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1
Thesis Structure

This thesis is submitted in completion of the Master in Mechanical Engineering with a specialisation in
Bio-Robotics. The topic of the thesis covers the learning of dynamic grasping from demonstration and
user corrections. The main body of the thesis is provided in paper format. Additional information on
the applied methodology can be found in the appendices. The report outline is as follows:

Chapter 2 - the paper resulting from the work of the thesis, detailing the applied methodology,
experiments and attained results.

Chapter 3 - provides an investigation into the use of Gaussian Mixture Models and Gaussian Pro-
cesses for interactive learning.

Chapter 4 - details a potential approach to generalising the proposed framework to different reference
frame locations.

Appendix A - provides details on the selection of the orientation representation.
Appendix B - details on the selection of the kernel parameters for the Gaussian Process models.
Appendix C - details on the user interface for providing corrections.
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Teaching Robots How to Grasp Like Humans by Humans: An Interactive
Approach

Anna Mészáros∗, Giovanni Franzese, and Jens Kober

Abstract— Grasping objects in a smooth humanlike motion,
instead of the more typical pick-and-place approach, includes
multiple aspects that need to be performed correctly for a
successful grasp. These aspects involve moving the end-effector
such that its surface makes and retains contact with the
object while also coordinating the movement of the gripper
to securely grasp the object. This work investigates how the
intricate task of grasping may be learned from humans based
on kinesthetic demonstrations. Due to the complexity of the
task, these demonstrations are often slow and even slightly
flawed, particularly at moments when multiple aspects (i.e.
end-effector movement, orientation and gripper width) have
to be demonstrated at once. Rather than training a person to
provide faster demonstrations, non-expert users are provided
with the ability to interactively modify the dynamics of their
initial demonstration through teleoperated corrective feedback.
This in turn allows them to teach motions outside of their own
physical capabilities. In the end, the goal is to obtain a faster
but reliable execution of the task. The presented framework
learns the desired movement dynamics based on the current
Cartesian position with Gaussian Processes, resulting in a reac-
tive, time-invariant policy. Using Gaussian Processes also allows
online interactive corrections and active disturbance rejection
through epistemic uncertainty minimization. The experimental
evaluation of the framework is carried out on a Franka-Emika
Panda. Tests were performed to determine i) the framework’s
effectiveness in successfully learning how to grasp an object
quickly, ii) ease of policy correction to environmental changes
(i.e. different object shapes and mass), and iii) the framework’s
usability for non-expert users.

I. INTRODUCTION

More often than not, robots employ a grasping strategy
wherein they approach the object, stop and grasp it and only
then resume moving. This approach is not necessarily the
most natural nor user friendly. In a world where robots are to
coexist with humans, generating predictable motions which
people can identify and anticipate can help in the acceptance
of robots within our environment. Using the standard pick-
and-place strategy, the robot may grasp an object and can
then decide to move in any possible direction. This might
make a person tentative to go close to the robot since they
cannot be sure where it will move next. We as humans, on
the other hand, tend to grasp things in a single fluent motion
where the intent can be anticipated from the trend of the
movement. Of course, robots should also be able to complete
a task fairly quickly, which in the case of grasping introduces
a number of challenges, both from a mechanical point of
view as well as a modelling point of view.

Authors are with Cognitive Robotics, Delft University of Tech-
nology, Mekelweg 2, 2628 CD Delft, The Netherlands (e-mail:
a.meszaros@student.tudelft.nl, g.franzese, j.kober@tudelft.nl).
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Fig. 1. A schematic representation of the human in the loop giving
corrections to the learned motion. The human has a visual feedback of the
current motion of the robot and gives corrections with a controller. ∆x is
the attractor distance in Cartesian space, γ is the scaling factor for altering
the magnitude of the attractor, θ is the orientation in Cartesian space and w
is the width of the gripper. During policy execution, the human teacher can
choose to give corrections or otherwise remove themselves from the loop.

One of the more straightforward ways to teach a robot
such an intricate task is through kinesthetic demonstration.
Learning from demonstration has become a popular approach
for allowing non-expert users to teach robots tasks and thus
more easily integrate them into an environment. Yet these
provided demonstrations are often slower than what the
robot might be able to achieve. This can lead to a reduced
efficiency and utility of executing a task with a robot, despite
the advantage that robots are able to preform tasks more
reliably and for longer periods of time than people. However,
if we consider how people learn skills, they first learn to
perform a task slowly and correctly, and only once they
are confident do they speed up the execution so as not to
compromise on the success of the task. This strategy can
also be applied to robot learning.

At the same time, an important thing to consider is that the
execution of a task often cannot be sped up uniformly. This
can either be due to task requirements, such as not spilling
water from a glass during sharp turns, or due to limitations
of the robot itself. Grasping objects has both limitations.
On the side of the task execution, retaining a high velocity
when approaching the object can generate high impact forces
which can cause the object to bounce away or topple over,
potentially damaging the item in question as well as making
it impossible to grasp the object on time. On the side of
the robot’s limitations, certain grippers are not as reactive
as our own hands, meaning they might need a longer period
to close. In such cases it would be desirable to slow down
in the vicinity of the object and speed up after a successful
grasp. We as people are able to identify such constraints



and adapt accordingly, and through the use of learning from
demonstration also transfer this knowledge to the robot.

Of course, when learning to grasp an object in a fluent
motion there are bound to be impacts. Depending on the
weight and compliance of the object, impacts can gener-
ate large errors within the controller which can result in
abrupt and potentially dangerous motions. Out of the existing
controllers used in literature, impedance controllers are the
primary choice in situations involving impacts due to their
capability of ensuring a certain degree of compliance. This
compliance can be effective for absorbing part of the impact
by allowing a margin of error rather than attempting to fully
minimise the error to the desired position.

The presented framework continues the study on inter-
active learning of complex robot motion using Gaussian
Process (GP) regression, recently introduced in [1] for learn-
ing force tasks. However, this work focuses the attention
on interactively learning robot dynamics, orientation and
gripper control. The complete behaviour is learned as a
function of the robot’s position, resulting in a reactive policy.
The policy is learned solely from kinesthetic demonstrations
and interactive teleoperated corrections. To ensure safe and
steady motion along the trajectory, knowledge of the epis-
temic uncertainty, which can be derived directly from the
GP models, is utilised for a simultaneous satisfaction of
the desired dynamics and a minimization of the uncertainty.
This provides an elegant solution to covariate shift, avoiding
dangerous extrapolation in particular when performing high
speed motions.

II. BACKGROUND AND RELATED WORK

A. Robot motion with impacts

When executing high-speed manipulation tasks which
involve establishing contact with an object, it is important
to consider the behaviour around the moment of impact.
A reoccurring approach observed in existing works consists
of adapting the relative velocity in order to mitigate the
effects of the impact [2], [3]. Another strategy which has
been employed to absorb impacts particularly in catching
tasks, involves utilising a follow-through behaviour which
continues to track the predicted path of an object even after
interception [3], [4]. A follow-through behaviour, however, is
not applicable to stationary objects. A similar behaviour can
nevertheless be obtained by employing a variable impedance
controller with low stiffness. Indications of the benefits of
impedance control for absorbing impacts could be observed
in other contact tasks such as quadrupedal trotting [5], and
learning a hopping movement on a floating base system [6].

Unlike most standard controllers, impedance control has
the capability of incorporating a compliant behaviour into
a provided attractor [7]. This is achieved by modelling
the attractor in the form of a mass-spring-damper system.
Depending on the defined system properties for inertia Λ,
damping D and stiffness Ks, the dynamics of the end-
effector in the case of translation impedance are given

through the following relation

Λ(q)ẍ = Ks∆x−Dẋ+ fext, (1)

with fext representing the force at the end-effector where the
gravitational and Coriolis terms have been pre-compensated.
Considering this relation, it is possible to induce compliant
behaviour which allows a softer interaction with the object.

An impedance controller, however, is unable to mitigate
the initial impact force irrespective of the set stiffness as
demonstrated in [8]. This is because the main contribution
to the impact force is the velocity of the impacting objects.
The results presented in [8] do, however, strengthen the ob-
servation that increased compliance provided by impedance
is beneficial for absorbing the forces post-impact. While
matching the velocity of an object likely achieves the best
reduction of impact force, such an approach may not be
optimal if considering the speed of the trajectory execution.
This is especially true for the case of a static object, wherein
matching velocities would effectively bring the robot to a
stand-still prior to the grasping action. The best approach,
therefore, is to learn a velocity profile. Doing so makes it
possible to handle impacts at non-zero velocity by ensuring
moderate impact forces through adequately low velocities.

B. Learning Dynamic Movements

Teaching a complex trajectory to a robot with the desired
final dynamics can be challenging. If the transfer of knowl-
edge is to be executed correctly, often the best strategy is
to show the desired behaviour slowly in order to reduce
mistakes. However, the speed at which the demonstration
was carried out may not be the desired speed of execution.
Being able to adapt the learned velocity with ease plays a key
role in speeding up the overall execution of the demonstrated
trajectory while also considering that the movement dynam-
ics may require different degrees of adaptation at different
points of the trajectory; for example partly slowing down
prior to the moment of interception. Different works explore
speed adaptation during trajectory execution using different
function approximators. One approach involves altering the
phase rate of probabilistic movement primitives (ProMPs)
[9], [10], whereas another sees the use of a modified
version of DMPs in which speed is altered through an
additional phase-dependent temporal scaling factor [2], [11].
The ease of adapting a trajectory through corrective feedback
is however hampered in this case due to the phase variable
and its indirect dependence on time. If such an approach
is to be used it would be necessary to update the phase
accordingly during the interaction with the user to ensure
that the trajectory is carried out as expected.

An alternative to this is using Gaussian-based regression
such as Gaussian Mixture Regression (GMR) or Gaussian
Processes (GP). Gaussian Mixture Models (GMMs), in par-
ticular, have been utilised in works investigating the catching
[4], [12] and reaching [13] of objects, which is closely
related to grasping objects quickly. These approaches utilise
Gaussian Mixture Models in order to model the dynamical
system and GMR to extract the outputs of the learned



system. Velocity adaptation is carried out in accordance to
a separate scaling factor which is determined online. Rather
than mathematically formulating the scaling factor for the
velocity as above, Locally Modulated Dynamical Systems
[14] learn this factor with the help of user input. This input
is then used to learn the scaling factor through a Gaussian
Process. It is, however, worth noting that in the experiments
the learned modulation factors were used to alter the shape
of the trajectory, rather than speed up the execution.

In terms of grasping objects while in movement, existing
strategies employ motion planning such as in [15]. Such
strategies, however, are time dependent and require re-
planning of the desired motion in the event of changes to the
environment. Furthermore, for motion planning, environment
and task constraints have to be mathematically formalised in
order to be incorporated into the planning process.

Our proposed framework aims to enable the teaching of
this highly dynamic task through learning from demonstra-
tion in order to allow even non-expert users to program
the robot’s motions. Furthermore, the learned policies create
a reactive control, allowing real-time adaptations of the
behaviour depending on the robot’s current location. To our
knowledge, as of yet, there exists no solution addressing
these challenges.

III. METHODOLOGY

The goal of this framework is to enable a user to teach
the robot the desired motion through demonstration and
correction, see Alg. 1. The robot is learning the desired
minimum uncertainty dynamical system on the end-effector,
formalized in Sec. III-A and the dynamics of the gripper
orientation and width as a direct mapping to the current
robot position, formalized in Sec. III-B. The main aim is to
show that it is possible to learn a policy and later correct the
velocity. All of these aspects are modelled with Gaussian
Processes allowing interactive corrections of the dynamics
and constraints online, see Sec. III-C.

A. Minimum Uncertainty Dynamical System

A simple dynamical system can be described by

ẋ = f(x) (2)

where x is the robot state and f regulates the transition of the
robot state. This type of formulation would fit perfectly in a
velocity controller, however, due to the necessity of dealing
with impacts, for which an impedance controller is more
suitable, we can reformulate the equation as

xd = x+ f(x) = x+ ∆x(x) (3)

where xd is the desired attractor position. The dynamical
system can be seen as an external (and slower) control loop
where the attractor position is updated as a function of
the robot position while the inner (and faster) control loop
simulates the dynamics of a critically damped second order
dynamical system. In order to allow to modify the magnitude
of the attractor distance proportionally in all directions, a

scalar factor is learned as a function of the position, resulting
in

xd = x+ f(x) = x+ γ(x)∆x(x) (4)

where ∆x is fitted with a Gaussian Process using the data
of a kinesthetic demonstration and user-provided corrections.
The scaling factor γ is also modelled using a GP but is initial-
ized to a constant value for all points of the trajectory, which
can later be adapted through corrections. Nonetheless, since
both ∆x and γ are affecting the attractor, the correlations
between the known datapoints and therefore the parameters
of the GPs can be taken as equivalent.

Briefly on Gaussian Proccesses; a GP is a non-parametric
regression method that provides the means for inferring the
expected output and the epistemic uncertainty. The mean and
variance of the process are denoted as

µ(x) = k∗(ξ,x)>(K(ξ, ξ) + σ2
nI)−1y, (5)

Σ = k(x,x)− k∗(ξ,x)>(K(ξ, ξ) + σ2
nI)−1k∗(ξ,x), (6)

where k is the variance of the single evaluation point x,
k∗ is the covariance between x and the training inputs ξ,
K is the covariance matrix of the training inputs, σ2

n is the
variance of the Gaussian noise of the training points, and y
denotes the training outputs [16]. Both k and k∗ as well as
K are a function of the kernel and its hyper-parameters used
to incorporate prior knowledge in the process.

Something to consider when learning a dynamical system
is that the next robot position is a function of the learned
desired transition and the external disturbances. This may
lead the robot in a region where its policy is not confident
anymore. Depending on where this might occur, the robot
may not be able to successfully grasp the object or bring it
to its goal and successfully execute its motion. To avoid this
from happening, the dynamical system was augmented with
another component that brings the robot towards regions of
low uncertainty. From a practical point of view this results
in adding another attractor field that is proportional to the
gradient of the variance manifold [1] according to

∆xs(x) = −α∇Σ = α

(
2k>∗ (K + σ2

nI)−1 ∂k∗
∂x

)
(7)

where x is the evaluation point, and α is an automatically
modulated constant according to a maximum allowed attrac-
tor distance, which ensures that ∆xs is never higher than
a set threshold. Thus, the Minimum Uncertainty Dynamical
System (MUDS) can be summarized as

xd = x+ γ(x)∆x(x)− α∇Σ(x) (8)

This approach is effective due to two factors. The first is
that as the evaluation point moves further from the known
region, the values of the correlation vector k∗ begin to tend
to zero. In turn, the predictions begin to vanish towards the
mean of the independent Process, which for ∆x is zero.
Simultaneously, the variance begins to increase and gradu-
ally activate the uncertainty minimisation. The uncertainty
minimisation field is thus able to redirect the robot towards
the region of low uncertainty.



Algorithm 1: The basic framework.

1 a) Kinesthetic Demonstration(s)
2 while Trajectory Recording do
3 Receive(xt, sinθd(xt), cosθd(xt), wd(xt))
4 ∆xd(xt−1) = (xt − xt−1)
5 end
6 Train(GPs)
7 b) Interactive Corrections

Data: ∆xd, γd, sinθd, cosθd, wd
8 while Control Active do
9 Receive(x)

10 if Received Human feedback ∆xc, γc, wc then
11 Correct(∆xc −→ ∆xd, γc −→ γd, wc −→ wd)
12 end
13 [∆x,Σ] = GP∆x(x)
14 γ= GPγ(x)
15 wd = GPδw(x)
16 [sinθ, cosθ] = GPδθ(x)
17 θd = arctan 2(sinθ, cosθ)
18 xd = x+ γ∆x− α∇Σ
19 Send(xd,θd, wd)
20 end

B. Learning Minimum Uncertainty Mappings

When learning a complex task like grasping, the dynamics
of the end-effector position have to be augmented with the
dynamics of the gripper orientation and width. Because the
dynamics are always coupled, we decided to learn a mapping
between the robot position and the controlled variable with
a Gaussian Process. However, if the predictions are done
based on the current position, when outside of the region of
certainty, the robot would output the mean of an independent
Process (i.e. zero radians for the orientation along all three
axes and maximum gripper width) which could lead to an
undesirable generalization, e.g. tilting or dropping objects.
In order to solve this problem, what we propose is a new
Gaussian Process prediction according to

µ(x) = kδ∗(ξ,x)>K(ξ, ξ)(K(ξ, ξ) + σ2
nI)−1y (9)

where kδ∗ is the correlation vector filtered with a Kronecker
filter. Each element is computed according to

kδi =

1, where argmax
i

(k(ξi,x))

0, elsewhere
(10)

where ξi is the i-th element of the database. This new predic-
tion can be interpreted as a “mental” simulation towards the
direction of minimum uncertainty. The aim is to explicitly
avoid extrapolating the data outside the original demonstrated
data while still using the property of smooth regressor of
the Gaussian Process. When the evaluation of the Gaussian
process is performed with this extrapolation-free rule, we
denote them with the superscript δ, i.e. GPδ .

In order to fit the desired angles with a regressor, it was
necessary to have a smooth and continuous representation

of the angles. To this end we learned both the sin and cos
transformation of the orientation θ and we converted the
predictions back when in autonomous control (l. 19 Alg. 1).

C. Interactive Policy Correction
The main idea of the proposed framework is to enable the

teacher to locally modify and speed up their initial demon-
stration. Since adding new points to the database would
expand the known region it could drastically alter the shape
of the trajectory, particularly when providing corrections to
the attractor direction after having provided corrections to the
velocity. For this reason, only the outputs of the database
and in turn the policy could be altered through interactive
corrections. This choice has been made under the assumption
that in the case of a high velocity task execution, one does
not wish to stray from the demonstrated region. While it does
limit the scope within which the user can correct a previously
shown demonstration, allowing the user to only correct the
existing data points and not add new ones also guarantees
control at higher frequencies, which can be important for
the proper execution of fast-paced tasks, since no matrix
inversion has to be performed for Eq. 5.

The evaluation of the process kernel allows the corrective
input to be smoothly spread to surrounding data points in
accordance to their correlation. The update rule was thus
chosen as

yd = y + k∗(ξ,x)εµ (11)

where εµ is the correction provided at x. This rule was
applied for correcting the attractor distance, velocity mod-
ulation factor and the width of the gripper prongs. It has
previously been shown that spreading the corrections on the
database is more user-friendly, as well as time and data
efficient [1] than a simpler data aggregation [17], since
otherwise the GP model would essentially average between
the different outputs for a given input, leading to a slow
learning.

When users provide corrections to the dynamics, they
can only provide information on the speed and direction
of movement. This can, however, lead to abrupt changes in
the acceleration. Therefore, at the end of every correction
round, if the datasets for the attractor or the scaling factor
have been altered they are passed through a Savitzky–Golay
filter [18]. The filter fits a polynomial of a defined order to a
set of points within a chosen window. The polynomial fit is
then used to estimate the point in the middle of the window,
after which the window is shifted by one position and the
procedure is carried out again. The result is a smoothed
dataset, ensuring smooth motion when the model is refitted.
This operation is only valid if no new points are appended to
the database. Otherwise, new points could be smoothed with
non-neighbouring points, potentially changing the robot’s
behaviour outside of the user’s intentions.

As a final remark, it is worth underlining that the capability
of correcting the orientation after the demonstration was not
enabled due to the limitations of the teleoperation interface,
not due to any limitations surrounding the algorithm itself.



Fig. 2. The learning flow in teaching a robot how to perform item reshelfing.; beginning with a single demonstration in a), followed by multiple rounds
of correction in after which the robot is able to autonomously carry out the task as depicted in b).

IV. VALIDATION EXPERIMENTS

Different experiments were carried out to evaluate the
effectiveness, usability as well as robustness of the method.
Firstly, the framework’s base functionality of taking slow
demonstrations and allowing the correction of the dynamics
through corrective feedback is tested. A second experi-
ment analyses how well a learned policy can accommodate
changes in object properties such as size and weight. Lastly,
a user validation study was carried out with non-experts in
order to establish the usability of the proposed method.

For our experiments we utilise the 7 DoF Franka-Emika
Panda with an impedance controller and a ROS commu-
nication network for the online control of the robot with
a frequency of 100 Hz. Control of the robot’s movement
was carried out in real-time, whereas the control of the
gripper could not be carried out in real-time due to the
internal UDP communication protocol. Furthermore, in order
to avoid overloading the database with superfluous points, the
recording of the trajectory is carried out at 10 Hz.

A wireless Logitech Gamepad was used for teleoperated
corrections due to the number of required inputs. Due to
the limited number of reliable, continuous inputs, both the
gripper and scaling factor corrections are provided through
discrete increments. The attractor corrections are provided
through the continuous inputs of the two thumbsticks, with
the movement in the x-y-plane regulated by the left thumb-
stick and the height regulated by the right thumbstick. As
an added safety feature, one of the triggers was utilised as a
safety button which, when released, ends the execution of the
algorithm, halting the robot. Lastly, users can comfortably
start the execution from any point along the trajectory as well
as bring the robot to the start of the trajectory. Provided a
more versatile interface, users could also be given the option
to alter the orientation, but this was not the focus of this
work and is thus left to future work.

A. Fast Grasping with MUDS

For this experiment, a single demonstration was provided
wherein the end-effector orientation, gripper width and at-
tractor distance are obtained and used for initialising the

Fig. 3. Range of correction times per round for each aspect depicted by
the shaded areas, with the average times depicted by the solid lines.

respective GP models. The goal of the task is to reduce
the execution time by 4 times compared to the time needed
to demonstrate the motion with kinesthetic teaching. The
experiment was repeated a total of five times.

Within less than three minutes it was possible to fully
train the robot to grasp the object in question at the desired
performance, four out of five times. Only a fraction of that
time was needed for the demonstration and explicit feedback
from the human, amounting on average to around 11 s and
6.8 s respectively. This points towards primarily needing
fine-tuning corrections from the side of the human, which
is further supported by time spent giving corrections for
each of the three correctable aspects (see Fig. 3). The time
spent correcting the attractor was minimal, as it was only
required around the moment when the object is reached.
The reason for this is because the human tends to stop
at the object during the demonstration in order to avoid
knocking it over. In turn, the attractor distance around that
point is virtually zero albeit not perfectly zero. Therefore,
depending on the demonstration it may happen that this
attractor is not pointing in the desired direction. Increasing
the magnitude with the scaling factor could thus result in a
movement in an unexpected direction. To avoid this, minor
corrections to the attractor were provided for ensuring it
follows the desired direction. Afterwards only corrections
for the gripper and scaling factor are provided. Any time
corrections to the scaling factor, i.e. velocity, were provided,
corrections to the gripper had to be provided as well. This



Fig. 4. Use case of robot assistance in grocery refilling. In the attractor vector-field the arrows denotes the direction of the attractor and the color gradient
denotes the magnitude of the attractor. The vector field based on original demonstration, with the demonstrated trajectory is compared with the one after
training, with the executed trajectory.

TABLE I
METHOD PERFORMANCE

Demo [s] Fdbk [s]
Total

Time [s] Rounds Success
Rate [%]

Max 11.7 10.324 165.44 17 100
Mean 10.94 6.796 97.47 10.4 82
Min 10.1 4.56 66.61 6 50

was primarily in order to offset the communication delay
of the gripper. Once the desired velocity was achieved
the final corrections were directed towards fine-tuning the
gripper timing. Due to the unreliability of the gripper, despite
corrections to the timings the gripper still sometimes closed
at the incorrect moment. Nevertheless an average success
rate of 82% out of 10 executions could still be achieved.
For the complete performance details, please refer to Tab. I.
During the experiments, it was established that due to the
unreliability of the gripper, it was necessary to push the
object for a select period of time, as otherwise the desired
performance could not be reached. If the time for pushing
the object is too short a very slow motion is needed around
the moment of grasping the object, otherwise the grasping
success drops to random chance, which could be observed
in one of the trials.

One of the main concerns when increasing the velocity
along a trajectory is diverging from said trajectory, particu-
larly in curves. While the shape of the trajectory did change
slightly, thanks to the uncertainty minimisation, divergence
from the trajectory could be avoided even when the attractor
magnitude was noticeably increased compared to the original
demonstration. This can be observed within the attractor
vector fields in Fig. 4.

B. Generalisation to Object Properties

Regardless of whether the objects are bigger or smaller,
lighter or heavier, rigid or deformable, similar grasping
strategies can often be applied to similar objects with minor
alterations. Rather than demonstrating and retraining the
strategy for every new object, or relying on hard-coded rules
in order to adapt to these changes in properties, corrections
can be used to adapt the learned policy. To evaluate this,
a selection of four different kinds of objects was taken
(seen in Fig. 5). First the initial policy was trained on a

rigid water-bottle with a weight of 250g. Once a satisfactory
policy was achieved, the training object was swapped out for
another object. The policy was then executed and corrected
if necessary. Corrections were provided until the point that
the new object was successfully grasped, after which an
evaluation of the performance was performed. Subsequently,
a different object was swapped in and the learned policy was
reset to the initial policy.

Fig. 5. Left to right: rigid
(250g), rigid (900g), flexi-
ble (100g), deformable and
small (250g)

For each new object, the policy
could be successfully corrected.
For the same object but with a
greater weight, corrections were
primarily needed for increasing the
velocity around the moment at
which the object was grasped. This
is due to a larger force needed
to move the heavier object at the
desired velocity. For the flexible
object, the initial policy carried out
the grasping successfully in the
first execution, hence it was deemed that no corrections were
necessary. During the performance evaluation, however, three
rollouts resulted in unsuccessful grasps due to the gripper
closing too late. Since this issue had not occurred in the first
rollout of the policy, additional corrections were not pro-
vided. Nevertheless, this could have been improved through
additional corrections to the gripper and minor alterations to
the velocity. Lastly, for the smallest object it was necessary
to reduce the speed of the motion for a successful grasp.
Otherwise the object kept being knocked over upon impact
due to its smaller support polygon and higher centre of
mass. Nevertheless, for all three objects with their different
properties it was possible to alter the policy within the time
needed for training from a new demonstration, or even within
less time if the properties were not too different (see Tab. II).

It is important to note that the strategies for the separate
objects are not stored. Retaining this information would
require a further form of knowledge representation or policy
parametrization, which is outside the scope of the presented
work. This evaluation does, however, demonstrate that an
existing policy can be corrected in order to generalise to
previously unseen objects, which can be beneficial for gath-
ering knowledge more quickly.



TABLE II
OBJECT GENERALISATION PERFORMANCE

Rigid
(250g)

Rigid
(900g)

Flexible
(100g)

Deformable and
small (250g)

Total Time [s] 108.89 31.33 0 124.26
Rounds 7 2 0 10

Success [%] 90 90 70 100

C. User Validation Study

Given that the aim of the proposed method is to enable
non-expert users to teach a robot, a preliminary user valida-
tion study was carried out. A total of ten participants aged
23 - 28 took part. For this study we made three hypotheses.
H1: Non-expert users will prefer to be able to control the
velocity separately from the movement.
H2: Non-expert users will be able to grasp the object and
bring it to its designated goal with both methods.
H3: Non-expert users will be able to teach the robot to
complete the task within 4 s with both methods.
The final hypothesis was set considering that an expert user is
able to achieve a time under 3 s. The same setup as in Fig. 4
was used, with the bag being replaced by a small square
tower to provide a clearer goal point for the participants.
Participants were given up to half an hour to get familiar
with the setup before the actual trials began. There were two
trials of ten minutes which were presented in a randomised
order to the participants. In one trial, users were required to
perform kinesthetic demonstration at a speed that they were
comfortable with. After the demonstration, users had the
possibility to correct the demonstration with the possibility to
scale the attractor distance. The attractor itself was bounded
to 4 cm so that the main contribution to the velocity resulting
from the scaling factor. Over the course of this section, this
trial will be denoted as T1. In the other trial, which will
be denoted as T2, users were required to provide a fast
demonstration. The attractor for this trial was left unbounded
and any corrections that needed to be given for the velocity
had to be performed by directly altering the attractor.

In terms of performance all participants were able to
successfully grasp the object in T1. Out of these only one
participant was unable to reach the 4 s goal. For T2, only
one participant was unable to teach the task successfully. The
reason behind this was the over-correction of the trajectory
which brought the trajectory up against the field generated
by the uncertainty minimisation and negated it, placing the
robot in a standstill. This error became difficult to correct
for two reasons. The first is that since the user was far
from the known region and the correlations to the other
points were very low, the effect of the corrections were
minimal. Therefore, the only effective way to correct the
error was to provide corrections before reaching that point.
Which brings us to the second point, which is that due to
the over-correction of the attractor, the velocity at the point
which required large counter-corrections was very high. For
someone with little experience with the setup, this can be a
challenging situation to correct.

Fig. 6. Results of the NASA TLX questionnaire.

Nevertheless, overall good teaching performance could be
observed in both trials. For T1, users were able to teach
the task within on average five and a half minutes with 19
correction rounds. The fastest time at which the robot could
successfully grasp the object that they were able to teach
was 3.4 s with the best time being 2.7 s. For reference, the
time needed to demonstrate the behaviour at a fast pace
was at best 3.9 s, but generally participants needed more
than 5 s to carry out the demonstrations. For T2, user were
actually able to achieve better performance on average. In
some cases the task could be successfully completed purely
with the demonstration. Provided a faster demonstration, the
time needed for corrections tended to be lower. Aside from
speeding up and timing the gripper, corrections often also
had to be provided to slow the robot down in the vicinity
of the object if the demonstration had been too fast in that
region.

Participants were also asked to fill in a NASA TLX
questionnaire to assess the workload of the task for the two
versions of the method. The results of the questionnaires
were fairly similar for the two methods. Of the more note-
worthy, both methods displayed high mental demand where
for T1 the mental demand tended to be higher than T2. This
can mainly be attributed to the greater number of inputs and
the lack of intuitiveness of the input device. At the same
time the reported frustration remained in the lower part of the
scale, although T1 saw somewhat lower levels of frustration.

Participants were further asked which method they pre-
ferred. Between the participants there was no clear preference
towards one method or the other. Some preferred to have
the unbounded attractor, claiming that it made it easier to
provide a nice shape to the trajectory or that it was more
intuitive for altering the velocity since it compared more to
how joystick inputs were translated to movements of the
character. Meanwhile, others found it easier to focus on
correcting one aspect at a time, thus preferring to first correct
the trajectory before increasing the velocity with the scaling
factor. Some of the participants also had the tendency to
provide very strong corrections, which in the case of the
unbounded attractor resulted in a higher level of frustration
and made the overall teaching more difficult for them.

Returning to the initially posed hypotheses, the results of
the study showed the following.



TABLE III
PERFORMANCE OF NON-EXPERTS WHO SUCCESSFULLY FINISHED THE TASK

T1: With Attractor Scaling T2: Without Attractor Scaling
Demo

Time [s]
Training
Time [s] Rounds Exec.

Time [s]
Demo

Time [s]
Training
Time [s] Rounds Exec.

Time [s]
Max 34.1 600 36 4.97 14.9 285 23 4.0

Mean 13.04 323.3 19.4 3.42 8.63 121.22 9.11 2.81
Min 6.4 129 6 2.17 3.9 0 0 2.07

R1: No clear preference could be established within the
sample group.
R2: True as out of a total of 20 trials, only a single trial
resulted in failure.
R3: True as out of a total of 10 trials for the two methods,
only a single trial in each of the methods was unable to reach
the desired 4 s execution time.

V. CONCLUSIONS AND FUTURE WORK

We demonstrate that the dynamics of a user’s demonstra-
tion can be successfully altered in a non-uniform manner
using user corrections. The proposed approach enables the
learning of dynamic tasks such as grasping at non-zero
velocities without the need of actively detecting the moment
of impact. It further allows users to compensate for delays
within the system which are not directly known to them
but are observable in the system’s performance. It was
additionally shown that non-experts, irrespective to their
prior experience or lack thereof with robots, were able to
successfully train the task.

Based on the results of the study, in future investigations
the manner in which users can alter the dynamics will
remain free for the users to choose according to what they
feel most comfortable with. To further improve usability
and be able to remedy the effects of over-correcting even
when outside the region of certainty, alternative solutions to
providing corrections will be investigated. One option would
be to determine the most correlated point, and perform the
corrections with respect to this point.

Certain aspects remain to be addressed for better gen-
eralisation and performance of the proposed framework. A
next step would be to enable the correction of the desired
orientation. While the current framework would allow for this
extension, a better understanding of an intuitive input system
is needed. Remaining on the topic of orientation, another
aspect to consider is the manner in which the orientation is
controlled. Currently, the orientation is provided in accor-
dance to the given position, however, an alternative would
be to control according to the current pose and output the
desired change in orientation instead of the actual orientation
value. This would enable control of the entire pose without
the need of a minimum uncertainty mapping.

This formulation could further allow a generalisation of
the policy to previously unseen object and goal locations. A
further work will focus on expanding the proposed algorithm
to accommodate such a generalisation, potentially allowing
the framework to be applied in scenarios involving dynami-
cally changing environments.

Lastly, further work will be carried out for allowing an
interactive adaptation of the uncertainty minimisation, with
the aim of giving users a means of affecting the degree of
disturbance rejection.
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3
Interactive Learning with GMMs and

GPs
Gaussian Mixture Models (GMMs) are a probabilistic model based on the superposition of Gaussian
distributions, otherwise referred to as a mixture of Gaussians [1]. Mathematically, this mixture of
Gaussians is defined as

𝑝(𝑥) =
𝐾

∑
𝑘=1

𝜋𝑥𝒩(𝑥|𝜇𝑘 , Σ𝑘) (3.1)

whereby K is the number of Gaussians, also referred to as components, and 𝜋𝑘 are the mixing coefficients,
which can be interpreted as the weight of each Gaussian. In order to fit the Gaussians to a particular
density, the parameters 𝜇𝑘, Σ𝑘 and 𝜋𝑘 have to be determined. This is commonly done through the
Expectation-Maximisation of the log-likelihood.

In terms of function approximation, GMMs learn a density 𝑝(𝑥𝑖𝑛 , 𝑥𝑜𝑢𝑡) in which 𝑥𝑖𝑛 represents the
input data and 𝑥𝑜𝑢𝑡 the output data. In order to predict the desired output 𝑥𝑜𝑢𝑡 given an input 𝑥𝑖𝑛
one must refer to Gaussian Mixture Regression (GMR). Upon having learned the density 𝑝(𝑥𝑖𝑛 , 𝑥𝑜𝑢𝑡),
it is possible to determine the conditional density 𝑝(𝑥𝑜𝑢𝑡|𝑥𝑖𝑛) as

𝑝(𝑥𝑜𝑢𝑡|𝑥𝑖𝑛) =
𝑝(𝑥𝑖𝑛 , 𝑥𝑜𝑢𝑡)
𝑝(𝑥𝑖𝑛)

. (3.2)

When carrying out a regression, however, it is desired to have a single value as the output, this
being the mean output value. Using least-squares estimate [4] this can be defined as

𝑦𝑝𝑟𝑒𝑑 = 𝔼(𝑥𝑜𝑢𝑡|𝑥𝑖𝑛) (3.3)

Using the above formulation, it is possible to determine the output for previously unseen values.

Figure 3.1: Fitting of four trajectories with a GMM with 18 components, followed by their reproduction through regression.
[Image taken from [3]]

13



14 3. Interactive Learning with GMMs and GPs

Figure 3.2: Fitting of a GP, provided different amounts of data, with the regression result indicated by the purple line
and the uncertainty depicted by the shaded region. Note the lower uncertainty around the training points, as well as
when subsequent training points follow the expected trend provided by the prior knowledge encoded in the kernel (image
to the right). [Images taken from [8]]

3.1. Comparison to Gaussian Process
Gaussian Processes (GPs) provide the means for making predictions while incorporating prior knowl-
edge. When applying this to the case of regression, one can imagine a region between two demonstrated
data-points to have an area of more probable predictions, modelled in the form of a mean and variance
[14]. When a previously unseen input is provided, its prediction is then equivalent to the mean and
variance in that point of the region. Mathematically, this comes down to

𝜇 = k⊤∗ (K + 𝜎2𝑛I)−1y (3.4)

Σ = 𝑘(𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑤) − k⊤∗ (K + 𝜎2𝑛I)−1k∗ (3.5)

where k∗ is the covariance between the new point and the training inputs, K is the covariance matrix of
the training inputs, 𝜎2𝑛 is the variance of the Gaussian noise at the training points, and y denotes the
training output. The predicted mean can then be used as the value of the predicted output, whereas
the predicted variance can be used as a measure of uncertainty of the prediction. The output of the
covariance is dependent on the chosen kernel function.

Unlike GMMs which learn the joint density function, GPs directly learn the conditional density
function 𝑝(𝑥𝑜𝑢𝑡|𝑥𝑖𝑛). Furthermore, GPs consider the correlation between the training inputs thanks
to the use of the kernel function whereas this form of information is not present in GMMs. These
correlations can be used for modelling epistemic, i.e. model uncertainty, which are given in the form
of the GP’s variance. This uncertainty can be utilised as a means to determine the confidence of a
prediction. Gaussian Mixture Models on the other hand model aleatoric, i.e. data uncertainty which
is dependent on the consistency of the points being fitted by a particular component of the GMM. A
further point of difference is that a Gaussian Process is non-parametric, meaning the model is solely
dependent on the selected kernel and the training data, whereas a Gaussian Mixture Model is dependent
on the number of selected components which can be unintuitive to choose.

3.2. Experimental Comparison
3.2.1. Learning Dynamical Systems: GMM vs GP
In literature, when learning Dynamical Systems in a way that they are not dependent on time, one
of the more common methods are Gaussian Mixture Models [11, 15, 13, 5]. Yet, Gaussian Processes,
which could provide similar capabilities are not as represented within the literature. For this reason,
we investigate the use of both GMMs and GPs for interactively learning a policy.

To this end, the task of grasping an object without altering the velocity was chosen in order to
determine the ease of learning the desired attractor distance as well as the reliability of the learned
model. Additionally, the behaviour upon leaving the area of the demonstrated trajectory was tested.
The control and correction of the gripper was retained from the proposed algorithm in Chap. 2, since
this behaviour is seen as separate from the movement dynamics. Similarly, the control of the orientation
was retained from the proposed algorithm, as additional demonstrations are not provided to this part
of the control. Furthermore, since GMMs do not have a known formulation which allows for the online
correction of the policy without the retraining of the GMM, both the policy learned by the GMM and
that learned by the GP are modified through local demonstrations wherein one takes control during the
execution of the trajectory, inspired by the approach of HG-Dagger [10]. These local demonstrations
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Figure 3.3: Vector-fields generated by GMMs and GPs respectively. The depiction is a projection of the 3D vector-field
onto the x-y-plane by taking the z-axis value of closest point for determining the points that are to be evaluated.

Table 3.1: Performance of GMMs vs GPs

Gaussian Mixture Model Gaussian Process
Training Time [s] Rounds Data Points Training Time [s] Rounds Data Points

Max 206.18 13 2472 175.20 9 2579
Mean 132.74 7.6 1443.8 110.00 6.2 1430.8
Min 75.95 5 702 69.86 4 742

are aggregated into the existing dataset and used for the retraining of the models after each episode.
The retraining of the models was performed offline, as both in the case of GMMs and in the case of
GPs, the training time increased with the size of the dataset, eventually reducing the control rate below
the desired 100Hz.

In terms of ease of learning, overall, GMMs and GPs proved to be comparable in terms of required
time and data as seen in Tab. 3.1. The main difference between the two lies in the learned models.
Observing the resulting vector-fields in Fig. 3.3 a clear difference can be seen in the length of the
attractors. Irrespective of their proximity to the demonstrated samples, GMMs have a tendency to
extrapolate the learned behaviour to any point within the workspace. Contrary to this, GPs maintain
a region of certainty around demonstrated samples. The further one goes from this region of certainty,
the more the predictions will gradually vanish towards the defined mean, which in this case was zero as
can be seen in the upper left corner of the GP vector field. This property can aid in ensuring that the
robot does not execute any unexpected motions in situations where it has not been taught what to do.

Overall, the performance of the two models could be seen as comparable under the given circum-
stances. However, for the desired application, GMMs lack certain beneficial aspects which GPs provide.
The first aspect is that GPs contain within them a representation of the model uncertainty. This can
be exploited for maintaining proximity to the demonstrated behaviour without requiring a separate
method for ensuring the same. Secondly, the mathematical formulation of the GPs can be utilised for
allowing online correction of the database without the necessity of retraining. This enables faster, more
data-efficient and more transparent learning since the provided corrections take effect during the policy
execution.





4
Task Parameterization of Dynamical

Systems
When grasping an object in everyday life, we generally don’t grab objects at the exact same position
with respect to ourselves. We are able to adapt if an object is at a different position each time. This
chapter provides a short excursion into the topic of policy execution with respect to multiple reference
frames with the goal of being able to adapt to different desired object and goal locations. Sec. 4.1 details
the strategy and necessary alterations to the previously presented algorithm in Chap. 2. Sec. 4.3 then
provides a short validation of the feasibility of the approach and a comparison to Task-Parameterized
Gaussian Mixture Models (TP-GMMs) - the state-of-the-art method for trajectory adaptation provided
different reference frames. Finally, Sec. 4.4 covers the conclusions which can be drawn from these initial
experiments.

4.1. Switching Dynamical Systems
The act of grasping an object and taking it to a desired location can be formulated in two parts. The
first part is approaching the object and grasping it, and the second, taking the object to its goal. Even
if the motion is fluent, these are two subtasks of the overall task which need to be completed. Thus,
our attention tends to first be directed towards the object after which our attention shifts to its desired
goal location. Following this reasoning, when the demonstration is initially provided, the trajectory is
observed w.r.t. the goal and w.r.t. the object location. These observations are used to train two sets
of GP models - one for the goal frame and one for the object frame. When seen in the global frame the
initial provided observations are aligned as in Fig. 4.1 a). If either the goal or the object are moved,
the known regions of the two models will no longer be aligned as illustrated in Fig. 4.1 b). In order to
successfully reach the goal, it is necessary to move towards the known region leading to the goal. The
switching of the frames is performed in accordance to the heuristic that once the manipulated object
has been grasped, the desire is to bring it to its new location. Furthermore, in order to ensure a smooth
switch between reference frames, a short transitioning phase is initiated (Fig. 4.1 c)).

Figure 4.1: a) Initially learned trajectory going from the object (circle) to the goal (star) with the region of certainty
depicted by the shade area. b) Learned trajectories with respect to the two reference frames once they’ve been displaced.
c) Transition enabled through the minimisation of the epistemic uncertainty w.r.t. the model leading towards the goal.

17



18 4. Task Parameterization of Dynamical Systems

Algorithm 1: Transition to different dynamical system
21 Σ = GPΔ𝑥(𝑥)
22 if Σ/Σmax > 𝜃 and transitioning then
23 Δ𝑥𝑛,𝑜 = GPΔ𝑥(𝑥)
24 𝛾𝑛,𝑜 = GP𝛾(𝑥)
25 𝑤𝑛,𝑜 = GP𝛿𝑤(𝑥)
26 [sin𝜃𝑛,𝑜 , cos𝜃𝑛,𝑜] = GP𝛿𝜃(𝑥)
27 [Δ𝑥, 𝛾, 𝑤, sin𝜃, cos𝜃] = transition(Δ𝑥𝑛,𝑜 , 𝛾𝑛,𝑜 , 𝑤𝑛,𝑜 , sin𝜃𝑛,𝑜 , cos𝜃𝑛,𝑜)
28 else
29 Δ𝑥 = GPΔ𝑥(𝑥)
30 𝛾 = GP𝛾(𝑥)
31 𝑤 = GP𝛿𝑤(𝑥)
32 [sin𝜃, cos𝜃] = GP𝛿𝜃(𝑥)
33 end

Firstly, when the model depicting the behaviour w.r.t. the goal is selected the uncertainty is min-
imised with respect to that model’s variance, which as a result automatically leads the robot towards
the trajectory leading to the goal despite previously not having received any demonstrations inbetween
the known regions. Secondly, in order to avoid abrupt changes in the predictions while in the region
between two trajectories, the uncertainty with respect to the currently selected model is utilised to
modulate the predictions. The modulation is merely a weighted average between the predictions of
the previously selected model and the predictions of the currently selected model. Mathematically this
transition function (l. 28 of Alg. 1) can be written as

𝑦 = (1 − Σ
Σmax

)𝑦𝑛 +
Σ

Σmax
𝑦𝑜 (4.1)

where Σmax is the variance of the unconditioned GP with the defined kernel, 𝑦𝑛 is the prediction of the
currently selected model and 𝑦𝑜 is the prediction of the previously selected model. This modulation
is used until Σ/Σmax falls below a certain threshold, indicating that the robot is once more within the
known region.

To enable the transition between different frames of reference, the algorithm presented in the paper in
Chap. 2 only requires that ll. 21-23 are expanded into Alg. 1. Only when transitioning between frames
are predictions w.r.t. both frames necessary, otherwise the predictions are carried out based on the
current frame. Furthermore, when corrections are provided, these corrections are applied to the datasets
with respect to the different frames, not only the current one. This ensures that knowledge gained in
one frame is transferred to the other frame in accordance to the correlation, reducing unpredictable
behaviour such as abrupt changes in the accelerations during frame switching.

4.2. Task Parameterized Gaussian Mixture Model
Gaussian Mixture Models can be expanded to adapt to changes in task parameters by utilising Task
Parameterized Gaussian Mixture Models (TP-GMMs) [3]. Examples of task parameters are changes in
reference frames or desired via-points.

The main concept is to provide demonstrations for different values of the relevant parameters.
Taking the example of different reference frame poses, these demonstrations are observed with respect
to both reference frames since the pose of each reference frame is a task parameter. Following the
demonstrations, a Gaussian Mixture Model is fitted for each set of observations. These GMMs are then
combined through the product of the corresponding components and taking the resulting Gaussian
distributions in order to yield the final model.

The product of two Gaussian distributions is given by

𝑐𝒩(𝜇𝑃 , Σ𝑃) = 𝑁(𝜇(1), Σ(1)) ⋅ 𝑁(𝜇(2), Σ(2)) (4.2)
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Figure 4.2: (a) - the multiple provided demonstrations as seen from Frame 1 with the fitted GMM components, (b) - the
multiple provided demonstrations as seen from Frame 2 with the fitted GMM components, (c)-(e) - linear transformation
of the components base on the new task parameters and the results of the products of the component pairs

with

𝑐 = 𝒩(𝜇(1)|𝜇(2), Σ(1) + Σ(2))
Σ𝑃 = (Σ(1)−1 + Σ(2)−1)−1

𝜇𝑃 = Σ𝑃(Σ(1)−1𝜇(1) + Σ(2)−1𝜇(2))

where only 𝒩(𝜇𝑃 , Σ𝑃) is considered for the final model. Prior to carrying out this product, one
must transform the GMMs that were learned for each task parameter to a general representation in
which also newly chosen values for said task parameters are discernible. In the case of reference frames,
one learns the GMMs with respect to each frame, then prior to the computation of the product of the
Gaussians, the learned Gaussian components are linearly transformed with respect to the newly chosen
poses of the frames. For a clearer visualisation please refer to Fig. 4.2.

4.3. Experimental Validation
Being able to grab an object should further be generalisable to different object locations. Whether an
object is a bit further to the left or a bit closer than the original demonstration should not have a
large effect on the overall grasping strategy. Similarly, if the desired goal at which the object should
be placed also changes, the robot should be able to adapt to this. To this end, pairs of GP models for
each aspect which has to be controlled (attractor distance, gripper width, and orientation) have to be
learned. One model out of the pair provides predictions w.r.t. to the object’s initial location, whereas
the other model provides predictions w.r.t. to the goal location. For these experiments, the object

Figure 4.3: The experimental setup. Object and corresponding goal locations used for the demonstrations are denoted by
D, whereas the object and goal locations used for the evaluation are denoted by T. While object locations are only varied
in the plane, goal locations are varied within the 3D space.
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(a) Vector field and executed trajectory of the
proposed framework utilising GPs.

(b) Vector field and executed trajectory of the
TP-GMMs. Due to lack of a stabilisation field
for TP-GMMs, a check of the learned perfor-
mance was carried out both without any form
of intervention and with the user physically
guiding the robot towards the known region.

Figure 4.4: Comparison of vector fields and executed trajectories of GPs (a) and TP-GMMs (b) provided a single
demonstration and corrections for the execution of this demonstration.

frame is fixed to the initial location of the object given that no system was incorporated for tracking it
in real time.

A common strategy to adapt to changes in task parameters, such as for example the locations of
reference frames, is enabled through the use of TP-GMMs. Thus a comparison between this state-of-the-
art and the newly proposed method is carried out. Since the focus is on the trajectory generalisation,
velocity modulation is left out for this experiment. Additionally, for the same reason, only the model
predicting the attractor distance is replaced by TP-GMMs. In all of the experiments, the gripper width
and end-effector orientation continue to be controlled by the GP models.

The TP-GMMs were trained using the same inputs and outputs of the GP model, i.e. the robot
position as input and the desired attractor distance as output. The orientation of the frames was kept
constant during the experiments and was thus not taken into consideration. The number of components
for the GMMs needed for trainging the model were tuned based on the observed performance, with 8
components providing the best results. Two sets of GMM models were trained, one w.r.t. the object
frame and one w.r.t. the goal frame, much like the GP models. The matching of the GMM components
of the two models for the product of Gaussians was performed by taking the closest component.

Two versions of the experiment are carried out. In the first version, a single demonstration is
provided, whereas in the second version, three demonstrations are provided with the object and goal
in different locations. The reason for this variation is that GMMs tend to perform better with more
demonstrations to cover the possible workspace, whereas the proposed method tends to perform better
with a single demonstration since the region of certainty is narrower resulting in a more prominent
effect of the uncertainty minimisation. After the demonstrations, interactive corrections were provided.
For the proposed method it was through the proposed online corrections, whereas the TP-GMMs were
corrected through local demonstrations which were aggregated and used for retraining the model after
each rollout. The time limit for providing corrections for each model was set to 10 minutes.

4.3.1. Single Demonstration
In the experiment with a single demonstration for GPs it could be observed that the behaviour followed
a fairly precise motion, mainly thanks to the narrow certainty region which can be observed in Fig. 4.4
a). At the moment the object was grasped, and the frame switched, the uncertainty minimisation was
able to successfully bring the robot into executing the desired motion for reaching the goal.

In the case of TP-GMMs, although good performance could be achieved along the known trajectory,
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(a) Vector field and executed trajectory of the
proposed framework utilising GPs.

(b) Vector field and executed trajectory of the
TP-GMMs. The same check for the perfor-
mance of the TP-GMMs was performed as in
the case of the single demonstration experi-
ment.

Figure 4.5: Comparison of vector fields and executed trajectories of GPs (a) and TP-GMMs (b) provided a multiple
demonstrations and corrections for the execution of these demonstrations.

the moment another object and goal position was requested the model either lacked the necessary preci-
sion or completely diverged from the demonstrated trajectory. Due to being in an unknown region and
the extrapolation performed by the underlying GMMs the robot begins to stray from the demonstra-
tion. This is largely due to the fact that TP-GMMs have no manner of returning to the known region
on their own. To verify that this is indeed the case, the TP-GMMs were evaluated once without any
form of intervention and a second time through a physical intervention in which the robot was pulled
towards the region of the demonstrations. Observing the vector fields in Fig. 4.4 b) it could be noticed
that this is indeed the case. However, in order to ensure proximity to the known region, a separate
method would have to be introduced, whereas in the case of the proposed framework only the existing
information of the epistemic uncertainty is required.

4.3.2. Multiple Demonstrations
Meanwhile, in the experiment with multiple demonstrations GPs displayed a slightly less precise be-
haviour on the approach towards the object. This is due to the three separate demonstrations w.r.t.
the object covering a broad area in the workspace in turn translating to a broad certainty region as the
one in Fig. 4.5 a). The result of this is that the uncertainty minimisation begins acting on the robot
later than in the case of the single demonstration. Despite this, the policy was able to successfully
generalise to an unknown object and goal location. The training time was naturally longer than in the
case of a single demonstration as each of the three demonstrations had to be evaluated and slightly
corrected for ensuring the succesful completion of the task. TP-GMMs displayed similar issues as those
observed in the case of a single demonstration. Nevertheless, thanks to the multiple demonstrations, a
larger portion of the workspace was covered thus reducing the tendency stray from the demonstrated
trajectories. It was nevertheless not precise enough to accomplish the task on its own.

In conclusion, the proposed method in the given setting is capable of generalising to new frames
using only the provided information without requiring additional information for a separate algorithm
to ensure proximity to the known region. A further advantage is that the proposed method is already
capable of generalisation provided a single demonstration.
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4.3.3. Limitations
There are currently still some limitations in terms of the range of generalisation. Firstly, the new
unknown locations have to be fairly close to the demonstrated points. If the object were to for example
be moved to the other end of the workspace from the demonstrations while keeping the same initial
starting position of the robot the robot would find itself too far from the known region. In such a case,
the uncertainty minimisation would have no effect as it is within the plateau of maximum uncertainty
resulting in a gradient of zero. A good point however is that at the same time, due to the vanishing effect
of the GPs the robot would remain at a standstill given the attractor distance would also be zero thus
preventing unexpected motions. This limit of generalisation could potentially be remedied in two ways;
either having a separate mechanism which brings the robot to the beginning of the trajectory or enabling
interactive corrections which add new datapoints as in ILoSA. With the second option the robot would
be lead through the unexplored region of the workspace, in turn gathering more information for a more
feasible approach while simultaneously remaining more data-efficient than simple data aggregation.

The second limitation is that the current method does not consider frame orientation. In the case
that an object has to be grasped from a particular side, the policy would not be able to adapt to it. This
is something which TP-GMMs, however, already consider and are able to generalise to. One potential
approach to incorporation generalisation to orientation would be to not only control with respect to
the Cartesian position but with respect to the complete Cartesian pose and rather than providing the
desired orientation, providing the desired change of orientation in the current state. Nevertheless, this
remains to be explored in future works.

It should also be noted that TP-GMMs have the property of being able to determine w.r.t. which
frame the robot should be moving based on the demonstration data rather than explicitly selecting
the current frame. In our proposed method, the decision regarding which frame to take as reference is
handled by the heuristic of having grasped the manipulated object. A higher level frame selector would
have to be taken, in order to determine which frame to choose in a general setting. This selector could
either be learned implicitly based on information from provided demonstrations [12, 9] or explicitly
learned through user demonstrations and active corrections as in [7]. This also remains to be explored
further.

4.4. Conclusions and Future Work
With minimal alterations to the base framework, it was possible to enable the generalisation to different
object and goal positions. When reference frames are switched, the minimisation of the epistemic
uncertainty automatically enables the transition to the newly desired behaviour. At the same time,
utilising the information of the uncertainty, the transition between the predictions could be carried out
smoothly instead of having a discrete switch between prediction models.

Certain important aspects remain to be addressed for the better generalisation of the proposed
framework. Currently, the orientation is provided in accordance to the given position, however, an
alternative would be to control the change in orientation provided the current pose. This could poten-
tially also enable a way to control the robot’s orientation w.r.t. to a given reference frame. Further
work also remains to be done on the manner of selecting the reference frames. Different possibilities
exist, from learning the desired frame of reference from user corrections, to utilising TP-GMMs as a
classifier for the desired reference frame or using another high-level selection algorithm. Due to the
first promising results, work will be continued in these directions and will potentially be expanded to
use-cases dealing with dynamic environments.
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Control
When deciding on the manner in which to control the orientation with impedance control for a redundant
robot, there are two possible approaches. The first option would be to only control the Cartesian position
based on the impedance equation, while using the null-space to control the orientation based on the
joint configurations. The second option would be to provide the controller with the desired orientation
directly. Since the orientation is to be fitted with a Gaussian Process, certain considerations have to be
made.

A.1. Orientation Control with Joint Configurations
When dealing with redundant robots, one can control the redundant degrees of freedom through the
use of null-space control. Taking the example of Cartesian impedance control, incorporating null-space
control effectively allows one to minimise the present error by generating the torques

𝜏 = 𝐽⊤𝑓 = 𝐽⊤(−𝐾𝑠 ⋅ 𝜖 − 𝐷(𝐽 ⋅ �̇�)), (A.1)

where 𝐾𝑠 is the Cartesian stiffness, 𝐷 is the corresponding critical damping, 𝜖 is the pose error, �̇� is
the joint velocity and 𝐽 the Jacobian of the end-effector pose, while at the same time allowing for a
secondary control goal. This secondary control goal can be carried out while ensuring to not have effect
on the dynamics of the end-effector, i.e. 𝑓 = 𝐽⊤† ∗ 𝜏𝑛 = 0. This equation would be satisfied for 𝜏𝑛 equal
to zero or with the help of the projection onto the null-space [2] according to

𝜏𝑛 = (𝐼 − 𝐽⊤ ⋅ 𝐽⊤
†)𝑢𝑛 ,

where 𝐼 is identity, 𝐽⊤† is the pseudo-inverse of 𝐽⊤ and 𝑢𝑛 is the control input in the null-space. For the
null-space joint impedance controller this translates to

𝜏𝑛 = (𝐼 − 𝐽⊤ ⋅ 𝐽⊤
†)(𝐾𝑛 ⋅ (𝑞𝑔𝑜𝑎𝑙 − 𝑞) − 2√𝐾𝑛�̇�). (A.2)

What Eq. A.2 does is generate torques which will only move the joints that will not affect the
dynamics of the end effector regulated by Eq. A.1.

In the present setup, the impedance controller allows the control of the entire pose with one redun-
dant degree of freedom. The system Jacobian is a 6-by-7 matrix, with the first three rows corresponding
to the position representation and the last three rows corresponding to the orientation representation.
In order to control the orientation as a function of the joint configuration we can use the null-space of
the Jacobian which only considers the position, i.e. a 3-by-7 matrix.

This approach has two benefits. The first is that by controlling the configuration we not only control
the orientation but we also fully control all the degrees of freedom of the robot and as a result ensure
cyclicity [6], which is important for a reliable actuation of the robot for periodic tasks over a long
span of time. The second is that the joint angles are continuous when recorded from a kinesthetic
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Figure A.1: Results of fitting a step function with a Gaussian Process using different amounts of datapoints.

demonstration, which is beneficial for the modelling with a Gaussian Process - more on this in the
upcoming section.

While this initially achieved good results, it was later discarded on the grounds of limited gener-
alisability. In the case that the trajectory had to be executed in a different part of the workspace, in
order to maintain the same orientation and not generate conflicting torques with the ones controlling
the position, the joint policy had to be translated to the new desired pose. This involves carrying out
forward kinematics on the joint dataset to obtain the desired orientation. This orientation would then
be combined with the desired global positions in order to perform inverse kinematics to obtain the new
joint configurations. While this could be performed before the trajectory execution in order to save on
computation time during the policy execution, it would have to be performed any time the object or
goal position would be changed. This would, however, make policy execution in the case of a moving
object or goal impossible at high frequencies.

A.2. Rotation Representations
In robotics there are different manners of representing rotations in 3D Cartesian space, however, some
representations such as quaternions and Euler angles displayed a discontinuous jump in their values
upon very slight changes of the robot configuration such as a flipping of the signs in the case of the
quaternions or switches from 𝜋 to −𝜋 in the case of Euler angles. Due to the smoothness of the GP
kernels, such discontinuities cannot be fitted well and often result in inaccurate predictions around the
discontinuity. A visualisation of this can be seen in Fig. A.1. Even with 80 datapoints across 4cm the
smoothness of the Gaussian Process results in a poor fitting of the step function. This effect can be
reduced by increasing the number of datapoints, however, this will eventually lead to an increasingly
large database as the demonstrated trajectories ranged to more than a meter in length. Therefore, such
an approach would not be practical due to a high computational load even though the training of the
GPs is only carried out once following the kinesthetic demonstrations. For this reason, a continuous
representation is desired.

Out of the common representations, rotation matrices provide precisely this. While the final rotation
matrix which is used as part of a transformation matrix has nine unique values, the number of inputs
needed to represent the orientation can be reduced to six. These six values are the sin and cos values
of the Euler angles from the rotation matrices used to obtain the final rotation matrix according to
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Figure A.2: An dataflow illustration of the orientation data, beginning with the data recording and conversions for training
the prediction model, followed by extracting the predictions and converting back to the desired control command.

𝑅 = [
cos𝛼 − sin𝛼 0
sin𝛼 cos𝛼 0
0 0 1

] [
cos𝛽 0 sin𝛽
0 1 0

− sin𝛽 0 cos𝛽
] [
1 0 0
0 cos 𝛾 − sin 𝛾
0 sin 𝛾 cos 𝛾

] . (A.3)

During a continuous demonstration of the orientation, the resulting sin and cos values will remain
continuous. With the requirement of a continuous representation fulfilled, while at the same time
remaining fairly compact the three [sin, cos] pairs were chosen for learning the final orientation model.
This representation does bring with it a few additional steps, which will be outlined briefly in the next
section.

A.3. Dataflow
The Cartesian impedance controller provided by Franka takes quaternions as inputs for the desired
orientation and also allows the orientation to be read in the form of quaternions. Thus, to obtain the
desired representations, the following steps had to be taken.

Firstly, during the demonstration, the orientation at each position is recorded in quaternion form.
These quaternions are then converted into Euler angles of which the sin and cos are calculated.

The six resulting values are taken as the outputs of the orientational GP model, with the inputs being
the Cartesian positions. When the GP is used for predicting [sin𝛼, sin𝛽, sin 𝛾, cos𝛼, cos𝛽, cos 𝛾], the
Euler angles 𝛼, 𝛽, and 𝛾 have to be extracted. This can be done by calculating the arctan2 as

𝜃 = arctan2( sin𝜃
cos𝜃) . (A.4)

Finally, the Euler angles are once more converted into quaternions and provided as part of the
control input to the low level impedance controller.
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GP Kernel Length Scales
One of the advantages of Gaussian Processes over Gaussian Mixture Models is that GPs are non-
parametric. Nonetheless, the kernel chosen for a particular GP model can change the model’s overall
performance. Fortunately, the selection of the kernel parameters is fairly straightforward in the given
setting. For this work an Automatic Relevance Determination (ARD) squared-exponential kernel [14]
with added noise was chosen. The added noise ensures that the model does not overfit to the presented
data.

An ARD squared-exponential kernel of dimension 𝑑 takes the form of

𝑘(𝑥, 𝑥′) = 𝜎2𝑓 exp [−
1
2

𝑑

∑
𝑚=1

(𝑥𝑚 − 𝑥′𝑚)2
𝜎2𝑚

] (B.1)

where 𝜎𝑚 represents the characteristic length scale for each dimension 𝑚, 𝜎𝑓 is the signal standard
deviation, 𝑥 is the known point and 𝑥′ is the point to be evaluated. In our particular case, the total
number of dimensions is 𝑑 = 3, given we are using the 3-D Cartesian position.

There are two cases in which it was necessary to bound the length scales. The first is in the case that
the trajectory remained mostly constant along a particular axis. One can argue that in the case this
happens, when for example moving along more or less the same height, the correlation of the inputs is
independent of the height. This is precisely what the ARD kernel displays. What then happens during
the parameter optimisation, is that the length scales of such dimensions become very large. While this
achieves the goal of an ARD kernel, which is to essentially remove the effect of irrelevant variables, this
generates a very broad region of certainty along this axis. What this means, is that the uncertainty
minimisation intended for remaining close to the trajectory becomes virtually ineffective along this
axis. To remedy this, an upper bound had to be introduced to the kernel modelling the translational
dynamics. Since the length scales in the more variable axes tended to be between ten and fourteen
centimetres, the upper bound was set to 15cm.

The second case is when it is undesirable that a correction carried out in one point affects the
outputs of surrounding datapoints. This was the case for the gripper. If the length scales were left to
be as large as those of the model for the translational dynamics, the effect of the corrections would
spread to earlier points of the trajectory. As a result it could easily happen that the gripper closes
sooner than what the user was intending due to the gripper not being controlled in real-time. To this
end, the length scale of the gripper was set to an upper bound of 2cm, practically limiting the user’s
corrections to the current datapoint used for the prediction.
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Figure C.1: Overview of the teaching approach.

The user interface consists of two parts, the kinesthetic teaching and the teleoperated corrections,
depicted in Fig. C.1. For the kinesthetic demonstration, the stiffness at the robot’s end-effector is
reduced to zero which allows the user to freely move the robot. The gravity compensation implemented
within the impedance controller ensures that the robot does not fall under its own weight. During the
demonstration, the desired motion, orientation and gripper behaviour are provided. Subsequently, the
policy is executed and the user is allowed to provided corrections to the dynamics of the translational
motion and gripper behaviour. To ensure that a user was able to comfortably provide the necessary
corrections, an adequate teleoperation device had to be selected.

C.1. Teleoperation Device
For the purpose of testing the usability of the framework with non-expert users an input device was
needed which fulfilled the following requirements:

• readily available\not too expensive

• simple setup process

• adequate number of inputs for providing all of the necessary forms of correction

• portable in order to allow users to move around if they need a better angle to see the robot

For this reason, the F710 Logitech Gamepad was selected despite not necessarily being the most
intuitive out of the existing options. The commands enabled for the users were organised as depicted
in Fig. C.2.

29



30 C. Appendix ­ User Interface

Figure C.2: Controller commands

In order to maintain the flow of the teaching without needing intervention by the researcher con-
ducting the study (so as to e.g. bring the robot back to the start of the trajectory), users were given
full control over the system. With the Back button, users could bring the robot to the start of the
trajectory from any point in the workspace, provided the execution of the policy is terminated. With
the Start button, the execution of the policy could be started from any point within the workspace as
long as the safety button, i.e. the Left Trigger, was pressed. The policy would only be executed as
long as the safety button was held pressed. The safety button was in no way a replacement for the
actual emergency button of the Panda. Rather, the safety button was primarily there to enable users
to terminate the execution the moment the robot happened to do something unexpected. During the
experiments, the researcher present had the emergency button within reach, although it did not have
to be used over the course of the study.

In terms of actual corrections, users had a total of seven inputs - three for the attractor distance
Δ𝑥, two for the scaling factor 𝛾 and two for the gripper width 𝑤. When assigning the commands to the
buttons on the controller, considerations were made towards the typical functions of controller inputs
for video games. The reasoning behind this was that people who play video games would struggle more
when provided with controls in locations they’re not familiar with, than people who don’t play video
games.

The inputs for the attractor distance could be provided as continuous values, although they had to
be split across the two thumbsticks since the inputs of each thumbstick are two-dimensional. Since in
most video games the left thumbstick is used for moving around, this one was assigned for attractor
corrections in the x-y-plane and the corrections along the z-axis were assigned to the right thumbstick.

For speeding up and slowing down, one of more common inputs are the Left and Right Triggers.
However, there appeared to be an issue of the initialisation of the trigger values, such that if the
controller happened to be reinitialised the value being read was 0 whereas after the trigger was pressed
and let go this value would be −1. While this value could be offset and the users requested to press the
triggers prior to each round of correction, the triggers were discarded in order to avoid any potentially
unexpected behaviour and to avoid adding further mental load on the users. Instead, this functionality
was shifted to the two buttons above the triggers. Only discrete inputs could be provided in order to
increase or decrease the velocity. Nonetheless, if the user kept the button pressed, the input would be
continually provided as long as it remained pressed.

Out of all the buttons on the controller, the A, B, X, and Y buttons are the most variable across
games and platforms and are used for carrying out different kinds of actions. Thus, the gripper cor-
rections were simply set to the A and B buttons. These buttons also only allow discrete inputs, but
function in the same manner as the ones intended for increasing and decreasing the velocity. Therefore,
for each registered input, the width of the gripper was incrementally altered.



Bibliography
[1] Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[2] Samuel R Buss. “Introduction to inverse kinematics with jacobian transpose, pseudoinverse and

damped least squares methods”. In: IEEE Journal of Robotics and Automation 17.1-19 (2004),
p. 16.

[3] Sylvain Calinon. “A tutorial on task-parameterized movement learning and retrieval”. In: Intelli-
gent service robotics 9.1 (2016), pp. 1–29.

[4] Sylvian Calinon. Machine Learning for Engineers - Nonlinear Regression. Nov. 2015.
[5] J. Chen and H. Y. K. Lau. “Learning adaptive reaching skills with nonlinear dynamical systems

directly from human demonstrations”. In: 2016 IEEE Workshop on Advanced Robotics and its
Social Impacts (ARSO). 2016, pp. 232–237.

[6] Stefano Chiaverini, Giuseppe Oriolo, and Ian D. Walker. “Kinematically Redundant Manipula-
tors”. In: Springer Handbook of Robotics. Ed. by Bruno Siciliano and Oussama Khatib. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 245–268. ISBN: 978-3-540-30301-5. DOI: 10.
1007/978-3-540-30301-5_12. URL: https://doi.org/10.1007/978-3-540-30301-5_12.

[7] Giovanni Franzese, CE Celemin, and Jens Kober. “Learning interactively to resolve ambiguity in
reference frame selection”. In: Conference on Robot Learning (CoRL). 2020.

[8] Jochen Görtler, Rebecca Kehlbeck, and Oliver Deussen. “A Visual Exploration of Gaussian Pro-
cesses”. In: Distill (2019). https://distill.pub/2019/visual-exploration-gaussian-processes. DOI: 10.
23915/distill.00017.

[9] Jose Hoyos et al. “Incremental learning of skills in a task-parameterized gaussian mixture model”.
In: Journal of Intelligent & Robotic Systems 82.1 (2016), pp. 81–99.

[10] Michael Kelly et al. “HG-DAgger: Interactive imitation learning with human experts”. In: IEEE
Int. Conf. Robot. Autom. 2019.

[11] S. Kim, A. Shukla, and A. Billard. “Catching Objects in Flight”. In: IEEE Transactions on
Robotics 30.5 (2014), pp. 1049–1065.

[12] Scott Niekum et al. “Learning and generalization of complex tasks from unstructured demonstra-
tions”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012,
pp. 5239–5246. DOI: 10.1109/IROS.2012.6386006.

[13] A.S. Phung et al. “Learning to Catch Moving Objects with Reduced Impulse Exchange”. In: IFAC
Proceedings Volumes 47.3 (2014), pp. 3036–3041.

[14] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learn-
ing. The MIT Press, 2006. ISBN: 026218253X.

[15] S. S. M. Salehian, M. Khoramshahi, and A. Billard. “A Dynamical System Approach for Softly
Catching a Flying Object: Theory and Experiment”. In: IEEE Transactions on Robotics 32.2
(2016), pp. 462–471.

31

https://doi.org/10.1007/978-3-540-30301-5_12
https://doi.org/10.1007/978-3-540-30301-5_12
https://doi.org/10.1007/978-3-540-30301-5_12
https://doi.org/10.23915/distill.00017
https://doi.org/10.23915/distill.00017
https://doi.org/10.1109/IROS.2012.6386006

	Thesis Structure
	Teaching Robots How to Grasp Like Humans: An Interactive Approach 
	Interactive Learning with GMMs and GPs
	Comparison to Gaussian Process
	Experimental Comparison
	Learning Dynamical Systems: GMM vs GP


	Task Parameterization of Dynamical Systems
	Switching Dynamical Systems
	Task Parameterized Gaussian Mixture Model
	Experimental Validation
	Single Demonstration
	Multiple Demonstrations
	Limitations

	Conclusions and Future Work

	Appendix - Learning Variable Orientation Control
	Orientation Control with Joint Configurations
	Rotation Representations
	Dataflow

	Appendix - Constrained optimisation of GP Kernel Length Scales
	Appendix - User Interface
	Teleoperation Device


