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1. Introduction 
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Part 1.1 Research Motivation

Why do we need snap rounding?

Geometric objects

Geometric algorithms

conceptually described 

in continuous space

Modern computers
discrete representations

Modern computers handles information that is represented in discrete and 

finite values. These values are typically expressed using binary digits, 

commonly known as bits, which can be either 0 or 1.

Implement 
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Part 1.1 Research Motivation

Implement 

geometric algorithms

exact arithmetic

finite-precision 

arithmetic

• using data structures and algorithms that can 

handle numbers with arbitrary precision

• dynamically allocate memory as needed to    

represent numbers with the required 

precision.

• limited only by the available memory 

resources of the computer

• can be computationally more expensive 

• typically utilize floating-point arithmetic with 

finite precision

• limited by the number of bits (to store the 

significand and the exponent) available for 

representation.

• introduces the round-off errors and can lead 

to inaccuracies in computations. 

• more efficient compared to exact arithmetic
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Part 1.1 Research Motivation

(85739.0554312, 446961.2992009)  -> lower precision

(8.57390526216, 4.469619220309)  -> higher precision

significand

exponent

base

It includes p digits (p also represents the precision, the 

more digits after the decimal point are, the higher the 

precision is)
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Part 1.1 Research Motivation

Precision issues of floating-point arithmetic (round off errors)

Coordinates shifting caused by round 

off errors could possibly make a valid 

polygon invalid.

CRS_a CRS_b
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Part 1.1 Research Motivation

error-prone polygon arrangements in the datasets 

Would possibly cause problems

of geometric algorithms, e.g. 

adjacency query.

Data acquisition, storage, exchange, manipulation
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Part 1.1 Research Motivation

Snap rounding (SR): convert an arrangement of objects (e.g. line segments) from an arbitrary-precision 
representation to a fixed-precision representation (finite precision estimation)

* Halperin, D. and Packer, E. (2002). Iterated snap rounding. Computational Geometry, 23(2):209–225. 

• the ending points are snapped to the center of the grid cells

• the length of cell is the resolution of the grid (tolerance)

• the resulting geometric objects are well-separated

• improves geometric robustness
Before (left) and after (right) snap rounding (SR)

from Halperin and Packer (2002)*
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Part 1.1 Research Motivation

Limitations

* Halperin, D. and Packer, E. (2002). Iterated snap rounding. Computational Geometry, 23(2):209–225. 

After SR, vertices can still be very close (smaller than 

the given tolerance) to non-incident edges.

A vertex becomes very close to a non-incident edge 

after (b) snap rounding. The figure is derived from 

Halperin and Packer (2002)*. The cells (pixels) 

highlighted in pink are hot pixels (containing vertices)
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Part 1.1 Research Motivation

1 Halperin, D. and Packer, E. (2002). Iterated snap rounding. Computational Geometry, 23(2):209–225.
2 Packer, E. (2006). Iterated snap rounding with bounded drift. In Proceedings of the twentysecond annual symposium on Computational geometry, pages 367–37.
3 Hershberger, J. (2011). Stable snap rounding. In Proceedings of the twenty-seventh annual symposium on Computational geometry, pages 197–206.
4 Belussi, A., Migliorini, S., Negri, M., and Pelagatti, G. (2016). Snap rounding with restore: An algorithm for producing robust geometric datasets. ACM Transactions 

on Spatial Algorithms and Systems (TSAS), 2(1):1–36.

Variation of SR algorithms

Iterated Snap Rounding (ISR). (a) An arrangement of segments before. (b) 

After Snap Rounding. (c) After Iterated Snap Rounding (Halperin and 

Packer (2002)1).

• Iterated Snap Rounding (ISR)

• the rounded counterpart of the input can be shifted or     

distorted away from its original position due to the iterative 

process

• Iterated Snap Rounding with Bounded Drift (ISRBD)2

• ISRBD ensures that the deviation between the input line 

segment arrangement and its rounded counterpart is less 

than a predefined value.

• Stable Snap Rounding3

• idempotent, improves the robustness and stability of 

ISRBD and ISR, however, it does not guarantee to 

eliminate near-degenerate cases while ISRBD does.

• Snap Rounding with Restore (SRR)4

• for the situation where a vertex is too near to a non-

incident edge after rounding, the non-incident edge is 

moved in the opposite direction (this means it is being 

moved back towards its original location) instead of 

performing a SR operation.
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Part 1.1 Research Motivation

Fix geometries using a constrained triangulation (CT)

Repair polygons based on a constrained triangulation

from Ledoux et al., 20121

Repair a planar partition based on a constrained 

triangulation, from , Ohori et al, 20122

1 Ledoux, H., Arroyo Ohori, K., and Meijers, M. (2012). Automatically repairing invalid polygons with a constrained 

triangulation. In Proceedings of the AGILE 2012 International Conference, April 2012, Avignon, France, pp. 13-18. Agile.
2 Ohori, K. A., Ledoux, H., and Meijers, M. (2012). Validation and automatic repair of planar partitions using a constrained 

triangulation. Photogrammetrie-FernerkundungGeoinformation, 5(10):613–630.
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Part 1.2 Research Objectives

Snap rounding Constrained triangulation+

2-dimensional polygons

• How to integrate a CT with the input polygons (possibly 

with interior holes)?

• How to link the triangulation with the original polygons? 

If the triangulation is modified, how to update the 

changes to the polygons?

• Polygons usually have attributes attached (e.g. polygon 

id, area of a polygon), how to preserve them in a proper 

way during the snap rounding process? 

• Given a certain threshold, there may exist several snap 

rounding cases (e.g. multiple polygonal vertices and 

boundaries), what is the most reasonable order when 

snap rounding is being performed?

• How to measure and evaluate the distortions of the 

polygons before and after snap rounding?
How can a constrained triangulation (CT) be used as a 

supporting data structure to robustly perform snap rounding of 

polygons in 2- dimensional space? 
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2. Methodology 
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Part 2.1 Overview

Input dataset Pre-processing Embed polygons

into a triangulation
Tag triangulation

build constraints

Tag each polygon

in the triangulation

All polygons

processed?

Yes No
Find minimum caseCase found?

SR with the triangulation

Yes

NoReconstruct

polygons

Output 

dataset

Re-projection Coordinates shiftFilter polygons

Update the constraints 

and the triangulation

15

Coordinates shift



* Geofabrik: Download server for openstreetmap data. Web Based Download Application: 

http://download.geofabrik.de/. Last checked on April 2023.

An excerpt of Andorra dataset. Buildings are depicted in grey, landuse is 

shown in brown, water body and waterways are in blue, the black straight 

lines represent the roads and railways (data source: GeoFabrik*).

Part 2.1 Pre-processing

Input polygons

with re-projected XY coordinates
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Embedded polygons into a triangulation (CT) Constructed constraints (colorful line segments)

will be stored in a separate container.

Boundaries are used

as constrained edges

Part 2.2 Tag the Triangulation
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Part 2.2 Tag the Triangulation

valid input

faulty input

Breadth-first search (BFS)

Capable of handling overlap area
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Part 2.3 SR – Close Polygonal Vertices

Input polygons
Embed into a CT, identify the 

close polygonal vertices

Update the constraints 

(polygonal boundaries)

Update the CT
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Part 2.3 SR – Close Polygonal Vertex and Boundary

Input polygons Embed into a CT, identify the 

close polygonal vertex and 

boundary

Update the constraints 

(polygonal boundaries)

Update the CT
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Part 2.3 SR – Close Polygonal Vertex and Boundary

avoid infinite loops

q is the capture vertex

In this case vertex q and r

should be snapped
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Part 2.4 Resolve Redundancies

Merge the id information if there is already a constraint.

When introducing new constraints, there will be two constraints 

with different tags.
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Part 2.5 Remove Dangling Elements (Optional)

Improve the quality of rounded result but time-consuming

Can be handled in the polygon reconstruction but would possibly cause

cascading effects, e.g. the dangling element requires SR again.
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Part 2.6 Process From the Minimum Case

Apply SR on a set of polygons. (a) Input polygons. Boundaries that will be 

modified are highlighted in blue. (b) Polygons after SR. Boundary bd 

intersects polygon B at vertex n after first rounding operation.

Cascading effects – a SR operation (bp)

creates more SR cases (vertex n)

proceeding c and bd first will avoid this problem



Part 2.7 Reconstruction of Polygons
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An example of using polygonizer to polygonize a set of line segments. (a) 

A set of line segments. (b) The resulting polygon of Polygonizer containing 

two interior holes.

Construct a graph

Identify potential closed rings

Validate geometric and topological correctness of the ring

constructs polygon geometries using the formed rings



3. Implementation
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Part 3.1 Prototype

Open-source

Implemented with C++ 17

Third-party libraries:

GDAL – for reading / writing files

CGAL – for using triangulation packages and other auxiliary data structures

GEOS – for reconstruction of the polygons

Available at: 

https://github.com/zfengyan/snapoly

Originally developed and tested on Windows 10 platform

Cross-platform version is also provided via CMake
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4. Results

28



29

Part 4.1 Datasets

Data Source: GeoFarbik*

* Geofabrik: Download server for openstreetmap data. Web Based Download Application: 

http://download.geofabrik.de/. Last checked on April 2023



Part 4.1 Datasets

Data Source: GeoFarbik*

* Geofabrik: Download server for openstreetmap data. Web Based Download Application: 

http://download.geofabrik.de/. Last checked on April 2023.

Den Haag Central (DHC)

Num of polygons: 19878

Type: Dense urban area

Rotterdam Central (RCD)

Num of polygons: 127795

Type: Dense urban area
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Part 4.1 Datasets

Data Source: GeoFarbik*

* Geofabrik: Download server for openstreetmap data. Web Based Download Application: 

http://download.geofabrik.de/. Last checked on April 2023

Delft

Num of polygons: 38376

Type: Normal

Freiburg 

Num of polygons: 53723

Type: Normal
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Part 4.1 Datasets

Data Source: GeoFarbik*

* Geofabrik: Download server for openstreetmap data. Web Based Download Application: 

http://download.geofabrik.de/. Last checked on April 2023

Faroe Islands (Faroes)

Num of polygons: 30926

Type: Island
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Part 4.2 Exemplary results

An excerpt of Faroe Islands dataset.

SR cases and corresponding counterparts.
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perpendicularity



Part 4.2 Exemplary results

Exemplary polygons from Den Haag Central dataset.
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Part 4.3 Observe & measure distortions

Input

Rounded result

Symmetrical difference

An excerpt of Delft dataset. Visualized in QGIS 35



Part 4.3 Observe & measure distortions

Quantitative measurement: area difference

The area of the original polygon 

The area of the rounded polygon 

The total number of the polygons
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Part 4.3 Observe & measure distortions

Testing platform: Windows-x64 Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz RAM: 16.0 GB Windows version: Windows10 21H2
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(a) DHC (19878 polygons)

               

      

                                        
 

    

    

    

    

   

             

 
  
 
  
  
  
  
 
 
 
  
 
 

(b) Faroes (30926 polygons) (c) Delft (38376 polygons)

               

        

                                        
 

 

 

 

             

 
  
 
  
  
  
  
 
 
 
  
 
 

               

   

                                        
 

 

 

 

             

 
  
 
  
  
  
  
 
 
 
  
 
 

(d) Freiburg (53723 polygons) (e) RCD (127795 polygons)



Part 4.4 Benchmarking 

Overall performance for the selected datasets.
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Part 4.4 Benchmarking 

Overall performance for the selected datasets.
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Testing platform: Windows-x64 Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz RAM: 16.0 GB Windows version: Windows10 21H2



Part 4.4 Benchmarking 

tolerance = 0.01m

40Testing platform: Windows-x64 Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz RAM: 16.0 GB Windows version: Windows10 21H2



Part 4.4 Benchmarking 

Testing platform: Windows-x64 Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz RAM: 16.0 GB Windows version: Windows10 21H2

The number of polygons
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Part 4.4 Benchmarking 

Testing platform: Windows-x64 Intel(R) Core(TM) i7-10875H CPU 

@ 2.30GHz RAM: 16.0 GB Windows version: Windows10 21H2

Tagging time and total run time. (a) Tagging time and total runtime 

regarding the selected datasets (tolerance = 0.01m). (b) Tagging time ratio 

(tagging time / total run time) regarding the selected datasets (tolerance = 

0.01m)

42

                               

       

    

         

    

                         
 

  

   

   

   

        

  
 
 
  
 
  
 

                                                  

       

     

                         
 

   

   

   

   

 

        

  
 
 
  
 
  
 
  
 



5. Conclusion & Future work
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Part 4.5 Conclusion

Snap rounding Constrained triangulation+

2-dimensional polygons

• How to integrate a CT with the input polygons (possibly 

with interior holes)

• using the boundaries of the polygons (including exteriors    

and interiors) as constraints.

• How to link the triangulation with the original polygons? 

If the triangulation is modified, how to update the 

changes to the polygons?

• Use a separate container to store the boundaries of 

polygons (and also the related information), update the 

boundaries and the triangulation dynamically.

• Polygons usually have attributes attached (e.g. polygon 

id, area of a polygon), how to preserve them in a proper 

way during the snap rounding process? 

• The boundaries (constraints) are constructed with tag 

attached, indicating which polygon they should belong to, 

hence the attributes of the polygon can be preserved.

• Given a certain threshold, there may exist several snap 

rounding cases (e.g. multiple polygonal vertices and 

polygonal vertex and boundaries), what is the most 

reasonable order when snap rounding is being 

performed?

• Process the snap rounding operation from the minimum 

case (has minimum distance with a certain tolerance).

• How to measure and evaluate the distortions of the 

polygons before and after snap rounding?

• Symmetrical difference + area difference.
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Part 4.5 Conclusion

⚫ The small gaps between vertices or between vertex and boundaries are removed.

⚫ Capable of handling not only valid geometries but also invalid ones, such as overlapping area.

⚫ Originally topological and geometric characteristics are preserved as much as possible

⚫ Work with datasets of different size, e.g. from 100 polygons to 100, 000 polygon

⚫ The distortions are natural to the SR and can not be completely avoided, further modifications can be implemented to

• guarantee certain properties of the polygons, e.g. perpendicularity.

⚫ Not fully robust regarding large tolerance values as it will cause geometry degeneracies (e.g. polygons collapsing to 

line segments or points) and possibly cause undefined behavior of the prototype

⚫ The tagging stage accounted for over 80% of the total run time, can be optimized but will possibly not have the 

potential of handling more complex scenarios such as overlap area.



Part 4.6 Future work

• Support for rounding polygons and line segments.

• More flexible processing of overlapping areas.

46

• Improve efficiency by utilizing std::unordered_set instead of std::list to store the constraints.

• naturally std::unordered_set only supports for built-in data types. Storing customized objects 

(e.g. constraints) would require constructing customized hash functions.



Part 4.6 Future work

• Improve efficiency by using additional data structures such as std::priority_queue to store the 

snapping cases in accordance with the distance (need to be proven due to the cascading effects)

• Improve robustness for large tolerance values. 

• SR usually works for appropriate tolerance values. However, large tolerance value can be given 

and it may cause undefined behaviours of the prototype as the mechanism of SR is designed for 

handling closely positioned vertices and boundaries. 

• More automated process

Re-projection process can be integrated into the prototype if the CRS can be known in advance.

• Integrating auto-              h  q            h     h      h  p     yp ’               p           

such as integrating prepair* to repair individual polygons before the application of SR.

• Automatic selection of an appropriate tolerance value (conduct a preliminary analysis of the input 

dataset, such as examining adjacency relationships and computing distances between elements).

• Compare with ISR of polygons

• Some cells in the grid of traditional SR do not store any elements hence the grid is not fully utilized 

and there will be waste -> compare the memory usage

• Support for more data formats

47

*Ledoux, H., Arroyo Ohori, K., and Meijers, M. (2012). Automatically repairing invalid polygons with a constrained triangulation. In Proceedings of the 

AGILE 2012 International Conference, April 2012, Avignon, France, pp. 13-18. Agile. 



Thanks for listening. 
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