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Abstract

The Kirkwood-Buff (KB) theory provides a rigorous framework to predict ther-

modynamic properties of isotropic liquids from the microscopic structure. Sev-

eral thermodynamic quantities relate to KB integrals, such as partial molar vol-

umes. KB integrals are expressed as integrals of RDFs over volume but can also

be obtained from density fluctuations in the grand-canonical ensemble. Various

methods have been proposed to estimate KB integrals from molecular simula-

tion. In this work, we review the available methods to compute KB integrals

from molecular simulations of finite systems, and particular attention is paid to

finite-size effects. We also review various applications of KB integrals computed

from simulations. These applications demonstrate the importance of comput-

ing KB integrals for relating findings of molecular simulation to macroscopic

thermodynamic properties of isotropic liquids.
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1. Introduction

The prediction of thermodynamic properties of multicomponent isotropic

fluids from molecular information is of a great interest [1–6]. Molecular-based

methods provide predictions for experimental thermodynamic and transport

data and, contribute to developing predictive models, both needed for many5

industrial applications [7]. In that regard, the Kirkwood-Buff (KB) theory pro-

vides an important connection between the microscopic structure of isotropic

liquid mixtures and the corresponding macroscopic properties [8]. Kirkwood

and Buff [8] expressed thermodynamic quantities such as partial derivatives of

the chemical potential with respect to composition, partial molar volumes, and10

isothermal compresibility in terms of integrals of radial distribution functions

(RDFs) over infinite and open volumes. These integrals, which are considered

the key quantity in the KB theory, are referred to as KB integrals. Alternatively,

KB integrals can be obtained from density fluctuations in the grand-canonical

ensemble [9, 10]. Rooted in statistical mechanics, the theory applies to any type15

of intermolecular interactions, making it one of the most general and important

theories of isotropic fluids [8, 9, 11, 12].

The KB theory was derived in 1951 [8], however, it has not gained much

interest until the late 70s after Ben-Naim [11] proposed the inversion of the KB

theory. The inversion of the theory allows the calculation of KB integrals from20

experimental data [13–16]. KB integrals provide useful information about the

local inhomogeneity and the affinity between components [11]. Later, other than

using macroscopic experimental data, KB integrals were also obtained using

small angle scattering techniques [17–22]. Perera et al. [23] concluded that KB

integrals obtained from scattering experiments generally agree well with those25

calculated using the inversion method.

Thirty years following the inversion of the KB theory, molecular simulation

emerged as a powerful tool for studying pure liquids and liquid mixtures [24].

There are two main types of molecular simulation techniques [25, 26]: Molecular

Dynamics (MD), where trajectories of molecules are found by solving Newton’s30
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equation of motion numerically; and Monte Carlo (MC) simulations where rel-

evant states of the system are sampled according to their statistical weight [24–

28]. In both simulation techniques, RDFs and local density fluctuations are

easily computed, thus in principle enabling the calculation of KB integrals.

Molecular simulations can be used to study closed systems with fixed number35

of molecules, or open systems in which the number of molecules fluctuate [25].

It is important to note that molecular simulations can only be performed for

finite systems, while the KB theory requires KB integrals to be computed for

infinite and open systems [8]. This has important consequences as will be shown

below. When computing KB integrals from molecular simulations, it is common40

to simply truncate the KB integrals at a finite distance, corresponding to the

size of the simulation box [22, 29–32]. This results in KB integrals that converge

poorly to the thermodynamic limit, and we will discuss the underlying physical

reasons [9, 33, 34]. Many studies have recognized the disparity between KB

integrals computed from molecular simulation of finite systems and the inte-45

grals defined by Kirkwood and Buff [9, 35, 36]. A practical approach to deal

with finite-size effects was proposed by Krüger and co-workers [35, 37] where

an expression for KB integrals for finite volumes was derived. The method of

Krüger and co-workers [34, 35, 37, 38] has been used in many studies [6, 39–

55]. According to Hill’s thermodynamics of small systems [56, 57] (also called50

nanothermodynamics), KB integrals for finite volumes scale with the inverse

of the characteristic length scale of the small system and this scaling can be

extrapolated to the thermodynamic limit (i.e to KB integrals as defined by

Kirkwood and Buff). Several other methods were proposed to compute KB in-

tegrals from molecular simulation of finite systems [36, 58–60]. The basic idea55

is to extrapolate information provided from RDFs and density fluctuations from

finite systems to the thermodynamic limit, and thus obtain estimates for KB

integrals corresponding to the thermodynamic limit.

The objective of this paper is to review the available methods for computing

KB integrals from molecular simulation. The most important applications of KB60

integrals will be discussed. KB integrals are being used to study different types
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of systems from simple, like Lennard-Jones fluids to more complicated systems

such as salt solutions [16, 41, 61, 62], alcohol solutions [39, 63–65], and biological

systems [31]. For such systems, KB integrals can be used to study a number

of thermodynamic properties. As mentioned earlier, the following properties65

are directly obtained from KB integrals: partial derivatives of the chemical

potential with respect to composition, partial molar volumes, and isothermal

compresibility. In addition, the KB theory is also useful for relating information

obtained from molecular simulation with macroscopic properties. For example,

KB integrals can be used to connect Maxwell-Stefan (MS) diffusivities computed70

by molecular simulations to Fick diffusivities found from experiments [39, 40,

66, 67].

The paper is organized as follows: In section 2, a summary of the most im-

portant parts of the KB theory is presented. In section 3, the method of Krüger

and co-workers [34, 35, 37, 38] for computing KB integrals from molecular simu-75

lation of finite systems is explained. Other methods of calculating KB integrals

from finite systems are reviewed in section 4. In section 5, the connection be-

tween KB integrals and nanothermodynamics is discussed. In section 6, several

important applications of KB integrals computed using molecular simulation are

presented. In section 7, the inversion of the KB theory is discussed. Section 880

provides a summary of the main findings of this review.

2. The Kirkwood-Buff theory

In this section, we review the most important relations derived by Kirkwood

and Buff [8]. For the original formulation of the theory, the reader is referred to

the paper by Kirkwood and Buff [8]. A very detailed derivation was presented85

by Newman [68], and an alternative derivation was provided by Hall [12].

In the grand-canonical (µTV ) ensemble, thermodynamic quantities are re-

lated to KB integrals G∞αβ for an open and infinite system as [8]:

G∞αβ =

∫ ∞
0

dr4πr2
[
g∞αβ(r)− 1

]
(1)
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where r is the particle distance and g∞αβ(r) is the RDF of species α and β

for an infinitely large system. In Eq. (1), species α and β can be the same.90

For a shell centered around a molecule of type β in an infinite system (see

Fig. 1a), the number of molecules of type α is 4πr2drρα and 4πr2drραg
∞
αβ(r)

for an ideal gas and real fluid, respectively. Here, ρα = 〈Nα〉/V is the average

number density of species α. Integrating to infinity over the excess number of

molecules of type α, (4πr2drρα[g∞αβ(r)−1]), yields ραG∞αβ . Hence, KB integrals95

G∞αβ provide the average excess (or depletion) per unit density of α molecules

around a β molecule, and they reflect the affinity between components α and

β. It is important to note that this interpretation of KB integrals only holds

for infinite systems, as indicated by the upper bound of the integral in Eq. (1).

Truncating the integral of Eq. (1) to a distance R yields the average excess of100

type α within a sphere of radius R. We will see later that the resulting integral

does not represent the KB integral in the thermodynamic limit.

Kirkwood and Buff [8] formulated a relation between integrals over radial

distribution functions and fluctuations in the number of molecules in the grand-

canonical ensemble,105

G∞αβ =

∫ ∞
0

dr4πr2
[
g∞αβ(r)− 1

]
= lim
V→∞

[
V
〈NαNβ〉 − 〈Nα〉〈Nβ〉

〈Nα〉〈Nβ〉
− V δαβ
〈Nα〉

]
(2)

where Nα, and Nβ are the number of molecules of type α and β, inside the

volume V , and the brackets 〈· · · 〉 denote the ensemble average in an open system.

Hence, 〈Nα〉 is the average number of molecules and 〈NαNβ〉 is the average

product of the number of molecules of components α and β. δαβ is the Kronecker

delta (equal to 1 when α = β and is zero otherwise). It is important to note that110

Eq. (2) holds for any isotropic fluid. Fluctuations in the number of molecules

relate to several thermodynamic properties [69, 70]. For a binary system, the

following relations can be derived that relate KB integrals to [8]:

1. partial derivatives of chemical potential with respect to the number of
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molecules,115

(
∂µα
∂Nα

)
T,P,Nβ

=
ρβkT

ραV η(
∂µα
∂Nβ

)
T,P,Nα

=

(
∂µβ
∂Nα

)
T,P,Nβ

= −kT
V η

(3)

2. partial molar volumes,

V̄α =

(
∂V

∂Nα

)
T,P,Nβ

=
1 + ρβ(Gββ −Gαβ)

η
(4)

3. the isothermal compressibility,

κ = − 1

V

(
∂V

∂P

)
T,Nα,Nβ

=
ζ

kTη
(5)

where η and ε are auxiliary quantities that were defined for convenience [9],

η = ρα + ρβ + ραρβ(Gαα +Gββ − 2Gαβ) (6)

ζ = 1 + ραGαα + ρβGββ + ραρβ(GααGββ −G2
αβ) (7)

Expressions for ternary and multi-component mixtures of these thermodynamic

quantities in terms of KB integrals are available in literature [9, 13, 71]. In

Eq. (6), the term Gαα+Gββ−2Gαβ can be used to indicate the thermodynamic

ideality of a binary mixture. It has the value of zero for ideal solutions. The120

non-ideality of solutions is often quantified by the so-called thermodynamic

correction factor Γ [10, 42, 72]. For a binary mixture, Γαβ is defined as [9, 40, 66]:

Γαβ = 1− xαρβ(Gαα +Gββ − 2Gαβ)

1 + ρβxα(Gαα +Gββ − 2Gαβ)
(8)

Expressions for the thermodynamic factor for ternary mixtures can be found in

Refs. [9, 39, 67, 71]. For a specific solution, the thermodynamic factor provides

an indication of the phase stability, since Γ relates to the second derivative of125

the Gibbs energy with respect to composition [73]. For a binary system, Γ is
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positive for a thermodynamically stable mixture and negative for an unstable

one. As will be shown later, the thermodynamic factor can be used to connect

Fick diffusion coefficients to MS diffusivities [72, 74]. Moreover, thermodynamic

factors can be used to predict the finite-size effects of MS diffusion coefficients130

computed using molecular simulation [52].

To compute KB integrals, one can consider local density fluctuations in finite

and closed systems rather than computing fluctuations in the grand-canonical

ensemble of infinite systems (R.H.S of Eq. (2)). In practice, molecular simulation

can only access finite systems and simulating open systems critically relies on in-135

sertion and deletion of molecules, as in the grand-canonical ensemble [25]. In the

case of medium to high density fluids, the probabilities of accepting insertions

and deletions of molecules are very low even with the use of advanced insertion

schemes e.g. Continuous Fractional Component Monte Carlo (CFCMC) [75–

84]. To avoid insertion of molecules, Schnell et al. [10] developed the so-called140

small system method (SSM), where macroscopic properties are computed using

small and open subvolumes embedded in a larger reservoir (see Fig. 1b). Since

molecules can enter and leave the subvolume, it is possible to compute density

fluctuations in the grand-canonical (µV T ) ensemble. In such subvolumes, it is

possible to realize configurations that are not allowed in a periodic repetition145

of the subvolume (which is much closer to the thermodynamic limit) [25]. For

example, the two green-colored molecules in Fig. 1b would overlap in a periodic

repetition of the subvolume, resulting in a zero statistical weight of such a con-

figuration. When the subvolume is not periodically repeated but embedded in

a large simulation box, such a configuration is perfectly allowed [85]. This leads150

to effective surface effects, and properties of the subvolume should be studied by

considering the thermodynamics of small systems [86]. In section 5, a brief ex-

planation of thermodynamics of small systems is provided. To use the SSM for

computing KB integrals in the thermodynamic limit, an expression for KB inte-

grals of finite subvolumes was derived in Ref. [35]. In the following section, this155

derivation and the method proposed by Krüger and co-workers [34, 35, 37, 38]

to compute KB integrals using subvolumes embedded in a finite reservoir is
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discussed.

3. KB Integrals of Finite Volumes

In 2013, Krüger et al. [35] derived an expression for KB integrals of finite and160

open subvolumes embedded in a reservoir. An example of such subvolumes is

provided in Fig. 1b. In this work, the volume of the subvolume will be denoted

by V and L will be used for the characteristic length of the subvolume. The

volume and length of the reservoir will be denoted by Vbox and Lbox, respectively.

We consider an isotropic fluid, where translational and rotational effects have165

been integrated out and focus on a finite and open subvolume V . Krüger et

al. [35] defined the finite-size KB integrals GVαβ in terms of fluctuations in the

number of molecules, as well as double integrals of particle positions over the

RDF,

GVαβ ≡
1

V

∫
V

∫
V

[gαβ(r12)− 1] dr1dr2 = V
〈NαNβ〉 − 〈Nα〉〈Nβ〉

〈Nα〉〈Nβ〉
− V δαβ
〈Nβ〉

(9)

where r = |r1 − r2| is the pair distance. KB integrals computed from small170

subvolumes V scale as the surface area A to volume V ratio, GVαβ = G∞αβ +F A
V ,

where F becomes constant in the limit V → ∞. [35]. This scaling law can be

explained by the concept of thermodynamics of small systems (see section 5). Al-

ternatively, Krüger et al. [35] showed that as RDFs have a finite range, splitting

the integral domain in Eq. (9) over the surrounding,
∫
V

∫
Vbox

and
∫
V

∫
Vbox−V ,175

also results in the scaling of GVαβ as mentioned above. From extrapolating to

A/V → 0 (or 1/L → 0), KB integrals in the thermodynamic limit, G∞αβ , are

obtained.

In Eq. (9), the R.H.S and L.H.S are equivalent and GVαβ can be computed

either from fluctuations in the number of molecules inside the subvolume V ,180

or by integrating RDFs. Most molecular simulation packages readily compute

RDFs and computing local density fluctuations is a bit more cumbersome. To

use RDFs for computing KB integrals, a simpler expression is required instead
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of the double integrals of the L.H.S of Eq. (9). In the limit V →∞, the double

integrals on the L.H.S. of Eq. (9) reduce to a single integral over the distance185

between molecules 1 and 2. By applying the transformation r2 → r = r1 − r2,

the original KB integral (Eq. (1)) is retrieved. However, it is not possible to

apply the same transformation for finite volumes, as r depends on the position

r1. Simply ignoring this dependency results in truncated KB integrals, here

referred to as G0,190

G0 =

∫ Lmax

0

dr [gαβ(r)− 1] 4πr2 (10)

where Lmax is the maximum possible distance between two points inside in the

subvolume V . Note that for finite Lmax, G0 in Eq. (10) is different from the

LHS of Eq. (9) and so it does not yield the number fluctuations in the finite

volume (RHS of Eq. (10)). This important fact seems to have been overlooked

prior to the work of Kruger and et al. [35]. As shown in Refs. [35] and [34], the195

truncation of the infinite KB integrals (Eq. (1)) to finite distances results in poor

convergence. Later in this section, a physical argument for the poor convergence

of Eq. (10) will be provided. Still, it is desired to deal with a single integral

as opposed to the six-dimensional integration in Eq. (9). For isotropic fluids,

it is possible to re-write the double integrals in Eq. (9) over the interparticle200

distance as [35]

GVαβ =

∫ ∞
0

[gαβ(r)− 1]w(r, Lmax)dr (11)

where w(r, Lmax) is a geometric weight function that is proportional to the

probability that two points inside V are at distance r,

w (r, Lmax) =
1

V

∫
V

dr1

∫
V

dr2δ(r − |r1 − r2|) (12)

The function w(r, Lmax) depends on the dimensionality and shape of the sub-

volume V . From the definition, it follows that w(r, Lmax) = 0 for r >= Lmax.205
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As a result, Eq. (11) can be written as an integral over a finite range,

GVαβ =

∫ Lmax

0

[gαβ(r)− 1]w(r, Lmax)dr (13)

Note that the integrand of Eq. (13) depends on the integration boundary. An

analytic expression for the function w(r, Lmax) was derived for hyperspheres in

1D, 2D, and 3D. The derivation can be found in Ref. [37]. For a 3D sphere,

the expression is:210

w(r, Lmax) = 4πr2
(

1− 3x

2
+
x3

2

)
(14)

where x is the dimensionless distance x = r/Lmax, and Lmax is the diameter

of the sphere. For a cubic subvolume with side L, an analytic expression for

w(r, Lmax) was recently derived by Krüger and Vlugt [34],

w(r, Lmax)



= 4πr2(1− 3
√
3x
2 + 6x2

π −
3
√
3x3

4π ), x < 1√
3
,

= r2(−8π + 6
√

3x+ 6
√

3x3 + 6π−1√
3x

+

24
√

3x arccos(1/
√

3x)− 8(6x2 + 1)
√

1− 1/3x2), 1√
3
< x <

√
2/3

≈ 0,
√

2/3 < x < 1

(15)

with x = r/Lmax and Lmax =
√

3L. For any other arbitrary concave shape of

the subvolume, Dawass et al. [38] proposed a method to compute the function215

w(r, Lmax) numerically. These authors used umbrella sampling MC simulations

to find the probability distribution of finding two points separated by a distance

r inside a subvolume V . The normalization of this probability distribution

function directly leads to the function w(r, Lmax). This approach can be used

for any concave shape of the subvolume in any dimension. Fig. 2 displays the220

function w(r, Lmax) for the following shapes of the subvolume: a sphere, cube,

spheroid, and cuboid. The functions w(r, Lmax) were found numerically using

the approach of Dawass et al. [38]. For a sphere and cube, analytic functions

w(r, Lmax) are plotted as well (Eqs. (14) and (15)). As shown in Fig. 2, numerical

and analytic results are in excellent agreement.225
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When computing KB integrals from density fluctuations or integrating RDFs,

effects related to the sizes of the system and the subvolume have to be con-

sidered [37]. In Fig. 3a, KB integrals of a binary Weeks-Chandler-Andersen

(WCA) [87] mixture are shown for different sizes for the simulation box at the

same temperature and density. The RDFs of the system are computed from230

MD simulations for different sizes of the subvolume, and KB integrals GVαβ are

computed from integrating the RDFs (Eqs. (13) and (14)). In Fig. 3a, GV12 is

plotted as a function of 1/L (L is the diameter of a spherical subvolume). To

obtain KB integrals in the thermodynamic limit, G∞12, the linear part of the

scaling of GV12 vs. 1/L is extrapolated to the thermodynamic limit (1/L → 0).235

In Fig. 3a, effects related to the size of the system (Vbox) are shown. Unlike

large systems, small systems do not provide a linear regime that is sufficient to

extrapolate to 1/L → 0. For all system sizes, not the whole range of distances

should be considered for this extrapolation. As outlined in Ref. [37], it is not

advisable to use subvolumes that extend beyond half the size of the simulation240

box and L should always be smaller than Lbox/2. The use of a larger reservoir

or simulation box Vbox allows larger subvolumes, and increases the linear regime

when GVαβ is plotted as a function of 1/L.

Besides the finite-size effects of GVαβ due to finite Vbox, RDFs from finite and

closed systems have to be corrected for finite-size effects. In literature, several245

methods have been proposed [35–37, 64] to estimate RDFs in the thermodynamic

limit. These methods will be reviewed in section 3.1. The corrections are needed

as the KB theory requires RDFs of open and infinite systems. Fig. 3 presents a

comparison between KB integrals computed using corrected RDFs and integrals

from RDFs that are not corrected. In Fig. 3b, RDFs are corrected using the250

correction of Ganguly and van der Vegt [64] (more details will be provided in

section 3.1). As shown in Fig. 3b, applying a RDF correction for a small system

results in a better convergence of KB integrals.

In Fig. 3, KB integrals are computed using spherical subvolumes. However, it

is possible to use subvolumes of any shape, provided that the function w(r, Lmax)255

is known. In Refs. [34, 38, 47], the effect of the shape of the subvolume on
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computing KB integrals was examined. It was demonstrated that KB integrals

in the thermodynamic limit are independent of the shape of the subvolume, and

only depend on its size. In section 3.2, shape effects will be discussed. We will

show that understanding shape effects leads to an expression [34] for computing260

G∞αβ directly from RDFs of finite subvolumes (section 3.3). The new expression

can be used as an alternative to Eq. (13) where KB integrals of finite subvolumes

are computed and then extrapolated to the thermodynamic limit.

3.1. RDF Corrections

RDFs of open systems, g∞αβ(r), are required for computing KB integrals.265

However, RDFs of finite and closed systems are typically obtained from molec-

ular simulation. As a result g∞αβ(r) has to be estimated from RDFs of closed

systems before applying the KB integration. The following corrections have

been compared in Ref. [37].

3.1.1. Ganguly and van der Vegt correction270

Ganguly and van der Vegt [64] address the asymptotic behaviour of RDFs

computed from simulation of finite systems. For large systems, RDFs should

converge to the value of 1 [9]. For finite and closed systems, RDFs do not ap-

proach this value, e.g. for a single-component ideal gas with N molecules inside

a fixed volume V , we have g(r) = (N − 1)/N [88]. The authors proposed that275

RDFs can be corrected to the thermodynamic limit by using the correct bulk

density when normalizing gαβ(r). For a spherical shell with a central molecule

of type α (see Fig. 1a), the excess or depletion in the number of molecules of

type β can be computed. Since the number of molecules of type β in the system

Nβ is fixed, the bulk density needs to be compensated by the excess or depletion280

in the number of molecules inside a volume V with radius r,

∆Nαβ(r) =

∫ r

0

dr′4πr′2ρβ [gαβ(r′)− 1] (16)

The excess or depletion in the number of molecules is then used to correct the

12



RDF computed from finite systems,

gvdV
αβ (r) = gαβ(r)

Nβ

(
1− V

Vbox

)
Nβ

(
1− V

Vbox

)
−∆Nαβ(r)− δαβ

(17)

where gvdV
αβ (r) is the corrected RDF, and gαβ(r) is the RDF obtained from a

molecular simulation of a finite and closed system. As shown in Eq. (17), the285

Ganguly and van der Vegt correction provides a relatively simple method that

can be applied to RDFs computed from finite and closed systems. For an ideal

gas, it also reflects the correct physical behaviour of the RDF. For a single

component ideal gas inside a closed volume V , the excess or depletion is

∆N(r) =

∫ r

0

dr′4πr′2ρ [g(r′)− 1] = V
N

Vbox

[
N − 1

N
− 1

]
=
−V
Vbox

(18)

Substituting the result in Eq.(17) results in:290

gvdV(r) =

(
N − 1

N

) N
(

1− V
Vbox

)
N
(

1− V
Vbox

)
− −V

Vbox
− 1

= 1 (19)

which is the correct answer for an ideal gas in the thermodynamic limit.

3.1.2. 1/N correction

In the book of Ben Naim [9], the difference between the behaviour of RDFs

of closed systems gNαβ(r), with total number of molecules N , and RDFs of open

systems g∞αβ(r) is explained. Specifically, it is shown that g∞αβ(r) converges to 1295

for r →∞, while gNαβ(r) converges to 1− 1/N [9]. Therefore, one can consider

the difference between gNαβ(r) and g∞αβ(r) as a Taylor series in 1/N [89],

gNαβ(r) = g∞αβ(r) +
c(r)

N
+O

(
1

N2

)
(20)

where N is the total number of molecules of the system, and c(r) is a function

of the distance r. The function c(r) can be estimated using two systems with
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different N but the same thermodynamic state. This results in the following300

estimate for the RDF in the thermodynamic limit [35],

g∞αβ(r) =
N1g

N1

αβ (r)−N2g
N2

αβ (r)

N1 −N2
(21)

where gN1

αβ (r) and gN2

αβ (r) are the radial distribution functions for a closed system

with N1 and N2 molecules, respectively. Hence, two simulations with different

number of molecules, N1 and N2 need to be performed to find g∞αβ(r), in contrast

to the method of Ganguly and van der Vegt [64] where only a single simulation305

is sufficient. Another disadvantage of this method is that it results in numerical

inaccuracies in the computed RDFs and hence the values of KB integrals [37].

3.1.3. Cortes-Huerto et al. correction

In the work of Cortes-Huerto et al. [36], an expression is derived to compute

KB integrals in the thermodynamic limit from KB integrals of finite subvolumes.310

In section 4, we provide more details on the approach of Cortes-Huerto et al. [36]

for computing KB integrals from molecular simulation. To correct for RDF-

related effects, the following relation between g∞αβ(r) and gαβ(r) is used from

the book of Ben-Naim [9],

gαβ(r) = g∞αβ(r)− 1

Vbox

(
δαβ
ρα

+G∞αβ

)
(22)

In Eq. (22), gαβ(r) is corrected by a constant value, independent of r. However,315

the difference between gαβ(r) and g∞αβ(r) depends on r, as shown in Ref. [37].

In principle, Eq. (22) only applies in the limit r →∞ and not for finite r. This

approximation implied in Eq. (22) may affect the accuracy of the computed KB

integrals, as will be discussed in the following section.

3.1.4. Comparison between correction methods320

In Ref. [37], a quantitative comparison between the RDF correction meth-

ods considered above was carried out. The corrections were applied to RDFs

of a binary WCA [87] fluid computed from MD simulations of closed and finite

boxes of different sizes. KB integrals were computed using RDFs corrected using
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the Ganguly and van der Vegt [64] correction (Eq. (17)), the 1/N correlation325

(Eq. (21)), and the method by Cortes-Huerto et al. [36] (Eq.(22)). The effects of

the used RDF correction method on the accuracy of the computed KB integrals

were investigated. Based on these comparisons, it was shown that the Ganguly

and van der Vegt correction [64] provides the most accurate KB integrals. It is

also the most simple correction in practice. The 1/N correction (Eq. (21)) re-330

quires simulating two systems and resulted in numerical inaccuracies, especially

when the difference between N1 and N2 is not chosen carefully. The correction

by Cortes-Huerto et al. [36] was found to reduce inaccuracies due to finite-size

effects of the RDFs, however, not as much as the correction of Ganguly and van

der Vegt. For instance, for the WCA fluid studied in Ref. [37], the correction335

of Cortes-Huerto et al. reduced the difference between KB integrals computed

from very large systems and KB integrals from small systems to less than 5%,

while the correction of Ganguly and van der Vegt reduced these differences to

less than 1% [37].

3.2. Shape Effects of the Subvolume340

The effect of the shape of the subvolume V on computing KB integrals was

studied in Refs. [47], [38], and [34]. Strøm et al. [47] found that when approach-

ing the thermodynamic limit, the KB integrals become independent of the shape

of the subvolume. These authors used arguments from nanothermodynamics to

illustrate that for large subvolumes, KB integrals should be a function of the345

size of the subvolume and the surface area to volume ratio, A/V . Dawass et

al. [38] studied KB integrals for different shapes of the subvolumes and pre-

sented numerical results that agree with the findings of Ref. [47]. Here, we will

summarize the main findings of investigating shape effects. This includes a uni-

versal first order expansion of the function w(r, Lmax), valid for all shapes of the350

subvolume.

To illustrate the shape effects related to computing KB integrals, we combine

the use of spherical (Eq. (14)) and cubic (Eq. (15)) subvolumes with an analytic
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RDF. We use the following analytic RDF [90],

g(r)− 1 =


3/2
r/σ exp

[
1−r/σ
χ

]
cos
[
2π
(
r
σ −

21
20

)]
r
σ ≥

19
20 ,

−1, r
σ <

19
20

(23)

where σ is the diameter of the molecule, and χ is the length scale at which the355

fluctuations of the RDF decay. We apply the function in Eq. (23) for a pure

fluid, hence we drop the indices α and β for the remaining of this section. The

use of an analytic RDF eliminates its finite-size effects, and hence we can focus

on effects due to the size and shape of the subvolume.

In Fig 4, we show KB integrals computed for the liquid modeled by the360

RDF of Eq. (23), with σ = 1 and χ = 5. KB integrals of finite subvolumes,

GV , are plotted as a function of the inverse size of the subvolume, 1/L (for a

cube, L is the length of one side, and for a sphere, L = 2R). Fig. 4a shows

that in the thermodynamic limit both shapes of the subvolume lead to the

same estimate for G∞. However, the shape of the subvolume affects the slope365

of the lines of GV versus 1/L. Fig. 4b shows that as GVαβ approaches the

thermodynamic limit (L → ∞) shape effects can be corrected when plotting

the integrals as a function of the area to volume ratio A/V . This is due to

the fact that in the limit L → ∞, KB integrals are a function of the ratio

A/V , and not the shape of the subvolume. This was shown theoretically by the370

study of Strøm et al. [47]. The behavior of KB integrals in the thermodynamic

limit can be explained using the function w(r, Lmax) at small distances. In the

thermodynamic limit, the values of the function w(r, Lmax) at small distances

have the largest contribution to KB integrals GV (Eq. (13)). Dawass et al. [38]

found that for all shapes studied, numerically computed values of the function375

w(r, Lmax) have the value of 4πr2 at the limit r → 0. The function w(r, Lmax)

can be expanded around r = 0 to find the following universal expression for any

concave and continuous volume [34, 38],

w(r, Lmax) ≈ 4πr2
(

1− r

4

A

V
+O(r2)

)
(24)
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where A is the surface area of the subvolume. Eq. (24) shows that the function

w(r, Lmax) depends on the size r and the ratio A/V . The shape contribu-380

tion originates from the term O(r2). Therefore, properties of large subvolumes

are independent of shape. This is referred to as the so-called shape thermo-

dynamics limit, where properties of the subvolume are dependent on the size

but not the shape of the subvolume [85]. In the conventional thermodynamic

limit, properties are independent of both size and shape of the subvolume. It385

is illustrative to see how the universal expression of the function w(r, Lmax) of

Eq. (24) compares to analytic functions of w(r, Lmax) for a sphere and a cube,

Eq. (14) and Eq. (15), respectively. To compare Eq. (24) with the leading terms

of Eqs. (14) and (15), one can express all equations in terms of the distance r

and the linear length of the subvolume L (for a sphere, L is the diameter and390

for a cube, L is the length of one size). For a sphere, using x = r/Lmax = r/L

in Eq. (14) and A/V = 6/L in Eq. (24), one will arrive at the same weight

function: w(r, Lmax) = 4πr2(1 − 3
2
r
L ). The same result is obtained for a cube,

if one uses x = r/Lmax = r/
√

3L and A/V = 6/L in Eq. (15) and Eq. (24),

respectively. Moreover, it would be interesting to see if Eq. (24) would provide395

a physical reasoning for the poor behavior of truncated KB integrals (Eq. (10)).

If we consider a subvolume V with zero surface area A = 0, this will yield the

weight function w(r, Lmax) = 4πr2. Substituting the function w(r, Lmax) in the

expression of KB integrals of KB integrals of finite subvolumes (Eq. (13)), one

arrives at the expression of KB integrals truncated to finite distances of Eq. (10).400

Therefore, truncated KB integrals correspond to the nonphysical case of finite-

size KB integrals (Eq. (9)) with subvolumes V and zero surface area [38].

3.3. Direct Extrapolation of GVαβ to the thermodynamic limit

To estimate KB integrals for an infinite system, the scaling of GV (Eq. (13))

with 1/L is extrapolated to the limit L→∞. However, using linear extrapola-405

tion to estimate the values of G∞αβ can result in numerical errors and, for some

systems, a linear regime may be difficult to identify. Hence, it would be advan-

tageous to have an expression that provides G∞αβ directly using RDFs computed
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from simulations of finite and closed systems. Recently, Krüger and Vlugt [34]

proposed the following general extrapolation formula410

G∞ ≈ Gk(Lmax) =

∫ Lmax

0

[gαβ(r)− 1]uk(r)dr (25)

where uk(r) is a weight function that takes into account the finite-size effects

of GV . The subscript k, in G and u(r), refers to the different forms of u(r)

and different levels of approximation. It will be shown that the function uk(r)

may depend on the integration boundary Lmax. In Ref. [34], three functions are

considered. The easiest estimation of G∞ is obtained from415

u0(r) = 4πr2 (26)

Substituting u0 in Eq. (25) results in the truncated KB integrals (Eq. (10)),

which is known to yield poor estimates of KB integrals in the thermodynamic

limit. A better way of estimating KB integrals in the thermodynamic limit, is

to take the derivative of Eq. (13) with respect to the integration boundary, and

extrapolate it to the limit 1/L→ 0 [35]. The final result is,420

u1(r) = 4πr2
(
1− x3

)
(27)

where x = r/Lmax. The function u1(r) is zero when x = 1 . The third estimate

of uk(r) is based on the scaling ofGV with 1/L as well as the universal expression

of the function w(r, Lmax) (Eq. (24)) [34]. As discussed earlier, KB integrals of

finite volumes scale with A/V or 1/L,

GV ≈ G∞ +
1

L
F∞ (28)

The expansion above ignores terms of order (1/L)2 or higher. Krüger and425

Vlugt [34] have demonstrated that one can obtain the surface term, F∞, with

the knowledge of the function w(r, Lmax) for all shapes (Eq. (24)). Using Eq. (1)

and Eq. (13) for G∞ and GV , respectively, in combination with Eq. (24) yields
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an explicit expression for the surface term,

F∞ =

∫ ∞
0

[g(r)− 1]

(
−3

2
r

)
4πr2dr (29)

The integral in the surface term is similar to the expression of KB integrals of430

infinite volumes (Eq. (1)), but now with [g(r)−1] replaced by (−3/2r)[g(r)−1].

Hence, the methodology to estimate KB integrals of finite subvolumes can be

used to find a suitable estimate of the surface term [34],

F∞ ≈
∫ Lbox

0

[g(r)− 1]

(
−3

2
r

)(
1 +

3

2
x

)
w(r, Lmax)dr (30)

From Eqs. (30), (28), and the function w(r, Lmax) of a sphere (Eq. (14)), a new

weight function can be derived and used to find KB integrals in the thermody-435

namic limit from knowledge of RDFs of finite systems [34],

u2(r) = 4πr2
(

1− 23

8
x3 +

3

4
x4 +

9

8
x5
)

(31)

Note that the function u2(r) and its derivative vanishes at x = 1. This is

shown in Fig. 5a, where the weight functions u0(r), u1(r) and u2(r) are plotted.

Krüger and Vlugt [34] derived a finite-range integral (Eq. (25)) to estimate

KB integrals of infinite systems. The quality of the estimation depends on the440

weight function, uk(r). While this mathematical solution was derived for the

problem of KB integrals, it is valid for the estimation of similar integrals of

infinite distances. The proposed estimate discussed above, u2(r), was derived

for any shape of the subvolume in 3D. In Ref. [91], the approach of Krüger and

Vlugt [34] was extended to higher dimensions.445

In Fig. 6, a guide on how to compute KB integrals from molecular simulations

using the method of Krüger and co-workers [34, 35, 37, 38] is provided. It is

shown in this section that it is possible to compute G∞ in four different ways:

1. From truncated KB integrals, G0 (Eqs. (25) and (26)).

2. From numerically extrapolating KB integrals of finite subvolumes GV450

(Eq. (13)) to the thermodynamic limit.
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3. Using the analytical extrapolation G1(Lmax) (Eqs. (25) and (27)), derived

form the slope of GV vs 1/L.

4. Using the analytical extrapolation G2(Lmax) (Eqs. (25) and (31)), based

on the scaling of GV and Eq. (24).455

In Fig. 5b, a comparison between the four methods to compute KB integrals is

shown. We have created a python package to calculate those integrals [92]. RDFs

used to compute KB integrals in Fig. 5b were computed from MD simulation of

a binary WCA fluid [87] and we corrected the RDFs to the thermodynamic limit

with the correction of Ganguly and van der Vegt (Eq. (17)). Fig. 5b shows that460

all estimates of G∞ lead to the same value in the limit 1/L→ 0. However, the

truncated integrals, G0(Lmax), results in very large oscillations when compared

to the other KB integrals. This means that it is almost impossible to obtain

G∞ using Eq. (10) using simulations of small systems. The large oscillations

of the integrals G0(Lmax) can be attributed to oscillations of g(r), which are465

amplified when performing the integration in Eq. (10). The integrals G1(Lmax)

and G2(Lmax) result in smoother oscillations, while the function GV results the

smoothest lines as it scales with 1/L. The integrals G1(Lmax) and G2(Lmax)

scale with 1/L3 as indicated by the leading terms of the weight functions u1(r)

and u2(2), Eqs. (27) and (31) respectively. As expected from Ref. [34], G2(Lmax)470

provides a very smooth convergence when compared to G0(Lmax) and G1(Lmax).

This can be explained by the weight functions uk(r) and their behaviour in the

limit x = r/Lmax = 1. Fig. 5a shows that, for a subvolume with Lmax = 1σ,

the functions u1 and u2 have the value of zero at r = 1σ (i.e. x = 1), unlike

the function u0. As a result, we can conclude that the integrals G2(Lmax) and475

the numerical extrapolation of GV provide the most accurate estimate of KB

integrals in the thermodynamic limit.
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4. Other methods for estimating KB integrals in the thermodynamic

limit

In the previous section, the method by Krüger and co-workers [34, 35, 37, 38]480

to formulate expressions of KB integrals of finite subvolumes was discussed. We

showed that this approach provide integrals that converge smoothly to KB in-

tegrals of an infinite system. Besides the approach presented in section 3, a

number of methods are available in literature to compute KB integrals from

molecular simulations of finite systems. Here, some of these methods are dis-485

cussed.

The approach of Cortes-Huerto et al. [36] is the very similar to the method of

Krüger and co-workers [34, 35, 37, 38] (section 3). An expression was derived re-

lating KB integrals of finite subvolumes GVαβ to KB integrals of infinite systems,

G∞αβ . Cortes-Huerto et al. [36] computed GVαβ from fluctuations in the number490

of molecules (R.H.S of Eq. (9)). In principle, KB integrals of finite subvolumes

GVαβ can be computed from integrals of RDFs as well. Cortes-Huerto et al. [36]

apply corrections to compensate for two finite-size effects: (1) RDFs-related ef-

fects and, (2) boundary or surface effects. For the first effect, the correlation

of Eq. (22) is used to estimate RDFs in the thermodynamic limit. The RDF495

correction used in the work of Cortes-Huerto et al. [36] (Eq. (22)) is discussed

in section 3.1. For surface effects, resulting from computing fluctuations inside

small subvolumes, Cortes-Huerto et al. [36] adopt the same scaling approach

of Krüger et al. [35] where GVαβ scales with A/V , which equals 1/V 1/3 in 3D.

Including the two corrections in the definition of GVαβ of Eq. (9) leads to a final500

working expression where GVαβ is written as a function of (V/Vbox)1/3,

GVαβ = G∞αβ

(
1− V

Vbox

)
− V

Vbox

δαβ
ρα

+
Cαβ
V 1/3

(32)

Cαβ is a constant originating from the scaling of GVαβ with A/V , and it is specific

to each thermodynamic state. From the slope of the line of GVαβ vs. (V/Vbox)1/3,

KB integrals of infinite systems G∞αβ are found.

The methods of Krüger and co-workers [34, 35, 37, 38], and Cortes-Huerto et505
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al. [36] provide practical approaches to computing KB integrals for any isotropic

fluid, while addressing system size effects and RDF-related effects. Other avail-

able methods for computing KB integrals are more complicated, and found to

be difficult to extend to systems with internal degrees of freedom. Wedberg et

al. [59, 93] presented a method for extending KB integrals to the thermodynamic510

limit using Verlet’s extension method [90]. The Verlet extension method [90] can

be applied to estimate RDFs beyond the size of the finite simulation box, which

are then used to extrapolate to KB integrals to the thermodynamic limit, by

truncating Eq. (1) to a value much larger than half the box size. The approach

of Wedberg et al. [59] was verified using pure LJ and Stockmayer fluids. A draw-515

back of this approach is the complexity of the numerical procedure. Moreover, it

is not trivial to extend the method to systems of molecules with intramolecular

degrees of freedom.

KB integrals can be computed from molecular simulations of finite number

of molecules using static structure factors [58, 60]. The structure factor of a520

liquid, S(q), is related to the Fourier transform of pair distribution functions,

and q is the magnitude of change of a reciprocal lattice vector. Structure factors

can be measured from scattering experiments, where q is a function of the wave

length and the scattering angle. At the zero wavelength limit, q = 0, struc-

ture factors are directly related to KB integrals [94, 95]. However, the values525

of S(q = 0) cannot be measured directly. Similarly, with molecular simulation,

structure factors can be computed for a set of values of q, and then extrapo-

lated to the limit q = 0 to find KB integrals. In the work of Nichols et al. [58],

structure factors are computed from fluctuations in the number of molecules

of finite systems. Each lattice vector q, corresponds to a set of different sam-530

pling volumes, or sub-cells inside the simulation box, from which the density

fluctuations are computed. Rather than considering subvolumes formed by a

central molecule, Nichols et al. [58] considered fluctuations in slab-like regions

that resulted from dividing the simulation box. As a result, the whole volume

is considered and all the information is used. From fluctuations, written as a535

3D Fourier series, structure factors are computed and this was used to obtain
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the thermodynamic properties that relate to KB integrals (partial deviates of

chemical potential with respect to composition, molar volumes, and isothermal

compressibility). For a LJ fluid, Nichols et al. [58] found it difficult to extrap-

olate structure factors to q = 0. Instead, thermodynamic properties computed540

from subcells (i.e specific range of q) were extrapolated to the limit q = 0. Ex-

trapolation of thermodynamic properties is needed to remedy finite-size effects.

While the method of Nichols et al. [58] provide accurate thermodynamic prop-

erties, compared to truncated KB integrals, it is computationally involved even

for systems with no intramolecular interactions. Structure factors are also used545

in the work of Rogers [60] to compute KB integrals from simulations of closed

and finite systems. As in the work of Nichols et al. [58], information from the

entire volume of the simulation box was used. However, both methods were

applied to compute KB integrals of systems of molecules with no intramolecular

degrees of freedom such as LJ fluids.550

5. Thermodynamic properties of small systems

In section 3, we discussed the method of Krüger and co-workers [34, 35,

37, 38] for computing KB integrals from molecular simulation. This approach

applies a similar concept to that of the SSM discussed earlier (section 2). In

both approaches, the desired property is computed in the thermodynamic limit555

from finite and small subvolumes embedded in a larger reservoir (i.e. simulation

box). Since open and small subvolumes can be of the order of a few molecu-

lar diameters, thermodynamics of small systems applies. In this section, the

basics of thermodynamics of small systems are presented. Classical, or bulk,

thermodynamics will be referred to as standard thermodynamics.560

5.1. A small system with constant µ, V and T

The starting point is a small and open subvolume embedded in a reservoir

(for example: see Fig. 1b) [85, 96]. As discussed earlier, this set up can be

treated as grand-canonical. For the sake of simplicity, we will only present the
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case of pure component systems, as the extension to multi-component system is565

presented in the book of Hill [86]. Under these conditions, as we have seen from

Eq. (9), KB integrals are directly related to the density fluctuations. Another

important quantity that directly relates to these fluctuations and then to KB

integrals is the thermodynamic factor, Γ (see Eq. (8) for a binary system).

Following standard thermodynamics, for a single-component system Γ provides570

the evolution of the chemical potential with a density change. Using standard

statistical thermodynamics one can easily show that in the thermodynamic limit,

the density fluctuations in the µV T ensemble are proportional to Γ of a pure

component,

Γ−1 =
1

β

(
∂ ln〈N〉
∂µ

)
T,V

=

(
〈N2〉 − 〈N〉2

〈N〉

)
µ,V,T

(33)

where 〈N〉 is the average number of particles in the subvoume and β = 1/(kBT )575

with kB being Boltzmann constant. For finite volumes, Γ−1 scales linearly with

A/V beyond a few molecular diameters, as KB integrals [35, 37, 47]:

Γ−1
(
A

V

)
= Γ−1∞ + C

A

V
(34)

where C is a constant and Γ−1∞ is the value of Γ−1 in the thermodynamic limit

(A/V → 0). The density fluctuations of Eq. (33) can then be considered as a

sum of two contributions: a volume term (〈N〉Γ−1∞ ) and a surface term (ACρ580

with ρ = 〈N〉/V ). Keeping in mind that the density, on average, is the same

everywhere, ACρ can be understood as an excess fluctuation term that becomes

negligible compared to 〈N〉Γ−1∞ as the size of the subvolume increases.

As described in Refs. [85, 96], this implies that the grand-canonical par-

tition function of this system also has an extra surface term compared to its585

standard expression in the thermodynamic limit. In that respect, thermody-

namic properties like Γ−1 are no longer intensive, like in the thermodynamic

limit, according to Gibbs’ thermodynamics of heterogeneous systems. This re-

sult, which also applies to KB integrals as described above, clearly illustrates

24



that standard thermodynamics does not apply to small systems. Here, this re-590

sult was obtained from simulations and statistical mechanics. Hill [86] arrived

at a similar result from a thermodynamic derivation.

In the 1960’s, Hill proposed a systematic extension of standard thermody-

namics to small systems, also called nanothermodynamics [57, 97]. Considering

an open and small system, Hill showed that the pressure is no longer inten-

sive. To differentiate from classical pressure, the pressure of a small system

will be referred to as p̂. For a grand-canonical ensemble, p̂ is a function of the

grand-canonical partition function of the small system, Ξ:

p̂V = kBT ln Ξ (35)

This expression is very similar to that provided by classical statistical mechanics

except for the p̂ instead of p. Like for Γ−1, it follows directly that the change in

the grand partition function due to the surface contribution originates from the595

difference between p and p̂. In the next section, we will see how Hill introduced

p̂ in thermodynamic relations and how it is used to extend the thermodynamics

to small and open systems.

5.2. Basic relations for a small system with constant µ, V and T

Hill [57] considered N replicas of the small system, constructing thereby an

ensemble (the total system), which is large enough to follow the laws of standard

thermodynamics. The Gibbs’ equation for this new ensemble is then:

Et = TSt − pNV + µNt +

(
∂Et
∂N

)
St,V,Nt

N (36)

subscript t refers to the total system, and the symbol E is used for internal

energy, S for entropy. For convenience, we define

X ≡
(
∂Et
∂N

)
St,V,Nt

(37)

which can be interpreted as the reversible work needed to add one replica of the

small system at constant St, V and Nt. The addition of a replica at constant
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St, V and Nt, implies that St and Nt have to be redistributed over one more

replica. By integrating Eq. (36) at constant T , V , µ and X, we obtain:

Et = TSt + µNt +XN (38)

where T and µ are determined from the values of these quantities in the reservoir.

The average variables of the small system are related to the variables of the total

system by:

Et ≡ N〈E〉, St = NS, Nt ≡ N〈N〉 (39)

where the brackets 〈 · · · 〉 are used to denote averages of a single replica. The

entropy S is determined by the probability distribution over N and E, which is

the same for each replica [86]. By introducing the variables for the small system

into Eq. (38), we obtain:

〈E〉 = TS + µ〈N〉 − p̂V (40)

in which we used the definition X = −p̂V [57]. The small system can be

described by standard thermodynamics if p̂ = p. The system can be considered

small when p̂ 6= p, as p̂ may deviate significantly from p because of the effective

surface energy of the system. The corresponding Gibbs-Duhem equation in this

particular case is

SdT + 〈N〉dµ− V dp̂ = (p̂− p) dV (41)

or

SdT + 〈N〉dµ+ pdV = d(p̂V ) (42)

The relation between p̂V and the partition function proposed by Hill, Eq. (35),

allows us to derive thermodynamic properties. We can then derive p, 〈N〉 and

the thermodynamic correction factors, Γ, from

p =

(
∂p̂V

∂V

)
T,µ

(43)

〈N〉 =

(
∂p̂V

∂µ

)
T,V

(44)

1

Γ
=

1

β

(
∂ ln 〈N〉
∂µ

)
T,V

(45)
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The first two quantities are special for small systems as they require partial600

derivatives of p̂. It should be pointed out that the density 〈N〉/V obviously does

not exhibit any small volume effects as was shown from molecular simulations.

Only the second derivative of p̂ with the chemical potential shows a size depen-

dence and also the fluctuation around 〈N〉. By this thermodynamic derivation,

we have shown that results of Γ−1 obtained from finite subvolumes could be605

interpreted in the context of the thermodynamics of small systems (Γ−1 is no

longer an intensive property). Bedeaux, Kjelstrup and co-workers [47, 98] have

shown that this size effect can also be explained using Gibbs’ thermodynamics of

surfaces. This illustrates the equivalence between Hill’s thermodynamic, Gibbs’

surface thermodynamics and the Kirkwood-Buff approach.610

6. Applications of KB Integrals from Molecular simulation

6.1. Partial molar enthalpies

In Ref. [6], Schnell et al. proposed a method to compute partial molar

enthalpies from molecular simulation in the canonical ensemble. Following the

SSM, enthalpies of small subvolumes Ĥ embedded in a larger reservoir are used.

From nanothermodynamics, an expression for the change of Ĥ with respect to

the average number of molecules 〈Nα〉 was derived in terms of fluctuations in

density and energy,(
∂Ĥ

∂〈Nα〉

)
T,V,µβ 6=α

=
〈ENα〉 − 〈Nα〉〈E〉+ 〈Nα〉kBT

〈N2
α〉 − 〈Nα〉2

(46)

in which E is the energy of the subvolume. As shown in the previous section,

properties of small subvolumes scale with the inverse size of the subvolume615

(1/L). Extrapolating the derivatives of Eq. (46) to the thermodynamic limit

yields partial enthalpies at constant volume
(
∂H
∂Nα

)
T,V,Nβ 6=α

. To find partial

molar enthalpies in the grand-canonical ensemble,
(
∂H
∂Nα

)
P,V,Nβ 6=α

, a Legendre

transform was performed. To convert from enthaplies in the canonical ensemble

to partial molar enthalpies in the grand-canonical ensemble, KB integrals of the620
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studied system are needed. The method of Krüger and co-workers [34, 35, 37, 38]

of KB integrals for finite subvolumes was used. Additionally, this approach was

applied by Skorpa et al. [99] to compute the heat of reaction of a dissociation

H2 using a reactive force field.

6.2. Properties of Single-ions in Salt Solutions625

Simulating closed and finite systems to compute KB integrals has the advan-

tage of accessing single-ion properties [41]. Essentially, to apply the KB theory

to a salt solution, the system has to be treated as a binary mixture where ions

are indistinguishable [9], as shown in Ref [16]. In this case, relations between630

KB integrals and thermodynamic properties of binary mixtures, presented in

section 2, can be applied. For a ternary mixture of a dissociating monovalent

substance (AB → A + B) and a solvent (e.g. water, W ), KB integrals are

subject to the following electroneutrality conditions,

ρ GWA =ρ GWB (47)

1 + ρ GAA =ρ GAB (48)

1 + ρ GBB =ρ GAB (49)

where ρ is the number density of the salt (ρA = ρB = ρ). Eqs. (47), (48) and (49)635

imply that the number of molecules of species A and B cannot be varied indepen-

dently. Ben-Naim [9] showed that the above constrains introduce a singularity

to the equations relating KB integrals, G∞αβ , to thermodynamic quantities. It

is important to note that the KB theory is general for any type of interactions

and the issue of singularity is not due to the strong electrostatic interactions640

present in salt solutions. Rather, it is a result of the closure constraints imposed

by Eqs. (47), (48) and (49), and it does not apply to KB integrals defined in

open systems [8]. Eqs. (47), (48) and (49) hold for any dissociating molecule

AB where the number of molecules has to be conserved simultaneously in the

system, i.e. NA = NB . The approach of using KB integrals of finite subvolumes645
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of Krüger and co-workers [34, 35, 37, 38] (section 3) allows KB integrals of sin-

gle ions to be computed from simulations in the canonical ensemble with open

subvolumes embedded in the simulation box. As a result, the charge neutrality

of the reservoir is maintained (NA = NB), while the electroneutrality condition

is not applied inside the subvolume, and therefore the grand-canonical ensemble650

is accessed. In the work of Schnell et al. [41], KB integrals of a sodium chloride

(NaCl) solution were computed to find molar volumes of water, Na+, and Cl−.

The partial molar volumes of one of the salt ions can have a negative value [41].

In Ref. [100], a similar observation was reported when computing molar vol-

umes of Na+ and Cl−. The authors of Ref. [100] investigated the possibility655

of computing single-ion properties using molecular simulations by considering

two methods. The first method is based on the changes in average potential en-

ergy and box volume when inserting an ion into a pure liquid, while the second

method depends on evaluating the reversible work associated with inserting an

ion into the a liquid.660

6.3. Mass transfer in multicomponent liquids

KB integrals computed from molecular simulation can be applied to connect

Fick diffusion coefficients to Maxwell- Stefan (MS) diffusivities. The generalized

Fick’s law relates the molar flux, Ji, to the Fick diffusivity, Dij [72, 101],665

Ji = −ct
n−1∑
j=1

Dij∇xj (50)

where ct is the total molar concentration and ∇xj is the mole fraction gradient,

which is the driving force in Fick’s law. MS diffusivities can be predicted from

MD simulations and Fick diffusivities can be measured by experiments [40, 72,

101]. The MS diffusivity can be considered as an inverse friction term in an

equation where the gradient in chemical potential is related to differences in the670
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average velocities between species:

− 1

RT
∇µij =

n∑
j=1(j 6=i)

xj(ui − uj)
D̄ij

(51)

where (ui−uj) is the difference between the average velocities of the components.

As chemical potentials cannot be measured directly, it is not possible to directly

compare MS diffusivities to experiments. It is more convenient to compute MS

diffusivites using molecular simulation. Fick diffusivities often depend more675

strongly on concentration than MS diffusivities [40, 101]. Moreover, it is possible

to predict diffusion of multicomponent mixtures (n > 2) from the knowledge of

MS diffusivites of a binary mixture [39, 40, 66]. For a mixture with more than

two components, Fick diffusivities depend on the type of reference frame, unlike

MS diffusivities [40, 101]. Fick diffusivities and the thermodynamic factor can680

be used to compare MS diffusivites with experimental data [72],

[D] = [B]−1[Γ] (52)

where [D] is the Fick coefficients matrix. The elements of the matrix [B] can

be found using,

Bii =
xi
D̄ij

+

n∑
j=1(j 6=i)

xj
D̄ij

with i = 1, 2, ...(n− 1) (53)

Bij = −xi
(

1

D̄ij
− 1

D̄ij

)
with i = 1, 2, ...(n− 1) and i 6= j (54)

while the elements of the matrix [Γ] can be expressed as a function of KB in-

tegrals. The relation between Γij and KB integrals is provided by Eq. (8) for685

binary systems. The thermodynamic factors are provided for ternary mixtures

can be found in Refs. [9, 39]. In Refs. [39] and [40], KB integrals from sim-

ulations of finite systems were computed using the approach of Krüger and

co-workers [34, 35, 37, 38] (section 3). KB integrals of binary and ternary mix-

tures were used to compute thermodynamic factors and convert MS diffusivities690
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obtained from simulations to Fick diffusivities measured by experiments. The

proposed method was applied to binary and ternary alcohol mixtures [39, 40].

In Ref. [52], it was shown that KB integrals can be used to correct finite-

size effects of computed MS diffusion coefficients. MS diffusion coefficients are

dependent on the size of the simulated system, and these finite-size effects were695

found to originate from hydrodynamic interactions [52, 102]. In the study of

Jamali et al. [52], a correction based on viscosity, and the thermodynamic factor

was used to compensate for this effect. For binary and LJ mixtures, KB integrals

were obtained from molecular simulation and used to compute thermodynamic

factors. The finite-size correction was applied to molecular systems such as700

organic fluids. Jamali et al. [52] found the finite-size effects of MS diffusivites to

be significant, especially when thermodynamic factors approach zero (i.e when

mixtures are close to demixing).

6.4. Other Applications

705

In section 1, we presented the relations that link KB integrals to partial

derivatives of the chemical potential with respect to the number of molecules

(Eq. (3)), partial molar volumes (Eq. (4)), and isothermal compressibilities

(Eq. (5)) for binary systems. Based on these relations, other properties can

be estimated from KB integrals. Galata et al. [103] used the KB theory to com-710

pute thermodynamic mixing properties and excess properties of liquid mixtures.

In their work, the authors focus on computing partial derivatives of chemical

potential with composition and the Gibbs energy of mixing, ∆mixG, which are

important quantities for the prediction of phase equilibria of liquid mixtures.

The prediction of ∆mixG and other mixing properties from KB integrals was715

validated using binary ideal and real LJ mixtures [103]. The KB integrals were

found using simulations of finite volumes, and finite-size effects were corrected

using the approach of Cortes-Huerto et al. [36] (discussed in section 4).

KB integrals can be used to interpret findings from simulations of biological

molecules. In Ref. [31], Pierce et al. presented a review of the applications of720

31



the KB theory to biological systems. One of the valuable applications of the

KB theory is to study the effects of co-solvents on biomolecules. Molecular sim-

ulation provide local information on the cosolvents surrounding biomolecules

and how such an environment affects the structure of biomolecules [29, 31, 104–

106]. In 2004, Smith [29] demonstrated how KB integrals can be used to relate725

simulation results which provide preferential interaction to macroscopic ther-

modynamic data [107]. Other than studying solvents surrounding biomolecules,

the KB theory can be applied directly to systems with interacting biomolecules.

However, this application can be hindered by difficulties associated with sam-

pling the phase space of such systems.730

KB integrals can be used for the development and parameterization of force

fields [61, 108, 109]. Weerasinghe and Smith provide KB derived force fields

(KBFF) for a number of mixtures such as, sodium chloride in water [108], urea

and water [110], acetone and water [111], and methanol and water [112]. The

force fields were parameterized so that KB integrals obtained from experimental735

data are reproduced (more on the use of experimentally obtained KB integrals

are provided in section 7).

The authors of Refs. [61, 108, 109] found that macroscopic properties can

be accurately computed using the KBFF models, while addressing solute-solute

and solvent-solute molecular structure of the systems considered. For instance,740

in Ref. [61] the derived KBFF was able to reproduce microstructure of alka-

line earth halide salts in water. Ion-ion and ion-water distances provided by

the force field were found to agree with those measured by neutron scatter-

ing experiments. The same KB force field yielded satisfactory prediction of

several macroscopic quantities including molar volumes, and partial derivatives745

of chemical potential with respect to density. Mijaković et al. [113] compared

several force fields, including KBFF, for ethanol-water mixtures. The authors

reported that the KB derived force field performed better than other force fields

when computing KB integrals and several thermodynamic properties including:

excess volumes, excess enthalpy, and self-diffusion coefficients.750
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7. Inversion of the KB theory

In previous sections, we showed how KB integrals are used to compute sev-

eral thermodynamic properties of multicomponent liquids. Before molecular

simulation were used to compute KB integrals, experimental data were used to

obtain KB integrals. This approach is referred to as the inversion of the KB755

theory [9, 11]. In this section we will briefly discuss the inversion procedure,

and some of its applications.

For a binary mixture with components α and β, molar volumes, the isother-

mal compressibility, and partial derivatives of chemical potential with respect to

number of molecules are related to KB integrals G∞αα, G∞ββ and G∞αβ (Eqs. (4),760

(5), and (3)). Moreover, the Gibbs-Duhem relations apply to these thermody-

namic quantities,

ρα

(
∂µα
∂Nα

)
T,P,Nβ

+ ρβ

(
∂µα
∂Nβ

)
T,P,Nα

= 0

ρβ

(
∂µβ
∂Nβ

)
T,P,Nα

+ ρα

(
∂µα
∂Nβ

)
T,P,Nα

= 0

ραV̄α + ρβV̄β = 1

(55)

where V̄α and V̄β are the partial molar volumes of components α and β, respec-

tively. Using Eqs. (3), (4), (5), and (55), Ben-Naim [11] derived the following

expression for KB integrals of binary mixtures,765

G∞αβ = kTκT −
δαβ
ρα

+ ρkT
(1− ραV̄α)(1− ρβV̄β)

ραρβ

(
∂µα
∂Nβ

)
T,P,Nα

(56)

where the isothermal compressibility κT and molar volumes V̄α and V̄β are ob-

tained from experiments. The term
(
∂µα
∂Nβ

)
T,P,Nα

can be obtained using second

derivatives of the Gibbs excess energy, or experimental vapor pressure data [9].

In Refs. [71] and [114], equations for KB integrals in terms of thermodynamic

properties were derived for ternary mixtures.770

Ben-Naim [11] introduced the inversion procedure in 1977 and applied it to

a mixture of water and ethanol. For water (W) and solute (S) systems, it was
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shown that KB integrals obtained from experimental data are useful to study

several local phenomena: (1) the quantity G∞WS = G∞SW indicates the affinity

between the solvent and the solute; (2) KB integrals of water, G∞WW , reflect the775

water-water affinity, which can be used to study the changes in the molecular

structure of water when adding solutes; and (3) KB integrals of solutes, G∞SS ,

are of particular interest for studying hydrophobic interactions.

Following the paper of Ben-Naim [11], the inversion of the KB theory was

applied to study various types of binary and ternary mixtures at the molec-780

ular level [15, 115–123]. For instance, Patil [119] computed KB integrals of

water-butanol mixtures from experimental data of molar volumes, isothermal

compresibility, and vapor pressures. KB integrals of the system considered were

used to study local structure at various concentrations. Similarly, Matteoli et

al. [118] used molar volumes and isothermal compresibility of mixtures of wa-785

ter and different organic co-solvents to find KB integrals. The KB integrals

obtained from the inversion procedure were taken as a measure of the net at-

traction or repulsion, indicating the hydrophobicity of these mixtures. More

recently, Kobayashi et al. [124] used KB integrals to study properties of resid-

ual water in ionic liquids. The authors found that the values of KB integrals790

computed using molecular simulation agree with integrals obtained from ex-

perimental data. However, the inversion of the KB theory requires the partial

derivatives,
(
∂µα
∂Nβ

)
T,P,Nα

, which are difficult to obtain accurately from experi-

mental data [125]. Matteoli et al. [118] demonstrated how the accuracy of KB

integrals obtained from experimental data is very sensitive to uncertainties in795

partial derivatives of the chemical potential. Alternatively, KB integrals can be

obtained from fluctuations in number of molecules measured by angle scatter-

ing [19] such as SANS and SAXS [17–19, 21, 22, 95]. Perera et al. [23] examined

a number of water-alcohol mixtures using KB integrals and demonstrated that

both methods are reliable and should provide similar values of KB integrals. In800

their study, Perera et al. [23] pointed out possible sources of errors leading to

inaccurate KB integrals when using experimental data. For instance, the largest

differences between the two methods were observed at the range where the val-

34



ues of the term
(
∂µα
∂Nβ

)
T,P,Nα

in Eq. (56) is close to zero. Furthermore, Almásy

et al. [126] obtained KB integrals from SANS as well as from vapor pressure805

data for an ionic liquid. The authors found that scattering experiments and

thermodynamic data provided similar KB integrals.

8. Conclusions

The KB theory provides a solid connection between the microscopic structure

of isotropic liquids and their thermodynamic properties, such as partial deriva-810

tives of chemical potential with respect to the number of molecules, isothermal

compressibility, and partial molar volumes. The key quantities in the KB the-

ory are the KB integrals which are expressed as volume integrals over the radial

distribution function. Although developed more than 60 years ago, the theory

did not gain mainstream interest until Ben-Naim [11] derived the inversion of815

the KB theory, where experimental data are used to compute KB integrals.

Only in the past few decades the KB theory has been applied to predict ther-

modynamic properties, mostly by using molecular simulation to compute KB

integrals. However, molecular simulation cannot be applied directly to compute

KB integrals of infinite and open systems. To connect RDFs and fluctuations of820

small systems to KB integrals, several methods have been proposed. One of the

most practical approaches was derived by Krüger and co-workers [34, 35, 37, 38],

where KB integrals of finite subvolumes, that scale with the inverse size of the

subvolume, were derived and then extrapolated to the thermodynamic limit. A

python package was created to automatically compute the finite-size KB inte-825

grals from RDFs (see supplemental information). This and the other methods

that we have reviewed here, provide a tool to compute KB integrals of infinite

and open subvolumes from simulations of finite systems. From computed KB

integrals, various thermodynamics properties can be predicted and used in dif-

ferent applications, which include: predicting properties of single ions in salt830

solutions, connecting Maxwell-Stefan diffusivities obtained from simulations to

Fick diffusivities measured by experiments, and deriving force fields. The KB
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theory is a general theory and in principle applies to all isotropic fluids, re-

gardless of the molecular interactions involved. KB integrals were computed for

different types of binary and ternary fluids including aqueous alcohol mixtures,835

salt solutions, and solvents present in biological systems. Difficulties may arise

when applying the KB theory for biomolecules and macromolecules as sampling

of the phase space can be challenging. Many molecular systems were studied

using KB integrals computed simply by truncating the infinite volume integrals

introduced by Kirkwood and Buff to finite distances. As shown in this work,840

truncated integrals do not converge easily and such truncation does not pro-

vide the same information as KB integrals in the thermodynamic limit. In fact,

truncated integrals correspond to the nonphysical case of subvolumes with zero

surface area. Currently, several methods are available to compute KB integrals

accurately, and this opens the way to expand the applications of KB theory845

to real fluids, especially to systems where complex interactions are present and

computing thermodynamic properties is challenging. Additionally, it would be

interesting to explore the possibilities of computer simulations on KB integrals

of non-isotropic fluids.
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(a)

R

(b)

Figure 1 (a) Correcting RDFs using the method of Ganguly and van der Vegt by adjusting

the bulk density using the access or depletion of molecules of type β (blue) in a volume V

with radius R. (b) Computing KB integrals in the canonical ensemble from local density

fluctuations [35, 96]. By using small and open subvolumes embedded in a larger reservoir

(simulation box) one can mimic the grand-canonical ensemble.
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Figure 2: The function w(r, Lmax) computed numerically for different shapes of the subvolume

(numerical procedure is outlined in Ref. [38]). Dashed lines are analytic functions w(r, Lmax)

of Eqs. (14) and (15) for a sphere and cube, respectively.
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(a)

(b)

Figure 3 KB integrals of finite (spherical) subvolumes, GV
12, versus 1/L (L is the diameter of

the sphere) from RDFs computed from MD simulations, in the NV T ensemble, of an

equimolar binary WCA fluid. The parameters of the WCA potential are: σ11 = σ22 = 1.0,

ε11 = ε22 = 1.0 and ε12 = 0.5. The dimensionless temperature and density are fixed at

T = 1.8 and ρ = 0.7, respectively. Eq. (13) is used to integrate g12(r) and find GV
12. The

radial distribution function g12(r) is (a) not corrected and (b) corrected using the method

by Ganguly and van der Vegt (Eq. (17)).
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(a)

(b)

Figure 4 KB integrals of the fluid described by Eq. (23) for a sphereical and cubic

subvolumes, versus (a) the inverse of the size of the subvolume, 1/L and (b) the ratio of the

surface area to the volume (A/V ) of the subvolume.
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(a)

(b)

Figure 5 (a) The weight functions uk(r) discussed in section 3.3 to estimate KB integrals in

the thermodynamic limit. (b) KB integrals, G11, versus 1/L from direct extrapolation

(Eq. (25)) as well as from the expression of KB integrals of finite subvolumes (Eq. (13)).

Green dashed lines indicate extrapolation to the thermodynamic limit.
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Extrapolate to 
1/L → 0 to find G∞

Plot Gv vs. 
1/L and 

identify linear 
regime 

Compute Gv using the L.H.S. 
of Eq. (9) for n subvolumes
with different box lengths 

L < Lbox

Compute Gv using the R.H.S. 
of Eq. (9) for n subvolumes
with different box lengths L

Direct or linear 
extrapolation to 

the 
thermodynamic 

limit

Compute G∞ using 
Eqs. (25) and (31)

Obtain RDF from 
molecular simulations

Correct RDF, the Ganguly
and van der Vegt correction 

is recommended 
(Eq. (17))

Choose the size of the 
simulation box Vbox

KB integrals 
from density 

fluctuations or 
RDFs?

Obtain <N!>, <N">, 
<N!>from molecular 

simulations for n subvolumes

No linear regime? Increase box size 

Figure 6: A guideline for computing KB integrals using the method of Krüger and co-

workers [34, 35, 37, 38].
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