7p)
O
S
©
&
@)
)
O
=
9
n
)
i
)
O
0p)
=

Snap rounding polygons

with a triangulation

Supervisors:

Hugo Ledoux & Ken Arroyo Ohori

Delegate:

Giorgio Agugiaro

Co-reader:

Martijn Meijers

Fengyan Zhang

student #5462150

TUDelft

Content

Introduction

Methodology

Implementation

Results

Conclusion & Future work &\ =1
>

]
TUDelft

1. Introduction

]
TUDelft

Part 1.1 Research Motivation

Why do we need snap rounding?

[Geometric objects }—\

conceptually described Implement
In continuous space discrete representationsr
> : ;) < | Modern computers }
]

[Geometric algorithms }_,

Modern computers handles information that is represented in discrete and
finite values. These values are typically expressed using binary digits,
commonly known as bits, which can be either 0 or 1.

]
TUDelft

Part 1.1 Research Motivation

Implement
geometric algorithms

]
TUDelft

— exact arithmetic

finite-precision
arithmetic

a

using data structures and algorithms that cah
handle numbers with arbitrary precision
dynamically allocate memory as needed to
represent numbers with the required
precision.

limited only by the available memory
resources of the computer

can be computationally more expensive

_

o

~

typically utilize floating-point arithmetic with
finite precision

limited by the number of bits (to store the
significand and the exponent) available for
representation.

introduces the round-off errors and can lead
to inaccuracies in computations.

more efficient compared to exact arithmetic J

Part 1.1 Research Motivation

Precision of IEEE754 Floating Point Values

(=
=]

I L I I I
: L L . +--| —*— |EEE754 Single Precision (32-bit)}-
bbb o_____| —=—IEEE754 Double-Precision (64-bit}.

'
'
il
'
'
.
- -—
'
'
'
'
il
'
'
. S
'
'
'
'
'
il
'
- ~—
il
'
'
'
'
'
'
- -—
Il
'
'
'
il
'
'
-
'
il
'
'
Il
il
'
—
'
'

-

=

[
S, ©,9,9,0,9,

ot
. O,
o o

10

Floating Point Precision
(=)
o,

107 10° 10° 10° 10* 10° 10° 10° 10 10° 10° 10° 10
Floating Point Value

Figure 2.1: Precision of binary32 and binary64 in the range 10~'2 to 10'2. Source: IEEE 754.
(2023, April 11). In Wikipedia. https://en.wikipedia.org/wiki/IEEE_754. Author: By
Vectorization: Alhadis - Own work based on: IEEE754.png by Ghennessey, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=87066073

'y
TUDelft

exponent

+d.dd...d x p°

significand base

It includes p digits (p also represents the precision, the
more digits after the decimal point are, the higher the
precision is)

(8.57390526216, 4.469619220309) -> higher precision

(85739.0554312, 446961.2992009) -> lower precision

Part 1.1 Research Motivation

Precision issues of floating-point arithmetic (round off errors)

d< Coordinates shifting caused by round
off errors could possibly make a valid

i polygon invalid.
Iy ¢
(c)

(b)

(8.57390526216, 4.469619220309) (85739.0554312, 446961.2992009)
CRS a CRS b

]
TUDelft

Part 1.1 Research Motivation

error-prone polygon arrangements in the datasets
Data acquisition, storage, exchange, manipulation

Would possibly cause problems
of geometric algorithms, e.g.
adjacency query.

(a)

(a) two overlapping polygons with a scale of (b) two overlapping polygons with a scale of

g ! .
TU Delft 1:200 bl 1 .

Part 1.1 Research Motivation

Snap rounding (SR): convert an arrangement of objects (e.g. line segments) from an arbitrary-precision
representation to a fixed-precision representation (finite precision estimation)

A WA S « the ending points are snapped to the center of the grid cells

» the length of cell is the resolution of the grid (tolerance)

'''''''''''''

» the resulting geometric objects are well-separated

* improves geometric robustness
Before (left) and after (right) snap rounding (SR)
from Halperin and Packer (2002)*

TU Delft * Halperin, D. and Packer, E. (2002). Iterated snap rounding. Computational Geometry, 23(2):209-225.

Part 1.1 Research Motivation

Limitations

After SR, vertices can still be very close (smaller than
the given tolerance) to non-incident edges.

A vertex becomes very close to a non-incident edge
after (b) snap rounding. The figure is derived from
Halperin and Packer (2002)*. The cells (pixels)
highlighted in pink are hot pixels (containing vertices)

TU Delft * Halperin, D. and Packer, E. (2002). Iterated snap rounding. Computational Geometry, 23(2):209-225.

Part 1.1 Research Motivation

Variation of SR algorithms

(a) (b) (c)

Iterated Snap Rounding (ISR). (a) An arrangement of segments before. (b)
After Snap Rounding. (c) After Iterated Snap Rounding (Halperin and

Packer (2002)1).

Iterated Snap Rounding (ISR)

the rounded counterpart of the input can be shifted or
distorted away from its original position due to the iterative
process

lterated Snap Rounding with Bounded Drift (ISRBD)?
ISRBD ensures that the deviation between the input line
segment arrangement and its rounded counterpart is less
than a predefined value.

Stable Snap Rounding?

Idempotent, improves the robustness and stability of
ISRBD and ISR, however, it does not guarantee to
eliminate near-degenerate cases while ISRBD does.
Snap Rounding with Restore (SRR)*

for the situation where a vertex is too near to a non-
incident edge after rounding, the non-incident edge is
moved in the opposite direction (this means it is being
moved back towards its original location) instead of
performing a SR operation.

1 Halperin, D. and Packer, E. (2002). Iterated snap rounding. Computational Geometry, 23(2):209-225.

3 Hershberger, J. (2011). Stable snap rounding. In Proceedings of the twenty-seventh annual symposium on Computational geometry, pages 197-206.

T! U D Ift 2 Packer, E. (2006). Iterated snap rounding with bounded drift. In Proceedings of the twentysecond annual symposium on Computational geometry, pages 367-37.

4 Belussi, A., Migliorini, S., Negri, M., and Pelagatti, G. (2016). Snap rounding with restore: An algorithm for producing robust geometric datasets. ACM Transactions

on Spatial Algorithms and Systems (TSAS), 2(1):1-36.

Part 1.1 Research Motivation

Fix geometries using a constrained triangulation (CT)

a i e s b
e @9 q’
ring not '~*\>' befre :::;. 2 , i aftel'
c d e \ e TN D .y
Repair polygons based on a constrained triangulation Repair a planar partition based on a constrained
from Ledoux et al., 20121 triangulation, from , Ohori et al, 20122

1 Ledoux, H., Arroyo Ohori, K., and Meijers, M. (2012). Automatically repairing invalid polygons with a constrained

TU Delf‘t triangulation. In Proceedings of the AGILE 2012 International Conference, April 2012, Avignon, France, pp. 13-18. Agile. 12
2 Ohori, K. A., Ledoux, H., and Meijers, M. (2012). Validation and automatic repair of planar partitions using a constrained

triangulation. Photogrammetrie-FernerkundungGeoinformation, 5(10):613-630.

Part 1.2 Research Objectives

Snap rounding + Constrained triangulation

2-dimensional polygons?

How can a constrained triangulation (CT) be used as a
supporting data structure to robustly perform snap rounding of
polygons in 2- dimensional space?

%
TUDelft

How to integrate a CT with the input polygons (possibly
with interior holes)?

How to link the triangulation with the original polygons?
If the triangulation is modified, how to update the
changes to the polygons?

Polygons usually have attributes attached (e.g. polygon
id, area of a polygon), how to preserve them in a proper
way during the snap rounding process?

Given a certain threshold, there may exist several snap
rounding cases (e.g. multiple polygonal vertices and
boundaries), what is the most reasonable order when
shap rounding is being performed?

How to measure and evaluate the distortions of the
polygons before and after snap rounding?

]
TUDelft

2. Methodology

14

Part 2.1 Overview

Filter polygons

Re-projection Coordinates shift

/ Input dataset /

\

Output
dataset

Reconstruct
polygons

A

Coordinates shift

]
TUDelft

A 4

Embed polygons

Pre-processing

into a triangulation|

Tag triangulation
build constraints

A\ 4

SR with the triangulation

| Update the constraints
and the triangulation

Tag each polygon
in the triangulation

Case found?

A

Find minimum case

All polygons
processed?

15

Part 2.1 Pre-processing

‘C

S

-

|“2r
An excerpt of Andorra dataset. Buildings are depicted in grey, landuse is Input polygons
shown in brown, water body and waterways are in blue, the black straight with re-projected XY coordinates
lines represent the roads and railways (data source: GeoFabrik*).
T U D e I ft * Geofabrik: Download server for openstreetmap data. Web Based Download Application: 16

http://download.geofabrik.de/. Last checked on April 2023.

Part 2.2 Tag the Triangulation

Boundaries are used
as constrained edges

=

N\

v

= =

~%
\ ~

xS
7\

N
¢ 5

N
/1
\

o

f—

LN DR
NI [

N

* 7
' \\ / .I|\\ ll N =
~

|

\/‘w

A
NN

Embedded polygons into a triangulation (CT) Constructed constraints (colorful line segments)
will be stored in a separate container.

]
TUDelft .

Part 2.2 Tag the Triangulation

valid input

Breadth-first search (BFS)

Capable of handling overlap area

(a) input polygon (b) tagging process (c) tagging result

faulty input

p3e +p2

% ‘ | | |
TUDelft (a) input polygon (b) tagging process (¢) tagging result 18

Part 2.3 SR — Close Polygonal Vertices

— tolerance

Embed into a CT, identify the
Input polygons .
close polygonal vertices

]
TUDelft

Update the constraints
(polygonal boundaries)

T - . -
d.l\'o—lb / . .
} ‘ R B A (&
l."; 13 Iy.“ ’ . I"{’v" 13)
¥e . | AR
Update the CT

19

Part 2.3 SR — Close Polygonal Vertex and Boundary

o' fre0
e ay I'l
‘\.I || a
— tolerance .' -,
o :_ﬁ_,U vomstrained | |
constrained ,,“' e A A
h 15"“ b 0|
a a 5 ‘
v : Update the constraints
° lygonal boundaries)
: (polyg
b
Input polygons Embed into a CT, identify the a - a.
close polygonal vertex and
boundar
y A 0 —//B/ A 0 B
\\

(; Update the CT
TUDelft

20

Part 2.3 SR — Close Polygonal Vertex and Boundary

avoid infinite loops

p 1 P 2

., Inthis case vertex g and r
should be snapped

tolerance

g is the capture vertex

%
TUDelft .

Part 2.4 Resolve Redundancies

— tolerance

When introducing new constraints, there will be two constraints
with different tags.

v
N

*

Merge the id information if there is already a constraint.

%
TUDelft .

Part 2.5 Remove Dangling Elements (Optional)

—— tolerance

Can be handled in the polygon reconstruction but would possibly cause
cascading effects, e.g. the dangling element requires SR again.

a b (le e b Ce Ca
11 12
L4 * ® ® . *
c ¥ r [C (4]
a b a b f b
4 > J"“. > A

Improve the quality of rounded result but time-consuming A

]
TUDelft

Part 2.6 Process From the Minimum Case

C 9 C

tolerance tolerance

(a) (b)

Apply SR on a set of polygons. (a) Input polygons. Boundaries that will be
modified are highlighted in blue. (b) Polygons after SR. Boundary bd
intersects polygon B at vertex n after first rounding operation.

]
TUDelft

Cascading effects — a SR operation (bp)
creates more SR cases (vertex n)
proceeding ¢ and bd first will avoid this problem

Part 2.7 Reconstruction of Polygons

A Construct a graph
hg ‘ Identify potential closed rings
Validate geometric and topological correctness of the ring
& constructs polygon geometries using the formed rings

(a)

An example of using polygonizer to polygonize a set of line segments. (a)
A set of line segments. (b) The resulting polygon of Polygonizer containing
two interior holes.

%
TUDelft .

]
TUDelft

3. Implementation

26

Part 3.1 Prototype

Open-source
Implemented with C++ 17

Third-party libraries:

GDAL - for reading / writing files

CGAL - for using triangulation packages and other auxiliary data structures
GEOQOS - for reconstruction of the polygons

Available at:
https://qithub.com/zfengyan/snapoly

Originally developed and tested on Windows 10 platform

Cross-platform version is also provided via CMake

%
TUDelft

https://github.com/zfengyan/snapoly

]
TUDelft

4. Results

28

Part 4.1 Datasets

Abbreviation Number of polygons Type
Den Haag Central DHC 19878 Dense urban area
Faroe Islands Faroes 30926 Island area

Delft Delft
Freiburg Freiburg
Rotterdam Central RCD

38376 Normal
53723 Normal
127795 Dense urban area

Data Source: GeoFarbik*

]
TUDelft

gﬁ Open Source
Geoaraphlc lnformation Svs

OpenStreetMap:

GEOFABRIK

A freely usabie workd Discover the world of neogeography
map Al Geglabok we
cooperate Lghtly with
OperStrestMap and ity
cammunity, We help our
custamars se the

Harness e impressive potential of free geodata

valuable geedata
callected by the project Understand how to use OpenStreethan for your busingss needs

N g Al Geofabrik — German for "geo faclory” -, we extract, select, and process lree geodata for you We create shape il
map3s. map lles and full-birwn web mapping solutions. We provide advice and training 1o our cusiomers dealing wit!
OpenStreetMap and keep them up to date

mal

J 4
(A : Call the experts it It is about OponStroetMap. Give us a ring or sand

* Geofabrik: Download server for openstreetmap data. Web Based Download Application:

http://download.geofabrik.de/. Last checked on April 2023

29

Part 4.1 Datasets

WINSSNZa
e NG =
LN e
T LA
S N e
i @é\\‘”‘%qﬁmma,x‘
w ANV S il
AR W TS
N el M=t s
~SCAZZONEN
LN
Den Haag Central (DHC) Rotterdam Central (RCD)
Num of polygons: 19878 Num of polygons: 127795
Type: Dense urban area Type: Dense urban area

Data Source: GeoFarbik*

%
TUDelft “

* Geofabrik: Download server for openstreetmap data. Web Based Download Application:
http://download.geofabrik.de/. Last checked on April 2023.

Part 4.1 Datasets

Delft Freiburg
Num of polygons: 38376 Num of polygons: 53723
Type: Normal Type: Normal

Data Source: GeoFarbik*

%
TUDelft .

* Geofabrik: Download server for openstreetmap data. Web Based Download Application:
http://download.geofabrik.de/. Last checked on April 2023

Part 4.1 Datasets

.=
Y %y
. 2
\\ \ “
B~ F .
™~ X
{ 'y
i I \
L VA
Lol ~
"\
& .
-
s
- -
e
a N

Faroe Islands (Faroes)
Num of polygons: 30926

Type: Island
(; Data Source: GeoFarbik*
TU D Ift * Geofabrik: Download server for openstreetmap data. Web Based Download Application:
e http://download.geofabrik.de/. Last checked on April 2023 22

Part 4.2 Exemplary results

T 66
293355

SR cases and corresponding counterparts.

O perpendicularity

An excerpt of Faroe Islands dataset.

%
TUDelft .

Part 4.2 Exemplary results

(c) (d)

(a)

Exemplary polygons from Den Haag Central dataset.

%
TUDelft .

Part 4.3 Observe & measure distortions

Input

Rounded result

DA SN DMR- 1
< t\ PN @ @@ AL

fU Delft An excerpt of Delft dataset. Visualized in QGIS -

(a) (b) ()

Symmetrical difference

Part 4.3 Observe & measure distortions

Quantitative measurement: area difference

area dif f =

" |A(Pi)—A(PY)|

Area Difference

—e— DHC

Y7 A(Pi) x 100%. 3 e
A (’Pi) The area of the original polygon g)
A (Pi’) The area of the rounded polygon %
3 1
14} The total number of the polygons)
0 : S

]
TUDelft

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

tolerance (m)

Testing platform: Windows-x64 Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz RAM: 16.0 GB Windows version; Windows10 21H2

Faroes
Delft
—e— Freiburg
—e— RCD

area difference (%)

Part 4.3 Observe & measure distortions

Area Difference

Area Difference Area Difference
0.08
—— DHC 0.1 —e— Faroes 02 o —— Delft
0.06 0.08 04
3 0.06 3 0.3
Q . < :
0.04 8 g
g £
S 004 N 02
S o
0.02 B &
0.02 0.1
° 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0
Q0901 902 0.0 004 005 0.80 .87 0.05 0. 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
tolerance (m) tolerance (m) tolerance (m)
(a) DHC (19878 polygons) (b) Faroes (30926 polygons) (c) Delft (38376 polygons)

Area Difference Area Difference

—e— Freiburg 3 —e— RCD

area difference (%)
area difference (%)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

T U D e I ft tolerance (m) tolerance (m)
(d) Freiburg (53723 polygons)

(e) RCD (127795 polygons)

Testing platform: Windows-x64 Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz RAM: 16.0 GB Windows version: Windows10 21H2

Part 4.4 Benchmarking

Dataset Number of polygons Tolerance(m) Total run time(min)

DHC 19878 0.00 3267

DHC 19878 0.01 3.908

DHC 19878 0.02 4.09

DHC 19878 0.03 1242

DHC 19878 0.04 4382

DHC 19878 0.05 4566 .

DHC 19878 0.06 4905 Run Time

DHC 19878 0.07 5173

DHC 19878 0.08 5212

DHC 19878 0.09 5419 200

Faroes 30926 0.00 6.159 DHC
Faroes 30926 0.01 7.088

Faroes 30926 0.02 7.263 —e— Faroes
Faroes 30926 0.03 7354

Faroes 30926 0.04 7.611 -

Faroes 30926 0.05 7725 Delft
Faroes 30926 0.06 8.056 150 ,
Faroes 30926 007 8245 —— Freiburg
Faroes 30926 0.08 8543 —

Faroes 30926 0.09 9514 S —e— RCD
Delft 38376 0.00 17.090 IS

Delft 38376 0.01 19.130 ~

Delft 38376 0.02 19223 > [} 100

Delft 38376 0.03 20.558 I

Delft 38376 0.04 22050 =S

Delft 38376 0.05 25.145 =

Delit 38376 0.06 27.686 S

Delft 38376 0.07 30.051

Delft 38376 0.08 31.593

Delft 38376 0.09 33.650 50

Freiburg 53723 0.00 32305

Freiburg 53723 0.01 34153 — 4

Freiburg 53723 0.02 35.036 N e

Freiburg 53723 0.03 35283

Freiburg 53723 0.04 36.072 .

Freiburg 53723 0.05 36.253 — — . —

Freiburg R 007 o1 0

Freiburg 53723 . 37

Freiburg 53723 0.08 7232 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Freiburg 53723 0.09 37.368

RCD 127795 0.00 194,148

RCD 127795 0.01 196.729

RCD 127795 0.02 196.970 tolerance (m)

RCD 127795 0.03 197.022

RCD 127795 0.04 197.056

RCD 127795 0.05 197583

RCD 127795 0.06 197.960

RCD 127795 0.07 198.275

RCD 127795 0.08 198323

RCD 127795 0.09 198.875

]
TUDelft

Overall performance for the selected datasets.

Testing platform: Windows-x64 Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz RAM: 16.0 GB Windows version: Windows10 21H2

38

nam tme (min)

Part 4.4 Benchmarking

Run Time - Den Haag Central Run Time - Faroe Islands
55 - DHC 10 - Farces 5
5 a »
45 E g
'E ¢ g 25
4 5 5
35 ! 20
3 6
) 000 001 002 003 004 005 008 007 008 0.0 000 001 002 003 OG04 005 006 007 008 008 -
folerance (m) tolerance (m)
(a) DHC (19878 polygons) (b) Faroes (30926 polygons)
Run Timo - Froiburg
L} —e— Freiburg Run Time - Rotterdam Central
199
168
= %
t
- - g
185
194

000 001 002 003 004 005 006 DO7 008 009 000 001 002

tolerance (m)

(d) Freiburg (53723 polygons)

]
TUDelft

Overall performance for the selected datasets.

foferance (m)

Run Time - Dolft

000 001 002 003 004 005 006 007 008 000

tolerance (m)

(c) Delft (38376 polygons)

-8~ RCD

003 004 006 D06 0.07 008 009

(e) RCD (127795 polygons)

Testing platform: Windows-x64 Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz RAM: 16.0 GB Windows version: Windows10 21H2

=0~ Delft

39

Part 4.4 Benchmarking

Num of polygons (DHC)

Num of vertices

Num of segments

Num of faces

Runtime (min)

10 383 1125 743 0.00168242
100 1715 5118 3404 0.00380131
500 6545 19603 13059 0.00956036
1000 8491 25441 16951 0.0147298
5000 29981 89911 59931 0.176387
10000 57252 171718 114467 0.666789
19878 (total) 115589 346735 231147 3.25784
Num of polygons (Faroes) Num of vertices Num of segments Num of faces Runtime (min)
10 79 224 146 0.00257392
100 744 2214 1471 0.00498292
500 3677 11012 7336 0.018107
1000 7425 22252 14828 0.0376588
5000 30913 92721 61809 0.268987
10000 58106 174301 116196 0.724415
20000 115388 346146 230759 2.45576
30926 (total) 174557 523642 349086 7.24895
Num of polygons (Delft) Num of vertices Num of segments Num of faces Runtime (min)
10 148 432 285 0.00254325
100 2872 8600 5729 0.0066124
500 11852 35525 23674 0.0382818
1000 18810 56396 37587 0.0857326
5000 33377 100092 66716 0.342467
10000 69117 207312 138196 1.13968
20000 122748 368210 245463 3.91653
30000 173797 521356 347560 10.9141
38376 (total) 210917 632723 421807 18.0034

]
TUDelft

Num of polygons (Freiburg) Num of vertices Num of segments

Num of faces

Runtime (min)

10 391 1154 764 0.00361835
100 1854 5539 3686 0.00564597
500 6008 18009 12002 0.0220264
1000 10131 30376 20246 0.0453322
5000 39743 119203 79461 0.354143
10000 78735 236176 157442 1.18357
20000 148623 445838 297216 4.89471
30000 201209 603598 402390 11.7602
40000 243381 730114 486734 19.7922
53723 (total) 300126 900347 600222 35.5441
Num of polygons (RCD) Num of vertices Num of segments Num of faces Runtime (min)
10 337 987 651 0.00259865
100 1653 4936 3284 0.00538976
500 10019 30031 20013 0.0324458
1000 16146 48412 32267 0.0726439
5000 39212 117610 78399 0.423932
10000 75164 225464 150301 1.38921
50000 246332 738964 492633 25.2106
100000 482126 1446343 964218 123.575
127795 (total) 616293 1848840 1232548 204.754

tolerance = 0.01m

40

Testing platform: Windows-x64 Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz RAM: 16.0 GB Windows version: Windows10 21H2

Part 4.4 Benchmarking

Number of faces- 5000 polygons

80,000 —o— num of
faces
75,000
(7]
S
& 70,000
S
o
o
()
€ 65,000
S
<
60,000
55,000
DHC Faroes Delft Freiburg RCD
datasets

v

The number of polygons

runtime (min)

0.5

0.4

0.3

0.2

0.1

Run Time - 5000 polygons

—e— run time

DHC Faroes Delft Freiburg RCD

datasets

I U D e I ft Testing platform: Windows-x64 Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz RAM: 16.0 GB Windows version: Windows10 21H2

Part 4.4 Benchmarking

Tagging time and total run time Tagging time ratio(tagging time/ total run time)

200 I tagging ! Il tagging
time ratio
B total run 0.8
150 time
= 0.6
S B '
S >
~ 100 IS
(0] 8’
S ? 0.4
50
0.2
0 0
DHC Faroes Delft Freiburg RCD DHC Faroes Delft Freiburg RCD
datasets datasets

Tagging time and total run time. (a) Tagging time and total runtime
regarding the selected datasets (tolerance = 0.01m). (b) Tagging time ratio

(tagging time / total run time) regarding the selected datasets (tolerance =
0.01m)

]
TUDelft

Testing platform: Windows-x64 Intel(R) Core(TM) i7-10875H CPU
@ 2.30GHz RAM: 16.0 GB Windows version: Windows10 21H2

]
TUDelft

5. Conclusion & Future work

43

Part 4.5 Conclusion

Snap rounding + Constrained triangulation

2-dimensional polygons

]
TUDelft

How to integrate a CT with the input polygons (possibly
with interior holes)

using the boundaries of the polygons (including exteriors
and interiors) as constraints.

How to link the triangulation with the original polygons?
If the triangulation is modified, how to update the
changes to the polygons?

Use a separate container to store the boundaries of
polygons (and also the related information), update the
boundaries and the triangulation dynamically.

Polygons usually have attributes attached (e.g. polygon
id, area of a polygon), how to preserve them in a proper
way during the snap rounding process?

The boundaries (constraints) are constructed with tag
attached, indicating which polygon they should belong to,
hence the attributes of the polygon can be preserved.

Given a certain threshold, there may exist several shap
rounding cases (e.g. multiple polygonal vertices and
polygonal vertex and boundaries), what is the most
reasonable order when snap rounding is being
performed?

Process the snap rounding operation from the minimum
case (has minimum distance with a certain tolerance).

How to measure and evaluate the distortions of the
polygons before and after snap rounding?
Symmetrical difference + area difference.

Part 4.5 Conclusion

The small gaps between vertices or between vertex and boundaries are removed.
Capable of handling not only valid geometries but also invalid ones, such as overlapping area.

Originally topological and geometric characteristics are preserved as much as possible

Work with datasets of different size, e.g. from 100 polygons to 100, 000 polygon

® The distortions are natural to the SR and can not be completely avoided, further modifications can be implemented to
guarantee certain properties of the polygons, e.g. perpendicularity.

® Not fully robust regarding large tolerance values as it will cause geometry degeneracies (e.g. polygons collapsing to
line segments or points) and possibly cause undefined behavior of the prototype

® The tagging stage accounted for over 80% of the total run time, can be optimized but will possibly not have the

potential of handling more complex scenarios such as overlap area.

%
TUDelft

Part 4.6 Future work

« Support for rounding polygons and line segments. /S —

* More flexible processing of overlapping areas.

« Improve efficiency by utilizing std::unordered_set instead of std::list to store the constraints.
naturally std::unordered_set only supports for built-in data types. Storing customized objects
(e.g. constraints) would require constructing customized hash functions.

%
TUDelft

Part 4.6 Future work

- Improve efficiency by using additional data structures such as std::priority_queue to store the
shapping cases in accordance with the distance (need to be proven due to the cascading effects)
- Improve robustness for large tolerance values.
SR usually works for appropriate tolerance values. However, large tolerance value can be given
and it may cause undefined behaviours of the prototype as the mechanism of SR is designed for
handling closely positioned vertices and boundaries.
- More automated process
Re-projection process can be integrated into the prototype if the CRS can be known in advance.
Integrating auto-correction techniques can further enhance the prototype’s automation capabilities,
such as integrating prepair* to repair individual polygons before the application of SR.
Automatic selection of an appropriate tolerance value (conduct a preliminary analysis of the input
dataset, such as examining adjacency relationships and computing distances between elements).
« Compare with ISR of polygons
Some cells in the grid of traditional SR do not store any elements hence the grid is not fully utilized
and there will be waste -> compare the memory usage
« Support for more data formats

*Ledoux, H., Arroyo Ohori, K., and Meijers, M. (2012). Automatically repairing invalid polygons with a constrained triangulation. In Proceedings of the

T! U D Ift AGILE 2012 International Conference, April 2012, Avignon, France, pp. 13-18. Agile.

]
TUDelft

Thanks for listening.

48

