

Delft University of Technology

Controller Placement with Respect to Controller Reachability

Xu, Ran ; Wang, Fenghua; Kooij, Robert E.

DOI
10.1109/ICSRS59833.2023.10381264
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 7th International Conference on System Reliability and Safety (ICSRS)

Citation (APA)
Xu, R., Wang, F., & Kooij, R. E. (2023). Controller Placement with Respect to Controller Reachability. In
Proceedings of the 2023 7th International Conference on System Reliability and Safety (ICSRS) (pp. 312-
321). IEEE. https://doi.org/10.1109/ICSRS59833.2023.10381264

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSRS59833.2023.10381264
https://doi.org/10.1109/ICSRS59833.2023.10381264

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Controller placement with respect to controller
reachability

Ran Xu
Faculty of Electrical Engineering,

Mathematics and Computer Science
Delft University of Technology

Delft, The Netherlands
R.Xu-5@student.tudelft.nl

Fenghua Wang
Faculty of Electrical Engineering,

Mathematics and Computer Science
Delft University of Technology

Delft, The Netherlands
F.Wang-8@tudelft.nl

Robert E. Kooij
Faculty of Electrical Engineering,

Mathematics and Computer Science
Delft University of Technology

Delft, The Netherlands
Unit ICT, Strategy and Policy
Netherlands Organisation for

Applied Scientific Research (TNO)
Den Haag, The Netherlands

R.E.Kooij@tudelft.nl

Abstract—In this paper we investigate the controller placement
problem on networks using controller reachability as the network
performance metric. This metric is defined as the probability that
each node can reach at least one controller, given that each link
is operational with a fixed probability. By exploring placements
for more than 100 real-world networks and by varying the
number of controllers from two to five, we find that controller
reachability varies greatly with different placements. Obviously,
increasing the number of controllers increases the controller
reachability. However, the extent of this increase depends on
the strategy with which the controllers are placed. The findings
indicate that efficient controller placement strategies should be
developed to ensure good network performance. In this research,
we propose four controller placement strategies. One strategy is
based on topological network metrics: node degree and path
length between controllers and nodes. The other three heuristic
strategies are the greedy algorithm, the classic genetic algorithm
and the heuristic genetic algorithm. By validating strategies on
real-world networks, we find that all four strategies work well to
solve the controller placement problem with respect to controller
reachability.

Index Terms—Controller reachability, controller placement,
and heuristic algorithms

I. INTRODUCTION

The Controller Placement Problem (CPP) on networks is
one of the facility location problems, which looks to place
facilities in potential locations, such that certain performance
metrics are optimized, often under constraints of cost. The
study of controller placement problems has been widely inves-
tigated in the setting of Software-Defined Networking (SDN).
The SDN network can be divided into the data plane, the
control plane, and the application plane, where the data plane
corresponds to the networking devices that are responsible
for forwarding data like switches. The control plane decides
how to handle the network traffic using controllers, and the
application plane remotely monitors and configures the control
functionality through the interface (northbound API) [1]. SDN
has a logically centralized control architecture achieved by
decoupling the network control plane and the data plane [2].

Within the Controller Placement Problem (CPP) in
Software-Defined Networking (SDN), two fundamental re-
search questions arise, each crucial to optimizing network
performance [3]. The first question centers on determining
the appropriate number of controllers to be deployed in the
network. Although a single controller is typically sufficient for
smaller networks, larger networks require the addition of mul-
tiple controllers to maintain optimal performance levels [4].
The use of a multi-controller design has shown promising
results in improving the performance of the SDN network [5],
albeit at the expense of increased deployment costs. Hence,
determining the optimal number of controllers becomes im-
perative for striking a balance between performance and cost
considerations.

The second research question relates to the strategic place-
ment of controllers within the network. The performance of
the network is inherently influenced by the specific locations
chosen for the controllers, given a fixed number of controllers.
As the number of controllers increases, the number of potential
placement combinations escalates exponentially, intensifying
the challenge of identifying optimal configurations. Conse-
quently, the question of where to place the controllers emerges
as a critical consideration. Addressing this question is vital
to achieving superior network performance by minimizing
latency, optimizing resource utilization, and ensuring efficient
communication between the control plane and the data plane.
The solutions to the research questions heavily rely on the
formulation approaches employed for the CPP in SDN.

The formulation of the CPP in SDN requires the consid-
eration of various performance metrics that directly impact
the design of effective controller placement strategies. Three
fundamental metrics, namely latency, reliability, and cost, play
critical roles in the evaluation and optimization of the place-
ment of controllers [2]. The first performance metric, latency,
captures the time delays experienced during data transmission
and processing. Transmission latency encompasses delays that
occur between switches and controllers, as well as inter-
controller communication. It is often quantified using the aver-

312

2023 7th International Conference on System Reliability and Safety

979-8-3503-0605-7/23/$31.00 ©2023 IEEE

20
23

 7
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

ys
te

m
 R

el
ia

bi
lit

y
an

d
Sa

fe
ty

 (I
CS

RS
) |

 9
79

-8
-3

50
3-

06
05

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SR
S5

98
33

.2
02

3.
10

38
12

64

Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2024 at 08:21:47 UTC from IEEE Xplore. Restrictions apply.

age or maximum distances between the network components.
Processing latency arises when controllers become overloaded,
exceeding their processing capacity. Minimizing latency is
crucial to ensure efficient communication between the control
plane and the data plane, resulting in improved network
responsiveness. Reliability constitutes the second performance
metric and is concerned with the probability of successfully
reaching controllers in the event of network component fail-
ures. Low reliability levels can lead to packet losses due to the
absence of viable transmission paths. Evaluating the probabil-
ities associated with multiple control paths and determining
the availability of such paths are vital in ensuring network
robustness and fault tolerance. The third performance metric
encompasses cost considerations. Economic costs encompass
expenses related to construction, maintenance, operation, and
other financial factors. Environmental costs, such as energy
consumption and CO2 emissions, are also taken into ac-
count. Balancing costs while optimizing controller placements
is essential for achieving economically and environmentally
sustainable SDN deployments. The performance metrics can
be used in isolation or in combination to formulate the CPP
as either a single-objective optimization problem, aiming to
optimize a specific metric, or a multi-objective optimization
problem, considering multiple metrics simultaneously [6].

Determining the number of controllers required is a fun-
damental challenge, and it is closely intertwined with the
problem of where to place the controllers. The NP-hard nature
of the controller placement problem necessitates the explo-
ration of diverse algorithms and methodologies to identify
optimal placements. One commonly employed method is the
brute force algorithm, which aims to find the optimal solution,
simply by considering the full state space of all possible
placements. However, this algorithm is inefficient and suitable
primarily for small-scale networks. To address larger-scale
networks, heuristic algorithms, including the greedy algorithm,
simulated annealing, genetic algorithm, and others, have been
widely adopted. Additionally, linear programming and graph-
based algorithms have been proposed as alternative approaches
to tackle the complexity of the controller placement prob-
lem [7].

Heller et al. [3] propose the controller placement problem
with a focus on minimizing propagation delays in wide-area
networks. They utilize average latency (k-median) and worst-
case latency (k-center) as performance metrics to optimize
controller placements. By exhaustively enumerating every
combination of controllers, they find that random placement
falls significantly short of the optimal placement in nearly
all network topologies, thereby underscoring the substantial
impact of placement on network performance. Furthermore,
in most topologies, it is challenging to optimize both average
latency and worst-case latency simultaneously. Hu et al. [8]
formulate the reliability-aware controller placement (RCP)
problem. The expected percentage of control path loss is
considered as a metric to reflect the reliability of networks.
In the RCP problem, they look for the number of controllers
and the placement in a network with given failure probability

of each component such that the reliability is optimized. They
find that reliability and latency cannot be optimized at the same
time for most networks. However, the placement with optimal
reliability exhibits quite a good average latency as well. Ros
et al. [9] introduce the Fault Tolerant Controller problem,
wherein a heuristic algorithm is developed to determine the
optimal controller placement, considering the lower bound
reliability as a performance metric. Zhong et al. [10] define a
reliability metric in the control network as the average number
of disconnected switches when a single edge fails. They
propose a min-cover-based method to minimize the number of
controllers and maximize reliability. The concept of “cover”
is employed, representing a set of nodes with controllers to
ensure that every switch in the network belongs to at least
one controller’s neighborhood, guaranteeing low propagation
delays.

In this research, we aim to investigate efficient controller
placement strategies using a reliability metric. We assume
that nodes, including controllers, are always operational. At
the same time, links between nodes and controllers or be-
tween controllers are also assumed to be always operational.
However, links among nodes are subject to operational prob-
abilities. In addition to traditional reliability metrics based on
paths, we introduce a novel reliability metric called controller
reachability, which quantifies the probability that nodes can
reach at least one controller. To calculate the exact controller
reachability value, we employ a path composition algorithm.
By analyzing more than one hundred real-world networks and
considering various controller placement scenarios, we aim to
highlight the differences among placements and emphasize the
importance of efficient placement techniques. Subsequently,
we propose different controller placement strategies, including
a strategy based on graph metrics, a greedy algorithm, and
two strategies utilizing genetic algorithms. To validate the
effectiveness of the proposed placement strategies, we conduct
experiments on five representative medium-sized real-world
networks.

The paper is organized as follows: Section 2 provides an
introduction to the concept of controller reachability and out-
lines the algorithms used for its calculation. In Section 3, we
describe the dataset utilized in our research. Section 4 presents
the proposed controller placement strategies. The subsequent
Section 5 presents the empirical results obtained from various
network placements and different strategies. Finally, Section 6
offers a comprehensive conclusion and discussion.

II. CONTROLLER REACHABILITY

The data plane in SDN can be mathematically represented as
an undirected graph, denoted as G(N ,L), where N represents
the set of nodes corresponding to network devices, and L
represents the set of links representing connections between
network devices. The graph consists of N nodes and L links.
Each link lij indicates the presence of a connection between
node i and node j. Notably, in the data plane, controllers
are co-located with nodes, assuming that connections between
controllers and nodes are always operational. Fig. 1 provides

313
Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2024 at 08:21:47 UTC from IEEE Xplore. Restrictions apply.

(a) SDN network (b) Graph representation

Fig. 1: Graph representation of SDN network.

a graphical representation of an SDN network using a graph
model. Each node in the graph represents a network device,
and the presence of a red node signifies the co-location of a
controller. We assume that nodes within the network always
remain operational, and links have an operational probability
p.

We define controller reachability Cr(K, p, s) as the proba-
bility that each node can reach at least one controller, assuming
each link is operational with probability p, when placing K
controllers in the graph G on the node set s, where the
cardinality of set s is K and s ⊆ N . To calculate controller
reachability, we enumerate the cases of m, 1 ≤ m ≤ L
operational links and count the number of case Im in which
each node can reach at least one controller. The probability that
each node can reach at least one controller given m operational
links and L−m nonoperational links is Impm(1−p)L−m. By
considering all possible cases, the controller reachability with
K controllers placed at node set s can be obtained as follows,

Cr(K, p, s) =
L∑

m=1

Impm(1− p)L−m. (1)

The aforementioned enumeration method is suitable for
small-scale networks, but it becomes computationally infeasi-
ble for larger networks due to the exponential growth in run-
ning time with an increasing number of links. To address this
issue, we can estimate the controller reachability Ĉr(K, p, s)
for a given operational probability value p using Monte Carlo
simulation [11]. This estimation is obtained by performing a
large number (n) of independent sampling trials as follows:

Ĉr(K, p, s) =
1

n
Un (2)

where Un represents the number of samples in which every
node successfully reaches at least one controller. However, it
is worth noting that Monte Carlo Simulation may not be com-
putationally efficient when estimating rare event probabilities
[12]. Achieving a good approximation often requires running
the simulation for a significant number of iterations.

Given the limitations of the enumeration and Monte Carlo
simulation methods in terms of network size and computation
time, we propose a modified approach to calculate controller
reliability by utilizing a path decomposition algorithm. The
path decomposition algorithm [13], offers an efficient means
to compute the exact value of all-terminal reliability. In
the context of our problem, we leverage this algorithm to

Fig. 2: Example of controllers merging.

calculate controller reachability, which is equivalent to all-
terminal reliability when a single controller is present in
the graph. To apply the path decomposition algorithm for
cases where there are multiple controllers in the network, we
introduce a modification of the problem at hand. Specifically,
we consider two approaches: one approach is to add links
between controllers and set the operational probability of
links between controllers to one in the network; the other
is to merge all controllers together as a super-controller. The
links connecting controllers and nodes are modified to connect
the super-controller with nodes. To eliminate duplicate links,
we adjust the link operational probabilities accordingly. By
employing the merging approach, we reduce the number of
nodes and edges in the graph compared to the approach that
uses the addition of links, which has the potential to increase
the path width. The resulting network comprises a single
controller and does not contain any duplicate links, allowing
us to apply the path decomposition algorithm to calculate the
all-terminal reliability efficiently. To illustrate the process of
controllers merging, we provide an example in Fig. 2.

III. DATA SET

In this study, we utilized real-world communication net-
works from the Topology Zoo dataset [14]. We specifically
selected a subset of networks consisting of 100 small-sized
networks with the number of nodes ranging from 11 to 30,
as well as five medium-sized networks with over 50 nodes.
To provide an overview of the networks used, we present
the average node degree and network sizes in Fig. 3. The
average node degree spans from 1.875 to 4.48, and among the
networks, the smallest in size is Abilene with 11 nodes and 14
links, while the largest is Cogentco with 197 nodes and 243
links. Additionally, we present the number of nodes (N), the
number of links (L), and the average degree dav , the number
of nodes with degrees equal to one and two (d = 1 and d = 2)
for the five medium-sized networks in TABLE I.

N L dav d = 1 d = 2
HinerniaGlobal 55 81 2.945 1 20

Syringa 74 74 2.000 23 34
Interoute 110 146 2.655 8 53
Cogentco 197 243 2.467 22 95

GtsCe 149 193 2.591 12 80

TABLE I: Properties of five medium-sized real-world networks
from the Topology Zoo.

314
Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2024 at 08:21:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Average node degree with respect to network size for
100 small real-world networks and five medium real-world
networks from the Topology Zoo.

IV. PLACEMENT STRATEGIES

A. Controller placement strategy based on degree and dis-
tance

Nodes with low degrees, specifically degrees equal to one
and two, exhibit higher vulnerability to disconnection within
a network. Testing on three distinct sets of graphs, denoted as
Ω(N,L), where each set encompasses all non-isomorphic con-
nected graphs with the same numbers of nodes and links, we
find that the optimal placements prefer to include nodes with
low degrees. Specifically, we investigated the sets Ω(7, 10),
Ω(10, 12), and Ω(9, 18), which contain 132, 8548, and 33366
graphs, respectively. The optimal placements with varying
numbers of controllers (2, 3, 4, and 5) are determined for
every graph within these selected sets. During this process, the
degrees of the nodes corresponding to the optimal controller
placements are recorded. The acquired information produces
statistical findings, which are shown in Fig. 4. The results
reveal a significant trend suggesting a preference for nodes
with lower degrees in the optimal placement of controllers.

To enhance controller reachability, it is effective to assign
higher priorities to nodes with lower degrees. Moreover,
considering the distance between nodes and controllers is also
important. Fig. 5 presents a comprehensive analysis of the
distances between two controllers across our set of 100 small
real-world graphs. Each column within the figure represents
a specific graph, while each data point signifies a possi-
ble distance between two controllers. Notably, the red data
points correspond to the distances observed when the optimal
placements are implemented. By examining the positioning of
these red data points within their respective columns, valuable
insights can be gained regarding the relationship between
optimal controller placements and the distance. Specifically,
if a red point is at the top of its column, it indicates that
the optimal placement of this graph is the node pair with
the maximum distance. When the link operational probability
p = 0.99, the optimal placements of 67 graphs are observed
to be the node pairs with the maximum distance, while the
optimal placements of 14 graphs correspond to the node pairs
with the second-largest distance. None of the analyzed graphs

(a) Ω(7, 10)

(b) Ω(10, 12) (c) Ω(9, 18)

Fig. 4: Statistics on optimal placement of three sets of graphs.
The blue bars represent the number of graphs containing nodes
with a specific degree, while the remaining bars indicate the
number of graphs where the optimal placement (at p = 0.99)
of K controllers includes at least one node with that degree.

exhibit an optimal placement where the selected node pair
consists of two neighboring nodes, i.e. with a distance of
one. It can be concluded that distance is a significant graph
metric that influences controller reachability. When placing
two controllers, the optimal placement tends to occur at the
node pair with the maximum distance. This preference for
maximizing distance helps ensure that no node within the
network is located too far away from the controllers.

Considering these two graph metrics, we propose an effec-
tive strategy for placing K controllers. The core concept of
this strategy involves partitioning nodes into distinct sets based
on their degrees, with a preference for selecting nodes from
sets with smaller degrees. In cases where nodes have the same
degree, the algorithm aims to maximize the distance between
controllers, thereby minimizing the overall distance between
controllers and nodes.

Specifically, in the graph G, we denote the lowest degree
as d1, the second lowest degree as d2 (where d1 ̸= d2), the
i-th lowest degree as di and the highest degree as dM (d1 <
d2 < . . . < dM). We consider n1 nodes with degree d1 as set
S(d1), n2 nodes with degree d2 as set S(d2), ni nodes with
degree di as set S(di). Besides, we use d0 = 0, n0 = 0, and
S(d0) = ∅ to indicate that there are no nodes with a degree
of 0 in the network. Consequently, we obtain M non-empty
sets of nodes that do not overlap and collectively cover every
node in graph G. We aim to find the node set S(dk) such

315
Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2024 at 08:21:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Statistics on optimal placement of 100 real-world
graphs (K = 2, p = 0.99). The x-axis denotes the index
of graphs, and the y-axis denotes the distance between two
controllers. In this figure, each point represents a possible
distance between two controllers. The red points represent the
distance between two controllers when the optimal placements
are employed.

that
∑k−1

i=0 ni < K ≤
∑k

i=0 ni. The node sets with degree
lower than dk are defined as the initial existing controllers set
SC =

⋃k−1
i=0 S(di), the controllers are placed on every node

in this set due to their low degree. The number of remaining
controllers is defined as K ′ = K −

∑k−1
i=0 ni. The nodes in

S(dk) are considered as potential locations for placing K ′

controllers according to the distance.
If K ≤ n1, SC = ∅, the nodes in S(d1) are considered as

potential locations to place K ′ = K controllers. For each node
in set S(d1), we compute the sum of its distance to other nodes
in G. The node with the highest sum of distances is selected
as the location for the first controller. From the placement of
the second controller onwards, we select the node that has the
longest distance to the existing controllers as the location for
the next controller.

If K > n1, the node set that we are going to place K ′

controller is determined as follows: If n1 < K ≤ n1 + n2,
SC = S(d1), the nodes in S(d2) are considered as potential
locations for placing K ′ = K − n1 controllers. If n1 + n2 <
K ≤ n1 + n2 + n3, SC = S(d1)∪ S(d2), the nodes in S(d3)
are considered as potential locations for placing K ′ = K −
n1−n2 controllers, etc. Using this method, we can identify the
locations of K−K ′ controllers based on the node degree, and
then place the remaining K ′ controllers based on the distance
within a smaller set of nodes. Within this set, the distance
between each node and the existing controllers is computed.
The node with the longest distance to the existing controllers
is selected as the location for the next controller. This process
is repeated until K nodes are identified. The pseudo-code of
the algorithm is presented in Algorithm 1.

B. Greedy algorithm

The greedy algorithm is employed to determine controller
placements in a step-by-step manner. At each iteration, the
algorithm selects a location that maximizes the improvement
in the performance metric, which in our case is the controller
reachability. Since each decision is made based solely on the

Algorithm 1 Controller Placement Algorithm based on degree
and distance
Input: network G, number of controllers K
Output: Set SC

1: Define set SC as the set of nodes with controllers
2: Define di as the i-th lowest degree
3: Define ni as the number of nodes with degree di
4: Define S(di) as the set of nodes with degree di
5: Define n0 = 0, S(d0) = ∅
6: Define distance(u, v) as the shortest path length between

u and v
7: Find the set S(dk) such that

∑k−1
i=0 ni < K ≤

∑k
i=0 ni

8: SC =
⋃k−1

i=0 S(di)

9: K ′ = K −
∑k−1

i=0 ni

10: if K < n1 then
11: for v ∈ S(d1) do
12: SumDistance(v) =

∑
u∈G,u̸=v(distance(u, v))

13: end for
14: Add the node v with the highest SumDistance(v) into

SC

15: K ′ = K ′ − 1
16: end if
17: while K ′ > 0 do
18: for v ∈ S(dk) do
19: D(v) = min(distance(u, v)) where u ∈ SC

20: end for
21: Add the node v with the highest D(v) into SC

22: K ′ = K ′ − 1
23: end while
24: return Set SC

available information at that step, the greedy algorithm may
yield a solution that is locally optimal but not necessarily
globally optimal.

When placing the first controller in the network, there is
no distinction in terms of controller reachability among the
available options. However, the choice made for the first
controller will impact the subsequent decisions. To address this
“black start” problem encountered in the greedy algorithm, we
explore four different approaches to start the algorithm:

• Randomly choose a node,
• Randomly choose a node with the lowest degree,
• Use Algorithm1 to determine the first node,
• Enumerate all possible placements for K = 2 controllers

and select the optimal solution as the first two controllers
to be placed.

Not surprisingly, randomly choosing a node performs poorly
when placing the first few controllers, but it gradually ap-
proaches the performance of other methods. Enumerating
all possible placements with two controllers yields the best
performance, but it is rather time-consuming. The remaining
two methods both select a node with the lowest degree,
but Algorithm 1 also takes into consideration the distance.
Therefore, we have ultimately decided to use Algorithm 1

316
Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2024 at 08:21:47 UTC from IEEE Xplore. Restrictions apply.

to determine the first node in the greedy algorithm. The
computational time required for determining the first node is
short, almost negligible compared to the running time of the
greedy algorithm.

Starting from the second controller, the greedy algorithm
iterates over all nodes without controllers and selects the node
that offers the highest improvement in controller reachability.
This process is repeated until K controllers have been placed.
The pseudo-code for the greedy algorithm is provided in
Algorithm 2.

Algorithm 2 Greedy algorithm

Input: network G, number of controllers K
Output: Set SC

1: Define set SC as the set of nodes with controllers
2: The first controller SC1 is chosen based on algorithm 1
3: K = K − 1
4: while K > 0 do
5: for node v /∈ SC do
6: Compute the controller reachability Cr(v) if con-

trollers are placed at node v and nodes in SC

7: end for
8: Add node v with the highest Cr(v) into set SC

9: K = K − 1
10: end while
11: return Set SC

C. Genetic algorithms

The genetic algorithm is a well-known meta-heuristic al-
gorithm that draws inspiration from biological evolution. In
each generation, individuals from the current population are
selected as parents, and through their reproduction, new chil-
dren are generated. The algorithm aims to gradually progress
towards the optimal solution by continually improving the
fitness of the individuals in the population. The genetic al-
gorithm encompasses several key elements, namely chromo-
some representation, selection, crossover, mutation, and fitness
function computation [15]. Selection, mutation, and crossover
are often referred to as biologically-inspired operators. In this
research, we developed two genetic algorithms: the classic
genetic algorithm and the heuristic genetic algorithm. Both
algorithms employ the same method for generating the initial
population, and the fitness value is determined based on the
controller reachability.

In the context of the controller placement problem, an
individual in the genetic algorithm population is represented
as a sequence of K genes, where each gene corresponds
to the node that hosts a controller. To generate the initial
population, we employ the method proposed in [16], which
ensures that each gene has a similar frequency of occurrence
in the population. Specifically, the gene frequency f in the
initial population is determined by the following equation,

f = max

{
2,

⌈
N

100
· ln (ns)

d

⌉}
(3)

where N is the number of nodes, K is the number of
controllers, ns =

(
N
K

)
is the number of possible placements,

d =
⌈
N
K

⌉
is the rounded-up density of the problem. The gene

frequency is at least two. The initial population size P can be
calculated by P = f · d.

After determining the frequency and the population size,
the nodes are assigned to each solution. In the first set of
d solutions, the nodes 1, 2, . . . ,K are assigned to the first
solution, the nodes K +1,K +2, . . . , 2K are assigned to the
second solution, etc. The process is repeated until all nodes
are assigned to solutions, resulting in d solutions. If N/K is
not an integer, random non-repeating genes are selected to
fill the last solution. In the second set of d solutions, the
nodes 1, 3, · · · 2K − 1 are assigned to the first solution, the
nodes 2K +1, 2K +3, · · · 4K − 1 are assigned to the second
solution, etc. The process continues until f sets of solutions are
obtained. By adjusting the increment of nodes when generating
different sets of solutions, we ensure that there are no repeated
solutions in the initial population. Next, we will present how
the two algorithms work in the subsequent steps.

1) Classic genetic algorithm:
• Selection operator Binary tournament selection, a se-

lection method known for its fast convergence and ease
of implementation [17], is employed in this study. Two
individuals are randomly sampled from the population,
and the tournament is conducted based on their fitness
values. The individual with the highest fitness value is
selected to proceed with the following operation.

• Crossover operator Partial Mapped Crossover (PMX)
is employed as the crossover operator in this study. It
is recognized as the most commonly used technique for
permutation-encoded chromosomes. PMX ensures that
the generated offspring do not contain any duplicate
genes [15], making it particularly suitable for this con-
text. Compared to other crossover operators, PMX has
demonstrated superior performance. The crossover rate
is set to pc = 0.8.

• Mutation operator The mutation operator is employed
to preserve the genetic diversity within the population,
thereby preventing the algorithm from converging to a
locally optimal solution. Randomly selecting a gene from
an individual, the mutation operator replaces it with
another gene that is not present in that individual. This
process guarantees that the offspring do not contain any
duplicate genes. In this research, the mutation rate is set
to pm = 0.1.

The classic genetic algorithm will terminate after the iteration
times reaches the preset value. The pseudo-code of the classic
genetic algorithm is presented in Algorithm 3.

2) Heuristic genetic algorithm: The heuristic genetic al-
gorithm employed in this research is based on the algorithm
proposed by O. Alp et al. for solving the facility location prob-
lem, where evolution is facilitated by a greedy heuristic [16].
In the heuristic genetic algorithm, only the crossover operator
is utilized. Unlike the traditional crossover method that in-
volves exchanging genes between two individuals to produce

317
Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2024 at 08:21:47 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Classic genetic algorithm

Input: network G, number of controllers K, maximum num-
ber of iterations MAX

Output: Set SC

1: Define set SC as the set of nodes with controllers
2: Determine the population size P
3: Initializing the population
4: Compute the fitness value of each individual
5: Set iteration counter t = 0
6: while t < MAX do
7: Select P individuals from the population using tourna-

ment selection.
8: Apply crossover on P/2 pairs of individuals with

crossover probability.
9: Apply mutation on the offspring with mutation proba-

bility.
10: New population with size P is generated
11: t = t+ 1
12: end while
13: Add nodes in the best solution in the last iteration to set

SC

14: return Set SC

offspring, this novel genetic algorithm begins by combining
the genes of the two parents. Subsequently, a greedy deletion
heuristic is applied to reduce the number of genes until the
solution contains exactly K genes. Furthermore, instead of
generating a new population at each iteration, the algorithm
continuously updates the initial population.

• Crossover operator
Two individuals are randomly selected as parents to
initiate the crossover process. The genes of the parents
are combined to create a temporary offspring. However,
this offspring cannot be directly utilized in the subsequent
steps as it contains 2K genes, which exceeds the desired
number of K genes. To refine the offspring and ensure it
consists of only K genes, a removal procedure is applied.
The gene removals follow two rules until K genes are
kept:

– The gene that is present twice is kept.
– The gene that contributes least to improving con-

troller reachability is removed.
Although the crossover increases the time demands, the
quality of the offspring is improved.

Whenever a new individual is produced through crossover,
it undergoes a comparison process with the existing members
of the population. If the generated individual is not identical to
any of the current population members and exhibits a better fit-
ness value (controller reachability) than the worst fitness value
in the population, it will replace the worst individual. This
replacement mechanism facilitates the gradual improvement
of the average quality of the entire population. Furthermore,
the population maintains good diversity as it consists of
non-duplicate individuals. The termination condition for the

heuristic algorithm is reached when the best fitness value
remains unchanged in successive iterations. The pseudo-code
of the heuristic genetic algorithm is presented in Algorithm 4.

Algorithm 4 Heuristic genetic algorithm

Input: network G, controllers’ number K
Output: Set SC

1: Determine the population size P
2: Initializing the population
3: Compute the fitness value of each individual
4: Store the best value and the worst value
5: Set iteration counter t = 0
6: while t < n do
7: Select two individuals from the population randomly
8: Apply crossover and generate one offspring
9: if offspring not in population then

10: Compute the fitness value of offspring
11: if fitness value > worst value then
12: Update population
13: else
14: t = t+ 1
15: end if
16: else
17: t = t+ 1
18: end if
19: end while
20: Add nodes of the best solution to set SC

21: return Set SC

V. RESULTS

A. How does placement affect controller reachability

To investigate performance disparities among different con-
troller placement strategies, we conducted a comprehensive
analysis of controller reachability for the small-sized real-
world networks with the number of nodes ranging from 11
to 30. Specifically, we considered the placement of 2, 3,
4, and 5 controllers with an operational probability p set
to 0.99. The resulting controller reachability values were
utilized to determine the maximum, minimum, and average
reachability, represented by error bars in Fig. 7. Analysis of the
figure reveals that only a few networks achieve near-optimal
controller reachability when randomly placing controllers.
For most networks, the average reachability values deviate
significantly from the optimal levels. To further substantiate
our observations, we employed max-min scaling on our set
of 100 graphs to quantify the deviation from the average
reachability value (random placements) to the optimal value
(optimal placement). The scaling process involved dividing
the range between the scaled maximum value (1) and the
scaled minimum value (0) into four intervals: (0, 0.25), (0.25,
0.5), (0.5, 0.75), and (0.75, 1). When the scaled value equals
0, the average controller reachability is the farthest from the
optimal reachability and when the scaled value equals 1, the
average controller reachability is the optimal reachability. The

318
Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2024 at 08:21:47 UTC from IEEE Xplore. Restrictions apply.

K (0, 0.25) (0.25, 0.5) (0.5, 0.75) (0.75, 1)
2 31 52 11 6
3 25 48 21 6
4 17 50 27 6
5 8 54 31 7

TABLE II: The number of graphs based on the scaled average
reachability values in each interval with K = 2, 3, 4, 5.

Fig. 6: The optimal controller reachability of 100 graphs.
In this figure, the x-axis denotes the number of controllers,
the y-axis denotes the controller reachability. Each curve
represents the optimal controller reachability of a graph with
K = 1, 2, 3, 4, 5 at p = 0.99.

number of graphs falling within each interval based on the
scaled average reachability values is shown in TABLE II.

Our analysis reveals that an increasing number of networks
fall within the intervals (0.5, 0.75) and (0.75, 1) as the
number of controllers (K) increases, which suggests that the
performance of random placement approaches closer to that
of the optimal placement with a larger K. However, for most
networks, the controller reachability of random placements is
still far away from the controller reachability with the optimal
placement, regardless of the value of K. Consequently, it is
imperative to employ efficient strategies for controller place-
ment to achieve enhanced performance for most networks.

B. How many controllers are needed

To investigate the optimal number of controllers required
in the networks, we analyzed our 100 graphs to determine the
optimal controller placements for varying values of K, ranging
from one to five, as depicted in Fig. 6. Although the sizes of
the networks are close, the controller reachability with a single
controller exhibits a significant range, spanning from 0.75 to
0.9995.

Upon setting a controller reachability threshold of 0.995,
we observed that among the analyzed networks, six networks
achieved this criterion with a single controller, while 26
networks necessitated two controllers. Furthermore, ten net-
works met the requirement with three controllers, one network
required four controllers, and four networks necessitated five
controllers. Notably, 53 networks could not attain a controller
reachability of 0.995 even with five controllers placed.

Determining the optimal number of controllers should be
based on specific requirements, link probability p, and network
topology. It is impractical to establish a universal number that
applies to all networks. Nevertheless, our observations indicate

that deploying multiple controllers consistently enhances con-
troller reachability across all networks. Notably, when K = 2,
all the curves show a significant improvement in controller
reachability with just two controllers.

C. Compare different placement strategies

To assess the effectiveness of the proposed four placement
strategies, we conducted experiments using five medium-
sized networks. Considering the large number of nodes in
each graph and the observation that optimal placements often
involve nodes with low degrees, we investigated the feasibility
of utilizing nodes with degrees below the average degree
as potential candidates instead of all nodes for controller
placements. In addition to the four strategies, we compared
the results with random placements among all nodes, which
were generated through 10000 simulations, where the average
value was computed over the 10000 realizations. For the
HinerniaGlobal network and the Syringa network, we also
obtained the optimal placements for different values of K
within the potential nodes set, comprising nodes with degrees
equal to one and two. The outcomes for the five medium-sized
networks are presented in Fig. 8. Notably, all four placement
strategies yielded satisfactory results for the HinerniaGlobal,
Interoute, and GtsCe networks. However, the graph metric-
based strategy exhibited relatively poor performance compared
to the other methods for the Syringa and Cogentco networks.
The discrepancy can be attributed to the influence of network
topology.

To elucidate the limitations of the graph metric-based strat-
egy in certain scenarios, we compared its node selection ap-
proach with the greedy method, which also involves selecting
nodes one by one. Here, we present an example using the
Syringa network with ten controllers and a link operational
probability of p = 0.99, as depicted in Fig. 9. In this example,
both the greedy algorithm and the graph metric-based strategy
initially select node 5 as the first controller. However, as
K = 2, the subsequent controller selections differ between
the two strategies. The greedy algorithm chooses node 18
as the location for the second controller, whereas the graph
metric-based method selects node 21. Upon closer examination
of the network topology, it becomes evident that the greedy
algorithm makes a more advantageous choice. Although node
21 has the greatest distance from node 5, with a distance
of 31, node 18 is more prone to disconnection due to its
connection to the “ring” portion of the network, which requires
a path length of three. The path length is higher than the path
length between node 21 and the “ring” portion. In the Syringa
network, the “ring” portion can be considered relatively more
reliable. Consequently, in scenarios where similar situations
arise, optimal decisions cannot be solely based on node
degree and distance metrics. The provided example serves to
emphasize the limitations of the graph metric-based strategy
in certain network topologies.

319
Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2024 at 08:21:47 UTC from IEEE Xplore. Restrictions apply.

(a) K = 2 (b) K = 3

(c) K = 4 (d) K = 5

Fig. 7: Controller reachability error bars of 100 small real-world graphs when K = 2, 3, 4, 5 and link operational probability
equals to 0.99. The x-axis denotes the index of graph, the y-axis denotes the controller reachability. Each error bar represents
the maximim, minimum, and average controller reachability of all possible placements of K controllers.

(a) HinerniaGlobal (b) Syringa (c) Interoute

(d) Cogentco (e) GtsCe

Fig. 8: Comparison of placement strategies on five real-world networks by placing different numbers of controllers with
link operational probability p equal to 0.99. The x-axis denotes the number of controllers, the y-axis denotes the controller
reachability.

VI. CONCLUSION

In this study, we adopt controller reachability as the perfor-
mance metric for addressing the controller placement problem.
Controller reachability is defined as the probability that each
node can reach at least one controller. To evaluate controller
reachability, we employ the path decomposition algorithm,
commonly used for computing all-terminal reliability. By
applying this algorithm, we can calculate the controller reach-

ability and quantify the impact of different placements on
network performance. Our analysis reveals that the choice
of placement strategy can significantly influence controller
reachability, highlighting the importance of efficient placement
strategies. Moreover, we investigate how many controllers are
necessary to ensure satisfactory performance. For small-size
networks, introducing a second controller yields substantial
improvements in controller reachability for most networks.

320
Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2024 at 08:21:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Syringa: ten controllers chosen by the graph metric-
based strategy and the greedy algorithm. The red nodes are
found by both strategies, the pink nodes are only found by the
greedy algorithm, and the yellow nodes are only found by the
graph metric-based strategy.

However, it is important to note that the number of controllers
required depends on the specific network topology and the
performance requirements in real-world scenarios. Thus, deter-
mining the optimal number of controllers necessitates consid-
eration of both network topology and the desired performance
levels.

Upon analyzing the optimal placements for various graphs,
we have determined that two topological graph metrics,
namely degree and distance, heavily influence controller reach-
ability. Building upon this insight, we propose a controller
placement strategy that leverages degree and distance as key
factors. Additionally, we develop three heuristic algorithms:
the greedy algorithm, the classic genetic algorithm, and the
heuristic genetic algorithm, to facilitate controller placement.
To evaluate the effectiveness of these strategies, we conducted
experiments using real-world graphs from the Topology Zoo
dataset. The strategy based on graph metrics proves to be
a time-efficient approach, delivering controller placements
comparable to those obtained using other heuristic methods.
Although the strategy based on graph metrics exhibits cer-
tain limitations for specific network topologies, its overall
performance is satisfactory. Among the three heuristic algo-
rithms, the greedy algorithm demonstrates superior perfor-
mance across all networks. Both the classic genetic algorithm
and the heuristic genetic algorithm are more computationally
intensive, yet they do not surpass the performance of the
greedy algorithm. Considering both performance and algo-
rithm complexity, we conclude that the strategy based on graph
metrics and the greedy algorithm are suitable approaches for
addressing the controller placement problem.

For future work, we might look into the following aspects:
1) the impact of nodes being non-operational with a certain
probability; 2) other performance metrics like the worst or
the average node-controller reachability where node-controller
reachability is defined as the probability of a node being able
to establish communication with at least one controller; 3) the
impact of links between network devices and controllers being
non-operational with a certain probability; 4) improvement of
the strategy based on graph metrics by incorporating additional

topology properties, such as the existence of multiple paths
between network devices and controllers; 5) the study of multi-
objective optimization, such as considering both latency and
controller reachability.

ACKNOWLEDGMENT

F. Wang thanks the financial support from the China Schol-
arship Council (No.201906040194).

REFERENCES

[1] J. Lu, Z. Zhang, T. Hu, P. Yi, and J. Lan, “A survey of controller place-
ment problem in software-defined networking,” IEEE Access, vol. 7, pp.
24 290–24 307, 2019.

[2] Y. Zhang, L. Cui, W. Wang, and Y. Zhang, “A survey on software defined
networking with multiple controllers,” Journal of Network and Computer
Applications, vol. 103, pp. 101–118, 2018.

[3] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” ACM SIGCOMM Computer Communication Review, vol. 42,
no. 4, pp. 473–478, 2012.

[4] M. Dhar, A. Debnath, B. K. Bhattacharyya, M. K. Debbarma, and
S. Debbarma, “A comprehensive study of different objectives and
solutions of controller placement problem in software-defined networks,”
Transactions on Emerging Telecommunications Technologies, vol. 33,
no. 5, p. e4440, 2022.

[5] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, “Multi-controller based
software-defined networking: A survey,” IEEE Access, vol. 6, pp.
15 980–15 996, 2018.

[6] M. Dhar, A. Debnath, B. K. Bhattacharyya, M. K. Debbarma, and
S. Debbarma, “A comprehensive study of different objectives and
solutions of controller placement problem in software-defined networks,”
Transactions on Emerging Telecommunications Technologies, vol. 33,
no. 5, p. e4440, 2022.

[7] M. He, A. Basta, A. Blenk, and W. Kellerer, “Modeling flow setup time
for controller placement in SDN: Evaluation for dynamic flows,” in 2017
IEEE International Conference on Communications (ICC). IEEE, 2017,
pp. 1–7.

[8] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-
optimized controller placement for software-defined networks,” China
Communications, vol. 11, no. 2, pp. 38–54, 2014.

[9] F. J. Ros and P. M. Ruiz, “Five nines of southbound reliability in
software-defined networks,” in Proceedings of the third workshop on
Hot topics in software defined networking, 2014, pp. 31–36.

[10] Q. Zhong, Y. Wang, W. Li, and X. Qiu, “A min-cover based controller
placement approach to build reliable control network in sdn,” in NOMS
2016-2016 IEEE/IFIP Network Operations and Management Sympo-
sium. IEEE, 2016, pp. 481–487.

[11] V. Gaur, O. P. Yadav, G. Soni, and A. P. S. Rathore, “A literature
review on network reliability analysis and its engineering applications,”
Proceedings of the Institution of Mechanical Engineers, Part O: Journal
of Risk and Reliability, vol. 235, no. 2, pp. 167–181, 2021.

[12] J. L. Beck and K. M. Zuev, “Rare event simulation,” arXiv preprint
arXiv:1508.05047, 2015.

[13] J. Carlier and C. Lucet, “A decomposition algorithm for network
reliability evaluation,” Discrete Applied Mathematics, vol. 65, no. 1-3,
pp. 141–156, 1996.

[14] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[15] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm:
past, present, and future,” Multimedia Tools and Applications, vol. 80,
pp. 8091–8126, 2021.

[16] O. Alp, E. Erkut, and Z. Drezner, “An efficient genetic algorithm for the
p-median problem,” Annals of Operations research, vol. 122, pp. 21–42,
2003.

[17] J. Zhong, X. Hu, J. Zhang, and M. Gu, “Comparison of performance
between different selection strategies on simple genetic algorithms,” in
International conference on computational intelligence for modelling,
control and automation and international conference on intelligent
agents, web technologies and internet commerce (CIMCA-IAWTIC’06),
vol. 2. IEEE, 2005, pp. 1115–1121.

321
Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2024 at 08:21:47 UTC from IEEE Xplore. Restrictions apply.

