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Abstract
Researchers and engineers employ machine learning (ML) tools to detect pipe bursts and prevent 
significant non-revenue water losses in water distribution systems (WDS). Nonetheless, many 
approaches developed so far consider a fixed number of sensors, which requires the ML model 
redevelopment and collection of sufficient data with the new sensor configuration for train-
ing. To overcome these issues, this study presents a novel approach based on Long Short-Term 
Memory neural networks (NNs) that leverages transfer learning to manage a varying number of 
sensors and retain good detection performance with limited training data. The proposed detec-
tion model first learns to reproduce the normal behavior of the system on a dataset obtained in 
burst-free conditions. The training process involves predicting flow and pressure one-time step 
ahead using historical data and time-related features as inputs. During testing, a post-prediction 
step flags potential bursts based on the comparison between the observations and model pre-
dictions using a time-varied error threshold. When adding new sensors, we implement transfer 
learning by replicating the weights of existing channels and then fine-tune the augmented NN. 
We evaluate the robustness of the methodology on simulated fire hydrant bursts and real-bursts 
in 10 district metered areas (DMAs) of the UK. For real bursts, we perform a sensitivity analysis 
to understand the impact of data resolution and error threshold on burst detection performance. 
The results obtained demonstrate that this ML-based methodology can achieve Precision of up to 
98.1% in real-life settings and can identify bursts, even in data scarce conditions.

Keywords Deep learning · LSTM · Transfer learning · Burst detection · District metered areas

1 Introduction

Water distribution systems (WDSs) are underground networks designed to transport and 
distribute safe drinking water. Pipe bursts constitute a major challenge for WDS manag-
ers as they cause severe disturbance in the operation of the system, limit the availability 
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of sufficient and clean water (Al-washali et al. 2016; Fox et al. 2016), causing significant 
financial losses (Farley et al. 2001).

To reduce the impact of pipe bursts, water utilities resort to digitalization by installing 
pressure and flow monitoring sensors that automatically relay data to an operations center 
(Adedeji et  al. 2017; Gupta and Kulat 2018). Monitoring allows water utilities to detect 
bursts early on, mobilize their repair crews swiftly and ultimately limit their negative con-
sequences and promote economic and environmental sustainability (Cassidy et  al. 2021; 
Bakker et al. 2012).

1.1  Related Studies

Timely detection of bursts is crucial to the water utilities, and two primary approaches 
exist: model- and data-driven approaches (Hu et al. 2021). Model-based approaches com-
pare observations of the real network data with simulations of the WDS (Pérez et al. 2011). 
Despite numerous successful applications (Casillas Ponce et al. 2014; Sophocleous et al. 
2019), these approaches require expert-calibrated models (Hu et al. 2021; Pérez et al. 2014) 
and a high degree of supervision by the user. Furthermore, these methods need expensive 
recalibration of the underlying hydraulic model when the WDS changes (Kang and Lansey 
2011). On the other hand, data-driven methodologies rely on signal processing, statistical 
analysis, and machine learning (ML) to process the acquired data, disregarding in-depth 
understanding of the layout and operation of the WDS (Mounce et al. 2002). Recently, ML 
methods emerged as the most common data-driven approaches for burst detection. This 
family of methods usually work in a burst-no/burst binary classification fashion (Caputo 
and Pelagagge 2003; Mounce and Machell 2006; Mounce et al. 2014). However, acquiring 
balanced datasets for training is challenging since bursts are infrequent (Wu and Liu 2017). 
A proven strategy to tackle this issue involves initially training models to reproduce sen-
sor trajectories on burst-free datasets. In the testing phase, the system identifies potential 
bursts by flagging deviations from the predicted values that surpass a set threshold (Hu 
et al. 2021; Romano et al. 2014).

All ML-based approaches for burst detection proposed in the literature operate with 
a fixed number of sensors or a set WDS topology. This requires the development of a 
new model every time there is a change in the sensor setup or in the physical network 
structure. Furthermore, training a new model relies on the acquisition of sufficient data 
under the new configuration, potentially leading to significant delays in detecting bursts. 
To overcome this issue, new models could reuse the knowledge captured by existing ones, 
rather than starting from scratch with each modification. This can be achieved by lever-
aging transfer learning, a ML technique that allows a model to apply knowledge learned 
from one task to a related task (Pan and Yang 2010; Torrey and Shavlik 2010). Unfor-
tunately, common ML approaches based in non-parametric methods such as Decision 
Trees and Random Forest (Lučin et al. 2021; Zhang et al. 2022) do not transfer because 
they rely on fixed architectures that cannot adapt to new data distributions or changes in 
features. On the other hand, traditional Deep Learning (DL) architectures based on the 
Multi-Layer Perceptron (MLP) can be retrained to accommodate for changes in the data 
distributions of their inputs/outputs (e.g., due to a change in the physical network), but 
they cannot transfer knowledge when features are added or removed (i.e., following the 
installation or removal of sensors). Furthermore, MLPs are prone to suffer from the curse 



Leveraging Transfer Learning in LSTM Neural Networks for…

1 3

of dimensionality, and require considerable amount of data to achieve good performances 
(Russell and Norvig 2010).

Modern DL methods like Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs) are designed to bypass the curse of dimensionality by using inductive 
biases and shared parameters, which promote better knowledge transfer and smooth adap-
tation to varying data and input configurations (Bentivoglio et  al. 2022). The sequential 
inductive bias of RNNs is particularly suitable for processing the time-series data meas-
ured by sensors in WDSs. Furthermore, gated RNN neurons, such as Long Short-Term 
Memory (LSTM) cells can effectively manage long sequences by selectively processing 
and propagating crucial information across time steps (Hochreiter and Schmidhuber 1996; 
Lai et al. 2018). This property renders them particularly attractive to handle the long-term 
correlations in flow, pressure and water demand data sensed in WDS. Despite these advan-
tages, only a handful of studies have utilized LSTMs for burst detection. Wang et al. (2020) 
used an LSTM network and flow data to detect bursts in a real-life DMA in China, but their 
dataset was limited to simulated bursts and lacked pressure information. Similarly, Lee and 
Yoo (2021) worked with flow data to detect a single burst in a WDS, which is not repre-
sentative of real DMAs. Xu et al. (2020) used flow and pressure signals with an LSTM but 
only tested on five fire hydrant simulated bursts in a non-DMA city-wide network.

No study explored how transfer learning in LSTMs can improve burst detection in oper-
ational settings. In this paper, we aim to address this gap by proposing a novel data effi-
cient LSTM-based approach that leverages transferability to handle a varying number of 
sensors. When adding new sensors, we augment the original LSTM by duplicating weights 
for the newly added channels. These augmented models are fine-tuned, not re-trained from 
scratch, reducing data requirements for burst prediction under the modified setup. We 
validate our approach on simulated fire hydrant bursts and real bursts across 10 DMAs 
of Sutton and East Surrey Water Services Ltd (SES Water) in England. We also perform 
an extended sensitivity analysis to assess the impact of input time resolutions, providing 
insights into how data granularity affects the overall performance.

2  Case Studies

Table 1 reports the 10 anonymized DMAs of SES Water used in this study. Using satellite 
imagery, we identify three land use categories: urban, rural and mixed. Urban DMAs are 
characterized by dense urban fabric and very little unbuilt area. Rural DMAs are scarcely 
populated and are mostly covered by agricultural fields. Mixed DMAs lie in between the 
two previous categories. Regardless of their classification, all DMAs follow the layout 
depicted in Fig. 1 (left), with flow and pressure sensors installed at the inflow point, and 
an additional pressure sensor installed at the critical point. The three DMAs where fire 
hydrant bursts were simulated are listed in Table 2, and they have five to seven additional 
pressure sensors as shown in Fig. 1 (right). The data for this study was collected from 14 
October 2016 to 29 March 2022, with varying data availability across the different sensors. 
All data has an original time resolution of 15-min.

The different length of the training, validation and testing subsets shown in Table 1 is a 
result of the requirement to have consistent flow and pressure signals, unaffected by sensor 
replacements and/or recalibration.
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2.1  Simulated Fire Hydrant Bursts

Fire hydrant bursts were executed on March 10, 2022 (i.e., Beta and Delta DMAs) and 
March 15 (i.e., Zeta DMA) during daytime, after the installation of additional pressure 
sensors in early January 2022. The experiments were conducted for a total of 2.5 h with 
a progressively increasing discharge to avoid unnecessary harm to the network pipes. 
Details on the experiments, along with the burst discharge relative to the mean DMA 
inflow αburst, are shown in Table 2.

Table 1  Characteristics of DMAs used with training, validation and testing period partitioning

*aThis subset partitioning refers to the model application on detecting real bursts
*bThe training/validation partitioning follows the 70/30 ratio
*cBursts in the training and validation subsets are removed, so that the model is trained in burst-free conditions

DMA Land use Subset*a Period*b Number 
of real 
bursts*c

Alpha Urban Training 1/10/2016 – 31/12/2018 11
Validation 17
Testing 1/1/2019 – 31/12/2020 41

Beta Urban Training 1/10/2016 – 31/12/2018 33
Validation 19
Testing 1/1/2019 – 31/12/2020 37

Gamma Mixed Training 1/1/2019 – 31/12/2020 28
Validation 16
Testing 1/1/2021 – 28/3/2022 21

Delta Rural Training 1/10/2016 – 31/5/2018 0
Validation 1
Testing 1/6/2018 – 31/12/2020 6

Epsilon Urban Training 1/10/2016 – 31/12/2018 35
Validation 4
Testing 1/1/2019 – 31/8/2020 60

Zeta Mixed Training 1/10/2016 – 31/12/2018 1
Validation 6
Testing 1/1/2019 – 31/5/2020 5

Eta Rural Training 1/10/2016 – 31/12/2018 6
Validation 7
Testing 1/1/2019 – 31/1/2020 8

Theta Urban Training 1/10/2016 – 31/5/2018 5
Validation 4
Testing 1/6/2018 – 28/2/2019 7

Iota Rural Training 1/4/2018 – 31/5/2020 15
Validation 2
Testing 1/6/2020 – 28/3/2022 4

Kappa Mixed Training 20/5/2021 – 31/12/2021 7
Validation 0
Testing 1/1/2022 – 28/3/2022 3
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At the original 15-min time resolution, each 2.5 h long simulated burst corresponds to 11 
time steps, with the start and end time of the burst included.

2.2  Real Bursts

A total of 192 real bursts were available across the 10 DMAs (see Table 1). The burst records 
included detection datetime, repair datetime and a short description of their nature. As discussed 
later, the quality of measurements and the veracity of the burst records is inhomogeneous across 
the different DMAs. Furthermore, there are common challenges with the dataset. The registered 
bursts started before the operator detected them. As a result, the information available only par-
tially represents “ground truth”. Similarly, “burst-free” records contain background leaks and/or 
undetected bursts. Furthermore, it is possible that the sensors were recalibrated or replaced dur-
ing the recording period, which undermines the consistency of the dataset.

3  Methodology

3.1  Overview of the Approach

The proposed detection mechanism works in a two-step prediction-classification fash-
ion (Wu and Liu 2017). In the first step, the model makes a prediction of flow and 
pressure(s) for the next time step t + 1 , using autoregressive inputs until time t − k , 

Fig. 1  A schematic representation of a typical DMA with distributed pressure and flow sensors for the case 
of real bursts (left) and simulated fire hydrant bursts (right)

Table 2  Details on artificial fire 
hydrant experiments, including 
duration and burst size compared 
to mean DMA inflow

*: Applicable to the scenarios that leverage transfer learning and fine-
tuning of pre-trained weights

DMA Beta Delta Zeta

Fine-tuning* 16/1/2022 – 16/2/2022
Testing 20/2/2022 – 28/3/2022
Burst date 10/3/2022 15/3/2022
QDMA,mean 7.2 l/s 1.3 l/s 2.5 l/s
Duration 1.5 h 1 h 1.5 h 1 h 1.5 h 1 h
Qburst 0.8 l/s 1.5 l/s 0.8 l/s 1.5 l/s 0.8 l/s 1.5 l/s
αburst 11% 21% 62% 115% 32% 60%
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where k is a fixed time window, and known information of datetime-related features at 
time t + 1 . If H is the vector observed hydraulic features, the first stage can be expressed 
mathematically as

where Ĥ identifies the predicted hydraulic features, D are the datetime features and � iden-
tifies the DL model. In the first stage, the goal of the DL model is to minimize the pre-
diction error Et+1 in the training dataset without overfitting, expressed below for a single 
instance using the mean squared error or L2 norm.

where n is the number of hydraulic features to predict. The choice of the squared error was  
mainly driven by the convexity of the metric, as well as the emphasis on larger errors, both  
of which simplify the optimization process in model training. In the second stage, bursts 
are flagged by comparing the prediction error against a time-varying threshold that changes 
with the time of the day to account for the cyclical nature of water demand (Hutton and  
Kapelan 2015). The thresholds are selected based on the distribution of the prediction errors  
on the validation dataset to strike a compromise between the sensitivity of the method and 
the excessive flagging of false positives (Taormina and Galelli 2018).

3.2  Input Features

In addition to past values of the hydraulic features H , we create two additional datetime 
features D , to help the DL model recognize the daily and weekly water consumption behav-
ioral patterns (Hutton and Kapelan 2015). The first, named “Day Index” ( DI ) represents an 
engineered version of the weekday index with values in the [0, 1] range

with Monday having a weekday index of 0, Sunday having a weekday index of 6 and “%” 
representing the modulo operator. According to Eq. (3), the DI values of working days are 
close to 0 and the DI values of weekends are equal to 1. The DI values of public holidays 
were set to 1 after statistical analysis confirmed behavioural patterns resembling weekend 
consumption, mainly due to the delayed morning peaks. The second datetime feature is the 
minute-of-the-day ( MD ), which accounts for the different expected consumption within the 
day and takes values in the range [0, 1439]. All hydraulic and datetime features are scaled 
in the range [0, 1] based on the value range they exhibit in the training dataset.

3.3  Neural Network Architecture

The proposed architecture includes both LSTM cells (Hochreiter & Schmidhuber 1997) 
and traditional neurons. Specifically, there are two different hidden layers; one consist-
ing of 16 LSTM neurons that takes as input sequences of hydraulic features H and one 

(1)Ĥt+1 = �
(
Ht,Ht−1,… ,Ht−k,Dt+1

)

(2)Et+1 =
1

n
‖Ht+1 − Ĥt+1‖

2

2

(3)DI =
0.2

1 − 0.8 ⋅ cos

(
((Weekday Index + 1)%7) ⋅

�

3

)
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consisting of 2 regular neurons that takes as input singular values of the time features 
D . The number of LSTM neurons resulted from a preliminary hyperparameter tuning. 
The outputs of both layers are then concatenated into an additional layer consisting of 
regular neurons that predict the hydraulic features Ĥ . The number of neurons in the 
output layer is equal to the number of the predicted hydraulic features, i.e., 3 for real 
bursts and 8 (= 3 + 5) or 10 (= 3 + 7) for the engineered fire hydrant bursts. Regardless 
of the sensor setup, all models are trained to minimize the mean squared error in Eq. (2) 
computed for the entire training dataset. Finally, to reduce the possibility of overfitting, 
recurrent dropout is used when training the LSTM cells. Initial hyperparameter tuning 
revealed that of the different combinations of dropout rate and other parameters of the 
NN structure (details not provided here due to limited space), a dropout rate of 20% is 
preferred. This high rate is most likely justified by the relatively small size and noise of 
the dataset, especially for the simulated bursts.

3.4  Transfer Learning

Transfer learning refers to the “improvement of learning in a new task through the 
transfer of knowledge from a related task that has already been learned” (Torrey and 
Shavlik 2010). This technique enables the development of a full-scale model when lim-
ited data is available for the new task, by building on an existing model that allows for 
knowledge transfer. In the burst detection domain, changes in the WDS topology, the 
number, calibration or type of sensors can significantly limit the length and consistency 
of datasets available for model training. Such changes often necessitate the model to  
be set “offline”, until the assimilation of new, long-enough datasets are available and 
model re-training is possible. In this work, we leverage LSTM transferability for detect-
ing the engineered fire hydrant bursts, since the additional pressure sensors are available 
only for the first three months of 2022. Specifically, we first develop a model using the 
data before 2022. Second, we expand this model by adding new input channels to the 
LSTM, corresponding to the number of new pressure sensors. Then, we initialize the 
additional trainable parameters in the LSTM gates with the weights from the pressure 
sensor at the inflow of the DMA. This results in a new model with pre-trained weights 
for all pressure signals, which is then fine-tuned and tested with limited data to detect 
the fire hydrant bursts.

3.5  Multi‑Threshold Classification

The second stage of the proposed approach requires the comparison of the predic-
tion error against set thresholds. These thresholds are set at the 99.9th percentile of the 
prediction errors observed in the validation dataset. This value was selected to limit 
the false positives to 0.1% in operational settings, assuming the ideal case where the 
validation dataset accurately represents test conditions. However, due to the periodi-
cal components of water demand patterns, the variation of the prediction error is usu-
ally higher during periods of intensely varying water consumption, and smaller when 
water consumption is relatively stable, e.g., during night-time (Hutton and Kapelan 
2015). To account for the heterogeneity in the error distribution, we segmented the 
prediction errors into h = 3 hour intervals, creating contiguous clusters. Moreover, we 
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distinguished between working days and weekends or public holidays. This resulted in 
16 distinct thresholds, each based on the 99.9-th percentile of prediction error distribu-
tions within their respective clusters. This number of clusters offered the best trade-off 
between the threshold resolution and the reliability of the computed percentiles. Smaller 
values of h created too small clusters from which to extract a high percentile. This 
impacted the model performance by “flagging” too many non-burst instances as bursts. 
Higher values of h resulted instead in a too coarse clustering of the daily consumption 
behavior and loss of fidelity.

3.6  Performance Assessment

We employed both event- and timestamp-based metrics to assess the methodology. The 
event-based metrics factor in unique alarms — instances where prediction errors exceed the 
time-dependent threshold — that occur within the repair timeframe and one week before a 
burst is identified by the operator. This one-week lead time accounts for the potential delays 
in burst detection, which can be due to delayed customer reports or the time it takes to recog-
nize substantial water loss. Conversely, we derived timestamp-based metrics on a per value 
basis by comparing the generated alarm instances to the burst records. Event-based metrics 
are useful to water utilities and engineers, since they show the performance in terms of num-
ber of bursts, whereas the value-based ones are more useful to NN experts, since they reflect 
the per-datapoint performance of the model.

Three event-based metrics are calculated: Recalle , Precisione and f1scoree , where sub-
script “e” denotes the event-based calculation of these metrics. The timestamp-based metrics 
calculated are Recall , Fallout and Precision , defined as shown in Table 3.

Bearing in mind the distinctions between event- and timestamp-based metrics, TP in 
Table  3 represent true positives, which are correct flags raised for actual instances (either 
events or timestamps); FN denotes false negatives, where true instances are not flagged; TN 
refers to true negatives, cases where no burst occurs and no flag is raised; and FP indicates 
false positives, instances where a flag is raised erroneously as no burst is occurring.

Based on the above definitions, the Recall metrics indicate the proportion of actual burst 
events that were correctly identified, emphasizing the model’s sensitivity to detecting bursts. 
On the other hand, Precision represents the proportion of flagged burst events that are true 
burst events, showcasing the reliability of the alarms generated. The f1score is the harmonic 
mean of Precision and Recall, a composite measure that is suited for imbalanced datasets, such 
as the one in this study where burst-free conditions are the norm. Lastly, Fallout is the prob-
ability of false alarms. A good methodology should have high Recall , Precision and f1score , 
whereas Fallout should be minimal. For simulated burst cases, we introduce an additional 
Detection Delay (DD) metric. This metric measures the time interval between the actual 
onset of a fire hydrant burst and the moment the burst is flagged.

Table 3  Event- and timestamp-
based performance metrics

Event-based metrics Timestamp-based metrics

Recalle =
TP

TP+FN
× 100%

Precisione =
TP

TP+FP
× 100%

f1scoree =
2⋅(Recalle ⋅Precisione)
Recalle+Precisione

× 100%

Recall =
TP

TP+FN
× 100%

Precision =
TP

TP+FP
× 100%

Fallout =
FP

FP+TN
× 100%
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3.7  Experimental Setup

We split the datasets for each DMA into two parts: one for training and validation, that is 
cleaned of any registered bursts, and one for testing. To prevent the occurrence of vanish-
ing gradients in detecting real bursts, we reduce the length of the input sequence fed to 
the LSTM cells by resampling the original data at 30-min resolution. This yields input 
sequences for the hydraulic variables of 192 timesteps, with data up to 4 days before the 
prediction time. We implement the neural networks using the Keras package in Python. We 
train all models for 100 epochs using the Adam optimizer (Kingma and Ba 2015), storing 
the best model based on the validation performance at each epoch. The optimizer’s suit-
ability of this problem stems from its adaptive learning rate mechanism, its ability to store 
moving averages of both the gradients and the squared gradients of the parameters, and not 
their past instances. The model is trained using a decaying learning rate and early stopping, 
regulated on the validation loss. The initial learning is 0.010 and reduced by 20% whenever 
the validation loss does not significantly for 6 consecutive epochs. Similarly, the training 
stops if the validation loss does not improve significantly after 10 epochs. For both cases, a 
loss improvement of 0.001 is used as tolerance.

4  Results and Discussion

4.1  Results for Fire Hydrant Bursts

Three different scenarios are initially investigated: (i) Scenario A, where only the 3 origi-
nally installed sensors are used, but the models are developed using all the data available 
for training and validation (see Table 1), (ii) Scenario B, where all the available sensors are 
utilized, but the models are developed only with data from 2022, with training and valida-
tion taking place in the “fine-tuning” period of early 2022 (see Table 2), (iii) Scenario C, 
with all the available sensors, but with transfer learning of the model weights from sce-
nario A, and fine-tuning the expanded model for a period of 1 month (see Table 2).

Table  4 shows that for scenario A, only 1 of the 3 performed fire hydrant bursts is 
detected and only after a delay of 60-min. This is explained by the distant location of the 
bursts compared to the original pressure sensors and the significant fragmentation of the 
training and validation subsets. Because Scenario A leverages the longest training and vali-
dation subsets compared to the other scenarios, it is plagued by multiple sensor replace-
ments/recalibration and operator-induced pressure adjustments, which limited the “usable” 
dataset length to be fed to the LSTM neurons. Scenario B results are also poor due to the 
very short length of the training subset with all sensors, which does not capture the inter-
annual seasonality.

The benefits of training on data before adding additional sensors and then employing 
transfer learning become clearer when we compare scenarios B and C; the latter of which 
does use transfer learning. We see improvements in performance across the board, espe-
cially in the fact that we can detect all three bursts within either 15 min or 30 min.

Regardless of the considered Scenario, Fallout values for the DMA Delta are high. 
Upon closer investigation of the raw time-series, it was found that the pressure sen-
sor installed at the critical point was faulty, with pressure readings increasing by more 
than 30 m. To assess the impact of the faulty sensor, Table  4 reports two additional 
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scenarios: Scenarios D and E, which are identical to B and C respectively, with the 
removal of the pressure sensor at the critical point.

As expected, the performance on DMA Delta improves for both Scenarios, with 
Fallout plummeting from 23.0% and 22.6% to 2.1% and 1.7%, respectively. Also 
Precision increases from 1.8% and 1.9% to 9.6% and 7.0%, respectively. For the same 
DMA DD is not improved and Recall is reduced. The latter is caused by the misclassifi-
cation of a few burst instances as false negatives. However, this has limited to no impact 
in the actual detection, since DD remains unchanged to 30 min.

For DMAs Beta and Zeta that had no faulty sensor, the exclusion of the sensor at the 
critical point deteriorates the performance in scenarios D and E compared to B and C 
respectively. This is reflected on the Recall decrease, the Fallout increase, and Precision 
decrease. Especially for DMA Zeta, scenario D parameter selection is detrimental and 
leads to the burst going completely unnoticed (with a Recall of 0%). This signifies the 
importance of the spatial coverage of every sensor and that unnecessary information 
removal has consequences for the overall performance.

Table 4  Detection performance on fire hydrant bursts

Values in bold font relate to the optimal information input stream configuration for each DMA. For DMAs 
Beta and Zeta that involves inclusion of the additional pressure sensors with transfer learning. For DMA 
Delta the removal of a pressure sensor is also included

DMA Number of 
sensors

Bursts Performance metrics (timestamp-based)

Q P Performed Detected Recall Fallout Precision DD(min)

Scenario A: Additional sensors not utilized
Beta 1 2 1 0 0.0% 1.0% 0.0% x
Delta 1 2 1 0 0.0% 23.0% 0.0% x
Zeta 1 2 1 1 9.1% 0.8% 5.3% 60
Scenario B: Additional sensors utilized without transfer-learning
Beta 1 2 + 7 1 0 0.0% 5.6% 0.0% X
Delta 1 2 + 5 1 1 81.8% 23.0% 1.8% 30
Zeta 1 2 + 5 1 1 9.1% 2.2% 6.0% 60
Scenario C: Additional sensors utilized with transfer-learning
Beta 1 2 + 7 1 1 9.1% 2.7% 1.9% 15
Delta 1 2 + 5 1 1 90.9% 22.6% 1.9% 30
Zeta 1 2 + 5 1 1 36.4% 2.8% 14.3% 30
Scenario D: Additional sensors utilized without transfer-learning and  PCP removed
Beta 1 1 + 7 1 0 0.0% 6.1% 0.0% X
Delta 1 1 + 5 1 1 45.5% 2.1% 9.6% 30
Zeta 1 1 + 5 1 0 0.0% 3.1% 0.0% x
Scenario E: Additional sensors utilized with transfer-learning and  PCP removed
Beta 1 1 + 7 1 1 9.1% 3.3% 1.3% 15
Delta 1 1 + 5 1 1 27.3% 1.7% 7.0% 30
Zeta 1 1 + 5 1 1 18.2% 4.4% 1.9% 60
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The robustness of the method in detecting the simulated bursts is supported by the 
fact that the bursts in DMAs Beta and Zeta for Scenario C and DMA Delta for Scenario 
E (where the problematic pressure sensor signal was removed, takes place within either 
one, i.e., 15-min, or two, i.e., 30-min, time steps. Furthermore, for these cases, fall out 
is 2.8%, indicating a very low rate of false alarms.

Figure  2 presents a 24-h snapshot of the fire hydrant bursts, originated from an  
identical, yet different run of the algorithm. A visual inspection of these figures reveals 
the existence of residual alarms, i.e., additional exceedances of the error threshold, 
after the simulated burst stops. This phenomenon is likely due to the lingering effects 
of the recent burst; the LSTM cells continue to use the disrupted hydraulic data from 
the burst period in their subsequent predictions for some time. Although operators can 
readily eliminate these incorrect flags following a burst repair, we have chosen to cat-
egorize them as false alarms in this study. This classification yields higher Fallout and 
lower Precision.

Fig. 2  Fire hydrant bursts in DMAs Beta (top), Delta (middle) and Zeta (bottom). Left sub-figures are for 
Scenario A. Right sub-figures are for Scenario C. Top row is for the discharge at the inflow of the DMA.. 
Middle row is for the pressure at the inflow of the DMA and the critical point. Lower row is for the MSE 
(error), the error threshold, the burst start and repair time and the raised alarms
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4.2  Detection of Real Bursts

Table  5 shows that real burst detection performance varies greatly. Recalle Precisione 
f1scoree range from very low to very high values. Similar ranges are exhibited in the 
timestamp-based metrics. Performance in DMA Epsilon is very good, with the highest 
f1scoree of 66.7%, the lowest fallout of 0.2% and the highest Precision of 98.%. Perfor-
mances are particularly low for DMA Delta, with a f1scoree of 6.7%, the highest fallout of 
12.4% and the lowest Precision of 12.2%.

It is also worth noting the high correlation between the number of bursts recorded in 
each DMA and the Precisione metric, evidenced by a correlation coefficient of 0.848. A 
substantial correlation is also observed between the timestamp-based Precision aand the 
number of bursts, with a coefficient of 0.750. Given that the datasets for the various DMAs 
are roughly equal in length (see Table 1), it is plausible that these correlations arise from 
varying degrees of public alertness, which typically plays a significant role in pipe burst 
identification.

The unreported bursts may explain the differences in detection performance across the 
DMAs investigated. This claim is supported by the land use cover of the different DMAs. 
Namely, DMAs Delta and Eta that exhibit the worse performance are mostly rural, whereas 
DMAs Alpha, Beta and especially Epsilon are heavily urbanized. This is an indication that 
several actual bursts in the rural DMAs may go completely unnoticed. This has a two-fold 
impact on our methodology. First, not all bursts are removed for training and validation, 
thus impairing the ability of the model to “learn” burst-free (i.e., normal) behavior. Sec-
ond, the existence of multiple unregistered bursts in the testing subset leads to an over-
whelming number of FP s, which should be in fact be labeled as TPs.

4.3  Sensitivity Analysis

To study the effect of time resolution on the burst detection performance, the entire process 
of training, validation and testing is repeated for the urban DMA Beta and the rural DMA 

Table 5  Performance of LSTM-based model on real bursts. For the detection of the real bursts a single flow 
sensor and two pressure sensors were utilized, as described in the Section 2

DMA Number of 
bursts

Event-based Metrics Timestamp-based Metrics

Recalle Precisione f1scoree Recall Fallout Precision

Alpha 41 29.3% 63.2% 40.0% 6.3% 0.5% 86.9%
Beta 37 29.7% 78.6% 43.1% 0.6% 0.1% 96.9%
Gamma 21 38.1% 47.1% 42.1% 9.1% 4.7% 57.1%
Delta 6 16.7% 4.2% 6.7% 16.4% 12.4% 12.2%
Epsilon 60 68.3% 65.1% 66.7% 10.6% 3.2% 98.1%
Zeta 5 40.0% 28.6% 33.3% 5.4% 0.2% 51.4%
Eta 8 62.5% 3.0% 5.7% 8.9% 3.0% 61.7%
Theta 7 57.1% 26.7% 36.4% 15.5% 2.7% 79.4%
Iota 4 50.0% 22.2% 30.8% 7.2% 0.5% 40.9%
Kappa 3 100.0% 23.1% 37.5% 6.3% 1.4% 57.2%
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Eta. Different combinations of time resolution (15 min, 30 min and 60 min) and length of 
the input hydraulic feature time-series (1 to 7 days) are investigated. Tow conditions apply 
to this analysis: (1) The length of the time-series is limited to a maximum of 250, so that 
the efficiency of the LSTM cells is not severely reduced by vanishing gradients; (2) An 
integer number of days is used, so as to not interfere with the 24-h behavior seasonality of 
water consumption. Table 6 shows the event- and timestamp-based performance metrics 
for the two DMAs along with the original combination of length = 4 days and time resolu-
tion of 30 min used in the previous experiments.

Table 6 shows that the impact of time resolution and/or length of the input time-series 
is not negligible. More specifically, coarser resolution leads to significantly higher values 
of the Fallout and lower Precision ., which translates to less confidence on the alarms. This 
phenomenon can be attributed to the relative prominence of spurious exceedances of the 
error thresholds when compared to the same number of corresponding instances in finer 
resolution datasets.

Furthermore, in the 60-min resolution, the model cannot “decode” the short-term 
dynamics of bursts, because pressure and flow data are aggregated into 1-h intervals. Even 
though there is a slight increase in the values of both Recalle and Recall for coarser reso-
lution, it is maybe preferable to sacrifice the detection of a handful of bursts, for the sake  
of higher confidence, which is reflected in the increase of all the other metrics. Based on 
these results, it emerges that combination of 2-day long time-series at 15-min resolution is 
superior with respect to all the other combinations. This is supported by the better scores 
across all the performance metrics. However, a coarser resolution of 30 min provides more 
time to the sensors to relay their measurements.

Furthermore, we studied the sensitivity of the performance to the time-varying error 
threshold. This analysis was performed only for DMA Beta, which is the most heavily 
urbanized and it is characterized by the highest number of registered bursts. The results are 
shown in Fig. 3 for the metrics Recalle , f1scoree , Precisione and Precision.

As is expected, Fig. 3 shows that lower thresholds lead to higher sensitivity, with more 
bursts being detected and an overall higher Recalle . However, this is accompanied by more 
false alarms impacting Precision , which reduces significantly from over 80% to less than 
50%. This trade-off is also seen in f1scoree , which has the largest value for the 99.9th per-
centile, for both curves. As for Precision , lowering the error threshold reduces it, but not as 
much as Precisione.

4.4  Comparison to Other Burst Detection Methods

We assess our burst detection method through qualitative comparison with existing LSTM-
based techniques. The lack of available code implementation and the difference in the case 
studies prevents direct comparisons. Wang et al. (2020) employed a pure LSTM model to 
detect both simulated and synthetic bursts in a single DMA. In detecting simulated bursts, 
their model was able to detect bursts after two time steps using 5-min resolution data. This 
is comparable to our findings (see Table 4) although we were able to detect bursts also at 
the first time-step and at coarser resolutions. Lee and Yoo (2021) implemented a different 
LSTM model with flow data only, to detect a single burst. Their approach yielded inferior 
results (sensor-based Recall ∈ (46.46%, 99.81%) and Fallout ∈ (0.11%, 29.88%) compared 
to Recalle ∈ (16.7%, 100%) and Fallout ∈ (0.10%, 12.4%) . In summary, our burst detection 
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method exhibits promise compared to existing LSTM methods, with specific performance 
variations dependent on the dataset and methodology employed.

We conducted a quantitative comparison against Autoencoders (AE), a DL architec-
ture successfully used in the detection of other types of anomalies in WDS, i.e., cyber-
physical attacks (Taormina and Galelli 2018). We use AEs to compare their perfor-
mance against our LSTM-based method on the same real burst dataset. As demonstrated 
in Table 7 of the Appendix, our LSTM model outperforms the AE approach, as there is 
an overall improvement in f1 score computed across all the DMAs. This highlights the 
LSTM effectiveness in detecting bursts, most likely due to the incorporation of sequen-
tial inductive bias.

Evaluation of the model’s performance on well-established benchmark datasets does 
not take place. Even though this would facilitate comparisons with existing method-
ologies, it would not suffice for direct comparisons with established LSTM-based 

Fig. 3  Sensitivity of the performance metrics to the error threshold
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techniques. None of the existing LSTM methodologies has undertaken such compari-
sons, and they hold particular significance for our approach as we aim to enhance upon 
them. Moreover, assessing the adaptability of previously benchmarked models is chal-
lenging due to their structural constraints, which often preclude the incorporation of 
inductive bias and handling extremely brief datasets, as exemplified by the two-month 
records for the simulated bursts in this context.

5  Conclusions

This work presents a novel LSTM-based method for pipe burst detection in water distribu-
tion systems. The developed model harnesses the potential of LSTM networks to predict 
flow and pressure during normal operational circumstances. Notably, the algorithm exhib-
its elevated prediction errors when exposed to data stemming from pipe burst incidents. 
The salient attributes of the LSTM architecture encompass its power in managing exten-
sive temporal sequences and its inherent adaptability that enables integration and exclusion 
of information streams. Importantly, the technique leverages transfer learning to overcome 
the constraints arising from limited training datasets and a varying number of sensors.

Testing on real bursts in 10 DMAs in the UK revealed that the developed LSTM-
based method exhibits varying performance, with Recalle ∈ [16.7%, 100%] and 
Fallout ∈ [0.1%, 12.4%] reflecting a varying confidence to the correct identification of 
bursts and the incorrect classification of non-bursts respectively. This inconsistent perfor-
mance across DMAs was noted due to the, sometimes poor, burst record quality. This data 
is crucial for training the model in burst-free conditions and correlating alarms to actual 
bursts. Limited public awareness, especially in rural DMAs, and unnoticeable smaller 
bursts impact the proposed approach. Finer data resolution, namely 15-min time steps, 
enables capturing abrupt discontinuities, such as pipe bursts better, and enhances burst-
detection performance, For urban settings this increases Precisione from 78.6% to 93.3% 
and for rural settings the same metric increases from 3.0% to 10.3%. Sensitivity analysis 
shows that variable error threshold mirrored to the daily water consumption behavior fur-
ther improves burst detection robustness.

Testing on simulated fire hydrant bursts emphasizes burst-sensor proximity. As noted 
before in the literature, distant bursts pose detection challenges. However, installation of 
additional sensors in the DMA reduces this issue and enables the timely detection of bursts 
corresponding to as little as 11% of the mean DMA inflow. LSTM’s inherent flexibility and 
transfer learning facilitate easy integration of extra data streams.

It is paramount to acknowledge the study’s inherent limitations, notably the requisite 
reliance on burst-free training pressure and flow datasets. The acquisition of such datasets 
remains an arduous task, particularly within sparsely populated rural settings or DMAs 
characterized by a scarcity of monitoring sensors. The LSTM-based burst detection algo-
rithm sensitivity to sensor recalibration and replacement accentuates the necessity for 
meticulous identification of temporally consistent measurement periods suitable for model 
training and validation. In addition, the alarm persistence past the burst repair is noted as 
a weakness too and can be circumvented, at an operational level, by temporarily “suspend-
ing” the model from running after alarms are raised. Finally, testing this methodology in 
simulated bursts taking place at nighttime is recommended for evaluating its robustness in 
more realistic conditions.
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Appendix

Details of Comparison to the Autoencoder

The AEs feature an encoder-decoder architecture that learns a compressed representation 
of high-dimensional input data via error minimization. The abstraction of information 
and the lack of any explicit hydraulic information of the system make AE very robust in 
detecting anomalies in real-life settings. However, a significant difference with our prob-
lem is that the AE used by Taormina and Galelli (2018) was working on 43 different 
sensors at the same time; whereas here we are using it on way less sensors, but many self-
correlated inputs.

The AE-based burst detection method developed here uses the AE fed with a n = 4-day 
long time-series of the flow and pressure signals from the DMA inflow, pressure at the 
critical point and the same two time features as before: Day Index and minute-of-the-day. 
Due to the self-supervised nature of the AE, the goal of training is recreating the input as 
output with the highest fidelity possible. The Adam optimizer (Kingma and Ba 2015) is 
used again, as is the case with the LSTM-based model, and the ReLu function is employed 
to activate the neurons. Hyperparameter tuning is very important for the AE as it is in 
the case of LSTM networks. For this reason, preliminary investigation was carried out to 
determine what is the best possible combination of the AE layers and neurons that enables 
a reasonably deep understanding of the network dynamics without having an overwhelm-
ingly large number of trainable weights. An Autoencoder with successive layers of 64, 32, 
16, 32 and 64 neurons all resulted in the optimal structure for this problem. The results of 
applying the AE on real bursts analyzed in this paper are provided in Table 7.

As it can be seen from Table 7, the Autoencoder fails to capture the behaviour dynamics 
of the specific real-life DMAs in focus, as the burst detection performance is significantly 
inferior to the one of the LSTM-based model (see Table 5). All the metrics, both event- and 
timestamp-based imply that the AE is not sensitive enough to understand the discrepancies 
in the system caused by pipe bursts. The only seemingly improved metrics are the lower 
(i.e. better) values of Fallout for DMAs Delta, Epsilon, Eta and Iota. However, the fact 

Table 7  Performance of Autoencoder on real bursts

DMA Sensors Bursts Event-based Metrics Timestamp-based Metrics

Q P Recalle Precisione f1scoree Recall Fallout Precision

Alpha 1 2 41 14.6% 30.0% 19.7% 0.6% 0.5% 54.0%
Beta 1 2 37 32.5% 41.7% 36.5% 0.3% 0.6% 48.5%
Gamma 1 2 21 28.6% 7.4% 11.8% 5.5% 7.4% 27.6%
Delta 1 2 6 0.0% 0.0% 0.0% 0.0% 0.6% 0.0%
Epsilon 1 2 60 26.7% 94.1% 41.6% 2.9% 0.5% 99.4%
Zeta 1 2 5 16.9% 3.9% 6.3% 2.0% 2.2% 14.3%
Eta 1 2 8 37.5% 13.6% 20.0% 6.2% 2.8% 54.8%
Theta 1 2 7 28.6% 11.8% 16.7% 4.3% 4.2% 35.9%
Iota 1 2 4 25.0% 100.0% 40.0% 0.4% 0.0% 100.0%
Kappa 1 2 3 66.7% 5.3% 9.8% 6.8% 19.9% 15.3%
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that these are so low, almost approaching zero, in combination with the also low values of 
Recall imply that the AE prediction error remains below the set threshold for most of the 
time-series length.
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