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Abstract: Collision prevention is critical for navigation safety at sea. At early ages, researchers aimed 

at developing navigational assistance systems for enhancing situational awareness of human operators 

as human is at the core of collision avoidance. Recently, autonomous vehicles have gained a remarkable 

amount of attention with a focus on solving collision problems by machines. This results in two groups 

of studies, both working on preventing collisions but with different focuses: one aims at conflict 

detection, and the other focuses on conflict resolution.  

This paper offers a comprehensive overview of collision prevention techniques based on the three basic 

processes of determining evasive solutions, namely, motion prediction, conflict detection, and conflict 

resolution. The strengths and weaknesses of different methods for these three fundamental processes are 

discussed. Limitations and new challenges are highlighted. Moreover, this review points out the 

differences between the research for manned and unmanned ships and how the research in the two 

domains can learn from each other. A potential roadmap for the transition from existing manned ships 

to fully unmanned ships is provided in the end. 

Keywords: Collision avoidance; conflict detection, conflict resolution; human-machine interactions; 

Autonomous Surface Vehicle; manned and unmanned ships 

 

  



1. Introduction 

1.1 Background 

Ship collision is an imperative task for navigation safety at sea. Due to the high frequency and severe 

consequences of collisions, both practitioners and researchers have paid much attention to related 

research. Various kinds of techniques aiming at preventing collision accidents have been developed. 

From numerous accident reports and investigations, researchers share the common knowledge, i.e. 

human factor is the main cause of ship collision accidents (Chauvin, Lardjane, Morel, Clostermann, & 

Langard, 2013). Therefore, existing collision prevention technologies are mainly from two perspectives, 

i.e., assisting human on board and eliminating human factors.  

Enhancing the situation awareness of Officers On Watch (OOW) on board is a classical research subject 

from the 1950s (Tam, Bucknall, & Greig, 2009). Many techniques were applied to support the OOWs 

on board, e.g., ship domain, automatic radar plotting aid, etc. To eliminate the human factor, researchers 

turn to develop autonomous systems which can find collision-free solutions automatically and replace 

the role of the human in collision prevention. The unmanned ship with an autonomous system is usually 

defined as an Autonomous Surface Vehicle (ASV). With the fast development of robotics, artificial 

intelligence, etc., ASVs have gained a remarkable amount of attention in recent years.  

Today, two groups of studies have been developing in parallel to achieve a smarter/autonomous 

navigation system. Although the focuses and goals of these two studies are different, many scholars 

believe the studies for manned ships can benefit the research for the development of unmanned ships, 

and vice versa (Lopez-Santander & Lawry, 2016). However, there is a lack of studies elaborating on 

this statement. In this article, we want to bridge this gap, which helps peer researchers with different 

background learn from each other with respect to collision prevention.  

1.2 Related works 

There are many related literature reviews which collect techniques for collision avoidance, such as 

(Campbell, Naeem, & Irwin, 2012; Z. X. Liu, Zhang, Yu, & Yuan, 2016; Polvara, Sharma, Wan, 

Manning, & Sutton, 2017; Tam et al., 2009; Tu, Zhang, Rachmawati, Rajabally, & Huang, 2018). 

However, these reviews have not pointed out the links between the state-of-the-art methods for manned 

and unmanned ships.  

Firstly, the reviews are either from the perspective of supporting the human in collision avoidance (Tam 

et al., 2009; Tu et al., 2018) or from the perspective of developing ASVs (Campbell et al., 2012; Z. X. 

Liu et al., 2016; Polvara et al., 2017). The discussion across these two groups of studies is missing in 

these reviews.  

Secondly, these studies usually are for different aims, in which collision avoidance methods are seldom 

collected or even ignored. For instance, review (Tu et al., 2018) described the collision risk assessment, 

but it neglected the techniques for conflict resolution; In (Campbell et al., 2012) and (Z. X. Liu et al., 

2016), the authors addressed the developments of ASVs in details, while conflict detection and obstacle 

avoidance were of less focus; paper (Polvara et al., 2017) focused on the techniques for path planning 

and only included a few of studies related to reacting collision avoidance for unmanned ships.  

Thirdly, as the quantity of related literature increasing dramatically, an update is needed for the peer-

researchers’ convenience. Literature review (Tam et al., 2009) addressed the limitations of ship collision 

avoidance methods proposed from an early age, in particular from the 1950s to early 2000s. Together 



with the limitations addressed in other reviews, the identified limitations are concluded as follows: (1) 

no environmental factors are taken into account in collision prevention (Polvara et al., 2017; Tam et al., 

2009); (2) incorporating regulations in collision prevention algorithms is still a challenge (Campbell et 

al., 2012; Z. X. Liu et al., 2016; Polvara et al., 2017), e.g., International Regulations for Preventing 

Collisions at Sea (COLREGs); (3) the prevention only considers static obstacles or semi-dynamic 

obstacles which moves without changes on headings (Z. X. Liu et al., 2016; Tam et al., 2009); (4) highly 

ideal motion model is used in collision avoidance (Polvara et al., 2017; Tam et al., 2009); (5) balancing 

efficiency and effectiveness is ignored (Z. X. Liu et al., 2016). These limitations are widely accepted 

and used in recent articles and literature reviews. However, as new methods and techniques are springing 

up, some limitations have been overcome while new challenges have raised.  

1.3 Contributions 

This paper aims at collecting developments of collision prevention techniques either for manned ships 

or unmanned ships. A comparative evaluation of these techniques is provided, highlighting their 

potentials in the development of smart navigation assistance system and autonomous system. Compared 

with existing reviews, the main contributions of our paper are twofold: 

(1) The knowledge of ship collision avoidance techniques is updated with detailed comparisons of 

the strengths and weakness of methods in three processes of collision avoidance, namely motion 

prediction, conflict detection, and conflict resolution;  

(2) The bridge between the studies for manned and unmanned ships has been discussed, and the 

potential road from the existing manned ships to full unmanned ships is highlighted.  

1.4 Outline 

This paper is organized as follows: Section 2 introduces the framework that we use to review the 

collision prevention methods; Section 3, 4, and 5 conduct comprehensive surveys of motion prediction, 

conflict detection, and conflict resolution, respectively. Section 6 discusses the further developments of 

existing techniques for collision avoidance and the essential steps from manned ships to unmanned ships. 

Finally, conclusions are summarized in Section 7.  

2. Framework for review and evaluation of existing methods 

2.1 Research scope 

The process of avoiding collisions is named as collision avoidance. The techniques involved in this 

process are called collision prevention techniques. Various categorizations of collision prevention 

techniques have been presented in (Z. X. Liu et al., 2016; Tam et al., 2009), i.e., route planning, path 

planning, and reactive collision avoidance. In this article, we distinguish these studies as follows: route 

planning takes place on large scale map, e.g., weather routing, etc.; path planning aims at finding a 

collision-free path on a local map considering static obstacles; reactive collision avoidance focuses on 

avoidance of moving obstacles or obstacles unknown in prior, which is the focus of this review.  

The scope of this review narrows down to the reactive collision avoidance for both manned and 

unmanned ships. Specifically, we collect two types of research: 1) the prevention techniques for manned 

ships, which support the OOW on board, e.g., collision warning and searching for evasive actions; and 

2) the methods applied in ASVs that drive the ship to deviate from the predefined path for collision 

avoidance.  

Therefore, we re-defined collision avoidance for both manned and unmanned ships as follows: 



Definition: Collision Avoidance (CA) is a process in which one ship (manned or unmanned) 

departs from its planned trajectory to avoid a potential undesired physical contact at a certain time 

in the future. 

The ship under control is called Own-Ship (OS). Obstacles include stationary obstacles and moving 

obstacles (Target-Ships, TSs). 

2.2 General framework of ship collision avoidance 

According to the definition of collision avoidance, the collision prevention problem contains two sub-

problems: “conflict detection” and “conflict resolution”. Solving the conflict detection problem is to 

determine whether the ship is in danger and when to take evasive actions. Solving the conflict resolution 

problem is to answer the question of what actions should be taken to prevent collision (Kuchar & Yang, 

2000).  

For manned ships, modern bridge system such as an Integrated Navigation System (INS), is designed to 

support collision avoidance mainly during conflict detection stage. Its main function is to offer 

information to navigators and to send an alarm if necessary. Human, who decides to/not to take actions, 

plays a major role in conflict resolution. For an ASV, a Guidance Navigation Control (GNC) system 

takes the whole responsibility for collision prevention. The Guidance system is engaged to detect and 

solve the conflict at the same time, which decides When and How to take evasive actions. The other two 

sub-systems offer information to support the guidance system and implement the planned actions, which 

are the Navigation system and the Control system, respectively. The data/information flows in a manned 

ship, and an unmanned ship during collision avoidance are separately presented in Fig. 1. 
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(2) the decision process in an autonomous ship 

Fig. 1 Structure of Navigation System in manned and unmanned ships 

Based on Fig. 1, one can see that either for the navigation system in manned ships or unmanned ships, 

some essential modules are needed to reach a collision-free solution for the ship. When the ship observes 

the positions of Target Ships (TSs) at present, it estimates the possible positions of these ships in the 

future and their corresponding collision risks. Based on the estimations, the OS might decide to keep its 

current route or to find a new collision-free solution.  



The process of collision prevention and its information flows in the manned and unmanned ship can be 

abstracted as Fig. 2. Five components are included: (1) Observer, which contains various sensors 

offering data to support other modules; (2) Motion Prediction module, which estimates the future 

trajectories of the Own Ship (OS) and the obstacles; (3) Conflict Detection module, which checks 

collision risk and launches collision warning if necessary; (4) Conflict Resolution module, which 

determines the evasive solutions and then, (5) Actuator, which implements the solutions.  

The “Motion Prediction”, “Conflict Detection” and “Conflict Resolution” are the main focuses of this 

paper, which are investigated in Section 3-5. In particular, the following questions are discussed: what 

methods can be used to predict the trajectory of obstacles; how is the collision risk measured and used 

for early alarm; and what approaches are used to determine the actions to prevent the approaching 

dangers. Other modules, such as “Observer” and “Actuator”, are also necessary for collision prevention, 

but they are not included in the scope of this review. We presume the observers can offer accurate 

information about the states of the system; the limitations on actuators have been considered in “Conflict 

Resolution” and the actuators can implement the collision-free solutions and follow the reference. 

Readers who are interested in the observers and actuators for collision prevention are referred to (Z. X. 

Liu et al., 2016).  
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Fig. 2 The information flow of collision prevention on board ship. 

2.3 Methodology 

The scope of this review is on “ship collision avoidance” which contains three sub-modules: motion 

prediction, conflict detection, and conflict resolution. Although each module covers numerous studies, 

we only collect the studies aiming at avoiding collisions with three steps, as shown in Fig. 3: 

(1) Firstly, we search in databases of “Web of Knowledge” and “Scopus” to collect journal and 

conference papers with the following keywords in title, keywords, and abstract: “ship”, “vessel”, 

“unmanned surface vehicle”, “USV”, “autonomous surface vehicle”, and “ASV”, “collision 

avoidance”, “collision prevention”, “avoid collision”, “prevent collision”, “navigation safety”. The 

research with a series of keywords which indicate that it is out of our scope is excluded, such as 

“underwater”, “aircraft”, “car”, “collision protection”, “estimation of collision damage”, “ship-



bridge collision”, “ship-iceberg”, etc. The searching result is narrowed down by limiting the 

language to “English”, and research domain to “engineering”. At this step, 304 pieces of record are 

obtained until Mar. 1st, 2019. 

(2) A further literature filtering is performed to identify the studies that are not completely fitting our 

scopes. According to the scope described in Section 2.1, some records are removed, e.g., the studies 

relating with sharing navigation experience, the studies only considering path planning or formation 

control, the studies focusing on the construction of ship domain, the studies that do not consider 

moving obstacles. In the end, 90 pieces of records are obtained.  

(3) After reading the selected papers, we add some papers as the complement to our database. Three 

types of studies are added: the papers that are cited in the 90 papers but not included in our database; 

the studies which were published before 2000 but are classical and are sources of some methods; 

the papers published in 2019 but have not appeared in the database.  

 
Fig. 3 Literature collection steps. 

3. Motion Prediction  

Motion prediction is a fundamental module for ship collision avoidance, which contains a process that 

predicts the trajectories of the OS and obstacles. When the OS encounters with potential dangers, the 

predicted trajectories are used to determine the collision risk for conflict detection. Moreover, when the 

OS determines a resolution, the predicted trajectories are also needed in the collision risk check.  

In this section, we first present the popular ship motion models used in prediction, followed by existing 

techniques used in predictions. A summary of the trends of research on prediction in collision prevention 

is also presented.  

3.1 Ship motion models in prediction 

The motion prediction usually relies on the mathematical expression of the system, i.e., motion models 

of the ship. In this article, the behaviors of the ship in the horizontal plane are focused, i.e., surge, sway, 

and yaw. Thus, the workspace of the ship is the horizontal space, i.e., W = R2, and the configuration 



space (C-space) consists of position and orientation, i.e., 2 1RC  S . Detail introductions of motion 

models with 6 degrees of freedom are provided in (Thor I. Fossen, 2011). 

According to the constraints used in modelings, the motion models are categorized as holonomic models 

(constraints on configurations only) and non-holonomic models.  

3.1.1 Holonomic model 

The simplest way to describe the ship’s motion is based on the assumption that the ship is a holonomic 

vehicle which moves freely in a horizontal plane. Two versions of formulations are found. 
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where xu  and yu  are components of ship speed w.r.t. the earth; u is resultant speed and   is heading 

of the ship.  

In the trajectory prediction of the TSs, Equation (1) is noted as constant velocity model (X. R. Li & 

Jilkov, 2003) which is widely used, then u and   are the observed speed and course of the TSs. 

Examples can be found in (Benjamin, Leonard, Curcio, & Newman, 2006; Degre & Lefevre, 1981; 

Lazarowska, 2017; Lenart, 1983; Pedersen, Inoue, & Tsugane, 2003; Szlapczynski & Szlapczynska, 

2015, 2017a). 

3.1.2 Kinematic model 

The holonomic model ignores constraints on tangent C-space, e.g., acceleration of linear and angular 

speed. Thus, in some studies, kinematic motion models are proposed. A standard form of kinematic 

models is shown as follows: 
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where  ,x y , u,   are the position of the ship, speed, and heading angle; at and an are tangential and 

normal accelerations, respectively. This model comprises various kinematic models (X. R. Li & Jilkov, 

2003), such as “unicycle” model, “dubins car” model, and “simple car” model. In these models, “dubins 

car” model (at=0) (e.g., (Hvamb, 2015; Vincent, 1977)) and “simple car” model (e.g., (S. Fossen, 2018)) 

have been used in maritime studies. 

3.1.3 Dynamic model 

Kinematic models ignore the ship’s mass that has great impacts on ship motion. The accelerations in 

each direction which have complex mechanisms are not properly addressed, as well. Therefore, 

researchers introduced kinetics relations into a kinematic model to increase the accuracy of prediction.  

(1) Vectorial representation for marine vehicle 

A widely used dynamic model is described in a compact vectorial setting, which contains two 

formulations: one describes the kinematic relations; the other shows the kinetic equations. The kinematic 

formulation is  R   , where  R  is a rotation matrix,  
T

, ,x y  , and  
T

, ,u v r  . The kinetic 

relation is then formulated as (T. I. Fossen, 2002): 

       Mv C v v D v v g w t      ,    (3) 



where M, C, and D denote the mass, Coriolis, and damping matrices; g and w are vectors of restoring 

forces and disturbance;  denotes an input vector contains surge force, sway force and yaw moment. 

Considering that most merchant ships are under-actuated, i.e., the degree of controls is smaller than 

system states, some researchers also used an under-actuated model, such as:  

     Mv C v v D v v g Bf    .     (4) 

where B is the actuator configuration matrix, f is the input vector contains thruster and rudder angle. The 

applications can be found in (Abdelaal, Franzle, & Hahn, 2018; Eriksen, Breivik, Pettersen, & Wiig, 

2016; Moe & Pettersen, 2016; Soltan, Ashrafiuon, & Muske, 2010; Martin S. Wiig, Pettersen, & 

Krogstad, 2017). This form is widely used in designing controllers and observers in ASVs.  

(2) Mathematic Model Groups (MMG)  

MMG model is another dynamic model, which is used in maneuverability prediction. Instead of using 

the forces as inputs, the MMG employs rudder angle and propeller revolutions as the inputs and models 

the responses of hydrodynamic forces to different inputs by empirical formula method. In this way, more 

details of rudders and propellers are considered, e.g., the specifications of rudders and propellers. Thus, 

this model is usually used in the theoretical analysis of ship maneuverability. Details of MMG refers to 

(Yasukawa & Yoshimura, 2015). The application of this model in collision prevention presented in (He 

et al., 2017; S. J. Li, Liu, & Negenborn, 2019; Y. Xue, Lee, & Han, 2009). 

This model can produce a relatively accurate trajectory, while the cost is high. It requires a better 

understanding of ship hull, rudder, and propeller. Moreover, since the relationships between control 

inputs and forces are nonlinear and complicated, this model is less popular in the design of ship 

controllers and observers. Researchers prefer to use some simplified model based on MMG to predict 

ship’s trajectory.  

(3) Other well-known simplified dynamic models 

Since the ship dynamics models are complicated, researchers often employ some simplified models in 

the design of collision avoidance approaches. Although these simplified models are less precise, they 

are more applicable (X. R. Li & Jilkov, 2003).  

One simplifying technique is to ignore some less important terms in the aforementioned models (more 

details in (Z. X. Liu et al., 2016)). One group of simplified models uses first-order/second-order response 

equation to describe the dynamics of rotations and assumes the surge speed is constant and no sway 

speed (Fang, Tsai, & Fang, 2017; C. Liu, Negenborn, Chu, & Zheng, 2017; J. F. Zhang, Zhang, Yan, 

Haugen, & Soares, 2015). Here, the first-order response equation is also noted as Nomoto equation. The 

simplified model is similar to “dubins car” adding a damping factor in rotation. Some models considered 

the simplified response of surge speed w.r.t. rudder angle and propeller revolution (X. Wang, Liu, & 

Cai, 2017).  

Another frequent used simplifying technique is called successively linearization, which is based on 

Taylor expansion. Researchers linearized the ship motion model around an estimated trajectory (L. Chen, 

Hopman, & Negenborn, 2018; Huarong Zheng, 2016). As a result, the motion model has a relatively 

simple form, and the predicted trajectory approximates to the real trajectory. As the real input deviates 

from the initial setting, the errors of prediction might increase.  

The above simplifications are based on the mathematical expression of ship dynamics, while the other 

simplifications are based on simulation/experiment data. Specifically, researchers either use a simulator 

to generate the responses of the ship with different inputs or collect the experimental data of the ship’s 



response with different inputs. Then they use regression methods to find equations that fit the data best 

(Miloh & Pachter, 1989; Szlapczynski & Krata, 2018). 

3.2 Prediction of trajectory 

3.2.1 Prediction of the OS’s trajectory 

In an ideal case that the control inputs and motion model of the OS are known, the prediction of the 

OS’s trajectory turns to be solving the ordinary differential equations in Section 3.1. The simplest way 

is to assume that the OS is a holonomic vehicle, which is popular in many collision prevention studies. 

However, the errors between the predicted trajectory and the real trajectory are huge due to this 

unrealistic assumption. Thus, some researchers consider the non-holonomic constraints and use 

kinematic models in prediction to make the predicted trajectory closer to the real trajectory. One 

advantage is its concise form, while the accuracy of the prediction is still the issue. Therefore, nowadays, 

many researchers employ either the dynamic model or simplified dynamic model in trajectory prediction. 

Due to the complicated form of the equation, the analytical solutions are usually infeasible, and the 

numerical method is usually needed, e.g., Runge-Kutta methods, etc. 

In other cases, researchers face with more practical problems, such as uncertainties on motion models 

and parameters. Then, some model identifications are needed to obtain the motion model. Moreover, a 

challenging issue is considering noise and errors in predictions. In this case, studies usually applied 

Kalman filter (or its variations) in trajectory prediction.  

3.2.2 Prediction of the TS’s trajectory 

Since the information of the TS is insufficient for the OS, e.g., parameters of motion model, inputs to 

the system, etc., the prediction of the TS is more challenging than that of the OS. Due to these 

uncertainties, researchers usually prefer to use simple models, such as the holonomic model and 

kinematic model. The simplest way to predict the trajectory of the TS is based on the assumption that 

the TS keeps its velocity and neglects environmental disturbance. It is widely used but less accurate for 

collision avoidance. A more reasonable approach is considering the uncertainties of models, inputs, and 

disturbance. The methods for predicting the trajectory of the TS can be categorized into three groups 

according to the knowledge of the TS. 

Physics-based methods predict the motion of the ship only depending on the laws of physics, while the 

existing studies either ignore the control inputs or treat the maneuvers as white noise. KF is a preferred 

technique used to consider these noises and give the best guess of the ship’s trajectory in many studies. 

Together with the KF, holonomic models (Candeloro, Lekkas, & Sørensen, 2017) or kinematic models 

(e.g., “simple car” model (Shah et al., 2015)) are employed. To handle the nonlinearities and 

uncertainties of these motion models, the variations of the Kalman filter are used, e.g., extended Kalman 

Filter (S. Fossen, 2018), Particle Filter, Interacting Multiple Model Kalman filter, probabilistic filter 

(Eriksen, Wilthil, Flåten, Brekke, & Breivik, 2018), etc. Although these methods can predict the 

trajectory of the ship in a short period, they cannot predict the changes in trajectory due to the changes 

of maneuvers (Lefèvre, Vasquez, & Laugier, 2014).   

Maneuver-based methods take the maneuvers of the ship into account, i.e., navigational intention, 

which is learned/estimated from historical traffic data or by the protocols for ship encounter situations, 

e.g., COLREGs. Algorithms learn the behavioral patterns of ships in a certain area from massive traffic 

data and then use these patterns to support the prediction (Scheepens, van de Wetering, & van Wijk, 

2014). Some popular learning models are neural network (Simsir, Amasyalı, Bal, Çelebi, & Ertugrul, 

2014), Gaussian process (Rong, Teixeira, & Guedes Soares, 2019), Hidden Markov Model (Peel & 

Good, 2011), etc. More details of these models are addressed in the paper (Tu et al., 2018).  



Interaction-aware methods consider the interactions between ships in prediction. Specifically, 

communications between ships are included. The OS and TS would broadcast (J. F. Zhang et al., 2015), 

exchange, or negotiate their maneuver intentions (e.g., intended course (Q. Hu, Yang, Chen, & Xiao, 

2008; D. Kim, Hirayama, & Okimoto, 2017; D. G. Kim, Hirayama, & Park, 2014)) or the trajectory 

information, i.e., ships can exchange their planned trajectories (L. Chen, Y. Huang, H. Zheng, J.J. 

Hopman, & Negenborn, 2019; H. R. Zheng, R. R. Negenborn, & G. Lodewijks, 2017). The exchanged 

trajectories are the trajectories of the ships estimated by themselves who have a better knowledge about 

their own dynamics and intentions. In return, the predicted trajectories are more accurate than those 

predicted by other methods.  
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Fig. 4 An illustration of different predictions methods   

The asymmetry of information is eliminated gradually in these three methods. An illustration of different 

prediction methods is shown in Fig. 4. The physics-based prediction provides the trajectory according 

to its historical data only. Since the TS is sailing to the southeast with constant speed and course, the 

physics-based method suggests that the TS would continue this movement in the future. The manoeuver-

based method, however, first recognizes the pattern of the TS, e.g., the give-way intention, and predicts 

that the TS would perform starboard turn that is suggested by COLREGs. Then, the trajectory is 

predicted based on the recognized pattern. Different from previous methods, the Interaction-aware 

method requires the exchange of information among ships, e.g., the OS and the TS broadcast their 

trajectories. Thus the predicted trajectory is the trajectory offered by the TSs.  

3.3 Discussion on Motion Prediction 

In the conclusions drawn in existing review papers, the studies of collision avoidance are suffering from 

some ideal assumptions that the ships (the OS and the TSs) are holonomic, the TS moves without 

changing on their headings and speeds, and environmental disturbances are ignored (Z. X. Liu et al., 

2016; Tam et al., 2009). Based on these assumptions, the physical-based method is widely used, and the 

predicted trajectories are usually shaped as straight lines that are unrealistic.  

In recent years, many researchers engaged in overcoming these drawbacks. Some achievements are 

listed as follows. 

Firstly, researchers have applied various non-holonomic models in the prediction of the OS’s trajectory, 

such as kinematic models, dynamics models, and simplified dynamics models. Given control inputs, the 

trajectory of the OS is usually calculated by the Runge-Kutta method. In some studies, environmental 

disturbances are considered, where the distribution of disturbance is assumed to be known, e.g., 

(Huarong Zheng, 2016). In return, the trajectories of the OS can be bounded by tubes or funnels.   



Secondly, the developments of the prediction of the TS are currently towards the usages of the 

maneuver-based methods and interaction-aware methods that are capable to incorporate more 

information in the prediction. Manoeuver-based methods estimate the steering intentions first and then 

predict the trajectory, e.g., (Cho, Han, & Kim, 2018). However, the errors of the estimated intention 

could not be completely eliminated by existing methods, and collision avoidance is sensitive to these 

errors. For instance, when two ships encounter in a close range, any misestimation would result in a 

collision. Therefore, some researchers preferred to use the interaction-aware method to predict the TS’s 

trajectory, which allows cooperation among ships. A simple way is exchanging their intentions among 

ships, such intended course (D. Kim et al., 2017) or turning points (J. F. Zhang et al., 2015); alternatively, 

the broadcasting trajectory is another way, which is more accurate than the above methods since the ship 

has better knowledge about its own dynamics than other ships, examples can be found in literature (L. 

Chen et al., 2018; Huang, Chen, & van Gelder, 2019). However, in this way, communication burdens 

are increased. 

By these new methods, many collision avoidance techniques do not hold the assumption that the TS 

sails with constant speed and heading. However, some problems remain, e.g., the uncertainty of the 

motion model, limited knowledge about environmental disturbance acting on the ship, performance of 

communications, etc. These uncertainties should be analyzed and bounded for the subsequent collision 

avoidance.  

4. Conflict Detection 

Conflict detection refers to determinations of whether and when evasive actions should be taken by the 

OOW. The core of this process contains a collision risk assessment, which triggers an event that either 

requires human to notice collision dangers or asks the human/machine to find a collision-free solution. 

Conflict detection in practice includes:  

(1) Identify potential collisions and launch an alarm for the OOWs on board or operators in Vessel 

Traffic Service (VTS) (Goerlandt, Montewka, Kuzmin, & Kujala, 2015; Kao, Lee, Chang, & 

Ko, 2006); 

(2) Trigger the autonomous system on board to find evasive actions (Kuwata, Wolf, Zarzhitsky, & 

Huntsberger, 2014); 

(3) Evaluate the risk of alternative paths or evasive actions (Johansen, Perez, & Cristofaro, 2016).  

The first two applications relate to risk-informed decision making (Zio & Pedroni, 2012) and the last 

one focuses on the risk-based decision making that minimizes the risk of actions. Moreover, conflict 

detection has another application of identifying collision candidates. Readers can find more details in 

(P. Chen, Huang, Mou, & van Gelder, 2019). 

Collision risk in this article refers to the probability/likelihood of collision. Two main categories are 

identified from the literature, namely “expert-based method” and “model-based method”. The first 

group of studies directly utilizes experts’ knowledge to assess collision risk. As a result, the measured 

risk reflects the belief of experts about collision event. The second group of methods assesses the 

probability of collision event based on a simplified model describing the physical process of collision. 

Consequently, the measured risk is a conditional probability of collision. In each group, the 

representations of the collision risk to human are various, which includes numerical representation 

and graphical representation. Some researchers prefer to present the risk as a number, which is 

considered to be a numerical representation; while the others show the risk in a two-dimensional map, 

e.g., rings of warning, action lines, etc., that is treated as a graphical representation. In the following 

sections, we will overview the methods of collision detection in these four categories.  



4.1 Expert-based method 

4.1.1 Collision Risk Index 

This category of methods usually sets off a collision alarm based on a numerical value called collision 

risk index (CRI). When this index violates a pre-set threshold, a collision alarm is launched. Researchers 

usually invite experts, such as captains, pilots, etc., and learn their experiences to determine the measures, 

models, and thresholds. As a result, the meaning of collision alarm usually can be interpreted as the 

situation when most of the experts believe the ship is in danger now.  

The most popular method in practice is to utilize two indices to measure the risk, namely Distance to 

Closest Point of Approach (DCPA) and Time to CPA (TCPA). Specifically, researchers use a 

polynomial equation to combine the value of DCPA and TCPA into one number, which is the CRI. In 

some studies, researchers introduce data processing first and then use the results in the equation. The 

data processing refers to the square of measures (Kearon, 1979), non-dimenisionalization considering 

ship length and speed (Lee & Rhee, 2001), etc. A generalized form of CRI measurement is shown as 

follow: 

   1 1 2CRI w f DCPA w f TCPA  ,  

where w1 and w2 are the weights. The determination of these weights is based on the experts’ knowledge. 

To integrate experts’ knowledge in the measurement, various techniques have been used, e.g., Fuzzy 

Theory (Lee & Rhee, 2001), Probit Regression (Chin & Debnath, 2009), etc. 

Many researchers follow this way of thinking while making some improvements. Firstly, more risk 

indicators (RI) are introduced, which show more details of encounters, such as relative distance (B. Li 

& Pang, 2013), relative bearing (Y. X. Zhao, Li, & Shi, 2016), ratio of speeds (Gang, Wang, Sun, Zhou, 

& Zhang, 2016), ship domain (Ahn, Rhee, & You, 2012), etc. Secondly, more techniques are used to 

construct the CRI measurement, such as Multilayer Perceptron (Ahn et al., 2012), Analytical 

Hierarchical Process and Evidential Reasoning (Y. X. Zhao et al., 2016), Support Vector Machine (Gang 

et al., 2016), and Dempster–Shafer evidence theory (B. Li & Pang, 2013), etc. Thirdly, researchers aware 

that the risk measurement needs to adapt to different scenarios(M. Baldauf, Benedict, Fischer, Motz, & 

Schroder-Hinrichs, 2011). For instance, different nature-environment conditions, like wave conditions, 

visibility, day/night condition, operation area, etc., and different encounter types (Hilgert & Baldauf, 

1997). Paper (Goerlandt et al., 2015) showed a demonstrate that using the improved CRI measurement 

in collision alert, where the authors utilized 16 indicators in five different encounter scenarios and the 

RIs and their weights are adapted according to experts’ preference via fuzzy theory. This type of risk 

measurement is generalized as: 
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Different from the polynomial models, some researchers accept non-linear relationships to measure the 

CRI. Some of them keep DCPA and TCPA as RIs, while the other introduces new RIs. For example, in 

(Lisowski, 2002), DCPA, TCPA, and relative distance (dij) are used and safety distance is added. The 

form of measurement is shown as follow, which contains a Euclidean norm: 
1
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Based on this model, paper (Szlapczynski, 2006) introduced ship domain to replace a constant safety 

distance. In (Mou, van der Tak, & Ligteringen, 2010), researchers incorporate the basic risk level (rbasic) 



in the measurement which shows the risk level in a certain water area. Their CRI is increasing 

exponentially as the decrease of DCPA and TCPA, which is formulated as:  

/10

4 F
DCPATCPA

basic angleCRI r e e
  ,  

where Fangle  is scale factor determined by different encounter scenarios. This idea is developed in (Ren, 

Mou, Yan, & Zhang, 2011) and a Fuzzy logic is introduced to determine the coefficients. Instead of 

using formulations, some researchers design a pre-set matrix table to determine CRI value (Ożoga & 

Montewka, 2018). The other group of researchers abandons T/DCPA in measurement and uses some 

observable variables as RIs, such as relative distance (dij), relative speed (vij), etc. In (Perera & Soares, 

2015; Wen et al., 2015), researchers found the inner product of vij and dij shows the tendency of relative 

movement (converge or diverge) and the magnitude shows the speed of this movement. Both are useful 

to describe the collision risk. Thus, the CRI is measured as: 

 5 cos ,
ij ij

ij ij

ij ij

v d
CRI v d

d v
  .  

If CRI is positive and approaching 1, two ships are converging, and the collision is likely to happen; 

otherwise, they are relatively safe. In (W. Zhang, Montewka, & Goerlandt, 2015; W. B. Zhang, 

Goerlandt, Montewka, & Kujala, 2015), vij, dij, and encounter angle ( ij ) are used to measure the risk, 

which is formulated as: 

    1

6 sin sin 2ij ij ij ijCRI kd v m n   ,  

where k, m, and n are parameters determined via supervised learning. In particular, selected data samples 

from some encounter scenarios are used to determine a group of parameters which fits the data best.  

4.1.2 Warning Rings by Ship domain 

This category of methods usually visualized the collision risk by a set of warning rings surrounding the 

OS. When a target ship enters or will enter this region (i.e., CPA inside of this region), a collision alarm 

is triggered. The determination of the warning ring is related to the concept called ship domain, a region 

surrounding one ship that the OOW prefers to keep it clear from obstacles (Fujii & Tanaka, 1971). More 

details of ship domain refer to (Szlapczynski & Szlapczynska, 2017b). According to the definition of 

ship domain, this concept reflects the experts’ belief about the minimum safety region. Therefore, ship 

domain is not suitable for performing as a collision criterion directly. If, in particular, one ship used ship 

domain as the ring of warning, the collision alarm might be too late for a ship to keep its ship domain 

clear (Davis, Dove, & Stockel, 1980). However, it can be used to detect collision danger in indirect ways. 

The following three ways are popular in the literature.  

(1) Type I: Trajectory of the TS w.r.t. ship domain. 

Collision danger is determined by comparing ship domain and predicted trajectory. When the predicted 

trajectory of the TS crosses the domain, then a collision alarm is triggered. Since ship domain is a 

psychological barrier (Fujii & Tanaka, 1971) and does not have a hard boundary between safety and 

danger (J. S. Zhao, Wu, & Wang, 1993), researchers suggested to use the fuzzy ship domain with fuzzy 

boundaries, see (J. Zhao, Tan, Price, & Wilson, 1994; J. S. Zhao et al., 1993), to fit the OOW’s 

judgments. This idea is popular in recent years. For example, paper (Pietrzykowski, 2008) investigated 

ship fuzzy domain in narrow fairways; In (Pietrzykowski & Uriasz, 2008), the authors proposed a ship 

fuzzy domain adapted to various encounter scenarios. The collision risk level, then, is presented by the 

degree of the predicted trajectories violating the fuzzy boundaries.  

(2) Type II: Position of the TS w.r.t. ship domain. 

This type of studies triggers collision alarms by comparing the position of the TS with ship domain (or 

expanded domain (Tam & Bucknall, 2010; L. Zhang & Meng, 2019)). Some researchers follow the idea 



of fuzzy ship domain and mark fuzzy boundaries with different risk levels. This type of method is called 

Spatial Collision Risk (SCR) (N. Wang, 2010). The SCR level is determined by experts’ knowledge 

using Fuzzy set theory (N. Wang, 2012), specifically Gaussian membership function. The SCR of one 

TS depends on the position of the TS. As the TS approaches the OS, the SCR rise to 1. Then, researchers 

suggest the OOW take evasive actions when the SCR is too large. However, how to determine a 

threshold for SCR is not mentioned in the literature. Instead of using fuzzy ship domain, paper (L. Zhang 

& Meng, 2019) employed a probabilistic ship domain based on historical AIS data to assess the collision 

risk. 

The other researchers developed an expanded ship domain, called ‘arena’ (Davis et al., 1980), where the 

violation of this region implies the OS needs to take evasive actions. The original arena is enlarged from 

ship domain considering questionnaires from the experts and navigational regulations. Later on, some 

researchers incorporated maneuvering performance in formulating the arena, such as (Colley, Curtis, & 

Stockel, 1983).  

(3) Type III: Overlapping of ship domain. 

In this type of methods, the overlapping of ship domain is used to launch collision alarms. Two modes 

have been found in the literature: some researchers proposed the ship should take evasive actions as long 

as two ship domains are overlapping, such as (Kijima & Furukawa, 2003); while, the other suggests to 

estimate the secant line of two ship domains first and then trigger an alarm if the length of the secant 

line is increasing and the change of slope is smaller than 1 degree, e.g., (Kao et al., 2006).  

   
(1) Fuzzy ship domain    (2) Spatial collision risk   (3) Ship arena 

 Fig. 5 Fuzzy ship domain, spatial collision risk, and ship arena 

Three similarities of the three types of studies are collected as follows: (1) these studies are relying on 

the determination of ship domain; (2) the boundary of ship domain is modified to represent different 

risk levels, where the experts’ knowledge are usually employed; (3) they are visualized in a map for the 

OOW to understand the risk level.  

4.2 Model-based method 

This category of methods usually has a given encounter scenario and address some truths of given 

scenarios to the OOW by one indicator or risk map. These truths refer to collision happen/not happen or 

the probability of collision in given scenarios. The violation of risk threshold means “provided the 

scenario is true, the probability of collision is unacceptably high”.  

4.2.1 Binary collision criteria 

Binary collision criteria usually offer a deterministic result to users about collision event, i.e., happen/not 

happen, based on a given scenario. DCPA is a popular criterion, which is based on the scenario that the 

TS keeps its velocity constantly, and the shape of the ships is a circle. In this scenario, if the DCPA is 



smaller than the assumed safe distance, the collision is going to happen; otherwise it not. Although this 

scenario is highly unrealistic, it is widely used for manned and unmanned ships (Shah et al., 2015). 

Besides, it is also an important risk indicator in CRI measurement (see Section 4.1.1).  

4.2.2 Probability of collision 

Since the process of collision is not deterministic, it is natural to use probability to describe the collision 

risk. In particular, many uncertainties might influence the result of dangerous encounters, e.g., sensors 

errors, environmental disturbances, reactions of the TS, errors in prediction, etc. However, considering 

all of these uncertainties is impossible, especially some of them are difficult to measure. Alternatively, 

researchers usually presume the system is known, and only one/part of uncertainties are considered. 

Moreover, the probability distributions are assumed to be known in advance. Hence, the probability of 

collision with given uncertainties can be calculated. In (Shah et al., 2015), Monte-Carlo simulation is 

employed to assess the probability. In (Park & Kim, 2016), a concept of probability flow is employed 

to calculate the probability of collision which can save some computational time. These uncertainties 

might come from sensors and environment disturbance (Park & Kim, 2016; Shah et al., 2015). However, 

how to set a threshold to launch collision alarm is not mentioned.  

4.2.3 Dangerous Region 

One group of methods aims at collecting a set of the OS’s speed or course that is leading to collisions 

with the TS and presenting this set in the figure to the OOW. A collision alarm is triggered when the 

current velocity of the OS is inside of this set. Researchers have given various names to this set, e.g., 

Collision Threat Parameter Area (CTPA) (Lenart, 1983), Collision Danger Sector (CDS) (Pedersen et 

al., 2003), Velocity Obstacle (VO) (Huang, van Gelder, & Wen, 2018), etc. In this article, this group is 

named as Dangerous Region in Velocity-space (DR-Vspace). At early stages, to construct the 

CTPA/CDS set, the researchers accepted some restrict assumptions, e.g., the TS keeps a constant speed 

and course and the TS and the OS are shaped as circles, etc. (Lenart, 1983; Pedersen et al., 2003). 

Recently, researchers released some of these settings and expanded its applications in maritime practice. 

For instance, in (Szlapczynski & Szlapczynska, 2015), ship domain is introduced; in (Huang et al., 2018), 

the TS is allowed to change its speed and course; in (Huang et al., 2019), the maneuverability of the ship 

is considered, etc. Since the VO set collecting dangerous velocities in solution space, some researchers 

proposed to use the percentage of the safe solutions, e.g., velocity (Huang & van Gelder, 2019) or course 

(You & Rhee, 2016), to represent the collision risk. 

The other group of studies directly presents a dangerous area of one TS to the OS in the workspace. The 

dangerous area is usually placed at CPA. A collision is launched when the current velocity of the OS 

might lead to the OS violate this area. Since these methods using workspace instead of velocity space, 

we name this group of studies as DR in work-space (DR-Wspace). One representative method is called 

Predicted Area of Dangers (PAD) (Zhao-lin, 1988) or Projected Obstacle Area (POA) (Gerhart et al., 

2006). Other used concepts include: Obstacle Zone by Target (OZT) whose the size and the position are 

determined by a joint probability (Fukuto & Imazu, 2013; Kayano & Kumagai, 2017), Fuzzy Collision 

Danger Domain (FCDD) that considers multiple factors to determine its size (Su, Chang, & Cheng, 

2012), etc.  

4.2.4 Action Lines 

Another group of studies focuses on identifying an action line surrounding the OS in geographical space. 

This line indicates the last chance for the OS to avoid collision via a fix evasive action, e.g., a hard-port 

turn, etc. This concept is similar to the above-mentioned arena in Section 4.1.2. However, the 

determination of the action line depends on simulations rather than experts’ judgment. These studies 

presume that the TS keeps its initial speed and the OS takes a fixed evasive action, e.g., a hard-port turn. 



By multiple simulations, a set of initial positions of the TS that the OS can avoid collision with via the 

fixed action is found, i.e., action line (Szlapczynski, Krata, & Szlapczynska, 2018) or critical distance 

(Krata & Montewka, 2015). A similar idea is presented in (Michael Baldauf, Mehdi, Fischer, & Gluch, 

2017), in which the line is named as the last line of defense. By repeating the simulations with different 

fixed evasive actions, a series of action lines are obtained, which can be used for collision alarm.  

The common points of Dangerous Region methods and Action Line methods are (1) they are not 

dependent on experts’ judgment; (2) they strongly depend on pre-set scenarios; (3) the output of these 

methods is presented in a graphical figure. 

4.3 Comparison 

Measuring collision risk during an encounter is challenging. The challenges mainly come from the 

uncertainties in the encounters, e.g., the intentions of the OOWs in TSs, the performance of machines 

(OS and TS), the environmental conditions, etc. As a result, obtaining an accurate collision risk at each 

time step is difficult if not impossible. However, risk measurement is indispensable to support human 

and machine in collision prevention, e.g., collision alert, trigger a collision avoidance. Thus, the above 

methods have been proposed to construct the collision risk, which basically follows two lines of thinking.  

The first line of thinking considers the uncertainties by employing experienced experts to assess the 

collision risk. The measured risk presents a general belief of a group of experts, and it can reflect part 

of the collision. More importantly, it allows experts to share their situational awareness with OOWs or 

VTS operators (Goerlandt et al., 2015). Thus, it is usually served as a risk-inform tool which helps the 

OOW to identify the potential dangers that are believed to be dangerous by most experts. However, 

these methods also suffer from some drawbacks: (1) eliminations of bias from experts are challenging; 

(2) the risk only reflects the belief of experts rather than the physical process of the specific collision, 

e.g., collision is going to happen or not.  

The other eliminates the uncertainty by simplifying a real encounter into an ideal scenario considering 

parts of uncertainties or no uncertainty. This type of research then evaluates the risk of given scenarios. 

The ideal scenario can be the worst case, normal case, or the most possible case (Kuchar & Yang, 2000). 

This type of research might not give the OOW a real probability of collision, but it provides some facts 

about the given scenarios, which is also helpful in collision avoidance. The main advantage of these 

methods is offering the users a clear conclusion which is easy for users to use it, e.g., DCPA, last possible 

time to take certain evasive action (Michael Baldauf et al., 2017), etc. However, the drawbacks of these 

methods are also obvious: (1) the simplified scenario cannot reflect the complete environment that the 

OS faces and cannot cover all scenarios; (2) it is difficult to meet various demands of different users. 

For instance, some people are more sensitive to dangers and they might require a lower threshold of risk, 

whereas, others are risk takers and need a higher threshold. Although the assumptions of these methods 

are unrealistic, these methods can help the OOW to know some facts of given scenarios, which can also 

be helpful for risk-based decision making. Thus, these methods are widely used in navigation practice 

and expert-based risk assessment, e.g., DCPA, CTPA, etc.   

Two representations of collision risk are presented in this article. One uses a digital number to represent 

the risk, the other uses a graphical form to show the risk. When the risk is presented in digital numbers, 

it can be used to compare with each other. For instance, a higher number refers to high risk and vice 

versa. On the other hand, the graphics-based form can categorize the TS into various groups, while the 

TSs in the same group are not comparable by this method. The graphics-based form is more intuitive 

for users (Szlapczynski & Szlapczynska, 2017b), and the graphics risk is usually integrated into the 

maps to support users to be aware of the surrounding situation. 



4.4 Discussion 

Since the binary-based method is relatively simple and offers some facts about the identified scenario, 

this method is widely used in conflict detection for the ASVs. However, as the other review mentioned, 

an open question is incorporating collision prevention with the navigational regulation, i.e., COLREGs 

(Hilgert & Baldauf, 1997). The conflict detection is employed to trigger evasive actions, which also 

need to comply with regulations. However, the regulations are general and designed for the human. Thus, 

teaching the ASV to perform as human, e.g., assess collision danger incorporating with regulation, the 

role of human cannot be ignored. In this perspective, the experts’ knowledge is necessary to be 

introduced. However, this problem still needs more research (Woerner, Benjamin, Novitzky, & Leonard, 

2018).  

In the manned ship, conflict detection is mainly servicing as reminders for the OOWs, which needs to 

be adapted to human’s performance. For example, the navigators who are risk taker might accept some 

risky scenarios, while others might see these scenarios as dangers. Thus, the expert-based methods are 

widely presented in studies for supporting the manned ship, and Fuzzy methods are popular in this type 

of studies. However, this type of collision criteria cannot express more details about the collision process. 

It cannot give an explicit judgment about collision happening or not to users. Thus, researchers suggest 

using some model-based methods. One representative method tries to find the last moment to execute 

certain maneuvers. To summarize, the expert-based method can offer customized services for different 

navigators, which can meet users’ preference. On the other hand, the model-based method usually 

addresses some relative objective fact, which shows the hard boundary of safety and danger. These two 

methods can be combined to offer a better service to manned and unmanned ships.  

5. Conflict Resolution 

Conflict resolution is the core of collision prevention, which determines collision-free solutions for the 

ship. Many methods have been developed for this purpose. However, most of them are similar, even 

though these methods appear to be quite disparate (Siegwart, Nourbakhsh, & Scaramuzza, 2011). In this 

section, similar methods are collected in the same groups, and six groups of ship collision avoidance 

techniques are identified, namely  

(1)  Rule-based method uses “If-then” rules to guide the collision avoidance process; 

(2)  Virtual vector method generates a virtual vector field to determine the motion of the ships; 

(3)  Discretization of solutions with collision check method searches the discrete solution-space 

and find a collision-free solution or an optimal solution.   

(4)  Continuous solutions with collision constraints method formulate collision as constraints 

and find the optimal solution in continuous space; 

(5)  Re-planning method formulates the collision avoidance as a path planning problem and 

searches collision-free path in free configuration space; 

(6)  Hybrid method combines some of the previous methods in collision avoidance. 

In the following, the details of these groups and their application in maritime are presented.  

5.1 Main Algorithms 

Some terminologies used in the description of these algorithms are addressed here. The workspace of 

the ship is defined as a horizontal plane consists of positions. Configuration space (C-space) is the set 

of all possible configurations of the OS, which consist of free space Cfree and obstacle space Cobs where 

the configurations lead to collisions.  



5.1.1 Rule-based Method 

Rule-based methods use a set of pre-set rules to guide collision avoidance. For example, when a ship 

encounters with other ships, the ship will turn 75 degrees (or 30 degrees) to the starboard side (right-

hand side) (Naeem, Irwin, & Yang, 2012; Tam & Bucknall, 2013) or enlarge rudder angle until the 

trajectory is collision-free (Fang et al., 2017).  

Obviously, a single rule cannot handle all kinds of encounters in a dynamic environment. Thus, multiple 

rules are considered. A widely used way is incorporating International Regulations for Preventing 

Collisions at Sea” (COLREGs) and good seamanship in the rule system. This system is expected to 

suggest rule-compliant actions for the OS in various scenarios, which is usually based on Neural 

networks (Praczyk, 2015), Fuzzy logic and Bayesian network (Perera, Carvalho, & Soares, 2012). Since 

the enumeration of rules for all scenarios is impossible, this method does not guarantee collision-free. 

If a case is not studied in advance, this method might not find out a proper solution. 

5.1.2 Virtual vector field Method 

Virtual vector method generates a virtual field to determine the OS’s motion. Two specific algorithms 

are found: Artificial Potential Field (APF) and Limited Cycle Method (LCM).   

  
(1) Artificial Potential Field (APF) (2) Limited Cycle Method (LCM) 

Fig. 6 Illustration of virtual vector field Methods (1) APF and (2) LCM. 

APF (Khatib, 1985) or virtual force field (Borenstein & Koren, 1989) generates a repulsive potential 

field around the obstacles and an attractive potential at the destination. The sum of these potential fields 

determines the resultant virtual force to guide the motion of the vehicle. This algorithm does not directly 

provide a collision-free path but a direction of motion, which is not designed for a dynamic environment 

at the beginning. To avoid collisions in a dynamic environment, researchers improve this basic algorithm 

by considering two factors: the velocity of obstacle and the maximal deceleration of the vehicle (Ge & 

Cui, 2002). Specifically, the repulsive potential of the obstacle is enlarged by considering these factors. 

This technique was also applied in ship collision avoidance, see (H. Lyu & Yin, 2018; H. G. Lyu & Yin, 

2017). One main disadvantage of this method is that the ship might be trapped in a local minimum. The 

conditions leading to local minima have been concluded in (Zeng & Bone, 2013). Additionally, the 

dynamics of ships are not fully taken into account, where the ship is assumed to be holonomic.  

LCM uses a stable limit cycle for motion planning. The stable limit cycle has a feature that all the 

neighboring points are attracted to the cycle. Researchers place the center of a limit cycle at the center 

of the obstacle, which encompasses the whole obstacle. A series of trajectories converge to the cycle is 

generated. Then, the OS follows one of these trajectories until the destination is clear. The ellipse and 

circle-shaped cycles are used in the (Soltan, Ashrafiuon, & Muske, 2009; Soltan et al., 2010) for ship 



motion planning in rough sea conditions (Mahini, DiWilliams, Burke, & Ashrafiuon, 2013). However, 

this algorithm usually requires the obstacles are relatively static, or the speed of the OS is much greater 

than the obstacles; and it only avoids one obstacle at each time. These issues might be problems when 

the OS encounters multiple obstacles, or an obstacle’s speed is larger than or equal to the OS.  

5.1.3 Resolution search in discretizing solution-space with collision check  

Another group of methods discretize the solution-space of the ship and eliminate the dangerous solutions 

by collision check. The collision-free solution is chosen from the rest. These studies assume the motion 

model of the OS is known, and the environmental disturbance is temporarily neglected. Then, given a 

control input and its duration time, the trajectory of the OS is deterministic, and the collision check 

becomes possible. These types of methods discretize the solution-space first, and then different 

algorithms differ in duration time of the inputs, see Table 1.  

Table 1. Three groups of methods using discretization of solution-space 

Name of methods Inputs Duration  Illustration Applications on board 

Decision Disc (DD)  ,u   0,  

 

(Benjamin et al., 2006; Degre & 

Lefevre, 1981; Kuwata et al., 2014; 

Lenart, 1983; Pedersen et al., 2003; 

Szlapczynski, 2008; Szlapczynski & 

Krata, 2018) 

Dynamic Window (DW)  ,u r  0, ft  
 

 

(Loe, 2008; Serigstad, 2017) 

Discrete inputs Optimization 

(DIO) 

 ,u /

  
0, ft  

 (Johansen et al., 2016; S. Li, Liu, Cao, 

& Zhang, 2018) 

Lattice-based Search (LBS)   ,u   0,1,..., ft  

 

(Shah et al., 2015; Švec, Thakur, 

Raboin, Shah, & Gupta, 2013) 

Brute-force search (BFS)    0,1,..., ft  (J. F. Zhang et al., 2015) 

 

(1) Each control input keeps constant in the future 

Decision Disc (DD) approach chooses course and speed as control inputs to the ship and presents the 

solution-space as a disc. The control input is assumed to be unchanged in the future. Thus, each input 

represents a unique trajectory. If this trajectory is collision-free, the control is reserved; otherwise, the 

control is rejected. Then, the collision-free controls are directly presented to the officers (Degre & 

Lefevre, 1981), or an optimal solution is chosen from those collision-free solutions by optimization 

(Benjamin et al., 2006). In this process, DCPA is usually employed for the collision check. This method 

has different names in different studies, e.g., Collision Threat Parameter Area (CTPA), Collision Danger 

Sector (CDS), etc. (Lenart, 1983; Pedersen et al., 2003). When being used in practice, this method also 

incorporates with ship domain (Szlapczynski, 2008), restricted waterways, worse environmental 

scenarios (Szlapczynski & Krata, 2018), etc. A similar technique is also applied in an ASV (Kuwata et 

al., 2014), where the irregular shape of the obstacles, sensing errors, and the COLREGs are considered. 

The main disadvantage of these studies is neglecting the kinematic and dynamic constraints of the OS, 

which might lead the method to fail to avoid collisions in close range encounters.   

(2) Each control input keeps constant in a given time window 

Dynamic Window approach (DW) (Fox, Burgard, & Thrun, 1997) chooses velocity tuples  ,u r  as 

inputs (u is linear velocity, and r is angular velocity) and presumes the chosen input is fixed in a given 

time step. The construction of the dynamic window includes two steps: firstly, all the tuples that the OS 



can reach in given time step are selected as an initial dynamic window, in which velocity and 

acceleration constraints are considered; secondly, the initial dynamic window is reduced by keeping 

those tuples that ensure the vehicle can stop before hitting with obstacles. The remaining tuples contain 

all admissible velocity, which constitutes the dynamic window. The optimal collision-free velocity tuple 

is searched in this dynamic window. The limitations of original DW include: susceptible to local 

minimum, assumption on circular arcs path, frozen environment during decision time step, etc. 

(Martinez-Gomez, 2010) Some improved algorithms solve these problems: (Brock & Khatib, 1999) 

incorporated connectivity of free space to avoid local minimum in somehow; (Seder & Petrovic, 2007) 

extended DW to deal with moving obstacles; (Loe, 2008) demonstrated DW with non-circular paths and 

applied the method in ASVs; (Serigstad, 2017) modified the original DW considering the dynamic of 

ASVs. However, either the original DW or the variations hold a critical assumption that the static state 

is always a safe state for the vehicle, which might not be held in practice, especially when a ship is 

crossing a clutter intersection.  

Discrete-Inputs Optimization (DIO) use a group of solution candidates as representatives of the 

solution-space and find a collision-free solution by optimization. To avoid the obstacles, the cost 

function assigns a big cost to the trajectory closes to the obstacle. The ship obtains an optimal solution 

and the corresponding trajectory by minimizing the cost function (Bertaska et al., 2015). An example of 

this method is shown in (Johansen et al., 2016) where Model Predictive Control (MPC) with soft 

collision avoidance constraints in the objective function is used. Instead of applying this optimal 

trajectory, MPC applies the optimal control at the first stage and update the optimization to obtain a new 

optimal solution/trajectory, more examples see (S. Li et al., 2018; Sun, Wang, Fan, Mu, & Qiu, 2018). 

For these methods, how to balance the optimality and computational time is a challenging topic.  

 
Fig. 7 Lattice-based graph (the figure is from (Kushleyev & Likhachev, 2009)) 

(3) Control input changes at each time step 

Lattice-based Search (LGS) method allows control inputs to change at each time steps (Kushleyev & 

Likhachev, 2009; Pivtoraiko, Knepper, & Kelly, 2009). Since this type of algorithms is time-consuming, 

researchers usually search some representative candidates rather than the whole solution-space in each 

step. In a time step, these control candidates will generate a graph that consists of the trajectories of the 

OS with different controls. This graph can be reused to generate all the paths of the OS in the next time 

step, which saves the computational time. In return, a lattice-based graph is obtained, see Fig. 7. By 

searching this graph, a collision-free trajectory and the corresponding inputs in each time step are 

obtained. Papers (Shah et al., 2015) and (Švec et al., 2013) applied this method in ship collision 

avoidance. The solution-space is defined as  ,d du   where du and d  are desired surge speed and 

course of the ship. Ship dynamics are considered to generate the graph in their research. The main 

disadvantage is that searching all the branches in the graph are computationally expensive, which might 

not be used for real-time collision avoidance. To reduce the computation, (Shah et al., 2015) considered 



a small discrete solution-space with 30 solutions and employed risk assessment to assign a priority 

search direction in the graph.  

Brute-force search (BFS) method is also one of the options. Solution-space and time horizon are 

discretized into cells. Each cell contains a combination of solutions and its duration time. 

Correspondingly, a path of the vehicle can be generated, in which constraints on kinematic and dynamic 

can be considered. A collision check is used to abandon or keep the cell. Since, the computational 

complexity is a big issue, especially for online decision making, some modifications are needed. For 

example, in (J. F. Zhang et al., 2015), only one input is considered (i.e., desired course) and the course 

and time horizon are searched in the range [30°, 60°] and [180 sec, 900 sec]. The search starts in the 

time direction and stops when the first collision-free cell is found. The main drawbacks are that it has 

high computational complexity, and the solution is not optimal.  

5.1.4 Resolution search in continuous solution-space with collision constraints 

Some methods are not relying on the discretization of the solution-space and find the collision-free 

solutions in a continuous solution-space. Two groups of methods are found according to the order of 

collision check.  

(1) Identify collision-free solution-space first 

This group of methods usually conduct a collision check first and then find an optimal solution in a 

collision-free space. Instead of checking the solutions one by one, these methods use a polygon/circle 

to represent an obstacle and then conduct additional operations to formulate a set of control inputs that 

lead to collisions. Then, an optimal solution can be obtained accordingly.   

Velocity obstacle (VO) algorithm is one popular algorithm proposed in (Fiorini & Shiller, 1998). A 

circle is used to represent an obstacle, and researchers assume the obstacle moves with constant speed 

and course. In return, they formulated a set of velocities that lead to the relative velocity point to the 

obstacles as a VO set which is shaped like a cone. Due to this simple shape, each VO set can be easily 

formulated by three linear constraints (Alonso-Mora, Beardsley, & Siegwart, 2018). The idea of VO 

algorithm has been adopted in maritime research, e.g., (Zhuang et al., 2016). Three key disadvantages 

of the original VO algorithm that pointed out by researchers are: (1) the algorithm hold the assumption 

that the velocity of obstacle has to be constant in the future; (2) the dynamic constraints on the OS and 

the TS are usually out of consideration; (3) the shape of obstacle is assumed to be regular and convex, 

e.g., circle, ellipse, etc.  

Non-linear velocity obstacle (NLVO) (Large, Sekhavat, Shiller, & Laugier, 2002) extended the VO 

algorithm, where the motion of obstacle is not necessary to be linear but known in advance. Different 

from the VO algorithm, the NLVO algorithm aims at finding the velocities that lead the OS to violate 

the safety area around the TS at time t. Those velocities are collected in a sub-set, and the envelope of 

these sub-sets that results in collisions at different time slices is the NLVO set. In the maritime domain, 

paper (Huang et al., 2018) proposed to use NLVO algorithm and its development to support ship 

collision prevention. These studies, however, still assume the vehicle is holonomic. A generalized 

velocity obstacle (GVO) is proposed to consider the non-holonomic constraints and dynamic constraints 

(Bareiss & van den Berg, 2015; Wilkie, Berg, & Manocha, 2009), which has been also applied in the 

maritime environment (Huang et al., 2019).   

Vision Cone (VC) method is an enlarged collision cone (Chakravarthy & Ghose, 1998) with a buffer 

angle (Savkin & Wang, 2013). The courses are chosen as inputs, and two collision-free courses are 

identified by the vision cone, which are the boundaries of the cone. The optimal collision-free course is 



chosen from two collision-free courses. This algorithm can deal with moving obstacles whose velocity 

is constant. In (Y. Z. Xue, Clelland, Lee, & Han, 2011) and (Fan, Sun, & Wang, 2019), this idea has 

been applied in ASV. In (Martin S. Wiig et al., 2017) and (M. S. Wiig, Pettersen, & Savkin, 2017), the 

authors expanded the algorithm for the under-actuated unmanned ship. The algorithm guarantees safety, 

while it only deals with one obstacle and requires the speed of obstacle smaller than the speed of the OS. 

(2) Optimization with Model Predictive Control in discretizing and finite time horizon 

Another group of methods usually conduct a collision check and optimization together. Specifically, the 

collision check is formulated as a hard constraint in the optimization, e.g.,   freex t C . A general form of 

this optimization is formulated as: 
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     (5) 

where J is a cost function depends on the control inputs and state of the system;  , ,f x u t  is the dynamics 

of the ship; freeC is collision-free configuration; 0x is the initial state of the system (the ship). 

In this optimization problem, time is discretized, the dynamics model of the OS is discrete, and control 

input at each time step is variable that can be used to optimize the cost function (L. Chen et al., 2018; 

H. Zheng, R. R. Negenborn, & G. Lodewijks, 2017; H. R. Zheng et al., 2017). The constraints of this 

optimal control problem include kinematic constraints, the dynamics of the vehicle, collision-free 

conditions, etc. The solution of this optimization problem is collision-free solutions for the OS, which 

is executable and stratifies collision-check. In literature, this method is usually combined with a receding 

horizon scheme. Thus, we name this group of methods as MPC-based Collision Avoidance (MPC-CA). 

In (L. Chen et al., 2018), a linearized dynamic model of ASV and a linear objective function (infinity 

norm) were used in collision check, which helps to solve the optimization problem efficiently. Some 

researchers consider the non-linear dynamic model and nonlinear function of collision-check. In 

(Abdelaal et al., 2018), the authors used two circles to represent ships and solve the optimization 

problem via a direct multiple shooting method. Paper (Ferranti, Negenborn, Keviczky, & Alonso-Mora, 

2018) used circles and ellipses to present the OS and obstacles, respectively, and solve the optimization 

problem via commercial solver. Though these studies show that this problem can be solved in a 

reasonable time, the solution is a local minimum due to the nonlinearity and non-convexity of the 

problem. Additionally, as time is discretized, collision-check between time steps is needed, which is 

noted as safety verification.  

5.1.5 Re-planning method 

Instead of searching the collision-free solution in solution-space, re-planning method searches 

solutions in workspace directly. The re-planning is triggered when the collision criteria reach pre-set 

thresholds (L. Hu et al., 2017). Two groups of methods are found that the first group replies on the graph 

searching methods while the other is not.  

For the first group, at each time step, a graph searching algorithm is triggered to find an optimal 

collision-free path (Candeloro et al., 2017). Various algorithms based on this method have proposed. 

Two main differences among the algorithms are the assignment of cost in each cell/node and the 

approaches used to search the optimal solution. Some researchers assign a high cost to the cells 

surrounding the moving obstacles considering the speed of the obstacle, e.g., (Lazarowska, 2017; Y. C. 

Liu, Liu, Song, & Bucknall, 2017; Smierzchalski & Michalewicz, 2000), while the other assigns an area 



surrounding the Projected Obstacle Area (POA) with a high cost, e.g., (Gerhart et al., 2006). Based on 

the map of costs, researchers use searching algorithms to find an optimal path with lower cost, such as 

fast marching method (FMM)(Y. C. Liu et al., 2017), particle swarm optimization (Kang, Chen, Zhu, 

Wang, & Xie, 2018), etc.   

Another group of re-planning methods directly use evolutionary algorithms to find a path, which does 

not directly depend on the graphical map. The employed evolutionary algorithms include evolutionary 

set algorithms (Szlapczynski, 2011), ant colony algorithm (Lazarowska, 2014), genetic algorithms (Tsou, 

2016), etc.  

5.1.6 Hybrid of algorithms 

From previous sections, we have introduced the algorithms we found in the literature of ship collision 

avoidance. In fact, in maritime practice, researchers usually combine those algorithms to perform 

collision avoidance. For instance, the rule-based method is unusually combined in other algorithms, 

such as VO, DW, DD, etc., to make sure the behavior of the ship complies with regulations. In (Kuwata 

et al., 2014), the authors used VO algorithm and COLREGs to exclude the velocity resulting collisions 

and the velocity violating regulations. In (Song et al., 2018), VO algorithm was combined with APF 

which services as a global planner. In (H. G. Lyu & Yin, 2017), the rules-based method incorporates 

with APF for guiding the unmanned ship.  

5.2 Comparison 

The details of the comparison between the aforementioned methods are listed in Table A1 and Table A2 

in Appendix A. This section mainly addresses the general feature of each group of methods.   

5.2.1 Comparison across different algorithms 

In general, Rule-based methods are simple and easy to conduct. However, these methods cannot 

enumerate all the scenarios, especially when encountering with multiple obstacles. For example, the 

navigational rules only address the obligations of ships in two-ship encounter scenario, while the ship 

might meet more than two ships and more complex environmental conditions.  

Virtual vector methods contain APF and LCM, which usually ignore the ship’s dynamics during motion 

planning. The APF method might get trapped in a local minimum, which is addressed in many studies. 

LCM method only considers one obstacle or one group of obstacles in each time, and the obstacles need 

to be stationary or have a relatively low speed. Nevertheless, researchers found that this method 

performs well with stationary obstacles in rough seas (Mahini et al., 2013). Both APF and LCM only 

show one solution to the ship, whereas this solution might not be optimal.  

Discretization inputs with collision check is a big group of methods. These methods could take ship 

dynamics into account. Specifically, researchers assume the dynamics of the ship is known and predict 

the trajectory of the OS with different inputs. However, the calculation of each input is time-consuming. 

To solve this issue, some simplifications have been introduced. Some methods only consider the change 

of input at the first time step, see DW, DD, etc. These methods not only offer one optimal collision-free 

solution but also present a set of unsafe solutions at the first time step. Others only select several 

representative inputs and consider changes in more time steps, such as LGS and BFS. These methods 

offer one collision-free solution to the ship from the selected inputs. A common challenge of these 

algorithms is the balance between efficiency and effectiveness. A small grid would benefit a better 

solution, but it is time-consuming; A big grid saves computational time, but it might skip the optimal 

solution. Moreover, the quality of prediction is quite important for collision check, while a few of these 

studies discuss the impacts of uncertainties on these techniques.   



Continuous inputs method is not relying on the discretization of the inputs. One group of algorithms 

collects all the solutions leading to collisions in a set and then conducts optimization, e.g., VO, NLVO, 

GVO, etc. The other considers the collision check as one constraint in optimization and directly solve 

the optimal solution by solvers, e.g., MPC-CA. The difference between these algorithms are forms of 

solutions. VO algorithm and its variations can visualize and present the unsafe solutions to users, which 

can help them to understand the choice of the optimal solution. Moreover, the ship is required to keep 

one solution in the whole prediction horizon. On the contrary, MPC methods directly offer one optimal 

solution which allows the ship to change course and speed in the prediction horizon. However, the 

optimal solution is calculated by solvers, which is not much transparent to users.  

Re-planning method follows the idea of path planning, which constructs a cost map firstly and then 

searches an optimal path on the map. The method, however, cannot avoid the situation that a ship 

violates an inevitable collision state around the dynamic obstacle. An inevitable collision state is a state 

(positions) that one ship cannot avoid collision with others no matter what actions the ship performs. 

This method usually offers one optimal path for users, but the dynamics of the ship is ignored.  

5.2.2 Remarks 

The data flow in a conflict resolution module can be refined as Fig. 8. Inputs of this module include map 

information, trigger event from ‘conflict detection’ module, obstacles’ trajectories from ‘motion 

prediction’ module, the state of the system, etc. The output of the resolution module is the control input 

of the system (ship), which is determined by the algorithms presented in Section 5.1.    

 
Fig. 8 Representation of information flow between the conflict resolution module and ship module 

The given map shows the moving boundary of the ship, which contains navigable waters and static 

obstacles, such as rocks, islands, coastlines, etc. One popular way to represent the map is by using an 

occupancy map. The occupancy map transfers the Electronic Navigational Charts (ENC) into a bitmap, 

which is popular when using graph searching methods. The other popular way is using polygons to 

represent the obstacles in ENC, including convex polygons and non-convex polygons. Convex polygons, 

such as circles, ellipses, hexagons, and squares, are widely used to simplify the control problems. An 

overview of the representations of maps in existing methods is given in Table A2. 

The trigger event in Fig. 8 is used to activate the collision-resolution module. In some algorithms, 

collision-resolution is computationally expensive and is only triggered when the predefined trigger event 

occurs, e.g., DD methods (Kuwata, Wolf, Zarzhitsky, & Huntsberger, 2011; Kuwata et al., 2014).  



From the perspective of a ship, the trajectories of the obstacles are generated by one out of three types 

of methods in the ‘motion prediction’ module, i.e., physics-based method, maneuver-based method, and 

interaction-aware method. When we consider the collision avoidance from the perspective of the entire 

traffic system, different control architectures have been used to coordinate the behavior of the ships 

(Negenborn & Maestre, 2014). A ‘decentralized’ control system assumes that each ship solves collision 

problems independently, in which physical-based or maneuver-based methods are widely used. A 

‘distributed’ control system allows ships to communicate and cooperate with each other, where 

interaction-aware methods are used. A ‘centralized’ control system has one central controller that 

decides on trajectories and control inputs for all the ships. The control architectures of existing research 

are presented in Table A2. 

The solutions of ‘conflict resolution’ module follow three forms depending on the employed algorithms:  

(1) the algorithm offers a collision-free maneuver, such as course, speed, velocity, yaw rate, etc. Most 

rule-based methods, APF, the original DW, DD, VO, and NLVO. result in this mode of solution. 

(2) the algorithm offers one collision-free trajectory, while the maneuvers to follow the trajectory are 

not provided. The re-planning algorithms and LCM usually belong to this mode. These modes, 

however, ignore or simplified the ship dynamics, which might result in infeasible or unsafe solutions 

in practice.  

(3) the algorithm offers a collision-free trajectory and the relevant controls. These algorithms 

incorporate ship dynamics, such as DIO, LBS, BFS, GVO, and MPC-CA. Additionally, some 

algorithms only offer one solution but not optimal, e.g., rule-based methods, BFS, APF, and LCM; 

some algorithms offer one optimal solution, e.g., re-planning methods, MPC-CA, and VC; other 

algorithms not only offer one solution but a set of alternative solutions, e.g., DW, DD, VO, and 

GVO.  

The details of the solution form are presented in Table A1. 

5.3 Discussion 

5.3.1 Trends of conflict resolutions in recent years 

In recent years, many techniques have been proposed and used to develop ASVs, which enriches the 

tools for solving the collision avoidance problem. Correspondingly, some highly unrealistic and strong 

assumptions, which were criticized by researchers, have been released. Some important factors, like 

environmental disturbance and regulations, are also discussed in some studies, e.g., (Szlapczynski & 

Krata, 2018; Huarong Zheng, 2016).  

In the beginning, the dynamics of the OS is usually ignored, and the OS is seen as a holonomic vehicle; 

besides, the moving obstacles are assumed to be semi-dynamic. Recently, many algorithms are capable 

to consider the dynamic constraints, e.g., MPC-CA, GVO, DW, etc. In those methods, the motion model 

of the OS is known or identified in advance. Besides, with the improvements in prediction techniques 

(in Section 3), many algorithms do not request the moving obstacle to keep its initial speed and course. 

In the previous review articles, researchers argued that environmental disturbance is a critical factor in 

collision avoidance, which is less discussed in relevant studies. In recent years, many studies try to take 

this factor into account. Two lines of thinking have been found in these studies to handle the disturbances. 

One considers the trajectory errors due to the environmental disturbance. Specifically, the disturbance 

might drive the OS to depart from its collision-free trajectory. By assuming a perfect knowledge about 

the bound environmental disturbances, the possible trajectories of the OS can be calculated or bounded 

in a tube. Then, the solution that leads to all these possible trajectories/tubes away from the obstacles is 



the collision-free solution under environmental disturbance, see (Johansen et al., 2016; Huarong Zheng, 

2016). The other one concentrates on the changes of solution-space caused by environmental 

disturbances, e.g., some safe solution might get unsafe in a harsh environment. Researchers try to figure 

out all the unsafe/infeasible solutions due to the harsh conditions, e.g., (Szlapczynski & Krata, 2018). 

Specifically, researchers apply guidelines of navigation in adverse weather & sea conditions and 

simulators to identify the solutions that are not recommended or result in an excessive rolling. Then, 

these solutions are marked as dangerous solutions and blocked from the solution space.  

Another pitfall had been highlighted in previous research was the lack of consideration of navigation 

regulation, e.g., COLREGs. In recent year, researchers introduce part of navigation rules in collision 

avoidance, e.g., (Johansen et al., 2016; Kuwata et al., 2014; H. Lyu & Yin, 2018; Perera et al., 2012), 

etc. Some popular rules are frequently used in finding a rule-compliant collision-free solution, i.e., Rule 

6, 8, 13-19 from COLREGs. These rules clearly address the obligations of ships in two-ship scenarios. 

It seems that building a complete regulation-compliant ASV is close. However, the regulation is written 

for the human, which makes rules are open to some interpretation and difficulty to “translate” in machine 

language (Woerner et al., 2018). Thus, incorporating all the rules from COLREGs and good seamanship 

in an autonomous system is still an open question. Quantifying the entire regulations and good 

seamanship for the ASV still need more efforts in the future (He et al., 2017; Woerner et al., 2018).  

5.3.2 Using studies of ASVs for supporting conflict resolution in the manned ship 

Most of the conflict resolutions are developed for automatic collision avoidance. However, they have 

great potential to support the human on board: (1) offering one optimal/feasible solution; (2) checking 

the safety of human’s inputted solutions; (3) showing all the unsafe solutions. The algorithms, such as 

BFS, LGS, MPC-CA, etc., can offer a feasible/optimal collision-free solution to the OOWs directly. 

Other algorithms, like DIO, can support human to check the chosen-solutions by the OOWs. The other 

algorithms which collect dangerous solutions and present them to users, such as DW and VO, can not 

only give an optimal solution but also validate the chosen-solutions. Although these techniques can 

facilitate the collision prevention process with the OOWs, not all the algorithms can directly apply to 

manned situations. The reasons are as follows: 

Firstly, collision-free solutions that some algorithms find are not friendly for the OOW. For instance, 

MPC-CA offers a series of forces acting on the ship for collision prevention, while the navigators might 

not know the effects of these forces and how to steer the ship to generate such forces. Secondly, although 

some algorithms can offer a readable solution for human, they usually use ideal motion models, e.g., 

VO, NLVO, DD, etc. Consequently, collision-free solutions may fail in certain situations. Specifically, 

when the relative distance is not large enough to ignore the errors between real dynamics and ideal 

dynamics, the solutions these methods find may still lead to collisions (Huang et al., 2019).  

Some studies containing two levels of controllers, a lower-level controller, and a higher-level controller, 

present an option to solve this problem, such as DW (Loe, 2008), LBG (Shah et al., 2015), GVO (Huang 

et al., 2019), etc. The lower level controller generates a series of commands on actuators according to 

the inputted desired forces, while the higher-level controller calculates the desired forces for tracking 

the reference and outputs the forces to the lower controller. The higher-level controller might perform a 

link between human and machine (Huang et al., 2019). For example, the OOWs do not need to read or 

implement the desired forces by themselves but use the higher-level controller. The ASV with higher-

level controller presents the selected collision-free solution to human is a readable way, such as an 

optimal trajectory (by MPC-CA), speed and course (by DD, VO, etc.), or speed and yaw rate (by DW). 

The human, then, can read and intervene in the machine via changing the collision-free reference. This 

design makes the interaction between OOWs and ASV possible.    



6. Discussion  

6.1 Developments of collision avoidance in maritime research 

In the related review papers, the authors have concluded some research gaps in collision avoidance 

techniques. Many efforts have been put to fill those gaps and have led to some changes. The details of 

these changes are discussed in previous sections, e.g., Section 3.3, 4.3, and 5.3. This section provides a 

summary: 

 Environmental factors are taken into account in some studies. Specifically, researchers consider 

prediction errors when assuming the uncertainties are bounded or exclude maneuvers that are 

unsafe in harsh environments.  

 Some rules from COLREGs have been considered. However, more efforts are needed to apply 

the whole COLREGs rules and good seamanship in ship collision avoidance, especially in 

multiple-ship encounters;  

 Some algorithms can handle collision avoidance with dynamic obstacles, but the trajectories of 

the TSs have to be known or bounded;  

 The dynamics of ships have been taken into consideration in many studies. Nevertheless, these 

models are usually known and deterministic;  

 Efficiency and effectiveness have been considered, while less discussion on the trade-offs 

between them in different scenarios.   

Together with these changes, we conclude the following limitations of existing techniques and 

challenges in developing new collision avoidance methods for both manned and unmanned ships: 

(1) Uncertainties of ship motion models are usually ignored.  

Most existing studies use deterministic dynamics models in collision avoidance. However, uncertainties 

are inevitable. Specifically, these uncertainties mainly come from unmodeled dynamics, changes of 

parameters due to different working conditions, uncertainties of external disturbances, etc.  

In existing studies, we observed that some studies had discussed the environmental disturbances, but 

few of them consider the uncertainties by parameters and unmodeled dynamics. However, these factors 

cannot be ignored since the parameters and dynamics would change when a ship has different loading 

conditions or working environments. How to handle these uncertainties is challenging but essential for 

developing automatic collision avoidance systems on board.  

(2) Developing rule-compliant navigation systems is still an open question. 

Although many studies have implemented several rules when deciding collision avoidance actions, the 

research on the development of a completely rule-compliant system is still blank. Firstly, many 

complicated scenarios in practice might activate multiple rules in COLREGs. Choosing the most suitable 

rule is difficult for collision avoidance systems. For instance, in a multiple-ship scenario, the ship might 

have two conflict obligations, e.g., “give way” and “stand on”; the ship might encounter with multiple 

types of ships (e.g., fishing ship, sailing ships) which apply different rules. Secondly, the navigation 

rules, e.g., COLREGs, is written for the OOWs in human’s language (Woerner et al., 2018), which is a 

guideline without quantifying information for the machine. For instance, the ship is asked to keep at a 

safe speed, while the value of safe speed is not addressed in the rules. 



In fact, the implementation of COLREGs strongly relies on experts’ knowledge that is also noticed as 

good seamanship (He et al., 2017). A few studies focus on incorporating the seamanship in the 

navigation system, e.g., (Benjamin et al., 2006; He et al., 2017; Woerner et al., 2018). However, more 

efforts are needed before the navigation system can completely interpret the whole COLREGs in various 

scenarios.   

(3) Discussion on working conditions of methods is lacking.  

Since the existing collision avoidance methods are suffering from various problems, each method has 

its working conditions. If the working conditions are matched, the method can offer collision-free 

solutions; otherwise, the collision-free solution is not guaranteed. However, only a few studies discuss 

their working conditions. The working conditions include but not limited to the initial distance between 

ships that one algorithm can find a collision-free solution, the maximum of computation time that find 

a collision-free solution, the errors in solutions, the maximum of tolerance to environmental disturbance, 

etc. Further studies are needed to offer a unique criteria system to judge the working conditions of 

various algorithms, which is helpful for their application in practice.   

(4) Safety verification is often overlooked when proposing a new method.  

Many collision avoidance methods are working properly in designed simulations and case-based testing, 

but they lack systematic verifications. For instance, some collision prevention techniques utilized 

linearization techniques to simplify the problem, but this inevitably includes errors, e.g., GVO. Some 

algorithms use the discrete trajectories of the TS to check collision at each time, which does not 

guarantee the safety of the ship between time slots, e.g., MPC-CA, etc. 

Instead of checking a finite set of scenarios in simulators, a framework that provides analytical proofs 

of safety is needed (Schwarting, Alonso-Mora, & Rus, 2018). Some formal verification methods 

developed for autonomous car/aircraft can be introduced in the future, such as reachability analysis 

(Althof, 2010), funnel libraries (Majumdar & Tedrake, 2017), etc.   

(5) The balance between effectiveness and efficiency of the methods should be considered. 

The balance between efficiency and effectiveness is less of a focus on existing collision avoidance. 

These two benchmarks sometimes are conflicting, and researchers usually sacrifice the effectiveness to 

increase efficiency. For instance, some methods only check several solutions instead of searching the 

whole solution-space, e.g., LGS, DIO, etc.; some researchers assume the solutions will last for certain 

horizon, e.g., DD, VO, DW, etc. These studies simplify the method for efficiency, but they do not 

provide a discussion of the influence of simplification.  

(6) Modeling environmental disturbances need further studies  

Although researchers offered some ideas to handle the influence of environmental disturbances on ship 

collision avoidance, it is still a long way to completely solve this problem. The main challenges are 

handling two types of uncertainties: (1) the uncertainty of environmental disturbances at a specific 

position and time, e.g., surrounding the ships; (2) the uncertainties of the responses of the ship under 

different disturbances. Since weather forecasting models are usually stochastic, meteorologists use 

stochastic-dynamic models for predictions (Palmer et al., 2005). However, in CA studies, the 

disturbance is modeled with a fixed noise value, e.g., white noise, due to the vacancy of a predicting 

model that estimates the dynamic disturbances surrounding the ship. Besides, the responses of a ship in 

various disturbances with different loads are unmodelled properly. Therefore, for avoiding collisions in 



various environmental disturbances, it still needs a better understanding of environmental disturbances 

and their impacts on ship’s dynamics.  

6.2 Trends in the technology development for ship collision avoidance  

While reading new emerging literature, we find some interesting ideas, which desired further 

developments. The potential developments of ship collision avoidance are concluded from the 

perspective of the three modules of collision avoidance, as follows: 

(1) Motion prediction: 

The development of prediction methods shows a trend from ignoring uncertainties to considering 

/eliminating uncertainties. Researchers use various methods to find the tubes/boundaries of the predicted 

trajectories and narrow down the tubes. 

For the prediction of the OS, one main uncertainty comes from dynamics modeling. At early ages, 

researchers use a holonomic model to predict the trajectory, which usually is unrealistic and contains 

huge errors. Recently, researchers employed various deterministic non-holonomic models to predict the 

trajectory of the OS in collision avoidance. However, as we discussed in Section 6.1, the dynamics of 

the ship might change due to different loads, speed changing, disturbances, etc. For modeling these 

uncertainties, some online parameter-identification methods offer solutions, e.g., support vector 

machines (C. Liu, Zheng, Negenborn, Chu, & Xie, (Accepted); Xu & Guedes Soares, 2016; Zhu, Hahn, 

Wen, & Sun, 2019), etc.  

For the prediction of the TS, the main uncertainties come from the intention of the TSs and 

environmental disturbances. At early stages, researchers presume the moving obstacle to move linearly 

and to neglect the uncertainties. Recently, these uncertainties are taken into account. Specifically, some 

studies use physical-based methods to consider environmental disturbance when making predictions, 

where the environmental disturbances are considered as white noise. Additionally, some researchers 

suggested improving the accuracy of prediction by estimation of maneuvering intentions, in which some 

techniques from artificial intelligence are needed. Moreover, some studies assume communication 

among the ships to eliminate the uncertainty of the TSs’ intentions. 

(2) Conflict detection: 

The developments of conflict detection methods (both expert-based methods and model-based methods) 

share a similar trend: from a generalized method for all scenarios to explicit models for specific ships in 

specific scenarios. The expert-based method relies on experts’ judgments. It changes from “using a 

general formulation to estimate collision risk in all scenarios” to “using an adapted formulation to 

estimate risk in different scenarios”. Meanwhile, the model-based method considers more specific 

motion model and environmental disturbance to conduct a more reliable result for a specific ship. 

Additionally, the applications of conflict detection methods are diversifying. The measured risk not only 

supports the conflict detection at present but also helps the ship to find a low conflict route (Shah et al., 

2015). Researchers found that choosing low-risk solutions all the time might reduce the conflict rate 

along the whole route. Moreover, various risk measurments also facilitate waterway safety management 

(P. Chen et al., 2019). The risk measurements have been also applied to post-collision analysis, e.g., 

identifying collision candidates (P. Chen, Huang, Mou, & van Gelder, 2018; Weibin Zhang, Goerlandt, 

Kujala, & Wang, 2016).  

(3) Conflict resolution: 



Most collision avoidance techniques use simplified motion models and offer one feasible solution to the 

ship. In recent year, some studies adopted a specific motion model in collision avoidance and offered 

various options that support the decision making of the OOW. For example, researchers incorporate 

optimization into collision avoidance, which can offer an optimal solution (L. Chen et al., 2018); some 

studies eliminate dangerous solutions (Huang et al., 2019), etc. More and more forms of collision-

avoidance solutions enrich their applications in practice. 

Additionally, we also observed following developing trends in conflict resolution:   

Validation of methods in simulators attracts more and more attention. The collision avoidance 

techniques for the ships are still based on ideal settings. The techniques are demonstrated by simulations 

or in a laboratory environment. Although these settings are different from the real operating environment, 

there are necessary steps for validation of a technique before it can be used in the real world. It is also 

necessary to test the extreme conditions of these algorithms in the simulators, which is feasible and 

economical.  

Hybrid conflict resolutions method that can handle different scenarios is the trend. Some methods that 

are suitable for close-range encounter require a huge computation resource, which might not be suitable 

in collision avoidance in long distance. On the contrary, the methods suitable for long-range collision 

avoidance might result in collisions due to the neglect of dynamics in the close-range encounters. As a 

result, the hybrid conflict resolutions method that combines different algorithms for different scenarios 

becomes a promising alternative.  

The ship domain becomes popular in representing the ship’s shape in collision avoidance for applying 

in practice and incorporating regulations. Many studies firstly would use a simple geometric shape to 

represent the ship in the development of prevention techniques. However, in practice, the ship’s shape 

is irregular, and the ship usually keeps different buffers in different directions for multiple reasons, e.g., 

rule compliance, etc. This buffer is the so-called ship domain in maritime studies (Szlapczynski & 

Szlapczynska, 2017b). Recent papers using the ship domain in collision avoidance methods have been 

presented in (He et al., 2017; Z. Liu, Wu, & Zheng, 2019; Szlapczynski & Szlapczynska, 2015, 2017a).  

6.3 The road from manned ships to unmanned ships  

From the perspective of collision avoidance, manned ships and unmanned ships are similar. Specifically, 

they share many common processes, namely motion prediction, conflict detection, and conflict 

resolution. However, the focuses of the existing studies for manned ships and unmanned ships are 

slightly different. For manned ships, research focuses more on detecting collision dangers to remind the 

OOW, while how to support the OOW find a conflict resolution is less of the focus. For unmanned ships, 

studies mainly concentrate on finding a collision-free solution, and the conflict detection relies on some 

relatively simple criteria, e.g., relative distance. These two groups of research have great potential to be 

complementary.  

A more intuitive demonstration of these difference has been presented in Fig.9, where we present the 

occurrence of keywords in the abstract and title of collected articles (from 2000). In Fig.9, panel (1) 

shows the entire word clouds of collected articles; panel (2) shows the cloud associating to supporting 

navigators, i.e., the manned-ship study; panel (3) shows the cloud working on the unmanned ship, i.e., 

the unmanned-ship study.  

In Fig.9 (1) and (2), the manned-ship studies (on the left-hand side of the figure) are more related to 

collision risk assessment, i.e. conflict detection. The keyword “navigator” is strongly connected to risk-



related terms, such as “risk”, “collision risk”, “ship domain”, “closest point”, etc., which is compliant 

with our collected methods in Section 4. In Fig.9 (1) and (3), the word cluster of “USV” is apart from 

“collision risk” assessment and close to “trajectory planning”, “model predictive control”, etc. It implies 

that the focus of this group is on finding a real-time trajectory, i.e. conflict resolution. 

 
(1) The entire words clouds1 

 
(2) A word cluster serving for navigators in manned-ship studies 

 
(3) A word cluster serving for unmanned-ship studies 

                                                      

1 These word maps are generated based on VOSviewer version 1.6.10. 



Fig. 9 Word clouds of articles working on ship collision avoidance. 

Although the studies of the manned ship and the unmanned ship are complementing one another, 

existing studies for either manned ships or unmanned ship cannot directly bring the existing shipping 

industry to the unmanned era. In fact, even the development of autonomy in waterborne transport is 

speeding up recently, the autonomy of the vehicle cannot be achieved in an overnight. From fully 

manned ships to autonomous ships, there are numerous challenges that need to be overcome. Inspired 

by (UK, 2017), we introduce six levels of controls which link the manned ships and autonomous ships 

w.r.t. collision avoidance. Each control level might match one or several types of maritime autonomous 

surface ship (MASS) defined by IMO2 (IMO, 2018). The details are shown in Table 2.  

Level 0 refers to a situation that no machine is involving in collision avoidance. Since most of the ships 

are requested to equip certain navigational assistant system on board, e.g., INS, etc., we consider this 

level has been passed.   

Table 2 Six levels of control from manned ship to unmanned ship  

Level Implications in Collision Avoidance (CA)  MASS Types 

Level 0 No machine is involved and the human fully takes responsibility 

to detect dangers and take evasive actions. 

- - 

Level 1 The human directly controls the ship and machines offer certain 

service in conflict detection, which is the existing level of a 

merchant ship. 

I Human on board. 

Level 2 The human directly controls the ship and machines offer supports 

both in detection and resolution, i.e., available solutions and 

validate chosen solutions. 

I/II Human in the 

offshore center & on 

board. 

Level 3 Machines operate the ship under the monitor of the human, which 

support the human to understand the choice of the solutions. The 

human can indirectly control the ship via machines or directly 

controls the ship via the on-board operators.   

II/III Humans in the offshore 

center or on board 

Level 4 Machines can control the ship independently while it informs the 

human and sends an alarm when it in an emergency issue. Then, 

the human can indirectly control the ship via machines.   

III Humans in the offshore 

center 

 

Level 5 Machines control the ship autonomously and humans cannot 

direct or indirect control the ship during each voyage. 

IV Humans in the offshore 

center 

 

Level 1, the machine offer supports in conflict detection, which is the main scope of existing studies for 

the manned ships, i.e., ships in MASS type I. It offers various supporting tools for conflict detection, 

i.e., sharing the situational awareness of experts with the OOWs. The aim of these studies is training 

navigational assistance systems which mainly in charge of supporting the OOW to take evasive actions 

in time.  

Level 2, the machine expands the function of the assistance systems with conflict resolution, which 

might occur in MASS type I or II. A few researchers have presented some prototypes on this theme, e.g., 

CTPA, CDS, etc. However, these prototypes usually ignore the ship’s dynamics and used the holonomic 

model in collision prevention. As a result, the prototypes do not work well in close range. Here, the 

                                                      

2 Four types of Maritime Autonomous Surface Ship (MASS) defined by IMO are: 

Type I, ship with automated processes and decision support; Type II, remotely controlled ship with seafarers on 

board; Type III, remotely controlled ship without seafarers on board; Type IV, fully autonomous ship.  



studies for ASV can provide some good references, e.g., the design of two-level controllers. However, 

more attention should be paid to the uncertainties in the systems, especially the uncertainties of 

parameters in motion models, where these parameters are difficult to calculate for each ship. In this level, 

the ship is still controlled by human operators on board or in the offshore center, and the machine offers 

supports.  

Level 3, the control of the ship is switched to machines, and human operators authorize the machine to 

take actions, which might occur in MASS type II or III. This level requires a deeper interaction between 

human and machine, which is seldom discussed in the existing literature. Many collision prevention 

algorithms are proposed to find one solution to the ship, regardless of the interaction between human 

and machine: how to present the solution in a way that human can easily understand and implement; 

how to support human to modify the collision actions without leading to a worse situation; how to 

validate the safety of human’s choices, etc. This is a critical step for improving the autonomy of the 

ships, and it is also a strong reason to convince human to trust the machines. 

Level 4, the machine takes the full responsibility of collision avoidance, and human operators supervise 

the machine if necessary, which could occur in MASS type III. This level requires the machine to be 

aware of emergencies in which the machine might not guarantee the safety of the ship, and the human’s 

intervention becomes necessary. To achieve this, it requires researchers to test the extreme conditions 

of collision prevention algorithms, i.e., safety verification. These studies are not yet included in most 

collision prevention studies in maritime research. 

Level 5 is the fully autonomous ships, and human operators are only informed without any form of 

interventions, which could occur in MASS type IV. This level has received numerous attentions from 

researchers and highlighted by societies. However, to achieve a fully autonomous system needs long-

term developments. The challenges are the uncertainties of model and parameters. Moreover, how to 

comply with the various regulations in complicate scenarios is also one open question. Some studies in 

the manned ships might offer a line of thinking to help the ASVs to be rule-compliant, i.e., to incorporate 

the experts’ judgments in collision prevention.  

From Level 1 to Level 5, the interactions between human operators and the machine are gradually 

increasing. Level 2, 3, and 4 ask the machine contains more functions than collision detection, 

specifically, supporting the OOW find one collision-free solution, checking the safety of the inputted 

solution by the OOW, eliminating unsafe solutions, supporting the human to understand the solution 

selected by the machine, etc. These improvements are essential for testing the reliability of autonomous 

systems, increasing the trust between the human and the machine, and reducing the workload of the 

human. We believe they (Level 2-4) are the key steps to the autonomous era, which are less focused nor 

discussed.  

In brief, propelling the autonomous shipping is not only continuing the existing studies on the manned 

ship and the unmanned ship (Level 1 and Level 5), but also filling the gaps between them (Level 2-4), 

specifically, making the unmanned ships user-friendly for human operators, exploring more functions 

in the existing manned ships, etc.  

7. Conclusion  

This article provides a comprehensive overview of the techniques used for ship collision avoidance both 

for manned ships and unmanned ships. Three processes of collision avoidance are identified, i.e., motion 

prediction, conflict detection, and conflict resolution. We then analyzed existing methods from these 

three aspects and identified new trends in ship collision avoidance studies.  



Besides the techniques that have been mentioned in other review papers, the current paper has included 

an overall presentation of the state-of-the-art methods. For motion prediction, communication, and 

cooperation between ships provide the intentions of the TSs, which makes the prediction more accurate 

and enables the ship to avoid obstacles in a dynamic environment. For conflict detection, researchers 

designed innovative risk assessment methods to look more into specific scenarios. For conflict resolution, 

many studies used dynamic models instead of simplified models in collision avoidance to make the 

methods closer to the behavior of a real ship. Additionally, COLREGs rules have been considered in 

some simple encounter situations.   

Realizing recent changes in the developments of these new methods, at the same time, we find some 

limitations of existing collision-avoidance studies, which we have categorized into: (1) uncertainties 

which are resulting from un-modeled dynamics and model parameters are being ignored; (2) complete 

COLREGs-rule compliant collision avoidance systems are still being a big challenge; (3) working 

conditions of existing methods which are usually not analyzed in these studies; (4) safety verification of 

collision avoidance methods which is missing; (5) balance between effectiveness and efficiency of the 

methods should be considered; (6) modelling the environmental disturbance is still one challenge. 

Future research directions to develop reliable ship collision avoidance systems are also provided in this 

paper through the analysis of existing techniques. The quality of prediction is essential for subsequent 

conflict detection and resolution. Existing research using tubes to take uncertainties into consideration 

shows good performance. However, the boundaries of the predicted trajectories need further studies. 

Conflict detection relying on collision risk assessment is helpful not only in improving situational 

awareness of the OOW but also in reducing the conflict rate. Thus, better risk assessment methods are 

expected. Collision resolution needs more studies in safety validations and extreme conditions for 

different methods. A combination of various collision avoidance methods to handle different encounter 

scenarios is one of the future research directions.  

The roadmap from manned ships to unmanned ships w.r.t. collision prevention is also discussed in this 

paper, which contains six levels. Existing studies for the manned ships and unmanned ships have 

different focuses, but they are somehow complementary. Learning from manned ships can make the 

unmanned ships capable to deal with complicated situations, while the techniques for autonomous 

collision avoidance can support the decision making of the OOW. We claim that there should not be 

fixed boundaries between manned and unmanned ships. We believe that enhancing the interactions 

between human and autonomous systems is the key to the autonomous era. 
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APF Artificial Potential Field GNC Guidance Navigation Control 

ASV Autonomous Surface Vehicle INS Integrated Navigation System 
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CDS Collision Danger Section LGS Lattice-based Search 
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TCPA Time to CPA OOW Officer on watch 
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DR Dangerous Region RI Risk Indicator 

DR-Vspace DR in Velocity space SCR Spatial Collision Risk 

DR-Wspace DR in Workspace  TS Target Ship 

DIO Discrete Inputs Optimization VC Vision Cone 

DW Dynamic Window VTS Vessel Traffic Service 

ENC Electronic Navigational Chart VO Velocity Obstacle 

FCDD Fuzzy Collision Danger Domain GVO Generalized VO 

FMM Fast Marching Method NLVO Nonlinear VO 



Appendix A 

Table A1 Comparison of different collision avoidance methods 

 Name 
Motion 

Model 

Number 

of TSs 

Solution  

form 

Opti

mal 
Description Ref. 

R
u

le
-b

as
ed

 Single-

rule 
NA Single One maneuver - 

Simple, but only works in limited 

cases, e.g., open sea. 
(Fang et al., 2017; Naeem et 

al., 2012) 

Multiple-

rule 
NA Single 

One maneuver 

(u and  ) 
- 

Simple, but might not figure out all the 

possible scenarios. 
(Perera et al., 2012) 

V
ir

tu
al

 V
ec

to
r 

APF NA Multiple 
One maneuver 

( ) 
- 

Simple, but easy goes to a local 

minimum, not for a dynamic 

environment, and ignore dynamics. 

(H. Lyu & Yin, 2018; H. G. 
Lyu & Yin, 2017) 

LCM NA Single One trajectory - 
Simple, but only works with one high-

speed obstacle and ignore dynamics. 
(Mahini et al., 2013; Soltan et 

al., 2009, 2010) 

D
is

cr
et

e 
In

p
u

ts
 

DW K./D. Multiple 
One maneuver 

(u and r) 
√ 

Popular and offer alternative solutions, 

but not for a dynamic environment. 

Stopping is not always safe. 

(Loe, 2008; Serigstad, 2017) 

DD H. Multiple 
One maneuver 

(u and  ) 
√ 

offer alternative solutions;  

ignore dynamics 

(Benjamin et al., 2006; 

Kuwata et al., 2014; 
Szlapczynski & Krata, 2018) 

DIO D./ H. Multiple 
One trajectory & 

control inputs 
√ 

The balance between efficiency and 

effectiveness is challenging. 

(Johansen et al., 2016; D. Kim 
et al., 2017; S. Li et al., 2018) 

(D. Kim et al., 2017) 

LBS D. Multiple 
One trajectory & 

control inputs 
√ 

Considering traffic congestion to 

reduce the search burden, while 

computing burden is still a challenging 

issue.  

(Shah et al., 2015; Švec et al., 
2013) 

BFS D. Multiple 
One trajectory & 

control inputs 
- 

The process is time-consuming and the 

solution is not optimal. 
(J. F. Zhang et al., 2015) 

C
o

n
ti

n
u
o

u
s 

In
p
u

ts
 

VO H. Multiple One maneuver √ 
Simple, efficient, and offer alternative 

solutions but ignore ship dynamics. 

(Huang et al., 2018; Y. X. 

Zhao et al., 2016; Zhuang et 

al., 2016) 

GVO D. Multiple 
One trajectory & 

control inputs 
√ 

Capable of considering dynamic 

constraints and offer alternative 

solutions, but need to accept errors due 

to linearization. 

(Huang et al., 2019; L. Chen et 

al., 2019) 

VC D. Single 
One trajectory & 

control inputs 
√ 

Simple and effective, but each time 

only can avoid one obstacle with low 

speed.  

(Martin S. Wiig et al., 2017; 

M. S. Wiig et al., 2017; Y. Z. 
Xue et al., 2011) 

MPC-

CA 
D. Multiple 

One trajectory & 

control inputs 
√ 

Local minimal and computing time is 

dependent on solvers. 

(Abdelaal et al., 2018; L. Chen 
et al., 2018; Ferranti et al., 

2018; L. Chen et al., 2019; H. 

Zheng, Negenborn, & 
Lodewijks, 2018; H. R. Zheng 

et al., 2017) 

R
e-

p
la

n
n

in
g
 Graph 

search 
NA Multiple One trajectory √ 

Strongly depend on fresh frequency 

and velocity of the obstacle. Might 

lead to an inevitable collision state.  

(Lazarowska, 2017; Y. C. Liu 
et al., 2017) 

EA NA Multiple One trajectory √ 
Ignore ship dynamics and might lead 

to an inevitable collision state.  

(Lazarowska, 2014; 
Szlapczynski, 2013; 

Szlapczynski, 2014; Tsou, 

2016; Tsou & Hsueh, 2010) 

NA: ship dynamics are not directly considered in constructing a collision-free solution, but during the 

implementation of the solution, the dynamics are considered. H. is Holonomic model; K is kinematic model; D is 

dynamic model. ‘√’ refers to that the optimization is incorporable; ‘-’ means the optimization is not considered.  

  



Table A2 Comparison of different collision avoidance methods 

 Methods 
Geometry of 

TSs 
Map 

Control  

architecture* 
Remarks Ref. 

R
u

le
-b

as
ed

 

Single-

rule 
- - Decentralized Suitable for emergent actions. 

(Fang et al., 2017; Naeem 

et al., 2012) 

Multiple-

rule 
- - Decentralized In compliance with COLREGs. (Perera et al., 2012) 

V
ir

tu
al

 

V
ec

to
r APF Circle - Decentralized 

Treat TSs to be semi-dynamic in 

finding solutions. 
(H. Lyu & Yin, 2018; H. G. 

Lyu & Yin, 2017) 

LCM 
Circle/ 

Ellipse 
- Decentralized 

Under-actuated ship. 

TSs’ movement is known. 
(Mahini et al., 2013; Soltan 

et al., 2009, 2010) 

D
is

cr
et

e 
In

p
u

ts
 

DW Polygon Polygon Decentralized 
Under-actuated ship; Two-level 

controller; Semi-dynamic TSs 
(Loe, 2008; Serigstad, 

2017) 

DD 

Circle - Decentralized 
Find an optimal maneuver; easily to be 

rule-compliant; Semi-dynamic TSs 
(Benjamin et al., 2006) 

Ship domain 
Occupancy 

map 
Decentralized 

Considering rules, restrict waters, and 

etc.; Semi-dynamic TSs 

(Degre & Lefevre, 1981; 
Kuwata et al., 2014; Lenart, 

1983; Pedersen et al., 2003; 

Szlapczynski & Krata, 2018) 

DIO 

Circle - Decentralized 

Collision condition is formulated as a 

soft constraint; Semi-dynamic TSs;  

The solution is (u,  ). 
(Johansen et al., 2016) 

Circle - Distributed 
Collision condition is a soft constraint; 

Solution is ( ). 
(S. Li et al., 2018) 

Circle - Distributed 

Collision condition is a soft constraint. 

Negotiations among ships.  

Solution is ( ). 
(D. Kim et al., 2017) 

LBS Polygon - Decentralized 

Adaptive sampling use spatio-

temporal complexity.  

KF filter to predict TSs’ trajectory. 

(Shah et al., 2015; Švec et 
al., 2013) 

BFS Circle - Distributed Ships broadcast their intentions. (J. F. Zhang et al., 2015) 

C
o

n
ti

n
u
o

u
s 

In
p
u

ts
 

VO 

Circle - Decentralized TS keeps u and  ; Reciprocal VO. (Y. X. Zhao et al., 2016; 

Zhuang et al., 2016) 

Circle Polygon Distributed 
TS’s trajectory is known;  

Non-Linear VO. 
(Huang et al., 2018) 

GVO Circle Polygon Distributed 
Two-level controller;  

fewer maneuvers. 
(Huang et al., 2019; L. 

Chen et al., 2019) 

VC 
Circle - Decentralized 

Under-actuated ship;  

Semi-dynamic TSs. 

(Martin S. Wiig et al., 

2017; M. S. Wiig et al., 
2017) 

Circle Polygon Decentralized Combined with APF. (Y. Z. Xue et al., 2011) 

MPC-CA 

Circle - Decentralized 
NMPC; Semi-dynamic TSs; Under-

actuated ship. 
(Abdelaal et al., 2018) 

Ellipse Polygon 
Centralized & 

Distributed 
NMPC. (Ferranti et al., 2018) 

Circle Polygon 
Decentralized & 

Distributed 
Waterborne-AGV and ADMM. 

(Huarong Zheng, 2016; H. 
Zheng et al., 2018; H. R. 

Zheng et al., 2017) 

Polygon 

(square) 
Polygon Distributed Demonstration in canal networks. 

(L. Chen et al., 2018; L. 

Chen et al., 2019) 

R
e-

p
la

n
n

in
g
 

Graph 

search 

Polygon 

(close to 

circle) 

Occupancy 

map 
Decentralized 

Fast Marching Method; using KF 

algorithm to predict trajectory. 
(Y. C. Liu et al., 2017) 

Hexagon Polygons Decentralized 
Search in trajectory database. 

Semi-dynamic TSs 
(Lazarowska, 2017) 

EA 

PAD 

(hexagon) 

Polygon 

(from 

ENC) 

Decentralized Gene algorithm; Semi-dynamic TSs 
(Tsou, 2016; Tsou & 

Hsueh, 2010) 

Hexagon Polygons Decentralized 
Ant Colony Optimisation; Semi-

dynamic TSs 
(Lazarowska, 2014) 

Ship domain 
Occupancy 

map 
Centralized Evolutionary sets; 

(Szlapczynski, 2013; 

Szlapczynski, 2014) 

Note: ‘Control architecture’ column follows the categorization in (Negenborn & Maestre, 2014). ‘Map’ column indicates how 

the obstacle in ENC is considered, specifically, ‘-’: ignoring navigational charts during CA (i.e. CA in open sea); Polygon: 

using polygons to represent obstacles in the chart; Occupancy map: using a bitmap to represent navigational charts.  
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