̂S,t ai ,1 )

$̂>
S,w ai ,2

/($̂>
S,w ai ,2

$̂S,t ai ,2 )
...

$̂>
S,w ai ,6

/($̂>
S,w ai ,6

$̂S,t ai ,6 )

 . (4.28)

Finally, since only the prismatic joint of each leg is not a zero stiffness joint, the in-
verse Jacobian of elasticity for the spatial mechanism is obtained as

J−1
S,e =


$̂>

S,w a1,3
/($̂>

S,w a1,3
$̂S,t a1,3 )

$̂>
S,w a2,3

/($̂>
S,w a2,3

$̂S,t a2,3 )
...

$̂>
S,w a6,3

/($̂>
S,w a6,3

$̂S,t a6,3 )

 . (4.29)

Also for the spatial mechanism, the derivative of matrix J−1
S,e with respect to complete set

of joint coordinates multiplied by τP,e was obtained as in the appendix of Ref. [23] and
using MATLAB’s diff function.

4.2.3. ALTERNATIVE EXPRESSIONS FOR WRENCHES OF ACTUATION
The difference between the analyses presented in this chapter and those presented in
Ref. [24] lies in the definition of the moment arm vector that is part of the wrench of actu-
ation applied by each leg on the end-effector. Griffis and Duffy defined this vector using
bi , which describes the (fixed) position of the first joint of leg i with respect to the origin
of the inertial reference frame. Examples of this vector are shown in Figs. 4.1 and 4.2.
On the other hand, in this chapter the vector ai has been used instead, which describes
the position of the wrench application point on the end-effector. A Cartesian stiffness
analysis considers the change in the wrench acting on the end-effector as a function of a
change in end-effector position, and therefore only the expression using ai is consistent
with that definition.

The moment arm vectors appear in the stiffness analysis via the wrenches of actu-
ation associated to the prismatic joints, which are expressed by Eq. (4.9) in case of the
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planar mechanism and by Eq. (4.23) for the spatial mechanism. The expressions that are
implicitly used in Ref. [24] are

$̂∗
P,w ai ,2

=
[

bi × ŝi ,2

ŝi ,2

]
(4.30)

instead of Eq. (4.9), and

$̂∗
S,w ai ,3

=
[

bi × ŝi ,3

ŝi ,3

]
(4.31)

instead of Eq. (4.23).
When Eqs. (4.30) and (4.31) are used instead of Eqs. (4.9) and (4.22), the resulting

Jacobians of elasticity as described by Eqs. (4.13) and (4.29) are different. Although
both descriptions give equal numerical results when the respective Jacobian matrices
are evaluated, the derivatives of these Jacobian matrices with respect to the joint coordi-
nate vector are not equal.

4.3. RESULTS OBTAINED USING ALTERNATIVE EXPRESSIONS

I N this section the stiffness matrices of the 3-RPR and the 6-UPS mechanisms are eval-
uated in the same configurations as in Ref. [24]. First, each mechanism is evaluated

using the formulation of the wrenches developed in Eqs. (4.8)-(4.10) and Eqs. (4.21)-
(4.26) respectively. Secondly, each mechanism is evaluated with the wrenches of actu-
ation associated to the linear springs replaced by those in Eqs. (4.30) and (4.31), which
are the wrench expressions implicitly used in Ref. [24].

4.3.1. PLANAR MECHANISM
In the configuration in which Griffis and Duffy [24] evaluated the Cartesian stiffness ma-
trix of the planar mechanism, one has

k1 = k2 = k3 = 1000 N/m, q01,2 = q02,2 = q03,2 = 0.12 m,

u = 0.1 m, xp = 0.30 m, yp = 0.40 m, φ=π/4 rad,q1,1

q2,1

q3,1

=
0.9273

0.9037
1.1323

 rad,

q1,2

q2,2

q3,2

=
0.5000

0.5992
0.5199

 m

When these values are inserted into Eq. (2.43), where the required vectors and matrices
are expressed by Eqs. (4.2)-(4.13), the matrix

KP =
 757.5 Nm −1029.2 N 838.0 N
−1029.2 N 2533.6 N/m 301.3 N/m

838.0 N 301.3 N/m 2795.3 N/m

 (4.32)

is obtained, which is symmetric. When the wrench of actuation as described in (4.9) is
replaced by the wrench of actuation as described in (4.30), with

b1 = b2 =
0

0
0

m, b3 =
0.15

0
0

m
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the resulting stiffness matrix becomes asymmetric, namely

KP =
 47.0 Nm 13.3 N 143.8 N
−1029.2 N 2533.6 N/m 301.3 N/m

838.0 N 301.3 N/m 2795.3 N/m

 . (4.33)

4.3.2. SPATIAL MECHANISM

In the configuration in which Griffis and Duffy [24] evaluated the Cartesian stiffness ma-
trix of the spatial mechanism, one has

k1

k2

k3

k4

k5

k6

=



1000
2000
3000
4000
5000
6000

 N/m,



q01,3

q02,3

q03,3

q04,3

q05,3

q06,3

=



0.11
0.12
0.13
0.14
0.15
0.16

 m,

u = 0.07 m, xp = 0.10 m, yp = 0.04 m, zp = 0.12 m,

α=π/2 rad, β= 3π/4 rad, γ= 0.9553 rad,

q1,1

q2,1

q3,1

q4,1

q5,1

q6,1

=



0.5201
0.8516
0.1419
5.8571
5.9760
0.3805

 rad,



q1,2

q2,2

q3,2

q4,2

q5,2

q6,2

=



5.5021
5.3001
5.1427
5.3443
5.2291
5.4438

 rad,



q1,3

q2,3

q3,3

q4,3

q5,3

q6,3

=



0.2278
0.1928
0.1815
0.2044
0.1380
0.1612

 m.

When these values are inserted into Eq. (2.43), where the required vectors are expressed
by Eqs. (4.14)-(4.29), then the following symmetric result is obtained

KS =



114 −29 −90 207 −581 467
−29 170 −12 304 5 −837
−90 −12 85 −240 517 −212
207 304 −240 8000 521 7556
−581 5 517 521 3932 521
467 −837 −212 7556 521 15061

 (4.34)

where the upper-left 3×3 submatrix has units Nm, the upper-right and lower-left sub-
matrices have units N, and the lower-right submatrix has units N/m. When each wrench
of actuation as described in (4.22) is replaced by the wrench of actuation as described in
(4.31), with

b1 = b6 =
0

0
0

m, b2 = b3 =
0.07

0
0

m, b4 = b5 =
 0.035

0.06062
0

m
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the resulting stiffness matrix becomes asymmetric, namely

KS =



21 −21 −15 207 −75 407
−17 41 6 −202 5 −532
−39 −3 33 −180 212 −212
207 304 −240 8000 521 7556
−581 5 517 521 3932 521
467 −837 −212 7556 521 15061

 (4.35)

4.4. DISCUSSION ON RESOLVED ASYMMETRY

T WO main observations are made from the evaluated stiffness matrices in Section 3.3.
The first observation is that the Cartesian stiffness matrices presented in Eqs. (4.32)

and (4.34) are symmetric. Because elastic wrenches are conservative and stiffness is the
tensor relating elastic wrenches to displacements, a stiffness matrix is symmetric by def-
inition. The matrices in Eqs. (4.32) and (4.34) are thus in agreement with this definition.

The second observation is that the stiffness matrices presented in Eqs. (4.33) and
(4.35) are asymmetric and identical to those presented in Ref. [24]. These asymmetric
stiffness matrices were reconstructed by implementing expressions for the wrenches of
actuation that are inconsistent with the definition of a manipulator’s Cartesian stiffness
matrix. It is therefore shown that the asymmetry in the stiffness matrices obtained in
Ref. [24] can be explained as a modeling inconsistency.

In Chapter 2 it was argued that the Jacobian-derivative term, which represents load-
ing, is an essential part of a Jacobian-based stiffness analysis, and that this term improves
the accuracy of the resulting stiffness model as shown in Chapter 3. However, if inclusion
of this term could lead to asymmetric stiffness matrices, then it cannot be considered
part of a stiffness analysis. By restoring the symmetry in previously obtained asymmet-
ric stiffness matrices, this chapter supports the notion that loading is an integral part of
the stiffness analysis of robotic manipulators and mechanisms.

The findings from this chapter can also be used to reinterpret earlier research. In re-
lation to the symmetry of Christoffel symbols [26, 27], it can be said that it is necessary
that all vectors are expressed consistently with respect to the end-effector body so that
these vectors fully capture the dependency on the end-effector pose. Additionally, it is
interesting to note that Kövecses and Angeles considered the option that asymmetry is
the result of wrenches being defined with respect to the fixed inertial body as opposed
to the rigid end-effector body. They however dismissed that idea because “at any fixed
location in space, we also have a point of the rigid body that is instantaneously coinci-
dent with the fixed point” [28]. This chapter points out that although these points may
coincide, the derivatives of the Jacobian matrices resulting from alternative vector ex-
pressions can be different. It is this difference which causes the asymmetry.

4.5. CONCLUSIONS ON THE ROLE OF LOADING

T HIS chapter demonstrates that the asymmetry in the stiffness matrices obtained by
Griffis and Duffy [24] can be resolved by consistent modeling. It is shown that the

asymmetry in the stiffness matrices in Ref. [24] can be explained by an inconsistency
in the expression of the wrenches of actuation, and more specifically in the expression
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of the moment arm vector associated to the linear springs. In Ref. [24] this vector was
defined at the inertial base, while it must be defined at the end-effector to be consistent
with the definition of stiffness. Additionally, it is shown that if this vector is defined at
the end-effector body, symmetric stiffness matrices are obtained.

A stiffness matrix is symmetric by definition, so a stiffness analysis method that can
result in asymmetric stiffness matrices is by definition erroneous. The asymmetric stiff-
ness matrices obtained in Ref. [24] have been discussed for decades, but this chapter
finally restores symmetry in these matrices. In doing so, this chapter supports the no-
tion that loading is an integral part of the stiffness analysis of robotic manipulators and
mechanisms.
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5
A SYSTEMATIC APPROACH FOR THE

JACOBIAN ANALYSIS OF PARALLEL

MANIPULATORS WITH TWO

END-EFFECTORS

We only stay in orbit
For a moment of time

Adam F. Duritz
Counting Crows - Recovering the satellites

The stiffness analysis method introduced in Chapter 2 is a function of Jacobian matrices.
Therefore, in order to apply this method to parallel manipulators with two end-effectors
(PM2Es), a Jacobian analysis of PM2Es is required. A Jacobian analysis is also required
for many other standard analyses, such as a velocity analysis and a static force analysis.
A complete Jacobian analysis includes constraint relations, but these constraint relations
have not been consistently included in previous analyses of PM2Es. However, they are
specifically relevant for the static force analysis and stiffness analysis of PM2Es, because
wrenches applied by the actuators can be transferred to the end-effectors through internal
constraints. This chapter presents a systematic approach to perform the Jacobian analy-
sis of PM2Es, which is based on screw theory, and that takes all constraint relations into
account. The approach is applied to a PM2E with three legs and one internal closed-loop
chain. An example mechanism was built to experimentally validate the resulting Jacobian
analysis using a static force analysis.

This chapter has been submitted to Mechanism and Machine Theory and builds on the work that has been
published in the proceedings of ASME’s 38th Mechanisms and Robotics Conference (2014) [1]. Minor style
and word changes have been made to facilitate integration in this thesis.
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5.1. INTRODUCTION TO THE JACOBIAN ANALYSIS OF PM2ES

G RIPPING is an important aspect of many modern robotic systems, such as pick-and-
place robots [2, 3], microassembly robots [4, 5], and haptic devices [6, 7]. An impor-

tant category of grippers are those which mechanically engage an object in a multi-point
contact [8, 9].

For many applications a driving requirement is dynamic performance, which asks
for robotic systems with a high stiffness-over-inertia ratio. Despite their advantageous
stiffness-over-inertia ratio, only few mechanically gripping robots are based on parallel
manipulators (PMs). A PM can have all actuators located at the base, which significantly
reduces the effective inertia. However, the standard solution for adding a gripping capa-
bility to a PM is to connect an additional, dedicated gripper in series to the end-effector
as, for example, in Refs. [4, 7]. Because of its placement at the end-effector, the inertia of
a gripper can significantly degrade the dynamic performance of the resulting manipula-
tor.

b)a)

 

legF

 

,2eF 

,1eFend-
e�ectors

Figure 5.1: a) A parallel manipulator with two end-effectors (PM2E) interacts with the environment via two
specific bodies, where b) wrenches applied by the legs can be transferred to the end-effectors through internal
constraints, as is illustrated here for one leg of the overactuated 7-DoF haptic master device introduced by
Lambert and Herder [10].

Parallel manipulators with two end-effectors (PM2Es) are a relatively novel class of
PMs and form a promising alternative solution for gripping robots. PM2Es are an in-
terpretation of parallel manipulators with a configurable platform [10, 12–16], where a
closed-loop chain replaces the rigid platform of a traditional PM. This architecture en-
ables the design of gripping robots with all motors located at the base, which is beneficial
for the overall dynamic performance. The first example of such gripping robot was intro-
duced by Yi et al. [13], where the whole closed-loop chain acts as the gripper. This thesis
focuses on PMCPs where two specific bodies of the closed-loop chain interact with the
environment, which is illustrated using an example in Fig. 5.1. Therefore, the term PM2E
is preferred.

For the analysis and control of PMs a Jacobian is used [17–20] and therefore various
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end-e�ectors

terminal 
links of legs

a) b) c)

d)

internal
serial chain

end-e�ector
serial chain

leg

Figure 5.2: An illustration of the definitions introduced in this chapter using a planar manipulator based on
Ref. [11], where a) the terminal links of the different legs are also part of an internal closed loop chain. b) The
term PM2E is used if two specific bodies in the internal closed loop chain are designated as the end-effectors.
c) Each serial chain that connects two adjacent terminal links is referred to as an internal serial chain. Here
one of the four internal serial chains is highlighted. d) Additionally, an end-effector serial chain is defined as a
serial chain connecting two end-effectors. This chapter focuses on PM2Es with one internal closed loop chain,
which can be modeled as two end-effector serial chains in parallel, one of which is highlighted here.

researchers have focused on the Jacobian analysis of PM2Es. Yi et al. [13] differentiated
the inverse kinematic relations to obtain an expression for the Jacobian. Mohamed and
Gosselin [11] performed a Jacobian analysis based on a set of loop-closure equations
that must be solved simultaneously. Lambert et al. [12] applied a stepwise approach in
which they first obtained an expression for the motion of the connection point of each
leg, which is a serial chain that connects the internal closed-loop chain to the base as
illustrated in Fig. 5.2a. They then developed a Jacobian based on the relations between
allowed end-effector motions, motions of the leg connection points and motions of the
actuators. Nabat et al. [15] considered the end-effector velocity state of their manipula-
tor as the combination of a platform twist and an additional velocity term to represent
the internal platform motion.

More recently, the author of this thesis made a first attempt to generalize the Jaco-
bian analysis of PM2Es based on screw theory and using a mapping of a set of twists [1].
The resulting Jacobian analysis expresses the velocity state of a spatial PM2E as a com-
bination of two twists with respect to the ground, one for each end-effector. As opposed
to other analyses, the analysis in Ref. [1] does include constraint relations, but not those
within the internal closed-loop chain.

However, internal constraint relations can be particularly relevant for PM2Es, be-
cause wrenches applied by the legs can be transferred to the end-effectors through in-
ternal constraints, as illustrated in Fig. 5.1b. As such, an incomplete consideration of
constraint relations can make the obtained Jacobian analysis invalid for use in a static
force analysis. Because gripping is mainly a force task, a static force analysis is of partic-
ular interest in gripping robots. Therefore, the absence of a Jacobian analysis that is also
valid for use in a static force analysis represents a significant gap in the existing knowl-
edge of PM2Es.
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The aim of this chapter is to develop a systematic approach for the Jacobian analysis
of PM2Es. Special attention will be given to the analysis of constraints so that the result-
ing Jacobian can be used in a static force analysis. Constraint relations in a Jacobian can
also be relevant in a stiffness analysis [21, 22].

The structure of this chapter is as follows. First, definitions and assumptions are
introduced, which will be used throughout this chapter. Then, a novel structure for the
Jacobian analysis of PM2Es with an internal closed-loop chain is developed, which maps
the set of all terminal link twists on the joint velocities of all serial chains. Next, for the
example of a three-legged PM2E with an internal closed-loop chain the matrix which
maps the two end-effector twists on the set of all terminal link twists is developed. An
example Jacobian analysis is performed for a three-legged PM2E by combining the novel
structure with the mapping of end-effector twists. An experimental static force analysis
is performed to validate this Jacobian analysis.

5.2. DEFINITIONS AND ASSUMPTIONS

T HIS chapter focuses on PM2Es with a single internal closed-loop chain. This internal
closed-loop chain can impose constraints on the relative motion between the two

end-effectors, while the legs may impose additional constraints. All twists introduced in
this chapter are expressed in a Cartesian reference frame attached to the body in ques-
tion. Each twist is expressed as $t = [ω> v>]>, where ω is the angular velocity vector
and v is the velocity vector of the body, expressed in the Cartesian reference frame. The
linear operator that maps $t on the scalar representing power is the transpose of the
wrench defined as $w = [m> f>]>, where m and f are the moment and force applied at
the point that coincides with the origin of the Cartesian reference frame of the body in
question.

A number of additional definitions and related assumptions are used throughout this
chapter, namely:

• Terminal link. The rigid body of a leg which is also part of the internal closed-loop
chain is termed the leg’s terminal link, see Fig. 5.2a. The terminal link of the leg i
is labeled ni .

• Internal serial chain. Each serial chain connecting two adjacent terminal links
will be referred to as an internal serial chain. See Fig. 5.2c for an example.

• End-effector serial chain. The closed-loop chain of a PM2E can also be consid-
ered as two serial chains connecting the two end-effectors in parallel. Each of
these serial chains will be referred to as an end-effector serial chain and contains
one or more internal serial chains. It is assumed that there are no redundant joints
in each end-effector serial chain. This concept will be important for later deriva-
tions. See Fig. 5.2d for an example.

• Connectivity. Similar to Joshi and Tsai [23], it is assumed that the number of de-
grees of freedom of a serial chain, referred to as its connectivity C , corresponds
to the number of kinematic joints in that serial chain. It is assumed that this also
holds for each end-effector serial chain, so that also within an end-effector serial
chain there are no redundant joints.
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• Virtual joint. If a serial chain has C < 6, then 6−C basis twists are constrained.
Each basis twist represents the motion of a 1-DoF joint, and since the joints asso-
ciated to constrained twists are not part of the kinematic chain, they are termed
virtual joints. See Section 2.2.2 for more details.

5.3. STRUCTURE FOR NOVEL JACOBIAN ANALYSIS OF PM2ES

I N this section a novel structure for the Jacobian analysis of PM2Es with a single inter-
nal closed-loop chain is presented. The main idea is to organize the partial inverse

Jacobian matrices of individual serial chains based on the structure in the graph rep-
resentation. The resulting Jacobian analysis is a function of the twists of the various
terminal links.

At the basis of existing Jacobian analysis methods for traditional PMs lies the struc-
tured combination of inverse Jacobian matrices of individual legs,

q̇1

q̇2
...

q̇N

=


J−1

1
J−1

2
...

J−1
N

$t ,e (5.1)

where N is the number of legs and $t ,e is the twist of the end-effector. Also, if the full
inverse Jacobian analysis is considered as in [24], for each leg i the matrix J−1

i is a 6×6
inverse Jacobian matrix and each vector q̇i is a six-dimensional vector that contains both
kinematic joint velocities and virtual joint velocities of a leg. Any component of $t ,e that
is mapped onto virtual joint velocities therefore implies that there are deformations in
the manipulator.

To illustrate the difference between traditional PMs and PM2Es, it is helpful to look at
their respective graph representations. Figure 5.3 shows a three-legged PM and a three-
legged PM2E with their respective graphs. Firstly, in order to compare the associated
Jacobian matrices, the twist of the the terminal link of each leg i of a traditional PM is
expressed as $t ,i , so that Eq. (5.1) can be rewritten as

q̇1

q̇2
...

q̇N

=


J−1

1 06×6 . . . 06×6

06×6 J−1
2 . . . 06×6

...
...

. . .
...

06×6 06×6 . . . J−1
N




$t ,1

$t ,2
...

$t ,N

 (5.2)

A PM2E with N legs and a single closed-loop chain, has in addition N internal serial
chains. Each internal serial chain connects two terminal links, so that the twist of each
internal serial chain can be expressed as

$t ,oi+1
i

=
{

$t ,i+1 −$t ,i for i = 1,2, ..., (N −1)
$t ,1 −$t ,N for i = N

(5.3)

where $t ,oi+1
i

is the twist of the internal serial chain connecting the i th terminal link with

the (i +1)th terminal link. Equation (5.3) states that the N th terminal link is connected
to the first terminal link.
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Figure 5.3: a) An example of a traditional PM with three legs and b) its graph theory representation, as well as
c) an example of a PM2E with three legs as introduced in Appendix C and d) its graph theory representation.
For each twist, the arrow points from the reference body to the body moving relative to it. Overlaid with dotted
lines are the known end-effector twists, $t ,e1 and $t ,e2 , as well as the twists related to the two end-effector
serial chains, $t ,o1 and $t ,o2 .

The full Jacobian analysis of a PM2E can therefore be obtained by extending Eq. (5.2)
with the relations described by Eq. (5.3),

q̇1

q̇2
...

q̇N

q̇o2
1

q̇o3
2

...
q̇o1

N


= J−1

n


$t ,1

$t ,2
...

$t ,N

 (5.4)

where q̇oi+1
i

(or q̇o1
N

) is the six-dimensional joint velocity vector of the i th internal serial
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chain, and

J−1
n =



J−1
1 06×6 . . . 06×6

06×6 J−1
2 . . . 06×6

...
...

. . .
...

06×6 06×6 . . . J−1
N

−J−1
o2

1
J−1

o2
1

. . . 06×6

06×6 −J−1
o3

2
. . . 06×6

...
...

. . .
...

J−1
o1

N
06×6 . . . −J−1

o1
N


(5.5)

As in Eq. (5.1), each of the inverse Jacobian matrices in Eq. (5.5) is a 6×6 matrix and can
be obtained using the reciprocity rules of twists and wrenches as described in Ref. [24].

As opposed to a traditional PM, the twist of each terminal link of a PM2E can be
different. And because typically only the twists of the two terminal links that are the end-
effectors are directly available as inputs, not all twists in Eq. (5.4) are directly defined.
This is the topic of the next section.

5.4. MAPPING OF TWISTS FOR THREE-LEGGED PM2E

I N this section the matrix is developed that maps the two end-effector twists onto the
complete set of terminal link twists for the example of a PM2E with three legs, whose

graph representation was already introduced in Fig. 5.3d. Thus, a matrix Mt is developed
such that $t ,1

$t ,2

$t ,3

= Mt

[
$t ,e1

$t ,e2

]
(5.6)

In the example considered in this chapter the terminal links of the first and third leg, n1

and n3, are the end-effectors, so that

$t ,1 = $t ,e1 $t ,3 = $t ,e2 (5.7)

and the difficulty in developing Mt lies in the mapping of the two end-effector twists
onto $t ,2.

To enable a mapping of the two end-effector twists onto $t ,2, either $t ,o2
1

or $t ,o3
2

needs to be expressed, because from Fig. 5.3d it can be established that

$t ,2 = $t ,1 +$t ,o2
1

(5.8)

and also
$t ,2 = $t ,3 −$t ,o3

2
(5.9)

To express $t ,o2
1

or $t ,o3
2
, this chapter first develops a set of basis twists to express $t ,o1 ,

which is here defined as the twist of the end-effector serial chain that connects n1 and
n3 via n2, see Fig. 5.3d. In the remainder of this research, this end-effector serial chain
will be referred to as the first end-effector serial chain (and as a logical consequence, the
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other end-effector serial chain will be referred to as the second end-effector serial chain).
It was assumed that the number of kinematic joints in each end-effector serial chain is
equal to its connectivity, where the connectivity of the first end-effector serial chain is
labeled Co1 . Then it holds that

Co1 =Co2
1
+Co3

2
(5.10)

where Co2
1

is the connectivity of the internal serial chain connecting n1 and n2, and Co3
2

is the connectivity of the internal serial chain connecting n2 and n3. The twist $t ,o1 can
then be expressed as

$t ,o1 =
Co2

1∑
j=1

q̇a,o1, j $̂t ao1, j
+

C
o3

2∑
j=1

q̇a,o1, j∗ $̂t ao1, j∗ +
6−Co1∑

j=1
q̇c,o1, j $̂tco1, j

(5.11)

where
j∗ = j +Co2

1
(5.12)

and $̂t ao1, j
is the unit twist of permission associated to the j th joint of the first end-

effector serial chain, with q̇a,o1, j its magnitude. The unit twist of restriction $̂tco1, j
repre-

sents the motion of the j th virtual joint of the first end-effector serial chain, with magni-
tude q̇c,o1, j . These six unit twists together span six-dimensional Cartesian space.

Next, the set of unit twists introduced in Eq. (5.11) is also used to express $t ,o2
1

and

$t ,o3
2
. However, each unit twists of permission in Eq. (5.11) is constrained in one of the

internal serial chains. Therefore, this chapter makes a distinction between three types of
unit twists, expressed using their magnitudes:

• Permitted twist magnitudes. The unit twists associated to joints that represent
a kinematic DoF of the considered internal serial chain are given a magnitude
q̇a,oi+1

i , j .

• Simple constrained internal twist magnitudes. The unit twists associated to joints
that represent a constraint in the considered internal serial chain, but which repre-
sent a kinematic DoF in the first end-effector serial chain, are simple constrained
internal twists. These twists are given a magnitude q̇cs ,oi+1

i , j .

• Multiple constrained internal twist magnitudes. The unit twists associated to
joints that represent a constrained DoF in the first end-effector serial chain nec-
essarily also represent a constrained DoF in both internal serial chains of which it
is constructed. These twists are therefore multiple constrained and in the consid-
ered internal serial chain are attributed a magnitude q̇cm ,oi+1

i , j .

With the distinction as above, each internal joint velocity vector is then constructed as

q̇oi+1
i

=


q̇a,oi+1

i

q̇cs ,oi+1
i

q̇cm ,oi+1
i

 (5.13)
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Now, $t ,o2
1

and $t ,o3
2

can be expressed respectively as

$t ,o2
1
=

Co2
1∑

j=1
q̇a,o2

1 , j $̂t ao1, j
+

C
o3

2∑
j=1

q̇cs ,o2
1 , j $̂t ao1, j∗ +

6−Co1∑
j=1

q̇cm ,o2
1 , j $̂tco1, j

(5.14)

and

$t ,o3
2
=

C
o3

2∑
j=1

q̇a,o3
2 , j $̂t ao1, j∗ +

Co2
1∑

j=1
q̇cs ,o3

2 , j $̂t ao1, j
+

6−Co1∑
j=1

q̇cm ,o2
1 , j $̂tco1, j

(5.15)

where j∗ was introduced in Eq. (5.12). The remaining challenge is to obtain expressions
for all twist magnitudes in either Eq. (5.14) or Eq. (5.15).

To express the twist magnitudes in Eqs. (5.14) and (5.15) velocity relations are derived
from the knowledge that the sum of all twists in a closed loop is zero. Therefore, as can
be observed from Fig. 5.3d, for a PM2E with three legs it holds among others that

$t ,o2
1
+$t ,o3

2
+$t ,o1

3
= 0 (5.16)

Additionally, using another loop, $t ,o1
3

can be expressed as

$t ,o1
3
= $t ,1 −$t ,3 (5.17)

and because Eq. (5.7), it is possible to combine Eqs. (5.16) and (5.17) into

$t ,e2 −$t ,e1 = $t ,o2
1
+$t ,o3

2
(5.18)

Furthermore, because the first end-effector serial chain was defined as the combination
of the internal serial chain connecting n1 and n2, and the internal serial chain connect-
ing n2 and n3, it also holds that

$t ,e2 −$t ,e1 = $t ,o1 (5.19)

5.4.1. EXPRESSION FOR ACTUATED AND SIMPLE CONSTRAINED JOINT VE-
LOCITIES IN THE FIRST END-EFFECTOR SERIAL CHAIN

In this subsection expressions are derived for q̇a,o2
1
, q̇cs ,o2

1
, q̇a,o3

2
, and q̇cs ,o3

2
, as introduced

in Eq. (5.13), using the method and notation as introduced in Ref. [24]. These expres-
sions are necessary for later steps in the proposed analysis and are based on the defini-
tion of the first end-effector serial chain as the series connection of two internal serial.
Thus, each of the kinematic joints in the first end-effector serial chain is part of either
the internal serial chain connecting n1 and n2, or the internal serial chain connecting n2

and n3, and therefore it holds that

q̇a,o1, j = q̇a,o2
1 , j for j = 1,2, ...Co2

1
(5.20)

q̇a,o1, j∗ = q̇a,o3
2 , j for j = 1,2, ...Co3

2
(5.21)
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where j∗ was expressed in Eq. (5.12). Then, using Eq. (5.11) and Eq. (5.20)-(5.21), Eq.
(5.19) can be expressed as

$t ,e2 −$t ,e1 =
Co2

1∑
j=1

q̇a,o2
1 , j $̂t ao1, j

+
C

o3
2∑

j=1
q̇a,o3

2 , j $̂t ao1, j∗ +
6−Co1∑

j=1
q̇c,o1, j $̂tco1, j

(5.22)

Alternatively, inserting Eqs. (5.14) and (5.15) into Eq. (5.18) gives

$t ,e2 −$t ,e1 =
Co2

1∑
j=1

q̇a,o2
1 , j $̂t ao1, j

+
C

o3
2∑

j=1
q̇cs ,o2

1 , j $̂t ao1, j∗

6−Co1∑
j=1

q̇cm ,o2
1 , j $̂tco1, j

+
Co2

1∑
j=1

q̇cs ,o3
2 , j $̂t ao1, j

+

C
o3

2∑
j=1

q̇a,o3
2

$̂t ao1, j∗ +
6−Co1∑

j=1
q̇cm ,o3

2 , j $̂tco1, j
(5.23)

Using the methodology presented by Huang et al. [24], for each unit twist of permis-
sion a unit wrench of actuation can be defined which only does work on the considered
twist of permission, but that is reciprocal to all other unit twists. Left-multiplication of
Eq. (5.22) with the transposed unit wrenches of actuation associated to the first Co2

1
unit

twists $̂t ao1, j
leads to

J−1
a,o2

1

(
$t ,e2 −$t ,e1

)= q̇a,o2
1

(5.24)

where

J−1
a,o2

1
=


$̂>

w ao1,1
/($̂>

w ao1,1
$̂t ao1,1

)

$̂>
w ao1,2

/($̂>
w ao1,2

$̂t ao1,2
)

...
$̂>

w ao1,C
o2

1

/($̂>
w ao1,C

o2
1

$̂t ao1,C
o2

1

)

 (5.25)

while left-multiplication of Eq. (5.23) with the same transposed wrenches results in

J−1
a,o2

1

(
$t ,e2 −$t ,e1

)= q̇a,o2
1
+ q̇cs ,o3

2
(5.26)

where J−1
a,o2

1
was defined in Eq. (5.25). Equations (5.24) and (5.26) can be combined into

q̇cs ,o3
2
= 0 (5.27)

which confirms that a motion that is kinematically allowed by the internal serial chain
connecting n1 and n2, will have zero magnitude in the internal serial chain connecting
n2 and n3, in which this motion is constrained.

Similarly, left-multiplication of Eq. (5.22) with the transposed unit wrenches of actu-
ation associated to the last Co3

2
twists of permission of the first end-effector serial chain

leads to

J−1
a,o3

2

(
$t ,e2 −$t ,e1

)= q̇a,o3
2

(5.28)
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where

J−1
a,o3

2
=



$̂>
w ao1,1+C

o2
1

/($̂>
w ao1,1+C

o2
1

$̂t ao1,1+C
o2

1

)

$̂>
w ao1,2+C

o2
1

/($̂>
w ao1,2+C

o2
1

$̂t ao1,2+C
o2

1

)

...
$̂>

w ao1,Co1
/($̂>

w ao1,Co1
$̂t ao1,Co1

)


(5.29)

and left-multiplication of Eq. (5.23) with those same twists gives

J−1
a,o3

2

(
$t ,e2 −$t ,e1

)= q̇cs ,o2
1
+ q̇a,o3

2
(5.30)

where J−1
a,o3

2
was defined in Eq. (5.29). Equations (5.28) and (5.30) can then be combined

into
q̇cs ,o2

1
= 0 (5.31)

which confirms that the magnitude of the constrained motion in the internal serial chain
connecting n1 and n2 is zero for those motions that are kinematically allowed by the
internal serial chain connecting n2 and n3.

Thus, q̇cs ,o2
1
= 0, q̇cs ,o3

2
= 0, and Eqs. (5.24) and (5.28) respectively express q̇a,o2

1
and

q̇a,o3
2

as a function of the two end-effector twists and the kinematics captured by partial

Jacobian matrices. What remains in order to define q̇o2
1

and q̇o3
2

as in Eq. (5.13), is to

derive expressions for q̇cm ,o2
1

and q̇cm ,o3
2
.

5.4.2. EXPRESSION FOR MULTIPLE CONSTRAINED JOINT VELOCITIES IN THE

FIRST END-EFFECTOR SERIAL CHAIN
Unfortunately, the multiple constrained joint velocities, qcm ,o2

1
and qcm ,o3

2
as part of Eq.

(5.13), cannot be expressed directly as a function of unit twists and unit wrenches. This
becomes clear when the result of left-multiplying Eq. (5.22) with the 6−Co1 unit wrenches
of constraint of the first end-effector serial chain is compared with the result of left-
multiplying Eq. (5.23) with those same unit wrenches. Left-multiplication of Eq. (5.22)
with these unit wrenches of constraint gives

J−1
c,o1

(
$t ,e2 −$t ,e1

)= q̇c,o1 (5.32)

where

J−1
c,o1

=


$̂>

wco1,1
/($̂>

wco1,1
$̂tco1,1

)

$̂>
wco1,2

/($̂>
wco1,2

$̂tco1,2
)

...
$̂>

wco1,6−Co1
/($̂>

wco1,6−Co1
$̂tco1,6−Co1

)

 (5.33)

On the other hand, left-multiplying Eq. (5.23) with the same unit wrenches of constraint
gives

J−1
c,o1

(
$t ,e2 −$t ,e1

)= q̇cm ,o2
1
+ q̇cm ,o3

2
(5.34)
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Equations (5.32) and (5.34) can be combined into

q̇cm ,o2
1
+ q̇cm ,o3

2
= q̇c,o1 (5.35)

where q̇c,o1 is defined by Eq. (5.32). Equation (5.35) cannot be solved for q̇cm ,o2
1

and q̇cm ,o3
2

directly.
To obtain a closed form expression for q̇cm ,o2

1
and q̇cm ,o3

2
, Eq. (5.35) is complemented

with an additional set of equations, which are based on static force relations. For each
node of the PM2E it holds that in a static equilibrium the sum of all wrenches is zero. In a
quasi-static equilibrium, also the derivative with respect to time of this sum is zero, and
for body n2 it holds that

d$w,2

d t
+

d$w,o2
1

d t
−

d$w,o3
2

d t
= 0 (5.36)

In order to complement Eq. (5.35), only the motions that are multiple constrained by
the internal serial chains are of interest. To simplify the further derivation, it is assumed
that the change in wrenches is dominated by stiffness and that along those directions
the stiffness of the second leg is significantly less than the stiffness of the internal serial
chains. Then, the term d$w,2/d t in Eq. (5.36) can be neglected for those directions. Next,
because the two internal serial chains share the same joint coordinates, Eq. (5.36) can
be also expressed in those multiple constrained joint coordinates, so that

Kqcm ,o2
1

q̇cm ,o2
1
−Kq

cm ,o3
2

q̇cm ,o3
2
= 0 (5.37)

where Kqcm ,o2
1

is the stiffness matrix of the internal chain connecting n1 to n2 and Kq
cm ,o3

2
is the stiffness matrix of the internal chain connecting n2 to n3, both expressed in the
multiple constrained joint space of the first end-effector serial chain.

Equations (5.35) and (5.37) can be combined into[
I(6−Co1 ) I(6−Co1 )

Kqcm ,o2
1

−Kq
cm ,o3

2

][
q̇cm ,o2

1

q̇cm ,o3
2

]
=

[
I(6−Co1 )

0(6−Co1 )

]
q̇c,o1 (5.38)

in which the identity matrix I(6−Co1 ), and the stiffness matrices Kqcm ,o2
1

and Kq
cm ,o3

2
are all

of size (6−Co1 )× (6−Co1 ). Equation (5.38) can be written as[
q̇cm ,o2

1

q̇cm ,o3
2

]
=

[
I(6−Co1 ) I(6−Co1 )

Kqcm ,o2
1

−Kq
cm ,o3

2

]−1 [
I(6−Co1 )

0(6−Co1 )

]
q̇c,o1 (5.39)

which can be developed using matrix inversion rules into

[
q̇cm ,o2

1

q̇cm ,o3
2

]
=

K−1
qcm ,o2

1

(
K−1

qcm ,o2
1

+K−1
q

cm ,o3
2

)−1

K−1
q

cm ,o3
2

(
K−1

qcm ,o2
1

+K−1
q

cm ,o3
2

)−1

 q̇c,o1 (5.40)

where q̇c,o1 was expressed in Eq. (5.32) as function of the two end-effector twists. As
such, Eq. (5.40) expresses q̇cm ,o2

1
and q̇cm ,o3

2
as a function of the two end-effector twists

and the relative compliance of the two respective internal serial chains.
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5.4.3. INTERNAL MAPPING OF TWISTS
Equations (5.24), (5.26), (5.28), (5.31), and (5.40) have expressed all joint velocities of the
two internal serial chains that make up the first end-effector serial chain as a function of
the two end-effector twists. Then, forward Jacobian mapping can be used to express the
twist of n2 as a function of the two end-effector twists. There are two equivalent options
to do so, namely those introduced in Eqs. (5.8) and (5.9). In this chapter the representa-
tion in Eq. (5.8) is chosen, but it should be noted that this is an arbitrary choice and does
not affect the results.

The twist of the first internal serial chain was expressed as the sum of six unit twists
in Eq. (5.14), which can also be expressed in matrix form as

$t ,o2
1
=

[
Ja,o2

1
Ja,o3

2
Jc,o1

] q̇a,o2
1

q̇cs ,o2
1

q̇cm ,o2
1

 (5.41)

where

Ja,o2
1
=

[
$̂t ao1,1

$̂t ao1,2
. . . $̂t ao1,C

o2
1

]
(5.42)

Ja,o3
2
=

[
$̂t ao1,1+C

o2
1

$̂t ao1,2+C
o2

1

. . . $̂t ao1,Co1

]
(5.43)

Jc,o1 =
[

$̂tco1,1
$̂tco1,2

. . . $̂tco1,(6−Co1 )

]
(5.44)

Then, using the part of Eq. (5.40) that expresses q̇cm ,o2
1
, Eq. (5.41) can be rewritten as

$t ,o2
1
=

[
Ja,o2

1
Ja,o3

2
Jc,o1

]
q̇a,o2

1

q̇cs ,o2
1

Mqcm ,o2
1

q̇c,o1

 (5.45)

in which

Mqcm ,o2
1
= K−1

qcm ,o2
1

(
K−1

qcm ,o2
1

+K−1
q

cm ,o3
2

)−1

(5.46)

Next, the expressions for q̇a,o2
1

and q̇c,o1 as introduced in Eqs. (5.24) and (5.32), and

the relation q̇cs ,o2
1
= 0 as introduced in Eq. (5.31), allows Eq. (5.45) to be written as

$t ,o2
1
=

(
Ma,o2

1
+Mc,o2

1

)(
$te2

−$te1

)
(5.47)

where

Ma,o2
1
= Ja,o2

1
J−1

a,o2
1

(5.48)

Mc,o2
1
= Jc,o1 Mqcm ,o2

1
J−1

c,o1
(5.49)

Finally, Eqs. (5.47) and (5.7) can be inserted in Eq. (5.8), such that Mt in Eq. (5.6) is
developed as

Mt =

 I 0(
I−Ma,o2

1
−Mc,o2

1

) (
Ma,o2

1
+Mc,o2

1

)
0 I

 (5.50)
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where all matrices are 6×6 matrices. Equation (5.50) maps the two end-effector twists
onto the three terminal link twists, which can be subsequently mapped onto the com-
plete set of joint velocities as in Eq. (5.4).

5.5. EXAMPLE JACOBIAN ANALYSIS OF A THREE-LEGGED PM2E

I N this section the inverse Jacobian analysis is performed for the three-legged 2-DoF
PM2E shown in Fig. 5.4, where n1 and n3 are considered as the end-effectors. The

architecture of this PM2E was introduced as part of the kinematic design exercise in Ap-
pendix C and is also represented in Fig. 5.3c. The first DoF is a motion along the Z-axis,
shared by both end-effectors, and the second DoF is a relative motion between the end-
effectors along the X-axis, i.e., gripping. For the purpose of experimental validation, the
end-effectors are connected to wrench sensors, which measure both force and moment.
Additionally, the second joint of each leg is realized using a compliant joint, so that a
pose-dependent wrench is applied on both end-effectors without the need of an actua-
tion system. All other joints are realized using ball-bearings and are therefore considered
as zero stiffness joints.

The inverse Jacobian matrix J−1, introduced in Eq. (5.5), for a three-legged PM2E with
an internal closed-loop chain is obtained by combining the results from Sections 5.3 and
5.4. Then, 

q̇1

q̇2

q̇3

q̇o2
1

q̇o3
2

q̇o1
3


= J−1

[
$t ,e1

$t ,e2

]
(5.51)

with

J−1 = J−1
n Mt (5.52)

where the matrix Mt was introduced in Eq. (5.50) and for a three-legged PM2E with one
internal closed-loop chain J−1

n in Eq. (5.52) is developed as in Eq. (5.5), namely

J−1
n =



J−1
1 06×6 06×6

06×6 J−1
2 06×6

06×6 06×6 J−1
3

−J−1
o2

1
J−1

o2
1

06×6

06×6 −J−1
o3

2
J−1

o3
2

J−1
o1

3
06×6 −J−1

o1
3


(5.53)

The partial inverse Jacobian matrices in Eq. (5.53) are introduced in Appendix E,
where they are expressed using the unit twists and unit wrenches for each serial chain.
As explained in Section 5.4, the unit twists and unit wrenches that are identified for the
two end-effector serial chains are also used in the analysis of the three internal serial
chains, because they share the same kinematic structures.
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Figure 5.4: The example Jacobian analysis was performed for a 2-DoF PM2E, whose DoFs are a translation
along Z-axis and a relative motion between terminal links n1 and n3 along the X-axis. Below the individual
legs are shown, in which each second joint was designed as a compliant joint. The three internal serial chains
are shown above.

To develop the matrix Mt , which maps the end-effector twists on the full set of termi-
nal link twists, Ma,o2

1
and Mc,o2

1
need to be developed. Because Co2

1
= 2, the matrix Ma,o2

1
is obtained using Eq. (5.48), in which Ja,o2

1
is expressed by Eq. (5.42) as

Ja,o2
1
=

[
$̂t ao1,1

$̂t ao1,2

]
(5.54)

and J−1
a,o2

1
is expressed by Eq. (5.25) as

J−1
a,o2

1
=

[
$̂>

w ao1,1
/($̂>

w ao1,1
$̂t ao1,1

)

$̂>
w ao1,2

/($̂>
w ao1,2

$̂t ao1,2
)

]
(5.55)

The matrix Mc,o2
1

is constructed from three matrices: Jc,o1 , J−1
c,o1

, and Mqcm ,o2
1

, as expressed
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in Eq. (5.49). Because Co1 = 3, it follows from Eqs. (5.44) and (5.33) that

Jc,o1 =
[

$̂tco1,1
$̂tco1,2

$̂tco1,3

]
(5.56)

J−1
c,o1

=


$̂>

wco1,1
/($̂>

wco1,1
$̂tco1,1

)

$̂>
wco1,2

/($̂>
wco1,2

$̂tco1,2
)

$̂>
wco1,3

/($̂>
wco1,3

$̂tco1,3
)

 (5.57)

To express Mqcm ,o2
1

using Eq. (5.46), the compliance matrices K−1
qcm ,o2

1

and Kq
cm ,o3

2
are re-

quired, which are the compliance matrices of the internal serial chains expressed in the
multiple constrained joint space, which is spanned by the twists associated to the vir-
tual joints of the first end-effector serial chain. The compliance in these directions is
assumed to originate solely in the links. Each internal serial chain contains one link,
each of which was designed as a rectangular bar. The required compliance matrices
are therefore developed by mapping the relevant link compliance matrix onto the con-
strained joint space of the first end-effector serial chain,

K−1
qcm ,o2

1

= J−1
c,o1

AdHO
lo1,1

K−1
s,lo1,1

Ad>
HO

lo1,1

J−>c,o1
(5.58)

K−1
q

cm ,o3
2

= J−1
c,o1

AdHO
lo1,2

K−1
s,lo1,2

Ad>
HO

lo1,2

J−>c,o1
(5.59)

where J−1
c,o1

was introduced in Eq. (5.57), and AdHO
lo1,i

is the Adjoint matrix which trans-

forms a twist expressed in the reference frame connected to the end of the i th link of
the first end-effector serial chain into its equivalent twist expressed in the inertial Carte-
sian reference frame, and K−1

s,lo1,i
is the compliance matrix of the i th link of the first end-

effector serial chain. Both links were designed equal, such that

K−1
s,lo1,i

=



Lo
G Ix

0 0 0 0 0

0 Lo
E Iy

0 0 0
−L2

o
2E Iy

0 0 Lo
E Iz

0
L2

o
2E Iz

0

0 0 0 Lo
AE 0 0

0 0
L2

o
2E Iz

0
L3

o
3E Iz

0

0 − L2
o

2E Iy
0 0 0

L3
o

3E Iy


(5.60)

For the developed mechanism, Lo = 0.12 m, E = 1.95 ·109 N/m2, and G = 740 ·106 N/m2

was subsequently calculated using

G = E/(2+2ν) (5.61)

with ν= 0.32, where E and ν were determined as the average values of two tensile tests,
which were performed on samples of the material used for the construction of the links,
namely Stratasys ABSplus material in combination with a Stratasys Dimension BST 1200es
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3D printer. Individual determined values for E had a 4% difference from this value. Fur-
thermore, the area and the area moments of inertia, respectively, are

A = bh Ix = 1/12bh(h2 +b2), Iy = 1/12bh3, Iz = 1/12b3h

with b = 3 mm and h = 16 mm.
With the matrices introduced in Eqs. (5.54)-(5.60), the matrices Ma,o2

1
and Mc,o2

1
are

developed according to Eqs. (5.48) and (5.49). Subsequently, Mt was developed using
Eq. (5.50) and J−1

n was constructed as in Eq. (5.53) using the partial inverse Jacobian
matrices developed in Appendix E. Finally, the complete inverse Jacobian matrix of the
PM2E presented in Fig. 5.4 was obtained using Eq. (5.52).

5.6. EXPERIMENTAL VALIDATION METHOD

T O validate the developed Jacobian analysis, an experimental static force analysis was
performed for the PM2E introduced in Section 5.5. The reason for using a static

force analysis is because it is relatively easy to control the pose, which determines the
torques applied by the compliant joints, and measure the resulting six-dimensional re-
action wrenches at both end-effectors. On the other hand, it is considered much more
difficult to simultaneously control the end-effector twists and measure the complete set
of joint velocities. This is especially true for the constrained directions.

5.6.1. STATIC FORCE ANALYSIS
In a static force analysis, the transpose of an inverse Jacobian matrix can be used to map
a known joint torque vector onto the equivalent wrenches applied by the end-effector
on the environment. Therefore, if the compliant mechanism with two end-effectors as
introduced in Fig. 5.4 is fixed in a specific pose through its end-effectors, the interaction
wrenches can be predicted as a function of the pose, namely[

$w,e1

$w,e2

]
= J−>τ (5.62)

where $w,e1 and $w,e2 are the net wrenches applied by the PM2E on the first and second
end-effector respectively, J−> is the transpose of the full inverse Jacobian and τ is the
applied joint torque vector, which is expressed as

τ=
[
τ1

> τ2
> τ3

> τo2
1

> τo3
2

> τo1
3

>]>
(5.63)

where τi is the six-dimensional joint torque vector for leg i , and τoi+1
i

(or τo1
i

if i = N ) is

the six-dimensional joint torque vector of the i th internal serial chain.
For the example that was introduced in Section 5.5, the various applied joint torque

vectors can be expressed as

τi =
[
0 τp f ,i 0 0 0 0

]>
, for i = 1,2,3 (5.64)

τo2
1
=τo3

2
=τo1

3
= 06×1 (5.65)
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Figure 5.5: The set-up that was developed to validate the developed Jacobian analysis using a static force anal-
ysis, shown in three poses as presented in Table 5.1, namely a) in pose a0, in which the net wrench is approx-
imately zero, b) in pose f0, where arrows indicate how the positions px,e1 and px,e2 are adjusted, and c) pose
f1, where arrows indicate how pz,e1 and pz,e2 are changed by adjusting the measurement frame.
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Table 5.1: The 18 poses at which the Jacobian analysis of the example PM2E has been validated using a static
force analysis. The pose variables are also indicated in Fig. 5.5

Pose px,e1 [m] pz,e1 [m] px,e2 [m] pz,e2 [m]
a0 -0.0525 0.2165 0.0525 0.2165
a1 -0.0575 0.2165 0.0575 0.2165
a2 -0.0525 0.2215 0.0525 0.2215
b0 -0.070 0.2165 0.070 0.2165
b1 -0.075 0.2165 0.075 0.2165
b2 -0.070 0.2215 0.070 0.2215
c0 -0.065 0.200 0.065 0.200
c1 -0.070 0.200 0.070 0.200
c2 -0.065 0.205 0.065 0.205
d0 -0.055 0.205 0.055 0.205
d1 -0.060 0.205 0.060 0.205
d2 -0.055 0.210 0.055 0.210
e0 -0.055 0.190 0.055 0.190
e1 -0.060 0.190 0.060 0.190
e2 -0.055 0.195 0.055 0.195
f0 -0.060 0.220 0.060 0.220
f1 -0.065 0.220 0.065 0.220
f2 -0.060 0.225 0.060 0.225

where τp f ,i is the joint torque resulting from the deflection of the compliant revolute
joint that makes up the second joint of each leg, so that

τp f ,i =−ki
(
qi ,2 −qi ,20

)
, for i = 1,2,3 (5.66)

To express the stiffness ki (Nm/rad) of the designed cross-type compliant revolute joint,
the model presented by Trease et al. [25] was used, namely

ki =
( w

t
−0.373

) 4Gt 4

3L j
, for i = 1,2,3 (5.67)

where the designed cross-type compliant joint has width w = 9 mm, thickness t = 2 mm,
length L j = 40 mm, and is made of the same Stratasys ABSplus material as the links in the
end-effector serial chains, so that G = 740 ·106 N/m2 and E = 1.95 ·109 N/m2. The angle
of zero deflection, qi ,20 (rad), was designed as

qi ,20 =
3π

2
for i = 1,2,3 (5.68)

An expression for the angles qi ,2 can be found in Appendix E.
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Figure 5.6: The inertial reference frame and the measurement reference frames as used in the example Jacobian
analysis.

5.6.2. MEASUREMENT PROCEDURE
The mapping of the applied joint torque vector onto the resulting interaction wrenches
was performed in the 18 poses as introduced in Table 5.1. These reaction wrenches were
measured using an ATI Mini40 wrench sensor with SI-40-2 calibration. The specified
force measurement accuracy of this sensor along the X - and Y -axis is 1/100 N and 1/50
N along the Z-axis. The torque measurement accuracy is 1/4000 Nm for all three direc-
tions. Both wrench sensors were connected in series between one of the end-effectors
and the inertial measurement frame, as can be seen in Fig. 5.5b. As such, the wrench
sensors were displaced together with the end-effector bodies. Before the start of every
measurement series, the wrench sensor was initialized at the pose where the net wrench
on the end-effectors is approximately zero, which is pose a0 as introduced in Table 5.1.
The position of the end-effector within the measurement frame was controlled manually
using a caliper. This was done by moving the attachment beams of the two end-effectors
in the X - and Z -directions, as shown in Figs. 5.5b and 5.5c.

There are various sources that may influence the measurement precision and accu-
racy. Firstly, next to the finite resolution of the wrench sensors, there are inevitable in-
accuracies in the manual positioning of the end-effectors. Secondly, the model will not
be perfect, because the change in gravity is not considered, nor is any friction in the ball
bearings. Furthermore, the 3D-printed compliant joints will likely show some variation
in their properties, and therefore not perfectly agree with the modeled joints.

5.6.3. POST-PROCESSING
Post-processing of the data was necessary to express all wrenches in the measurement
reference frame of either the first or the second end-effector, so that measured and pre-
dicted wrenches could be compared. The wrenches that are expressed using the Jacobian-
based mapping of the compliant joint torques are all expressed in end-effector body-
fixed reference frames collocated with the inertial reference frame. However, the mea-
surements are made in measurement reference frames, as shown in Fig. 5.6. The map-
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ping of the two predicted interaction wrenches onto the measurement reference frames
was done using [

$M
w,e1,pr ed

$M
w,e2,pr ed

]
=

Ad>
HO

M1

06

06 Ad>
HO

M2

[
$O

w,e1,pr ed

$O
w,e2,pr ed

]
(5.69)

where $O
w,e1,pr ed and $O

w,e2,pr ed are the predicted interaction wrenches expressed in the

inertial reference frame and $M
w,e1,pr ed and $M

w,e2,pr ed are the equivalent wrenches ex-

pressed in their respective measurement frames. Matrices AdHO
M1

and AdHO
M2

are the

adjoint matrices associated to the homogeneous matrices HO
M1

and HO
M2

. These homo-
geneous matrices were expressed as

HO
M1

=
[

I3 pm1

01×3 1

]
HO

M2
=

[
I3 pm2

01×3 1

]

with

pm1 =
[
px,e1 0 pz,e1 +hs

]>
pm2 =

[
px,e2 0 pz,e2 +hs

]>
where hs = 42.6 [mm] was the distance between the end-effector reference frame origins,
as shown in Fig. 5.5, and the measurement reference frames, as shown in Fig. 5.6. After
mapping as in Eq. (5.69), the wrenches predicted by Jacobian mapping can be compared
with those measured.

5.7. RESULTS OF EXPERIMENTAL VALIDATION

T HIS section presents the results of the experimental validation as described in sec-
tion 5.6. The results are visualized in Figs. 5.7-5.9. Figure 5.7 plots the predicted

interaction force values against those measured for the X - and Z -axis, which are the
axes spanned by the DoFs of the analyzed PM2E. In Fig. 5.8 a similar plot is shown for
the Y -axis, which represents a constraint of the PM2E for both end-effectors. Finally, the
predicted and measured interaction moments are plotted against each other in Fig. 5.9,
where the example PM2E is constrained in rotational motion along all three axes. The
complete set of measurement data can be obtained from Ref. [26].

To express the percentage of variability in the measurements that has been accounted
for by the Jacobian-based predictions, the coefficients of determination, R2, are used.
These coefficients are shown in Table 5.2 for the data shown in Figs. 5.7-5.9. The R2

values express the variability around the linear trend lines which are included in Figs.
5.7-5.9. These linear trend lines do not perfectly follow the line∆ fpr ed =∆ fmeas , but this
inaccuracy is not considered in this paper.
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Figure 5.7: The correlation between the measured force values and those predicted using J−> at the poses as
listed in Table 5.1 along the axes spanned by the DoFs of the PM2E. Linear trend lines are added around which
the coefficients of determination are calculated.
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Figure 5.8: The correlation between the measured force values and those predicted using J−> at the poses
listed in Table 5.1 along the axis in which the PM2E is constrained. A linear trend line is added around which
the coefficient of determination are calculated.

5.8. DISCUSSION ON GENERALIZATION OF RESULTS

T HE results from the experimental validation of the Jacobian analysis demonstrate
that the presented Jacobian analysis is valid for the analyzed three-legged PM2E with
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Figure 5.9: The correlation between the measured moment values and those predicted using J−> at the poses
listed in Table 5.1 along all three axes, all of which are constrained directions for the analyzed PM2E. A linear
trend line is added around which the coefficient of determination are calculated.

Table 5.2: The coefficients of determination of the different sets of measured and predicted values.

considered set related figure R2 [-]
DoFs (fx/z ) Fig. 5.7 0.996

linear constraints (fy ) Fig. 5.8 0.962
angular constraints (mx/y/z ) Fig. 5.9 0.876

a single internal closed-loop chain. This is concluded from the high coefficients of de-
termination for the three separately analyzed sets of predicted and measured force and
moment values, as presented in Table 5.2. Although the coefficient of determination for
the angular constraints is somewhat lower, this can be explained by the large number
of values close to zero, which are more affected by measurement errors. Nonetheless,
these values are considered sufficiently high to conclude that the Jacobian analysis that
was used to predict the interaction wrenches is valid.

Although the presented Jacobian analysis was developed based on velocity relations,
it was validated using a static force analysis for three reasons. Firstly, it was considered
more practical to control the pose during static wrench measurements than during ve-
locity measurements. Secondly, it was deemed much simpler to include the constraints
in static force measurements than in velocity measurements. The third reason is that
constraint relations are especially important in the static force analysis of PM2Es, since
wrenches applied by the legs can be transferred via the constraints of internal serial
chains. The inclusion of these constraint relations in the matrix Mt , which represents
the mapping from the two end-effector twists onto the full set of terminal link twists, has
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been one of the main innovations of this chapter. Therefore, a static force analysis has
allowed a direct validation of this innovation.

It is argued that the example PM2E is a representative example of more general PM2Es
with an internal closed-loop chain. The main difficulty of the analysis was to find an
expression for the mapping from the two end-effector twists onto the complete set of
terminal link twists. A combination of velocity relations and static force relations was
derived to deal with the internal constraints. As a result, the obtained expression is
a function of the kinematic structure of the mechanism as well as the relative compli-
ance of the internal serial chains. The proposed systematic approach can be extended
to PM2Es with an internal closed-loop chain with more than three legs, knowing that
more, comparable relations will need to be expressed to reflect its corresponding graph
representation.

Furthermore, it is expected that the presented systematic approach can be easily
adapted to other variations of PM2Es. Because the analysis relies on a Jacobian inter-
pretation of a PM’s graph theory representation, the same approach can also be applied
to other, more complex parallel manipulators, e.g., with more than one internal closed-
loop chain or with more than two end-effectors. Such manipulators will have different
graph theory representations, which means that the structures of the corresponding ma-
trices J−1

n would be different than the one presented in Eq. (5.5). Nonetheless, the ap-
proach would be the same. As such, the systematic approach presented in this chapter
could be used as a baseline for a wide range of more complex parallel manipulators.

5.9. CONCLUSIONS ON JACOBIAN ANALYSIS OF PM2ES

T HIS chapter introduced a systematic approach for the Jacobian analysis of PM2Es
with an internal closed-loop chain, based on two novel insights. The first insight

is that the structure that is revealed by graph theory can be translated into a Jacobian
analysis. The resulting Jacobian analysis consists of a systematic combination of partial
Jacobian matrices, which describes how the full set of terminal link twists is mapped
onto the complete set of joint velocities.

However, the full set of terminal link twists is generally not available and cannot be
derived based on velocity relations alone. This was demonstrated for a three-legged
PM2E with an internal closed-loop chain. The second insight is that these relations can
be complimented with static force relations so that the full set of terminal link twists can
be expressed as a function of the known end-effector twists. The static force relations,
which appear in the expression as compliance ratios, are required to deal with internal
constraints. The possibility for internal constraints is typical for PM2Es and is particu-
larly relevant if the resulting Jacobian is used in a static force analysis, because wrenches
applied by the actuators can be transferred to the end-effectors via the internal con-
straints. The resulting dependency of a Jacobian analysis on mechanical properties is
unprecedented in the field of parallel manipulator analysis.

The developed Jacobian analysis was validated using a static force analysis in an ex-
ample PM2E with three legs and a single internal closed-loop chain. Compliant joints
were implemented so that pose-dependent wrenches were applied to the end-effectors
without the need of an actuation system. The end-effectors were fixed to an inertial
frame via wrench sensors, so that the resulting interaction wrenches could be measured.
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The interaction wrenches were measured along directions corresponding to the allowed
DoFs as well as along constrained directions. These measurements were compared with
predicted interaction wrenches based on the developed Jacobian analysis. It was shown
that the variability in the measured values is predicted for 99.6% along directions cor-
responding to the allowed DoFs, and respectively 96.2% and 87.6% for the forces and
moments along the constrained directions. Based on these values it is concluded that
the example Jacobian analysis is valid.

This chapter presented and validated the first example of a Jacobian analysis of a
PM2E that takes internal constraints into account. Although the Jacobian analysis pre-
sented in this chapter was developed for PM2Es with a single internal closed-loop chain
and three legs, it was argued that the analysis can be adapted to other PM2Es with rel-
ative ease. This is thanks to the structure of the analysis, which can be directly de-
rived from the graph theory representation of a mechanism. As such, the structured
approach introduced in this chapter sets the stage for the Jacobian analysis of more com-
plex PM2Es.
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6
JACOBIAN-BASED STIFFNESS

ANALYSIS OF PARALLEL

MANIPULATORS WITH

TWO END-EFFECTORS

I wish I could break
All the chains holding me

Billy Taylor and Richard Carroll Lamb
Nina Simone - I wish I knew how it would feel to be free

This chapter presents the Jacobian-based stiffness analysis of two examples of parallel ma-
nipulators with two end-effector (PM2Es). To perform these analyses, the Jacobian-based
stiffness analysis method, derived in Chapter 2, is combined with the structured approach
for the Jacobian analysis of PM2Es, which was presented in Chapter 5. The analyses are
performed for two passive mechanisms: a planar underactuated 4-DoF mechanism and a
spatial overconstrained 2-DoF mechanism. Subsequently, it is experimentally verified that
the resulting stiffness analyses have an accuracy comparable to those of traditional paral-
lel manipulators and that consideration of loading also increases accuracy of the stiffness
analysis of PM2Es. Additionally, this chapter contains the first examples of stiffness ma-
trices of PM2Es, namely 6×6 stiffness matrices for the analyzed planar mechanism and a
12×12 stiffness matrix for the analyzed spatial mechanism.
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6.1. INTRODUCTION TO STIFFNESS ANALYSIS OF PM2ES

I N applications that require controlled gripping as well a high stiffness-over-inertia ra-
tio [1–3], parallel manipulators with two end-effectors (PM2Es) are an interesting so-

lution. In PM2Es, relative degrees of freedom (DoFs) between the end-effectors are al-
lowed by internal mobilities, which can be controlled using actuators that are located
at the base [4, 5]. Such architectures therefore enable controlled mechanical gripping
while minimizing the effective contribution of the actuators to the inertia.

Because a high stiffness-over-inertia ratio enables faster motions [6, 7], it is not sur-
prising that the concept behind PM2Es was originally developed with the pick-and-place
industry in mind [4]. In the earliest examples, an internal closed-loop chain acted as the
gripper [4, 8]. These manipulators have also been referred to as parallel manipulators
with configurable platforms (PMCPs) [5], variations of which have also been explored
in Refs. [9–11]. The term PM2E was introduced in this thesis for those manipulators
where interaction occurs via two dedicated end-effectors. PM2Es have so far only been
explored in the design of haptic devices [12, 13].

Existing research on the analysis of PM2Es is largely focused around kinematic rela-
tions. Mohamed and Gosselin [5] used kinematic relations to express the passive joint
velocities as a function of the active joint velocities. Lambert and Herder [14] used kine-
matic relations to develop a mobility analysis based on screw theory and also discussed
some of the aspects of PMCPs that makes their kinematics fundamentally different from
traditional parallel manipulators [15].

In Chapter 5 it was realized that kinematic relations alone are often insufficient to
develop a Jacobian analysis of a PM2E that is also valid for a static force analysis. This
is because wrenches applied by the legs can be transferred to multiple end-effectors via
the constraints that are imposed by the internal serial chains. This effect is not captured
by kinematic relations alone and required the introduction of compliance ratios in the
Jacobian analysis.

However, no research has yet been done on the dynamic analysis of PM2Es, while this
will be required for the optimal design of PM2Es. Most notably, expressions for the stiff-
ness and inertia matrices will be required in order to optimize the stiffness-over-inertia
ratio. Moreover, stiffness is also key in the accuracy analysis of any parallel manipulator,
including PM2Es.

The aim of this chapter is to perform the first stiffness analyses of PM2Es. This will
be achieved using the combination of the Jacobian-based stiffness analysis method of
Chapter 2 and the structured approach for the Jacobian analysis of PM2Es of Chapter 5.
The same experimental setup is used as presented in Chapter 3.

The structure of this chapter is as follow. First, the integration of the stiffness analysis
method and the structured approach for the Jacobian analysis of PM2Es is discussed.
The stiffness analyses are performed for a planar 4-DoF PM2E and a spatial 2-DoF PM2E.
Next, the experimental setup is described. In the Results section the first examples of
stiffness matrices of PM2Es are presented, together with the processed measurement
data. The measurement data shows that the accuracy of the stiffness analyses performed
in this chapter is similar to the accuracies found in Chapter 3. The results are interpreted
in the Discussion section.
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6.2. STIFFNESS ANALYSES OF PM2ES

T HE main idea of this chapter is to integrate the Jacobian-based stiffness analysis
method for PMs with non-redundant legs as presented in Chapter 2 and the struc-

tured approach for the Jacobian analysis of PM2Es as presented in Chapter 5. This inte-
gration is first introduced in this section. Next, the design and analysis of a passive planar
4-DoF PM2E is presented. For a second mechanism, the passive spatial 2-DoF PM2E that
was previously introduced in Chapter 5, only those aspects are presented which have not
been presented before.

6.2.1. INTEGRATION OF STIFFNESS ANALYSIS METHOD FOR PMS AND JA-
COBIAN ANALYSIS OF PM2ES

For a PM2E, a Cartesian stiffness matrix K is a 12×12 matrix that maps a combination of
two displacement twists onto two differential wrenches,[

d$w,e1,pr ed

d$w,e2,pr ed

]
=−K

[
$d ,e1

$d ,e2

]
(6.1)

where $d ,e1 and $d ,e2 are the displacement twists of the first and second end-effector
respectively, and d$w,e1,pr ed and d$w,e2,pr ed are the corresponding differential reaction
wrenches. In this chapter each displacement twist and differential wrench is defined as

$d =
[

dφ
dp

]
, d$w =

[
dm
df

]
in which dφ and dp are the differential angular and differential linear displacements of
the respective end-effector, and dm and df the resulting change in moment- and force
vector applied by the PM2E to the end-effectors.

The general formulation of the stiffness analysis that is applied in this chapter was
presented in Eq. (2.43), and is repeated here for convenience,

K =
(
−∂J−>e

∂q
τe

)
J−1 + J−>e Kq,e J−1

e (6.2)

where q is the vector that contains all real and virtual joint coordinates (the latter rep-
resenting the constrained directions in joint space), τe is the joint torque vector where
all zero entries associated to zero stiffness joints were removed, J−1 is the full inverse
Jacobian. The matrix J−1

e is the inverse Jacobian of elasticity, which corresponds to the
matrix J−1 with all rows associated to zero stiffness joints removed. Finally, matrix Kq,e

is the stiffness matrix of the parallel manipulator expressed in the space spanned by the
elastic joint coordinates, which includes the effect of actuated joints, compliant joints,
as well as structural compliance.

In this chapter the stiffness analysis represented by Eq. (6.2) is combined with the
structured approach for the Jacobian analysis of PM2Es, introduced in Chapter 5. This
analysis is summarized as

J−1 = J−1
n Mt (6.3)
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where for a PM2E with N legs and a single internal closed loop chain Mt was described
as the 6N ×12 matrix that maps the two end-effector twists on the set of N terminal link
twists, and J−1

n was expressed as

J−1
n =



J−1
1 06×6 . . . 06×6

06×6 J−1
2 . . . 06×6

...
...

. . .
...

06×6 06×6 . . . J−1
N

−J−1
o2

1
J−1

o2
1

. . . 06×6

06×6 −J−1
o3

2
. . . 06×6

...
...

. . .
...

J−1
o1

N
06×6 . . . −J−1

o1
N


(6.4)

where each matrix J−1
i is the inverse Jacobian of the i th leg, and each matrix J−1

oi+1
i

is the

inverse Jacobian for the internal serial chain connecting the terminal link of the i th leg
with the terminal link of the (i +1)th leg, and where the (N +1)th leg is the first leg.

With J−1 expressed by Eqs. (6.3) and (6.4), J−1 is a 12N ×12 matrix, and q in Eq. (6.2)
is a 12N ×1 vector. Matrix J−1

e in Eq. (6.2) is obtained by removing those rows associated
to zero stiffness joints in matrix J−1

n that is part of J−1. Similar to a traditional PM, the
stiffness matrix Kq,e is a block diagonal matrix, but where in this case the number of
matrices is 2N : N matrices for the legs and N matrices for the internal serial chains.

6.2.2. MECHANISM III: PASSIVE PLANAR 4-DOF PM2E.
The first PM2E that is analyzed is a planar underactuated mechanism. This mechanism
is kept as simple as possible to minimize design uncertainties.

MECHANICAL DESIGN OF MECHANISM III
The designed planar mechanism is a PM2E consisting of four RPR legs with zero stiffness
revolute joints and passive compliant prismatic joints constructed from linear springs.
The internal closed loop chain is considered as two RRR end-effector serial chains. A
schematic representation of mechanism III is shown in Fig. 6.1. Out-of-plane stiffness
was not considered. The inverse kinematics of the mechanism are given in Appendix D.
The stiffness ki (N/m) and the zero length qi ,20 (m) of the linear spring in each leg were
identified as

ki = 221, qi ,20 = 0.0715 for i = 1,2,3,4 (6.5)

Due to the architecture of the mechanism, no moments can be transferred from the
linear springs to the two end-effectors. Rotation of the two end-effectors is thus free and
mechanism III can be thought of as a passively underactuated mechanism. Throughout
the analysis the end-effectors are kept parallel to each other and to the inertial reference
frame.

Although mechanism III is analyzed as a planar mechanism, it is constructed in
three-dimensional space. Therefore, special care has been taken in the design to guar-
antee that all forces are acting in a plane in order to minimize deformations out of the
plane. This is visualized in Fig. 6.2.
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Figure 6.1: Mechanism III is a passive planar mechanism, where the interaction wrenches are the result of
elongation/contraction of the linear springs, depending on the pose of the end-effector. The mechanism is
here shown in pose III-b as introduced in Table 6.1, where the pose is determined by a position of reference
frames E1 and E2 with respect to O . The terminal link of leg i is indicated by ni .

Figure 6.2: Mechanism III was designed such that the linear springs applied forces in the plane that also con-
tains the links of the internal serial chains
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JACOBIAN ANALYSIS OF MECHANISM III

The planar PM2E introduced in Fig. 6.1 has four legs and four internal serial chains.
Therefore, following the approach described in Chapter 5, the matrix J−1

I I I ,n is

J−1
I I I ,n =



J−1
I I I ,1 06×6 06×6 06×6

06×6 J−1
I I I ,2 06×6 06×6

06×6 06×6 J−1
I I I ,3 06×6

06×6 06×6 06×6 J−1
I I I ,4

−J−1
I I I ,o2

1
J−1

I I I ,o2
1

06×6 06×6

06×6 −J−1
I I I ,o3

2
J−1

I I I ,o3
2

06×6

06×6 06×6 −J−1
I I I ,o4

3
J−1

I I I ,o4
3

J−1
I I I ,o1

4
06×6 06×6 −J−1

I I I ,o1
4


(6.6)

where the individual matrices in Eq. (6.6) are developed in Appendix D.

The matrix Mt for mechanism III can also be developed using the approach de-
scribed in Chapter 5. Because the end-effector serial chains span all DoFs of planar mo-
tion, matrix MI I I ,t is in this case defined by kinematic relations alone, i.e. no compliance
ratios are required in its expression. The result is

MI I I ,t =


I 0

I−MI I I ,a,o2
1

MI I I ,a,o2
1

0 I
I−MI I I ,a,o4

1
MI I I ,a,o4

1

 (6.7)

where

MI I I ,a,o2
1
=$̂t ao1,1

$̂>
w ao1,1

/($̂>
w ao1,1

$̂t ao1,1
)+

$̂t ao1,2
$̂>

w ao1,2
/($̂>

w ao1,2
$̂t ao1,2

) (6.8)

MI I I ,a,o4
1
=$̂t ao2,1

$̂>
w ao2,1

/($̂>
w ao2,1

$̂t ao2,1
)+

$̂t ao2,2
$̂>

w ao2,2
/($̂>

w ao2,2
$̂t ao2,2

) (6.9)

in which $̂t aoi , j
is the j th unit twist of permission of the i th end-effector serial chain and

$̂w aoi , j
its associated unit wrench of actuation, as defined in Appendix D. The first end-

effector serial chain is that going from the first end-effector to the second end-effector
via n2.

Because the end-effector serial chains allow full planar motion, and the only compli-
ance is in the linear springs, the Jacobian of elasticity for mechanism III can be obtained
as

J−1
I I I ,e = J−1

I I I ,n,e MI I I ,t (6.10)
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where MI I I ,t was expressed by Eqs. (6.7)-(6.9) and

J−1
I I I ,n,e =


J−1

I I I ,e,1 06×6 06×6 06×6

06×6 J−1
I I I ,e,2 06×6 06×6

06×6 06×6 J−1
I I I ,e,3 06×6

06×6 06×6 06×6 J−1
I I I ,e,4

 (6.11)

in which
J−1

I I I ,e,i = $̂>
w ai ,2

/($̂>
w ai ,2

$̂t ai ,2 ). (6.12)

The required unit twists and unit wrenches are described in Appendix D.

STIFFNESS ANALYSIS FOR MECHANISM III
The only compliance of mechanism III is in the linear springs, which behave as described
by Eq. (6.5). Then, the stiffness matrix in joint space is

KI I I ,q,e = diag([k1 k2 k3 k4]) (6.13)

In Eq. (6.2), the Jacobian J−1 can be replaced by Eq. (6.3), which is defined by Eqs. (6.6)-
(6.7), J−1

e by Eq. (6.10) and Kq,e by Eq. (6.13), so that Eq. (6.2) becomes

KO
I I I =

(
−
∂J−>I I I ,e

∂qI I I
τI I I ,e

)
J−1

I I I + J−>I I I ,e KI I I ,q,e J−1
I I I ,e (6.14)

where KO
I I I is the stiffness matrix for mechanism III in which loading is considered, ex-

pressed in the inertial reference frame. Because the linear springs are the only joints that
exert a force or torque, the vector τI I I ,e is obtained as

τI I I ,e =


−k1

(
q1,2 −q1,20

)
−k2

(
q2,2 −q2,20

)
−k3

(
q3,2 −q3,20

)
−k4

(
q4,2 −q4,20

)
 (6.15)

where ki and qi ,20 were defined in Eq. (6.5). If the effect of loading is assumed negligible,
the Jacobian-derivative term in Eq. (6.14) can be removed.

6.2.3. MECHANISM IV: PASSIVE SPATIAL 2-DOF PM2E.
To verify that the stiffness analysis of a more complex spatial mechanisms has an accu-
racy comparable to that found in Section 3.3, the stiffness of the 2-DoF PM2E introduced
in Chapter 5 is analyzed. The mechanism is also shown schematically in Fig. 6.3.

MECHANICAL DESIGN OF MECHANISM IV
The elements of the mechanical design of Mechanism IV are the compliant joints, the
links of the legs, and the links of the internal serial chains. The legs are the same as
those introduced for mechanism II in Section 3.2.3, where their mechanical design was
presented, as well as that of the compliant joints. The internal serial chains are all con-
structed from the same links, whose mechanical design was described in Section 5.5.
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Figure 6.3: Mechanism IV is a passive spatial mechanism, where the interaction wrenches are the result of
deformation of the compliant joints that make up the second joint of each leg. The mechanism is here shown
in pose IV-a as introduced in Table 6.2, where the pose is determined by a position of reference frames E1 and
E2 with respect to O .

JACOBIAN ANALYSIS OF MECHANISM IV

The full inverse Jacobian matrix for mechanism IV was developed in Chapter 5 and is
here complimented with the Jacobian of Elasticity. As described in Chapter 5, the first
and the third leg are RRR serial chains, while the second leg is an RRRR serial chain. In
all three legs only the second kinematic joints is not a zero stiffness joint. What separates
the three legs is that the RRR legs have three constriants, while the RRRR leg has two
constraints, so that the inverse Jacobian of Elasticity for each leg is

J−1
IV ,e,i =




$̂>

w ai ,2
/($̂>

w ai ,2
$̂t ai ,2 )

$̂>
wci ,1

/($̂>
wci ,1

$̂tci ,1 )

$̂>
wci ,2

/($̂>
wci ,2

$̂tci ,2 )

$̂>
wci ,3

/($̂>
wci ,3

$̂tci ,3 )

 for i = 1,3

$̂>
w ai ,2

/($̂>
w ai ,2

$̂t ai ,2 )

$̂>
wci ,1

/($̂>
wci ,1

$̂tci ,1 )

$̂>
wci ,2

/($̂>
wci ,2

$̂tci ,2 )

 for i = 2

(6.16)

where the unit twists and unit wrenches are introduced in Appendix E.

The internal serial chains do not contain any actuated or compliant joints, so the Ja-
cobian of elasticity only concerns the mapping of wrenches onto virtual joint displace-
ments. More specifically, it concerns the mapping onto the multiple constrained joint
displacements, because the simply constrained displacements are always zero as was
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concluded in Section 5.4.1. Therefore,

J−1
IV ,e,oi+1

i
=


$̂>

wco1,1
/($̂>

wco1,1
$̂tco1,1

)

$̂>
wco1,2

/($̂>
wco1,2

$̂tco1,2
)

$̂>
wco1,3

/($̂>
wco1,3

$̂tco1,3
)

 for i = 1,2 (6.17)

while

J−1
IV ,e,o1

3
=


$̂>

wco2,1
/($̂>

wco2,1
$̂tco2,1

)

$̂>
wco2,2

/($̂>
wco2,2

$̂tco2,2
)

$̂>
wco2,3

/($̂>
wco2,3

$̂tco2,3
)

 . (6.18)

Then, the overall inverse Jacobian of elasticity is expressed as

J−1
IV ,e = J−1

IV ,n,e MIV ,t (6.19)

where MIV ,t was expressed in Eq. (5.50) and J−1
IV ,n,e is constructed from the partial inverse

Jacobians of elasticity defined by Eqs. (6.16)-(6.18) as

J−1
IV ,n,e =



J−1
IV ,e,1 04×6 04×6

03×6 J−1
IV ,e,2 03×6

04×6 04×6 J−1
IV ,e,3

−J−1
IV ,e,o2

1
J−1

IV ,e,o2
1

03×6

03×6 −J−1
IV ,e,o3

2
J−1

IV ,e,o3
2

J−1
IV ,e,o1

3
03×6 −J−1

IV ,e,o1
3


(6.20)

STIFFNESS ANALYSIS OF MECHANISM IV
The stiffness analysis of mechanism IV expressed in the inertial reference frame is

KO
IV =

(
−
∂J−>IV ,e

∂qIV
τIV ,e

)
J−1

IV + J−>IV ,e KIV ,q,e J−1
IV ,e (6.21)

where J−1
IV was developed in Section 5.5, J−1

IV ,e is expressed by Eqs. (6.19)-(6.20) and where
the expression for τIV ,e is equivalent to Eq. (6.15), but with ki and qi ,20 now expressed as
in Eqs. (5.67) and (5.68). The matrix KIV ,q,e in (6.21) is

KIV ,q,e = diag
(
KIV ,q,e,1 KIV ,q,e,2 KIV ,q,e,3 KIV ,q,e,o2

1
KIV ,q,e,o3

2
KIV ,q,e,o1

3

)
(6.22)

where each matrix KIV ,q,e,i corresponds to the matrix KIV ,q,e,l d+sc,i in Section 3.2.3, while
KIV ,q,e,o2

1
and KIV ,q,e,o3

2
are the inverse of respectively K−1

qcm ,o2
1

and K−1
q

cm ,o3
2

introduced in

Section 5.5. Equivalent to the latter matrices, KIV ,q,e,o1
3

−1 can be developed as

KIV ,q,e,o1
3

−1 = J−1
IV ,e,o1

3

(
2∑

i=1
AdHO

lo2,i

K−1
s,lo2,i

AdHO
lo2,i

>
)

J−>
IV ,e,o1

3
(6.23)
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where the matrix K−1
s,lo2,i

is the compliance matrix of the i th link in the second end-

effector serial chain, which is the same as K−1
s,lo1,i

introduced in Eq. (5.60), and AdHO
lo1,2

is

the Adjoint matrix which transforms a vector expressed in the reference frame connected
to the end of the i th link of the second end-effector serial chain into its equivalent vector
expressed in the inertial Cartesian reference frame.

6.3. METHOD TO VERIFY STIFFNESS ANALYSES

T O verify that the resulting stiffness analyses of the PM2Es analyzed in Section 6.2
have similar accuracy as those presented in Chapter 3, the same measurement sys-

tem is used as in that chapter. This measurement system is described briefly, not to
repeat the work done in Chapter 3. Also, to further assess the measurement accuracy,
differential wrench calculations are introduced in this chapter.

6.3.1. MEASUREMENT SYSTEM.
Changes in reaction wrenches d$w predicted by the stiffness analyses will be compared
to differential wrench measurements ∆$w for a set of displacements at different poses.
Imposed displacements are assumed sufficiently small so that∆$w ≈ d$w for each wrench.
To obtain the measurements, an inertial reference frame was used in which both the po-
sition of the leg base points as well as the end-effector poses can be controlled. The
difference with Chapter 3 is that in this research two end-effectors are involved. As such,
two end-effector poses are controlled, while also two reaction wrenches are recorded, as
was also done in Chapter 5 for a different purpose. For mechanism III, the measurement
setup is shown in Fig. 6.2, while pictures of mechanism IV in the inertial reference frame
can be found in Fig. 5.5.

Because the same measurement system is used, the same positioning accuracy is
achieved as in Chapter 3, namely

ε∆θ = 1/80 rad, ε∆p = 1/2000 m (6.24)

Also, because in this research two versions of the same wrench sensor are used as in
Chapter 3, also the same moment and force resolutions are achieved, which are

εm = 1/4000 Nm, ε f = 1/100 N (6.25)

MEASUREMENT PLAN FOR MECHANISM III.
Mechanism III was analyzed at the five poses presented in Table 6.1, for four linear dis-
placements. Rotational displacements were not considered, because the end-effectors
of mechanism III are free to rotate. Indicating the first end-effector with EE1, and the
second end-effector with EE2, the four linear displacements were:

1. a 5 mm displacement of EE1 along the X-axis,

2. a 5 mm displacement of EE2 along the X-axis,

3. a 5 mm displacement of EE1 along the Y-axis, and

4. a 5 mm displacement of EE2 along the Y-axis.
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Table 6.1: Poses at which displacements were imposed on mechanism III to measure the resulting change in
reaction wrench

Pose px,e1 (m) py,e1 (m) px,e2 (m) py,e2 (m)
III-a 0.1000 0.1800 0.2600 0.1800
III-b 0.1100 0.1900 0.2500 0.1700
III-c 0.1100 0.1700 0.2700 0.1600
III-d 0.0900 0.2000 0.2500 0.1800
III-e 0.0900 0.1700 0.2700 0.1900

Table 6.2: Poses at which displacements were imposed on mechanism IV to measure the resulting change in
reaction wrench

Pose px,e1 (m) pz,e1 (m) px,e2 (m) pz,e2 (m)
IV-a -0.0525 0.2165 0.0525 0.2165
IV-b -0.0700 0.2165 0.0700 0.2165
IV-c -0.0650 0.2000 0.0650 0.2000
IV-d -0.0550 0.2050 0.0550 0.2050
IV-e -0.0550 0.1900 0.0550 0.1900
IV-f -0.0600 0.2200 0.0600 0.2200

MEASUREMENT PLAN FOR MECHANISM IV.
Mechanism IV was analyzed in six different poses, namely those listed in Table 6.2. In
those poses the following nine displacements were imposed:

1. a 5 mm displacement of EE1 along the negative X-axis together with a 5 mm dis-
placement of EE2 along the positive X-axis,

2. a 5 mm displacement of EE1 and EE2 along the Z-axis,

3. a 5 mm displacement of EE2 along the X-axis,

4. a 5 mm displacement of EE1 and EE2 along the X-axis,

5. a 5 mm displacement of EE2 along the Y-axis,

6. a 5 mm displacement of EE1 and EE2 along the Y-axis,

7. a 5 mm displacement of EE2 along the Z-axis,

8. a 1/8 rad rotation of EE2 around its Z-axis, and

9. a 1/8 rad rotation of EE1 and EE2 around the Z-axis that is positioned exactly in
the middle of the two end-effectors, see Fig. 6.4.
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Figure 6.4: The ninth imposed displacement was a rotation of both end-effectors around an axis positioned
exactly in between the two end-effectors and aligned with the Z-axis.

6.3.2. TRANSFORMATION OF STIFFNESS MATRICES.
The predicted change in differential wrenches were expressed by Eqs. (6.14) and (6.21).
In order to compare the measured differential wrenches with the differential wrenches
predicted by the stiffness analyses, they should all be expressed in the same reference
frames. In this chapter all wrenches will be expressed in the respective measurement
reference frames, which are the reference frames connected to the wrench sensors at
the poses before displacements. The measurement reference frames for the two mecha-
nisms are indicated by M1 and M2 in Figs. 6.1 and 6.3. Note that for mechanism III the
measurement reference frames coincide with the end-effector reference frames.

To transform the stiffness matrices into the measurement reference frames, the fol-
lowing transformation is implemented,

K =
Ad>

HO
M1

0

0 Ad>
HO

M2

KO

[
AdHO

M1
0

0 AdHO
M2

]
(6.26)

where K is a stiffness matrix expressed in the measurement reference frames, and where
AdHO

M1
and AdHO

M2
are the adjoint matrices related to the following homogeneous matri-

ces:

HO
M1

=
[

I3 pe1

01×3 1

]
(6.27)

HO
M2

=
[

I3 pe2

01×3 1

]
(6.28)
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with

pe1 =
[
px,e1 py,e1 pz,e1 +hs

]>
pe2 =

[
px,e2 py,e2 pz,e2 +hs

]>
where px,e1 , py,e1 , pz,e1 , px,e2 , py,e2 , and pz,e2 express the positions of the two end-
effectors as described by either Table 6.1 or Table 6.2, while hs is the distance between
the end-effector reference frame origins and the measurement reference frame origins,
as shown in Fig. 6.3. For mechanism III hs = 0 while for mechanism IV hs = 42.6 mm.

6.3.3. COMPARISON WITH DIFFERENTIAL WRENCH CALCULATIONS.

To provide additional insight in the accuracy of displacements along the DoFs, differen-
tial wrench calculations are performed for those displacements. This is achieved using

[
∆$w,e1,calc

∆$w,e2,calc

]
=

Ad>
HO

M1

0

0 Ad>
MO

M2

(
J−>e τe

∣∣+− J−>e τe
∣∣−)

(6.29)

where J−>e τe
∣∣− is the set of wrenches applied to the end-effectors at the considered ref-

erence pose, J−>e τe
∣∣+ is the set of wrenches at the pose after displacement, both ex-

pressed in the inertial reference frame, while ∆$w,e1,calc and ∆$w,e2,calc are the equiv-
alent wrenches expressed in the measurement reference frames. The homogeneous ma-
trices related to the adjoint matrices in (6.29) were introduced in Eqs. (6.27) and (6.28).

6.3.4. POSTPROCESSING OF MEASUREMENT DATA.

To draw conclusions on the accuracy of the predicted and calculated differential wrenches,
some postprocessing of the measured wrenches was required. First, all wrenches were
expressed in the same reference frames, followed by filtering and normalization.

TRANSFORMATION OF MEASURED WRENCHES.

In order to be able to calculate the difference between the wrenches measured before
and after displacement, they need to be expressed in the same reference frames. In this
chapter all wrenches are expressed in the measurement reference frames at the poses
before displacements, namely M1 and M2 as shown in Figs. 6.1 and 6.3. Then,

[
∆$w,e1,meas

∆$w,e2,meas

]
=

Ad>
H

N1
M1

0

0 Ad>
H

N2
M2

[
$N1

w,e1,meas

$N2
w,e2,meas

]
−

[
$M1

w,e1,meas

$M2
w,e2,meas

]
(6.30)
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which is similar to transformations performed in Section 3.2.5, but where here

HN1
M1

=


cos∆θe1 sin∆θe1 0 −cos(∆θe1 )∆px,e1 − sin(∆θe1 )∆py,e1

−sin∆θe1 cos∆θe1 0 sin∆θe1∆px,e1 −cos(∆θe1 )∆py,e1

0 0 1 −∆pz,e1

0 0 0 1



HN2
M2

=


cos∆θe2 sin∆θe2 0 −cos(∆θe2 )∆px,e2 − sin(∆θe2 )∆py,e2

−sin∆θe2 cos∆θe2 0 sin(∆θe2 )∆px,e2 −cos(∆θe2 )∆py,e2

0 0 1 −∆pz,e2

0 0 0 1



express the homogeneous matrices that transform measured wrenches in the measure-
ment reference frames after displacement, N1 and N2, into to the measurement refer-
ence frames before displacements, M1 and M2. In those homogeneous matrices ∆θe1 ,
∆px,e1 , ∆py,e1 , ∆pz,e1 , ∆θe2 , ∆px,e2 , ∆py,e2 , and ∆pz,e2 depend on the imposed displace-
ments as described in Section 6.3.1.

FILTERING AND NORMALIZATION OF WRENCH ELEMENTS.
Similar to Section 3.2.5, all elements below the measurement threshold in each vector
∆$w,e1,meas and ∆$w,e2,meas are removed. The moment- and force thresholds were de-
scribed as

∆mthr es = kφ,mi nε∆φ+2εm (6.31)

∆ fthr es = kp,mi nε∆p +2ε f (6.32)

where kφ,mi n and kp,mi n are the minimum angular and linear values found on the di-
agonals of the stiffness matrices evaluated at all poses introduced in Tables 6.1 and 6.2
respectively. The values for the angular and linear positioning resolution, ε∆φ and ε∆p ,
were introduced in Eq. (6.24). The moment and force measurement resolution values,
εm and ε f , were introduced in Eq. (6.25) and are multiplied by two because ∆$w,e1,meas

and ∆$w,e2,meas each reflect the difference between two wrench measurements. The
vectors ∆$w,e1,meas and ∆$w,e2,meas in which all elements below the respective thresh-
olds have been removed are labeled ∆$∗

w,e1,meas and ∆$∗
w,e2,meas . The same elements

can also be removed from the various predicted and differentially calculated wrenches.
Additionally, because in the planar mechanism III no moments can be transferred to the
end-effectors, they are ignored in the results.

The difference between each ∆$∗
w,e1,meas and the related ∆$∗

w,e1,pr ed or ∆$∗
w,e1,calc

gives the filtered differential wrench error for the first end-effector for either the stiff-
ness analysis or the differential calculation. Similar to Section 3.2.5, normalization was
performed with respect to ∆$∗

w,e1,meas , namely

ε∆$∗
w,e1,pr ed

=
(
∆$∗w,e1,pr ed −∆$∗w,e1,meas

)> [
diag

(
∆$∗w,e1,meas

)]−1 (6.33)

where ε∆$∗
w,e1,pr ed

is a non-dimensional vector. The same filtering and normalization can

also be performed for the second end-effector as well as for each differentially calculated
wrench.
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Table 6.3: The coefficients of determination for the various linear regression lines through the values obtained
using the stiffness analyses without or with consideration of the effect of loading (Kul and Kl d respectively) as
well as for the linear regression lines through the differential wrench calculations, ∆$w,calc

mechanism ( f or m values) Kul Kld ∆$w,calc

I ( f ) 0.77 0.97 0.98
II (m, DoFs) - 0.77 0.80
II (m, cons) - 0.86 -
II ( f , DoFs) - 0.94 0.94
II ( f , cons) - 0.79 -

6.4. VERIFICATION RESULTS

I N this section example stiffness matrices will be presented, as well as the processed
measurement data. Ideally, the measured delta wrenches are exactly equal to the

predicted delta wrench values. To visualize the coupling between the measured delta
wrench values and the predicted delta wrench values, they are set out against each other
in Figs. 6.5 and 6.7. The same is done for the differential wrench calculations. To quan-
tify this coupling, the coefficient of determination is determined for each set of predicted
or differentially calculated values in relation to the measured values. The coefficient of
determination R2 expresses the percentage of variability around a linear regression line
that has been accounted for by the predictions based on either the stiffness analysis or
the differential wrench calculations.

In order to assess the accuracy of stiffness analyses, box plots of the normalized er-
rors are presented. A box plot summarizes a data set using a median (the central mark)
and its confidence interval (the notch), while the outer edges of each box indicate the
25th and 75th percentiles. To test whether the medians of different sets of normalized
errors are significantly different, Wilcoxon rank-sum tests are performed. A Wilcoxon
rank-sum test determines the probability that two sets are sampled from two continuous
distributions with equal medians. The medians of two sets are considered significantly
different if the probability that they are equal is < 5%.

6.4.1. RESULTS FOR MECHANISM III
Evaluation of the stiffness matrix of mechanism III in pose III-a gives

KI I I ,ld
∣∣

a =



1 Nm 0 N 5 N 0 Nm 0 N −5 N
0 N 366 N/m 0 N/m 0 N −85 N/m 0 N/m
5 N 0 N/m 255 N/m 0 N 0 N/m 40 N/m

0 Nm 0 N 0 N 0 Nm 0 N 0 N
0 N −85 N/m 0 N/m 0 N 366 N/m 0 N/m
−5 N 0 N/m 40 N/m 0 N 0 N/m 255 N/m

 (6.34)

Evaluation of the stiffness matrix at the same pose but without considering the effect of
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Figure 6.5: The correlation between the forces measured on mechanism III and the forces that were predicted
using a stiffness analysis with the assumption of an unloaded mechanism (UL), a stiffness anlaysis where load-
ing is taken into account (LD), or with differential wrench calculations (D). The grey patch indicates the range
of measurements below the measurement threshold.

loading gives

KI I I ,ul
∣∣

a =



0 Nm 0 N 0 N 0 Nm 0 N 0 N
0 N 309 N/m 0 N/m 0 N −88 N/m 0 N/m
0 N 0 N/m 111 N/m 0 N 0 N/m 111 N/m

0 Nm 0 N 0 N 0 Nm 0 N 0 N
0 N −88 N/m 0 N/m 0 N 309 N/m 0 N/m
0 N 0 N/m 111 N/m 0 N 0 N/m 111 N/m

 (6.35)

In Fig. 6.5 the changes in force that are predicted by a stiffness analysis with and with-
out considering the effect of loading are set out against the measured changes in force.
Also, the differential wrench calculations are included. A linear regression line is fitted
through each data set, while the spread around the linear regression line is expressed by
the R2 values in Table 6.3. The values show that the stiffness analysis which takes loading
into account explains an almost equal amount of variance as the differential wrench cal-
culations. A close fit between the data and a linear regression is a sign that the measured
values and the predicted values are tightly coupled. However, as can also be observed
from Fig. 6.5, the linear regression lines related to the delta force values predicted by the
stiffness analyses do have lower slopes than the line ∆ fpr ed =∆ fmeas , which hints at an
underestimation of the interaction forces.

To determine whether the underestimation of interaction forces is significant, the
residual normalized errors are calculated for both stiffness analyses as well as for the
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Figure 6.6: Box plots of the normalized errors for the stiffness analyses of mechanism III with and without
considering the effect of loading, as well as the differential wrench calculations

differential wrench calculations. For that, the measurements below the measurement
threshold are filtered out. For mechanism III in the poses presented in Table 6.1 it was
found that kp,mi n = 2.5 ·102. Then, Eq. (6.25) results in

∆ fthr es = 0.145

As a result of filtering with the above thresholds, 41 of initial 80 measurement sets were
removed from further analysis. The raw data can be obtained from Ref. [16]. For the
filtered data sets, the residual errors are visualized in Fig. 6.6. It can be seen from the
notches that the median of the normalized errors obtained from differential calcula-
tions is not significantly different from zero. The median of the normalized errors for the
loaded stiffness analysis is −19%, while that of the unloaded stiffness analysis is −36%.
A Wilcoxon rank-sum test demonstrates the null hypothesis in which the two sets have
equal medians can be rejected at the 5% significance level. Fifty percent of the normal-
ized error values for the loaded stiffness analysis lie between −10% and −37%.

6.4.2. RESULTS FOR MECHANISM IV
Mechanism IV represents a more general PM2E, on which constraints and overconstraints
are imposed by both the legs and the internal serial chains. For this mechanism it is
therefore interesting to separate the analysis of the DoFs and the constrained directions.
In Fig. 6.7 the changes in moments and forces as predicted by the stiffness analysis are
plotted against the measured changes. The values obtained from differential wrench cal-
culations are included too. A linear regression line is fitted through each data set, while
the spread around these linear regression lines is expressed by the R2 values in Table 6.3.
The values show that for those displacements aligned with the DoFs of the mechanism,
the amount of variance from the linear regression lines explained by the stiffness analy-
sis is 77% and 94% for the moments and forces respectively, which is almost equal to the
variance explained by the differential wrench calculations.

It can be seen from Fig. 6.7a that, on average, the stiffness analysis overestimates
the moment changes for the displacements along constrained directions, while Fig. 6.7b
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Figure 6.7: The correlation between a) the moments and b) forces measured on mechanism IV and the mo-
ments and forces that were predicted using either the stiffness model (K) or differential wrench calculations
(D). The data points obtained using D only cover displacements 1 and 2. The grey patch indicates the range of
measurements below the measurement threshold.

shows that the force changes for the displacements along the DoFs are slightly underes-
timated. The normalized errors are calculated to further assess the impact of these over-
and underestimations. For that, first the measurements below the measurement thresh-
old are filtered out. For mechanism IV in the poses presented in Table 6.2 it was found
that kφ,mi n = 1.04 and kp,mi n = 60. Then, Eqs. (6.31) and (6.32) result in

∆mthr es = 0.0135

∆ fthr es = 0.050

As a result of filtering with the above thresholds, 204 of initial 648 vector elements were
excluded from further analysis. The raw data can be obtained from Ref. [16].

For the filtered data sets, the residual errors are visualized in Fig. 6.8. It can be ob-
served that the median of the normalized errors for the stiffness analysis is close to zero,
namely −7%, while 50% of the values lie between −18% and +10% error. This spread is
comparable to the differential wrench calculations. The median of the normalized errors
calculated for the displacements along the constrained directions is significantly worse,
namely 17%, while 50% of the values lie between −48% and +66% error.

The stiffness matrix of a PM2E maps the displacement twists of the two end-effectors
on the two elastic reaction wrenches. As such, it is a 12× 12 matrix. As an example,
the stiffness matrix of mechanism IV is evaluated at pose IV-a, resulting in the matrix
introduced in Eq. (6.36). The two displacement twists on which this matrix acts and the
resulting interaction wrenches are defined in the two measurement reference frames, as
expressed in Eq. (6.26).
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Figure 6.8: Box plots of the normalized errors for the values predicted by the stiffness analysis (K) and the
differential wrench calculations (D) for mechanism IV.

6.5. DISCUSSION OF VERIFICATION RESULTS

I T was shown that for the preloaded stiffness analysis of mechanism III, 50% of the
values have an error between −10% and −37%. This spread is smaller than what was

found in the analysis of a traditional planar parallel mechanism in Section 3.3.1. Simi-
larly, the spread of the normalized error values obtained for mechanism IV in the direc-
tions of the DoFs as well as the constraints is similar to that found in the analysis of a
comparable traditional parallel mechanism in Section 3.3.2. Thus, it is verified that the
spread of error values, i.e. the precision of the stiffness analyses, is comparable to those
found in the stiffness analysis of traditional parallel mechanisms.

On the other hand, the median of the normalized error values are different from zero
for the analyzed PM2Es, which hints at an accuracy of the stiffness analysis of PM2Es that
is worse than that of traditional PMs. To further analyze this accuracy, a comparison was
made with the differential wrench calculations, which represent static modeling errors.
This comparison showed that for both PM2Es the median of the errors of the stiffness
analyses is indeed significantly different from these static modeling errors. This is in
contrast to validation activities performed on traditional PMs in Chapter 3. For both
analyzed PM2Es, in the direction of the DoFs the median of the normalized errors is
negative, which represents an underestimation of the stiffness.

The lower accuracy in the stiffness analysis of PM2Es is thought to be a result of a
higher degree of non-linearity in the Jacobian matrices of such mechanisms. Mechanism
III forms the best illustration of this, because its stiffness analysis is only a function of
Jacobian matrices and the stiffness values of the linear springs. The same matrices are
also used for the differential wrench calculations. Because the median of the normalized
error of the differential wrench calculations is not significantly different from zero, it can
be concluded that the residual error cannot be attributed to inaccurate stiffness values or
Jacobian matrices. Therefore, the lower accuracy is expected to be the effect of a higher
degree of non-linearity in the Jacobian matrix. If the Jacobian matrix is highly non-linear,
then the stiffness changes significantly over the imposed 5 mm displacements, so that
∆$w 6= d$w , which was assumed in the measurement method. This implies that the
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remaining inaccuracy is an effect of the measurement method and the magnitude of the
imposed displacements, and not of the stiffness analysis.

While stiffness in the directions of the DoFs was underestimated for both PM2Es, it
was overestimated in the direction of the constraints for mechanism IV, as can be seen in
Fig. 6.8. From Fig. 6.7 it is concluded that this overestimation is in the reaction moments.
During the measurements it was observed that there was play in the ball bearings, which
allowed rotation of the joint axes. Because this effect was not captured in the model, this
could explain the overestimation of the reaction moments.

Despite a lower accuracy compared to that observed in Section 3.3.1, it was possi-
ble to conclude that the median of the error is significantly closer to zero if loading is
considered in the analysis of mechanism III. This is again in line with the findings in
Chapter 3. From the values in Table 6.3 it can be further concluded that more variability
in the measurements is explained if loading is considered, which is another indication
that the stiffness analysis for mechanism III is valid. However, unexpected are the non-
zero values for rotational stiffness in Eq. (6.34), because the mechanism cannot transfer
any moments to the end-effectors. This is an effect of the Jacobian-derivative term as
can be seen from comparison with Eq. (6.35). Thus, consideration of loading makes a
stiffness analysis more accurate, but accuracy is sacrificed in some directions for better
overall accuracy.

Finally, the example stiffness matrix introduced in Eq. 6.36 can be thought of as four
6×6 matrices, where the two off-diagonal matrices represent the coupling between the
two end-effectors. The fact that this matrix is fairly dense shows the complexity of this
coupling. Also, the example matrix illustrates that it becomes more difficult to interpret
individual values in the stiffness matrix, especially because DoFs can be a combination
of end-effector motions, such as the gripping motion in the considered spatial mecha-
nism. The second DoF of this mechanisms is a shared motion along the Z-axis, but a rel-
ative motion along the Z-axis between the end-effectors is constrained, which explains
the strong negative coupling for displacements along the Z-axis.

6.6. CONCLUSIONS ON STIFFNESS ANALYSIS OF PM2ES

T HIS chapter has presented the integration of a Jacobian-based stiffness analysis and
the Jacobian analysis of PM2Es, resulting in the first stiffness analyses of PM2Es. For

two mechanisms it was verified that the accuracy of the resulting stiffness analyses is
comparable to that of traditional parallel manipulators. Also, example stiffness matrices
of PM2Es were presented, which are 6×6 matrices for planar PM2Es and 12×12 matrices
for spatial PM2Es.

The stiffness analyses were performed for a 4DoF planar underactuated mechanism
and a 2DoF spatial overconstrained mechanism. An example stiffness matrix for the
planar PM2E showed that consideration of loading in the mechanism resulted in a re-
duction of the accuracy in some directions in order to achieve better overall accuracy. In
the example analysis this manifested itself as non-zero values for the rotational stiffness,
while no moments can be transferred to the end-effectors in the considered mechanism.

To analyze the accuracy of the stiffness analyses, changes in interaction wrenches
were compared to measured changes in interaction wrenches as a function of various
displacements. This comparison showed that for the planar mechanism the median of
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the errors of the predicted changes was different from zero. Comparison of the measured
changes with differential wrench calculations showed that this residual error could not
be attributed to the Jacobian analysis or modeling of the linear springs. It was there-
fore argued that PM2Es demonstrate a significantly larger degree of non-linearity than
traditional PMs.
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7
CONCLUSIONS

We may be in the cage
But the cage is not in us

Benjamin Duterde
Ben l’Oncle Soul - Walk the line

This thesis has developed a Jacobian-based stiffness analysis method that is also valid for
compliant PM2Es, which enables the design of a new generation of gripper robots. In this
chapter, first the five main original contributions of this thesis are summarized and inter-
preted in the context of existing literature. Next, the broader scientific implications of this
thesis are discussed. This includes links to other fields of mechanism and robotics research,
which have not been explored in this thesis, but which can benefit from the findings in this
thesis.
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7.1. ORIGINAL CONTRIBUTIONS

T HIS thesis has developed a Jacobian-based stiffness analysis method that is also valid
for compliant parallel manipulators with two end-effectors (PM2Es). The five chap-

ters of this thesis have made five main original contributions. With the essence of the
originality in bold, these contributions are:

1. A novel Jacobian-based stiffness analysis method that takes both mechanical com-
pliance and loading into account and thereby generalizes much of existing stiff-
ness analysis methods (Chapter 2).

2. Empirical evidence that the stiffness analysis of a parallel manipulator can be-
come significantly more accurate both if loading is considered and also if struc-
tural compliance is included (Chapter 3).

3. A novel explanation for the long-standing problem of asymmetry in stiffness ma-
trices obtained in previous research where loading was considered (Chapter 4).

4. A structured approach for the Jacobian analysis of PM2Es with a single internal
closed-loop chain, which was supported by the first empirically validated Jacobian
analysis of a PM2E (Chapter 5).

5. An integration of the introduced stiffness analysis method and the introduced Ja-
cobian analysis, resulting in the first two stiffness analyses of PM2Es (Chapter 6).

7.1.1. STIFFNESS ANALYSIS METHOD
The novel Jacobian-based stiffness analysis method that was developed in Chapter 2
is based on screw theory and generalizes much of the existing Jacobian-based stiffness
analysis methods. This generalization was achieved by reducing the number of assump-
tions in the derivations. Firstly, the proposed method does not make any assumptions
about the types of joints. Secondly, it does not assume that the stiffness of structural el-
ements is negligible. Finally, the method also considers the effect of loading. In general,
stiffness is load dependent because the transfer of an applied force or moment to the
end-effector is generally pose-dependent. Consideration of this effect was enabled by a
newly derived symbolic expression of its effect on the stiffness of a parallel manipulator.

Inclusion of structural stiffness was achieved through a novel use of Jacobian rela-
tions that express the constraints of each individual serial chain. These Jacobian rela-
tions are obtained using the reciprocal properties between twists and wrenches, i.e. six-
dimensional motion vectors and six-dimensional force/moment vectors, as described
by screw theory. The resulting stiffness analysis is more compact and more directly for-
mulated than existing stiffness analyses that consider the effect of structural stiffness.

The use of screw theory has also led to an important novel insight, namely that all
wrenches must be defined at the point where they are acting on the end-effector. It
was shown in Chapter 4 that an inconsistent definition of the vectors that define the
wrenches of actuation results in asymmetric stiffness matrices. This asymmetry arises
when the derivative is taken of the Jacobian with respect to the joint coordinates, be-
cause the Jacobian is a function of the wrenches of actuation. The asymmetry is a result
of the fact that a Jacobian which is constructed from inconsistently defined vectors does
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not fully capture the dependency on the various joint coordinates. With this insight, the
asymmetry in the stiffness matrices obtained by Griffis and Duffy in 1993 could finally
be explained and corrected.

By considering the effect of loading and the influence of structural stiffness, this the-
sis has enabled the Jacobian-based stiffness analysis of parallel manipulators where the
end-effector is partially constrained by its kinematic structure and which is operated un-
der loading. This includes, but is not limited to, more complex PMs such as compliant
PM2Es.

7.1.2. JACOBIAN ANALYSIS OF PM2ES
To apply the developed stiffness analysis method to PM2Es, a Jacobian analysis of PM2Es
is required. Because no method existed for the Jacobian analysis of PM2Es, this the-
sis has developed a novel structured approach for the Jacobian analysis of PM2Es. In
Chapter 5 this was done for PM2Es with a single internal closed-loop chain, although
the approach can be extended to other types of parallel manipulators with internal se-
rial chains. The main idea behind this method is that any manipulator is assembled from
a set of serial chains, which is reflected in its graph theory notation.

In the derivation of this method the constraint relations have played a crucial role,
because wrenches applied by the legs of a PM2E can be transferred to the two end-
effectors by the constraints in the internal serial chains. Since Jacobian relations alone
were insufficient to represent the dependency on internal constraints, the resulting Ja-
cobian analysis is also a function of compliance ratios. This is unprecedented in the
Jacobian analysis of parallel manipulators and is a precedent for the Jacobian analysis of
other complex mechanisms and manipulators.

7.1.3. COMPATIBILITY OF ANALYSES
Both the introduced stiffness analysis method and the structured approach for the Ja-
cobian analysis of PM2Es are based on screw theory. Both analyses rely on a set of six
twists and six wrenches for each serial chain. As such, there is a significant overlap in the
required effort to perform either the stiffness analysis or the Jacobian analysis. This over-
lap makes the two analyses directly compatible and reduces the overall analysis effort,
because the effort to express the twists and wrenches only has to be done once. Their
compatibility also enabled the straightforward integration of both analyses in Chapter 6.

7.1.4. EXPERIMENTAL VALIDATION AND VERIFICATION
All analysis methods presented in this thesis were validated and verified using experi-
ments, which gives great confidence in the results obtained in this thesis. Firslty, this
thesis has experimentally demonstrated that the effect of loading can have a significant
effect on the accuracy of the stiffness analysis of a PM. Experiments also confirmed that
consideration of structural stiffness improves analysis accuracy, while it was also ver-
ified that the stiffness analyses for two example PM2Es have a similar accuracy. The
latter analysis did hint at more non-linear behavior of these mechanisms. Future efforts
to analyze this non-linearity in more detail could reveal some fascinating new insights
about the stiffness properties of PM2Es. To facilitate such future studies, the measure-
ment data collected throughout this research are publicly available.
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7.2. BROADER IMPLICATIONS

S EVERAL contributions of this thesis have implications that go beyond the stiffness
analysis of PM2Es.

7.2.1. MECHANISMS AND MANIPULATORS OPERATED UNDER LOADING

Firstly, this thesis has provided new proof that the effect of loading is an inherent as-
pect of the stiffness analysis of parallel mechanisms. This effect is a consequence of
the non-linear kinematics of a mechanism, and is caused by the change in the internal
wrench as a function of a change in configuration. This effect is not limited to parallel
manipulators, but is relevant for any kind of kinematic linkage which is under loading.
One example are compliant mechanisms, because internal loading is an inherent aspect
of such mechanisms. A second example are cable-driven parallel robots, which are al-
ways operated under internal loading to maintain cable tension. More detailed studies
regarding the effect of loading in these more specific mechanisms and manipulators are
made possible by the analysis and validation methods that were developed in this thesis,
but this is left for future work.

7.2.2. INTEGRATION OF KINEMATIC AND STRUCTURAL ANALYSIS

A second contribution with wider implications regards the role of constraint relations
in the analysis of parallel manipulators. It was shown in Chapter 2 how constraint rela-
tions are essential for the inclusion of structural compliance in a Jacobian-based stiffness
analysis of lower mobility parallel manipulators. As such, the inclusion of constraint
relations has brought mechanical analysis and kinematic analysis together for a wide
range of parallel manipulators. This enables more integral design optimization where
mechanical and kinematic properties are optimized simultaneously. The development
of such integral optimization methods is expected to produce exciting future research.

It was also illustrated how the Jacobian analysis of a PM2E can be a function of me-
chanical properties, which is unprecedented in the field of parallel manipulator analysis.
Until now, it was sufficient to only consider the kinematic relations in a Jacobian analysis,
but this thesis has shown that this is not necessarily true. This thesis has thereby chal-
lenged the implicit assumption in existing Jacobian analyses that kinematic relations
are all that is required. Undoubtedly, future research will lead to other manipulators and
mechanisms where internal constraints play a role in the static force analysis. This thesis
may serve as a reference for their analysis.

7.2.3. MANIPULATORS WITH INTERNAL CLOSED LOOPS

Finally, the developed stiffness analysis method and the structured approach for the Ja-
cobian analysis of PM2Es open up the possibility to design compliant PM2Es. In doing
so, this thesis has brought the static analysis of PM2Es on par with traditional parallel
manipulator analysis. The next frontier in the analysis of PM2Es is the dynamic analysis,
for which this thesis may serve as a starting point.

Thanks to the level of generalization in the presented stiffness analysis, it is foreseen
that the derivations in this thesis can be exploited in a similar fashion for the stiffness
analysis of other, more complex mechanisms. For this, a Jacobian analysis of the mech-
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anism in question will be required. The presented structured approach for the Jacobian
analysis of PM2Es with a single internal closed-loop chain may act as an inspiration for
such Jacobian analysis. As more complex mechanisms will undoubtedly be developed
in the future, it will be exciting to learn where the boundaries of the presented analysis
lie.





ACKNOWLEDGEMENTS

Over the course of four years, ideas have turned into equations, expectations have turned
into reflections, and dreams have turned into memories. Hereby I would like to thank
everyone who has helped me shape these metamorphoses. These metamorphoses tran-
scend my academic life and therefore, before I continue, I wish to thank my parents,
family and friends for providing a world away from research, the value of which can-
not be overstated. Turning back to this thesis, there are several people who have had a
specific impact and who therefore deserve a special mention.

Firstly, I would like to thank Just for recognizing the researcher in me, feeding the en-
thusiasm in me, and supporting the explorer in me. You have created and maintained an
academic environment that enabled me to thrive, both in Delft and abroad. I am deeply
grateful for introducing me to your international network, which has greatly enriched
my academic experience as well as my passport.

Secondly, I would like to thank Patrice for all our discussions on Jacobians, kine-
matics, Canadian cuisine, the Dutch immigration process, and much more. As my daily
supervisor, you have helped me in my struggle with (and against) twists and wrenches,
and I want to thank you for the patience with which you did so. Also, I thank you for
helping me to ‘condense’ the number of equations in this thesis to a ‘mere’ 304.

Next, I wish to thank the M.Sc. students who have accompanied me along the way.
Matthijs, Alfons, Erik, Kashmira, Sa, and Vinayak, you have been a great source of in-
spiration and reflection. The same appreciation goes to all my colleagues from the PME
department with whom I have exchanged ideas.

My gratitude also goes to the Laval Robotics Laboratory for the fantastically fun and
productive time I had in, and around, Québec City. Special thanks to Clément for his
profound and continued involvement in my research, and to Thierry and Simon without
whom I would not have been able to collect all the data that support this thesis. Also, I
want to thank Sébastien from the LIRMM, who willingly offered me to torment his Heli4
robot in the name of science. Although the results of that exercise are not included in this
thesis, it has excited the confidence in my modeling method in its natural frequency.

Finally, there are several colleagues-turned-friends that deserve special mentioning.
During my Ph.D. research I have had the great pleasure of being part of the Delft Haptics
Lab, which introduced me to its inhabitants: David, Patrice, Jeroen, Roel, Henri, Bram,
Jack, Tricia, and Jeroen. Their questions, critical reflections, and jokes on my work have
been invaluable to its realization. More specifically, without Roel’s real-time support
on real-time systems a significant source of delay would have undoubtedly been intro-
duced. More generally, without this biomechanically oriented bunch I would not have
been introduced to the brilliantly fun minds behind the H-Haptics programme as well
as those of the BME department. As two of their representatives, I am honored to have
Bram and Jeroen by my side as paranymphs during my last act as Ph.D. candidate. Thank
you all.

131





A
INVERSE KINEMATICS AND UNIT

TWISTS AND UNIT WRENCHES OF

MECHANISM I

To perform the experimental validation of the stiffness analysis method of Chapter 2 two
mechanisms were developed in Chapter 3. The first mechanism is a passive planar 3-DoF
mechanism. This appendix presents the inverse kinematics of this mechanism, as well as
the unit twists and unit wrenches of each leg.
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Figure A.1: The definition of vectors and scalars for mechanism I

Table A.1: Vector elements of Ai, which was designed with |ai | = 38 mm

leg 1 leg 2 leg 3
Ax px −|a1|cosθ px +|a2|sinθ px +|a3|cosθ
Ay py −|a1|sinθ py −|a2|cosθ py +|a3|sinθ
Bx -0.0075 0.1800 0.3675
By 0.1800 -0.0075 0.1800

The inverse kinematics and unit twists and unit wrenches of the planar mechanism that
was introduced in Fig. 3.1, and which is also presented in Fig. A.1, are presented in this
appendix.

A.1. INVERSE KINEMATICS OF MECHANISM I

T HE inverse of mechanism I can be expressed as

qi ,1 = tan−1
(

Ay,i −By,i

Ax,i −Bx,i

)
qi ,2 =

√
(Ax,i −Bx,i )2 + (Ay,i −By,i )2

qi ,3 = 2π+θ−qi ,1

where Table A.1 presents Ax,i , Ay,i , Bx,i , and By,i for each leg i .
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A.2. UNIT TWISTS AND UNIT WRENCHES OF MECHANISM I

T HE planar parallel mechanism consists of three identical legs, for which first three
unit twists of permission can be identified as

$̂t ai ,1 =
[

ê3

−(qi ,2ŝi ,2 −ai )× ê3

]
(A.1)

$̂t ai ,2 =
[

03×1

ŝi ,2

]
(A.2)

$̂t ai ,3 =
[

ê3

ai × ê3

]
(A.3)

where $̂t ai ,1 , $̂t ai ,2 , and $̂t ai ,3 are the unit twists of permission associated to the lower
zero stiffness revolute joint, the passive compliant prismatic joint, and the upper zero
stiffness revolute joint respectively. The vector ê3 is the unit vector aligned with the Z-
axis (pointing out of the page), while the other vectors are illustrated in Fig. A.1. Together
these unit twists span the 2D space of the mechanism, namely the XY-plane.

Above set of unit twists then allow three unit wrenches of actuation to be identified
in the XY-plane, namely

$̂w ai ,1 =
[

ai × (ê3 × ŝi ,2)
(ê3 × ŝi ,2)

]
(A.4)

$̂w ai ,2 =
[

ai × ŝi ,2

ŝi ,2

]
(A.5)

$̂w ai ,3 =
[−(qi ,2ŝi ,2 −ai )× (ê3 × ŝi ,2)

(ê3 × ŝi ,2)

]
(A.6)

Because the mechanism is not constrained in the plane, no wrenches of constraint and
twists of restrictions exist. To do a planar analysis, the first, second, and sixth entry of
the six-dimensional vectors presented in Eqs. (A.1) - (A.6) was removed.





B
INVERSE KINEMATICS OF

MECHANISM II

To perform the experimental validation of the stiffness analysis method of Chapter 2 two
mechanisms were developed in Chapter 3. The second mechanism is a passive spatial 1-
DoF mechanism. This appendix presents the inverse kinematics of this mechanism. The
unit twists and unit wrenches of each leg were already introduced in Section 2.3.
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Figure B.1: The definition of vectors and scalars for mechanism II

inverse kinematics of the spatial mechanism presented in Fig. B.1 can be expressed as

qi ,1 =π+α+β

qi ,2 =
 π+ sin−1

( |BA|
l2

sinα
)

if |BA|2 ≤ l 2
1 + l 2

2

2π− sin−1
( |BA|

l2
sinα

)
if |BA|2 > l 2

1 + l 2
2

qi ,3 = 7π

2
−qi ,1 −qi ,2

where l1 = 135 mm, l2 = 150 mm, and

BA = [LB −L A 0 pz −hE −hB ]>

α= cos−1

(
l 2

1 − l 2
2 +|BA|2

2l1|BA|

)

β= tan−1
(

B Az

B Ax

)
where LB = 187.5 mm, L A = 30 mm, hE = 47 mm, and hB = 24 mm.



C
KINEMATIC DESIGN OF TWO

ELEMENTARY 3-DOF PARALLEL

MANIPULATORS WITH

CONFIGURABLE PLATFORMS

Parallel manipulators with two end-effectors (PM2Es) are an interpretation of parallel
manipulators with configurable platforms (PMCPs). PMCPs have internal degrees of free-
dom and form a class of manipulators that is not covered by existing type synthesis meth-
ods. Because the minimum number of legs for a PMCP is three, fully parallel 3DOF PMCPs
may be considered an elementary subset of PMCPs. To support the extension of type syn-
thesis methods to PMCPs, this appendix presents the first kinematic designs of manipula-
tors from this subset. A structured design method has led to the kinematic design of two
spatial manipulators that are both capable of independently performing one translation,
one rotation and one internal platform motion.

This appendix is part of a publication in Proceedings of the 6th International Workshop on Computational
Kinematics (2014) [1]. The Jacobian analysis performed in the original paper has been omitted here, because
it does not serve a purpose in this thesis. Minor style and word changes have been made to facilitate integration
in this thesis.
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C.1. INTRODUCTION TO SYNTHESIS OF PMCPS

R OBOTIC manipulation sometimes requires additional degrees of freedom (DoF) such
as grasping on top of the rigid end-effector motion. Multiple solutions have been

proposed to achieve this additional motion. One example is to combine two separate
mechanisms [2] and another is to attach a gripper mechanism in series to the end-
effector, as is the case in the commercial omega.7 by Force Dimension. The first solu-
tion increases the complexity of the system while the latter adds the inertia of an addi-
tional motor to the end-effector. Because low inertia at the end-effector is one of the
distinguishing features of parallel manipulators, additional inertia especially affects the
performance of parallel manipulators.

In the past decade it has been recognised that additional DoF can also be added to
the end-effector of a parallel manipulator without compromising its parallel structure.
This is achieved by replacing the rigid end-effector with an additional closed loop. Fol-
lowing the 4-DoF planar manipulator with grasping motion by Yi et al. [3], Mohamed
and Gosselin generalised the analysis of this new class of manipulators called Parallel
Manipulators with Configurable Platforms (PMCP) [4]. Other examples of such PMCPs
are the Par4 by Nabat et al. [5] and a 5-DoF design by Lambert et al. [6].

An illustrative method to discuss kinematic structures is graph theory [7], which rep-
resents every mechanism as a series of joints (lines) and rigid bodies (nodes). Fig. C.1
illustrates how in graph theory a PMCP with two legs is kinematically equivalent to a
series-parallel architecture, while a PMCP with three legs is not; in fact it belongs to a
different category labelled non-series-parallel architectures [8]. PMCPs with three legs
(serial chains) may therefore be regarderd as the most basic subset of PMCP designs. In
this appendix only fully parallel manipulators are considered, for which the number of
legs is strictly equal to the number of DoF of the end-effector [9]. Thus, if only the joints
located at the base are actuated, three legs allow 3-DoF. Consequently, it is argued in
this appendix that fully parallel 3-DoF PMCPs represent an elementary subset of PMCP
designs.

Interestingly, PMCPs discussed in the literature all have a minimum of 4-DoF. They
have not been developed using a type synthesis method such as the one introduced by
Kong and Gosselin [10] or Gogu [11], since existing methods do not cover PMCPs. Be-
cause fully parallel 3-DoF PMCPs are argued to form an elementary subset of PMCP de-
signs, examples from this subset may provide interesting input for the future develop-
ment of a type synthesis method that does cover PMCPs.

The goal of this appendix is to verify the existence of fully parallel 3DOF PMCPs and
present the first architectures from this elementary subset. The structure of the appendix
is as follows. First the design method is discussed that leads to the two kinematic archi-
tectures presented in this appendix. Next, the inverse Jacobian is derived for one of the
two kinematic designs and four singular configurations are identified.

C.2. STRUCTURED METHOD TO DESIGN NOVEL PMCPS

B ECAUSE no type synthesis method exists for PMCPs, the method in this appendix
relies on the structured combination of a four-bar mechanism (the platform) with a

set of pre-defined legs. Furthermore, two restricting conditions are posed on the designs.
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a) b)

n0

n1

n2

n0

n1

n3n2

Figure C.1: a) Using graph theory a PMCP mechanism with two legs can be represented as a series-parallel
mechanism with a base n0 and two link nodes n1 and n2, b) A PMCP with three legs cannot be represented as
a series-parallel mechanism, but yields a so-called wheel graph

The first condition is that the resulting 3-DoF PMCPs shall be fully parallel. The number
of legs is therefore strictly limited to three. Secondly, the axis associated with each DoF
shall coincide with an axis of either the inertial reference frame X Y Z or the platform
reference frame X ∗Y ∗Z∗. This condition facilitates a straightforward description of the
resulting mobilities.

The design method applied in this appendix consists of four steps. First, the build-
ing blocks are defined: a planar four-bar mechanism and three identical legs. A four-bar
mechanism with links of equal length is used, which is known to have three overcon-
straints and one internal DoF. Thus, the total number of platform DoF is seven. The
internal DoF is expressed as the distance Pg between one of the joints and the platform
reference frame origin. On the premise that a fully parallel 3-DoF PMCP requires each of
the three legs to have a minimum of three DoF, a minimal leg consists of two links and
three joints and describes planar motion. One of the end joints is connected to an actu-
ator at the base. In this appendix the choice was made to use rotating actuators but this
choice does not impact the DoF of the individual legs. The described building blocks are
shown in Fig. C.2a.

The second step is to constrain the motion of the platform reference frame origin to
a plane, which is achieved through the connection of two legs to opposite joints of the
four-bar mechanism. These legs are connected such that the resulting plane of motion
of the platform reference frame origin is perpendicular to either X ∗ or Y ∗. This is to
ensure that the remaining DoF are all alligned with an axis of either the inertial reference
frame or the platform reference frame. The plane of motion of the platform reference
frame origin is here defined as the X Z -plane, as shown in Fig. C.2b. The mechanism
now has four DoF.

In the third step an additional DoF is constrained using the third leg. To constrain the
platform in another DoF, the third leg is oriented in either of the planes perpendicular to
the first two legs. Connecting the third leg in this orientation to one of the two remaining
platform joints adds two additional constraints (and one overconstraint) to the platform.
The state of the two kinematic designs after this step is shown in Figs. C.2c and C.2d.

By constraining five of the original seven DoF, both mechanisms shown in Figs. C.2c
and C.2d have two DoF remaining. The final step is therefore to relieve one of the con-
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Figure C.2: a) the minimum building blocks for a fully parallel 3-DoF PMCP, b) the mechanism after connec-
tion of the first two legs, c) one of two possibilities for connecting the third leg, d) the second possibility for
connecting the third leg, e) one of the resulting fully parallel 3-DoF PMCPs, and f) the second resulting fully
parallel 3-DoF PMCP.
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Figure C.3: Representation of the mechanisms shown in Figs. C.2e and C.2f using graph theory where li l stands
for the l th link of the leg i and $i j for the screw associated with joint j of leg i , while in the reduced graph after

serial reduction ni and Si are respectively the i th link node and screw system

strained DoF by introducing an additional joint. For the mechanism shown in Fig. C.2d
this also requires a change in the orientation of the joint connecting the third leg to the
platform. The two resulting kinematic designs are shown in Figs. C.2e and C.2f.

This section has described the kinematic design of two fully parallel 3-DoF PMCPs,
both of which have four overconstraints. In graph theory notation, both architectures are
represented by the graph in Fig. C.3 which is equivalent to the one shown in Fig. C.1b
after serial reductions [8].

C.3. CONCLUSION

T HIS appendix has presented the first kinematic designs of fully parallel 3DOF PMCPs,
which were identified as an elementary subset of PMCP designs. The resulting mech-

anisms are spatial manipulators that can be independently controlled in one rotation,
one translation and one internal platform motion. Since existing type synthesis meth-
ods do not cover PMCPs, this appendix has applied a structured, but not yet formalised,
design method. Because the presented manipulators are considered to be part of an
elementary subset of PMCP designs, they may prove to be useful input for the develop-
ment of a type synthesis method that does cover PMCPs. Also, they are relatively simple
PMCPs, which makes them suitable examples for novel analyses, such as the structured
approach for the Jacobian analysis introduced in Chapter 5.
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D
INVERSE KINEMATICS AND PARTIAL

JACOBIANS FOR MECHANISM III

To perform the experimental verification of the synthesized stiffness analyses of PM2Es, as
presented in Chapter 6, two mechanisms were developed in that chapter. The first mecha-
nism is a passive planar 4-DoF mechanism. This appendix presents the inverse kinematics
of this mechanism, the unit twists and unit wrenches of each serial chain, as well as the
partial inverse Jacobian matrices.
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, 2,2ŝq2 2

 
1,2of  

2,2of=

 
2,2or̂ol

 
,oq

2 1

 ϕ

 ξ

 
,oq

2 2

 
,oq

2 3

Figure D.1: An example of the various vectors that are used in the inverse kinematics and expressions of Jaco-
bian matrices for mechanism III.

For the planar 4-DoF PM2E that was introduced in Chapter 6 as mechanism III, this
appendix develops the inverse kinematics as well as the unit twists and unit wrenches.
These unit twists and unit wrenches are also used to develop the partial Jacobian matri-
ces for each individual chain of the mechanism.

D.1. INVERSE KINEMATICS OF MECHANISM III

T HE inverse kinematics of the example 4-DoF planar PM2E are developed for each
individual serial chain. The inverse kinematics of the legs are presented first, where

expression for the angles as shown in Fig. D.1 can be obtained as

qi ,1 = tan−1
(

ay,i −by,i

ai ,x −bi ,x

)
qi ,2 =

√(
ax,i −bx,i

)2 + (
ay,i −by,i

)2

qi ,3 =


2π−qi ,1 if i = 1,3

π+cos−1
(

q2
i ,2+l 2

o−|bia3|2
2qi ,2lo

)
if i = 2,4 and βi < qi ,1

π−cos−1
(

q2
i ,2+l 2

o−|bia3|2
2qi ,2lo

)
if i = 2,4 and βi ≥ qi ,1
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where lo = 120 mm,

a1 =
px,e1

py,e1

0

 , a2 =
px,e1 + lo cos

(
ξ−φ)

py,e1 − lo sin
(
ξ−φ)

0

 , a3 =
px,e2

py,e2

0

 ,

a4 =
px,e2 − lo cos

(
ξ−φ)

py,e2 + lo sin
(
ξ−φ)

0

 , b1 =
−0.0075

0.1800
0

m,

b2 =
 0.1800
−0.0075

0

m, b3 =
0.3675

0.1800
0

m, b4 =
0.1800

0.3675
0

m,

and

bia3 = a3 −bi, φ= tan−1
(

py,e2 −py,e1

px,e2 −px,e1

)

ξ= cos−1


√(

px,e2 −px,e1

)2 + (
py,e2 −py,e1

)2

2lo


Next, the inverse kinematics of the end-effector serial chains are developed, where ex-
pression for the angles as shown in Fig. D.1 can be obtained as

qo1,1 =φ−ξ, qo1,2 = 2ξ, qo1,3 = 4π−φ−ξ
qo2,1 =φ+ξ, qo2,2 = 2π−2ξ, qo2,3 =−φ+ξ

D.2. UNIT TWISTS, UNIT WRENCHES, AND PARTIAL JACOBIANS

FOR MECHANISM III

T HIS section presents the unit twists and unit wrenches for mechanism III and presents
the partial inverse Jacobian matrices for each leg and for the two end-effector serial

chain.

D.2.1. FULL INVERSE JACOBIAN FOR LEGS
The four legs of the planar PM2E are identical, with the following unit twists of permis-
sion,

$̂t ai ,1 =
[

ê3

−(qi ,2ŝi ,2 −ai )× ê3

]
(D.1)

$̂t ai ,2 =
[

03×1

ŝi ,2

]
(D.2)

$̂t ai ,3 =
[

ê3

ai × ê3

]
(D.3)
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where for the i th leg, $̂t ai ,1 , $̂t ai ,2 , and $̂t ai ,3 are the unit twists of permission associated to
the lower zero stiffness revolute joint, the passive compliant prismatic joint, and the up-
per zero stiffness revolute joint respectively. The vector ê3 is the unit vector aligned with
the Z-axis (pointing out of the page), while the other vectors are illustrated in Fig. D.1.
Together these unit twists span the 2D space of the mechanism, namely the XY-plane.

Above set of unit twists then allow three unit wrenches of actuation to be identified
in the XY-plane, namely

$̂w ai ,1 =
[

ai × (ê3 × ŝi ,2)
(ê3 × ŝi ,2)

]
(D.4)

$̂w ai ,2 =
[

ai × ŝi ,2

ŝi ,2

]
(D.5)

$̂w ai ,3 =
[−(qi ,2ŝi ,2 −ai )× (ê3 × ŝi ,2)

(ê3 × ŝi ,2)

]
(D.6)

Because the mechanism is not constrained in the plane, no wrenches of constraint and
twists of restrictions exist. For the planar analysis the first, second, and sixth entry of
each six-dimensional twist or wrench presented in Eqs. (D.1) - (D.6) are removed.

Equations (D.1)-(D.6) can be used to develop the full inverse Jacobian matrix for each
individual leg as

J−1
i =

$̂>
w ai ,1

/($̂>
w ai ,1

$̂t ai ,1 )

$̂>
w ai ,2

/($̂>
w ai ,2

$̂t ai ,2 )

$̂>
w ai ,3

/($̂>
w ai ,3

$̂t ai ,3 )

 (D.7)

D.2.2. FULL INVERSE JACOBIAN FOR INTERNAL SERIAL CHAINS
In order to develop the inverse Jacobian matrices for the internal serial chains, first a set
of basis twists and basis wrenches is developed for the two end-effector serial chains.
Both these serial chains are RRR chains and their linearly independent basis twists of
permission are

$̂t aoi ,1
=

[
ê3

−(lo r̂oi ,1 + lo r̂oi ,2 −a3)× ê3

]
(D.8)

$̂t aoi ,2
=

[
ê3

−(lo r̂oi ,2 −a3)× ê3

]
(D.9)

$̂t aoi ,3
=

[
ê3

a3 × ê3

]
(D.10)

where $̂t aoi ,1
, $̂t aoi ,1

, and $̂t aoi ,1
are the unit twists of permission associated to the first,

second, and third joints encountered in each end-effector serial chain, going from the
first to the second end-effector. The vector ê3 is the unit vector along the Z-axis. Exam-
ples of scalars and other vectors in Eqs. (D.8)-(D.10), are illustrated in Fig. D.1, where lo

is the length of each link in the end-effector serial chains. As such, r̂oi ,l is the unit vector

pointing along the l th link of the i th end-effector serial chain. Together, the three twists
of permission span the plane in which the mechanism is operating, so that no wrenches
of constraint exist.
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Following the methodology described by Huang et al. [1], the set of unit twists of per-
mission in Eqs. (D.8)-(D.10) led to the identification of a set of unit wrenches of actuation
as

$̂w aoi ,1
=

[
a3 × r̂oi ,2

r̂oi ,2

]
(D.11)

$̂w aoi ,2
=

[
a3 × f̂oi ,2

f̂oi ,2

]
(D.12)

$̂w aoi ,3
=

[−(lo r̂oi ,2 −a3)× r̂oi ,1

r̂oi ,1

]
(D.13)

with

f̂oi ,2 =
lo r̂oi ,1 + lo r̂oi ,2∣∣lo r̂oi ,1 + lo r̂oi ,2

∣∣ . (D.14)

The unit twists and wrenches presented in Eqs. (D.8)-(D.13) were then used to develop
the inverse Jacobian matrices for the four internal serial chains, J−1

o2
1

, J−1
o3

2
, J−1

o4
3

, and J−1
o1

4
.

Considering that the internal serial chain connecting n1 and n2 contains the first two
kinematic joints of the first end-effector serial chain, then

J−1
o2

1
=


$̂>

w ao1,1
/($̂>

w ao1,1
$̂t ao1,1

)

$̂>
w ao1,2

/($̂>
w ao1,2

$̂t ao1,2
)

$̂>
w ao1,3

/($̂>
w ao1,3

$̂t ao1,3
)

 (D.15)

where the first and second row of Eq. (D.15) map the relative twist between the two
end-effectors onto q̇ao2

1 ,1
and q̇a,o2

1 ,2, the third row maps that relative twist onto the sim-

ple constrained joint velocity, q̇cs ,o2
1 ,1. See Section 5.4.1 for more details on simple con-

strained velocities.
The internal serial chain that connects n2 and n3 contains the third kinematic joint

of the first end-effector serial chain, so that

J−1
o3

2
=


$̂>

w ao1,3
/($̂>

w ao1,3
$̂t ao1,3

)

$̂>
w ao1,1

/($̂>
w ao1,1

$̂t ao1,1
)

$̂>
w ao1,2

/($̂>
w ao1,2

$̂t ao1,2
)

 (D.16)

where the first row maps the relative end-effector twist onto q̇a,o3
2 ,1, and the second and

third rows map the relative end-effector twist onto the two simple constrained joint ve-
locities, q̇cs ,o3

2 ,1 and q̇cs ,o3
2 ,2.

The internal serial chain that connects n3 to n4 contains the third kinematic joint
of the second end-effector serial chain, but considered in the opposite direction as the
twists in (D.8)-(D.10),

J−1
o4

3
=


−$̂>

w ao2,3
/($̂>

w ao2,3
$̂t ao2,3

)

−$̂>
w ao2,1

/($̂>
w ao2,1

$̂t ao2,1
)

−$̂>
w ao2,2

/($̂>
w ao2,2

$̂t ao2,2
)

 (D.17)
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where the first row maps the relative end-effector twist onto q̇a,o4
3 ,1, and the second and

third rows map the relative end-effector twist onto the two simple constrained joint ve-
locities, q̇cs ,o4

3 ,1 and q̇cs ,o4
3 ,2.

Finally, the internal serial chain that connects n4 to n1 contains the first and sec-
ond kinematic joint of the second end-effector serial chain, but again considered in the
opposite direction as the twists in Eqs. (D.8)-(D.10),

J−1
o4

3
=


−$̂>

w ao2,2
/($̂>

w ao2,2
$̂t ao2,2

)

−$̂>
w ao2,1

/($̂>
w ao2,1

$̂t ao2,1
)

−$̂>
w ao2,3

/($̂>
w ao2,3

$̂t ao2,3
)

 (D.18)

where the first and second row map the relative end-effector twist onto q̇a,o1
4 ,1 and q̇a,o1

4 ,2,

and the second and third rows map the relative end-effector twist onto the simple con-
strained joint velocity q̇cs ,o1

4 ,1.
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E
INVERSE KINEMATICS AND PARTIAL

JACOBIANS FOR MECHANISM IV

To perform the experimental verification of the synthesized stiffness analyses of PM2Es,
as presented in Chapter 6, two mechanisms were developed in that chapter. The second
mechanism is a passive spatial 2-DoF mechanism. This appendix presents the inverse
kinematics of this mechanism, the unit twists and unit wrenches of each serial chain, as
well as the partial inverse Jacobian matrices.
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For the spatial 2-DoF PM2E that was introduced in Chapter 5, this appendix develops
the inverse kinematics as well as the unit twists and unit wrenches. These unit twists
and unit wrenches are also used to develop the partial Jacobian matrices for each indi-
vidual chain of the mechanism. The mechanism will be referred to as mechanism IV in
agreement with Chapter 6.

E.1. INVERSE KINEMATICS OF MECHANISM IV

I N this section the inverse kinematics are developed for mechanism IV. First the inverse
kinematics of the legs are developed, where expression for the angles as shown in Figs.

E.1 and E.2 can be obtained as

qi ,1 =π+α+β

qi ,2 =
 π+ sin−1

( |BAi|
l2

sinα
)

if |BAi|2 ≤ l 2
1 + l 2

2

2π− sin−1
( |BAi|

l2
sinα

)
if |BAi|2 > l 2

1 + l 2
2

qi ,3 = 7π

2
−qi ,1 −qi ,2

where l1 = 135 mm, l2 = 150 mm, and

BA1 =
 LB ,1 +px,e1

0
pz,e1 − l3 −hB

 BA3 =
 LB ,3 −px,e2

0
pz,e2 − l3 −hB



BA2 =

LB ,2 −0.5
√

(2lo)2 − (
px,e2 −px,e1

)2

0
pz,e1 − l3 −hB


α= cos−1

(
l 2

1 − l 2
2 +|BA|2

2l1|BA|

)

β= tan−1
(

B Az

B Ax

)
where LB ,1 = LB ,3 = 187.5 mm, LB ,2 = 242.5 mm, lo = 120 mm, hB = 24 mm, and where it
is assumed that pz,e1 = pz,e2 . Next the inverse kinematics of the end-effector serial chains
are developed, where expression for the angles as shown in Fig. E.3 can be obtained as

qo1,1 = 2π−ξ, qo1,2 = 2ξ, qo1,3 = 2π−ξ (E.1)

qo2,1 = ξ, qo2,2 = 2π−2ξ, qo2,3 = ξ (E.2)

where

ξ= cos−1
(

px,e2 −px,e1

2lo

)
(E.3)

E.2. UNIT TWISTS, UNIT WRENCHES, AND PARTIAL JACOBIANS

FOR MECHANISM IV

A LL twists and wrenches introduced in this appendix are expressed in a right-handed
Cartesian reference frame connected to the moving body of the serial chain in ques-
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tion, whose origin coincides with the point O . This reference frame is an arbitrary choice,
but considered most convenient and logical. Whatever reference frame is chosen, it is
important that all vectors are expressed in this same reference frame.

E.2.1. FULL INVERSE JACOBIAN FOR FIRST AND THIRD LEG
The first and third leg are identical RRR serial chains, and are shown in Fig. E.1. Their
linearly independent basis twists of permission were obtained as

$̂t ai ,1 =
[

ŝi

−(l1r̂i ,1 + l2r̂i ,2 + l3r̂i ,3 −ai )× ŝi

]
(E.4)

$̂t ai ,2 =
[

ŝi

−(l2r̂i ,2 + l3r̂i ,3 −ai )× ŝi

]
(E.5)

$̂t ai ,3 =
[

ŝi

−(l3r̂i ,3 −ai×)ŝi

]
(E.6)

where $̂t ai ,1 , $̂t ai ,2 , and $̂t ai ,3 are the basis twists of permission associated to the first,
second, and third joints respectively. Furthermore, ŝ1 =−ê2 and ŝ3 = ê2, where ê2 is the
unit vector aligned with the Y -axis. The other vectors are illustrated in Fig. E.1, where
r̂i ,l is the unit vector pointing along the l th link of leg i and âi is the vector pointing from
O to the center of the third joint.

Next, taking the conditions posed by Ref. [1] into account, a set of basis wrenches of
constraint were identified,

$̂wci ,1 =
[

03×1

ŝi

]
(E.7)

$̂wci ,2 =
[

ê3

03×1

]
(E.8)

$̂wci ,3 =
[

ê3 × ŝi

03×1

]
(E.9)

Following the methodology described by Huang et al. [2], the set of basis twists of per-
mission described in Eqs. (E.4)-(E.6) and the set of basis wrenches of constraint pre-
sented in Eqs. (E.7)-(E.9) can be used to identify a set of basis wrenches of actuation.
Namely,

$̂w ai ,1 =
[−(l3r̂i ,3 −ai )× r̂i ,2

r̂i ,2

]
(E.10)

$̂w ai ,2 =
[−(l3r̂i ,3 −ai )× f̂i ,2

f̂i ,2

]
(E.11)

$̂w ai ,3 =
[−(l2r̂i ,2 + l3r̂i ,3 −ai )× r̂i ,1

r̂i ,1

]
(E.12)

with

f̂i ,2 =
l1r̂i ,1 + l2r̂i ,2∣∣l1r̂i ,1 + l2r̂i ,2

∣∣ (E.13)
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Figure E.1: Legs one and three and examples of all vectors and scalars that are used in the expression of the
basis twists, the basis wrenches, and the inverse kinematics.

and finally also a set of twists of constraint was identified,

$̂tci ,1 =
[

03×1

ŝi

]
(E.14)

$̂tci ,2 =
[

ê3

03×1

]
(E.15)

$̂tci ,3 =
[

ê3 × ŝi

03×1

]
(E.16)

Equations (E.4)-(E.16) were then used to obtain the full inverse Jacobian for the first
(i = 1) or third leg (i = 3),

J−1
i =



$̂>
w ai ,1

/($̂>
w ai ,1

$̂t ai ,1 )

$̂>
w ai ,2

/($̂>
w ai ,2

$̂t ai ,2 )

$̂>
w ai ,3

/($̂>
w ai ,3

$̂t ai ,3 )

$̂>
wci ,1

/($̂>
wci ,1

$̂tci ,1 )

$̂>
wci ,2

/($̂>
wci ,2

$̂tci ,2 )

$̂>
wci ,3

/($̂>
wci ,3

$̂tci ,3 )


(E.17)
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Figure E.2: Leg two and examples of vectors and scalars that are used in the expression of the basis twists, the
basis wrenches, and the inverse kinematics.

E.2.2. FULL INVERSE JACOBIAN FOR 2ND LEG, J−1
2

The second leg is an RRRR serial chains, and a set of linearly independent basis twists of
permission was obtained as

$̂t a2,1 =
[

ŝ2,1

−(l1r̂2,1 + l2r̂2,2 + l3r̂2,3 −a2)× ê1

]
(E.18)

$̂t a2,2 =
[

ŝ2,2

−(l2r̂2,2 + l3r̂2,3 −a2)× ê1

]
(E.19)

$̂t a2,3 =
[

ŝ2,3

(−l3r̂2,3 −a2)× ê1

]
(E.20)

$̂t a2,4 =
[

ŝ2,4

−(l3r̂2,3 −a2)× ê3

]
(E.21)

where ŝ2,1 = ŝ2,2 = ŝ2,3 = ê1 is the unit vector aligned with the X -axis, and ŝ2,4 = ê3 is the
unit vector aligned with the Z -axis.

Subsequently, a set of basis wrenches of constraint was identified as

$̂wc2,1 =
[

a2 × ê1

ê1

]
(E.22)

$̂wc2,2 =
[

ê2

03×1

]
(E.23)

(E.24)

The set of basis twists of permission described in Eqs. (E.18)-(E.21) and the set of basis
wrenches of constraint presented in Eqs. (E.22)-(E.23) enabled the identification of a set
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of basis wrenches of actuation as

$̂w a2,1 =
[−(l3r̂2,3 −a2)× r̂2,2

r̂2,2

]
(E.25)

$̂w a2,2 =
[−(l3r̂2,3 −a2)× f̂2,2

f̂2,2

]
(E.26)

$̂w a2,3 =
[−(l2r̂2,2 + l3r̂2,3 −a2)× r̂2,1

r̂2,1

]
(E.27)

$̂w a2,4 =
[

03×1

ê2

]
(E.28)

where f̂2,2 was already described by Eq. (E.13). A set of twists of constraint was then
identified as

$̂tc2,1 =
[

ê3

03×1

]
(E.29)

$̂tc2,2 =
[

ŝc,2,2

03×1

]
(E.30)

where

ŝc,2,2 = 1√
(a2,y /a2,z )2 +1

[
0 a2,y /a2,z 1

]>

in which a2,y and a2,z are the elements in the vector a2 aligned with respectively the Y -
and Z -axis.

Equations (E.18)-(E.30) are then used to obtain the full inverse Jacobian for the sec-
ond leg,

J−1
2 =



$̂>
w a2,1

/($̂>
w a2,1

$̂t a2,1 )

$̂>
w a2,2

/($̂>
w a2,2

$̂t a2,2 )

$̂>
w a2,3

/($̂>
w a2,3

$̂t a2,3 )

$̂>
w a2,4

/($̂>
w a2,4

$̂t a2,4 )

$̂>
wc2,1

/($̂>
wc2,1

$̂tc2,1 )

$̂>
wc2,2

/($̂>
wc2,2

$̂tc2,2 )


(E.31)

E.2.3. FULL INVERSE JACOBIAN FOR INTERNAL SERIAL CHAINS, J−1
o2

1
, J−1

o3
2

,

AND J−1
o1

3

In order to develop matrices J−1
o2

1
, J−1

o3
2

, and J−1
o1

3
, first a set of basis twists and basis wrenches

is developed for the end-effector serial chains. Both these serial chains are RRR chains
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Figure E.3: a) the first end-effector serial chains and b) the second end-effector serial chain, which is also the
third internal serial chain, both with examples of vectors and scalars that are used in the expression of the basis
twists, the basis wrenches, and the inverse kinematics.

and their linearly independent basis twists of permission are

$̂t aoi ,1
=

[
ê3

−(lo r̂oi ,1 + lo r̂oi ,2 −a3)× ê3

]
(E.32)

$̂t aoi ,2
=

[
ê3

−(lo r̂oi ,2 −a3)× ê3

]
(E.33)

$̂t aoi ,3
=

[
ê3

a3 × ê3

]
(E.34)

where $̂t aoi ,1
, $̂t aoi ,1

, and $̂t aoi ,1
are the basis twists of permission associated to the first,

second, and third joints encountered in each end-effector serial chain, going from the
first to the second end-effector. The vector ê3 is the unit vector along the Z-axis. This
vector, as well as examples of scalars and other vectors in Eqs. (E.32)-(E.34), are illus-
trated in Fig. E.3, where lo is the length of all links in the end-effector serial chains. As
such, r̂oi ,l is the unit vector pointing along the l th link of the i th end-effector serial chain.

Next, taking the conditions posed by Ref. [1] into account, a set of wrenches of con-
straint was identified. Namely,

$̂wcoi ,1
=

[
03×1

ê3

]
(E.35)

$̂wcoi ,2
=

[
ê1

03×1

]
(E.36)

$̂wcoi ,3
=

[
ê2

03×1

]
. (E.37)

Following the methodology described by Huang et al. [2], the set of basis twists of per-
mission in Eqs. (E.32)-(E.34) and the set of basis wrenches of constraint in Eqs. (E.35)-
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(E.37) enabled the identification of a set of basis wrenches of actuation as

$̂w aoi ,1
=

[
a3 × r̂oi ,2

r̂oi ,2

]
(E.38)

$̂w aoi ,2
=

[
a3 × f̂oi ,2

f̂oi ,2

]
(E.39)

$̂w aoi ,3
=

[−(lo r̂oi ,2 −a3)× r̂oi ,1

r̂oi ,1

]
(E.40)

with

f̂oi ,2 =
lo r̂oi ,1 + lo r̂oi ,2∣∣lo r̂oi ,1 + lo r̂oi ,2

∣∣ (E.41)

and finally also a set of twists of constraint was identified,

$̂tcoi ,1
=

[
03×1

ê3

]
(E.42)

$̂tcoi ,2
=

[
ê1

03×1

]
(E.43)

$̂tcoi ,3
=

[
ê2

03×1

]
(E.44)

The basis twists and wrenches presented in Eqs. (E.32)-(E.44) were then used to de-
velop J−1

o2
1

, J−1
o3

2
, as well as J−1

o1
3

. With joint velocity vectors defined as in Eq. (5.13), and

considering that the internal serial chain connecting n1 and n2 contains the first two
kinematic joints of the first end-effector serial chain, then

J−1
o2

1
=



$̂>
w ao1,1

/($̂>
w ao1,1

$̂t ao1,1
)

$̂>
w ao1,2

/($̂>
w ao1,2

$̂t ao1,2
)

$̂>
w ao1,3

/($̂>
w ao1,3

$̂t ao1,3
)

$̂>
wco1,1

/($̂>
wco1,1

$̂tco1,1
)

$̂>
wco1,2

/($̂>
wco1,2

$̂tco1,2
)

$̂>
wco1,3

/($̂>
wco1,3

$̂tc1,3 )


(E.45)

where the first and second row of Eq. (E.45) map the relative twist between the two end-
effectors onto q̇ao2

1 ,1
and q̇a,o2

1 ,2, the third row maps that relative twist onto q̇cs ,o2
1 ,1, and

rows four to six map it onto q̇cm ,o1
2
.

The internal serial chain that connects n2 and n3 contains the third kinematic joint
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of the first end-effector serial chain, so that

J−1
o3

2
=



$̂>
w ao1,3

/($̂>
w ao1,3

$̂t ao1,3
)

$̂>
w ao1,1

/($̂>
w ao1,1

$̂t ao1,1
)

$̂>
w ao1,2

/($̂>
w ao1,2

$̂t ao1,2
)

$̂>
wco1,1

/($̂>
wco1,1

$̂tco1,1
)

$̂>
wco1,2

/($̂>
wco1,2

$̂tco1,2
)

$̂>
wco1,3

/($̂>
wco1,3

$̂tc1,3 )


(E.46)

where the first row maps the relative end-effector twist onto q̇a,o3
2 ,1, and the second and

third rows map the relative end-effector twist onto q̇cs ,o3
2 ,1 and q̇cs ,o3

2 ,2, while again rows

four to six map this twist onto q̇cm ,o1
2
.

Finally, because in Eq. (5.53) the internal chain connecting n1 and n3 is defined in
the opposite direction as the twists in Eqs. (E.32)-(E.34),

J−1
o1

3
=



−$̂>
w ao2,1

/($̂>
w ao2,1

$̂t ao2,1
)

−$̂>
w ao2,2

/($̂>
w ao2,2

$̂t ao2,2
)

−$̂>
w ao2,3

/($̂>
w ao2,3

$̂t ao2,3
)

$̂>
wco2,1

/($̂>
wco2,1

$̂tco2,1
)

$̂>
wco2,2

/($̂>
wco2,2

$̂tco2,2
)

$̂>
wco2,3

/($̂>
wco2,3

$̂tc2,3 )


(E.47)
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