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SUMMARY

Defossilization of industrial processes has led to a growing interest in alternative biotechnologies capable of 

producing chemicals from renewable resources. Microbial electrosynthesis (MES) is an emerging technology 

in which electrotrophic microorganisms utilize electrons from a cathode and CO2 to produce multi-carbon 

compounds. To reach industrial application, clearer insights into the interactions between underlying biolog

ical, electrochemical, and physicochemical processes are required. Although individual parameters have 

been widely studied, identifying the most influential factors and their interactions remains challenging. 

This study applies design of experiments (DoE) and mixed linear regression modeling (MLRM) to examine 

the influence of pH, CO2 and H2 partial pressures, acetic acid concentration, and the addition of tungsten 

and selenium on the production spectrum in biofilm-driven MES. The developed DoE-MLRM approach high

lights the key role of pH and CO2 availability in supporting carbon fixation and acetate production, while the 

trace metals selenium and tungsten mostly promote chain elongation.

INTRODUCTION

The Paris Agreement aims to limit climate change by reducing 

greenhouse gas emissions, over 78% of which come from the 

use of fossil fuels, particularly in energy and chemical produc

tion.1 While the transition to renewable energy sources such as 

wind and solar power has reduced CO2 emissions from energy 

production, the chemical industry faces unique challenges due 

to its reliance on fossil fuels as both a source of energy and car

bon.2 To address this challenge, sustainable alternatives, such 

as renewable organic sources or CO2, are being investigated.3

Microbial electrosynthesis (MES), a technology that uses micro

organisms as biocatalysts to reduce CO2 to organic carbon 

compounds, is a promising method for sustainable chemical 

production. Unlike traditional electrochemical methods, which 

are limited to the production of C1 and C2 compounds, MES 

can facilitate the formation of larger carbon molecules, including 

carboxylates and alcohols.4–7 This makes MES a potential tool 

for sustainable carbon capture and utilization, helping to achieve 

global climate goals.

To date, MES research has mainly focused on advancing the 

technology by studying fundamental aspects, such as electron 

transfer mechanisms and CO2 reduction pathways, or improving 

the efficiency of key components, such as the microbial culture 

and cathode structure/material.8,9 Although significant progress 

has been made, a deeper understanding of the interplay be

tween different complex processes (biological, physical, electro

chemical, and chemical) within MES systems is required to ulti

mately push the technology toward industrial implementation. 

One such example is the comprehensive understanding of the 

relationships between various operational conditions and micro

bial metabolism. The effect of single operational parameters, 

such as cathode potential, pH, inorganic carbon source, nutrient 

availability, H2 partial pressure, and temperature, on MES effi

ciency has been extensively studied.10–13 However, it has proven 

difficult to identify the most influential operating parameters in 

functioning MES systems in order to understand how different 

conditions interact with each other. Mathematical modeling 

could provide a systematic approach to assess the complexity 

of an MES system while complementing relevant experimental 

research.14

In recent years, several studies have been published on 

modeling MES, also on the dynamics between operating condi

tions and the microbial response. Gadkari et al.15 presented a 

dynamic computational model for a two-chamber H-type MES 

system operated as a batch, focusing on the impact of opera

tional parameters on MES performance. The model showed 

that, for MES operations with a cycle time of 3–4 days, increasing 

the initial substrate concentrations at the anode and cathode lin

early increased the product formation rate. A trade-off between 

product formation rate, substrate consumption, and Coulombic 

efficiency highlighted the importance of multi-objective optimi

zation. Another study demonstrated that machine learning algo

rithms, particularly XGBoost, can effectively predict acetate and 
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ethanol yields in MES based on operational factors such as cath

ode material, pH, applied potential, temperature, and inorganic 

carbon (IC) concentrations.16 Experimental data were acquired 

with a batch-operated glass H-type dual-chamber reactor. 

Feature importance analysis identified current, pH, and IC as 

key parameters, while traditionally influential factors like applied 

potential and temperature had a lesser impact. Cabau-Peinado 

et al.17 presented a computational model for MES that predicted 

microbial growth, current consumption, and CO2 reduction to 

acetate, n-butyrate, and n-caproate by linking microbial 

metabolism to electrochemical processes. The model results 

suggested that CO2 concentration might limit existing MES sys

tems, highlighting the need for effective CO2 delivery methods. 

Additionally, in biofilm-based reactors, continuous operation ap

peared to enhance microbial growth, support denser biofilm for

mation, and increase current densities.

Although all of these models are based on working MES sys

tems and trained on the data obtained from them, no direct ev

idence has been provided from running MES reactors on how 

the microbial community adapts to changing operating parame

ters and to different reactor environments. In this context, design 

of experiments (DoE) can be used, a systematic method used to 

plan, conduct, and analyze experiments in order to understand 

the effects of multiple variables on an outcome. By varying 

different factors within an experiment together, DoE allows one 

to determine how these factors individually and interactively in

fluence the results. DoE is commonly used to optimize pro

cesses, identify critical variables, and develop predictive models 

across fields like engineering, manufacturing, biotechnology, 

and social sciences. It is particularly valuable for identifying the 

most influential parameters, improving process efficiency, and 

achieving robust, reproducible results.18

Among the wide array of operational parameters, pH, CO2 

availability, and H2 production emerge as critical factors due to 

their direct influence on microbial activity and system perfor

mance in MES reactors. Local pH changes near the cathode, 

driven by the hydrogen evolution reaction, create an alkaline 

environment that can significantly affect microbial activity and 

viability. These shifts also affect substrate availability, as they 

alter the HCO3
− /CO3

2− equilibrium and the solubility of CO2. 

While buffers can mitigate these effects, their diffusion into the 

boundary layer becomes limiting at higher current densities.19

CO2 loading rate alone has been shown to strongly affect bio

electrochemical chain elongation.20 High CO2 loading rates 

(173 L d− 1) favor the production of butyrate and n-caproate 

over the production of acetate, whereas low CO2 loading rates 

(8.6 L d− 1) result predominantly in acetate production, even 

with an extended retention time. When pH and CO2 loading 

rate are pushed to their extremes, such as at low pH or under 

limited electron acceptor availability, microbes may activate 

alternative metabolic pathways.21 For example, acetogenic bac

teria may shift from acetogenesis to solventogenesis under 

these conditions.22 H2 availability is another critical parameter 

in MES, as acetogenic bacteria depend on dissolved H2 concen

tration to drive acetogenesis, with rates increasing linearly 

under first-order kinetics.23 Maintaining sufficient H2 levels 

ensures efficient CO2 conversion, directly impacting system per

formance. Finally, medium composition is another crucial yet 

underexplored factor in MES systems. Metalloenzymes involved 

in the Wood-Ljungdahl pathway (WLP) depend on cofactors like 

selenium (Se) and tungstate (W), which have been shown to 

improve the activity of this pathway.24–26 Incorporating these co

factors in the catholyte medium could enhance microbial effi

ciency, complementing the optimization of operational parame

ters such as pH, CO2, and H2 availability.

In many experimental designs, two or more variables are 

related, and it is of interest to model and explore this relationship. 

The relationship between dependent (response) variables and 

independent (regressor) variables is characterized by a mathe

matical model called a regression model, which is fit to a set of 

sample data.18 Regression methods are highly valuable in de

signed experiments, particularly when unexpected issues arise, 

such as missing observations, providing a robust framework for 

data analysis and interpretation. In many MES studies, data are 

obtained from multiple reactors, each representing a distinct 

experimental condition or grouping. In such cases, traditional 

regression models may fall short, as they assume independence 

of observations and do not take into account possible correla

tions within groups. Mixed linear regression models (MLRMs) 

offer a robust framework for addressing these challenges by 

incorporating both fixed effects, which capture overall trends 

across all groups, and random effects, which account for vari

ability within and between groups.27 This approach allows for 

the simultaneous analysis of overall trends and group-specific 

deviations, making it particularly suitable for data arising from 

multiple experimental reactors.

This work highlights the implementation of DoE and MLRMs to 

determine the influence of pH, CO2 partial pressure (pCO2), H2 

partial pressure (pH2) and the addition of W and Se on the 

production spectrum of biofilm-driven, miniaturized, directed 

flowthrough bioelectrochemical systems (DFBRs).28 By using a 

DoE-MLRMs approach, the importance of the interactions 

among the key parameters discussed above (pH, CO2 loading 

rate, H2 availability, and the addition of metalloenzymes) as 

well as their individual statistical significance can be systemati

cally assessed, offering insights into their combined and inde

pendent effects on MES performance in operational reactors.

RESULTS AND DISCUSSION

From complex patterns to interpretable results with 

mixed linear regression

Two different experimental designs were developed to create 

three different models that assess the separate effect of a com

bination of factors on the production of the carboxylates acetate 

(C2), butyrate (C4), and caproate (C6) in biofilm-driven MES: (1) 

pH, pCO2 and pH2; (2) pH, pCO2, and acetic acid concentration 

(cHac); and (3) the addition of Se and W in the trace metal solution. 

Three miniaturized DFBRs were subjected to the conditions 

described in the three experimental designs over the course of 

63–95 days (Figure 1). Each experimental condition lasted for 

at least 2 hydraulic retention times (HRTs; 8 days) to observe 

possible trends in production of carboxylates over time. As illus

trated in Figure 1, it would be difficult to identify clear trends 

without relying on speculation, due to the complexity and vari

ability of the data. This highlights the need for a statistical 
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approach such as MLRM, which allows for a more reliable inter

pretation of results across replicate experiments. For all three 

designed experiments, an MLRM approach was applied to 

determine which factors had a significant effect on production 

for each product separately.

pH and CO2 supply affect carbon fixation and chain 

elongation

The main output of the MLRM, modeling pH, pCO2, and addi

tional bulk H2, is presented in Table 1, while the concentration 

profiles of all carboxylates and CH4 are shown in Figure 1 (con

ditions 1–4). The complete model output for each product is pro

vided in Note S1, which also includes model validation checks 

(observed vs. predicted plots, residuals, and Q-Q plots). A 

description of the regression model validation methods and their 

interpretation is provided in Methods S4. For all tested indepen

dent variables (C2, C4, C6, and CH4), the intercept is positive 

and significant, indicating that factors beyond those tested 

contribute to the production of those compounds. The estimated 

reactor-to-reactor variance ranges from 0.034 to 0.121 (SE = 

0.175–0.376) for all carboxylic acids, which is approximately 

31%–72% of the residual variance. In all cases, the SE of the 

reactor-specific variance estimate was larger than the estimate 

itself. This means there is considerable uncertainty about how 

much variation can be attributed to differences between reac

tors. This typically suggests that the variation between reactors 

is relatively small compared to the variation explained by the 

experimental conditions. In other words, the reactor had little in

fluence on the outcome, and the observed effects are more likely 

driven by the tested variables (pH, pCO2, and pH2) rather than 

random differences between individual reactors. The conditional 

R2 (R2
c) is higher than the marginal R2 (R2

m) for all organics, indi

cating that reactor-to-reactor variability contributed to the total 

explained variance. This suggests that, beyond the effects of 

pH, pCO2, and pH2, reactor-specific factors, in particular varia

tion in microbial community composition and biofilm develop

ment, may influence production.

The MLRM results in Table 1 indicate that acetate production 

in MES is primarily driven by pH and CO2 availability, with 

both variables having statistically significant positive effects 

(p < 0.001). This aligns with known MES processes where a 

mildly acidic pH (5–6) promotes microbial conversion of CO2 

to carboxylic acids.20,29–31 Additionally, since acetate is a 

weak acid, an increase in pH also reduces the fraction of 

Figure 1. Carboxylate and methane concentrations during DoE conditions in three continuous reactors 

Shown are concentrations (g L− 1) of acetate (blue circles), butyrate (red triangles), caproate (green squares), and CH4 (ppm; orange stars) during the different 

design of experiment (DoE) conditions for reactor 1 (A), reactor 2 (B), and reactor 3 (C). Each reactor was operated in continuous mode with a hydraulic retention 

time of 4 days. Vertical dotted lines indicate transitions between experimental conditions, each representing a specific combination of conditions (D). SC refers to 

the standard operating conditions under which the reactors are typically run. In reactor 1 (A), a pH control issue occurred on day 154, leading to a significant drop 

in pH and a recovery period before the experimental design could be completed.
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undissociated acetic acid, preventing toxicity and allowing 

sustained production.32 Looking at the regression coefficients 

for acetate (Note S1.1), pCO2 has a larger effect size than pH, 

suggesting that increasing CO2 availability is a key factor in maxi

mizing acetate production. This observation aligns with the 

outcomes of the black-box kinetic model developed by 

Cabau-Peinado et al.,17 which also identified dissolved CO2 con

centration as a limiting factor in MES systems. Acetate synthesis 

in MES is CO2 dependent, primarily occurring via the WLP, 

where CO2 is reduced to acetate.33,34 At industrial scale, CO2 

availability can be enhanced through practical measures, such 

as increasing gas flow and partial pressure, using gas diffusion 

cathodes and/or membranes, and applying flowthrough reactor 

designs that ensure steady CO2 delivery to biofilms.29,35

In contrast, additional bulk H2 did not significantly impact ac

etate formation (p = 0.179), suggesting that additional bulk H2 

supply does not majorly influence system performance. Since 

the additional H2 was supplied through the bubble column, 

mass transfer to the microorganisms could have limited addi

tional dissolved H2 to become available to the biofilm, preventing 

a strong response. While the regression coefficient is positive 

(Note S1.1), the lack of significance suggests that additional H2 

is not a major driver of acetate production under the tested con

ditions. These results indicate that hydrogen supplied from 

the cathode was sufficient to sustain acetate production within 

the biofilm without the need for external H2 supplementation. 

Additionally, the addition of external H2 did not lead to biofilm 

detachment or increased planktonic growth, as confirmed by 

stable optical density 600 (OD600) measurements over time 

(Note S2).

For both butyrate and caproate, only the pH is associated with 

an increase in concentration (p < 0.05), suggesting that pH regu

lation is an important factor in optimizing their production. In 

MES-related technologies, such as syngas fermentation, a lower 

pH has been shown to inhibit chain elongation and can cause 

shifts toward ethanol or lactate production.34 While the positive 

coefficient for CO2 (Notes S1.2 and S1.3) suggests a possible 

beneficial effect of pCO2 on butyrate and caproate, the lack of 

statistical significance (p > 0.05) indicates that this effect is not 

robust under the tested conditions. Although butyrate has 

been hypothesized to form directly from CO2 in MES and syngas 

fermentation, both butyrate and caproate can also be produced 

from acetate via reverse β-oxidation.30,36–38 For anaerobic bio

processes, acetate reduction to butyrate and caproate have 

been determined to be thermodynamically and kinetically 

feasible when ethanol or lactate serve as electron donors.39

Ethanol and lactate production was not observed in any reactors 

under any conditions in the liquid or gas phase, consistent with 

the findings of Jourdin et al.,20 Cabau-Peinado et al.,29 and Win

kelhorst et al.40 In the work by Jourdin et al.,20 ethanol was not 

measured in significant concentrations, suggesting that direct 

electron transfer from the cathode or alternative metabolic 

pathways are involved in chain elongation. In that work, there 

were indications that ethanol was not a major electron donor, 

while CO2 availability appeared to influence microbial meta

bolism, potentially favoring direct acetate utilization over 

ethanol-based elongation. The absence of detectable ethanol 

does not necessarily indicate its lack of involvement in chain 

elongation. In a gas fermentative system, ethanol has been 

shown to be consumed as quickly as it is produced or dosed, 

particularly in active chain-elongating microbial commu

nities.41,42 According to the current model, caproate synthesis 

seems to depend more on acetate and butyrate availability 

than direct CO2 fixation due to its higher p value for pCO2, unlike 

acetate and butyrate. CO2 may still play a role as an upstream 

carbon source, but its impact on final caproate levels is likely in

direct. The wide confidence interval (Notes S1.2 and S1.3) for the 

CO2 rate in both products suggests, however, that additional 

interacting factors (e.g., electron availability or microbial com

munity composition) may influence its impact, meaning that 

the current experimental design may not fully isolate the effect 

of CO2 rate. Although H2 is a key electron mediator in acetogenic 

and chain-elongating bacteria, additional supply of H2 did not 

have a significant impact on chain elongation (p > 0.05).

Despite the addition of 2-bromoethanesulfonic acid (BES), 

CH4 was still detected, which may be explained by consump

tion of BES by, for example, sulfate-reducing bacteria or 

by the gradual adaptation of methanogens to repeated 

dosing.43–46 None of the three factors (pH, pCO2, and addi

tional bulk H2) had a statistically significant effect on CH4 

production, as all p values considerably exceeded 0.05. The 

positive coefficients for all three factors suggest that higher 

values may promote CH4 production, however, the wide 

confidence intervals indicate high variability and weak predic

tive power. This could mean that the methanogens present in 

the biofilm tolerate a wider pH range than other mesophilic 

methanogens (pH 6.5–8), making pH control alone insufficient 

to suppress methane production.47–49 Moreover, the develop

ment of pH gradients within biofilms can create local variations 

in pH, which could also contribute to the persistence of meth

anogenic activity. Higher CO2 availability alone does also not 

necessarily lead to more methane production, even though 

Table 1. Mixed linear regression results for pH, pCO2, and pH2

Compound Intercept (P>|z|) pH (P>|z|) pCO2 (atm) (P>|z|) pH2 (atm) (P>|z|) Reactor var. R2
m R2

c

Acetate (C2) <0.001 <0.001 <0.001 0.179 0.121 0.747 0.853

Butyrate (C4) <0.001 0.005 0.282 0.517 0.034 0.379 0.527

Caproate (C6) 0.022 0.015 0.489 0.685 0.080 0.270 0.510

Methane (CH4) 0.016 0.152 0.306 0.220 22755.222 0.212 0.447

Shown is main output from the MLRM assessing the effect of pH, pCO2, and pH2 on the production of acetate, butyrate, caproate, and CH4. For the 

intercept, pH, pCO2, and pH2, the P>|z| is given, which refers to the p value for a z test of the null hypothesis that a given coefficient is zero. The reactor 

variance indicates how similarly reactors behave compared to each other under the tested conditions. R2
m and R2

m represent the marginal and con

ditional R2, respectively.
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methanogens can use CO2 and H2 via hydrogenotrophic meth

anogenesis.50 This means that the effect of CO2 could have 

been masked by other untested factors. The high reactor vari

ance indicates that reactor-specific factors (e.g., biofilm devel

opment, methanogen colonization, or slight differences in gas 

diffusion) may strongly impact CH4 production. Suppression 

of methanogenesis might thus be more reactor dependent 

than process dependent, requiring targeted interventions at 

the microbial community level.

Acetic acid addition to the catholyte highlights its role in 

chain elongation

The previous model indicates that CO2 primarily influences ace

tate concentration, highlighting its role in carbon fixation. Ace

tate is clearly a key intermediate in chain elongation, as there is 

a successive production pattern where acetate accumulates 

first, followed by butyrate and then caproate. To further investi

gate this relationship, another model was built to investigate 

the combined effects of CO2, pH and supplementation of acetic 

acid (HAc) (5 g L− 1) to the reactor system on chain elongation. 

This approach aims to clarify whether CO2 directly influences 

the production of butyrate and caproate or whether its primary 

function is limited to acetate synthesis, which then serves as 

the substrate for elongation.

The complete model output for each product is provided in 

Note S3, and a model summary is shown in Table 2. Note S3

also contains model validation checks (observed vs. predicted 

plots, residuals, and Q-Q plots). The concentration profiles of all 

carboxylic acids and CH4 are shown in Figure 1 (conditions 4, 5, 

standard conditions [SC], and 6). For all independent variables 

(C2, C4, C6, and CH4), the intercept is positive and significant, 

which means that factors other than the tested ones contribute 

to production of organics. The estimated reactor-to-reactor vari

ance is 0–0.006 (SE = 0–0.102) for acetate, butyrate, and caproate 

(0%–130%) of the residual variance). Although the estimated 

reactor variance (0.006) exceeded the residual variance (0.0046) 

for the caproate model only, its large SE (0.102) indicates that 

reactor-to-reactor variability is either small or difficult to estimate 

reliably. Although some differences between reactors can be 

seen in the profiles, the model captures most of this variation as 

residual noise. With three reactors, it is difficult to reliably separate 

true reactor-specific effects from random variation, which is why 

the estimated variance appears smaller than what is visible in 

Figure 1. For all organics, the R2
c was higher than the R2

m, once 

more implicating that, beyond the fixed effects, reactor-specific 

factors influence microbial production.

From the results of the MLRM (Table 2), it is clear that the pres

ence of added acetic acid reduced the apparent effect of pH (p = 

0.943) on acetate concentration, since some acetate was exter

nally supplied rather than microbially produced. CO2 rate has a 

larger effect size than pH (p < 0.001), suggesting that CO2 avail

ability is the dominant driver of acetate synthesis, overshadow

ing any effects of pH. pH does not provide a carbon source 

like CO2 but only influences enzyme activity and microbial 

growth, which might not be limiting in this scenario. This model 

once more highlights CO2 as a key limiting factor for acetate pro

duction in MES, reinforcing the need for sufficient CO2 supply to 

maximize acetate yield.

In this new MLRM, butyrate and caproate formation are 

shown once more to be pH sensitive, with p values for pH below 

0.05. However, when compared to the MLRM with pH, pCO2, 

and additional bulk H2 as fixed effects (Table 1), a contradiction 

arises, as pCO2 was not statistically significant for either chain 

elongation product in that model, whereas it is in this one. This 

contradiction can be explained by considering the metabolic 

pathways and interdependencies of acetate and butyrate 

production in MES. The MLRM results reveal a hierarchical 

structure in MES pathways. CO2 availability is a key driver of 

acetate production (p < 0.001), while butyrate and caproate 

production depend on acetate availability, as indicated by the 

significance of added acetic acid (p < 0.001). pH influences ac

etate, butyrate, and caproate synthesis, reinforcing its role in 

maintaining optimal microbial activity. The contrasting signifi

cance of CO2 between models suggests that the effect of 

CO2 on chain elongation may be indirect. In previous literature, 

when acetate production has stabilized, limiting or intermit

tently feeding CO2 can increase hydrogen partial pressure, 

thereby shifting the metabolic balance toward the reductive 

conversion of acetate into longer-chain products such as buty

rate and caproate.51,52 CO2 availability may also influence mi

crobial community composition, enriching for chain-elongating 

bacteria under more reducing conditions.25,51,53 These findings 

highlight the importance of controlling CO2 and acetate avail

ability at different stages of MES to optimize chain elongation 

pathways.

In the first presented model (pH, pCO2, and pH2), methano

genic species were affected by none of the factors. In the cur

rent model, H2 was not included, and acetic acid was added 

instead, which resulted in a significant effect for pCO2 on 

methane production (p = 0.004). In a biofilm-driven MES sys

tem, more than 99% of microbes are present in the biofilm 

(Note S2), but some persist in the bulk liquid, meaning 

Table 2. Mixed linear regression results for pH, pCO2, and supplied acetic acid

Compound Intercept (P>|z|) pH (P>|z|) pCO2 (atm) (P>|z|) Supplied HAc (g/L) (P>|z|) Reactor var. R2
m R2

c

Acetate (C2) <0.001 0.943 <0.001 0.042 <0.001 0.813 0.813

Butyrate (C4) <0.001 0.021 <0.001 <0.001 <0.001 0.864 0.864

Caproate (C6) <0.001 <0.001 <0.001 <0.001 0.006 0.764 0.899

Methane (CH4) <0.001 0.651 0.004 0.320 1480.729 0.299 0.715

Shown is main output from the MLRM assessing the effect of pH, pCO2, and supplied acetic acid on the production of acetate, butyrate, caproate, and 

CH4. For the intercept, pH, pCO2, and Ac the P>|z| is given, which refers to the p value for a z test of the null hypothesis that a given coefficient is zero. 

The reactor variance indicates how similarly reactors behave compared to each other under the tested conditions. R2
m and R2

m represent the marginal 

and conditional R2, respectively.
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competition for H2 occurs at different spatial levels.29 The dif

ference in CH4 production between the two models can be 

attributed to shifts in electron donor availability and microbial 

competition dynamics. In the first model, additional bulk H2 

(in the gas phase) and electrode-derived H2 were available, 

leading to competition between methanogens and acetogens 

in both the biofilm and bulk liquid. This competition likely re

sulted in acetogens preferentially utilizing H2, limiting CH4 pro

duction and making CO2 non-significant. This is an interesting 

observation, as methanogens generally have a lower hydrogen 

affinity (Ks) compared to acetogens, meaning they can utilize 

hydrogen at lower concentrations.54 However, acetogens 

achieve higher conversion rates at elevated hydrogen partial 

pressures. Consequently, at higher hydrogen concentrations, 

acetogens can outcompete hydrogenotrophic methanogens. 

This is because the increased availability of hydrogen 

favors acetogenic pathways, leading to acetate production.50

In the current model, the removal of additional bulk H2 forced 

methanogens to become more dependent on CO2, increasing 

its statistical significance as a driver of methane formation. 

Acetic acid addition did not significantly impact CH4, suggest

ing that hydrogenotrophic rather than acetoclastic methano

genesis was dominant. 16S rRNA gene sequencing of the 

mixed culture inoculum revealed Methanobrevibacter as the 

most abundant methanogenic genus (Figure S29), which is 

generally considered hydrogenotrophic.55,56 These results 

highlight the importance of both substrate availability and 

spatial distribution (biofilm vs. bulk) in regulating CH4 formation 

in MES systems.

Addition of W and Se to the trace metal solution 

significantly improves carbon fixation and chain 

elongation

The availability of trace elements like Se and W is vital in MES, 

as these elements serve as cofactors for key enzymes in the 

WLP, and their presence can significantly impact the pathway’s 

efficiency and the overall microbial productivity.24–26,57

Formate dehydrogenase (FDH), which catalyzes the reduction 

of CO2 to formate, often contains selenocysteine at its active 

site, which is crucial for its catalytic efficiency. Selenocys

teine-containing FDHs exhibit higher catalytic rates compared 

to their non-selenium counterparts.58 In certain acetogens, W 

can act as a cofactor for FDH.58 In acetate-producing aceto

gens, the presence of Se and W in FDH has been suggested 

to function as a cofactor.26,59 In gas fermentation processes, 

W has not only been shown to activate FDH but also aldehyde 

oxidoreductases and related enzymes, driving the production 

of more reduced intermediates like acetaldehyde and 

ethanol.25,53 Ensuring an adequate supply of these trace metals 

in the growth medium can enhance the catalytic capability of 

FDH, leading to improved conversion rates of CO2 to desired 

products. A simplified MLRM was used to gain key insights 

into whether the addition of W and Se has a significant effect 

on carbon fixation to acetate and whether it had any impact 

on the following chain elongation reactions. The production 

spectrum of each reactor before (1) and after (3) the 

addition of Se and W is presented in Figure 2. The full output 

and validation checks of the simplified model are provided in 

Note S4 for each product, and a model summary is presented 

in Table 3.

For all independent variables (C2, C4, and C6) the intercept is 

positive and significant, meaning that their change in concentra

tion is not solely due to the absence and addition of Se and W. 

The reactor variance for acetate was 0.008, but its large SE 

(0.707) suggests that this estimate is unreliable, implying that 

most acetate variation is due to residual noise rather than sys

tematic reactor differences. In contrast, butyrate and caproate 

production had zero reactor variance (SE = 0). This does not 

imply that the reactors were identical but, rather, that with only 

three groups, the model could not reliably distinguish reactor- 

specific variability from residual error. The lower residual vari

ances for butyrate (0.1008) and caproate (0.1712) compared to 

acetate (0.6564) suggest that chain elongation products were 

less affected by random variation.

From the simplified MLRM, the acetate concentration in the 

system was positively, but not significantly, affected by the 

addition of the trace metals Se and W to the system (p = 

0.139). This seems to be a contradictory observation, as Se 

and W are key co-factors for FDH in the WLP. One possibility 

is that acetate production was not strongly limited by trace 

metal availability, suggesting that the current medium compo

sition provided enough trace metals for the WLP to run suffi

ciently. On the other hand, this seems unlikely, as Se and W 

have been shown, in processes other than MES, to improve ac

etate production through the WLP.24–26,60 The MLRM results 

for butyrate and caproate provide insight into why the effect 

of trace metals appears to be insignificant for acetate. It is likely 

that acetate is being actively consumed by chain-elongating 

microbes to produce longer-chain products. The effect of Se 

and W on butyrate and caproate is not only positive, but the ef

fect is also significant (p < 0.05). The R2
m (0.325) and R2

c (0.422) 

for caproate are the highest among all products, suggesting 

that trace metals play a more crucial role in caproate synthesis 

than in acetate and butyrate formation. If the addition of Se and 

W improves acetate production, then acetate consumption for 

butyrate and caproate formation also rises, thereby masking a 

net increase in acetate concentration. As a result, a clear statis

tical effect (significance) in butyrate and caproate concentra

tions is obtained, while acetate’s net concentration might not 

show a significant increase because it is both produced and 

consumed at higher rates. This suggests that trace metals 

enhance multiple steps in MES, driving both acetogenesis 

and subsequent chain elongation, with the net effect being 

most visible in the final products rather than in the intermediate 

(acetate).

Figures 2B and 2C also illustrate the enhanced selectivity to

ward butyrate and caproate following the addition of Se and W 

to the catholyte medium, with concentrations reaching 2.21 

and 3.79 g L− 1 for butyrate and caproate in R2 and 2.54 and 

2.52 g L− 1 in R3, respectively. As mentioned before, Se and W 

enhance the conversion of CO2 to acetate and reducing equiva

lents by activating specific enzymatic pathways at both the start 

of the metabolic pathway (CO2 fixation) and further reduction 

steps. The effect of this could be an increased amount of usable 

acetate and reducing equivalents, like ethanol, in the system. 

Secondary fermenters in the mixed microbial community can 
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use these available compounds to perform chain elongation; for 

example by coupling ethanol oxidation to acetate reduction to 

generate butyrate and caproate. In gas fermentation, the pres

ence of Se and W has been linked to higher ethanol:acetate ra

tios, higher total acid production, and onset of solventogenesis 

and chain elongation phases that are absent in their defi

ciency.53,61 However, as mentioned previously, ethanol was 

not detected in any of the reactors, though its presence cannot 

be ruled out. In the current MES reactors, the presence of Se 

and W may intensify this dynamic by enhancing ethanol produc

tion and accelerating chain elongation, thereby reinforcing the 

likelihood of direct ethanol consumption without measurable 

buildup.

The opportunities for the use of DoE and MLRM in MES 

are endless

In this work, three different MLRM models were presented, all 

with different investigated factors and a different range of 

complexity. Due to the complexity of electrochemical systems 

and microbial interaction in mixed microbial cultures, the 

opportunities for the use of DoE and MLRM are virtually 

limitless. These experimental and statistical approaches can 

systematically deconstruct the influence of multiple interact

ing factors. This work only discusses the use of DoE and 

MLRM modeling to gain insight in how to shift and optimize 

the production spectrum, but the same approach can be 

applied to other aspects of MES, such as reactor design, 

microbial community engineering, process stability, and 

scale-up strategies.

MES systems often rely on biofilm formation at electrodes to 

enable efficient electron transfer. However, the microbial com

munity composition plays a critical role in determining whether 

electrons flow toward acetate, butyrate, caproate, or methane. 

DoE and MLRM could be used to understand how biofilm thick

ness, electrode colonization, and microbial diversity impact 

product formation. As MES operates at the interface of microbi

ology and electrochemistry, DoE and MLRM could also be used 

to model how variations in electrode potential influence electron 

transfer efficiency and product selectivity, how current density 

affects microbial metabolism and growth, and how different 

electrode materials influence biofilm attachment and electroca

talysis. Another example of how DoE and MLRM can be used 

in MES is to assess the impact of scale-up factors, such as 

mass transfer and current distribution, on microbial perfor

mance. In practice, the scale-up factor can be included as an 

additional design variable (e.g., surface-to-volume ratio or elec

trode area relative to volume), allowing its effect and interactions 

with operational parameters to be quantified. These few 

Figure 2. Carboxylate and methane concentrations before and after Se and W addition in three continuous reactors 

Shown are concentrations (g L− 1) of acetate (blue circles), butyrate (red triangles), caproate (green squares), and CH4 (ppm; orange stars) during 236–238 days for 

reactor 1 (A), reactor 2 (B), and reactor 3 (C). Vertical dotted lines indicate (1) the start of design of experiments (DoE), (2) end of DoE, and (3) addition of Se and W 

to the trace metal solution.
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examples already highlight the wide extent to which this 

approach can be used.

There are methods for exploring non-linear relationships and 

optimizing process conditions, such as response surface meth

odology (RSM). RSM needs different and more complex DoE 

structures, such as central composite design and Box- 

Behnken, to fit quadratic models. These models also require 

more data compared to regression models and are less robust 

to missing/unbalanced data, as they rely on a structured exper

imental design with complete datasets.

Chaitanya et al.60 investigated the optimization of volatile fatty 

acid (VFA) production from CO2 in MES using RSM. It examined 

the effects of key operational parameters, including pH, gas 

pressure, ethanol concentration, electrolyte concentration, and 

trace elements, on VFA synthesis using mixed anaerobic consor

tia. However, the study utilized 100 mL serum batch bottles, 

which are inherently non-scalable for industrial applications 

due to several limitations. The focus of this study was to identify 

significant factors influencing the production of products in MES 

and find possible interactions between factors in a miniaturized 

version of a scalable reactor design (DFBR), making a mixed 

linear regression approach more suitable. Additionally, as MES 

studies generally run over extended periods of time, a straight

forward yet insightful method could significantly reduce experi

mental time by identifying key variables and conditions early 

on, allowing researchers to refine parameters efficiently without 

the need for extensive approaches or elaborate experimental 

designs.

DoE and statistical models are valuable for research, as they 

are integral to the biotechnological industry, enhancing the effi

ciency and effectiveness of research and development pro

cesses. These methodologies facilitate the systematic planning 

and analysis of experiments, enabling researchers to extract 

maximum information with minimal resource expenditure. As 

MES progresses toward industrial implementation, DoE and 

MLRM will be instrumental in scaling up systems, ensuring 

reproducibility, and engineering microbial communities to drive 

CO2 conversion toward valuable biochemicals with high effi

ciency and selectivity.

METHODS

MES reactor setup

Three miniaturized DFBRs (R1, R2, and R3) were assembled.28

Each reactor contained a cathode and anode compartment, 

separated by a cation exchange membrane (CMI-7000s, Mem

brane International) and an NBR O ring. All components were 

3D printed using a biocompatible resin (BioMed Clear Resin 

V1, Formlabs) with the Form 3B printer. The carbon felt cathode 

had a total volume of 1 cm3 (4 × 0.5 × 0.5 cm) and a projected 

surface area of 2 cm2. The anode was a titanium plate coated 

with Pt/IrO2, supplied by Magneto Special Anodes (Schiedam, 

the Netherlands).

A bubble column, which was also 3D printed, was installed in 

the catholyte recirculation loop, allowing a mixture of CO2 and N2 

to be sparged into the catholyte. To maintain the catholyte at a 

pH of 5.4, a pH controller (AQUIS Touch S, Jumo) was connected 

to a pH probe (QP108X, ProSense, the Netherlands) positioned 

in the recirculation circuit. The total catholyte volume, including 

the cathode chamber, bubble column, and all recirculation 

loop tubing, was 15 mL. To prevent phototrophic growth and 

keep the temperature at 30◦C, the reactors were placed inside 

a heated cabinet, shielded from light.

MES reactor operation

The catholyte and anolyte medium composition can be found in 

the supplemental methods. The reactors were operated in 

continuous mode with an HRT of 4 days, and the recirculation 

rate for both the anolyte and catholyte was maintained at 

2.10 L h− 1. Under standard conditions, a 50:50 CO2/N2 mixture 

was sparged through the cathodic bubble column at 0.05 L 

min− 1 to provide dissolved CO2 to the catholyte. All reactors 

were connected to a multi-channel potentiostat (BioLogic, 

France) in a three-electrode configuration, allowing for abiotic 

electrochemical testing and controlled operation post inocula

tion. A 3M Ag/AgCl reference electrode (QM710X, ProSense, 

the Netherlands) was used in each reactor.

Inoculation and biotic operations

Before inoculation, the MES reactors were abiotically tested with 

the methods outlined by Zegers et al.28 Reactors 2 and 3 in this 

study correspond to reactors 2 and 3 described in this 

previous work. After characterization, the cathode potential 

was set to − 0.9 V vs. SHE. Each reactor was inoculated with 

approximately 9.36 mg L− 1 of biomass, comprised of a mixed 

microbial culture sourced from previously operated MES reac

tors that had produced acetate, n-butyrate, and n-caproate 

from CO2.29,40 When the pH was dropped from 5.4 to 4.4, the po

tential was corrected accordingly to − 0.84 V vs. SHE.

Analytical methods

Biofilm growth and product formation were monitored by 

collecting 1.5 mL liquid samples from each reactor twice a 

week or daily (excluding weekends) depending on the 

Table 3. Mixed linear regression results for Se and W addition

Compound Intercept (P>|z|) Se/W (P>|z|) Reactor var. R2
m R2

c

Acetate (C2) <0.001 0.139 0.008 0.265 0.274

Butyrate (C4) <0.001 0.050 <0.001 0.391 0.391

Caproate (C6) <0.001 0.037 0.001 0.419 0.422

Shown is main output from the MLRM assessing the effect of adding Se and W to the catholyte medium on the production of acetate, butyrate, cap

roate, and CH4. For the intercept and Se/W, the P>|z| is given, which refers to the p value for a z test of the null hypothesis that a given coefficient is zero. 

The reactor variance indicates how similarly reactors behave compared to each other under the tested conditions. R2
m and R2

m represent the marginal 

and conditional R2, respectively.
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experimental conditions. The OD of unfiltered samples was 

measured at 600 nm with a UV-visible spectrophotometer (UV- 

1800 series, Shimadzu, Japan) to estimate planktonic cell con

centrations. Biomass-specific growth rates and biomass-spe

cific productivity were determined as described by Winkelhorst 

et al.,40 where the total nitrogen (TN) content of centrifuged sam

ples (20 min, 13,300 rpm) was measured using a TOC analyzer 

coupled to a TN unit (TOC-L series, Shimadzu) and was kept at 

an oven temperature of 720◦C.

The concentrations of C2-C6 carboxylic acids and alcohols 

were analyzed using a gas chromatograph (Thermo Fisher 

Scientific, USA) with a Stabil-wax column (25 m length, 0.2 μm 

internal diameter). The column temperature was initially held at 

50◦C for 7 min, increased to 180◦C for 8 min, and maintained 

at 180◦C for 9 min. Helium (He) was used as a carrier gas, and 

the flame ionization detector (FID) was kept at 250◦C. Methane 

presence was tested by collecting duplicate gas samples 

from the cathode recirculation circuit’s bubble column either 

daily (excluding weekends) or twice weekly using glass vials. 

The samples were injected into a Trace1300 gas chromatograph 

(Thermo Fisher Scientific) equipped with a TriPlus RSH autosam

pler. The column temperature was initially held at 50◦C for 5 min 

and increased to 175◦C for 15 min. Hydrogen (H2) was used as a 

carrier gas, and the FID was kept at 250◦C.

Statistical analysis

Two different experimental designs were built. For the first 

model, pH, pCO2, and supplied pH2 were chosen as indepen

dent variables, while for the second model, pH, pCO2, and 

supplied cHAc were chosen. A 2III
3-1 fractional factorial design 

was used. A detailed description of this design is provided in 

the supplemental methods, and an overview of the two 2III
3-1 

fractional factorial designs and the resulting schemes can be 

found in Tables S1–S4. For the third model, where solely the 

effect of the addition of the trace metals Se and W was studied, 

a simple 21, also called a one-factor design, was used, with one 

run at the ‘‘low’’ level (no Se and W) and one run at the ‘‘high’’ 

level (Se and W supplied).

Since the data for each condition extended across multiple 

days, a permutation test was conducted separately for each 

experimental condition, reactor, and product (acetate, butyrate, 

caproate, and CH4) in Python (v.3.10.3) to assess the signifi

cance of the time-dependent trend. A full description of the 

permutation test is given in the supplemental methods. The full 

scripts, including all parameters and preprocessing steps, are 

documented under resource availability.

To gain insight into what independent variables play a significant 

role in the production of acetate, butyrate, caproate, and CH4 in 

MES, an MLRM approach was used, using ‘‘statsmodels. 

regression.mixed_linear_model.MixedLM’’ in Python (v.3.10.3). 

To detect multicollinearity in the regression models, the variance 

inflation factor (VIF) from ‘‘statsmodels.stats.outliers_influence. 

variance_inflation_factor’’ was used before regression. The 

MLRM was specified with the response variable as a function of 

the fixed effects (e.g., f′{product} ∼ Factor1 + Factor2′), while 

reactors were included as a grouping factor for random 

effects (groups = ‘‘Reactor’’). A random intercept model was 

implemented by setting ‘‘re_formula = 1,’’ allowing each reactor 

to have an independent intercept without the inclusion of 

random slopes. The model was fitted using maximum likelihood 

estimation (‘‘reml = False’’) with the L-BFGS optimization 

algorithm, and the maximum number of iterations was set to 

1,000 (‘‘maxiter = 1,000’’) to facilitate convergence. For each 

model, the marginal and conditional R2 were determined, and pre

dicted vs. observed values plots, residual plots, and Q-Q plots 

were generated to assess model quality.18,62,63 The interpretation 

of the VIF, marginal and conditional R2, and regression model vali

dation checks is described in the supplemental methods. The full 

scripts, including all parameters and preprocessing steps, are 

documented under resource availability.
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Materials availability

This study did not generate new unique materials.

Data and code availability

• Source data (the full permutation test dataset and the DoE table used for 

the mixed linear regression modeling) have been deposited at 4TU.Re

searchData and are publicly available as of the date of publication at 

https://doi.org/10.4121/5e840d08-55f6-4daa-a639-048cebcd8266.

• All original code has been deposited at 4TU.ResearchData and is pub

licly available at https://doi.org/10.4121/5e840d08-55f6-4daa-a639- 

048cebcd8266 as of the date of publication.

• Any additional information required to reanalyze the data reported in this 
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9. Prévoteau, A., Carvajal-Arroyo, J.M., Ganigué, R., and Rabaey, K. (2020). 
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