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SUMMARY

Defossilization of industrial processes has led to a growing interest in alternative biotechnologies capable of
producing chemicals from renewable resources. Microbial electrosynthesis (MES) is an emerging technology
in which electrotrophic microorganisms utilize electrons from a cathode and CO, to produce multi-carbon
compounds. To reach industrial application, clearer insights into the interactions between underlying biolog-
ical, electrochemical, and physicochemical processes are required. Although individual parameters have
been widely studied, identifying the most influential factors and their interactions remains challenging.
This study applies design of experiments (DoE) and mixed linear regression modeling (MLRM) to examine
the influence of pH, CO, and H, partial pressures, acetic acid concentration, and the addition of tungsten
and selenium on the production spectrum in biofilm-driven MES. The developed DoE-MLRM approach high-
lights the key role of pH and CO, availability in supporting carbon fixation and acetate production, while the

trace metals selenium and tungsten mostly promote chain elongation.

INTRODUCTION

The Paris Agreement aims to limit climate change by reducing
greenhouse gas emissions, over 78% of which come from the
use of fossil fuels, particularly in energy and chemical produc-
tion." While the transition to renewable energy sources such as
wind and solar power has reduced CO, emissions from energy
production, the chemical industry faces unique challenges due
to its reliance on fossil fuels as both a source of energy and car-
bon.? To address this challenge, sustainable alternatives, such
as renewable organic sources or CO,, are being investigated.®
Microbial electrosynthesis (MES), a technology that uses micro-
organisms as biocatalysts to reduce CO, to organic carbon
compounds, is a promising method for sustainable chemical
production. Unlike traditional electrochemical methods, which
are limited to the production of C1 and C2 compounds, MES
can facilitate the formation of larger carbon molecules, including
carboxylates and alcohols.””” This makes MES a potential tool
for sustainable carbon capture and utilization, helping to achieve
global climate goals.

To date, MES research has mainly focused on advancing the
technology by studying fundamental aspects, such as electron
transfer mechanisms and CO, reduction pathways, or improving
the efficiency of key components, such as the microbial culture
and cathode structure/material.®® Although significant progress
has been made, a deeper understanding of the interplay be-
tween different complex processes (biological, physical, electro-

)
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chemical, and chemical) within MES systems is required to ulti-
mately push the technology toward industrial implementation.
One such example is the comprehensive understanding of the
relationships between various operational conditions and micro-
bial metabolism. The effect of single operational parameters,
such as cathode potential, pH, inorganic carbon source, nutrient
availability, H, partial pressure, and temperature, on MES effi-
ciency has been extensively studied.'®'® However, it has proven
difficult to identify the most influential operating parameters in
functioning MES systems in order to understand how different
conditions interact with each other. Mathematical modeling
could provide a systematic approach to assess the complexity
of an MES system while complementing relevant experimental
research.'

In recent years, several studies have been published on
modeling MES, also on the dynamics between operating condi-
tions and the microbial response. Gadkari et al.'® presented a
dynamic computational model for a two-chamber H-type MES
system operated as a batch, focusing on the impact of opera-
tional parameters on MES performance. The model showed
that, for MES operations with a cycle time of 3-4 days, increasing
the initial substrate concentrations at the anode and cathode lin-
early increased the product formation rate. A trade-off between
product formation rate, substrate consumption, and Coulombic
efficiency highlighted the importance of multi-objective optimi-
zation. Another study demonstrated that machine learning algo-
rithms, particularly XGBoost, can effectively predict acetate and
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ethanol yields in MES based on operational factors such as cath-
ode material, pH, applied potential, temperature, and inorganic
carbon (IC) concentrations.'® Experimental data were acquired
with a batch-operated glass H-type dual-chamber reactor.
Feature importance analysis identified current, pH, and IC as
key parameters, while traditionally influential factors like applied
potential and temperature had a lesser impact. Cabau-Peinado
etal.'” presented a computational model for MES that predicted
microbial growth, current consumption, and CO, reduction to
acetate, n-butyrate, and n-caproate by linking microbial
metabolism to electrochemical processes. The model results
suggested that CO, concentration might limit existing MES sys-
tems, highlighting the need for effective CO, delivery methods.
Additionally, in biofilm-based reactors, continuous operation ap-
peared to enhance microbial growth, support denser biofilm for-
mation, and increase current densities.

Although all of these models are based on working MES sys-
tems and trained on the data obtained from them, no direct ev-
idence has been provided from running MES reactors on how
the microbial community adapts to changing operating parame-
ters and to different reactor environments. In this context, design
of experiments (DoE) can be used, a systematic method used to
plan, conduct, and analyze experiments in order to understand
the effects of multiple variables on an outcome. By varying
different factors within an experiment together, DoE allows one
to determine how these factors individually and interactively in-
fluence the results. DoE is commonly used to optimize pro-
cesses, identify critical variables, and develop predictive models
across fields like engineering, manufacturing, biotechnology,
and social sciences. It is particularly valuable for identifying the
most influential parameters, improving process efficiency, and
achieving robust, reproducible results.'®

Among the wide array of operational parameters, pH, CO,
availability, and H, production emerge as critical factors due to
their direct influence on microbial activity and system perfor-
mance in MES reactors. Local pH changes near the cathode,
driven by the hydrogen evolution reaction, create an alkaline
environment that can significantly affect microbial activity and
viability. These shifts also affect substrate availability, as they
alter the HCO3;/CO32~ equilibrium and the solubility of COs.
While buffers can mitigate these effects, their diffusion into the
boundary layer becomes limiting at higher current densities.'®
CO, loading rate alone has been shown to strongly affect bio-
electrochemical chain elongation.?® High CO, loading rates
(173 L d™") favor the production of butyrate and n-caproate
over the production of acetate, whereas low CO, loading rates
(8.6 L d) result predominantly in acetate production, even
with an extended retention time. When pH and CO, loading
rate are pushed to their extremes, such as at low pH or under
limited electron acceptor availability, microbes may activate
alternative metabolic pathways.?' For example, acetogenic bac-
teria may shift from acetogenesis to solventogenesis under
these conditions.?? H, availability is another critical parameter
in MES, as acetogenic bacteria depend on dissolved H, concen-
tration to drive acetogenesis, with rates increasing linearly
under first-order kinetics.”® Maintaining sufficient H, levels
ensures efficient CO, conversion, directly impacting system per-
formance. Finally, medium composition is another crucial yet
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underexplored factor in MES systems. Metalloenzymes involved
in the Wood-Ljungdahl pathway (WLP) depend on cofactors like
selenium (Se) and tungstate (W), which have been shown to
improve the activity of this pathway.?*~2® Incorporating these co-
factors in the catholyte medium could enhance microbial effi-
ciency, complementing the optimization of operational parame-
ters such as pH, CO,, and H, availability.

In many experimental designs, two or more variables are
related, and it is of interest to model and explore this relationship.
The relationship between dependent (response) variables and
independent (regressor) variables is characterized by a mathe-
matical model called a regression model, which is fit to a set of
sample data.'® Regression methods are highly valuable in de-
signed experiments, particularly when unexpected issues arise,
such as missing observations, providing a robust framework for
data analysis and interpretation. In many MES studies, data are
obtained from multiple reactors, each representing a distinct
experimental condition or grouping. In such cases, traditional
regression models may fall short, as they assume independence
of observations and do not take into account possible correla-
tions within groups. Mixed linear regression models (MLRMs)
offer a robust framework for addressing these challenges by
incorporating both fixed effects, which capture overall trends
across all groups, and random effects, which account for vari-
ability within and between groups.®” This approach allows for
the simultaneous analysis of overall trends and group-specific
deviations, making it particularly suitable for data arising from
multiple experimental reactors.

This work highlights the implementation of DoE and MLRMs to
determine the influence of pH, CO, partial pressure (pCO,), Ho
partial pressure (pH,) and the addition of W and Se on the
production spectrum of biofilm-driven, miniaturized, directed
flowthrough bioelectrochemical systems (DFBRs).”® By using a
DoE-MLRMs approach, the importance of the interactions
among the key parameters discussed above (pH, CO, loading
rate, H, availability, and the addition of metalloenzymes) as
well as their individual statistical significance can be systemati-
cally assessed, offering insights into their combined and inde-
pendent effects on MES performance in operational reactors.

RESULTS AND DISCUSSION

From complex patterns to interpretable results with
mixed linear regression

Two different experimental designs were developed to create
three different models that assess the separate effect of a com-
bination of factors on the production of the carboxylates acetate
(C2), butyrate (C4), and caproate (C6) in biofilm-driven MES: (1)
pH, pCO, and pHy; (2) pH, pCO,, and acetic acid concentration
(CHac); and (3) the addition of Se and W in the trace metal solution.
Three miniaturized DFBRs were subjected to the conditions
described in the three experimental designs over the course of
63-95 days (Figure 1). Each experimental condition lasted for
at least 2 hydraulic retention times (HRTs; 8 days) to observe
possible trends in production of carboxylates over time. As illus-
trated in Figure 1, it would be difficult to identify clear trends
without relying on speculation, due to the complexity and vari-
ability of the data. This highlights the need for a statistical
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Figure 1. Carboxylate and methane concentrations during DoE conditions in three continuous reactors

Shown are concentrations (g L™") of acetate (blue circles), butyrate (red triangles), caproate (green squares), and CH, (ppm; orange stars) during the different
design of experiment (DoE) conditions for reactor 1 (A), reactor 2 (B), and reactor 3 (C). Each reactor was operated in continuous mode with a hydraulic retention
time of 4 days. Vertical dotted lines indicate transitions between experimental conditions, each representing a specific combination of conditions (D). SC refers to
the standard operating conditions under which the reactors are typically run. In reactor 1 (A), a pH control issue occurred on day 154, leading to a significant drop
in pH and a recovery period before the experimental design could be completed.

approach such as MLRM, which allows for a more reliable inter-
pretation of results across replicate experiments. For all three
designed experiments, an MLRM approach was applied to
determine which factors had a significant effect on production
for each product separately.

pH and CO, supply affect carbon fixation and chain
elongation

The main output of the MLRM, modeling pH, pCO,, and addi-
tional bulk H,, is presented in Table 1, while the concentration
profiles of all carboxylates and CH, are shown in Figure 1 (con-
ditions 1-4). The complete model output for each product is pro-
vided in Note S1, which also includes model validation checks
(observed vs. predicted plots, residuals, and Q-Q plots). A
description of the regression model validation methods and their
interpretation is provided in Methods S4. For all tested indepen-
dent variables (C2, C4, C6, and CHy), the intercept is positive
and significant, indicating that factors beyond those tested
contribute to the production of those compounds. The estimated
reactor-to-reactor variance ranges from 0.034 to 0.121 (SE =
0.175-0.376) for all carboxylic acids, which is approximately
31%-72% of the residual variance. In all cases, the SE of the

reactor-specific variance estimate was larger than the estimate
itself. This means there is considerable uncertainty about how
much variation can be attributed to differences between reac-
tors. This typically suggests that the variation between reactors
is relatively small compared to the variation explained by the
experimental conditions. In other words, the reactor had little in-
fluence on the outcome, and the observed effects are more likely
driven by the tested variables (pH, pCO,, and pH,) rather than
random differences between individual reactors. The conditional
R2 (R2,) is higher than the marginal R? (R2,)) for all organics, indi-
cating that reactor-to-reactor variability contributed to the total
explained variance. This suggests that, beyond the effects of
pH, pCO,, and pH,, reactor-specific factors, in particular varia-
tion in microbial community composition and biofilm develop-
ment, may influence production.

The MLRM results in Table 1 indicate that acetate production
in MES is primarily driven by pH and CO, availability, with
both variables having statistically significant positive effects
(p < 0.001). This aligns with known MES processes where a
mildly acidic pH (5-6) promotes microbial conversion of CO,
to carboxylic acids.?®?°®" Additionally, since acetate is a
weak acid, an increase in pH also reduces the fraction of

Cell Reports Physical Science 6, 102934, November 19, 2025 3
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Table 1. Mixed linear regression results for pH, pCO,, and pH,

Compound Intercept (P>|z|) pH (P>|z)) pCO, (atm) (P>|z)) pH, (atm) (P>|z)) Reactor var. R%., R,

Acetate (C2) <0.001 <0.001 <0.001 0.179 0.121 0.747 0.853
Butyrate (C4) <0.001 0.005 0.282 0.517 0.034 0.379 0.527
Caproate (C6) 0.022 0.015 0.489 0.685 0.080 0.270 0.510
Methane (CH,) 0.016 0.152 0.306 0.220 22755.222 0.212 0.447

Shown is main output from the MLRM assessing the effect of pH, pCO,, and pH, on the production of acetate, butyrate, caproate, and CH,. For the
intercept, pH, pCO,, and pH,, the P>|z| is given, which refers to the p value for a z test of the null hypothesis that a given coefficient is zero. The reactor
variance indicates how similarly reactors behave compared to each other under the tested conditions. R%,, and R2, represent the marginal and con-

ditional R?, respectively.

undissociated acetic acid, preventing toxicity and allowing
sustained production.®? Looking at the regression coefficients
for acetate (Note S1.1), pCO, has a larger effect size than pH,
suggesting that increasing CO, availability is a key factor in maxi-
mizing acetate production. This observation aligns with the
outcomes of the black-box kinetic model developed by
Cabau-Peinado et al.,’” which also identified dissolved CO, con-
centration as a limiting factor in MES systems. Acetate synthesis
in MES is CO, dependent, primarily occurring via the WLP,
where CO, is reduced to acetate.>>** At industrial scale, CO,
availability can be enhanced through practical measures, such
as increasing gas flow and partial pressure, using gas diffusion
cathodes and/or membranes, and applying flowthrough reactor
designs that ensure steady CO, delivery to biofilms.*®*°

In contrast, additional bulk H, did not significantly impact ac-
etate formation (p = 0.179), suggesting that additional bulk H,
supply does not majorly influence system performance. Since
the additional H, was supplied through the bubble column,
mass transfer to the microorganisms could have limited addi-
tional dissolved H, to become available to the biofilm, preventing
a strong response. While the regression coefficient is positive
(Note S1.1), the lack of significance suggests that additional H,
is not a major driver of acetate production under the tested con-
ditions. These results indicate that hydrogen supplied from
the cathode was sufficient to sustain acetate production within
the biofilm without the need for external H, supplementation.
Additionally, the addition of external H, did not lead to biofilm
detachment or increased planktonic growth, as confirmed by
stable optical density 600 (ODggg) measurements over time
(Note S2).

For both butyrate and caproate, only the pH is associated with
an increase in concentration (p < 0.05), suggesting that pH regu-
lation is an important factor in optimizing their production. In
MES-related technologies, such as syngas fermentation, a lower
pH has been shown to inhibit chain elongation and can cause
shifts toward ethanol or lactate production.®* While the positive
coefficient for CO, (Notes S1.2 and S1.3) suggests a possible
beneficial effect of pCO, on butyrate and caproate, the lack of
statistical significance (p > 0.05) indicates that this effect is not
robust under the tested conditions. Although butyrate has
been hypothesized to form directly from CO, in MES and syngas
fermentation, both butyrate and caproate can also be produced
from acetate via reverse p-oxidation.***°~*® For anaerobic bio-
processes, acetate reduction to butyrate and caproate have
been determined to be thermodynamically and kinetically
feasible when ethanol or lactate serve as electron donors.*’

4 Cell Reports Physical Science 6, 102934, November 19, 2025

Ethanol and lactate production was not observed in any reactors
under any conditions in the liquid or gas phase, consistent with
the findings of Jourdin et al.,”® Cabau-Peinado et al.,”® and Win-
kelhorst et al.”® In the work by Jourdin et al.,”° ethanol was not
measured in significant concentrations, suggesting that direct
electron transfer from the cathode or alternative metabolic
pathways are involved in chain elongation. In that work, there
were indications that ethanol was not a major electron donor,
while CO, availability appeared to influence microbial meta-
bolism, potentially favoring direct acetate utilization over
ethanol-based elongation. The absence of detectable ethanol
does not necessarily indicate its lack of involvement in chain
elongation. In a gas fermentative system, ethanol has been
shown to be consumed as quickly as it is produced or dosed,
particularly in active chain-elongating microbial commu-
nities.*'*? According to the current model, caproate synthesis
seems to depend more on acetate and butyrate availability
than direct CO, fixation due to its higher p value for pCO,, unlike
acetate and butyrate. CO, may still play a role as an upstream
carbon source, but its impact on final caproate levels is likely in-
direct. The wide confidence interval (Notes S1.2 and S1.3) for the
CO, rate in both products suggests, however, that additional
interacting factors (e.g., electron availability or microbial com-
munity composition) may influence its impact, meaning that
the current experimental design may not fully isolate the effect
of CO,, rate. Although H, is a key electron mediator in acetogenic
and chain-elongating bacteria, additional supply of H, did not
have a significant impact on chain elongation (p > 0.05).
Despite the addition of 2-bromoethanesulfonic acid (BES),
CH, was still detected, which may be explained by consump-
tion of BES by, for example, sulfate-reducing bacteria or
by the gradual adaptation of methanogens to repeated
dosing.**™*® None of the three factors (pH, pCO,, and addi-
tional bulk H,) had a statistically significant effect on CH,
production, as all p values considerably exceeded 0.05. The
positive coefficients for all three factors suggest that higher
values may promote CH, production, however, the wide
confidence intervals indicate high variability and weak predic-
tive power. This could mean that the methanogens present in
the biofilm tolerate a wider pH range than other mesophilic
methanogens (pH 6.5-8), making pH control alone insufficient
to suppress methane production.*”~* Moreover, the develop-
ment of pH gradients within biofilms can create local variations
in pH, which could also contribute to the persistence of meth-
anogenic activity. Higher CO, availability alone does also not
necessarily lead to more methane production, even though



Cell Re[?orts .
Physical Science

¢? CellPress

OPEN ACCESS

Table 2. Mixed linear regression results for pH, pCO,, and supplied acetic acid

Compound Intercept (P>|z)) pH (P>|z|) pCO, (atm) (P>|z]) Supplied HAc (g/L) (P>|z]) Reactor var. R%., R,

Acetate (C2) <0.001 0.943 <0.001 0.042 <0.001 0.813 0.813
Butyrate (C4) <0.001 0.021 <0.001 <0.001 <0.001 0.864 0.864
Caproate (C6) <0.001 <0.001 <0.001 <0.001 0.006 0.764 0.899
Methane (CH,) <0.001 0.651 0.004 0.320 1480.729 0.299 0.715

Shown is main output from the MLRM assessing the effect of pH, pCO,, and supplied acetic acid on the production of acetate, butyrate, caproate, and
CH,. For the intercept, pH, pCO,, and Ac the P>|z| is given, which refers to the p value for a z test of the null hypothesis that a given coefficient is zero.
The reactor variance indicates how similarly reactors behave compared to each other under the tested conditions. R?., and R?,, represent the marginal

and conditional R?, respectively.

methanogens can use CO, and H, via hydrogenotrophic meth-
anogenesis.50 This means that the effect of CO, could have
been masked by other untested factors. The high reactor vari-
ance indicates that reactor-specific factors (e.g., biofilm devel-
opment, methanogen colonization, or slight differences in gas
diffusion) may strongly impact CH, production. Suppression
of methanogenesis might thus be more reactor dependent
than process dependent, requiring targeted interventions at
the microbial community level.

Acetic acid addition to the catholyte highlights its role in
chain elongation

The previous model indicates that CO, primarily influences ace-
tate concentration, highlighting its role in carbon fixation. Ace-
tate is clearly a key intermediate in chain elongation, as there is
a successive production pattern where acetate accumulates
first, followed by butyrate and then caproate. To further investi-
gate this relationship, another model was built to investigate
the combined effects of CO,, pH and supplementation of acetic
acid (HAc) (5 g L") to the reactor system on chain elongation.
This approach aims to clarify whether CO, directly influences
the production of butyrate and caproate or whether its primary
function is limited to acetate synthesis, which then serves as
the substrate for elongation.

The complete model output for each product is provided in
Note S3, and a model summary is shown in Table 2. Note S3
also contains model validation checks (observed vs. predicted
plots, residuals, and Q-Q plots). The concentration profiles of all
carboxylic acids and CH, are shown in Figure 1 (conditions 4, 5,
standard conditions [SC], and 6). For all independent variables
(C2, C4, C6, and CHy), the intercept is positive and significant,
which means that factors other than the tested ones contribute
to production of organics. The estimated reactor-to-reactor vari-
ance is 0-0.006 (SE = 0-0.102) for acetate, butyrate, and caproate
(0%-130%) of the residual variance). Although the estimated
reactor variance (0.006) exceeded the residual variance (0.0046)
for the caproate model only, its large SE (0.102) indicates that
reactor-to-reactor variability is either small or difficult to estimate
reliably. Although some differences between reactors can be
seen in the profiles, the model captures most of this variation as
residual noise. With three reactors, it is difficult to reliably separate
true reactor-specific effects from random variation, which is why
the estimated variance appears smaller than what is visible in
Figure 1. For all organics, the R%; was higher than the R?,, once
more implicating that, beyond the fixed effects, reactor-specific
factors influence microbial production.

From the results of the MLRM (Table 2), it is clear that the pres-
ence of added acetic acid reduced the apparent effect of pH (p =
0.943) on acetate concentration, since some acetate was exter-
nally supplied rather than microbially produced. CO, rate has a
larger effect size than pH (p < 0.001), suggesting that CO, avail-
ability is the dominant driver of acetate synthesis, overshadow-
ing any effects of pH. pH does not provide a carbon source
like CO, but only influences enzyme activity and microbial
growth, which might not be limiting in this scenario. This model
once more highlights CO, as a key limiting factor for acetate pro-
duction in MES, reinforcing the need for sufficient CO, supply to
maximize acetate yield.

In this new MLRM, butyrate and caproate formation are
shown once more to be pH sensitive, with p values for pH below
0.05. However, when compared to the MLRM with pH, pCO,,
and additional bulk H, as fixed effects (Table 1), a contradiction
arises, as pCO, was not statistically significant for either chain
elongation product in that model, whereas it is in this one. This
contradiction can be explained by considering the metabolic
pathways and interdependencies of acetate and butyrate
production in MES. The MLRM results reveal a hierarchical
structure in MES pathways. CO, availability is a key driver of
acetate production (p < 0.001), while butyrate and caproate
production depend on acetate availability, as indicated by the
significance of added acetic acid (p < 0.001). pH influences ac-
etate, butyrate, and caproate synthesis, reinforcing its role in
maintaining optimal microbial activity. The contrasting signifi-
cance of CO, between models suggests that the effect of
CO, on chain elongation may be indirect. In previous literature,
when acetate production has stabilized, limiting or intermit-
tently feeding CO, can increase hydrogen partial pressure,
thereby shifting the metabolic balance toward the reductive
conversion of acetate into longer-chain products such as buty-
rate and caproate.®'**> CO, availability may also influence mi-
crobial community composition, enriching for chain-elongating
bacteria under more reducing conditions.?>*">® These findings
highlight the importance of controlling CO, and acetate avail-
ability at different stages of MES to optimize chain elongation
pathways.

In the first presented model (pH, pCO,, and pH,), methano-
genic species were affected by none of the factors. In the cur-
rent model, H, was not included, and acetic acid was added
instead, which resulted in a significant effect for pCO, on
methane production (o = 0.004). In a biofilm-driven MES sys-
tem, more than 99% of microbes are present in the biofilm
(Note S2), but some persist in the bulk liquid, meaning
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competition for H, occurs at different spatial levels.?® The dif-
ference in CH, production between the two models can be
attributed to shifts in electron donor availability and microbial
competition dynamics. In the first model, additional bulk H,
(in the gas phase) and electrode-derived H, were available,
leading to competition between methanogens and acetogens
in both the biofilm and bulk liquid. This competition likely re-
sulted in acetogens preferentially utilizing Hy, limiting CH,4 pro-
duction and making CO, non-significant. This is an interesting
observation, as methanogens generally have a lower hydrogen
affinity (Ks) compared to acetogens, meaning they can utilize
hydrogen at lower concentrations.”* However, acetogens
achieve higher conversion rates at elevated hydrogen partial
pressures. Consequently, at higher hydrogen concentrations,
acetogens can outcompete hydrogenotrophic methanogens.
This is because the increased availability of hydrogen
favors acetogenic pathways, leading to acetate production.®°
In the current model, the removal of additional bulk H, forced
methanogens to become more dependent on CO,, increasing
its statistical significance as a driver of methane formation.
Acetic acid addition did not significantly impact CH,4, suggest-
ing that hydrogenotrophic rather than acetoclastic methano-
genesis was dominant. 16S rRNA gene sequencing of the
mixed culture inoculum revealed Methanobrevibacter as the
most abundant methanogenic genus (Figure S29), which is
generally considered hydrogenotrophic.’*°® These results
highlight the importance of both substrate availability and
spatial distribution (biofilm vs. bulk) in regulating CH, formation
in MES systems.

Addition of W and Se to the trace metal solution
significantly improves carbon fixation and chain
elongation

The availability of trace elements like Se and W is vital in MES,
as these elements serve as cofactors for key enzymes in the
WLP, and their presence can significantly impact the pathway’s
efficiency and the overall microbial productivity.?* 257
Formate dehydrogenase (FDH), which catalyzes the reduction
of CO, to formate, often contains selenocysteine at its active
site, which is crucial for its catalytic efficiency. Selenocys-
teine-containing FDHs exhibit higher catalytic rates compared
to their non-selenium counterparts.®® In certain acetogens, W
can act as a cofactor for FDH.® In acetate-producing aceto-
gens, the presence of Se and W in FDH has been suggested
to function as a cofactor.?®*° In gas fermentation processes,
W has not only been shown to activate FDH but also aldehyde
oxidoreductases and related enzymes, driving the production
of more reduced intermediates like acetaldehyde and
ethanol.?>**® Ensuring an adequate supply of these trace metals
in the growth medium can enhance the catalytic capability of
FDH, leading to improved conversion rates of CO, to desired
products. A simplified MLRM was used to gain key insights
into whether the addition of W and Se has a significant effect
on carbon fixation to acetate and whether it had any impact
on the following chain elongation reactions. The production
spectrum of each reactor before (1) and after (3) the
addition of Se and W is presented in Figure 2. The full output
and validation checks of the simplified model are provided in
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Note S4 for each product, and a model summary is presented
in Table 3.

For all independent variables (C2, C4, and C6) the intercept is
positive and significant, meaning that their change in concentra-
tion is not solely due to the absence and addition of Se and W.
The reactor variance for acetate was 0.008, but its large SE
(0.707) suggests that this estimate is unreliable, implying that
most acetate variation is due to residual noise rather than sys-
tematic reactor differences. In contrast, butyrate and caproate
production had zero reactor variance (SE = 0). This does not
imply that the reactors were identical but, rather, that with only
three groups, the model could not reliably distinguish reactor-
specific variability from residual error. The lower residual vari-
ances for butyrate (0.1008) and caproate (0.1712) compared to
acetate (0.6564) suggest that chain elongation products were
less affected by random variation.

From the simplified MLRM, the acetate concentration in the
system was positively, but not significantly, affected by the
addition of the trace metals Se and W to the system (p =
0.139). This seems to be a contradictory observation, as Se
and W are key co-factors for FDH in the WLP. One possibility
is that acetate production was not strongly limited by trace
metal availability, suggesting that the current medium compo-
sition provided enough trace metals for the WLP to run suffi-
ciently. On the other hand, this seems unlikely, as Se and W
have been shown, in processes other than MES, to improve ac-
etate production through the WLP.?*25€° The MLRM results
for butyrate and caproate provide insight into why the effect
of trace metals appears to be insignificant for acetate. It is likely
that acetate is being actively consumed by chain-elongating
microbes to produce longer-chain products. The effect of Se
and W on butyrate and caproate is not only positive, but the ef-
fect is also significant (o < 0.05). The R?,, (0.325) and R?, (0.422)
for caproate are the highest among all products, suggesting
that trace metals play a more crucial role in caproate synthesis
than in acetate and butyrate formation. If the addition of Se and
W improves acetate production, then acetate consumption for
butyrate and caproate formation also rises, thereby masking a
netincrease in acetate concentration. As a result, a clear statis-
tical effect (significance) in butyrate and caproate concentra-
tions is obtained, while acetate’s net concentration might not
show a significant increase because it is both produced and
consumed at higher rates. This suggests that trace metals
enhance multiple steps in MES, driving both acetogenesis
and subsequent chain elongation, with the net effect being
most visible in the final products rather than in the intermediate
(acetate).

Figures 2B and 2C also illustrate the enhanced selectivity to-
ward butyrate and caproate following the addition of Se and W
to the catholyte medium, with concentrations reaching 2.21
and 3.79 g L' for butyrate and caproate in R2 and 2.54 and
2.52 g L™ " in R3, respectively. As mentioned before, Se and W
enhance the conversion of CO, to acetate and reducing equiva-
lents by activating specific enzymatic pathways at both the start
of the metabolic pathway (CO, fixation) and further reduction
steps. The effect of this could be an increased amount of usable
acetate and reducing equivalents, like ethanol, in the system.
Secondary fermenters in the mixed microbial community can
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Figure 2. Carboxylate and methane concentrations before and after Se and W addition in three continuous reactors
Shown are concentrations (g L") of acetate (blue circles), butyrate (red triangles), caproate (green squares), and CH,4 (ppm; orange stars) during 236-238 days for
reactor 1 (A), reactor 2 (B), and reactor 3 (C). Vertical dotted lines indicate (1) the start of design of experiments (DoE), (2) end of DoE, and (3) addition of Se and W

to the trace metal solution.

use these available compounds to perform chain elongation; for
example by coupling ethanol oxidation to acetate reduction to
generate butyrate and caproate. In gas fermentation, the pres-
ence of Se and W has been linked to higher ethanol:acetate ra-
tios, higher total acid production, and onset of solventogenesis
and chain elongation phases that are absent in their defi-
ciency.”*®" However, as mentioned previously, ethanol was
not detected in any of the reactors, though its presence cannot
be ruled out. In the current MES reactors, the presence of Se
and W may intensify this dynamic by enhancing ethanol produc-
tion and accelerating chain elongation, thereby reinforcing the
likelihood of direct ethanol consumption without measurable
buildup.

The opportunities for the use of DoE and MLRM in MES
are endless

In this work, three different MLRM models were presented, all
with different investigated factors and a different range of
complexity. Due to the complexity of electrochemical systems
and microbial interaction in mixed microbial cultures, the
opportunities for the use of DoE and MLRM are virtually
limitless. These experimental and statistical approaches can
systematically deconstruct the influence of multiple interact-
ing factors. This work only discusses the use of DoE and

MLRM modeling to gain insight in how to shift and optimize
the production spectrum, but the same approach can be
applied to other aspects of MES, such as reactor design,
microbial community engineering, process stability, and
scale-up strategies.

MES systems often rely on biofilm formation at electrodes to
enable efficient electron transfer. However, the microbial com-
munity composition plays a critical role in determining whether
electrons flow toward acetate, butyrate, caproate, or methane.
DoE and MLRM could be used to understand how biofilm thick-
ness, electrode colonization, and microbial diversity impact
product formation. As MES operates at the interface of microbi-
ology and electrochemistry, DoE and MLRM could also be used
to model how variations in electrode potential influence electron
transfer efficiency and product selectivity, how current density
affects microbial metabolism and growth, and how different
electrode materials influence biofilm attachment and electroca-
talysis. Another example of how DoE and MLRM can be used
in MES is to assess the impact of scale-up factors, such as
mass transfer and current distribution, on microbial perfor-
mance. In practice, the scale-up factor can be included as an
additional design variable (e.g., surface-to-volume ratio or elec-
trode area relative to volume), allowing its effect and interactions
with operational parameters to be quantified. These few
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Table 3. Mixed linear regression results for Se and W addition

Compound Intercept (P>|z|) Se/W (P>|z)) Reactor var. R%., R,

Acetate (C2) <0.001 0.139 0.008 0.265 0.274

Butyrate (C4) <0.001 0.050 <0.001 0.391 0.391

Caproate (C6) <0.001 0.037 0.001 0.419 0.422

Shown is main output from the MLRM assessing the effect of adding Se and W to the catholyte medium on the production of acetate, butyrate, cap-
roate, and CH,. For the intercept and Se/W, the P>|z| is given, which refers to the p value for a z test of the null hypothesis that a given coefficient is zero.
The reactor variance indicates how similarly reactors behave compared to each other under the tested conditions. R?., and R?., represent the marginal

and conditional R?, respectively.

examples already highlight the wide extent to which this
approach can be used.

There are methods for exploring non-linear relationships and
optimizing process conditions, such as response surface meth-
odology (RSM). RSM needs different and more complex DoE
structures, such as central composite design and Box-
Behnken, to fit quadratic models. These models also require
more data compared to regression models and are less robust
to missing/unbalanced data, as they rely on a structured exper-
imental design with complete datasets.

Chaitanya et al.?” investigated the optimization of volatile fatty
acid (VFA) production from CO, in MES using RSM. It examined
the effects of key operational parameters, including pH, gas
pressure, ethanol concentration, electrolyte concentration, and
trace elements, on VFA synthesis using mixed anaerobic consor-
tia. However, the study utilized 100 mL serum batch bottles,
which are inherently non-scalable for industrial applications
due to several limitations. The focus of this study was to identify
significant factors influencing the production of products in MES
and find possible interactions between factors in a miniaturized
version of a scalable reactor design (DFBR), making a mixed
linear regression approach more suitable. Additionally, as MES
studies generally run over extended periods of time, a straight-
forward yet insightful method could significantly reduce experi-
mental time by identifying key variables and conditions early
on, allowing researchers to refine parameters efficiently without
the need for extensive approaches or elaborate experimental
designs.

DoE and statistical models are valuable for research, as they
are integral to the biotechnological industry, enhancing the effi-
ciency and effectiveness of research and development pro-
cesses. These methodologies facilitate the systematic planning
and analysis of experiments, enabling researchers to extract
maximum information with minimal resource expenditure. As
MES progresses toward industrial implementation, DoE and
MLRM will be instrumental in scaling up systems, ensuring
reproducibility, and engineering microbial communities to drive
CO, conversion toward valuable biochemicals with high effi-
ciency and selectivity.

METHODS

MES reactor setup

Three miniaturized DFBRs (R1, R2, and R3) were assembled.®
Each reactor contained a cathode and anode compartment,
separated by a cation exchange membrane (CMI-7000s, Mem-
brane International) and an NBR O ring. All components were
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3D printed using a biocompatible resin (BioMed Clear Resin
V1, Formlabs) with the Form 3B printer. The carbon felt cathode
had a total volume of 1 cm® (4 x 0.5 x 0.5 cm) and a projected
surface area of 2 cm?. The anode was a titanium plate coated
with Pt/IrO,, supplied by Magneto Special Anodes (Schiedam,
the Netherlands).

A bubble column, which was also 3D printed, was installed in
the catholyte recirculation loop, allowing a mixture of CO, and N,
to be sparged into the catholyte. To maintain the catholyte at a
pH of 5.4, a pH controller (AQUIS Touch S, Jumo) was connected
to a pH probe (QP108X, ProSense, the Netherlands) positioned
in the recirculation circuit. The total catholyte volume, including
the cathode chamber, bubble column, and all recirculation
loop tubing, was 15 mL. To prevent phototrophic growth and
keep the temperature at 30°C, the reactors were placed inside
a heated cabinet, shielded from light.

MES reactor operation

The catholyte and anolyte medium composition can be found in
the supplemental methods. The reactors were operated in
continuous mode with an HRT of 4 days, and the recirculation
rate for both the anolyte and catholyte was maintained at
2.10 L h~". Under standard conditions, a 50:50 CO,/N, mixture
was sparged through the cathodic bubble column at 0.05 L
min~' to provide dissolved CO, to the catholyte. All reactors
were connected to a multi-channel potentiostat (BiolLogic,
France) in a three-electrode configuration, allowing for abiotic
electrochemical testing and controlled operation post inocula-
tion. A 3M Ag/AgCl reference electrode (QM710X, ProSense,
the Netherlands) was used in each reactor.

Inoculation and biotic operations

Before inoculation, the MES reactors were abiotically tested with
the methods outlined by Zegers et al.?® Reactors 2 and 3 in this
study correspond to reactors 2 and 3 described in this
previous work. After characterization, the cathode potential
was set to —0.9 V vs. SHE. Each reactor was inoculated with
approximately 9.36 mg L™ of biomass, comprised of a mixed
microbial culture sourced from previously operated MES reac-
tors that had produced acetate, n-butyrate, and n-caproate
from C0O,.%%*° When the pH was dropped from 5.4 to 4.4, the po-
tential was corrected accordingly to —0.84 V vs. SHE.

Analytical methods

Biofilm growth and product formation were monitored by
collecting 1.5 mL liquid samples from each reactor twice a
week or daily (excluding weekends) depending on the
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experimental conditions. The OD of unfiltered samples was
measured at 600 nm with a UV-visible spectrophotometer (UV-
1800 series, Shimadzu, Japan) to estimate planktonic cell con-
centrations. Biomass-specific growth rates and biomass-spe-
cific productivity were determined as described by Winkelhorst
et al.,*® where the total nitrogen (TN) content of centrifuged sam-
ples (20 min, 13,300 rpm) was measured using a TOC analyzer
coupled to a TN unit (TOC-L series, Shimadzu) and was kept at
an oven temperature of 720°C.

The concentrations of C2-C6 carboxylic acids and alcohols
were analyzed using a gas chromatograph (Thermo Fisher
Scientific, USA) with a Stabil-wax column (25 m length, 0.2 pm
internal diameter). The column temperature was initially held at
50°C for 7 min, increased to 180°C for 8 min, and maintained
at 180°C for 9 min. Helium (He) was used as a carrier gas, and
the flame ionization detector (FID) was kept at 250°C. Methane
presence was tested by collecting duplicate gas samples
from the cathode recirculation circuit’s bubble column either
daily (excluding weekends) or twice weekly using glass vials.
The samples were injected into a Trace1300 gas chromatograph
(Thermo Fisher Scientific) equipped with a TriPlus RSH autosam-
pler. The column temperature was initially held at 50°C for 5 min
and increased to 175°C for 15 min. Hydrogen (H,) was used as a
carrier gas, and the FID was kept at 250°C.

Statistical analysis

Two different experimental designs were built. For the first
model, pH, pCO,, and supplied pH, were chosen as indepen-
dent variables, while for the second model, pH, pCO,, and
supplied cyac were chosen. A 2, fractional factorial design
was used. A detailed description of this design is provided in
the supplemental methods, and an overview of the two 2,3
fractional factorial designs and the resulting schemes can be
found in Tables S1-S4. For the third model, where solely the
effect of the addition of the trace metals Se and W was studied,
a simple 27, also called a one-factor design, was used, with one
run at the “low” level (no Se and W) and one run at the “high”
level (Se and W supplied).

Since the data for each condition extended across multiple
days, a permutation test was conducted separately for each
experimental condition, reactor, and product (acetate, butyrate,
caproate, and CH,) in Python (v.3.10.3) to assess the signifi-
cance of the time-dependent trend. A full description of the
permutation test is given in the supplemental methods. The full
scripts, including all parameters and preprocessing steps, are
documented under resource availability.

To gaininsight into what independent variables play a significant
role in the production of acetate, butyrate, caproate, and CHy, in
MES, an MLRM approach was used, using ‘“statsmodels.
regression.mixed_linear_model.MixedLM” in Python (v.3.10.3).
To detect multicollinearity in the regression models, the variance
inflation factor (VIF) from “statsmodels.stats.outliers_influence.
variance_inflation_factor” was used before regression. The
MLRM was specified with the response variable as a function of
the fixed effects (e.g., f{product} ~ Factor1 + Factor2’), while
reactors were included as a grouping factor for random
effects (groups = “Reactor”). A random intercept model was
implemented by setting “re_formula = 1,” allowing each reactor
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to have an independent intercept without the inclusion of
random slopes. The model was fitted using maximum likelihood
estimation (“reml = False”) with the L-BFGS optimization
algorithm, and the maximum number of iterations was set to
1,000 (“maxiter = 1,000”) to facilitate convergence. For each
model, the marginal and conditional R? were determined, and pre-
dicted vs. observed values plots, residual plots, and Q-Q plots
were generated to assess model quality.®2®° The interpretation
of the VIF, marginal and conditional R?, and regression model vali-
dation checks is described in the supplemental methods. The full
scripts, including all parameters and preprocessing steps, are
documented under resource availability.

RESOURCE AVAILABILITY

Lead contact
Requests for further information, resources, and materials should be directed
to and will be fulfilled by the lead contact, Ludovic Jourdin (|.jourdin@tudelft.nl).

Materials availability
This study did not generate new unique materials.

Data and code availability

® Source data (the full permutation test dataset and the DoE table used for
the mixed linear regression modeling) have been deposited at 4TU.Re-
searchData and are publicly available as of the date of publication at
https://doi.org/10.4121/5e840d08-55f6-4daa-a639-048cebcd8266.

@ All original code has been deposited at 4TU.ResearchData and is pub-
licly available at https://doi.org/10.4121/5e840d08-55f6-4daa-a639-
048cebcd8266 as of the date of publication.

® Any additional information required to reanalyze the data reported in this
paper is available from the lead contact upon request.
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