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Summary

During the initial phase of diagnosis, patients with anti-NDMA-receptor encephalitis (anti-NMDARE)
often experience severe symptoms that significantly impact their quality of life. Anti-NDMARE is an
autoimmune disorder affecting the brain, with electroencephalography (EEG) playing a vital role in diag-
nosis and treatment. Identifying EEG patterns associated with positive or negative prognosis is crucial
for adjusting treatment intensity. Improved understanding of diagnosis, prognosis and treatment could
enhance the quality of life for anti-NDMARE patients. This thesis aimed to analyse the EEG data with
Machine Learning (ML) to predict which patients exhibit positive recovery after 12 months of standard
treatment.

To predict the outcome after 12 months, a Random Forest (RF) classifier was constructed using avail-
able EEG features. The EEG dataset exhibited a clustered structure due to multiple values for each
patient’s EEG features. Three approaches were considered to handle this clustering: ignoring clus-
tering, reducing clustering to independent observations, and explicitly accounting for clustering. The
first two options were explored in this research. Another prominent challenge encountered early in the
research was the class imbalance, which was addressed by under- and oversampling the dataset.

For the simulation sets, under- or oversampling did not yield the desired effect, as the normal sets
demonstrated comparable or even superior performance compared to the the under- and oversampled
sets. However, under- and oversampling improved the performance scores for the real dataset. Re-
ducing the clusters to independent observations did not achieve high performance scores compared to
ignoring clustering, both in the simulation and real data cases. Furthermore, in both cases, RF models
using the EEG sets outperformed those using principal component analysis (PCA) on the clustered
EEG set.

Although the performance metrics scores were not yet optimal, important features for determining
class labels were identified, providing a good understanding of the dataset. Mean Decrease in Impurity
(MDI) and SHAP algorithm highlighted the significance of connectivity-related features in the reduced
clustering to independent observation setting. The relevance of these features became evident upon
calculating the mean, minimum, or maximum. In the EEG setting, MDI emphasized the importance
of the features deltapower, sampleentropy and occipital-related features. These features remain
important in the reduced set. SHAP, in addition to prioritizing the same features, offered insights into
how specific features contribute to the prediction of a specific observation, enhancing interpretability.

The challenges for the RF classifier in the case of anti-NDMARE are class imbalance and accurate
classification of the minority class. Under- and oversampling techniques successfully improved classi-
fication of minority class observations for the original EEG set. Concluding, this set is strongly encour-
aged to be utilized over all sets when aiming to classify EEG features. However, this set overlooks the
clustering aspect, leaving room for optimization in future research to address this limitation. Addition-
ally, it is recommended to explore the potential of a Convolutional Neural Network (CNN) for accurate
classification of raw EEG signals. Its exploration was beyond the scope of this research.
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1
Introduction

This thesis aims to explore effective classification methods for predicting the outcome after 12 months
of anti-N-methyl-D-aspartate-receptor encephalitis (anti-NMDARE) patients based on available EEG
features.
During the initial stage of diagnosis, patients with anti-NMDARE often experience severe symptoms
that significantly impact their quality of life. However, after 12 months, a majority of patients having
received standard treatment is well recovered. The factors that contribute to the severity of the disease
remain unclear. Is it possible to predict which patients will exhibit positive recovery after 12 months of
standard treatment after diagnosis?

1.1. Anti-NMDA-receptor encephalitis background
Anti-NMDARE is an auto-immune disorder that affects the brain. It occurs when the body’s immune
system produces antibodies that mistakenly attack NMDA receptors in the brain. The disease has
only recently been discovered and categorized, prior to which patients were labeled as psychotic. The
majority of anti-NMDARE patients are women of childbearing age or children [1]. Diagnosis and treat-
ment is still challenging, because patients with anti-NMDARE have a diverse array of symptoms[2].
Early diagnosis and immediate immunotherapy can significantly improve the outcome [3]. Due to its
simplicity and quick results, electroencephalography (EEG) has the potential to serve as a valuable
tool for diagnosing anti-NMDARE. An EEG recording measures the electrical activity of the brain by
attaching electrodes to the patient’s head. Currently, the signals in the EEG recordings are manually
analyzed by clinicians to identify any patterns and to diagnose cases of anti-NMDARE. This approach
is labor-intensive and requires 9 to 12 months training. This is where EEG evaluation using Machine
Learning (ML) can prove to be valuable. Furthermore, ML might analyse the EEG recordings more
accurately and specifically. Typically, EEG recordings exhibit a non-specific pattern characterized by
a diffuse slowing of background activity [4]. The rhythm speed can be considered as a rough measure
for classification. An EEG displaying normal rhythms is associated with a favorable outcome, whereas
a delayed EEG is associated with a poor outcome.
For this research, the EEG recordings are summarized in multiple features that describe the signal.
By focusing on whether and when patterns appear in the EEG features of patients with anti-NMDARE,
there is an opportunity for enhancing the diagnosis, description and differentiation of anti-NDMARE
[2]. The ability to identify which EEG patterns relate to a positive or negative prognosis is crucial. By
distinguishing which patients have a favorable or unfavorable long-term (12months) outcome, the inten-
sity of the treatment can be adjusted accordingly. This approach ensures that the immunosuppresive
medication treats the patients effectively while minimizing the risk of severe side effects.

1.2. Machine Learning in healthcare: background information
ML has emerged as a powerful tool in healthcare that can help medical professionals diagnose and
treat patients. ML involves constructing or training statistical models using real-world data to predict
outcomes or classify observations. By analyzing high-dimensional data, ML can identify patterns that
are not known to the specialists (yet). Rahmani et al. recognize the opportunities of ML methods in

1



1.3. Framework for model development 2

improving the quality of healthcare in general [5]. The adoption of ML technologies realizes cost reduc-
tion, effective drug discovery and improvement of therapeutic results [5]. However, [5] also stresses
that practitioners should identify the strengths and weaknesses of the ML methods in order to improve
healthcare decision-making. ML has increasingly been utilized as effective tool that provides medical
diagnoses and treatment recommendations. Craik et al. specify this for EEG data particularly and say
that automatically classifying the EEG signals reduces the dependence on trained professionals and
makes EEG usage more practical [6].

The new generation of healthcare practitioners is encouraged to embrace the ML challenge. They
should acquire the skills to understand, develop and control the ML techniques to improve patient care
[7]. According to Rubinger et al. healthcare professionals demand more interpretability, model perfor-
mance, and reliability compared to other domains [8]. The authors emphasize that the quality of data
fed into the ML algorithm is crucial for accurate assessments. Rajula et al. [7] state the challenge of
statistical inference of large data sets in the setting of healthcare. This challenge in ML methods is
to identify genuine patterns, prevent false classifications and make confident predictions on possible
diagnosis and treatments. Consequently, ML methods emphasize not only predicting the outcome as
accurately as possible, but also understanding the relationship between variables.
Rajula et al. [7] found that ML in the medical field is a rising topic and that the number of articles being
published in the areas of diagnostics and drug discovery is growing exponentially. Rahmani et al. [5]
continue that most research on MLmethods in healthcare is about the field of diagnostics and that there
are very few papers in the treatment field that use ML techniques [5]. This thesis attempts to examine
the application of machine learning algorithms in the case of anti-NMDARE and assess their potential
in improving the treatment of patients.

Loh et al. [9] explain the low acceptance of Artificial Intelligence (AI) in healthcare applications, because
ML methods are seen as black boxes. AI includes a broad range of technologies and approaches, in-
cluding ML, that are capable of performing tasks that typically require human intelligence. Explainable
AI (XAI) is a field within AI that focuses on making AI and thus ML models more interpretable for prac-
titioners, so that they can trust their decisions and better understand how they work. Loh et al. also
say that visualization of XAI can be beneficial in supporting clinical decisions. The first high-quality
paper on XAI was published in 2018, suggesting that the field of XAI is relatively new [9]. According
to Confalonieri et al. [10], the initial ideas surrounding explainability in AI can be traced back to the
mid-1980s. Recent advancements and achievements of XAI in ML technologies resurfaced in 2018.
This thesis focuses on XAI as an important topic, as understanding how machine learning models work
is becoming more crucial in many fields. By exploring XAI methods and their practical use, this thesis
aims to contribute to the development of more trustworthy and dependable machine learning models

1.3. Framework for model development
Craik et al. [6] suggest three important steps in EEG classification tasks, artifact removal, feature ex-
traction and classification. This thesis focuses on the latter, which is developing a classification model
with the available EEG data. This research had no influence on the artifact removal and signal analysis
techniques used to extract features from the EEG signals. According to Rahmani et al. [5] a good
framework for model development in healthcare consists of five phases: problem definition, dataset,
data preprocessing, ML model development and evaluation. In the same way, Chen et al. [11] out-
line the steps for developing an ML model for healthcare: ”selecting the appropriate problem, curating
datasets, developing and evaluating model performance.”

This thesis follows those steps. In Chapter 2 various classification methods are explained and com-
pared. Chapter 3 presents an overview of the anti-NMDARE data that is available for the classification
method. Exploratory data analysis lets us make few assumptions on the outcome of the classification
method. In Chapter 4, the Random Forest classifier is elaborated on and how the classifier can specif-
ically be applied to the anti-NMDARE data. Chapter 5 includes the research design and techniques
used for developing the Random Forest classifier for the anti-NDMARE data. Before we continue to
the results of the anti-NMDARE data, we present a simulation study in Chapter 6. The results from the
application and development of the Random Forest classifier on the anti-NMDARE data is presented
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in Chapter 7, where the model’s performance is evaluated. In Chapter 8, there are some important
concluding remarks and suggestions for further research.





2
Classification

In this chapter, first a brief explanation of classification is given. Afterward, the most common classifi-
cation methods used are discussed and compared. Why are specific methods better for our problem
statement? And what are the characteristics of the methods we look at? After clarifying this, the deci-
sion for the classification method is further explained.

2.1. Introduction on classification
Classification is a task within the field of ML. A classification method aims to predict a qualitative re-
sponse variable, like a class label, based on an input variable which is usually high dimensional. For
example, given patient-specific info, does the patient classify as diabetic or non-diabetic? The output,
or class label (eg. diabetic or non-diabetic), is usually denoted as y. The input variable is a set of fea-
tures (eg. blood pressure, glucose levels, etc.), and is denoted by X = (X1, . . . , Xp). Here, p denotes
the number of features.

ML can be divided into supervised and unsupervised learning. When a supervised learning model
is trained, it knows the response variables y. The goal is to find a classifier model f that predicts the
class label ŷ based on the observed features X for each individual patient as accurately as possible,
[12]. Here, f(X) = ŷ refers to the prediction of the class label, whereas y is the true class label. There
are multiple ways to assess the quality of a classification model. The comparison of different methods
is discussed in Section 2.3.

Formulation for the anti-NMDARE classification problem This thesis aims to develop a classifica-
tion model that can predict the outcome of anti-NMDARE for different patients based on their EEG data.

The prognosis and severity of the disease is based on a clinical score called modified Ranking Scale
(mRS) ranging from 0 to 6. An mRS of 0 means no symptoms up to an mRs of 6 means the patient is
deceased. The clinical score is assessed at multiple time points. During the first six weeks, the ma-
jority of patients exhibit high scores. After 12 months, most patients are well recovered. Scores after
12 months from 0 to 2 are considered as a good outcome and score from 3 to 6 are defined as a bad
outcome [1].

5
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Figure 2.1: mRS scores for anti-NMDARE

We choose to use 0 and 1 by splitting the scores 0 to 6 into a favorable and unfavorable outcome.
The output variable for this problem is therefore binary with values

yi =


1 if patient i belongs to class with a negative outcome,

meaning mRS scores of 3 to 6 after 12 months
0 if patient i belongs to class with a positive outcome,

meaning mRS scores of 0 to 2 after 12 months

(2.1)

The input EEG data of the anti-NMDARE classification problem can be divided into two structures

1. Extracted features, in our case 29, from the epochs, which are segments of the EEG signals of
patient i

Xi = (Xi,1, . . . , Xi,29)

2. The signals of raw EEG data per patient i

Each patient i has its own input featuresXi and true label yi. We have a total of 44 patients, represented
by I. Each patient receives an output class label ŷi after the model was fit. The classification methods
need to be able to use these structures as input variables. Furthermore, there is data available that
represents general characteristics such as age, gender or findings in MRI scans. This thesis is focused
on the EEG signals. In Chapter 3, the dataset is described in more detail.

2.2. Characteristics
In comparing classification methods for the case of anti-NMDARE, it is essential to examine their char-
acteristics in terms of accuracy, interpretability, robustness, and quality. We provide a brief overview
of these characteristics. When discussing a model’s performance, it is important to recognize that it is
about a specific instance of a classification method, while the use of the term method typically refers
to the classification method as a whole.
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Accuracy
Accuracy is often used as a primary performance metric since it determines the model’s ability to cor-
rectly classify observations. For quantifying the accuracy of a classification model f , the fraction of
misclassified observations is computed

1

I

I∑
i=1

1(ŷi ̸= yi) (2.2)

Interpretability
Besides accurately predicting the class labels, the classification model must be interpretable in the
case of anti-NMDARE. Since the output of our model is whether a patient has a positive or negative
prognosis for the treatment, it should be clear how model f(X) arrives at predicted outcome ŷ. ML
often has the perception of being a black box, as it is often not clear why and how an ML model came
to the prediction. Interpretability refers to how easy it is to understand the ML model and its prediction.
Various techniques and methods, such as visualization, feature importance, and explanation models
can help in understanding the classification models. In general, a more complex classification method
is less interpretable. There is a tradeoff between flexibility and interpretability in various classification
methods. As these methods become more flexible, their interpretability tends to decrease, as shown
in Figure 2.2 [12].

Figure 2.2: Tradeoff between flexibility and interpretability for various classification methods [12]

Breiman highlights the conflict between prediction, accuracy, and interpretability. He suggests that the
best way to handle this conflict is to focus on predictive accuracy first and subsequently try to understand
the underlying factors [13]. He further shifts the focus of the interpretability versus accuracy dilemma
by saying that the objective of a model is accurate information on the relationship between the predictor
variables and outcome, instead of interpretability.

Robustness
A classification method that is robust can handle outliers and minor variations in data with minimal
impact on its performance. Small changes in the dataset or different initialization of tuning parameters,
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the parameters that need to be set before a classification model is trained, can significantly impact
the model’s performance. Robust methods mitigate the influence of sensitivity within a model. Multiple
definitions of robustness exist; however, when referring to robustness, we intend to follow the mitigation
of sensitivity. By mitigating sensitivity, the stability and reliability of a model improves. The Rashomon
effect, which shares similarities to robustness, is a concept Breiman discussed in [13]. The Rashomon
effect implies that a slight alteration in the data leads to a change of model [13]. Ideally, a model
performs the same on different datasets. The variance of a classification method can indicate how
much a model changes when there is a modification in the dataset. High variance occurs when a
small change in the training data leads to a substantial change in the model. More flexible models
typically have higher variance as they adjusts to the specific dataset but not generalize on unseen data.
However, these models have a low bias. Bias refers to the tendency of a model to make systematic
errors in its predictions. A high bias implies underfitting, since themodel’s simplicity leads to a significant
amount of error. A low bias might imply overfitting, which occurs when a model performs well on the
training data but poorly on unseen data. Choosing the right model, there is a tradeoff between variance
and bias. Ideally, a model achieves low values for both variance and squared bias. The challenges
lies in identifying these models [12].

Quality
Performance metrics are considered to evaluate a model’s quality. Caruana et al. [14] argue that it
is important to compare models on multiple performance metrics. While a particular classifier may
perform well on one metric, it may fall short on optimality when assessed using other metrics [14]. Per-
formance metrics provide insights into the quality of a model including accuracy, sensitivity, specificity,
precision, F1-score, and the ROC curve. As performance metrics are calculated after training a model,
this section covers their explanation, while Chapter 7 discuss their usage.

Swathy et al. [15] argue that not only accuracy, Equation (2.2), should be considered as a perfor-
mance metric, but also other metrics, depending on the demands of the diagnosis. The anti-NMDARE
classification problem is a binary problem with class labels 0 and 1, see Equation (2.1). Binary classifi-
cation models can be evaluated using a confusion matrix. Although it may seem counter-intuitive, the
positive class in a binary classification problem (label 1 in Equation (2.1)) can be associated with the
negative outcome, and vice versa. In the context of the confusion matrix, a negative prediction (label 0)
often means low risk, whereas a positive prediction (label 1) is associated with high risk. The confusion
matrix is displayed below.

Actual class
class label 1 class label 0

class label 1 True Positives (TP) False Positives (FP)
Predicted class class label 0 False Negatives (FN) True Negatives (TN)

Table 2.1: Confusion matrix

True Positives are the observations that are classified as class 1, and also have actual class
label 1.
False Positives are the observations that are classified as class 1, but have actual class label 0.
False Negatives are the observations that are classified as class 0, but have actual class label 1
True Negatives are the observations that are classified as class 0, and also have actual class
label 0

In the healthcare sector, analyzing the misclassifications is often considered as more important than
the correctly classified observations. Rudinger et al., [8], underline that in the healthcare sector where
clinical decisions are made, the cost of model misclassification or error is high. Also Zhai et al., [16],
state that higher sensitivity is more important for clinical applications, along the side of specificity. Ac-
cording to Hastie, the class-specific performance is generally emphasized in the domains of medicine
and biology [12].
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Specificity is defined as the ability of the model to correctly predict observations that have a nega-
tive class label, or favorable outcome after 12 months.

Specificity =
TN

TN + FP
=

#patients correctly classified as negative, class 0

#patients with actual negative class label 0
(2.3)

A high value for specificity implies that the model is correctly classifying most of the negative class
labels, as it is the percentage of negatives the model correctly classifies. A low value for specificity
means that more patients who actually have a lower risk for a poor outcome are misclassified as high
risk. The Type-I error is known as the False Positive rate, which equals 1− specificity.

Sensitivity, or recall, on the other hand, is the ability of the model to correctly classify the patients
that have a positive class label, or poor outcome after 12 months.

Sensitivity =
TP

TP + FN
=

#patients correctly classified as positive, class 1

#patients with actual positive class label 1
(2.4)

A high value for recall implies that the model is correctly classifying most of the positive class labels.
A low value indicates that the model misclassifies relatively many higher-risk patients to the lower-risk
class. Here, 1−sensitivity is the Type-II error. If reducing Type-II error is preferred, the aim is to optimize
the recall metric or the True Positive rate. However, to get a comprehensive view of the performance
of the classifier, both metrics are considered.

ROC curve is a graphical tool that visualizes the tradeoff between the True Positive (sensitivity) and
False Positive (1-specificity) rate across all possible thresholds. Figure 2.3 displays an example of the
ROC curve. The overall performance of a classifier can be summarized by the area under the ROC
curve, also noted as ROC-AUC. A desirable ROC curve will hug the top left corner, indicating optimal
performance. Therefore, a larger ROC-AUC generally indicates better classification performance [12].
The ROC-AUC can obtain a maximum values of 1.

Figure 2.3: Example of ROC curve [12]

Precision is the fraction of correctly classified observations of the positive class out of all predicted
positives. A high precision indicates a high level of confidence in the model’s ability to predict the
positive class labels. Precision is a commonly used metric when the goal is to minimize false alarms.
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False alarms are instances that are predicted as positive but are actually negative.

Precision =
TP

TP + FP
=

#patients correctly classified as positive, class 1

#patients classified as positive, class 1
(2.5)

F-score is the harmonic mean between the recall and precision. It gives each metric the same weight.
The F-score is often used for imbalanced datasets since it accounts for both false positives and false
negatives.

F-score =
2× recall× precision
recall+ precision

(2.6)

2.3. Classification methods
Before developing a classification model for the dataset considered in this thesis, existing methods are
analyzed and evaluated in order to compare them. Within the field of classification, there are several
ML methods to predict y. Rahmani et al. [17] formulated the advantages and disadvantages of var-
ious supervised methods, see Table A.1 in Appendix A. From this table, we decided to explore the
following models for the anti-NMDARE problem: Decision Trees (DT), Neural Networks (NN), Random
Forests (RF), and Support Vector Machines (SVM). The need for independent features in the Naive
Bayes model makes the method unfavorable for our problem. Furthermore, k-Nearest Neighbors is
regarded simple in the sense that it memorizes the training observations and is distance-based which
may struggle to capture patterns present in the data. Considering the disadvantage of sensitivity to
the data structures, we have decided not to include this method in our analysis. Additionally, logistic
regression is included in the comparison since it is a widely recognized binary classification method.

Caruana et al. [14] state that it depends on the data which learning algorithm performs best. Hastie et
al. [12] claim that data with few training observations require a model that demonstrates low variance.
In the next paragraphs, we compare various classification methods for data structure (1) extracted fea-
tures, and (2) raw EEG signals, which were previously defined.

According to Craik et al. [6], classification tasks in the field of neurology often employ common su-
pervised learning techniques like SVMs and DTs. Conventional ML approaches face limitations when
it comes to handling raw and unprocessed data [18]. In the case of the EEG data, the ML methods re-
quire features to be extracted from the EEG signals. Deep Learning (DL) methods, which are a specific
field within ML, in general require less pre-processing steps and are able to use the raw EEG signals
as input. NNs are the building blocks of DL methods [12].

Comparison
Logistic Regression
The linear classifier, logistic regression, is a popular learning algorithm. Logistic regression predicts
the probability that an observation belongs to a particular class. Classification predictions made by
linear classifiers rely on a linear combination of the features [19]. Logistic regression maps the linear
combination of features to a probability scale using the logit function. Algani et al. [20] add that the
linear structure of logistic regression makes it easier to interpret the pattern but may not be flexible
enough to make accurate predictions. In cases where there is a substantial separation between the
classes, the parameter estimates exhibit high instability, which causes challenges for interpretability
[12]. Furthermore, the logistic regression method has its limitations when it comes to dealing with
high-dimensional data.

SVM
Compared to logistic regression, SVMs can handle high-dimensional data well and do not assume a
parametric relationship between features and class label [19]. However, SVMs require the classes
to be linearly separable. The classification method aims to find a hyperplane, linear combination of
features, that separates the classes perfectly. A soft margin can be added to the hyperplane to allow
misclassifications, if a perfect separated boundary is not possible. Another variation of the SVM is
using kernel functions that enlarge the feature space to higher dimensions in which the classes are
linearly separable. A disadvantage of SVM is the need to define a kernel function which diminishes the
interpretability of the model [19].
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DTs and RFs
In a DT, features are used as internal nodes with branches representing a decision and each leaf
node signifying the outcome. RFs leverages a combination of DTs to arrive at a prediction based
on the majority vote of all DTs. Aggregating over multiple classification models improves accuracy and
stability. However, Breiman [13] says that this multiplicity problem needs more attention, as each model
can vary over the perspectives on model’s interpretability and the significance of features. Caruana
et al. [14] saw that RFs outperformed single DTs on all problems. Furthermore, RFs can provide
high levels of accuracy and handle large datasets with a large number of variables. Moreover, RFs
can automatically balance datasets [20]. Breimans research additionally shows that RFs are able to
give more reliable information about the relationship between variables than logistic regression [13].
However, the interpretation of how the model arrives at its prediction is still challenging. Caruana et
al. [14] found that across multiple performance metrics, tree-based models like RFs, a variant of the
SVM, and neural nets were the strongest models. In an earlier paper of Caruana et al. [21], the
authors concluded that similar to NNs and SVMs, bagged trees, trees that use bootstrap aggregation,
are characterized as a reliable, versatile and high-performing classification method.

NN
A NN classifier is modeled after the structure and function of the human brain. The network consists of
an input layer, (multiple) hidden layers and an output layer. The layers process and transmit informa-
tion using neurons. The neurons use mathematical equations to combine and process the information
from one layer to another. They eventually generate a final output for the output layer. According to
Westreich et al. [19] an advantage of an NN compared to logistic regression is that it can deal with
high-dimensional data. Individual features may have a slight influence on the probability of belong-
ing to a specific class, while when considered as a group, they can effectively and accurately classify
observations [19]. A disadvantage is that training an NN is still very hard and complex, making the
predictions hard to interpret. The inner workings of the layers can make it challenging to understand
how the output is connected to the input.

The paper of Hagan et al. [22] investigated ML methods for predicting cardiovascular disease. Their
research is similar to ours since they work with ECG (electrocardiogram) signals which are reduced into
extracted features with signal analysis. While their reduced ECG dataset contains sufficient data per
patient, a simple clinical feature dataset set has a larger number of patients but only a few features per
patient. The authors conclude that the set with a higher number of features lead to better classification
performance as compared to a greater number of records with little features. From the ML models of
Hagan et al. classification trees performed most accurately [22]. They used four different variations of
the classification tree, such as Bootstrap Aggregation, RFs, Gradient Boosting.

Initially, NNs did not get the same level of attention they currently have in neural classification ap-
plications. However, with the growing availability of large EEG datasets, DL frameworks are now being
utilized for classifying EEG signals. For the EEG signal data which can be considered as time series
or image data, deep learning methods like Convolutional Neural Networks (CNN) or Recurrent Neural
Networks (RNN) might be more suitable. CNNs and RNNs are variations of the neural network. A CNN
combines convolution and pooling layers as hidden layers. Convolution layers identify small patterns
in the image and pooling layers combine these patterns to form high-level features [12]. The probability
of an output is influenced by the existence or non-existence of these higher-level features. RNN have
feedback connections between the layers, which allow them to retain information from past inputs. This
allows them to work well for language processing and time series prediction. Recently, advancements
are made in CNN and RNN for medical applications. The key advantage lies in their ability, unlike other
techniques, to automatically identify important features for prediction networks without requiring human
intervention [15]. Deep learning methods such as CNN and RNN can use images, extracted features
or signal values as input. Craik et al. [6] add that in comparison to other DL algorithms, CNNs can
effectively manage the handling of a high number of EEG signals. Zhai et al. [23] used a version of
CNN to classify ECG signals, which record the electrical activity of the heart and describe this as a com-
mon machine learning problem for time series signal classification with imbalanced classes. To solve a
time series signal problem, various techniques can be used such as feature extraction or feature learn-
ing methods, including Convolutional Neural Networks (CNNs). For this research, feature extraction
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techniques were applied to the EEG signals, but it is also possible to use a CNN on raw EEG signal data.

DL techniques offer a major advantage over conventional ML by processing data non-linearly, whereas
most ML methods processes data linearly. Craik et al. [6] proved that using signal values as input,
rather than images or calculated features, resulted in higher accuracy for CNNs. The authors suggest
that this challenges the common belief that more pre-processing efforts lead to better classification
results and highlight the potential benefits of direct signal input in CNN studies. Requiring less pre-
processing of data is a major advantage of DL. However, due to the complex architecture and a large
number of tuning parameters of DL methods, they are typically viewed as black box models, meaning
they cannot provide an explanation for their outcomes.

Loh et al. identified three commonly used XAI methods, namely SHAP, LIME, and GradCAM (Gradient-
weighted Class Activation Mapping) in their research [9]. The methods were applied to conventional
ML and DL methods, where SHAP was mostly used on conventional ML methods and GradCAM on
DL methods. GradCAM and SHAP are both XAI algorithms that support in understanding feature im-
portance. Fauvel et al. find that using CNNs with the XAI method GradCAM not only have the potential
to achieve high performance while minimizing complexity but also enable reliable explanations [24].
Loh et al. [9] performed a systematic review that focused on the use of ML and DL in the healthcare
sector. They also summarized the performance of ML and DL models regarding accuracy, specificity,
sensitivity, and AUROC. Their results showed that DL models performed better than conventional ML
models in all four metrics, suggesting that DL models are better at accurately classifying data than the
conventional ML models.

2.3.1. Conclusion
Each ML method has its advantages and disadvantages. However, by prioritizing interpretability, accu-
racy, and non-linear input data with high dimensionality, this thesis further analyzes and develops an
RF classifier using the extracted features for the anti-NMDARE problem. The decision tree in Figure
2.4 illustrates our choice. The additional XAI algorithms that can be deployed are SHAP and GradCAM
for a RF classifier and a CNN resp.. As a suggestion for further research, we also present the CNN
classifier in combination with GradCAM for the data with raw EEG signals in Figure 2.4.
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Figure 2.4: Decision flow: Classification methods overview





3
Data

This chapter provides a description of the EEG data available for this study. Some exploratory data
analysis is conducted in this chapter to understand the features and their relationship to each other.
Furthermore, we analyse the repeated measurements structure of the EEG data. Appropriate solutions
are presented for this particular data format.

3.1. EEG dataset
EEG signals capture the electrical activity of the brain by attaching electrodes to the head. Due to its
ease of performance and their capability to provide fast results, EEGs are considered a valuable tool
for identifying anti-NMDARE [2]. An EEG recording from our dataset used from 16 to 25 electrodes to
capture the signal.

Figure 3.1: Example of signals captured by attaching electrodes on the head [25]

Certain characteristics of an EEG support the diagnosis, description, and differentiation of anti-
NMDARE. Freund et al. [2] have tried to define EEG characteristics that are specifically important in
guiding the anti-NMDARE disease. The authors concluded that generalized slowing was the most com-
mon characteristic of the disease. When discussing a classification model, we refer to features rather
than characteristics. In the data of anti-NMDARE, we define 29 features extracted from EEG signals.
There are three different domains in which the features fall: frequency, complexity, and connectivity
domains. The 29 features are assumed to accurately represent the different domains. Table B.1 in
Appendix B presents an overview of the extracted features. It is our goal to determine which features
improve the classification model.

For each patient, the EEG signals are cut into multiple fragments or epochs. Each epoch lasts 4
seconds, where consecutive epochs have an overlap of 3 seconds. We consider the multiple epochs

15
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as multiple measurements per patient. The 29 useful features are computed per EEG epoch. For ex-
ample, feature deltapower for patient i is computed for epoch 1, epoch 2, . . ., epoch ni, resulting in ni

values for deltapower for patient i.

Figure 3.2: Example of an EEG recording [26]

The length of EEG recordings differs per patient. Furthermore, artifacts and redundant EEG epochs
are removed from the dataset by the doctors. Therefore, each patient has a different number of useful
EEG epoch, ranging from 42 to 3297 with a mean of 1064. The general structure of this type of EEG
dataset is displayed in the table below, Table 3.1. The number of patients is denoted by I and the
number of features by p.

Patient Epoch Label Features
1 1 y1 x1,1,1 . . . x1,1,p

1 2 y1 x1,2,1 . . . x1,2,p

· · · · · ·
1 n1 y1 x1,n1,1 . . . x1,n1,p

...
...

...
...

...
I 1 yI xI,1,1 . . . xI,1,p

I 2 yI xI,2,1 . . . xI,2,p

· · · · · ·
I nI yI xI,nI ,1 . . . xI,nI ,p

Table 3.1: Structure of the EEG data

In the case of EEG data, the class label of a patient is determined based on the patient’s condition after
12 months of the diagnosis of anti-NMDARE. The class label is therefore constant over the patient’s
EEG epochs. One EEG epoch does not tell us if the patient has a positive or negative prognosis for
treatment after 12 months. That is why in Table 3.1 all epochs from the same patient i have label yi.
Mathematically, the data for each patient i is summarized as follows

Xi = [xi,1, . . . , xi,p]

with each xi,j ∈ Rni

where ni is the number of EEG epochs of patient i
(3.1)

Each Xi represents a cluster for patient i with its measurements for features 1, . . . , p. Combining the
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data of all patients leads to the following matrix in RN×p with N =
∑I

i=1 ni

X =


x1,1 x1,2 . . . x1,p

x2,1

. . . . . .
...

...
. . . . . .

...
xI,1 . . . . . . xI,p

 (3.2)

If we sequentially enter all measurements of each patient without differentiating between patients, we
write

Z =


z1,1 z1,2 . . . z1,p

z2,1
. . . . . .

...
...

. . . . . .
...

zN,1 . . . . . . zN,p

 (3.3)

This is simply matrix X, from Equation (3.2), where for j ∈ [1, . . . , p]

x1,j = [z1,j , . . . , zn1,j ]
T ,

x2,j = [zn1+1,j , . . . , zn1+n2,j ]
T

...
xI,j = [zN−nI ,j , . . . , zN,j ]

T

An overview to establish the parameters for our case is displayed below.

Number of patients (I) 44
Total number of EEG epochs (N ) 46.832
Number of extracted features (p) 29

Table 3.2: Parameters for anti-NMDARE dataset

Since in our case N = 46.832 and p = 29, this leads to an input matrix Z of size 46.832 × 29. Using
feature reduction methods, this matrix can be reduced to smaller dimensions. The reduced feature
space ideally improves the quality of a classifier. Feature reduction techniques are further discussed
in Chapter 5.

3.2. Exploratory data analysis
To understand the EEG data and its features, some exploratory data analysis is conducted. This analy-
sis includes the summary statistics such as mean, median, and standard deviation, correlation analysis,
and analysis of the repeated measurements structure. These are supported by data visualizations, a
useful tool for exploring data. Prior to analyzing the observations, it has been verified that there are no
missing values in the EEG dataset provided for this research. Furthermore, all features are continuous
variables.

3.2.1. Summary statistics
In this section, we delve into few summary statistics, which are derived from our EEG dataset compris-
ing samples from 44 patients. It is important to acknowledge that we do not know the true population’s
summary statistics. Instead, we use estimated values obtained from our sampled dataset, denoted as
µ̂, and compare them to the true value µ. It is crucial to avoid confusing this with ŷ, which represents
the predicted class label.

The mean of feature j is its average value across all epochs, Equation (3.4).

µ̂j =
1

N

N∑
i=1

xi,j (3.4)
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The median is the middle value of the data when it is ordered from smallest to largest. When the mean
and median differ greatly, it might indicate a skew distribution with some extreme outliers. The standard
deviation tells how much spread out a feature j is and is denoted by

σ̂j =

√∑N
i=1(xi,j − µ̂j)2

N
(3.5)

It provides a measure on how much variability there is around the mean of feature j. The variance is
simply obtained by taking the square of the standard deviation. The mean and standard deviation (std)
plus the minimum and maximum of all EEG features is displayed in Table B.2 in Appendix B.

Boxplot A boxplot captures most of the summary statistics. The box represents the second (25th
percentile) and third (75% percentile) quartile, note the end values as Q1 and Q3. The interquartile
range (IQR) is the interval between the end values, Q1 and Q3. The IQR captures 50% of the data.
The line in the middle of the box is the median value (notation Q2). Two lines extend the box no further
than±1.5 ·(Q3−Q1). The outliers of the dataset are denoted by the dots. Figure 3.3 shows the boxplot
of two features with their estimated density.

(a)) spectralentropy boxplot and density estimation (b)) grangercausality boxplot and density estimation

Figure 3.3: Boxplot and density estimation of spectralentropy and grangercausality for random 5 patients

Skewness Some patients exhibit a higher number of outliers compared to others. A lot of outliers
might indicate a skewed distribution. The skewness coefficient from stats.skew quantifies the asym-
metry of a sample and is computed as the Fisher-Pearson coefficient of skewness [27].

FP =
m3

m
3
2
2

where mk is the sample k’th central moment defined by

mk =
1

N

N∑
i=1

(xi,j − m̂uj)
k

A positive value for the coefficient indicates more weight in the right tail, i.e. most values lay on the right
side of the graph. A negative value for the skewness coefficient means more values for the feature lay
on the left side. Figure 3.4 tells us that not all features of the data are normally distributed since some
features have a high skewness coefficient. We will see that various statistical tests assume normality.
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Figure 3.4: Skewness coefficient

When plotting the three features with the lowest and highest skewness coefficient, the coefficients
appear to be correct as the features in the right figure are right skewed, see Figure 3.5.

Figure 3.5: Boxplot and density estimation of least and most skewed features

Class balance Because we have two classes for classification, the class balance in the data is im-
portant to examine. Training on too little data from one class and too many of another might lead to
overfitting. The classifier is then more trained on one type of class. Furthermore, the model’s accuracy
score may not accurately reflect the performance. The accuracy score has a baseline, which happens
when all observations are classified to the most prominent class. In the case of anti-NMDARE, there
are 35 patients with class label 0 and 9 with label 1, so 79.5% versus 20.5%. When we look at all EEG
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epochs, there is a class imbalance of 73% (class 0) versus 27% (class 1). This needs to be taken into
account for training the classifier. If we would create a classification model that classifies all patients
to class 0, the model would reach an accuracy score of 79.5%.

Figure 3.6: Balance of the two classes

3.2.2. Correlation analysis
Correlation helps determine the strength of the relationship between two variables. Pearson’s correla-
tion coefficient between two continuous features j and k is defined by

rj,k =

∑N
i=1(xi,j − µ̂j)(xi,k − µ̂k)√∑N

i=1(xi,j − µ̂j)2
√∑N

i=1(xi,k − µ̂k)2
(3.6)

The correlation coefficients ranges between −1 and 1, where both the extremes indicate a linear re-
lationship between features. In the figure below, Figure 3.7, the correlation coefficients between all
variables are color coded. The figure illustrates several strong relationships between features.
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Figure 3.7: Correlation matrix of EEG features

The strongest relationship is between features spectralentropy and Hjorthmobilitywith a coefficient
of 0.933.

Figure 3.8: Scatterplot of two most correlated features

The four features that are most correlated with the target label are spectralentropy, PLI, BSI, and
Hjorthmobility with correlation coefficients −0.45303, 0.4203, −0.3919 and −0.355. The correlation
between categorical and continuous variables cannot be determined by the coefficient given in Equation
(3.6). The Point-Biserial correlation coefficient quantifies the association between continuous feature
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j and the binary label {0, 1}. The coefficient is given by Equation (3.7) and takes on a value between
−1 and 1 [28].

rpb =
µ̂
(0)
j − µ̂

(1)
j

σ̂j

√
N0N1

N(N − 1)
(3.7)

where µ̂
(0)
j and µ̂

(0)
j are the sample means for class 0 and 1 resp.. The standard deviation over all

observed feature values is σ̂j . It is expected that the variables with high correlation coefficient will play
an important role in training the classifier as they provide valuable insights on the target label.

(a)) PLI against spectralentropy with class label (b)) coherencetheta against thetapower with class labels

Figure 3.9: Two scatterplots with class labels: one representing highly correlated features, and one low correlated features

The four features that are least correlated with the target label are coherencetheta, thetapower,
coherencealpha, and grangercausality with correlation coefficients 0.0096, −0.0286, −0.0290 and
0.0485.

3.2.3. Statistical tests
Apart from the correlation analysis, we test if there is a significant difference in feature values between
the classes with label 1 and with label 0. Visually, we notice in Figure 3.10 that feature PLI might be
significantly different for class means, as their means fall outside each other’s IQR. For betapower it is
more difficult to draw conclusions.

(a)) PLI boxplot and density estimation class 0 vs class 1
observations

(b)) betapower boxplot and density estimation class 0 vs class 1
observations

Figure 3.10: Boxplot and density estimation class 0 vs class 1 observations

Statistical tests examine the possible significant difference between the two classes. To determine
which test to use, we formulate the characteristics of our dataset. Our EEG data consists of continuous
features which are independent between patients and therefore between the classes with label 0 and 1.
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So the feature values of deltapower of patient 1 are independent of the feature values of deltapower
of patient 2. The features are not independent within-patients since the measurements are from con-
secutive EEG epochs. The feature value of deltapower in epoch 20 of patient 1 is not independent
from epoch 1 within the same patient. The statistical tests such as an independent t-test or the Mann-
Whitney U-test are not applicable due to the data dependency. In the next section, we examine the
cluster-based structure of our EEG dataset to deal with the non-independence within patients.

3.3. Clustered data
Our dataset, defined in Equation (3.1), is cluster-based data, since we have multiple observed feature
values per patient. The EEG epochs can be viewed as measurements over time per patient. The
measurements from one patient are correlated. When there are repeated measurements in the data,
the patients are considered as clusters [29]. We recognize that the interpretation of cluster-based data
can vary in the context of ML. In this analysis, we treat the patients as clusters and examine these
pre-defined clusters.

3.3.1. Statistical tests
To check if there is a significant difference in feature values between patients, we use statistical tests
which reject or accept a null hypothesis. The hypotheses for this problem are formulated as

H0 : there is no difference for feature j between the different patients i i ∈ {1, . . . , 44}
H1 : there is a difference for feature j between the different patients i i ∈ {1, . . . , 44}

(3.8)

The difference can be formulated as a difference in sample means, variance or distribution.

To first show visually that there might be significant differences between patients, we look at the his-
tograms (with density estimation) of the features spectralentropy and grangercausality for patients
with EEG codes EEG_02_08 and EEG_05_02 in Figure 3.11.

(a)) spectralentropy for EEG code 2 and 5 (b)) grangercausality for EEG code 2 and 5

Figure 3.11: Histogram and density estimation of spectralentropy and grangercausality for patients with EEG code 2 and 5

Since the histograms of grangercausality overlap entirely, we expect that there is no difference be-
tween patients. However, for spectralentropy, we expect to have a significant difference in feature
values between patients, while their between-variance is large. This means that the null hypothesis for
grangercausality is expected to be accepted, whereas for spectralentropy it would be rejected.
For various features the data is not normally distributed, as seen in Figure 3.4. When there is sufficient
data available, the majority of the tests are resilient against the assumption of normality, though we
have to be cautious interpreting the p-values. Both the one-way ANOVA test and the Kruskal-Wallis
test reject the null hypothesis from Equation (3.8) for all features. The primary concern that undermines
the p-value is the requirement for independence of data within groups. The EEG data are measure-
ments from EEG epochs within each patient and so most statistical tests are unreliable.
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Furthermore, the patients included in our research can be viewed as a random sample from a larger
study population. We are not particularly interested in the difference between variances between pa-
tient 2 and 5, but we need to take these difference into account when we have repeated measures. As
stated before, the repeated measures per patient are correlated. Therefore, it is crucial to determine
whether certain patients have naturally lower values for a specific feature. This is called a random ef-
fect. We examine different approaches to the data definition by including the repeated measurements
structure.

3.3.2. New definition for clustered data
A single variable for clustered data can be described as follows (this is a variation of [30], [31] and [32]),

Xi,j = µi + ϵi,j ,

where µi is the target mean for patient i
which is independent across all patients,
and ϵi,j random fluctuations,
which are independent for all EEG epochs j = 1, . . . , ni,

across all patients i = 1, . . . , 44,

and independent of µi.

(3.9)

To give an example of this model, we adjust Table 3.1 for a single feature into Table 3.3

Xi,j Mean Fluctuation ϵi,j Model
X1,1 ϵ1,1 µ1 + ϵ1,1
... µ1

...
...

X1,n1
ϵ1,n1

µ1 + ϵ1,n1

X2,1 ϵ2,1 µ2 + ϵ2,1
... µ2

...
...

X2,n2 ϵ2,n2 µ2 + ϵ2,n2

...
...

...
...

XI,1 ϵI,1 µI + ϵI,1
... µI

...
...

XI,nI
ϵI,nI

µI + ϵI,nI

Table 3.3: cluster-based data description for a feature X

Shou et al. [32] denote σ2
µ as the variance for µi across all patients and σ2

ϵ as the variance for ϵ across all
patients and repeated measures. Again, it is important to highlight that we do not know these variances,
but we can estimate them using the available data by applying Equations (3.4) and (3.5) for variables
µ and ϵ. In the figure below, Figure 3.12, an approximation for the density function is plotted for the
mean and fluctuations of spectralentropy and betapower.
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Figure 3.12: Histogram with density estimation of mean µi and fluctuations ϵi,j for features spectralentropy and betapower

Shou et al. [32] extended this model when applied to a study for image replicates. In our case, the
number of voxels can be seen as the number of features (k). Mathematically,

Xi,j(k) = µi(k) + ϵi,j(k),

where µi(k) is the target mean of feature k for patient i,
which is independent across all patients i = 1, . . . , 44,

and ϵi,j(k) random fluctuations for feature k,

which are independent for all EEG epochs j = 1, . . . , ni,

and across all patients i = 1, . . . , 44.

(3.10)

In this model, it also holds that µi(k) has variance σ2
µ(k) and ϵi,j(k) has variance σ2

ϵ (k).

Our goal is to analyze the clustered data for multiple patients using this model. This type of data
involves considering both within-cluster and between-cluster variation, meaning within one patient and
between patients. The existence of clustering introduces additional complexity that needs to be con-
sidered and addressed [33]. The types of variance need to be accounted for for better predictions.
Analyzing the within-cluster variance ensures the model captures the correlation between the repeated
measures. In repeated measures analysis, outcomes of two observations within the same cluster tend
to be more similar than the outcomes of two observations from different clusters [33]. This type of vari-
ance violates the condition of independent observations most classification models, including Random
Forests, require.

3.3.3. Solutions for clustered data
Galbraith et al., [34], have addressed multiple options to treat clustered data:

1. ignoring clustering
2. reducing clusters to independent observations
3. explicitly accounting for clustering

Ignoring clustering Since the design of our study has clustered data, the clustering cannot be simply
ignored without acknowledging the consequences. According to Galbraith et al. [34] the impact of
clustering depends crucially on the strength of intracluster correlation. Before we consider the option
of ignoring clustering, we explain the intracluster coefficient (ICC). A greater intracluster coefficient
indicates a stronger clustering effect. The coefficient depends on the distribution of the data, the number
of clusters, and the number of observations per cluster. The ICC represents the similarity between
measurements observed for the same patient [33]. If an ICC gets closer to 0, it means there is little to
no clustering effect in the data. That is because the difference between µi’s is negligible compared to
the differences in observations. Liljequist et al. [31] presented a simplified theory of the ICC,

Intracluster Correlation Coefficient (ICC) =
variance between groups

total variance
=

σ2
µ

(σ2
µ + σ2

ϵ )
, (3.11)
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where σ2
µ and σ2

ϵ are the variances from the variables in Equation (3.9). We estimate the values for σ2
µ

and σ2
ϵ based on our EEG data.

σ̂2
µ =

∑I
i=1(µi − µ̂)2

I

σ̂2
ϵ =

∑I
i=1

∑ni

k=1(ϵi,k − ϵ̂)

N

(3.12)

Here, µ̂ and ϵ̂ are the overall means of µ and ϵ and µi and ϵi,k the observed values from the data.

Figure 3.13: ICC per feature

In the case of anti-NMDARE, 17 features obtain an estimated ICC greater than 0.5 indicating amoderate
clustering effect. Only 7 features have an estimated ICC greater than 0.7 providing good reliability on
the clusters [35]. No feature has an estimated ICC above 0.9. In Figure 3.14, the clustering effect is
visualized for various features. The figure shows that the densities of features with a high ICC are
more dispersed compared to those with a low ICC. This suggests that there is a difference between
the patients.
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(a)) Estimated densities per patient of features with low ICC

(b)) Estimated densities per patient of features with high ICC

Figure 3.14: Densities of features with high and low ICC over all patients

Since we have multiple features that are measured and various measurements per patient, the model
from Shou et al. [32] is more applicable. They extended the classical ICC to a measure for the high
dimensional setting. They present an unbiased estimator for the average ICC for the model in Equation
(3.10).

average ICC = 1− 1

p

∑I
i=1 ni − 1∑I
i=1(ni − 1)

p∑
k=1

(xi,j(k)− µ̂i(k))
2∑I

i=1

∑ni

j=1(xi,j(k)− µ̂(k))2
(3.13)

Furthermore, they introduce an image intraclass correlation coefficient (I2C2) which uses the multivari-
ate setting from Equation (3.10). We leave the exploration of the multivariate setting for future research.

By ignoring clustering, the resulting data aligns with the definition stated in Equation (3.3). From this
point forward, we refer to this particular dataset as EEG set Z.

Reducing clusters The alternative is to reduce the clusters such that observations become indepen-
dent. Summary measures such as mean, max, min, and variance compile all EEG epochs from a high
dimension into one dimension. Mathematically formulated, for every patient i, their Xi from Equation
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(3.1) is summarized into four statistics for each feature k,

xi,µk
=

∑ni

j=1 feature k in epoch j for patient i
ni

xi,σ2
k
=

∑ni

j=1(feature k in epoch j for patient i− xi,µk
)2

ni − 1

xi,mink = min
j=1,...,ni

xj,k

xi,maxk = max
j=1,...,ni

xj,k

(3.14)

As a more robust alternative for the minimum and maximum, xi,Q3+1.5·IQR and xi,Q1−1.5·IQR can be
used. These values are less sensitive to outliers.

This results in a reduced feature matrix FX ∈ R44×116 with all observations (rows) independent. Here-
after, we call the reduced dataset FX , defined in Equation (3.15).

FX =

 x1,µ1 . . . x1,µ29 x1,σ2
1

. . . x1,min1 . . . x1,max1 . . . x1,max29
...

...
...

...
...

...
...

...
...

...
x44,µ1

. . . x44,µ29
x44,σ2

1
. . . x44,min1 . . . x44,max1 . . . x44,max29

 (3.15)

Since our patients receive only one label, averaging does not introduce any issues like Hu et al. suggest.
When the subjects have different category labels over their measurements, the averaging approach
would be impossible, [30]. Luckily, we can summarize our EEG data from Z into the matrix FX .

Explicitly accounting for clustering This option entails direct integration of the clustering effect into
the classification model. The data does not have to be reformulated but its clustering structure will
still be taken into account when building the classification model. This last option includes methods
such as Generalized Linear Mixed Models or Generalized Estimating Equations [34]. GLMMs are an
extension of Linear Mixed Models and can be used for continuous non-normal, binary, and categorical
responses. LMMs include both fixed and random effects that account for the variation in the data.
Mixed effect models are generally used in settings when there are within-patient and between-patient
variations. The fixed effects represent the population-level relationships between the features and the
outcome variable, whereas the random effects express the variation that is not explained by the fixed
effects. The random effects justify the effects of unmeasured or unknown factors that vary between
the different patients. The goal is to estimate the degree of variation within the different patients and
incorporate this into the random effects. GLMM can be challenging for complex datasets since the
relationship between predictors and outcome needs to be determined beforehand. The general form
of a GLMM is

y = Xβ + Zγ + ϵ

with
y ∈ RN where N is the number of EEG epochs
X ∈ RN×p where p is the number of features
β ∈ Rp×1 the fixed effects parameters
Z ∈ RN×q·I where q is the number of random effects
γ ∈ Rq·I×1 the random effects parameters
ϵ ∈ RN

(3.16)

The matrix of random effects Z is sparse, meaning it consists of mostly zeros. The columns represents
the random effect for each patient and each row is an epoch. If an epoch j belongs to the patient i,
zj,i = 1. The use of random slopes allows for fluctuations in the fixed effects based on the patient.
Including a random intercept allows for variations in the outcome for each patient. If a random intercept
and random slope is included in the model, Z has size N × 2 · I. In our case, it is possible to consider
a random effect for spectralentropy. A LMM would have the form of

yi = Xiβ + Zi · γi,spectralentropy + ϵj
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This leads to an extra parameter to estimate. The slope for spectralentropy varies per patient
βspectralentropy + γi,spectralentropy.

In case of a binary outcome, we need a link function g(·) that relates a binary outcome y to the lin-
ear model Xβ + Zγ. That is,

E(Y = 1|·) = g−1(Xβ + Zγ)

P (Y = 1|·) = g−1(Xβ + Zγ) + ϵ
(3.17)

The link function that is most often used for a binary outcome is the logit function: g(p) = log( p
1−p ).

Here, p
1−p are the odds, which essentially is the ratio of an event happening to an event not happening.

The log odds are useful in problems where a probability of two situations, p versus 1− p, needs to be
discovered. A probability p is the ratio of an event happening to everything else that can happen. The
inverse of the logit function is p = g−1(·) = exp(·)

1+exp(·) . Leading to,

logit(p) = Xβ + Zγ

p =
exp(Xβ + Zγ)

1 + exp(Xβ + Zγ)
+ ϵ

(3.18)

as a GLMM for binary outcomes.

Training a GLMM involves estimating the fixed and random effects. The GLMM is fitted to the train-
ing data using an optimization algorithm. These algorithms include an iterative method of maximum
likelihood estimation or the Expectation-Maximization (EM) algorithm and are used to estimate the pa-
rameters in the GLMM. During this training stage, the estimation of the fixed effect parameters takes
into account the random effects. In this sense, the random effects influence the estimation of the fixed
effect parameters. When it comes to classifying test observations, the fixed effect parameters obtained
from the training stage are used. The random effects for the test observations are not available, as
they are specific to the training data.

A drawback of this method is that each repeated measure, or EEG epoch, requires its own label. In our
dataset, the class label is determined based on all EEG epochs. For this thesis, we decide to primarily
focus on the first two options: ignoring clustering (defined by Z from Equation (3.3) and reducing the
clusters to independent observations (defined by FX from Equation (3.15)).

3.4. Analysis of FX data
Our exploratory data analysis at the beginning of this chapter captured information regarding the EEG
set Z. We briefly analyze the correlation and statistical significance of the FX set.

3.4.1. Correlation analysis
The features fromFX that aremost correlated with the class label are sampleentropy std, deltapower std,
BSI mean, deltapower mean, regularity mean and coherencealpha min. Their correlation coeffi-
cient with the class label range from 0.32 to 0.39. The five least correlated features are coherencebeta1 std,
coherencebeta2 max, deltaratioccipital max, deltaratiocentral std and deltaratiotemporal min,
with coefficients between 0.005 and 0.011.
It is noteworthy that when computing the correlations for dataset Z, coherencealpha showed the least
correlation with the class label. However, in the correlationmatrix ofFX , theminimumof coherencealpha
becomes one of the top features correlated with the class label. Additionally, BSI, PLI and spectralentropy
keep their high correlation with the target label.

This can medically be due to the fact that the presence of a specific coherence alpha value is more
important than the values itself.

3.4.2. Statistical tests
By reducing the clusters to independent observations, we can test the relationship with the class label
through an independent t-test. A two-sample independent t-test compares the means of two samples,
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in our case the observations of patients with class label 0 and the ones with class label 1. This test
uses a test statistic T that quantifies the strength of evidence against the null hypothesis that the two
classes have equal means. The t-statistic is defined by

T =
µ̂1 − µ̂0

s
√

1
N1

+ 1
N0

(3.19)

where s is an estimator of the pooled standard deviation of the two samples [12]. The two terms, µ̂1

and µ̂0 are the two sample means of group 0 and 1. Also, N1 and N0 are the number of observations
per group. The mathematical definition of s is

s =

√
(N1 − 1)σ2

1 + (N0 − 1)σ2
0

N1 +N0 − 2

Again, σ2
1 and σ2

0 are the estimators of the variances per group.
If the absolute value of T is large enough, there is evidence against H0 : µ0 = µ1. To determine what
value is large enough, we test the value of T against a N (0, 1) distribution. If the probability, known as
the p-value, of observing a value greater than the calculated test statistic T is less than the significance
level α, we reject the null hypothesis. Based on our data, the function ttest_ind can tell us to reject
or accept the null hypothesis.

Before we test is there is a significantly difference between the two classes, we check the assump-
tions that need to hold. Namely, the data needs to be normally distributed and independent, and
homogeneity of variances needs to hold. Homogeneity of variances means that the variances of each
patient being compared are equal. In Figure 3.4, we saw that not all features are normally distributed.
However, the test is robust to normality violations when there is sufficient data available. If the data is
very non-normal, a non-parametric test might be more suitable.

Testing normality with stats.normaltest shows us that for class 0, 75 0f 116 features are not nor-
mal and for class 1 32 0f 116 features, where the latter might be affected by the limited amount of data.
Only 7 features do not conform to the assumption of equal variances.
In Table 3.4, we present the test statistic T and its corresponding p-value for each feature for which we
reject the null hypothesis (p-value < α = 0.05).

Feature T p-value
betadeltaratio mean −3.006 0.004
BSI mean −3.365 0.003
regularity mean −2.753 0.014
betadeltaratio std −2.935 0.005
spectralentropy std −2.188 0.04
sampleentropy std −3.329 0.004
alphadeltaratio min −2.823 0.007
betadeltaratio min −2.521 0.018
occipitalalphadeltaratio min −2.818 0.007
PLI min 2.357 0.03
coherencetheta min −2.311 0.03
alphadeltaratio max −2.479 0.018
betadeltaratio max −3.122 0.003
BSI max −2.209 0.04

Table 3.4: Statistical significant features of FX : t-statistic and p-value

Plotting the difference between the two classes of features sampleentropy std and Hjorthcomplexity max,
Figure 3.15, we notice a bigger difference for sampleentropy std (p-value= 0.004) than for Hjorthcomplexity max
(p-value = 0.71). We expect sampleentropy std to play a bigger role in predicting the class labels for
the patients with anti-NDMARE based on this p-value.
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(a)) Boxplot sampleentropy std for FX with p-value for T-test (b)) Boxplot Hjorthcomplexity max for FX with p-value for T-test

Figure 3.15: Boxplots to show the statistical significance for sampleentropy std and not for Hjorthcomplexity max

Due to the violation of the normality assumption in some features, the Mann-Whitney U-test is also
applied to FX . The Mann-Whitney U-test is considered as the non-parametric equivalent to the two-
sample independent t-test. It tests the equality of two groups. This test is advised when the data is not
normally distributed. Indeed, continuous data, independence and similarity of distribution shapes are
both required to be satisfied. The test statistic U of the Mann-Whitney U-test is a combination of two
sub test statistics U0 and U1.

U = min(U0, U1) (3.20)

Each sub statistic Ui uses the adjusted rank-sum of sample i, denoted as Ri. The adjusted rank-sum
is computed by ranking all observations from both samples together.

U0 = N0N1 +
N0(N0 + 1)

2
−R0

U1 = N0N1 +
N1(N1 + 1)

2
−R1

For N0 and N1 large enough, we can approximate the statistic U with a normal distribution N (µ, σ2).
The mean and variance are estimated by

µ =
N0N1

2

σ2 =
N0N1(N0 +N1 + 1)

12

To compute a p-value, we check the probability of obtaining a value of U for which holds U < −|u| or
U > |u| according to the normal distribution N (µ, σ2). Here u is the observed test statistic. This test is
performed by using the function stats.mannwhitneyu in Python.

In Table 3.5, the values for the computed U statistic are displayed that have a p-value below 0.05.
The features that show statistically significant differences between patients with class label 0 and label
1 for both the independent t-test and the Mann-Whitney U-test are emphasized in green.
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Feature U p-value
deltapower mean 242 0.015
alphadeltaratio mean 86 0.034
betadeltaratio mean 88 0.045
occipitalalphadeltaration mean 82 0.029
BSI mean 82 0.029
spectralentropy mean 87 0.042
sampleentropy mean 81 0.027
regularity mean 84 0.034
Hjorthmobility mean 85 0.036
PLI mean 228 0.042
alphadeltaratio std 82 0.029
occipitalalphadeltaratio std 83 0.031
sampleentropy std 67 0.009
deltapower min 244 0.012
alphadeltaratio min 71 0.012
betadeltaratio min 88 0.045
occipitalalphadeltaratio min 75 0.017
coherencetheta min 87 0.042
alphadeltaratio max 82 0.029
occipitalalphadeltaratio max 82 0.029

Table 3.5: Statistical significant features of FX : test statistic U and p-value. Green features are also statistically significant for
the independent t-test.

Figure 3.16 shows the difference between classes for features spectralentropy mean and detadeltaratio min.

(a)) Boxplot spectralentropy mean for FX with p-value for U-test (b)) Boxplot betadeltaratio min for FX with p-value for U-test

Figure 3.16: Boxplots to show the statistical significance for sampleentropy mean and betadeltaration min



4
Random Forest Classifier

In Chapter 2, we identified the Random Forest classifier as one of the most promising classification
methods in the case of anti-NMDARE. In this chapter, the Random Forest classifier is described and
analyzed with respect to the EEG data. The required parameters for a Random Forest model are
discussed.

4.1. Definition
A Random Forest (RF) classifier is an ensemble method that combines multiple Decision Trees (DTs)
into a final prediction and is therefore a tree-based method. The method was first introduced by Leo
Breiman [36]. Ensemble methods can construct a classifier that produces a probability of class mem-
bership since it combines multiple classifiers [19]. In the case of ensemble Algorithms, the underlying
classifier is not required to be highly accurate. Some terminology for ensemble methods are bagging,
boosting or the random forest classifier. Bagging is short for bootstrap aggregation. This means ran-
dom subsets (with replacement) are sampled from the training data.

4.1.1. Decision Trees
Tree-based methods segment the predictor space into simple regions [12]. Certain splitting rules are
used to divide the predictor variables into multiple regions. At each node in the tree, a decision rule is
formulated based on a feature. For an example of a DT with corresponding segmentation of regions
see Figure 4.1.

33
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Figure 4.1: Example of a DT with corresponding segmentation of regions

At the final nodes, called leaves, a class label is assigned to the observation. A new observation from
the test set belongs to the class which occurs the most in the region or leaf to which the observation
is assigned. The DTs, and also the RF, are first trained on a training set. The observations from the
training set determine the splits of the DTs as well as the class labels in all leafs.

The accuracy of a DT, or an RF, which is the proportion of misclassified observations can be mea-
sured by the error rate,

1

I

I∑
i=1

1(ŷi ̸= yi) (4.1)

The error rate can be computed for the test or training set, measuring the test or training error. Although
accuracy in terms of the error rate is important for finding the best DTs, other measuresmay be preferred
when training the DTs. At each node, the optimal feature for splitting the data has to be determined.
The Gini index and the entropy are two common measures to determine this optimal feature. They are
called impurity measures, namely both measures seek to produce the purest node split. This means
that the splitting rule separates the dataset into two regions, each of which contains mostly observations
from one class. Since DTs consider both classes when learning how to split the nodes, they perform
well on imbalanced data.
The Gini index is defined by

Gm =

K∑
k=1

p̂m,k(1− p̂m,k)

in case of the 2-class classification: Gm = 2 · pm,1(1− pm,1)

(4.2)

The Gini index is a measure across the K classes. In node m, p̂m,k is the proportion of observations
belonging to class k. Smaller values for the Gini index are preferred as it indicates that the nodes are
more pure. For the two-class case, when p̂m,1 is close to 0 or 1, one of the two factors in p̂m,1×(1−p̂m,1)
is small, hence the summation is small. It means that if an observation in the child node is randomly
sampled, there is a low likelihood it will be misclassified. When the probability of the two classes are
both close to 0.5, an observation from the child node can be randomly sampled from both classes.
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An alternative measure, entropy is given by

Dm = −
K∑

k=1

p̂m,k log(p̂m,k)

in case of the 2-class classification: Dm = −p̂m,1 log(p̂m,1)− (1− p̂m,1) log(1− p̂m,1)

(4.3)

Likewise, for the entropy holds that for p̂m,k close to either zero or one, the entropy is small and therefore
indicates a better split. In Figure 4.2, we see that both measures have their maximum value at p = 0.5.
Both represent impurity well and can be used to train the DTs. One benefit of Gini impurity compared
to entropy is its faster training time, making it computationally more efficient. Given the small number
of observations in our dataset, this reasoning can be disregarded. Hastie et al. mention that both
measures usually provide very similar results [37]. The performance of the two measures can depend
on the specific dataset and therefore it is recommended to consider the impurity measures as a tuning
parameter.

Figure 4.2: Entropy and Gini index values for pm,k

Both measures are generally used when the quality of a split in the decision tree needs to be evaluated.
To measure the accuracy of the entire tree, the classification error rate suffices.

4.1.2. Random Forests
Because a small change in data might result in a completely different decision tree, averaging multiple
DTs will decrease the variance of the classification model. To decrease the variance, RFs use a tech-
nique called bagging [36]. With bagging, which stands for bootstrap aggregation, random subsets (with
replacement) of the training data are sampled, where each bootstrapped subset is used for training a
single DT. The final class label for an observation is determined by a majority vote among all DTs. By
averaging the predictions from the DTs, a RF classifier reduces the impact of outliers or noisy observa-
tions that might lead to high variance in a single DT. Furthermore, the aggregation reduces the risk of
overfitting. This risk means the model performs well on the training data, but poorly on new and unseen
data. If a DT in the forest demonstrates high variance, indicating overfitting to its subset of the training
data, another DT mitigates this issue by being trained on a different subset. The technique bootstrap
aggregation is visualized in Figure 4.3.
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Figure 4.3: Bagging for RF classifiers

Besides decreasing the variance, RFs aim to decorrelate the DTs that are used for the final decision.
DTs that use the same set of features and training data are correlated. By randomly selecting a subset
m features from the p available features at each split, RFs can ensure the DTs do not use the same
strong features. From thesem features, the optimal split is determined. Including feature randomness
ensures a strong predictor feature is not used in all bagged trees and so not all bagged trees behave
similarly [12]. By using bagging and feature randomness, RFs create a less correlated forest of DTs.
The DTs are however not independent due to the fact that they use the same features and training
observations. This is limited by bagging and introducing feature randomness. Breiman proved that
the error is bounded by the strength of a forest and the dependence between trees [36]. Strength
essentially means the ability to correctly classify the observations.

Algorithms The RF method can be summarized in a few key Algorithms. Firstly, a number of DTs
are generated using subsets of the training data that are randomly selected with replacement. This is
called bootstrapping.

Algorithm 1 Training a Random Forest Classifier
Require: D > 0 decision trees
Require: input data X with output y
1: for 1 ≤ d ≤ D do
2: Randomly generate a bootstrapped data set of patient id’s: Id ⊂ I (with replacement) and take

XId as training set for tree d where XId is all data from the patients in Id
3: Store Icd as out-of-bag samples from bootstrapped data
4: Go through DT Algorithm (2) with XId as training set
5: Store as decision tree DT d

6: end for
7: All DT d form a trained Random Forest

In training each individual DT in the RF on a subset of the training set X, a random subset of features
is selected. The optimal splitting criterion is either based on the Gini index or entropy. Each DT stops
to grow when a stopping rule s is reached. Commonly used stopping rules to prevent overfitting in
random forests are:

• the maximum depth,
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• the minimum number of samples required to split a node,
• the minimum number of samples required to be at a leaf node.

Algorithm 2 Training a Decision Tree with feature randomness
Require: training set X with output y
Require: stopping rule s and subset size m
1: while stopping rule s does not hold do
2: Consider a random subset of features, Z ⊂ P with Z of size m and P the set of features
3: Choose the feature from Z that best separates the dataset X w.r.t. class labels y using Gini
index or the entropy

4: end while

Once the decision trees are trained, the RF can decide on the predicted class label for test set Xtest by
taking a majority vote on the predictions of all the individual decision trees.

Algorithm 3 Testing a Random Forest Classifier
Require: input data X
1: for 1 ≤ d ≤ D do
2: Go through decision tree DTd with input X
3: Appoint class label ŷd
4: end for
5: Assign the majority class label

ŷ =

{
0 if 1

D

∑D
d=1 ŷd ≤ 0.5

1 if 1
D

∑D
d=1 ŷd > 0.5

To evaluate and compare different RFs, the out-of-bag (OOB) error can be used as a performance
metric. In Algorithm 1, the out-of-bag samples were stored in Icd. The classification error of the OOB
samples is named the OOB error.

Algorithm 4 Evaluating a Random Forest Classifier
1: OOB ← 0
2: for i ∈

∪D
d=1 I

c
d do

3: Go through the decision trees that did not use Xi in training them
4: Assign majority class label ŷi to Xi

5: OOB = OOB + 1ŷi ̸=yi

6: end for
7: OOB error = OOB

|
∪D

d=1 Ic
d|

The OOB error is an unbiased estimate of the generalization error. Breiman stated that the OOB error
accurately represents an error for the test set that has the same size as the training set [36].

4.1.3. Tuning parameters
The tuning parameters are the settings of a classification method that are specified before training the
model. In Algorithm 2, the number of featuresm used per split is a tuning parameter, as is the stopping
rule s. Algorithm 1 requires a decision on how many decision trees the RF consists of. Increasing the
number of decision trees in a RF can improve the accuracy but can also lead to a computational expen-
sive model. The aim of tuning parameters is finding the best combination to improve the performance
of the classification model and to reduce over- and underfitting. Grid search is a method that evaluates
different combinations of tuning parameters and select the one with best performance. This method
are further discussed in Chapter 5. To conclusion, the tuning parameters of the RF classifier which we
focus on are
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• max_features (m)
• stopping rule s:

– min_samples_split
– min_samples_leaf
– max_depth

• n_estimators (D)
• splitting rule: Gini or entropy

The optimal combination of these tuning parameters for our dataset is determined in Chapter 7. Algo-
rithm 4 can assess the different tuning parameter settings.

4.2. Random Forest applied to EEG data
As explained in Section 3.3, our dataset includes clustered data. This means our goal is to compare
variations of the Random Forest classifier or develop a clustered-based Random Forest classifier. We
look at incorporating clustered data into a Random Forest classifier based on the three approaches
of Galbraith [34]. The approaches (ignoring clustering, reducing clusters to independent observations
and explicitly accounting for clustering) are discussed in Section 3.3.

4.2.1. Ignoring clustering
In this case, the assumption is that all EEG epochs are considered to be independent of each other.
This corresponds to the definition of Z in Equation (3.3). Each row, or EEG epoch, of features is
analyzed separately as input for the classifier.

ŷk = f(zk) ∈ {0, 1}
where k = 1, . . . , 46.832

and zk = [zk,1 . . . zk,29]

(4.4)

Here, f represents the random forest classifier. For patient i, a majority vote is computed for all EEG
epochs belonging to the patient, i.e.

ŷi =

∑ni

k=1 f(zk)

ni
∈ [0, 1]

If ŷi > 0.5, patient i will be classified in class with label 1.

4.2.2. Reducing clusters to independent observations
Another solution that we proposed in Section 3.3 is to reduce the clusters in a way that they become
independent observations. The matrix FX , Equation (3.15), can easily be used as input data for the
Algorithms.

4.2.3. Explicitly accounting for clustering
The data structures for this solution were discussed in Chapter 3 and their analysis was suggested for
further research. In this section we provide a brief overview of several solutions for the RF classifier.

One solution proposed by Hu et al. [30] for a clustered-based RF classifier is subject-level bootstrap-
ping. They select one measurement per patient to train the RF, perform the classification at the mea-
surement level, and compute the majority vote per patient. This solution is visualized in Figure 4.4.



4.2. Random Forest applied to EEG data 39

(a)) Measurement-level bootstrap for RF (b)) Subject-level bootstrap for RF

Figure 4.4: Clustered-based bootstrapping for RF [30]

Another approach, suggested by Calhoun et al. [38], is the Repeated Measures Random Forest
(RMRF) Algorithm. It incorporates a robust Wald statistic as the splitting criterion and applies an
acceptance-rejection criterion to reduce the computational intensity and variable-selection bias. To
address the dependence in the data within subjects, their Algorithm employs subsampling the data by
subjects and uses a robust Wald statistic.
Hu et al. [30] reviewed extensions of the ’standard’ RF method for clustered-based data and created
an overview of these extensions. The overview can be found in [30]. For binary outcomes, such as
our classification problem, they proposed the Binary Mixed Model forest as a solution to the clustered-
based RF. This method combines the RF classifier with the Generalized Linear Mixed Model (GLMM)
methodology and is discussed by Speiser in [29]. Implementing an RF model into a GLMM allows the
BiMM to handle interactions among features and high-dimensional settings with nonlinear relationships.
Other solutions proposed by Hu et al. [30] focus on quantitative outcomes. However, these models
can potentially be adapted for our binary classification problem by using the logit function described in
Equation (3.18). This functions transforms the quantitative outcome into a probability, which can be
employed for classification problems.





5
Methodology

This chapter discusses the process of exploring the RF classifier for our EEG problem. An in-depth
examination of the key techniques and approaches are provided in this chapter. Our methodology is
based on the ML-based scheme of Rahmani et al. [5] who proposed the following phases: problem
definition, dataset, data preprocessing, ML model development and evaluation. We have implemented
these phases in order to generate reliable and valid research findings specific to this classification
problem. It is important to note that the analysis of the data for better understanding its structure and
characteristics is an essential part of the overall process. The analysis of the data is addressed in the
preceding Chapter 3. Continuing with this chapter, we proceed to explain the remaining steps. Figure
5.1 (on the next page) outlines the three main components of this research: data preprocessing, model
training and model evaluation.
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Figure 5.1: Decision flow: Classification methods overview
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5.1. Preprocessing
Data preprocessing is an essential step in ensuring the datasets’ quality for the classification model.
Data preprocessing includes outlier detection, handling missing values and normalizing or standardiz-
ing the data. Rhamani et al. call these steps data cleaning methods [5]. There are no missing values in
our dataset and normalizing or standardizing the data is unnecessary for the Random Forest classifier
as it is not distance based. We did not emphasize on the outlier detection, as outliers are considered
important in the context of this dataset. High or low values of certain features might be good indicators
for a favorable or unfavorable outcome after the 12 months.
Additionally, data reduction methods might be employed when the data is high-dimensional. High-
dimensional data is very common in healthcare. As the number of dimensions increases, a classifica-
tion model faces challenges in effectively capturing meaningful patterns and generalizing on the data
[39]. Additionally, there is a higher likelihood of the model incorporating redundant features that do not
contribute significantly to its predictive ability. Therefore, high dimensions weaken the performance
of ML algorithms [17]. Data reduction methods should focus on preserving relevant and informative
features [17]. Feature reduction methods map the original feature space to a lower dimensional space
while keeping the effective information from the original features [39]. The data reduction method that
we focus on is Principal Component Analysis.

5.1.1. Principal Component Analysis
In Section 3, we have seen various formulations of our dataset. The EEG dataset is indicated as matrix
Z of size 46.832 × 29 from Equation (3.3). Summarizing the epochs of the EEG data per patient has
generated a 44×116matrix FX , defined in Equation (3.15). High-dimensional matrices can be reduced
to lower dimensions using Principal Component Analysis (PCA).

PCA is a feature extractionmethod that aims to find linear combinations of the variables,X = (X1, . . . , Xp).
Each Xj ∈ RN represents a vector of values for feature j ∈ {1, . . . , p} for N observations. The coef-
ficients in the linear combination are displayed in the vector ϕ = (ϕ1, . . . , ϕp). Any linear combination
Zm ∈ RN is formulated as

Zm = ϕT
mX =

p∑
j=1

ϕj,mXj

with
p∑

j=1

ϕ2
j,m = 1

(5.1)

The constraint of
∑p

j=1 ϕ
2
j,m = 1 is necessary to prevent the issue of an excessively large linear com-

bination.

The fundamental principle of PCA is to maximize the variance of linear combinations Zm’s. By maximiz-
ing the variance, the uniqueness of the dataset is mostly captured. The most interesting information is
typically stored in the spread or variance of the data. The linear combinations are called the principal
components (PCs). In total, there can be M = min{N − 1, p} PCs [12]. The variance of each vari-
able Zm and the covariance between variables Zj ’s is presented in the covariance matrix S ∈ Rn×n,
consisting of values

sj,k = Cov(Zj , Zk) =
1

N

N∑
i=1

(Zi,j − µ̂j)(Zi,k − µ̂k)

where the observed means, µ̂j , are calculated using the sample set in the linear combinations, Zj .
The covariance is a measure of linear dependence. The sample variance of Zm is equal to Var(Zm) =
Var(ϕT

mX) = ϕT
mSϕm. As PCA wants to maximize this variance under the constraint ϕT

mϕm = 1, we
formulate the optimization of the variance with a Lagrange multiplier λm:

max J(ϕm) = ϕT
mSϕm + λm(1− ϕT

mϕm) (5.2)
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Optimizing for ϕm, we set the derivative to zero and find the same formulation of an eigenvalue problem.
∂ϕT

mSϕm + λm(1− ϕT
mϕm)

∂ϕm
= 0

Sϕm − λmϕm = 0

Sϕm = λmϕm

For a nonzero squarematrix, in our case S, the vector equation Sv = λv is called an eigenvalue problem.
The values λ ̸= 0 and v ̸= 0 are called eigenvalues and eigenvectors. The first M eigenvectors ϕm’s
with largest eigenvalues λ1, . . . , λM are called the principal components [40]. All ϕm’s are real since
S is a symmetric matrix. We look for the largest λm and it’s corresponding eigenvector ϕm. For this
eigenvector and -value the variance of Zm = ϕT

mX is the largest. This linear combination is called
the first principal component, PC1 = ϕT

1 X. In cases where certain features have a high value in
PC1, it is likely that the features correlated with them will have a lower value in PC2. The reason is
that the linear combination PC2 has largest variance subject to the constraint that it is uncorrelated
with PC1 [12]. In a two-dimensional plane, uncorrelated vectors can be visually displayed as PC2 is
orthogonal to PC1. Ultimately,M principal components can be constructed. Since the goal is to reduce
the dimension of the dataset, the first k principal components are chosen such that the cumulative ratio
of variance that is explained by the first k principal components, is larger than 90%. The cumulative ratio
of explained variance, Equation (5.3), is obtained by sequentially summing up the explained variance of
each principal component, PCm, in the order of their occurrence. Equation (5.3) assumes the features
Xj are centered around mean zero, and therefore so are the linear combinations Zm.

Explained variance by PCm =
1
N

∑N
i=1 Z

2
i,m∑p

j=1
1
N

∑N
i=1 X

2
i,j

, (5.3)

Since PCA finds linear combinations of features X = (X1, . . . , Xp) and uses the covariance matrix, it
is important to scale the features to the same scale with a technique called standardization. In Figure
5.2a), we see for example that values of thetapower can be 1000 times larger than for BSI. The
correlation matrix does not change under standardization, the covariance does, see Figure 5.2b).

(a)) Ranges of various features

(b)) Difference in covariance between original and standardized
Hjortactivity

Figure 5.2: Why you need to standardize before PCA
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Standardization is a technique where the features are scaled towards a distribution with mean zero
and standard deviation 1. As the variance plays a crucial role in PCA, standardization of the features is
preferred. Furthermore, standardization ensures the variablesXi are centered around mean zero. For
each feature j, the mean µj and σj from Equations (3.4) and (3.5) are estimated. The feature values
xi,j are assigned new values using the following equation

xnewi,j =
xi,j − µ̂j

σ̂j

5.1.2. Train and test split
In order to evaluate the performance and generalization ability of a classification model, we split our
data into two distinct sets: a training and test set. The process of splitting data into a train and test split
plays a fundamental role in assessing the ability to predict labels for unseen data. The training set is
used for training and fitting the classification model. The testing set serves as an independent set that
evaluates the performance of the model. To guarantee unbiased performance scores, it is crucial to
maintain distinct training and test sets. By ensuring that the model has not been exposed to the data in
the test set during training, we can avoid introducing bias into the performance metrics. Furthermore,
we specifically separate the data before performing the under- and oversampling technique to prevent
the possibility of using the same observation in both sets.

Python Two functions are created for splitting, namely train_test(X,y), and train_test_EEG(X,y,y_EEG).
The separate function train_test_EEG(X,y,y_EEG) is created for the EEG data with repeated mea-
surements. Chen et al. suggest that all observations of a patient should be in the same set [11]. The
splitting process is stratified based on the class labels y. This approach guaranteed that both classes
are proportionally represented in both the training and test set.

5.1.3. Class imbalance
For effective model development, it is essential that the dataset contains a sufficient number of data
samples for each class. An effective approach to deal with class imbalance may involve augmenting
the dataset with additional instances of the minority class or removing instances of the majority class
from the dataset [11]. The impact on our model performance of under- and oversampling is explored
in this research.

Undersampling uses all observations of the minority class. The total number of observations from
the minority class is sampled from the majority class. This technique is implemented with the function
undersample(). A separate function for handling the clustered EEG data was developed, ensuring that
observations from each patient are sampled together, undersample_EEG().
Oversampling, on the other hand, copies all observations from the majority class and samples with
replacement from the minority class until the dataset contains the same amount of observations per
class label. The functions oversample() and oversample_EEG() are used for this technique.

5.2. Training a Random Forest classifier
In Chapter 4 we presented the Random Forest classifier along with its algorithm, as described in Al-
gorithm 1. In Python, this can be summarized using the RandomForestClassifier() function from
sklearn [41]. By utilizing the .fit() and .predict() methods, we can train the model on the training
set and make predictions on the test set using the trained model. The performance metrics are intro-
duced in Chapter 2. For healthcare applications, we prioritize a higher score for sensitivity, see Chapter
2, as we want to classify all patients with class label 1 correctly.

5.2.1. Default Random Forest
To understand the training ability of a RF classifier for our datasets, we initiate the training by using a
default parameter settings for the RF algorithm. The default setting is self-formulated.
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5.2.2. Tuned Random Forest
The next step involves optimization of the RF model. In Section 4.1.3, the tuning parameters are dis-
cussed. They are the settings of a classification method that are specified before training the model.
The parameters should be tuned so that a better RF model can be found. To find an improved ver-
sion of the RF model, it is necessary to tune its parameters. By adjusting the tuning parameters, we
aim to find the configuration that leads to higher scores for the performance metrics. In Python, the
function GridSearchCV performs the parameter tuning. The function explores different combinations of
parameter settings and identifies the best performing model within these combinations. For the case of
anti-NMDARE, we have prioritized the F-score as important performance metric. The function identifies
the model that performs best on this metric, followed by the other scores. The function GridSearchCV
uses a technique called cross-validation. With cross-validation, a dataset X is divided into k folds,
where k − 1 folds are used for training the RF model, while the remaining fold evaluates the model’s
performance metrics. The technique is displayed in Figure 5.3.

Figure 5.3: k-fold cross-validation technique used for tuning parameter tuning [42]

The function GridSearchCV calculates the mean performance score across the validation folds, provid-
ing an average score for the parameter setting using the training folds. The parameter setting with the
highest mean F-score is chosen for the tuned RF model.

5.3. Evaluation
In the evaluation process, the strengths and weaknesses of the classification model are examined
[5]. In Chapter 2, we identified four main characteristics of a classification method to evaluate: quality,
accuracy, robustness and interpretability.

5.3.1. Quality
Since the quality of a classification model is measured by the performance metrics including accuracy,
we do not consider accuracy as a separate subsection in this section. The performance metrics are
discussed in Chapter 2.

Python Python has a function for each performancemetric, accuracy_score, recall_score, precision_score
and F-score. We defined the function specificity_score using confusion_matrix.

5.3.2. Robustness
Analyzing the robustness of our RF model, we gain insights in its behaviour and reliability. Our goal is
to examine how our model performs in diverse scenarios. It is important to highlight that the statistical
mechanism of RFs are still being explored and researched [43]. Many theoretical studies have mainly
focused on simplified versions of the RF algorithm [44]. The mathematical properties are difficult to
analyze due to the RFs’ complex underlying mechanisms. Consistency assures that the classification
model will improve its performance as more data becomes available. A consistent classifier converges
to the underlying true function of the data (and their labels) as the number of observation increases.
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Biau et al. [43] provide the proof that an averaged classifier of consistent classifiers is also consistent.
This is a proof for simplified versions of the RF classifier. Gao et al. [45] add that the consistency of a
RF depends on the consistency of individual random trees. The proof given by Breiman [36] state that
RFs do not overfit as more trees are added to the RF. Furthermore, Breiman proves that the general-
ization error is bounded from above by a function based on the strength of the individual classifiers and
the dependence between them [36]. A proof of consistency for our model requires a comprehensive
analysis of the convergence properties as the sample size increases. Our focus does not lie here since
we possess over a small sample size. We will conduct the analysis of robustness based on our specific
data and model’s performance.
Robustness refers to the model’s ability to generalize on unseen data, see Chapter 2 for the definition.
A robust model can handle various model’s settings and changes in the data. By maintaining its per-
formance in different initializations of the parameters, a robust model is less sensitive to changes and
indicate a strong ability to generalize on unseen data. There are several ways to introduce variability
in the training process of our RF classifier. This can be achieved by using different training sets with
cross-validation or by trying out different parameter settings.

• Cross-validation
• Varying parameter settings

Cross-validation
To obtain a less biased estimate of the performancemetrics, we use the technique called cross-validation
[13]. The purpose of this technique is to train and evaluate the RF model k times, see Figure 5.3. We
therefore obtain k scores for the performance metrics, allowing us to assess their variability. A score
that is centered around a value might indicate a higher level of robustness. However, this is not the
only aspect of robustness. In Chapter 2, we state that there is a tradeoff between bias and variance,
aiming to generalize on unseen data.

Python The function cross_validate(model, X, y, cv = k, fit_params, scores) conducts a k-
fold cross validation on X and y for model model with parameters fit_params.

Parameter settings
Grid search allows us to explore and examine various parameter settings. Ultimately, the best setting
is identified based on scores of the performance metrics. By analyzing the results of the parameter
grid, we can gain valuable insights into the robustness of the model and how the model performs in
different settings.

5.3.3. Interpretability
In the case of anti-NMDARE, because the output of our model is whether a patient has a positive or
negative prognosis for the treatment, it is essential that the classification model is explainable. It should
be clear how the classifier arrives at their predictions. Our approach aligns with Breiman’s path of ini-
tially selecting the model that achieves high scores in terms of the performance metrics. Subsequently,
we try to understand which features the model identified as important, contributing to its predictive per-
formance.

We focus on two different approaches on determining the most important features; Mean Decrease
in Impurity (MDI) and through SHAP values. Yigit et al. [46] used two ways of measuring variable im-
portance for an RF classifier; via Mean Decrease Gini (MDG) and via the SHAP algorithm. The MDG
method evaluates the decrease in impurity according to the Gini index that results from splitting on a
feature. MDI is a generalized version of MDG. The SHAP algorithm is a technique used for the ex-
plainability of ML models. SHAP, that originated from the concept of cooperative game theory, utilizes
Shapley value to analyze the contribution of each feature to the final outcome. As stated by Loh et al.
[9], SHAP is particularly suitable for tree ensemble ML techniques such as RFs and XGBoost.

Mean Decrease Impurity
The importance measure of a splitting variable in a RF is determined by the improvement in the split
criterion at each split within each tree [37]. Per feature, the importance measures are averaged over
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all trees in the forest [12]. The split criteria in our case are the Gini index or entropy, see Equations
(4.2) and (4.3) in Chapter 4, depending on the dataset. It is worth noting that as correlation between
features increases, the MDI becomes less effective in detecting the most relevant features [47]. Figure
5.4 visualizes the splitting qualities of two features. Examining the two splits, it is evident to see that
feature 2 would receive a higher importance measure.

Figure 5.4: Visualization of feature importance using impurity measures [48]

Python TheMDI is computed using the .feature_importance_ property of the RandomForestClassifier(),
after the RF is fitted. It is worth noting that the feature importance from scikit.learn is based on the train-
ing set [41]. The MDI is defined as

Imp(Xj) =
1

D

D∑
d=1

∑
t∈d

1Xj used for splitting node t ×
Nt

N
∆i(s, t) (5.4)

where t is a node in tree d and Nt the number of samples in node t. The decrease in impurity of split s
at node t is defined by

∆i(s, t) = i(t)− NtL

Nt
i(tL)−

NtR

NR
i(tR)

where node t is split into a left tL and right tR node [49]. The equations for the impurity measures for
node t, i(t), are given in Equations (4.2) and (4.3) in Chapter 4.

SHAP values
The Shapley Additive exPlanations (SHAP) algorithm is a powerful and interpretable method used
for explaining the predictions of classification models. SHAP is based on the concept of cooperative
game theory, where the Shapley values tells us how the payout of a game is distributed over the
players. The prediction task for a single observation can be considered as the ’game’ and the features
as the ’players’. The ’payout’ of the prediction task is the difference between the prediction value and
the average prediction over all observations. The SHAP algorithm calculates the contribution of each
feature by considering its effect on the prediction, helping us to understand feature importance in the
classification model. The contributions per class are summarized in Shapley values. Shapley values
are computed per feature and patient and defined per class. In the subsequent notations, the subscript
0 denotes the value corresponding to class label 0, while 1 indicates the values for class 1. Here, we
will provide the explanation for class 0. Due to the symmetry of Shapley values, the values for class
1 can be obtained by making the values of class 0 negative. The predicted value, f(x)(i), of patient i
for class 0 depends on the features. The contributions of features j ∈ {1, . . . , p} on the prediction of
patient i are summarized in Shapley values ϕ(i)

j,0. The values adhere to the following equation, Equation
(5.5).

f
(i)
0 (x) = E(f0(x)) +

p∑
j=1

ϕ
(i)
j,0(xi,j) (5.5)
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Here, xi,j represents the value of feature j of the patient i, f (i)
0 is the prediction from an RF model ex-

pressed in a probability belonging to the specific class andE(f0(x)) is the expected value for the specific
class. The output f (i)

0 (x) can be estimated by .predict_proba() from the RandomForestClassifier
function in Python.

The Shapley values, ϕj,0, are calculated by Equation 5.6 [50].

ϕj,0 =
∑

S⊆P\{j}

|S|!(P − |S| − 1)!

P !
[v(S ∪ {j})− v(S)] (5.6)

The formula considers all possible subsets of features, denoted by S. For feature j, to calculate ϕj,0

we iterate over all possible subsets of features that does not contain feature j. For these subsets, we
compare the prediction when including feature j with the prediction (v(S ∪{j}) when excluding feature
j (v(S)). This difference is calculated by v(S ∪ {j}) − v(S) and represents the marginal contribution
of feature j to subset S. The Shapley value is a weighted average of these marginal contributions,
weighted by the number of ways each subset can occur. This weight is give by

|S|!(P − |S| − 1)!

P !

All Shapley values add up to v(P ). The set function v(·) represents the prediction for feature values in
the set S which is calculated by marginalizing over the features that are not included in S [51], i.e.

v(S) =

∫
f̂(x1, . . . , xp)dPx/∈S − E(f̂(X)) (5.7)

A detailed explanation of Shapley values is provided in Appendix C.

A specific SHAP algorithm designed for tree-based models is TreeSHAP. TreeSHAP is an efficient
method in estimating feature importance for tree-based models [51]. The Shapley value is computed
per DT but due to their additive property easily averaged over all DT’s in an RF model.

SHAP values are symmetrical, meaning that a positive value for class with label 1 implies a negative
SHAP value for class with label 0. A positive SHAP value of feature j for patient i for class 1 indicates
that feature j increases the probability of patient i belonging to class 1. The same feature decreases
the probability of patient i belonging to class 0 by the same amount. SHAP feature importance (FI) for
feature j is simply the average of all absolute Shapley values over all patients, Equation (5.8).

FIj =
1

I

I∑
i=1

|ϕ(i)
j | (5.8)

Visualized, the feature importance of an RF model could resemble Figure 5.5

Figure 5.5: Example feature importance plot SHAP [51]
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The figure indicates that in this example, the number of years with hormonal contraceptives is an impor-
tant indicator for predicting the risk of cervical cancer. On average the feature added a value of 0.024
to the predicted risk. In Figure 5.6, a threshold is observed for years with hormonal contraceptives that
guarantee a higher SHAP value for the predicted risk.

Figure 5.6: Example dependence plot SHAP

5.4. Code availability
The implementation scripts can be requested through the git repository at github/femkeluck. The EEG
data from Erasmus MC is confidential and therefore not available. The scripts can be tested on the
simulation data.

https://github.com/femkeluck/afstuderen


6
Simulation study

A simulation study allows us to investigate the complex structure of the RF classifier, evaluate its per-
formance and make informed decisions in a controlled manner. The simulation analysis aims to better
present the behavior and outcome of the RF classifier in the case of cluster-based data. In this chapter,
we simulate a realistic dataset that closely resembles the EEG scenario from Chapter 3. In this chapter,
we aim to gain valuable insights and explore possibilities to optimize the RF classifier by simulating the
data of repeated measures.

6.1. Simulated data
The simulated data set that we use in this chapter has the same structure as our EEG data set from
Chapter 3, i.e.

Patient Epoch Label Features
1 1 y1 x1,1,1 . . . x1,1,p

1 2 y1 x1,2,1 . . . x1,2,p

· · · · · ·
1 n1 y1 x1,n1,1 . . . x1,n1,p

...
...

...
...

...
I 1 yI xI,1,1 . . . xI,1,p

I 2 yI xI,2,1 . . . xI,2,p

· · · · · ·
I nI yI xI,nI ,1 . . . xI,nI ,p

Table 6.1: Structure of the EEG data

where I is the number of patients, ni the number of EEG epochs of patient i and p is the number of
features.
We simulate p = 29 features for I = 44 patients where each patient has a different number of EEG
epochs ni. The number of EEG epochs is randomly sampled from values ranging between 500 and
1500. To further simulate the dataset, we employed a two-step process. First, we sampled the class
label for each patient i from a Bernoulli distribution with probability p = 0.2, ensuring a representation of
the class imbalance from the real dataset. This means a patient receives class label 1 with a probability
of 0.2 and label 0 with a probability of 0.8. An unfavorable outcome was considered if a patient received
label 1. Consequently, the variables for these patients were sampled from the same distribution as
those with class label 0, except for 6 features. These 6 features are indicated as informative features,
while the remaining 24 features were redundant. The complete definition with distributions of the sim-
ulated dataset in Python can be found in Appendix D. Sampling the label first and then the features
provides a more realistic representation of the underlying process. In the natural order of events, when
a patient has a disease, they tend to experience specific side effects. It is not the case that certain
features cause the patient to become sick. In certain scenarios where the features are primary driving
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factors influencing the class label, the approach of first sampling the features and then assigning the
class label might be more appropriate.

We check that the correlation matrix of the simulated data, Figure 6.1, does not show any unusual
patterns. Additionally, it is important to note that the simulated data set intentionally incorporates class
dependent features. However, the density of these features differ slightly so that the level of complexity
observed in our real EEG dataset is mirrored, see Figure 6.2. We expect that the classification task for
the simulated dataset poses a comparable level of difficulty. We approach this dataset in a similar man-
ner as in Chapter 3; the data can be treated as independent EEG epochs in matrix Z, or summarized
into clinically relevant features in matrix FX . We use the following notations for the simulated sets: Zsim
and FXsim

Figure 6.1: Correlation matrix of simulated EEG features

Figure 6.2: Density of class dependent EEG features in
simulation

6.2. Preprocessing
Before initiating the training process of the classifier, we undertake several data preprocessing steps
as outlined in Chapter 5.

6.2.1. Principal Component Analysis
For the EEG dataset, we apply PCA to assign weights to the relevant features. This step reduces
the number of features in Zsim from 29 to 14. Due to the fact that the number of features exceeds the
number of observations in the FXsim dataset, we choose to not perform PCA on this dataset. PCA is
performed early in the process, since it then has the ability to leverage all variables in order to compute
covariances and identify the features that contribute the most to the overall variance within the dataset.
Figure 6.3 shows the first two principal components of the entire EEG dataset and Figure 6.4 displays
the corresponding weights assigned to the features in PC 1. The weights assigned to features 15
and 16 are justified due to their strong positive correlation. It is noteworthy that features exhibiting
negative correlation receive opposing weights. Figure 6.1, representing the correlation matrix, reveals
darker shades for features 17, 18, 19, and 20, indicating their negative correlation. Similarly, feature 4
demonstrates a darker shade in relation to features 13 and 14, resulting in the assignment of opposite
weights to these features. On the other hand, features 10 and 21 exhibit low weights. This connects
to the low covariances observed in the correlation matrix, where the entire row associated with these
features appears to be close to a value of 0. Appendix E contains scatterplots of both the low and
high covariance features, accompanied by additional explanations. Additionally, the density functions
of these features are also presented in Appendix E.
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Figure 6.3: PC 1 and PC 2 of the EEG dataset Zsim
Figure 6.4: Weight per feature in PC 1

6.2.2. Train and test split
The proportion of each class present in both the training and test sets is highlighted in Figure 6.5. As
mentioned in Chapter 5, the train and test split is done with stratification and based on the number of
patients.

Figure 6.5: Train and test split for FXsim, stratified on the class label

6.2.3. Class imbalance
The simulated dataset exhibits the same class imbalance as the original EEG dataset. The minority
class with label 1 contains 9 patients, whereas the majority of all patients, namely 35, have class label
1. The techniques called under- and oversampling can solve this issue. An overview of the number of
observations present in each dataset are displayed in Table 6.2.

Number of observations
Train Test

Class label 0 1 0 1
Undersampled 6 6 3 3
Normal 24 6 11 3
Oversampled 24 24 11 11

Table 6.2: Overview of the number of observations in each dataset with class label

In Figure 6.6, we see the effect of under- and oversampling the training set of FXsim. In Appendix E,
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Figures E.3 and E.4, the effects of under- and oversampling on the EEG training set and on the EEG
PCA set are displayed.

Figure 6.6: The effect of under- and oversampling compared to the normal extracted features training set of FXsim (larger dots
indicate multiple instances in the set)

In the next few sections, we see the effect of under- or oversampling on different performance metrics.

6.3. Training a Random Forest classifier
6.3.1. Default Random Forest
To understand the training ability of a RF classifier for our datasets, we initiate the training by using the
default parameter settings for the RF algorithm. In our case, we set the parameters according to Table
6.3.

Parameter Setting

max_depth None

n_estimators 100

max_features √
p

splitting rule Gini

min_samples_split 2

min_samples_leaf 1

Table 6.3: Parameters in default setting

6.3.2. Tuned Random Forest
The defined grid for the tuning parameters of the FXsim dataset is outlined in Table 6.4. We maintain
the min_samples_split and min_samples_leaf parameters the same as the default setting. The pa-
rameter grid already contains 4×4×3×2 = 96 combinations. Including an additional 4 options for both
parameters would result in 96× 4× 4 = 1.536 combinations, which can be computationally expensive
to evaluate. Furthermore, also due to computational limitations, we have defined the grid differently
for the EEG dataset, see Table 6.5. The EEG dataset consists of over 40.000 observations, making it
computationally expensive to train an RF model 96 times with 100 to 250 trees. However, by trying out
fewer parameter combinations, we have already observed that the model achieves impressive scores
for the performance metrics.
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Parameter Grid

max_depth [None, 3, 6, 9]

n_estimators [100, 150, 200, 250]

max_features [None,√p, 0.2]

splitting rule Gini or entropy

min_samples_split 2

min_samples_leaf 1

Table 6.4: Parameter grid for tuning parameters FXsim
set

Parameter Grid

max_depth [3, 6, 9]

n_estimators [10, 20, 50]

max_features [
√
p, 0.2]

splitting rule Gini or entropy

min_samples_split 2

min_samples_leaf 1

Table 6.5: Parameter grid for tuning parameters Zsim set

In the next section, we examine the difference between a default and tuned Random Forest classifier.

6.4. Evaluation
6.4.1. Quality
In our problem, we prioritized the performance metrics sensitivity and F-score, followed by accuracy.
The scores for the performance metrics with a default RF for all three datasets are displayed in Table
6.6. In Appendix E, Figures E.5, E.6 and E.6 illustrate the difference between the predicted and true
class labels of the test set observations associated with these scores.

Test set Default RF
Reduced FXsim Acc Spec Sens Pre F-score ROC-AUC OOB score

Undersampled 0.5 0.333 0.667 0.5 0.571 0.5 0.583
Normal 0.857 1 0.333 1 0.5 0.667 0.9
Oversampled 0.681 1 0.364 1 0.533 0.682 1

EEG Zsim Acc Spec Sens Pre F-score ROC-AUC OOB score
Undersampled 0.833 0.667 1 0.75 0.857 0.833 1
Normal 1 1 1 1 1 1 0.999
Oversampled 0.727 1 0.455 1 0.625 0.727 1

PCA on EEG ZsimPCA Acc Spec Sens Pre F-score ROC-AUC OOB score
Undersampled 1 1 1 1 1 1 0.983
Normal 0.929 1 0.667 1 0.8 0.833 0.972
Oversampled 0.727 0.909 0.545 0.857 0.667 0.727 0.997

Table 6.6: Scores performance metrics for reduced dataset (FXsim), EEG (Zsim) and PCA on EEG (ZsimPCA): default RF (in
bold higher accuracy, sensitivity and F-score scores are emphasized)

Based on the observations from this table and its corresponding prediction figures, several notable find-
ings emerge. Firstly, it is evident that the undersampled FXsim dataset demonstrates higher sensitivity
than specificity. This implies that the model performs better in classifying prediction from the minority
class, class 1, compared to class 0 within the test set. Conversely, the oversampled FXsim set exhibits
the opposite pattern. These observations are commonly observed, as undersampling can result in loss
of information from class 0, while oversampling can lead to duplicated observations from class 1, mak-
ing it more challenging to generalize on the class 1 data. Another notable observation relates to the
relatively low OOB score for the undersampled Fxsim set. In certain instances, Python generated an er-
ror indicating that there were insufficient samples to provide an accurate OOB score. However, despite
this limitation, the undersampled set still provides a good representation of the test accuracy score. In
all three cases, the OOB score for the oversampled set does not adequately reflect the accuracy score.
This may be due to the presence of duplicated observation from the minority class in the training set,
which could be mistakenly utilized as OOB sampled while also being used for training a tree. This asks
for further research on the implementation of the RF function in Python, RandomForestClassifier().
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Finally, an important observation is that the normal EEG set, Zsim, outperforms all other sets and
already shows optimal performance scores. In Figure E.6 in Appendix E, we notice that these high
scores remain intact when tuning the RF. Also for the under- and oversampled EEG set Zsim, tuning
the classifier improves its performance. Recognizing the potential impact of a tuned RF classifier, we
now compare all sets using a tuned RF. It is worth noting that the RF classifier is tuned individually for
each dataset, meaning that each set has its own unique set of parameters as optimized configuration.

First, looking at the prediction differences between the default and tuned RF in Figures E.5, E.6 and
E.7 of Appendix E, we see that all sets demonstrate either equal or improves scores, except for the
undersampled and normal EEG PCA set. During the grid search for the EEG sets, the default param-
eters were not included. Therefore, it is not surprising that these particular sets exhibit lower scores
compared to the default RF. It indicates those sets need more tuning on the parameters.

Having explored the difference between the default and tuned RF, we shift our focus to examining
the performance of the individually tuned RF classifiers. The test scores for the tuned RFs are dis-
played in Table 6.7. The best parameter settings from the grid per dataset can be found in Appendix
E. It is important to note that the test scores in the table were calculated using a separate test set that
the model had not been exposed to previously. The table also displays the mean of validation sets of
the cross-validation process. Although the validation sets used for the mean scores were not seen by
the model during training, they were utilized to train the final model. The validation scores for the EEG
dataset Zsim are based on all epochs, so there is not yet a majority vote per patient established. The
test set scores are based after taking the majority vote per patient. The scores for both datasets are
displayed in Table 6.7.
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Tuned RF Mean of CV validation sets (in best setting)
Reduced FXsim Acc Spec Sens Pre F-score ROC-AUC

Undersampled 0.75 0.833 0.667 0.889 0.711 0.708
Normal 0.933 1 0.667 0.667 0.667 1
Oversampled 1 1 1 1 1 1

Separate test set
Reduced FXsim Acc Spec Sens Pre F-score ROC-AUC OOB score

Undersampled 0.667 0.667 0.667 0.667 0.667 0.667 0.75
Normal 0.929 1 0.667 1 0.8 0.833 1
Oversampled 0.818 1 0.636 1 0.778 0.818 1

Tuned RF Mean of CV validation sets (in best setting)
EEG Zsim Acc Spec Sens Pre F-score ROC-AUC

Undersampled 0.827 0.715 0.922 0.791 0.851 0.915
Normal 0.766 0.894 0.519 0.725 0.598 0.761
Oversampled 0.969 0.935 1 0.949 0.973 1

Separate test set
EEG Zsim Acc Spec Sens Pre F-score ROC-AUC OOB score

Undersampled 1 1 1 1 1 1 0.978
Normal 1 1 1 1 1 1 0.978
Oversampled 1 1 1 1 1 1 1

Tuned RF Mean of CV validation sets (in best setting)
PCA on EEG ZsimPCA Acc Spec Sens Pre F-score ROC-AUC
Undersampled 0.732 0.632 0.816 0.728 0.763 0.808
Normal 0.843 0.951 0.470 0.750 0.551 0.792
Oversampled 0.932 0.879 0.976 0.909 0.941 0.987

Separate test set
PCA on EEG ZsimPCA Acc Spec Sens Pre F-score ROC-AUC OOB score
Undersampled 0.833 0.667 0.75 0.333 0.857 0.833 0.876
Normal 0.929 1 0.667 1 0.8 0.833 0.937
Oversampled 0.955 0.909 1 0.917 0.957 0.955 0.969

Table 6.7: Scores performance metrics for reduced dataset (FXsim), EEG (Zsim) and PCA on EEG (ZsimPCA): tuned RF (in
bold higher accuracy, sensitivity and F-score scores are emphasized)

For the FXsim set, we observe that the oversampled set has highest means of validations scores. Each
validation set perfectly classifies all observations within its set. However, in the separate test set,
oversampling exhibits lower scores than the normal set. It appears that the normal FXsim set better
generalizes on unseen data.
Another special observation is the exceptional performance of all EEG Zsim datasets, including the un-
dersampled, normal and oversampled variants, when applied to their tuned RF. It suggest in this case,
you can choose either set. In Figure E.6, we see however that for certain observations, the percentage
of class 1 classified epochs is positioned near the boundary of 0.5. This indicates that not all epochs
are classified correctly. Though the labels remained constant over all epochs, meaning that not all
epochs are ought to contain the necessary information to classify a favourable or unfavourable out-
come. Furthermore, in the table we do see lower mean scores for the normal EEG set. Examining the
scores of all tuning parameters sets in Figure E.8, the sensitivity score only once exceeds a threshold
of 0.7, while the sensitivity score in the test set is equal to 1. A good reason could be that the RF model
used for the test set benefits from a larger number of training samples. This may contribute to a better
performance compared to the RF model trained on 2-folds of the training set.
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An intriguing conclusion that can be drawn is that the EEG PCA set exhibits poorer performance in
all three scenarios (undersampled, normal and oversampled) when compared to the regular EEG set.
Both sets’ RFs are tuned on the same grid of parameters. Therefore, we cannot attribute the inferior
performance of the EEG PCA set to a lack of access to better parameter settings. This is because
PCA is a linear combination of data derived from the original EEG set, indicating that the potential for
improved parameter settings exists for both sets.

Lastly, we mention the link between the OOB scores and the accuracy scores of the cross-validation
sets. The OOB score is higher in all cases. Still in the case of our tuning, we set the maximum number
of trees to 50 for the EEG sets. For a training set of 12 observations, if each bootstrapped set contains
12 samples, the probability that a specific observation occurs in less than 3 out of 50

6.4.2. Robustness
Cross-validation
The results of cross-validation on the entire FXsim and Zsim set using the tuned RF can be found in
Figure 6.7 and 6.8. The dots are the mean of the k scores and the upper- and lowerbound represent
the maximum and minimum scores. We see that the normal Zsim set can have a training and test set
that on one hand reaches an F-score of value 1, but another fold reaches a score of 0. This shows
that the tuned RF model perform differently on normal Zsim sets that are slightly changed. In terms of
sensitivity, precision and F-score, under- and oversampling the EEG set Zsim ensures a smaller interval
for validation scores. For the tuned RF for FXsim sets, we see mostly higher scores for the validation
sets compared toZsim. The tuned RF for FXsim performsmore constantly better on slightly different train
and validation sets. Where the undersampled Zsim set always appears to have enough samples from
class 0 (specificity and precision of 1), the tuned RF of undersampled FXsim exhibits more uncertainty
in classifying these class labels.

Figure 6.7: Cross-validation of default RF on entire
FXsim set

Figure 6.8: Cross-validation of tuned RF on entire Zsim
set

Parameter settings
Figure 6.9 presents the mean scores of the three validation sets for each parameter setting. The
primary goal is to identify the parameter set that yields the highest mean F-score. In the event of
multiple maximum values, the method proceeds to search for other performance metrics’ scores. Table
6.7 compares the maximum mean scores for the best parameter setting and the scores corresponding
to the performance on the test set, which was unseen by the RF model during training. Figure 6.9
displays the mean scores of validation sets across various tuning parameter settings. We see that
the scores of the RF model for undersampled dataset are more chaotic than the other sets. This
reasoning seems logical because RF models trained on a smaller dataset may encounter challenges
in generalization. With limited training data, different parameter settings can have a significant influence
on their behavior. We can also tell that for the normal dataset the classifier has an accuracy never below
0.8, which is essentially the class proportions. Furthermore, the parameter settings have in the case
of FXsim no influence on the specificity score, while it has an effect on the sensitivity and precision.
This suggests that the training data contains sufficient amount of information on class labels 0. In the



6.4. Evaluation 59

oversampling case, we see that the scores drop down for some settings. It shows that it is essential to
choose the right parameters for a qualified model. However, in case of oversampling, the RF classifier
do not reach scores under 0.92 for these parameter sets, making it an attractive set to train any RF
model on. Appendix E contains Figure E.8 with the grid search results of the EEG dataset Zsim and
ZsimPCA. In the normal sets of both Zsim and ZsimPCA, we notice a relatively constant value for specificity
which is a result of the class imbalance. The sets contain sufficient observations of class 0 to correctly
classify these class labels. In the under- and oversampled sets, sensitivity has higher values than
specificity, indicating the opposite for these sets: there is enough information on class labels 1. Figure
E.3 and E.4 support this by the observation that both the undersampled and oversampled sets have
a higher number of samples with class label 1 compared to label 0. This can attributed to the varying
number of EEG epochs across different patients, where it is important to remember that under- and
oversampling happens on patient-level and not on epoch-level. Once again, the minimummean scores
of the oversampled EEG set consistently remain above 0.8 indicating a high level of performance. In
addition to this, the test scores were also optimal, as seen before.

(a)) Grid search for under FXsim set
(b)) Grid search for over FXsim set

(c)) Grid search for normal FXsim set

Figure 6.9: Different parameter settings for FXsim set

6.4.3. Interpretability
Mean Decrease in Impurity
In the figure below, we see that according to Mean Decrease in Impurity (MDI), feature 2 mean is
the most prominent feature, followed by feature 2 max. This aligns with the definitions of our simu-
lated data. Besides the second feature, features 24, 22, 15, 25 and 12 are incorporated in the feature
importance graph and apparently ensure more pure splits in the decision trees. Only feature 24 was
also made class dependent in the definition of our dataset. This indicates that besides considering
the right features as important in determining the class label, the RF classifier assigns importance to 3
redundant features.
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Figure 6.10: Feature importance in tuned RF for FXsim

SHAP values
TheSHAP values for theFXsim set in the tunedRF are displayed in Figure 6.11. We only see feature 2 mean
and feature 2 max present in the figure, which suggests that SHAP demonstrates better filtering capa-
bilities of class-dependent features, distinguishing them from random features more effectively. Both
classes use the two features equally. This might indicate the confusion rate is high. Ideally, features
are uniquely dedicated to one class. However, Figure 6.12 shows that there is a certain threshold for
feature feature 2 mean according to the SHAP values.

Figure 6.11: Mean of SHAP values of normal FXsim: tuned RF

The figure is based on the class labeled as 1. Negative values for feature 2 mean receive positive



6.4. Evaluation 61

SHAP values, meaning the values are associated with class label 1. High values of the feature indicate
class label 1. These values receive positive SHAP values which push .predict_proba closer to 1,
indicating a high probability for class label 1. If you would plot the values based on class label 0,
negative feature values push the observation to a higher probability for class label 0. This is because
the SHAP values are symmetric. The threshold corresponds to Figure 6.6 where we have plotted the
training observations of FXsim.

Figure 6.12: Threshold for feature 2 mean based SHAP values: oversampled FXsim

We now use observation 28 as an example, which belongs to the class with label 1. In Figure E.5,
patient 28 was misclassified for all three sets. With SHAP values we gain insights into the factors that
led to this misclassification. The expected values for class 0 and 1 are 0.209 and 0.791 resp. In Figure
??, we see that feature 2 mean and feature 2 max push the prediction of patient 28 away from the
value of 0.791 to a predicted probability of 1. On the y-axis, the value of feature 2 mean for patient 28
is displayed and shows that the value is close to the threshold of Figure 6.12.

Figure 6.13: SHAP values for patient 28 in FXsim





7
Results

This chapter provides a comprehensive description of the results obtained from our study. The analyses
in this chapter elaborate on the methodology described in Chapter 5. The data is discussed in Chapter
3 and the classification method in Chapter 4. We continue this chapter with the following steps: data
preprocessing, model development and evaluation.

7.1. Preprocessing
Before initiating the training process of the classifier, we undertake several data preprocessing steps
as outlined in Chapter 5. PCA is performed early in the process, since it then has the ability to leverage
all variables in order to compute covariances and identify the features that contribute the most to the
overall variance within the dataset.

7.1.1. Principal Component Analysis
In the case of the data of anti-NMDARE, there are multiple set on which we can perform PCA, either on
Z or FX , see Equations (3.3) and (3.15). For the EEG dataset Z, we apply PCA to assign weights to
the relevant features. Due to the fact that the number of features exceed the number of observations
in the FX dataset, we choose to not perform PCA on this dataset. Performing PCA on FX may not
represent the data well, as the principal components can only consists of the first I features. The set
FX suffers from a problem where the number of features exceeds the number of observations. Other
feature selection methods may be better suitable.

We run PCA on the entire matrix Z of Equation (3.3) where the 29 columns of Z are reduced to k
columns such that the explained variance is > 90%.

ZPCA1 =


z1,PC1 z1,PC2 . . . z1,PCk

z2,1
. . . . . .

...
...

. . . . . .
...

z46832,PC1 . . . . . . z46832,PCk

 (7.1)

If the PCA is run on the dataset, the number of principal components, p, is 13 such that ex. var. > 90%,
see scree plot in Figure 7.1.

63
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Figure 7.1: Scree plot for matrix Z

The scatterplots of the first two principal components shows there is no clear distinction between the
two classes. Adding the third principal component has minimal effect on this observation.

Figure 7.2: Scatterplots of the first two and three PCs with class labels

In the case of anti-NMDARE, the features BSI, spectralentropy, sampleentropy, regularity, Hjorthmobility
and PLI had high absolute values of covariance in S, see Figure 3.7 in Chapter 3. Also the features
occipitalalphapower,
occipitalalphadeltaratio and occipitalalphatotalratio were highly correlated with each other.
The presumption is that the coefficients for these feature variables receive a high value in ϕ1. Plotting
the weight per feature in the first principal component, the presumption that certain correlated features
receive a high weight is confirmed. The weights of the five features that receive the most absolute
weights in PC 1 and 2 are displayed in Tables 7.1 and 7.2
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Feature Weight
spectralentropy 0.399

BSI 0.299
Hjorthmobility 0.288

regularity 0.282
PLI −0.268

Table 7.1: Features with most absolute weight in PC 1

Feature Weight
alphapower 0.360

Hjorthcomplexity −0.268
occipitalalphapower 0.262

thetapower 0.240
coherencealpha 0.240

Table 7.2: Features with most absolute weight in PC 2

(a)) In PC 1

(b)) In PC 2

Figure 7.3: Weight per feature in the first two principal components

7.1.2. Train and test split
Figure 7.4 illustrates the train and test split. The set FX is split in a train (FXtrain) and test (FXtest) set of
size 30 and 14 resp.. The split is done with stratification, such that each set has equal representation of
labels 0 and 1. Furthermore, the EEG dataset, denoted as Z, is divided based on the patients, resulting
in a split of 30 versus 14 as well. Each patient’s epochs are included in either the training (Ztrain) or test
(Ztest) set.
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Figure 7.4: Train and test split

7.1.3. Class imbalance
The effect of under- and oversampling the FX training set is depicted in Figure 7.5. We chose to perform
under- and oversampling after splitting the data to ensure differentiation between the training and test
set. The effects on the EEG training set and the EEG PCA training set is displayed in Appendix F.
Visually, it appears that for the undersampled set of FX it is most easy to make a distinction between
classes 0 and 1, as you can draw a non-linear boundary between the observation.

Figure 7.5: Effect of under- and oversampling for the FX training set

7.2. Training a Random Forest classifier
7.2.1. Default Random Forest
A simple RF model is fit on each training set Xtrain and ytrain with the same default parameters as in
Table 6.3. To serve as a reminder of the parameters, the table is displayed below, Table 7.3
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Parameter Setting

max_depth None

n_estimators 100

max_features √
p

splitting rule Gini

min_samples_split 2

min_samples_leaf 1

Table 7.3: Parameters in default setting

7.2.2. Tuned Random Forest
Our focus shifts to tuning the model’s parameters with the aim is to achieve improved results on the
test sets. We performed GridSearchCV() with the same grid as in the simulation study of Chapter 6,
displayed in Tables 7.4 and 7.5.

Parameter Grid

max_depth [None, 3, 6, 9]

n_estimators [100, 150, 200, 250]

max_features [None,√p, 0.2]

splitting rule Gini or entropy

min_samples_split 2

min_samples_leaf 1

Table 7.4: Parameter grid for the tuning parameters FX

set

Parameter Grid

max_depth [3, 6, 9]

n_estimators [10, 20, 50]

max_features [
√
p, 0.2]

splitting rule Gini or entropy

min_samples_split 2

min_samples_leaf 1

Table 7.5: Parameter grid for the tuning parameters Z
set

We used k = 3 for the cross validation sets, meaning the training sets (FXtrain and Ztrain) are split into
3 sets. Each time a fraction, 2

3 , of the sets are used as training set and
1
3 as validation set. By setting

k = 3, all validations sets have at least one observation with class label 1. Finally, the test sets (FXtest

and Ztest) are predicted on the model with the best found parameters.

7.3. Evaluation
The default and tuned RF models are evaluated in the this section. Before we begin with the analysis,
we present a random tree from the Random Forest Classifier. As the Random Forest classifier is an
ensemble method of multiple DTs, we can visualize each individual tree. For the reduced dataset FX ,
a random classification tree is displayed in Figure 7.6.
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Figure 7.6: A tuned tree in the Random Forest classifier for FX

Figure 7.7 presents a random DT applied to the EEG dataset Z. Unfortunately, due to its large size,
the entire tree cannot be displayed in high quality within this paper. Figure 7.8 shows a split of the
tuned tree, showing that the value 0.013 of betadeltaratio splits the parent node into two child nodes
of size 2078 and 681. The number of unique samples in the node do not equal the sum of these values
since we use bootstrap sampling with replacement so that not all values are unique. It is worth noting
that the tree for set Z is larger compared to the one for FX . This can likely be attributed to the presence
of a greater number of observations and fewer features within set Z.

Figure 7.7: A tuned tree in the Random Forest classifier
for Z

Figure 7.8: A split in the tuned tree in the Random
Forest classifier for Z
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7.3.1. Quality
For the default RF models trained on normal, undersampled and oversampled FX and Z sets, we
compare the scores on the test sets in Table 7.6. In our research, we prioritized the performancemetrics
sensitivity and F-score, followed by accuracy. The sensitivity score from the table tells us how well the
model can classify observations from the class with label 1. A score of 0 unfortunately means the model
is not capable of classifying the observations correctly. The accuracy score for undersampled FX is
emphasized even though it is lower than the accuracy score of the normal FX set. This is due to the
dataset being undersampled, an accuracy score of 0.5 serves as the ’baseline’ accuracy for a simplistic
classifier. By referring to a simplistic classifier, we imply that the classifier assigns all observations
to one particular class. A score of 0.667 indicates it improves the simplistic classifier. Whereas the
baseline accuracy score for the normal set is 0.786. The oversampled dataset of FX are even below
their baseline accuracy. The classifier for the oversampled set also has a sensitivity of 0, indicating
that the classifier fails to correctly classify any observation from class 0. One notable advantage of
the oversampled FX set is the high OOB score. According to Breiman, the OOB score serves as a
reliable estimate of the error for the test set which shares the same size as the training set [36]. An
explanation for the higher OOB score can be that the OOB samples of the oversampled dataset contain
more observation than the ones of the undersampled and normal FX set. The predicted versus true
labels of all FX test set observations can be found in Appendix F, Figure F.3.

Test set Default RF
Reduced FX Acc Spec Sens Pre F-score ROC-AUC OOB score

Undersampled 0.667 1 0.333 1 0.5 0.667 0.417
Normal 0.786 1 0 0 0 0.5 0.8
Oversampled 0.455 0.909 0 0 0 0.454 0.958

EEG Z Acc Spec Sens Pre F-score ROC-AUC OOB score
Undersampled 0.667 0.667 0.667 0.667 0.667 0.667 0.997
Normal 0.786 1 0 0 0 0.5 0.990
Oversampled 0.5 1 0 0 0 0.5 0.999

PCA on EEG ZPCA Acc Spec Sens Pre F-score ROC-AUC OOB score
Undersampled 0.5 0.667 0.333 0.5 0.4 0.5 0.951
Normal 0.786 1 0 0 0 0.5 0.947
Oversampled 0.5 1 0 0 0 0.5 0.978

Table 7.6: Scores performance metrics for reduced dataset (FX ), EEG (Z) and PCA on EEG (ZPCA): default RF (in bold
higher accuracy, sensitivity, F-score and OOB scores are emphasized)

Undersampling the EEG dataset has a positive effect in the case of a default RF. Visualizing the pre-
dicted versus true labels, this statement is verified, see Figure 7.9. The model is able to correctly
classify two observations (EEG_09_06 and EEG_33_01) from class 1, namely we see a sensitivity score
of 0.667. However, the classifier also fails to correctly classify an observation (EEG_41_03) from class
0.
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Figure 7.9: Predicted versus true class labels of the undersampled EEG test set (Z): default RF

The predicted versus true labels of the other EEG and EEG PCA test set observations as determined
by a default RF model can be found in Appendix F, Figures F.4 and F.5.

The test scores for the tuned RF models are presented in Table 7.7, together with the mean of the
three validation scores. The mean of the three validation scores decide on a best configuration for the
RF model. The CV mean scores for the EEG datasets are measured over all epochs, while the test set
scores use the majority vote of all classified epochs.
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Tuned RF Mean of CV validation sets (in best setting)
Reduced FX Acc Spec Sens Pre F-score ROC-AUC

Undersampled 0.833 0.833 0.833 0.833 0.883 0.75
Normal 0.8 0.958 0.167 0.333 0.222 0.771
Oversampled 0.938 0.875 1 0.889 0.941 0.990

Separate test set
Reduced FX Acc Spec Sens Pre F-score ROC-AUC OOB score

Undersampled 0.5 1 0 0 0 0.5 0.417
Normal 0.786 1 0 0 0 0.5 0.8
Oversampled 0.455 0.909 0 0 0 0.455 0.917

Tuned RF Mean of CV validation sets (in best setting)
EEG Z Acc Spec Sens Pre F-score ROC-AUC

Undersampled 0.756 0.559 0.850 0.817 0.830 0.688
Normal 0.766 0.894 0.519 0.725 0.598 0.761
Oversampled 0.922 0.785 0.999 0.895 0.943 0.989

Separate test set
EEG Z Acc Spec Sens Pre F-score ROC-AUC OOB score

Undersampled 0.667 0.667 0.667 0.667 0.667 0.667 0.971
Normal 0.786 1 0 0 0 0.5 0.938
Oversampled 0.818 1 0.636 1 0.778 0.818 0.978

Tuned RF Mean of CV validation sets (in best setting)
PCA on EEG ZPCA Acc Spec Sens Pre F-score ROC-AUC
Undersampled 0.651 0.06 0.940 0.671 0.783 0.607
Normal 0.802 0.907 0.601 0.779 0.678 0.790
Oversampled 0.894 0.794 0.952 0.890 0.919 0.952

Separate test set
PCA on EEG ZPCA Acc Spec Sens Pre F-score ROC-AUC OOB score
Undersampled 0.333 0.333 0.333 0.333 0.333 0.333 0.799
Normal 0.786 1 0 0 0 0.5 0.889
Oversampled 0.5 1 0 0 0 0.5 0.933

Table 7.7: Scores performance metrics for reduced dataset (FX ), EEG (Z) and PCA on EEG (ZPCA): tuned RFs (in bold
higher accuracy, sensitivity and F-score scores are emphasized)

First, we notice that only the tuned RF model for the oversampled EEG set Z performs better than
the default configuration. Remarkably, the model for the undersampled FX set even performs slightly
worse compared to performance in the default setting. In both the default and tuned setting, the PCA
datasets have less favorable test scores than the original EEG sets.

In Table 7.7, the mean of validation sets of the oversampled EEG set Z exhibit high scores. It seems
that the model is correctly classifying the EEG epochs with label 1, even more than the ones with label
0: sensitivity is higher than specificity. Luckily, the test scores are also high, indicating that the model
is able to generalize on unseen data. However, we observe an alteration in both the specificity and
sensitivity scores. On the test set, the tuned model is better in classifying observations with label 0 than
label 1. However, sensitivity for the oversampled EEG test set (Z) is still favorable compared to other
datasets.
We notice that all models for the normal datasets misclassify all observations with class label 1, leading
to its baseline accuracy score and 0 values for sensitivity and precision. So whether FX , Z or ZPCA is
used as input data, the scores suggest under- or oversampling is advised. The undersampled FX also
attains its baseline performance scores. Figure 7.10 shows the predicted and true class labels for the
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oversampled FX test set. The lower specificity and precision can be attributed to the misclassification
of an observation with class label 0. The high scores in the mean of CV validation sets of the over-
sampled FX is a sign of overfitting. The oversampled set contain multiple replicates of observations
with label 1. The training set predominantly learns from the patterns within these observations, thereby
making it more challenging to generalize to unseen data.

Figure 7.10: Predicted versus true labels of oversampled FX test set

This outcome is again suboptimal and, in fact, quite alarming. However, this finding is not surprising.
The scores indicate that the RF model has a hard time classifying observations from the minority class
with label 1. Based on the table, the under- and oversampled EEG sets Z display the most promising
results.

To check that the grid search was performed well, we check a larger range per parameter, keeping
the other parameters in the best setting, to see if the largest mean of the validation sets was cho-
sen. Trying out a more detailed grid search for max_depth shows us we can reach multiple maximum
mean_test_F_score’s of 0.222 for the normal dataset, see Figure 7.11, but after testing the parameters
we conclude that they do not increase our final test score.
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Figure 7.11: Grid search on parameter max depth for normal FX dataset: blue line represents the mean scores for the
validation sets and yellow line for the training sets.

Using √p instead of None also gives us the same results as from the table. Looking at the grid
search on max_depth for the undersampled dataset FX , we see that a value of 10 gives us a higher
mean_test_F_score. However, trying this new max depth with the same settings, does not give us a
higher F-score for the test set. In Appendix, the plots for more datasets and their grid on the tuning
parameters can be found to confirm the best parameter settings.

7.3.2. Robustness
Cross-validation
We performed 3-fold cross-validation on the entire set of under- normal, and oversampled FX , see the
scores in Figure 7.12a). In a 3-fold CV the sets are split into 3 sets of which 2 are used for training and
1 is used for validation. The splits are stratified which means each fold contain the same amount of
observations with class labels 1.

(a)) On default RF (b)) On tuned RF

Figure 7.12: 3-fold cross-validation on sets FX . The dot represents the mean of the three validation scores, the upperbound is
the maximum score reached and the lowerbound is the minimum score.

The normal FX correctly classifies observations with class label 0 in all three folds, as the specificity
score is constantly 1.
Comparing the default and tuned RF models, we see that the biggest improvement is for the normal
FX set, enhancing its sensitivity, precision and F-score. We also notice that in most cases, the interval
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of the scores become smaller for the tuned RF model. This suggests that the model is better able to
centralize the scores of the three folds.

Parameter settings
During the tuning phase of the RF classifier, we tried different settings of the tuning parameters via grid
search. For the FX sets, the following scores of the performance metrics are observed during the grid
search, Figure 7.13.

(a)) Undersampled FX

(b)) Oversampled FX

(c)) Normal FX

Figure 7.13: Grid search on tuning parameters RF for undersampled, normal and oversampled FX

The grid search of the normal FX set shows that the specificity, precision and F-scores never reach
a value of 0.4 or higher. The oversampled set of FX consistently exhibits the higher scores among
the three sets with a sensitivity score of almost constantly 1. The more disappointing are the low test
scores of the oversampled FX set. The grid searches for the EEG Z and PCA ZPCA sets can be
found in Appendix F. There is pattern visable, where the set consistently performs worse but also that
specificity and sensitivity behave in the opposite way. The figures of these datasets reveal a noteworthy
characteristic: they exhibit greater stability compared to the figures of FX . This phenomenon can
be attributed to the larger number of observations present in the datasets. The reason why low test
scores are still observed in Table 7.7 is the majority voting process after the grid search. This approach,
which enables the classification of patients, further reduces the dataset to 44 observations. Another
noteworthy characteristics are the sensitivity scores of the EEG and EEG PCA datasets compared to
the specificity scores. This observation suggests that most of the class 1 epochs are correctly classified
by the undersampled and oversampled sets, while the class 0 epochs seem more difficult to classify
(due to lower specificity). In Figure ?? of Appendix F, an imbalance arises in the number of EEG
epochs. While there is a balance between patients with label 0 and 1, the unequal distribution of EEG
epochs among patients introduces an new form of imbalance and asks for further research. The high
mean scores are in contrast to the obtained test scores. Furthermore, relying on the majority vote
across epochs to classify a patient has its limitations. This approach fails to account for the possibility
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that critical information may be concentrated in only a few epochs, while the remaining epochs can be
regarded as noise.

7.3.3. Interpretability
The scores provide limited insights into the performance of the models. Our interest lies in determin-
ing the features that drive these models. In Chapter 3, we have seen that certain features are highly
correlated with the class label. Furthermore, we showed that features significantly differ in their mean
or variance between the classes. At the outset of this chapter, PCA assigned the most weight to the
features spectralentropy, BSI, Hjorthmobility, regularity and PLI, which are coincidentally also
the features with high correlation with the target label. Correlation with the target label does not neces-
sarily indicate high values in the PCA approach.
During the evaluation of the RF models, we anticipate on the previously mentioned features, as well as
features coherencealpha, betadeltaratio, occipitalalphadeltaratio, coherencetheta, alphadeltaratio,
deltapower and sampleentropy.

Mean Decrease Impurity
For the MDI feature importance, we compare the undersampled set FX and EEG Z for the tuned RF.
The x-axes of Figures 7.14 and 7.15 display a different range making it hard to compare the feature
importance of the two sets. This makes us aware of the disadvantage that the feature dimension of
FX is four times as large as the dimension of Z. However, the feature importance plot may be used as
a tool for future feature selection. Furthermore, it is interesting to observe the same phenomenon as
observed in the correlation matrices. The features related to the connectivity domain become important
when taking the mean, minimum or maximum. This is also noticed comparing the feature importance
figures for the normal and oversampled FX and S sets, Figure F.7 in Appendix F.

Figure 7.14: Feature importance based on Mean Decrease Impurity: Undersampled FX

The feature that was mostly correlated with class label was sampleentropy stdwhich is not included in
the feature importance plot of undersampled FX . The feature however is considered more important for
the normal and oversampled sets. For the normal and oversampled EEG set Z, the tuned RF assigns
sampleentropy the most MDI. This means that a split made on sampleentropy on average ensures
the most pure splits. Furthermore, in all three cases for Z, betapower and occipital-related features
support the splitting process by creating more pure nodes according to the MDI score.
Another notable observation in the cases of FX sets is that the features that exhibited statistically
significant differences between class labels are not well represented in the feature importance plots.
Only the features sampleentropy std, coherencetheta min and deltapower max are in the top 15
features over the three FX sets. Because of the large number of features (116), analyzing the MDI for
each individual feature becomes challenging.
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Figure 7.15: Feature importance based on Mean Decrease Impurity: Undersampled Z

SHAP
In the model development phase, we have seen that the undersampled and oversampled dataset of
Z had the most promising results. In both sets and the normal EEG set Z, patient EEG_13_02 was
misclassified as class 0, while the patient has label 1. A big advantage of SHAP algorithm is that the
SHAP values can tell us why a specific observation is misclassified. The values are namely calculated
per observation. However, due to the majority vote applied to all EEG epochs, it becomes difficult to
determine the specific features that contribute to this misclassification. It is unclear how the clustering
affects the SHAP algorithm. In Figure 7.16, the SHAP values of a randomly chosen EEG epoch of the
normal EEG set Z are displayed. The epoch is classified as class 0. This is primarily accomplished by
feature sampleentropy.

Figure 7.16: SHAP values of a random epoch

Looking at the mean SHAP values for the normal EEG Z set, we notice prominent importance of the
same feature, sampleentropy with a SHAP value almost three times the second highest SHAP value.
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Figure 7.17: Mean of SHAP values of normal EEG Z: Tuned RF

We are more interested in the reasoning of the RF models for under- and oversampled sets. Figure
7.18b) shows the mean of SHAP values for the undersampled EEG set Z. Initially, it is observed that
both the SHAP and MDI methods prioritize the same five features, implying similar performance. In
the model development section, we examined the scores for a default RF on all sets. Despite the
suboptimal scores, we quickly examine the most important features for the default and tuned model of
the undersampled EEG set. This analysis can help us determine whether the SHAP values rely on the
type of model used.
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(a)) Default RF (b)) Tuned RF

Figure 7.18: Mean of SHAP values of undersampled EEG Z

Figure 7.18 shows that different models prioritize other features. Remarkably, the models have a fea-
ture overlap of 5 out of the first 6 features, even though their order differs. While feature occipitalalphadeltaratio
is most important in the default setting, it become slightly less important in the tuned RF model.
Both the undersampled EEG and normal EEG set demonstrate overlap in important features, such as
the occipitalalpha- features. However, looking at the mean values, the model for the normal EEG
set assigns the second most important feature a mean value of ±0.06, whereas in case of the under-
sampled EEG set, there are approximately 9 features that have a higher importance than 0.06. One
possible explanation for the lower performance of the normal EEG set could be attributed to its heavy
reliance on sampleentropy.

In the model development phase, we have seen that the RF models for the FX sets demonstrate
inadequate performance on all metrics. The models reached scores at or even below their baseline
levels. The RF classifier for the oversampled FX set performed well in the cross-validation sets, but did
not generalize well on the test set. In Figure 7.19, we see that the mean of SHAP values is greatest for
feature coherencebeta1 min, followed by occipitalalphadeltaratio min and Hjortmobility std.
Furthermore, these features resemble the most important features according to MDI, Figure ??. The
two figures show the same top seven feature in different order.
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Figure 7.19: Mean of SHAP values of oversampled FX : tuned RF

Lastly, for the oversampled setFX , we present the threshold for the value of feature coherencebeta1 min
in Figure 7.20. Values below 0.42, push the observation to class 1, whereas a value greater than 0.42
help the observation to class 0.

Figure 7.20: A threshold for coherencebeta1 min and its SHAP values for oversampled FX . On the x-axis values for feature
coherencebeta1 min are displayed with corresponding SHAP values on the y-axis. The figure is created with respect to class 1,

meaning that positive SHAP values increase the probability of being classified to class 1.

In Table 7.7, the model for the oversampled FX set misclassified an observation with true class label 0,
due to the lower accuracy and specificity score. It appears in Figure ?? in Appendix F that EEG_02_08
was misclassified as class label 1. The model correctly assigned EEG_29_01 to class 0. In Figure 7.21,
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both SHAP values for the EEG codes are plotted according to class label 0.

(a)) EEG 02 08
(b)) EEG 29 01

Figure 7.21: SHAP values for oversampled FX : tuned RF

Observation EEG_29_01 receives probability f(x) = 0.847 so that the observation is classified to class
0. On the other hand, we see that observation EEG_02_08 get assigned a probability of f(x) = 0.387.
It is remarkable that coherencebeta1 min pushes the classification of EEG_02_08 to label 1, where
the same feature points in opposite direction for EEG_29_01. Figure 7.20 shows that the threshold
of coherencebeta1 min is around 0.42. On the y-axis of Figure 7.21, the observed values for the
features are displayed. Evidently, this threshold guarantees that both observation receive contrast-
ing SHAP values for coherencebeta1 min. All other 107 features push EEG_29_01 in the right direc-
tion of class 1 with a value of 0.19, while in the case of EEG_02_08 the other 107 features account for
only−0.05. Other features considered important are Hjorthmobility std, occipitaldeltaratio min
and deltapower min. The presence of these features in Figure 7.21 for observations EEG_02_08 and
EEG_29_01 is not a mere coincidence, since the same features appeared in Figure 7.19.

The FX set are summarized features of the values in the EEG dataset. The SHAP values tell us that
from the EEG important feature sampleentropy, its standard deviation support the RF classifier in clas-
sification, as seen in Figure 7.19. Additionally, it is worth noting that features that are not considered
important in the EEG data setting, gain importance when averaged or maximized, and vice versa. Both
MDI and the SHAP values confirm this statement. For example, spectralentropy seemed important
in the EEG setting, but vanishes in the FX setting. Furthermore, the features linked to coherence are
promimently present in the FX feature importance measures, but they have low relevance in the EEG
setting.
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Conclusion

8.1. Conclusion
During the initial phase of diagnosis, patients with anti-NDMA-receptor encephalitis (anti-NMDARE)
often experience severe symptoms that significantly impact their quality of life. Anti-NDMARE is an
autoimmune disorder that affects the brain. Electroencephalography (EEG) plays a crucial role in the
diagnosis and treatment process. An EEG recording measures the electrical activity of the brain by
attaching electrodes to the patient’s head. The ability to identify which EEG patterns relate to a positive
or negative prognosis of anti-NMDARE is crucial. By distinguishing which patients have a favorable or
unfavorable long-term (12months) outcome, the intensity of the treatment can be adjusted accordingly.
Currently, the classification of favorable or unfavorable outcome is performed manually, a process that
is labor-intensive and provides a rough evaluation. EEG recordings are classified manually, which is
labor-intensive and open to broad interpretation. Also, the factors that contribute to the severity of the
disease remain unclear. If diagnosis, prognosis and treatment can be better understood, this could
lead to an increased quality of life for patients with anti-NMDARE. The aim of this thesis was to analyse
the EEG data for the anti-NMDARE disease and to predict which patients exhibit positive recovery after
12 months of standard treatment.

Initially, we made the decision to construct a Random Forest (RF) classifier for predicting the outcome
after 12 months of anti-NDMARE based on available electroencephalography (EEG) features. While
we have 44 patients with 29 features and 500 to 1500 recordings, the EEG dataset is complex and we
have differences within one patient and between the observations of patients. The RF classifier can
handle non-linear input data with high dimensions and is considered an accurately and interpretable
classification model. By valuing interpretability of the prediction, we defined one of our goals to deter-
mine which features improve the classification model.

A prominent challenge encountered early in this research was the class imbalance. Only 9 patients
in the dataset were classified with an unfavorable outcome (label = 1), whereas 35 patients had a fa-
vorable outcome after 12 months (label = 0). The issue was addressed by under- and oversampling
the dataset.
In the exploratory analysis, we noticed features that were highly correlated with the class labels
(spectralentropy, PLI and BSI) and oneswhich were not (coherencetheta, thetapower and coherencealpha).
The presumption was that these features should play an important role in the classification model.
Statistical significance tests did not provide us much information for the EEG features. This was
partly due to the fact that the EEG data can be considered as clustered data, as there are repeated
measurements per patient (=cluster). The cluster-based structure was confirmed by performing an
F-test and with the use of an Intracluster Correlation Coefficient (ICC) which showed that some fea-
tures had large variance between the means of all patients compared to the total variance within pa-
tients. Again spectralentropy and BSI came out as important features in this analysis. Furthermore,
sampleentropy, Hjorthmobility and occipitalalphapower indicated a clustering effect in the data.
Identifying the clustered structure of the EEG dataset led to defining three ways to handle at the data:

81
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ignoring clustering, reducing the clustering to independent observations and explicitly accounting for
clustering. The first two options were explored throughout this research. Reducing clustering led to
a dataset noted as FX which consists of the mean, standard deviation, minimum and maximum of all
EEG features per patient. Subsequently, we identified features, that were not correlated with the class
label for the EEG case, but were of statistical significance in the reduced FX set.

The RF is a boosting algorithm that aggregates the predictions of multiple Decision Trees (DT). By
bootstrap aggregation, the RF method reduces the risk over overfitting. This is due to the fact that not
all trees are trained on the same subset of the training data. Furthermore, RF include feature random-
ness ensuring the DTs are decorrelated. Features are chosen randomly at each split, ensuring not only
important features can be chosen at a split in the DT. The Gini index and entropy are impurity measures
used for measuring the quality of a split and identifying the best feature for splitting a node. However,
they do not take class imbalance into account. The parameters of the RF model were tuned, aiming to
find an accurate classification model for the anti-NMDARE data. Besides the RF model, we used both
the Mean Decrease Impurity and SHAP algorithm for the model’s interpretability.

In the simulation study, we have seen that the EEG set Zsim (undersampled, normal or oversampled)
perform better than the FXsim sets. This suggests that the presence of more information contained in
the EEG sets leads to improved performance, while acknowledging the ignorance of the independence
assumption. In the case of the simulation sets, under- or oversampling did not yield the desired effect,
The normal sets exhibited similar of even superior performance compared to the the under- and over-
sampled sets. However, PCA did not have the desired effect on the scores. This could possibly be
attributed to the class dependent features that have low correlation with the rest of the features. SHAP
values indicated correctly that the feature dependent on class label was considered most important.
Furthermore, the threshold for feature 2 mean defined by the SHAP values, would able to split the
training observations indicating an accurate threshold. We recognize that the simulation data was de-
fined transparently and understandably. In real life case, there is hardly ever one feature that is able
to classify all instances. Moreover, the classification method would be excessive, as it is possible to
separate the classes using only one feature.

Classifying the true observed EEG data, the tuned RFs for the under- and oversampled EEG Z suc-
ceeded in correctly classifying observations from class 1. All normal sets assigned all observations to
label 0, reaching a baseline for the accuracy of 0.786. This baseline represents the scores of a simplistic
classifier that classifies all observation to the majority class. All three models for the FX sets were at or
even below their baseline levels. Based on this observation, for both the real data and the simulated
case, it is recommended to use the complete EEG sets Z as input for the RF classifier. Also, on the
real EEG dataset, PCA does not perform better than the normal EEG sets.
Analyzing the robustness of our model with cross-validation, we have seen that the oversampled FX

set reaches high scores in all 3 folds, and is preferred over the undersampled and normal FX set. An
interesting finding from the EEG dataset was that the undersampled set exhibited higher mean sensi-
tivity and F-score, but at the cost of reduced mean in specificity. This might be partly due to its new
class imbalance of EEG epochs which warrants further attention.

Even though we see that the scores for the performance metrics are not yet optimal, we have a
good understanding of the dataset and by performing several tests, together with PCA and feature
importance methods, we identified the most important features for determining the class labels. Con-
cluding remarks from feature importance methods MDI and SHAP are that features related to the
connectivity domain become important when taking the mean, minimum or maximum in FX . These
features include coherencebeta1 min, coherencebeta2 std and coherencetheta min. Other recur-
rent features were occipitalalphadeltaration min, Hjorthmobility std, sampleentropy std and
deltapower min. In the EEG setting, MDI emphasized the importance of the features deltapower,
sampleentropy and occipital-related features. These features remain important in the FX set. Re-
markably, spectralentropy did not receive the importance assumed in the beginning of this research.
Both MDI and SHAP prioritize the same features, however SHAP can identify how certain features con-
tribute to the prediction of a observation, making the prediction and the RF model highly interpretable.
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The challenges for the RF classifier in the case of anti-NDMARE lies in the class imbalance and are
associated with classifying the minority class. Under- and oversampling the dataset led to the succes-
sion of correctly classifying observations from the minority class. However, a part from its explainable
characters, the classifier’s ability to classify both classes needs to be improved.

8.2. Future research
Several recommendations to address the challenges encountered in this research are

• The results from this research suggest the complete EEG sets Z perform better than the reduced
FX sets. Too much noise in the FX dataset might have led to the suboptimal scores for class
labels 1. The set contains 116 features compared to 44 independent observations. A suggestion
for further research is exploring various feature selection methods for the FX and EEG dataset
given the identification of important features in this research. Different combinations of these
features, taking into account their correlation coefficients, should be explored as input for the
classifier. In this thesis, some of the sets are tested but did not prove any improvements in test
scores.

• To improve the scores for the performance metrics, other classification methods can be explored
and tested such as the Support Vector Classifier (SVC) or logistic regression. Because the RF
classifier has higher interpretability, we did not choose thesemethods initially. By using the feature
importance methods from the RF classifier, a possibility is to incorporate these features into less
interpretable classifiers, keeping in mind that this might lead to biased RF models.

• A straightforward yet highly effective solution for class imbalance is to collect more data. The
classifier’s limited ability to classify observation from the minority class can be traced back to
the insufficient amount of data available. Determining the optimal amount of data required for
improved performance is challenging. Continuous testing is necessary to assess the ideal data
quantity. Additionally, apart from over- and undersampling, exploring alternative class balancing
techniques can be advantageous. Furthermore, when there is more data available, the FX sets
will have more favorable dimensions for the classifier. If there are more observations than feature,
the feature reduction method PCA can also be applied on this set. However, it should be noted
that in our research, PCA did not improve performance.

• This thesis focused on the applications of EEG data and on highlighting the important features
extracted from the EEG signals. The addition of other clinically relevant features such as age,
gender or MRI findings, not directly associated with EEG data, could prove advantageous.

• In addition to the previous point, we must also consider the ethical challenges of fair training
ML models. We do not want our model to be unintentionally biased against certain groups of
people. While we acknowledge that the disease predominantly affects young women and children,
it should not result in men always being misclassified. The subject of ethics and the potential for
biased training in ML methods is a broad topic that requires careful study and consideration.

• Another recommended approach or consideration is labeling all EEG epochs and not keeping all
labels constant over every epoch per patient. This objective would be challenging, since there
is no strong association with an EEG epoch and the disease outcome. One potential approach
could involve labeling epochs that are considered significant in assessing the severe of the dis-
ease. However, biases should be avoided, as Machine Learning (ML) models then learn from
the information provided by clinicians. After acknowledging the challenges and limitations of this
task, the curiosity for the potential impact of this on the model’s performance remains. Besides
anti-NMDARE, this research can for example also explore the classification of epileptic seizures.

• An evident next step is to leverage all the information captured in the EEG data while also ac-
knowledging the assumption of independence in ML models. In this thesis, RF models that can
handle clustering were introduced. These solutions appear promising when the objective is to
utilize the extracted features from the EEG signals. Due to their complex characteristics and
challenging implementation, the methods were categorized for further research. For future re-
search, it is important to validate the assumptions of the RF models, as certain models require
each observation to have its own class label.

• For raw EEG signals, a Convolution Neural Network (CNN) classifier in combination with the
explainable Artificial Intelligence (AI) algorithm GradCAM was considered a promising solution
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for the anti-NMDARE classification problem. This method requires less data preprocessing and
can identify important fragments in the EEG signal, which does not compromise interpretability.
However, the perception of a CNN as a black-box might render it a less appealing method to
explore.

• Finally, a recommendation is to explore alternative methods discussed in the aforementioned
points by generating a more realistic simulated dataset. Conducting a simulation study guaran-
tees a better understanding of the model’s performance. In this thesis, the simulated dataset
unfortunately fell short of meeting the expectations in terms of resemblance to the true dataset.

• In order to boost the interdisciplinarity of the project, there is a personal preference to incorporate
diverse perspectives. Although, it may be challenging for a mathematician to understand signal
analysis in EEG data or comprehend the EEG signals themselves, the model could potentially
gain valuable insights by understanding the interaction among various features. This interdisci-
plinary approach would contribute to a more comprehensive understanding of the anti-NDMARE
classification problem.

It is important to continue research on this topic while it could be a possibility to expand our knowledge
on this rare disease, improving patients’ quality of life. Additionally, other uncommon and rare diseases
with imbalanced outcomes of treatment can then be analyzed by the methodology.
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A
Advantages and Disadvantages of

Classification Methods
.

Algorithm Advantages Disadvantages

Naive Bayes

simple implementation, high computa-
tional speed, high learning speed, high
classification speed, managing overfit-
ting, managing noisy data, andmanaging
missing values

assuming independence of features, lack
of ability to manage features with high
correlation, low accuracy

Decision Tree (DT)

simple understanding, high computa-
tional speed, high learning speed, high
classification speed, managing missing
values

the complexity of designing large trees,
lack of ability to manage overfitting, low
ability to manage noisy data, low ability to
manage data with high correlation, medi-
uma accuracy

Articificial Neural
Network (ANN)

high flexibility, high accuracy, high clas-
sification speed, ability to manage data
with high correlation, suitable for nonlin-
ear and complex databases

difficult implementation, low learning
speeds, inability to manage noisy data,
lack of ability to manage overfitting

Ensemble learning
system

high accuracy, ability to manage missing
values, ability to manage noisy data, abil-
ity to manage overfitting, ability to man-
age data with high correlation, high clas-
sification speed, high stability

difficult implementation, low learning
speed, high computational complexity

Random Forest
(RF)

ability to manage noisy data, high classi-
fication speed, suitable for large and het-
erogeneous databases

difficult understanding by humans, diffi-
cult implementation, medium accuracy,
low learning speed, low ability to man-
age missing values, low ability to man-
age overfitting, low ability to manage data
with high correlation

Deep Learning (DL)

suitable for large and high dimensional
databases, high accuracy, high classi-
fication speed, ability to manage noisy
data, ability to manage data with high cor-
relation

difficult implementation, low learning
speed, inability to manage overfitting, low
ability to manage missing values

Support Vector Ma-
chine (SVM)

ability to manage data with linear separa-
bility and nonlinear separability, high ac-
curacy, high classification speed, ability
to manage data with high correlation

assuming linear separability for dataset,
low ability to manage overfitting, low
learning speed, low ability in managing
missing values, low ability to manage
noisy data

k-Nearest Neighbor
(k-NN)

simple algorithm, stable performance,
high learning speed, ability to manage
overfitting

high computational overhead, sensitivity
to local data structures, medium accu-
racy, low classifcation speed, low ability
in managing missing values, inability to
manage noisy data, inability to manage
data with high correlation

Table A.1: Supervised learning methods and their advantages and disadvantages by [17]
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B
Description of Extracted EEG Features

B.1. Table with descriptions

Feature Definition

Frequentie

deltapower absolute power per [0.4− 4Hz]
thetapower absolute power per [4− 8Hz]
alphapower absolute power per [8− 12Hz]
betapower absolute power per [12− 25Hz]

thetadeltaratio absolute power of theta band
absolute power of delta band

alphadeltaratio absolute power of alpha band
absolute power of delta band

betadeltaratio absolute power of beta band
absolute power of delta band

deltaratiofrontal absolute power of delta band in frontal region
total power of delta band

deltaratiotemporal absolute power of delta band in temporal region
total power of delta band

deltaratiocentral absolute power of delta band in central region
total power of delta band

deltaratioparietal absolute power of delta band in parietal region
total power of delta band

deltaratiooccipital absolute power of delta band in occipital region
total power of delta band

occipitalalphapower absolute power of alpha band on occipitale elec-
trodes

occipitalalphadeltaratio absolute power of alpha band
absolute power of delta band (both on occipitale elec-
trodes)

occipitalalphatotalratio absolute power of alpha band
total power (both on occipitale elec-

trodes)
Brain Symmetry Index (BSI) left hemisphere frequency

right hemisphere frequency

Complexity

spectralentropy similarity on the frequency spectrum
sampleentropy similarity of the amplitude
regularity normalised variance of the amplitudes
Hjorthactivity variance of a time series
Hjorthmobility mean frequency of a time series
Hjorthcomplexity change in the signal compared to a pure sine wave

Connectivity

Phase-lag index (PLI) measure of the extent to which phase synchroniza-
tion occurs in signals, measured in different brain
regions

coherencedelta coherence in [0.5-4Hz] domain
coherencetheta coherence in [4-8Hz] domain
coherencealpha coherence in [8-12Hz] domain
coherencebeta1 coherence in [12-18Hz] domain
coherencebeta2 coherence in [18-25Hz] domain
grangercausality outcome of a statistical test to what extent a time

series predicts another

Table B.1: Extracted features from EEG signals
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B.2. Table with summary statistics per EEG feature 93

B.2. Table with summary statistics per EEG feature

EEG feature Mean Std Min Max
deltapower 220.22 285.49 2.72 3401.31
thetapower 22.25 94.53 0.48 2950.51
alphapower 8.31 12.58 0.25 281.64
betapower 7.30 7.67 0.39 181.19
thetadeltaratio 0.16 0.21 0 3.12
alphadeltaratio 0.16 0.34 0 6.51
betadeltaratio 0.14 0.25 0 3.96
deltaratiofrontal 1.27 0.33 0.14 3.52
deltaratiotemporal 0.98 0.33 0.10 3.71
deltaratiocentral 0.77 0.36 0.05 4.16
deltaratioparietal 0.81 0.31 0.06 4.37
deltaratiooccipital 0.78 0.30 0.06 3.86
occipitalalphapower 16.91 30.88 0.31 539.68
occipitalalphadeltaratio 0.40 1.15 0 33.76
occipitalalphatotalratio 0.16 0.37 0 7.14
BSI 0.31 0.13 0.05 0.77
spectralentropy 0.66 0.06 0.53 0.86
sampleentropy 0.03 0.02 0 0.14
regularity 0.72 0.06 0.35 0.93
Hjorthactivity 397.85 496.93 18.63 11606.54
Hjorthmobility 0.24 0.15 0.03 1
Hjorthcomplexity 1.04 0.20 0.40 1.50
PLI 0.11 0.04 0.03 0.34
coherencedelta 0.58 0.06 0.41 0.88
coherencetheta 0.56 0.05 0.41 0.86
coherencealpha 0.54 0.05 0.39 0.80
coherencebeta1 0.53 0.05 0.39 0.82
coherencebeta2 0.51 0.04 0.39 0.77
grangercausality −25.74 5.94 −46.70 −0.16

Table B.2: Descriptive analysis of EEG features: mean, std, min and max



C
SHAP values

The SHAP values for classification use the predicted probability for the classes. In the case of the
RF classifier, the .predict.proba() property is utilized. This function computes the class means of
predicted probabilities over all trees in the forest. The SHAP values are computed per class, so we
continue the explanation for one class.

The predicted probability for a class is denoted by f̂(x), where f̂ is our RF model and x an obser-
vation. Observation x consists of multiple features j ∈ {1, . . . , p}. SHAP value ϕj(f̂) is the contribution
of fetaure j on the predicted outcome. Summing over all features, we get

p∑
j=1

ϕj(xj) = f̂(x)− E(f̂(X))

This equation can be easily derived from a linear prediction model. For one observation the linear
prediction model is

f̂(x) = β0 + β1x1 + . . .+ βpxp

Each βj is the weight corresponding to feature j. The contribution of feature j on the prediction f̂(x) is
[51]

ϕj(xj) = βjxj − E(βjxj) = βjxj − βjE(xj)

Summing over all features, we get

p∑
i=1

ϕj(f̂) =

p∑
j=1

(βjxj − E(βjxj))

= (β0 +

p∑
j=1

βjxj)− (β0 +

p∑
j=1

E(βjxj))

= f̂(x)− E(f̂(X))

Note that E(f̂(X)) is the expected value of f̂ for an RV X, where X follows the distribution of the ob-
servations. We do not know the true distributions of the features. We can try to estimate them by using
the observations x from our dataset.

Since our model is not linear, we need another equation for Shapley values. The computation of Shap-
ley value uses a function v(S), see Equation 5.6. This set function v(S) represents the prediction for
feature values in the set S which is calculated by marginalizing over the features that are not included
in S, i.e.

v(S) =

∫
f̂(x1, . . . , xp)dPx/∈S − E(f̂(X))
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As an example, we pick a non-linear model that uses features x1, . . . , x4. Let S be a subset consisting
of the features x1 and x3. To evaluate the prediction of set S, we calculate

v(S) =

∫
R

∫
R
f̂(x1, X2, x3, X4)dPX2

dPX4
− EX(f̂(X))

The first term is integrating over all possible values ofX2 andX4 according to their probability measure
P in the prediction model. Intuitively, the double integral represents a way of aggregating the prediction
model f(X) by averaging it over all possible values ofX2 andX4. Subtracting the expected value of the
prediction model for all X (in our example X = (X1, X2, X3, X4)), denoted by EX(f̂X(X)), determines
the effect of subset S on the prediction model.

Some properties that are satisfied by the Shapley values are

1. Efficiency For each observation, the Shapley values must add up to the difference between the
prediction of x and the expected values for f̂(X):

p∑
j=1

ϕj = f̂(x)− EX(f̂(X))

2. Symmetry If two features contribute equally to all possible subsets, their Shapley values should
be the same. So if for all S ⊆ {1, . . . , p} \ {j, k}

v(S ∪ {j}) = v(s ∪ {k})

then
ϕj = ϕk

This principle ensures that the contribution of features j and k are equal when they have the same
value across all subsets in which they do not participate.

3. Dummy If a feature is added to a subset S and it does not change the predicted value, it’s Shapley
value should be 0. So if for all S ⊆ {1, . . . , p}

v(S ∪ {j}) = v(S)

then
ϕj = 0

4. Additivity For a prediction model that combines multiple predictions, the Shapley values are
defined by

ϕ
(1)
j + ϕ

(2)
j

This property guarantees that for a Random Forest classifier the Shapley values of all Decision
Trees can be averaged to obtain a Shapley value for the RF.



D
Definition of Simulated Data in Python

1 #%% define function to simulate data per patient
2

3 # Initiate data per patient
4

5 k = 29 #(no. features)
6

7 def SimulateFeatures(y, j):
8 i = np.random.randint(500, 1500+1)
9 X = pd.DataFrame(index = ['EEG_'+str(j) for t in np.arange(1,i+1,1)],
10 columns = ['feature ' + str(l) for l in np.arange(1,k+1,1)])
11

12 MS = np.zeros((2,k))
13

14 MS[0,0:5] = np.random.uniform(0,2,5)
15 #MS[0,4] = 2*MS[0,2]
16 MS[1,0:5] = np.random.uniform(0,1,5)
17 #MS[1,3] = 4*MS[1,0]
18

19 MS[0,5:10] = np.random.uniform(4,5,5)
20 #MS[0,6] = 0.5*MS[0,8]
21 MS[1,5:10] = np.random.uniform(0,2,5)
22 #MS[1,6] = 0.5*MS[0,8]
23

24 MS[0,10:15] = np.random.uniform(20,30,5)
25 MS[1,10:15] = np.random.uniform(0,4,5)
26

27 MS[0,15:20] = np.random.uniform(2,20,5)
28 MS[1,15:20] = np.random.uniform(0,2,5)
29

30 MS[0,20:25] = np.random.uniform(2,10,5)
31 MS[0,25:29] = np.random.uniform(1,4,4)
32

33 f1 = np.random.normal(MS[0,0], MS[1,0], size = (i,))
34 if y == 1:
35 f2 = np.random.normal(MS[0,1], MS[1,1], size = (i,))
36 else:
37 f2 = 0.5*np.random.normal(MS[0,1], MS[1,1], size = (i,))+3
38 f3 = np.random.normal(MS[0,2], MS[1,2], size = (i,))
39 f4 = np.random.normal(MS[0,3], MS[1,3], size = (i,))
40 f5 = np.random.normal(MS[0,4], MS[1,4], size = (i,))
41 f6 = np.random.normal(MS[0,5], MS[1,5], size = (i,))
42 f7 = np.random.normal(MS[0,6], MS[1,6], size = (i,))
43 if y == 1:
44 f8 = np.random.normal(MS[0,7], MS[1,7], size = (i,))
45 else:
46 f8 = 3*np.random.normal(MS[0,5], MS[1,5], size = (i,))-4
47 f9 = np.random.normal(MS[0,8], MS[1,8], size = (i,))
48 f10 = np.random.normal(MS[0,9], MS[1,9], size = (i,))
49

50 f11 = np.random.normal(MS[0,10], MS[1,10], size = (i,))
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51 f12 = np.random.normal(MS[0,11], MS[1,11], size = (i,))
52 f13 = np.random.normal(MS[0,12], MS[1,12], size = (i,))
53 if y == 1:
54 f14 = np.random.normal(MS[0,13], MS[1,13], size = (i,))
55 else:
56 f14 = np.random.normal(MS[0,12], MS[1,12], size = (i,))-5
57 f15 = np.random.normal(MS[0,14], MS[1,14], size = (i,))
58 #f16 = np.random.normal(MS[0,15], MS[1,15], size = (i,))
59 f16 = f15/7
60 f17 = np.random.normal(MS[0,16], MS[1,16], size = (i,))
61 f18 = np.random.normal(MS[0,17], MS[1,17], size = (i,))
62 f19 = np.random.normal(MS[0,18], MS[1,18], size = (i,))
63 if y == 1:
64 f20 = np.random.normal(MS[0,18], MS[1,18], size = (i,))*0.2
65 else:
66 f20 = np.random.normal(MS[0,19], MS[1,19], size = (i,))
67

68 f21 = np.random.exponential(MS[0,20], size = (i,))
69 f22 = np.random.exponential(MS[0,21], size = (i,))
70 f23 = np.random.exponential(MS[0,22], size = (i,))
71 if y == 1:
72 f24 = 2*np.random.exponential(MS[0,22], size = (i,))
73 else:
74 f24 = np.random.exponential(MS[0,23], size = (i,))
75 if y == 1:
76 f25 = np.random.exponential(MS[0,24], size = (i,))
77 else:
78 f25 = np.random.exponential(MS[0,25], size = (i,))
79 f26 = np.random.exponential(MS[0,25], size = (i,))
80 #f27 = np.random.exponential(MS[0,27], size = (i,))
81 f27 = 0.5*f26
82 f28 = np.random.exponential(MS[0,27], size = (i,))
83 f29 = np.random.exponential(MS[0,28], size = (i,))
84

85 #rang = np.arange(1, i+1,1)
86

87 #X['Epoch'] = rang
88 X['feature 1'] = f1
89 X['feature 2'] = f2
90 X['feature 3'] = f3
91 X['feature 4'] = f4
92 X['feature 5'] = f5
93 X['feature 6'] = f6
94 X['feature 7'] = f7
95 X['feature 8'] = f8
96 X['feature 9'] = f9
97 X['feature 10'] = f10
98 X['feature 11'] = f11
99 X['feature 12'] = f12
100 X['feature 13'] = f13
101 X['feature 14'] = f14
102 X['feature 15'] = f15
103 X['feature 16'] = f16
104 X['feature 17'] = f17
105 X['feature 18'] = f18
106 X['feature 19'] = f19
107 X['feature 20'] = f20
108 X['feature 21'] = f21
109 X['feature 22'] = f22
110 X['feature 23'] = f23
111 X['feature 24'] = f24
112 X['feature 25'] = f25
113 X['feature 26'] = f26
114 X['feature 27'] = f27
115 X['feature 28'] = f28
116 X['feature 29'] = f29
117

118 return X
119

120 #%% Repeat this for every patient and simulate their labels
121 no_pat = 40
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122 def simulate_EEG_data(no_pat):
123 patient_list = list()
124 labels = np.zeros(no_pat,)
125

126 for p in range(0,no_pat):
127 labels[p] = np.random.binomial(1, 0.2)
128 X = SimulateFeatures(labels[p], p+1)
129 patient_list.append(X)
130

131 y = pd.DataFrame(labels.astype(int),
132 index = ['EEG_'+str(i) for i in np.arange(1, no_pat+1,1)],
133 columns = ['Target label'])
134 EEG_features = pd.concat(patient_list, axis = 0)
135 EEG_features['Target label'] = y
136 y_EEG = pd.DataFrame(columns = ['Target label'],
137 data = EEG_features[['Target label']].values,
138 index = EEG_features.index)
139 EEG_features = EEG_features.drop(['Target label'], axis = 1)
140

141 return EEG_features, y, y_EEG
142

143 EEG_features, y, y_EEG = simulate_EEG_data(44)



E
Simulation Results

E.1. Principal Component Analysis
Features with larger variances (see density functions) appear to have larger PCA weights. Even though
the features are scaled. The scaling does take the variance into account. The scatterplots confirm
correlation between certain features and so why they got assigned larger weights.

Figure E.1: Density of high and low covariance features
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E.1. Principal Component Analysis 100

Figure E.2: Scatterplots for low and highly correlated features
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E.2. Effect under- and oversampling

Figure E.3: The effect of under- and oversampling compared to the normal simulated EEG dataset Zsim (in brackets the no.
EEG observations per class)

Figure E.4: The effect of under- and oversampling compared to the normal simulated EEG dataset after PCA ZsimPCA(in
brackets the no. EEG observations per class)
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E.3. Predicted versus true class labels

(a)) Undersampled FXsim: default RF (b)) Undersampled FXsim: optimized RF

(c)) Normal FXsim: default RF (d)) Normal FXsim: optimized RF

(e)) Oversampled FXsim: default RF (f)) Oversampled FXsim: optimized RF

Figure E.5: Predicted and true class labels: default RF and optimized RFs
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(a)) Undersampled Zsim: default RF (b)) Undersampled Zsim: optimized RF

(c)) Normal Zsim: default RF (d)) Normal Zsim: optimized RF

(e)) Oversampled Zsim: default RF

(f)) Oversampled Zsim: optimized RF

Figure E.6: Predicted and true class labels: default RF and optimized RFs
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(a)) Undersampled ZsimPCA: default RF (b)) Undersampled ZsimPCA: tuned RF

(c)) Normal ZsimPCA: default RF (d)) Normal ZsimPCA: tuned RF

(e)) Oversampled ZsimPCA: default RF (f)) Oversampled ZsimPCA: tuned RF

Figure E.7: Predicted and true class labels: default RF and optimized RFs
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E.4. Best settings for parameters

Dataset max_depth no_estimators max_features splitting rule

Normal FX 3 100 None Gini

Under FX 3 100 0.2 entropy

Over FX 3 100 None Gini

Normal EEG Z 6 10
√
p Gini

Under EEG Z 3 20
√
p Gini

Over EEG Z 9 50 0.2 entropy

Normal EEG PCA 9 10
√
p Gini

Under EEG PCA 9 50
√
p entropy

Over EEG PCA 9 50 0.2 Gini

Table E.1: Best parameters from GridSearch per dataset
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E.5. Grid search: different parameter settings for Zsim and ZsimPCA

(a)) Undersampled Zsim (b)) Undersampled ZsimPCA

(c)) Normal Zsim (d)) Normal ZsimPCA

(e)) Over Zsim (f)) Over ZsimPCA

Figure E.8: Grid search for both EEG sets, Zsim and ZsimPCA. On the x-axis the ticks are a set of tuning parameters. The
mean score of the validation sets of a specific tuning parameters is displayed on the y-axis.



F
Results

F.1. Effect under- and oversampling

Figure F.1: The effect of under- and oversampling compared to the normal simulated EEG dataset Z (in brackets the no. EEG
observations per class)

Figure F.2: The effect of under- and oversampling compared to the normal simulated EEG dataset after PCA ZPCA(in brackets
the no. EEG observations per class)
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F.2. Predicted versus true class labels

(a)) Undersampled FX : default RF (b)) Undersampled FX : tuned RF

(c)) Normal FX : default RF (d)) Normal FX : tuned RF

(e)) Oversampled FX : default RF (f)) Oversampled FX : tuned RF

Figure F.3: Predicted versus true labels: default and tuned RF
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(a)) Undersampled Z: default RF (b)) Undersampled Z: tuned RF

(c)) Normal Z: default RF (d)) Normal Z: tuned RF

(e)) Oversampled Z: default RF

(f)) Oversampled Z: tuned RF

Figure F.4: Predicted versus true labels: default and tuned RF
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(a)) Undersampled ZPCA: default RF (b)) Undersampled ZPCA: tuned RF

(c)) Normal ZPCA: default RF (d)) Normal ZPCA: tuned RF

(e)) Oversampled ZPCA: default RF (f)) Oversampled ZPCA: tuned RF

Figure F.5: Predicted versus true labels: default and tuned RF
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F.3. Best settings for parameters

Dataset max_depth n_estimators max_features splitting rule

Under FX 9 250
√
p entropy

Normal FX 3 150
√
p Gini

Over FX None 150
√
p Gini

Normal EEG Z 6 20 0.2 entropy

Under EEG Z 3 10 0.2 Gini

Over EEG Z 9 50
√
p Gini

Normal EEG PCA 6 50
√
p entropy

Under EEG PCA 3 10 0.2 Gini

Over EEG PCA 9 50
√
p entropy

Table F.1: Best parameters from GridSearch per dataset
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F.4. Grid search: different parameter settings for Z and ZPCA

(a)) Undersampled Z (b)) Undersampled ZPCA

(c)) Normal Z (d)) Normal ZPCA

(e)) Oversampled Z (f)) Oversampled ZPCA

Figure F.6: Grid search on tuning parameters RF for undersampled, normal and oversampled Z and Zsim
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F.5. Feature importance: MDI

(a)) Normal FX (b)) Normal Z

(c)) Oversampled FX (d)) Oversampled Z

Figure F.7: Feature importance based on Mean Decrease Impurity: tuned RF
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