
DELFT UNIVERSITY OF TECHNOLOGY

Low-Cost Smith-Waterman Acceleration

by

Matthijs Geers Fatih Han Çağlayan Roelof Willem Heij

A thesis submitted in partial fulfillment of the

degree of Bachelor of Science

in the

EWI faculty

Computer Engineering department

August 2013

University Web Site URL Here (include http://)

DELFT UNIVERSITY OF TECHNOLOGY

Abstract

EWI faculty

Computer Engineering department

Bachelor of Science

by Matthijs Geers Fatih Han Çağlayan Roelof Willem Heij

Due to advancing technology, genetic sequencing has become cheaper over the years.

This has caused the demand for computational power to grow even faster than Moore’s

law. To remedy this problem, we analyzed low-cost hardware solutions to parallelize the

computational part of the genetic sequencing. We proposed a novel method for calcu-

lating the score matrix of the Smith-Waterman algorithm, which solves the bandwidth

bottleneck in earlier solutions. This method calculates the score matrix differentially and

a buffer keeps track of the maximum value. Due to the nature of the Smith-Waterman

algorithm, the resulting implementation can do the calculations fully in parallel. Since

it fits on an Artix 7 XC7A200T chip 908 times, this leads to more than a twelve-fold

improvement in performance/price compared to modern supercomputing platforms.

University Web Site URL Here (include http://)

Acknowledgements

First of all, we would like to show our gratitude and appreciation to Dr. Zaid Al-Ars

for supervising our group and our project. Furthermore, we would like to thank Prof.

Koen Bertels, head of the Computer Engineering Laboratory, for making this project

possible. We also want to thank Dr.ing. I.E. Lager for his appreciated hard work of

organizing and managing the Bachelor End Project. Last but not least, we would like

to thank Matthijs Brobbel and Barry Strengholt for the cooperation on this project.

Matthijs Geers, Fatih Han Çağlayan, Roelof Willem Heij, Delft, The Netherlands, Au-

gust 2013

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Bioinformatics . 1

1.2 Basic biology for bioinformatics applications 2

1.2.1 Cell . 2

1.2.2 Chromosomes . 2

1.2.3 DNA, RNA and Proteins . 3

1.2.4 Genes . 3

1.3 Sequencing . 4

1.4 Alignment . 4

1.5 Applications of DNA sequencing and alignment 5

1.6 Problem definition . 5

2 Algorithms 7

2.1 Dynamic programming . 7

2.1.1 Global alignment . 7

2.1.2 Local alignment . 8

2.2 Heuristic algorithms . 8

2.2.1 FASTA . 9

2.2.2 BLAST . 10

2.3 Comparison . 10

2.4 Smith-Waterman explained . 10

2.4.1 Score measure . 11

2.4.2 Gap penalty . 12

2.4.3 Performing the alignment . 12

2.4.4 Important note . 14

2.5 Optional extensions . 14

2.5.1 Greedy algorithms . 14

2.5.2 Recursive variable expansion . 14

2.5.3 Divide and conquer . 15

3 Design Considerations 16

3.1 Platforms . 16

iii

Contents iv

3.1.1 CPU . 16

3.1.2 GPU . 16

3.1.3 FPGA . 17

3.1.4 Relevant properties . 17

3.1.5 Platform selection . 18

3.2 Optimization . 18

3.2.1 Linear Systolic Arrays (LSA) . 19

3.2.2 Recursive Variable Expansion (RVE) 20

3.3 Differential Smith-Waterman . 22

4 Implementation & Results 25

4.1 Functional Unit . 25

4.2 Basic Components . 26

4.2.1 Differential counter . 26

4.2.2 Zerocheck . 26

4.2.3 Shift register . 27

4.3 Processing Element . 27

4.3.1 Structural Description . 28

4.3.2 Inner working . 29

4.3.2.1 Algorithm execution . 29

4.3.2.2 Coupling . 29

4.3.3 Linear Systolic Array . 30

4.4 Control . 31

4.4.1 Main control unit for query sequence input 31

4.4.2 Design considerations and overview 31

4.4.3 Control for jump moment . 33

4.4.4 Adjusted shift register . 33

4.4.5 PE buffer array . 34

4.5 FIFO buffer . 34

4.5.1 Specifications . 35

4.5.2 Block diagram representation . 35

4.5.3 Implementation . 36

4.6 Results . 38

5 Conclusions and recommendations 39

5.1 Conclusions . 39

5.2 Recommendations for Future Research . 40

5.2.1 GPU implementations . 40

5.2.2 RVE . 40

5.2.3 Affine gap penalty . 40

5.2.4 Divide and conquer . 41

5.2.5 Differential calculation . 41

A Work distribution 42

Bibliography 44

Chapter 1

Introduction

Throughout history, mankind has always been interested in the working mechanisms

of life. There has been a lot of research on this subject. In 1869, doctor Friedrich

Miescher discovered the DNA [1]. It stands for DeoxyriboNucleic Acid. Miescher called

his discovery nuclei. At that time, the function of the DNA was not yet known and it

took almost one century to realize the real importance of this discovery.

In 1944, Avery, Macleod and McCarty published a paper in which they suggested that

all genetic information was held in the DNA [2]. Before this publication, proteins were

thought to be the carriers of this information. After 1944, a lot of research was done to

investigate the workings of the DNA. Among these, one of the most important research

projects was the Human Genome Project which started in 1990. This project had some

important main goals to achieve:

• Identifying the approximately 20,000-25,000 genes that are present in human DNA

• Determining the sequences of the 3 billion chemical base pairs that make up human

DNA

• Storing this information in databases

The project was finally completed in 2003, two years earlier than expected [3].

1.1 Bioinformatics

The term bioinformatics was officially introduced in 1978 by Paulien Hogeweg [4]. It

has been widely used to address the analysis of genomic data. Hogeweg defines the term

1

Chapter 1 Introduction 2

in a broader range and explains that “bioinformatics” refers to the study of informatic

processes in biotic systems [5].

1.2 Basic biology for bioinformatics applications

1.2.1 Cell

In biology, the cell is considered to be the smallest building block of an organism. All

plants, animals, humans, bacteria and fungi are organisms. All genetic information is

contained within cells. Thus, every living being, from unicellular organisms up to human

beings, are built from cells [6]. In the following sections, a top down approach will be

used to show how a cell is built up. The part of a cell which makes it the genetic

information carrier will also be discussed.

Figure 1.1: Diagram of a cell adapted from [7]

1.2.2 Chromosomes

In Figure 1.1 the diagram of a cell is given. Cells contain so-called DNA and, as can

be seen, it is only a small part of the cell. The DNA is organized in structures called

chromosomes, which are different for every type of organism. Each chromosome consists

of one long DNA molecule, usually carrying several hundred or more genes. Human

beings have 23 chromosome pairs, which is a total of 46 chromosomes. One of these

pairs is sex-dependent and the remaining 22 chromosome pairs are similar for both men

and women [6][8].

Chapter 1 Introduction 3

1.2.3 DNA, RNA and Proteins

Everything related to the development and functioning of organisms is encoded in DNA.

The DNA is copied when a cell divides [6][8], so this information is inherited from the

parents. That makes DNA the most important carrier of genetic information.

The roman alphabet is used to “encode” the English language consisting of 26 letters.

A sequence of letters produces a word. Similarly, the genetic information in DNA is

encoded by a sequence consisting of four different molecules called nucleotides. These

are Adenine, Cytosine, Guanine and Thymine and they are abbreviated with the letters

A, C, G and T [8].

The chemical structure of RNA, which stands for RiboNucleic Acid, is quite similar to

that of DNA, because both are built up of nucleotides. The function of RNA is to copy

the genetic information that is held in the DNA.

The chain of DNA, RNA and proteins is what organizes all chemical reactions in every

living being, proteins being the information carriers in this chain [6].

1.2.4 Genes

Genes are a subset of DNA [6][8] and encode the proteins the cell will produce. They

define how the cell will live and function and they also define what will and will not

be inherited from the parents. An overview of the different hieararchy levels and the

working of the DNA can be found in Figure 1.2.

Chapter 1 Introduction 4

Figure 1.2: Overview of the way DNA works adapted from [9]

1.3 Sequencing

Sequencing is the name of the process which is used to get information on the structure

of DNA. This information about the structure of the molecule can be represented with

symbols.

For DNA this means finding out the order of nucleotides. Since DNA consists of four

different molecules, the four letters A, C, G and T are sufficient to provide information

about the structure. Therefore, sequenced DNA is represented with different series of

these four letters [6].

1.4 Alignment

Biological sequence alignment is like comparing and matching strings [10]. It is used to

find regions of similarity in the database query and request query.

There are various algorithms to compare the similarity between two different sequences.

These are explained in Chapter 2. The first algorithm was proposed in 1970 by Needle-

man [11]. This is a global method, which means that it tries to match as many characters

as possible when comparing two complete sequences. In 1981, the Smith-Waterman (S-

W) algorithm was proposed for optimal sub-sequence alignments [12]. Until now, there

Chapter 1 Introduction 5

have been no better or newer proposals for sequence alignment anymore. It is a well-

known algorithm in bioinformatics that finds the common regions of local similarity [13].

Local algorithms will be explained further in Chapter 2. Gotoh improved this algorithm

one year later by taking linear gap penalties into account [14]. These optimal algorithms

are, unfortunately, very slow and thus not practical to use. To compensate this, many

heuristics have been developed, like FASTA [15] and BLAST [16]. These methods ac-

celerate the database searching process at the cost of accuracy [17], so heuristics cannot

guarantee an optimal alignment [18].

1.5 Applications of DNA sequencing and alignment

Better understanding of human DNA will allow for better personal treatment. Some

people are at higher risk to get specific diseases and sometimes this is determined by

heredity. Analyzing DNA can uncover this information, which means taking precautions

for these types of illnesses will be much easier [8][19]. Analyzing genomic data also makes

it possible to discover homologous genes and to get a deeper insight into the evolutionary

history of molecules and species [20].

1.6 Problem definition

Sequenced material is saved in databases. The doubling time of the volume of these

databases is becoming shorter and shorter with time, so there is hyperexponential growth

in this case. In 1995, these databases were doubling in size roughly every 21 months [21].

By the year 1999, this rate increased to doubling every 15 months [22] [17]. Moore’s law

dictates that computational power of computers doubles roughly every 18 months, so

at this point, the rate of growth was already faster than Moore’s law could account for.

However, the growth did not stabilize, as in 2003, the data volume in genetics started

doubling every 12 months. This is an enormous growth compared to the data growth in

other fields, where the amount of data doubles approximately every 20 months [23] [24].

Consequently, the problem is not the growing database itself. This data eventually needs

to be processed. Comparing data with a database that is growing faster than Moore’s law

is the biggest challenge, so the challenge shifted from data gathering to data processing

[9]. Scientists have been forced to implement heuristics, because database searching was

too slow [17]. This results in a high loss of accuracy. Over the years, several hardware

implementations have been proposed to accelerate the Smith-Waterman algorithm so

that a loss of accuracy would not be necessary anymore, but these implementations vary

in their financial feasibility.

Chapter 1 Introduction 6

Our goal for this project is to develop an implementation that is quick, cheap and

highly accurate. Different algorithms for sequence alignment are weighted in Chapter 2.

Subsequently, in Chapter 3, the different possible platforms are discussed and finally, a

suitable platform is chosen to implement the algorithm. The implementation and results

are explained in Chapter 4. Ultimately, in Chapter 5, the conclusion is presented.

Chapter 2

Algorithms

There are a lot of different algorithms to process large amounts of data, all with their

own advantages and disadvantages. This document compares the most promising and

well-known algorithms, focusing specifically on DNA sequence alignment. The best

option is worked out in detail at the end of the chapter.

2.1 Dynamic programming

Dynamic programming seeks to solve complex problems by breaking them down into

multiple smaller problems. The solutions of these smaller problems are then combined

to reach the overall solution. This method appears to be both very precise and efficient.

However, it does require a very large amount of computational power. Various methods

to improve the speed of implementations of such algorithms have been proposed and

proven effective [25]. Dynamic programming can be categorized in two classes: global

alignment and local alignment.

2.1.1 Global alignment

This approach finds a very precise solution by relating two DNA sequences (database

and query sequence) over their whole length. These two sequences are aligned with each

other so that matches and mismatches are easy to identify. The downside of this process

is that it requires a lot of computational power, as mentioned earlier.

The ruling global alignment algorithm is the Needleman-Wunsch algorithm [11]. This

algorithm was the first to answer to the need of digital DNA analysis. Already proposed

in 1970, this algorithm was revolutionary. Global alignment proved to work very well,

7

Chapter 2 Algorithms 8

but soon, proteins that only shared isolated regions of similarity were discovered. The

global approach appeared to be insufficient for the new methods of DNA analysis, where

smaller sequences were compared to one large sequence. Global approaches are hardly

used nowadays for this reason.

2.1.2 Local alignment

Local alignment approaches are considered to provide the most precise and complete

solution possible. Algorithms of this sort are thus highly valued. But due to computa-

tional restrictions, the implementation of local alignment algorithms is not profitable to

everyone yet.

In 1980, the local alignment implementation of the Needleman-Wunsch algorithm was

proposed by T.F. Smith and M.S. Waterman [26]. With current knowledge of DNA

analysis, this algorithm provides the optimal alignment to every possible set of sequences

by introducing or extending gaps in the sequences. It is for this reason that engineers all

around the world have been looking for a fast and cost-effective implementation of this

algorithm. Several proposals have been made in order to achieve this goal. Some seek to

reduce the computational power required by the algorithms [14][16], while others seek

to minimize the amount of data needed for the implementation with techniques such as

alignment in linear space [27] or divide and conquer [28][29]. Although these solutions

realize a major speed-up, computational power is still an issue.

2.2 Heuristic algorithms

When the implementation of dynamic programming algorithms appeared to be virtually

impossible due to a lack of computational power, solutions that approximated an opti-

mal alignment were introduced. An approximation is obviously faster than a dynamic

programming solution since less and easier calculations need to be performed, but there

is always a trade-off. The approximation will most times be less accurate than the exact

solution determined by direct programming, because it might miss one or more solution

that would be found in the exact solution. Only for small alignments there is still a

chance that the heuristics can still find the optimum solution.

Heuristic algorithms with global approaches have not been made yet, so all heuristic

algorithms have a local approach.

Chapter 2 Algorithms 9

2.2.1 FASTA

FASTA comes from FAST-All, because it is intended to fasten all types of alingment. In

1987, Pearson and Lipman [15] introduced this software package with multiple smaller

heuristic algorithms. Among these were FASTP (Fast Protein), for analysing proteins,

and FASTN (Fast Nucleotides), for the analysis of nucleotides. Very soon after the

release, all packages were combined into a single algorithm: FASTA. This algorithm

provided a speedup in DNA analysis, but the sensitivity was insufficient for reliable

alignment. The working of the algorithm is shown in Figure 2.1.

Figure 2.1: FASTA algorithm adapted from [15]

In addition to the algorithm, Pearson and Lipman introduced a new file format, which

they called FASTA as well [15].

Chapter 2 Algorithms 10

2.2.2 BLAST

BLAST[30] (Basic Local Alignment Search Tool) is a heuristic algorithm that is used

often in bioinformatics. It originated in 1990 as an improvement to FASTA, and was

updated to its current form in 1997 [31]. BLAST consists of multiple variations, such

as BLASTN, BLASTP [32][33], BLASTX and more. While BLAST requires less com-

putational power than Smith-Waterman, it cannot guarantee optimal alignment of the

database- and query-sequences like Smith-Waterman does.

Because of this, some questions can’t be answered by a BLAST solution. Questions that

BLAST can answer with a relative high degree of certainty are, for example:

• Where does a certain DNA sequence originate?

• Which DNA sequences share similarity with the sequence in question?

An extremely fast but even less optimal alternative to BLAST is called BLAT. The

solutions provided by this package are therefore even less trustworthy.

2.3 Comparison

The heuristic algorithms are the faster approaches, but the dynamic programming al-

gorithms have more potential with respect to accuracy, scalability and implementation

options. Given the computational possibilities that can be reached with today’s tech-

nology, the time required for getting a solution with the Smith-Waterman algorithm can

be drastically decreased, so that it outperforms other approaches. For this reason, the

Smith-Waterman algorithm is investigated further.

2.4 Smith-Waterman explained

The starting data consists of two DNA sequences, named a and b. Define matrix H(i, j)

with 0 ≤ i ≤ m+1 where m = length(a) and 0 ≤ j ≤ n+1 where n = length(b). Fill the

first row and column with zeros. Introduce a score measure w, with w(ai, bi) = w(match)

if ai = bi and w(ai, bi) = w(mismatch) if ai 6= bi.

Chapter 2 Algorithms 11

Hi,j = max



0

Hi−1,j−1 + w(match)

Hi−1,j + w(mismatch)

Hi,j−1 + w(mismatch)

(2.1)

with 1 ≤ i ≤ m, 1 ≤ j ≤ n

With this set of solutions the matrix H can be filled. However, there are some design

options.

2.4.1 Score measure

The measure w(ai, bj) determines the score for matches and mismatches between the

sequences. The value of these scores may be chosen freely as long as the scores are used

consistently the same for all sequences that need to be analyzed. Smith and Waterman

themselves propose to use a w(match) of 3, and w(mismatch) of −2 [26]. Since the

DNA data consists of four different symbols that are approximately equally distributed,

this results in an average of 0 for the result of w.

Example 1

Consider the following sequences a and b respectively: ATGCG and ATCG. The

Needleman-Wunsch algorithm would align them as shown in Figure 2.2

A T G C G
A T C G
or
A T G C G

A T C G

Figure 2.2: Possible Needleman-Wunsch alignments for sequences a and b

Both options result in a score of 3 + 3− 2− 2 = 2.

Smith-Waterman would introduce a gap in the middle of sequence b and align them as

depicted in Figure 2.3

A T G C G
A T − C G

Figure 2.3: Smith-Waterman alignment for sequences a and b

This results in a score of 3 + 3 + 3 + 3− some gap penalty d = 12− d. But what is this

gap penalty d?

Chapter 2 Algorithms 12

2.4.2 Gap penalty

The big advantage of Smith-Waterman over Needleman-Wunsch is the usage of gaps.

By introducing and extending gaps into one of both sequences, more optimal alignment

can be obtained. It holds that d = w(ai, bj) = w(−, bj). The dash in w(−, bj) stands for

an introduction of a gap. As with the w score measure, d has no predetermined value,

and is to be chosen freely, depending on the importance of avoiding gaps. There are two

approaches to the implementation of the gap penalty.

• The linear gap approach values each gap with an equal penalty d. This method is

the easiest to implement, since the calculations are quite straightforward. However,

this approach is not the most realistic according to today’s knowledge of DNA [16].

• The affine gap approach differentiates between gap introduction and gap extension.

Gap introduction is the step where the actual cut in the sequence happens. The

extension occurs when the partial sequence is shifted further after the actual cut.

This approach is more realistic than the linear one, because in reality it takes quite

some effort to introduce a gap into a sequence, while moving two separate partial

sequences further apart is rather easy. In this case dintr and dext are still free to

choose, as long as dintr > dext.

2.4.3 Performing the alignment

At this point all information required to calculate H is available.

Example 2

Consider a linear gap implementation with d = 1, w(match) = 3 and w(mismatch) =

−2. This leads to the following equations.

Hi,j = max



0

Hi−1,j−1 + w(match/mismatch)

Hi−1,j − d

Hi,j−1 − d

(2.2)

Take the same sequences as in the previous example. The H matrix will be built based

on these sequences. After the initialization of the matrix, the cells can be calculated.

Every iteration, a new anti-diagonal can be calculated. These iterations are indicated

Chapter 2 Algorithms 13

1 - A T G C G

- 0 0 0 0 0 0

A 0 3

T 0

C 0

G 0

2 - A T G C G

- 0 0 0 0 0 0

A 0 3 2

T 0 2

C 0

G 0

3 - A T G C G

- 0 0 0 0 0 0

A 0 3 2 1

T 0 2 6

C 0 1

G 0

4 - A T G C G

- 0 0 0 0 0 0

A 0 3 2 1 0

T 0 2 6 5

C 0 1 5

G 0 0

5 - A T G C G

- 0 0 0 0 0 0

A 0 3 2 1 0 0

T 0 2 6 5 4

C 0 1 5 4

G 0 0 4

6 - A T G C G

- 0 0 0 0 0 0

A 0 3 2 1 0 0

T 0 2 6 5 4 3

C 0 1 5 4 8

G 0 0 4 8

7 - A T G C G

- 0 0 0 0 0 0

A 0 3 2 1 0 0

T 0 2 6 5 4 3

C 0 1 5 4 8 7

G 0 0 4 8 7

8 - A T G C G

- 0 0 0 0 0 0

A 0 3 2 1 0 0

T 0 2 6 5 4 3

C 0 1 5 4 8 7

G 0 0 4 8 7 11

Table 2.1: The iterations in the process of filling matrix H

with red in Table 2.1. The number of each iteration is indicated in bold, in the top-left

of the matrix.

After this is done, the optimal sequence alignment can be determined from this matrix

by working out another, simple, algorithm:

• Find the maximum value in H, named H(i, j)

• Trace back to the maximum value of H(i−1, j), H(i−1, j−1) or H(i, j−1), where

H(i− 1, j) yields introducing a gap in sequence a, H(i− 1, j − 1) implies that no

gap is introduced or extended, and H(i− 1, j) introduces a gap in sequence b.

• Repeat this until a zero is encountered in the matrix. The optimal alignment is

now complete. The solution for the example is given in Table 2.2. The algorithm

returns the same solution as we found in Example 1, as expected.

Chapter 2 Algorithms 14

- A T G C G

- 0 0 0 0 0 0

A 0 3 2 1 0 0

T 0 2 6 5 4 3

C 0 1 5 4 8 7

G 0 0 4 8 7 11

Table 2.2: The solution for optimal alignment of a and b, based on H

2.4.4 Important note

The implementation of the Smith-Waterman algorithm in computer code is slightly

different from the explanation above. Several studies proposed alternatives that have

better scaling [14] and are more accurate [16].

2.5 Optional extensions

There are several optional approaches and techniques that can provide a speed-up in

the execution of the algorithm. These are discussed here. However, a decision regarding

these and several other extensions is deferred to Section 3.2.

2.5.1 Greedy algorithms

Greedy alignment algorithms work directly with a measurement of the difference between

two sequences rather than their similarity. In many problems, a greedy strategy does

not in general produce an optimal solution, but nonetheless a greedy heuristic may yield

locally optimal solutions that approximate a global optimal solution in a reasonable

time.[34]

Since the greedy approach focuses on difference in stead of similarity, it is most effective

when the compared sequences are near identical. When this is not the case, the algorithm

will not be useful, and might possibly deliver the unique worst solution. In the analysis

of DNA sequences, the greedy approach might be slightly beneficial since the sequences

often resemble each other rather well.

2.5.2 Recursive variable expansion

This method achieves a speedup by exposing more parallelism in the algorithm. However,

its implementation is a tough nut to crack. This is described in more detail in Section

3.2.2.

Chapter 2 Algorithms 15

2.5.3 Divide and conquer

This approach reduces the size of H, the matrix that holds the solution to the algorithm,

from n · m to m + n. However, it takes significantly more calculations to reach this

solution.

Chapter 3

Design Considerations

In this chapter, several design considerations will be made as far as hardware platforms

and algorithm optimizations go. Relevant options will be discussed briefly and among

these, the best options will be chosen, supported by relevant arguments.

3.1 Platforms

3.1.1 CPU

Historically, the Central Processing Unit (CPU) has always been the working force of the

personal computer. It is versatile and has gone through a development of optimizations

and improvements for general purposes. This makes the CPU a very flexible worker,

allowing any software instructions supplied by the user to run. The Smith-Waterman

algorithm, however, is a process that takes a lot of time to compute, due to it consisting

of many very small operations. Due to these time issues, the CPU is not a very suitable

option for aligning large DNA sequences [13].

3.1.2 GPU

The Graphics Processing Unit (GPU) has a history of being used for a very specific task

in a personal computer: graphics. Computing shader operations and other complex

graphical problems have lead to the GPU being comprised of hundreds of small cores

that are only suitable for very specific tasks. It has only recently become possible to

manipulate the GPU manually instead of operating it through DirectX or OpenGL [13].

16

Chapter 3 Design Considerations 17

This recent development has been brought about by the introduction of the program-

ming language Cuda/OpenCL by NVIDIA, making the GPU an option to consider for

purposes like the Smith-Waterman algorithm [35].

3.1.3 FPGA

The field-programmable gate array (FPGA) is an external platform that is not usually

integrated into a personal computer. It consists of a large programmable chip that

allows the user to implement their application in hardware. It is well-suited for doing

simple calculations, because it can be programmed to deal with a specific operation

very quickly. Furthermore, these calculations can be paralellized by placing several of

these job-specific cores on one chip. For the Smith-Waterman algorithm, this means

that a cooperation between the CPU and the FPGA can be established, with the CPU

supplying the simple operations that the FPGA can be made to handle [13].

3.1.4 Relevant properties

To draw an accurate conclusion, we listed our main design criteria and evaluated every

one of these for each of the different platforms. Additionally, these evaluations have

been summarized in Table 3.1.

• Performance/price: A typical desktop computer of about 600 euros, equipped

with a quad-core CPU, delivers approximately 16 Giga cell updates per second

(GCUPS) [9] (27 Mega cell updates per second (MCUPS)/euro). Another option

is to use a GPU to implement the Smith-Waterman algorithm. On a desktop

system similar to the one above, it is possible to achieve up to 21 GCUPS [36]

or even 28 GCUPS [37] on a slightly faster system. This yields approximately 35

MCUPS/euro. A modern array of 16 FPGAs priced at about 20000 euros is capa-

ble of achieving up to 756 GCUPS [9], while a single, lower-end FPGA is capable

of achieving 8 GCUPS at a price of around 500 euros [38][39]. Note that FPGA

performance varies greatly and is difficult to estimate without extensive informa-

tion. Therefore, let us use the best result when comparing, which is approximately

38 MCUPS/euro [9]. In initial costs, the CPU scores low as compared to the GPU

and FPGA. This is because the CPU is not specialized for parallel operations while

the other two are. It must be noted, though, that with multi-core CPUs on the

rise, this may change in the near future.

• Cumulative costs: Distinction can be made between initial costs and cumulative

costs (energy). When it comes to energy costs, the FPGA performs best. CPUs

Chapter 3 Design Considerations 18

Platform Performance/price Cumulative costs Scalability

CPU 27 MCUPS/euro - +-

GPU 35 MCUPS/euro - +

FPGA 38 MCUPS/euro + ++

Table 3.1: Comparison between different hardware platforms

and GPUs are more general purpose than FPGAs, so they have significantly more

overhead, decreasing the efficiency of both the energy and initial costs.

• Scalability: As a low-cost solution, the CPU is very non-scalable [13]. There

are supercomputers with a lot of processor capacity, but fow low cost solutions the

scalability of the CPU is low, because consumer motherboards normally don’t allow

more than one CPU. While some desktop computers offer space for 2 CPUs and

some supercomputers offer space for a couple hundred CPUs, they are extremely

expensive and do not make for an efficient option. GPUs are a little more scalable,

allowing up to 4 in a regular desktop computer. FPGAs, on the other hand,

are very scalable as they do not require an architecture to run within. They are

stand-alone systems. This allows the user to combine as many of them as they like,

without any extra costs for up-scaling. This makes the FPGA the most scalable

solution.

3.1.5 Platform selection

The most important goal of the project is to achieve as much performance as possible for

the lowest possible price. In terms of this, the GPU and FPGA are in the same range,

leaving the CPU slightly behind. As for cumulative costs, CPU and GPU systems

use a very high amount of energy in order to perform their calculations, while FPGAs

are much more energy-efficient [13]. Finally, CPUs and GPUs are decently scalable in

supercomputers, but buying a complete supercomputer is an enormous step to take for

everyone but large companies. The FPGA, on the other hand, can be made as scalable

as the designer wishes. Based upon these observations, we have decided to realize an

FPGA acceleration of the Smith-Waterman algorithm. The main choice factors are

summarized in Table 3.1

3.2 Optimization

Executing the Smith-Waterman algorithm is a time-consuming task [9]. Luckily, some

arrangements can be made that significantly speed up the calculations. These are dis-

cussed in detail in this section.

Chapter 3 Design Considerations 19

3.2.1 Linear Systolic Arrays (LSA)

As is discussed in Section 4.3, the computational core of the FPGA implementation is

the individual processing unit called the processing element (PE). One PE calculates one

element of the H-matrix every clock cycle. When executing on a CPU, this would mean

that every core is essentially one of these processing elements and they can be operated

at a very high clock frequency, although due to caching overhead it would likely take a

CPU more than one clock cycle to finish a single calculation.

What the FPGA platform allows us to do is to chain a lot of processing elements into

a so-called linear systolic array [40] and keep increasing the frequency up to the point

where the processing elements no longer have enough time to finish their operation.

This equates to a many-core CPU (up to a couple hundred) at a lower frequency, which

would be a bad idea for a typical CPU operation but perfect for a parallel problem such

as the Smith-Waterman algorithm. Studies show varying benefits from linear systolic

arrays, but are generally somewhere between a factor 1.5 and 4 [40][41]. A trade-off can

be made by increasing the speed of every processing element at the cost of more chip

area. This is discussed further in Section 3.2.2.

Data dependencies are an important factor in linear systolic arrays. As was seen in

Section 2.4, three adjacent cell values are needed to compute the next one. Consequently,

computed matrix values need to be passed on to the neighboring processing element as

soon as they are available. This means that not all processing elements in the systolic

array can start at the same time, as they need data that is computed by their peers.

This is illustrated in Figure 3.1. The numbers in the matrix indicate the amount of

clock ticks up until the moment the corresponding cell is computed.

Figure 3.1: LSA structure adapted from [9]

Chapter 3 Design Considerations 20

In a practical application, a sequence is never equally long to the amount of processing

elements. Therefore, it is necessary to have a processing element jump to a next column

once it has finished one. In Figure 3.2 it can be seen how this jump is made. At clock

tick 7, PE 2 up to 4 keep computing their own columns while PE 1 jumps to the new

column. Eventually, when the end of the sequence has been reached, any processing

element that gets invalid data is padded with zeroes. Implementing this in hardware is

rather complicated and is explained in detail in Chapter 4.

Figure 3.2: LSA jump mechanism adapted from [9]

3.2.2 Recursive Variable Expansion (RVE)

It has become clear from the regular linear systolic array implementation that, due to

the fact that Smith-Waterman has three data dependencies from adjacent cells, it takes

a while before all processing elements have something to compute. This is especially the

case for relatively small sequences. If we could remove the data dependency altogether,

the array would become 100% parallelizable, effectively removing the computational

bottleneck.

Figure 3.3: RVE data dependencies adapted from [9]

Chapter 3 Design Considerations 21

Speed-up factor Increased FPGA chip area cost factor Ratio

[43] 1.4 1.3 1.08

[44] 2.5 2.3 1.09

[45] 2.3 2 1.15

[39] 2.3 2.8 0.82

Table 3.2: Approximate speed gain and area loss from RVE, rounded to 1 decimal

This is exactly what can be realized through recursive variable expansion, introduced

in [42]. It removes data dependencies by computing H-matrix values directly from the

first row and column of zeroes. Those, in addition to the sequence information for that

specific matrix position, are then the only values necessary to compute a matrix value,

as seen in Figure 3.3. It does, however, make the Smith-Waterman equation a lot more

complicated. This is shown in Equation 3.1.

Hi,j = max



Hi,j−2 − 2d

Hi−1,j−2 − d+ Si,j−1

Hi−1,j−2 − d+ Si,j

Hi−2,j−2 + Si,j + Si−1,j−1

Hi−2,j−1 − d+ Si,j

Hi−2,j−1 − d+ Si−1,j

Hi−2,j − 2d

0

(3.1)

Despite these disadvantages, it might still be beneficial to use recursive variable expan-

sion. Table 3.2 illustrates both the benefit and handicap of doing so, judging by different

studies.

Since less FPGA chip area usage per processing element means that we can put an

increased number of processing elements on the chip, we can assume that area is just as

relevant as relative speed-up. Consequently, the ratio between speed-up and increased

area cost is a fairly accurate method of estimating the performance gain or loss we

would obtain if we decided to use recursive variable expansion in our implementation.

Judging from Table 3.2, the approximate overall performance gain of 10% is not worth

the limited time investment that can be made for this thesis. Therefore, the decision

was against implementing recursive variable expansion.

Chapter 3 Design Considerations 22

3.3 Differential Smith-Waterman

Since cell values in a score matrix can grow very large, calculating and storing this

matrix is very area-inefficient. Furthermore, for implementations which return the max-

imum of the alignment only (max-only implementations), bandwidth is also a bottleneck.

Computing and saving the Smith-Waterman differentially solves both of these problems

[46]. An adder combined with a buffer are necessary to keep track of the maximum

value. Thus, in the case of a max-only implementation, an assessment needs to be made

whether to implement differential Smith-Waterman. Since solving the bandwidth limit

and decreasing the size of internal signals of the PEs should weigh up against a little

more required chip area, it is presumed feasible. In the following section, the method

of calculating the differential values is explained and afterwards, this is demonstrated

through an example.

First equation 2.2 needs to be rewritten as follows:

H∗
i,j = max


Hi−1,j−1 + w(match/mismatch)

Hi−1,j − 1

Hi,j−1 − 1

(3.2)

and Hi,j is defined as:

Hi,j = max

0

H∗
i,j

(3.3)

The variables δVi,j and δHi,j are chosen to define the vertical and horizontal differences,

respectively. They are defined in Equations 3.4 and 3.5. Thus, instead of one big absolute

value, every cell in the score matrix contains two differences. This is depicted in Table

3.3.

δVi,j = Hi,j −Hi−1,j (3.4)

δHi,j = Hi,j −Hi,j−1 (3.5)

Equation 2.2, which describes how to calculate the value of a cell in the score matrix,

can be rewritten to be differential, as shown in Equations 3.6 and 3.7. A proof for both

Chapter 3 Design Considerations 23

. . .
...

...

δVi−1,j−1 δVi−1,j

· · · δHi−1,j−1 Hi−1,j−1 δHi−1,j Hi−1,j

δVi,j−1 δVi,j
· · · δHi,j−1 Hi,j−1 δHi,j Hi,j

Table 3.3: The differential H-matrix

this and the fact that the difference matrix contains the same amount of information as

a conventional score matrix is given in [46].

δVi,j =

 −Hi−1,j , if H∗
i,j < 0

δV ∗
i,j , else

(3.6)

δHi,j =

 −Si,j−1, if H∗
i,j < 0

δH∗
i,j , else

(3.7)

To explain the method of differential Smith-Waterman by example, we assume the fol-

lowing parameters, for the simplicity of the example. Other values can be chosen as long

as consistency is guaranteed:

• Sequence 1 = AGCA

• Sequence 2 = ACAC

• Gap penalty d = 1

• w(match) = 2

• w(mismatch) = −1

These parameters cause Equation 2.2 to transform into the following equation:

Hi,j = max



0

Hi−1,j−1 + w(match/mismatch)

Hi−1,j − 1

Hi,j−1 − 1

(3.8)

Chapter 3 Design Considerations 24

- A G C A

- 0 0 0 0 0

A 0 2 1 0 2

C 0 1 1 3 2

A 0 2 1 2 5

C 0 1 1 3 4

Table 3.4: Conventional score matrix

The score matrix in Table 3.4 follows according to the conventional method of calculating

Smith-Waterman. On the other hand, when vertical and horizontal differences are used,

this results in a differential score matrix, which is depicted in Table 3.5.

- A G C A

- 0, 0 0, 0 0, 0 0, 0 0, 0

A 0, 0 2, 2 -1, 1 -1, 0 2, 2

C 0, 0 1, -1 0, 0 2, 3 -1, 0

A 0, 0 2, 1 -1, 0 1, -1 3, 3

C 0, 0 1, -1 0, 0 2, 1 1, -1

Table 3.5: An example of a differential score matrix

Translating the differential score matrix back and forth from the conventional score

matrix is possible. Trace back is possible from both the differential score matrix and

the conventional score matrix.

Chapter 4

Implementation & Results

This chapter covers the technical details of the implementation. First, an overview of the

final system is discussed in Section 4.1. Subsequently, the working of non-trivial basic

components needed for these units is explained in Section 4.2. Subsequently, the working

of the processing element (PE) and the linear systolic array (LSA) is explained in Section

4.3. For the correct working of the LSA some logic is needed and that is explained in

Section 4.4. Since a First in First out (FIFO) buffer is needed for communication with

a computer, Section 4.5 describes the implementation of this buffer. Finally, Section 4.6

describes the achieved results.

Subsequently, the workings of some basic components needed for the PE and control are

explained. How the processing element is composed of these basic components is next

and also includes how the linear systolic array of PEs is implemented. Such an array

implementation also requires control components to supply sequence characters to the

PEs. Therefore, another section is dedicated to the implementation of this control.

4.1 Functional Unit

The functional unit, as can be seen in Figure 4.1, is a combination of control, a FIFO

buffer and the PE array. It combines the array of processing elements with their required

control counterparts to allow the system to work as a whole. On its input, it requires

sequence data as supplied by a connected computer and on its output it delivers the

absolute maximum value found by computing the Smith-Waterman matrix. This value

changes over time until calculating the whole matrix has been finished.

25

Chapter 4 Implementation & Results 26

Figure 4.1: Block diagram of the functional unit

4.2 Basic Components

For the implementation of a complete functional unit, some basic components are needed.

These are covered briefly below.

4.2.1 Differential counter

Figure 4.2: Decoder schematic

The decoder is a combination of a couple of simple components. Since differential values

are used when computing matrix values, an additional operation is necessary to track

what the absolute value is in every processing element. As seen in Figure 4.2, an adder

is combined with a buffer (Q) to store an absolute value and add a differential value to

it every clock tick. It can be reset independently of the top-level reset, which happens

every time a PE jumps to a new column.

4.2.2 Zerocheck

The zerocheck component checks whether the absolute matrix value is smaller than zero

and, if so, sets it to 0, like Smith-Waterman dictates (see Section 2.4 for reference).

Additionally, the negative matrix value is subtracted from the differential values to

Chapter 4 Implementation & Results 27

Figure 4.3: Zerocheck schematic

compensate this change of the absolute value. As seen in Figure 4.3, this is achieved by

multiplexing the old absolute values with compensated signals.

4.2.3 Shift register

Figure 4.4: Modular shift register schematic

Shift registers consist of an array of buffers. A 2-bit register of 16 buffers and a 5-bit

register of 12 buffers were made for different purposes. Connecting the output (the

last register) to the input (the first register) results in a circular shift register that

automatically refills itself. It can be filled initially by multiplexing an input with the

circular connection. A modular design is shown schematically in Figure 4.4.

4.3 Processing Element

Figure 4.5: Processing element schematic

Out of all these basic blocks, a fundamental component for the calculation of the Smith-

Waterman algorithm is built. This processing element (PE) is the core component of

the alignment implementation. It calculates the outcome of matrix element Hi,j based

Chapter 4 Implementation & Results 28

on the algorithm described in Equation 2.2. It is designed to function in an array of

multiple PEs. Consequently it receives multiple signals from the preceding PE, and

passes signals on to the next PE on its output.

4.3.1 Structural Description

The structural layout of the processing element is depicted in Figure 4.5. The element

has seven inputs and three outputs. All of these will be discussed.

Inputs:

• qs: Query sequence input. two-bits vector that represents one of the four charac-

teristic DNA letters.

• dsin: Database sequence input. Of the same form as qs. This signal is connected

to the dsout through a buffer.

• hin: Matrix value input. This five-bits input is connected to the output of another

processing element through a buffer. The utility of this construction is discussed

in Section 4.3.3.

• min: Maximum matrix value input. The 32-bits maximum value that has been

encountered so far is held by this signal. It is also connected to the output of

another processing element through a buffer. Section 4.3.3 provides an explanation

on this connection.

• clk: Clock signal. This determines the rate at which the processing element func-

tions. In order to achieve synchronism, every buffer is connected to this signal.

• rst: Reset signal. Top level reset, which resets every element in the entire system.

• control rst: Control reset signal. A reset signal that only resets a single PE.

Components that need to be reset by both the reset and the control reset are connected

to a signal called clearbuf . This signal performs an or-operation on the reset and the

control reset signal.

Outputs:

• dsout: Database sequence output. This signal is connected to the dsin through a

buffer.

Chapter 4 Implementation & Results 29

• hout: Matrix value output. This output contains one of the differential values of

the preceding PE in the array, and passed it on to the next PE.

• mout: Maximum matrix value output. This signal contain the highest encountered

value up to that point. It is passed on to the next PE as reference.

4.3.2 Inner working

The inner working of the PE is separable in two parts. The first part executes the

algorithm, and the second part provides the coupling between differential and absolute

values.

4.3.2.1 Algorithm execution

This part, enclosed by the left dotted line in Figure 4.5, requires the H-matrix data,

and a letter from both sequences to calculate the value of Hi,j . Since the PE uses a

differential means of calculations, as described in Section 3.3, only two H-value inputs

are required. One of these inputs enters the PE via hin, while the other one is fed

back inside the PE through a buffer. A max-operation is performed on these values,

after which the gap penalty is added to the resulting value. Another max-operation

is performed on this value and the outcome of a comparator that produces w(match)

or w(mismatch), depending on the sequences. The output of this max-component

concludes the algorithm execution of the PE. For future reference, this signal is labeled

as alg.

The standard Swith-Waterman suggests the substraction of the gap penalty before the

max operation, as seen in Equation 2.1. However, max(a+ d; b+ d) can be reduced to

max(a; b) + d. Using this logic, one less adder is needed in each PE.

Equation 2.1 also states that a max-operation with a zero is required. In the differential

implementation this operation is moved to the end of the PE. When the operation would

be performed at this point, the differential calculation could not be performed properly.

4.3.2.2 Coupling

This part, enclosed by the right dotted line in Figure 4.5, starts where the previous

part ends, and wholly revolves around the mathmatical explanation given in 3.3. To

transform the result of the first part of the PE into two differential results, subtractions

Chapter 4 Implementation & Results 30

are needed. The subtractions performed by the upper and lower subtractor are shown

in Equation 4.1 and Equation 4.2.

Subupper = Hi,j1 = alg −Hi−1,j0 (4.1)

Sublower = Hi,j0 = alg −Hi,j−11 (4.2)

Subupper is then connected to the decoder component, which turns the differential value

into an absolute value. This value is then passed on to the zerocheck component, along

with the outputs of the two subtractors. This component returns the differential values

in their final form, through several logic operations as described in Subsection 4.2.2.

Subupper leaves the PE, labeled hout. The Sublower signal is fed back to the algorithm

execution part of the PE. The zerocheck component also returns the final form of Hi,j ,

so that it can be compared to the current maximum min. The largest of these two leaves

the PE, labeled mout.

The letter from the database sequence that has been used by this PE is also passed on

to the following PE by this part of the circuit. The usage of this will be discussed in

Section 4.3.3.

4.3.3 Linear Systolic Array

Figure 4.6: Schematic of implemented linear systolic array

In Section 3.2.1 a linear systolic array (LSA) implementation is described. This approach

will be used to design an array of PEs described in 4.3. The design of these PEs enables

them to work together. The interconnections between two arbitrary PEs in the array

will allways be the same. The way they are interconnected is depicted in Figure 4.7.

However, the first and last PE are connected differently. The first PE has a static zero

connected to min. The hin signal is connected to the output of a shiftregister, as it

described in Section 4.2.3. The mout of last PE is connected to a maxtracker that holds

Chapter 4 Implementation & Results 31

Figure 4.7: Close-up of interconnect in implemented linear systolic array

the maximum value of the LSA for future reference. The hout signal is connected to the

input of the same shiftregister that is connected to hin of the first PE in the array. The

dsout signal of the last PE is obsolete, but will be present since all PEs have the same

design. A total overview of the LSA of PEs is given in Figure 4.6.

4.4 Control

The array of PEs needs a new input every clock cycle. Every cycle, one character of the

database sequence and four characters of the query sequence are needed. As soon as the

first PE has reached the end of the database sequence, it should jump forward in the

query sequence equal to the number of PEs. This is explained in detail in Section 3.2.1

and illustrated in Figure 3.2. The database sequence should be delivered to the array

of PEs letter by letter. When the first PE reaches the end it should jump back to the

beginning of the database sequence. Some control needs to be implemented for these

tasks.

4.4.1 Main control unit for query sequence input

In this section, the design considerations will be discussed and an overview of the whole

implemented unit will be presented. Later, the components that build up the complete

unit will be explained one by one and finally, the test of the whole unit will be discussed.

4.4.2 Design considerations and overview

One of the options to solve this control problem was to implement a so called end-bit.

This implies there would be an additional character, representing the end of a sequence.

Chapter 4 Implementation & Results 32

Four characters would represent A, C, G and T, while the last character would represent

the end of the sequence, telling the PE to jump. Choosing this option means that three

bits would be needed instead of two. Another would be to implement a counter for the

database sequence. This counter would tell the PEs when to jump.

Both options are viable options, but implementing the first one means that an extra

bit is needed to representing every character. All paths in the array of PEs would have

one extra line for the third bit. Implementing a single counter only for the database

sequence is, therefore, more efficient in utilizing the area of the chip.

In Figure 4.8 an overview is presented of the query sequence input unit. The inputs of

the unit are clk, rst and data in, which is the character needed by the PE. The data

comes from a FIFO buffer. The output data needed requests a new character from FIFO

buffer when necessary and the other output data out is connected to the PE array. The

whole unit consists of four smaller components. These are the controller, an adjusted

shift register, a four-input OR port [47] and, finally, the PE buffers.

Figure 4.8: Block diagram of the control unit

The controller contains a counter and gives a high signal when the first PE needs to

jump. It is known that the remaining PEs will need data directly after the one preceding

them, so it is not needed to implement counters for every PE separately. A shift register

can ensure that the signal of the counter is repeated with the number of PEs in the array.

In this way, every PE gets data from the FIFO. The shift register has four outputs for

the four PEs that have been implemented in the array and these function as control

signals for the PE buffers to read data.

The four outputs of the shift register are also connected to the FIFO through an OR

port [47] and this functions as a signal to request characters from the FIFO.

Chapter 4 Implementation & Results 33

Finally, there is one adjusted buffer for each PE in the array. These buffers are connected

through a bus to data in, because only one buffer at a time is allowed to read a character.

The PE buffers hold the data until the PE needs to jump. This is ensured by the valid

bits which come from the shift register.

4.4.3 Control for jump moment

The control for the jump moment, which is depicted by a counter and a NAND in Figure

4.8 will be called controller hor, consists of a counter and a NAND port [47]. The PE

processes one character from the database sequence every clock cycle. The counter

increments every clock cycle and is reset when it reaches the number of characters in

the database sequence. Every time the counter starts from zero, a signal is given to the

PEs, which tells them to jump. The NAND port [47] gives a high signal to the shift

register whenever the counter starts counting from zero again.

For the proof of concept, a database sequence of 16 characters has been chosen. This

means the PEs need to jump once every 16 clock cycles. For this purpose, a four-bit

counter has been implemented. The counter overflows automatically and starts counting

from zero again after 16 clock cycles. The four-input NAND port [47] gives a high signal

whenever the counter has output “0000”.

4.4.4 Adjusted shift register

The controller hor unit only gives a signal once every 16 cycles. Unfortunately, that

is not enough, because four separate signals after each other are needed for the four

different PEs. It is possible to implement separate counters for every PE present in the

systolic array. The counter associated with the first PE will directly start counting and

the counters following will all have a delay of one clock cycle with respect to the one

preceding. This is not a very efficient solution, because a shift register that repeats the

signal of the controller hor unit three times is more efficient.

The implementation of the shift registers consists of three buffers, because, in this case,

an array of four PEs has been chosen. These buffers will repeat the signal from the

horizontal unit three times. The shift register unit has four outputs, which serve as

control signals for the four PE buffers.

The NAND port [47], which is present in the earlier implemented horizontal control unit,

also gives a high output when the reset is active. The first output of this shift register

is the control signal of the first PE and decides when the PE is allowed to read data.

Chapter 4 Implementation & Results 34

This output is also connected to the FIFO through an OR port [47] to request a new

character. The control unit should, however, not give a signal to read in data.

Although all buffers, including the FIFO, will not function during a reset, it is logically

better to take care of this problem that the shift register is giving a high output during

a reset. This is done by putting an extra AND port [47] in between the input and the

first output. In this way, the first output is only high when the reset is low and the

NAND port [47] output is high.

4.4.5 PE buffer array

For the PEs, an array of adjusted buffers has been implemented. These PE buffers are

meant to provide the PEs with the correct characters at the right moment.

In this case, an array of four has been chosen, because the systolic array consists of four

PEs as well. All four PE buffers are connected through a bus to the output of the FIFO,

so they should read data from this bus at the right moment and not all four at the same

time. This is ensured by the signals coming from the shift register.

The inputs of the adjusted buffer are clk, rst, cntrl and i. Compared to a regular buffer

it has one extra input, which is cntrl. This signal makes sure that the buffer does not

read in a new character from the bus every clock cycle. Instead, it makes the PE buffer

hold this character until the PE jumps to another character associated with that specific

PE. Consequently, the PE buffer only reads in data every time the database sequence is

finished, which is, in this case, every 16 cycles.

4.5 FIFO buffer

The use of a buffer is necessary when the speed of delivering and reading data is not

equal. It is also necessary in cases where the speed of data delivery is not constant,

because the rate of data processing is constant. Without the use of a buffer, correct

data transfer is not guaranteed.

The FPGA will communicate with the computer via USB or Ethernet. In both cases

the speed of the data coming from the computer is not constant. Therefore a buffer is

needed.

For correct data processing, the order of the sent data is important. The first sent

character should also be the first to be presented to the PE. A First in First out (FIFO)

Chapter 4 Implementation & Results 35

buffer is meant for this purpose. The data that enters the FIFO buffer first also leaves

it first. This guarantees the correct order of receiving for the processing elements.

4.5.1 Specifications

Since the FIFO should be able to take care of a number of tasks, some specifications are

needed for implementing the FIFO buffer:

• The characters can be represented by two bits and therefore the buffer should have

a two-bit input and output.

• The FIFO buffer should be able to tell other units whether the buffer is full. If

the buffer is full, data presented to it should be ignored.

• When other components want to write data to or read data from the FIFO buffer,

they should be able to communicate this before starting to read or write.

• The written data should be placed as far as possible towards to the output of the

buffer in an empty register.

• The FIFO buffer should be able to tell other units whether it is empty. This

prevents other components from reading invalid data.

• When reading data, the first character as seen from the output, which is the oldest

character, should be outputted and all other registers should shift their data to

their neighboring registers.

• The components reading data from the FIFO buffer should be able to request data

from the buffer. This way, the buffer will know when to shift data.

• To guarantee scalability, the length of the FIFO buffer should be generic in the

written code.

4.5.2 Block diagram representation

For an overview, a block diagram of the FIFO buffer was made. This block diagram is

presented in Figure 4.9 and the FIFO design is done with a top down approach, using

the diagram for the reference.

The FIFO buffer has five input ports and three output ports:

Input ports:

Chapter 4 Implementation & Results 36

Figure 4.9: Block diagram of the FIFO buffer

• clk : The main clock which determines the frequency of the whole circuit.

• reset : The central reset signal. When the reset is active the buffer must be emptied

and no data should be read in or read out.

• read data: Signal from other components to request data from the FIFO buffer.

• write data: Other components use this signal to tell the buffer that they are going

to send data.

• input (2 bit): The characters that need to be written to the buffer are presented

at this port.

Output ports:

• output (2 bit): The characters that need to be read from the buffer are presented

at this port.

• empty : This signal communicates to the other units when the buffer has no data.

• overflow : Other units will know through this signal that the buffer is full.

4.5.3 Implementation

To implement the FIFO buffer, both a structural and a behavioral approach can be

used. A structural approach would make easy adjustment of the length more difficult,

because all components are already preset in such an approach. Furthermore, there are

no examples in the literature of implementing FIFO buffers with a generic length from a

structural approach. Therefore, a behavioral implementation was chosen to ensure that

generic length would not be a problem. The behavioral description of the FIFO buffer

is based on existing implementations [48].

Chapter 4 Implementation & Results 37

The buffer is organized as an array of std logic vectors. These vectors are two bits long

and serve to represent the characters of the sequence. The length of the array, which is

the same as the length of the buffer, is generic.

Some logic needs to be implemented to know which was the first and which was the

last character stored in the array. Otherwise, it would not be possible to distinguish

valid and invalid data and delivering data in the correct order would be impossible as

well. For this purpose, an idea similar to the idea of pointers in programming has been

used. Two buffers combined with an adder keep track of the location of the first and

last character of the array. The first buffer points to the location of the first character

that needs to be presented at the output, while the second buffer points to the first

possible empty place. The values contained in these two buffers point to the location of

a character. From now on, they are referred to as pointers. The two extra signals empty

and full, which show the status of the FIFO, are updated based on these two pointers.

Every clock cycle, the location of the first and last character might change and the

status, which is represented by the two signals empty and full, can change as well. The

pointee of the pointers and the value of the signals are determined in the FIFO control

logic. When assigning new values, four different cases can be distinguished:

• When both read data and write data are low, nothing should happen. No data

should be set on the output and the data presented at the input should be ignored.

Since in this case the values do not change, all old values can be assigned directly

to the new values.

• When trying to read data, there should first be a check whether valid data is

present in the FIFO buffer. If this is the case, the pointer to the first character

to be read should be adjusted. In this case, the FIFO buffer can never have the

status of being full, because either the FIFO buffer is completely empty or at least

one character leaves the FIFO buffer. There should also be a check whether the

buffer has become empty after a read from it and, if so, the status of the FIFO

must be adjusted as well. The remaining pointer to the last character stays the

same.

• When writing data to the FIFO buffer, there should first be a check whether the

buffer is not full already. If so, the presented data at the input should be ignored

and the values of the registers should not change. However, if it is not full yet,

the presented data should be accepted and there should be another check whether

the buffer has become full in the meantime. If so, the value of the overflow signal

should be adjusted. The pointer to the last character in the FIFO buffer should be

Chapter 4 Implementation & Results 38

adjusted accordingly. The remaining pointer, which points to the first character,

stays the same.

• When external components try to read and write data at the same time, the

pointers to the first and last character should both be adjusted. Since reading and

writing data at the same time does not change the number of data entries in the

FIFO buffer, there is no need for checking whether the status of the FIFO buffer

changes. Therefore, the values of the signals full and empty should stay the same.

4.6 Results

The suggested processing element (PE) consists of 185 logic elements, which is a lot less

than the 384 as given by [9]. However, control overhead has not yet been included in the

suggested processing element. This overhead has been found to consist of approximately

52 logic elements, leading to a total of 237 logic elements per PE.

An Artix 7 XC7A200T is assumed to be the platform that is used to implement the

architecture. This platform has a total of 215360 logic elements and a maximum clock

frequency of 200 MHz [49]. Since the processing elements have been designed around 5-

bit adders, it is a fair assumption that the maximum clock frequency can be used without

any problems. The Artix platform costs approximately 150 euros [50] when only buying

the chip, and additional required components can be bought for approximately 15 euros

[51]. The acquired components need to be assembled, which is assumed to cost about

15 euros. This brings us to a total cost of ±180 euros.

By dividing the total number of logic elements on a chip by the amount used per pro-

cessing element, it is shown that 908 processing elements fit on one chip. Consequently,

the performance of the system can be estimated by multiplying the number of processing

elements by the clock frequency. This results in a performance rating of 181 GCUPS.

Dividing by the price per FPGA board leads to the performance/price ratio, as pre-

viously used in Chapter 3. The result is approximately 1.00 GCUPS/euro, which is a

factor 25 improvement when compared to a current supercomputing platform, as shown

in Table 3.1. It must, however, be noted that, following Moore’s Law, today’s FPGA

solutions have about twice the amount of transistors as compared to supercomputing

platforms in 2012. Therefore, this factor becomes approximately 12.

Chapter 5

Conclusions and

recommendations

This chapter covers the conclusions of the project and gives recommendations for future

research.

5.1 Conclusions

The goal of the project was to develop a sequence alignment algorithm implementation

that is quick, cheap and highly accurate. For this purpose, we chose an algorithm and

subsequently an optimal platform to accelerate it.

Although the heuristic algorithms are faster, the Smith-Waterman algorithm was cho-

sen for acceleration. This is due to its capability to improve accuracy, scalability and

implementation options. Furthermore, the current computational possibilities allow the

Smith-Waterman algorithm to become feasible. The time required for this algorithm

can be drastically decreased so that it outperforms other approaches. For this reason,

the Smith-Waterman algorithm has been chosen to be accelerated. As for the hardware

platform, FPGA was chosen. This is due to the fact that, compared to other platforms,

an FPGA performs best in terms of overhead, price and scalability.

This project presented a novel approach in the literature of calculating the score ma-

trix for the Smith-Waterman algorithm. Instead of sending the maximum value to the

computer every clock cycle by comparing two digits, a buffer keeps track of the maxi-

mum value and it is sent to the computer only once. This method solves the bandwidth

bottleneck by using a little bit more chip area.

39

Chapter 5 Conclusions and recommendations 40

The core component that performs the calculation of the Smith-Waterman algorithm, the

processing element, is built according to the new differential Smith-Waterman method

and is designed to function in a linear systolic array. Due to the nature of the Smith-

Waterman algorithm, the array can fully parallelize the associated calculations.

The resulting implementation fits on an Artix 7 XC7A200T chip 908 times. Compared

to modern FPGA supercomputing platforms, this is a twelve-fold improvement in per-

formance/price.

5.2 Recommendations for Future Research

5.2.1 GPU implementations

With the introduction of the Cuda programming language, viability of GPU implemen-

tations of Smith-Waterman has increased a lot. It has fallen outside the scope of this

project, but further investigation into GPU implementations would likely produce some

interesting results. GPUs might not be as energy-efficient as FPGAs, but they can be

produced on a very large scale and are thus relatively cheap. It is worth noting that a

Smith-Waterman project similar to Folding@Home [52] could help medical research in

the future by utilizing GPUs of many consumers who are willing to allow this. The past

has shown that there is great interest in this provided that the researchers are working

towards a righteous goal.

5.2.2 RVE

As discussed in Section 3.2.2, RVE can provide a speed-up at the cost of the usage of

additional chip area. This can already result in a significant performance gain of 10%,

but further research might increase this performance gain. Implementing RVE was too

time-consuming to accomplish in this research, but must definitely be considered if more

time is available.

5.2.3 Affine gap penalty

A gap penalty is used to lower the score when insertions are present. Linear gap penalty

gives the same cost to every insertion. In [16] the idea of affine gap penalties was

introduced. Affine gap penalty using different costs for gap opening and gap extension.

It has been shown that using affine gap penalties instead linear gap penalties is a better

representation of reality, because for DNA it is difficult to open a gap, but once opened,

Chapter 5 Conclusions and recommendations 41

it is easy to fill that gap up. In [40] an implementation of Smith-Waterman with affine

gap penalty is shown.

5.2.4 Divide and conquer

The method of divide and conquer reduces the size of the score matrix that needs to

be stored. The size of the matrix that needs to stored is reduced from n ·m to m + n.

However, since more calculations are needed, this solution does slow down the process.

Until now in the literature there are no implementations of this approach on an FPGA.

5.2.5 Differential calculation

Differential calculation is a promising new concept that has been demonstrated in this

thesis. However, not much is known about its performance relative to conventional

implementations. This needs to be checked by further research.

Appendix A

Work distribution

Table A.1: Work distribution - implementation

F
atih

H
an

Ç
ağlayan

R
o
elof

W
illem

H
eij

M
atth

ijs
G

eers

Implementation:

Basic elements for

Processing element

X X

PE assembling and

testing

X

PE error detection and

solving

X X X

Control X

FIFO X

42

Appendix A Work distribution 43

Table A.2: Work distribution - thesis

F
a
tih

H
an

Ç
ağ

layan

R
o
elo

f
W

illem
H

eij

M
a
tth

ijs
G

eers

Thesis:

Abstract X

Introduction X

Algorithms X

Design Consideration X

Differential Smith-Waterman X

Introduction implementation &

Functional unit

X

Basic components X

Processing Element X

Control X

FIFO buffer X

Block diagrams VHDL X

Results X

Conclusion X

Recommendations X X

Editing X

The work distribution was as in Table A.1 and Table A.2. Daily meetings guaranteed

good cooperation. We had regular talks with our supervisor Zaid Al-Ars.

Note: the crosses in the tables do not represent a fixed amount of workload.

Bibliography

[1] Ralf Dahm. Discovering dna: Friedrich miescher and the early years of nucleic acid

research. Human Genetics, 122(6):565–581, 2008.

[2] Oswald T Avery, Colin M MacLeod, and Maclyn McCarty. Studies on the chemical

nature of the substance inducing transformation of pneumococcal types induction

of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus

type iii. The Journal of experimental medicine, 79(2):137–158, 1944.

[3] ORNL. Human genome project website, May 2013. URL http://www.ornl.gov/

sci/techresources/Human_Genome/project/about.shtml.

[4] Pauline Hogeweg. Simulating the growth of cellular forms. Simulation, 31(3):90–96,

1978.

[5] Paulien Hogeweg. The roots of bioinformatics in theoretical biology. PLoS compu-

tational biology, 7(3):e1002021, 2011.

[6] Jane B. Reece and Neil A. Campbell. Campbell biology / Jane B Reece ... [et

al.]. Pearson Australia Frenchs Forest, N.S.W, 9th ed. edition, 2012. ISBN

9781442531765.

[7] Mariana Ruiz Villarreal. Average prokaryote cell, May 2013. URL http://en.

wikipedia.org/wiki/File:Average_prokaryote_cell-_en.svg.

[8] Jacques Cohen. Bioinformatics an introduction for computer scientists. ACM

Comput. Surv., 36(2):122–158, June 2004. ISSN 0360-0300. doi: 10.1145/1031120.

1031122.

[9] Erik Vermij. Genetic sequence alignment on a supercomputing platform. Master’s

thesis, Delft University of Technology, 2011.

[10] Laiq Hasan and Zaid Al-Ars. An overview of hardware-based acceleration of biolog-

ical sequence alignment. Computational Biology and Applied Bioinformatics, pages

187–202, 2011.

44

http://www.ornl.gov/sci/techresources/Human_Genome/project/about.shtml
http://www.ornl.gov/sci/techresources/Human_Genome/project/about.shtml
http://en.wikipedia.org/wiki/File:Average_prokaryote_cell-_en.svg
http://en.wikipedia.org/wiki/File:Average_prokaryote_cell-_en.svg

Bibliography 45

[11] S.B. Needleman and C.D. Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 48(3):443–453, 1970.

[12] Temple F Smith and Michael S Waterman. Comparison of biosequences. Advances

in Applied Mathematics, 2(4):482–489, 1981.

[13] L. Hasan, Z. Al-Ars, and S. Vassiliadis. Hardware acceleration of sequence alignment

algorithms-an overview. In Design Technology of Integrated Systems in Nanoscale

Era, 2007. DTIS. International Conference on, pages 92–97, 2007.

[14] O. Gotoh. An improved algorithm for matching biological sequences. Journal of

Molecular Biology, 162(3):705–708, December 1982.

[15] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison.

Proceedings of the National Academy of Sciences of the United States of America,

85(8):2444–2448, April 1988.

[16] S.F. Altschul and B.W. Erickson. Optimal sequence alignment using affine gap

costs. Bulletin of Mathematical Biology, 48(5-6):603–616, 1986.

[17] T. Rognes and E. Seeberg. Six-fold speed-up of smithwaterman sequence database

searches using parallel processing on common microprocessors. Bioinformatics, 16

(8):699–706, 2000.

[18] T. Rognes. Faster smith-waterman database searches with inter-sequence simd

parallelisation. BMC Bioinformatics, 12(1):221, 2011.

[19] K.R. Sharma. Bioinformatics: sequence alignment and Markov models. McGraw-

Hill, 2008. ISBN 9780071593069.

[20] RD Page. Genetree: comparing gene and species phylogenies using reconciled trees.

Bioinformatics, 14(9):819–820, 1998.

[21] Thomas L Madden, Roman L Tatusov, and Jinghui Zhang. [9] applications of

network blast server. Methods in enzymology, 266:131–141, 1996.

[22] Dennis A Benson, Ilene Karsch-Mizrachi, David J Lipman, James Ostell, Barbara A

Rapp, and David L Wheeler. Genbank. Nucleic acids research, 28(1):15–18, 2000.

[23] Caroline Kovac. Computing in the age of the genome. The Computer Journal, 46

(6):593–597, 2003.

[24] Michael Y. Galperin. The molecular biology database collection: 2004 update.

Nucleic Acids Research, 32(suppl 1):D3–D22, 2004. doi: 10.1093/nar/gkh143. URL

http://nar.oxfordjournals.org/content/32/suppl_1/D3.abstract.

http://nar.oxfordjournals.org/content/32/suppl_1/D3.abstract

Bibliography 46

[25] A. Stivala, P.J. Stuckey, M.G. de la Banda, M. Hermenegildo, and A. Wirth. Lock-

free parallel dynamic programming. Journal of Parallel and Distributed Computing,

70(8):839–848, 2010.

[26] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.

Journal of Molecular Biology, 147(1):195–197, 1981.

[27] E.W. Myers and W. Miller. Optimal alignments in linear space. Computer Appli-

cations in the Biosciences, 4:11–17, 1988.

[28] F. Zhang, X. Qiao, and Z. Liu. A parallel smith-waterman algorithm based on divide

and conquer. In Proceedings of the Fifth International Conference on Algorithms

and Architectures for Parallel Processing, ICA3PP ’02, pages 162–, Washington,

DC, USA, 2002. IEEE Computer Society.

[29] F. Zhang, X. Qiao, and Z. Liu. Parallel divide and conquer bio-sequence compar-

ison based on smith-waterman algorithm. Science in China Series F: Information

Sciences, 47(2):221–231, 2004.

[30] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology, 215(3):403–410, October 1990.

[31] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J.

Lipman. Gapped blast and psi-blast: a new generation of protein database search

programs. volume 25, 1997.

[32] B. Harris, A.C. Jacob, J.M. Lancaster, J. Buhler, and R.D. Chamberlain. A banded

smith-waterman fpga accelerator for mercury blastp. In Field Programmable Logic

and Applications, 2007. FPL 2007. International Conference on, pages 765–769,

2007.

[33] A. Jacob, J. Lancaster, J. Buhler, B. Harris, and R.D. Chamberlain. Mercury

blastp: Accelerating protein sequence alignment. ACM Transactions on Reconfig-

urable Technology and Systems, 1(2), June 2008.

[34] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm for aligning

dna sequences. Journal of Computational Biology, 7(1/2):203–214, 2000.

[35] S. Manavski and G. Valle. Cuda compatible gpu cards as efficient hardware accel-

erators for smith-waterman sequence alignment. BMC Bioinformatics, 9(Suppl 2):

S10, 2008.

[36] L. Hasan, M.A. Kentie, and Z. Al-Ars. Dopa: Gpu-based protein alignment using

database and memory access optimizations. BMC Research Notes, 4(261):1–11,

July 2011.

Bibliography 47

[37] E. F. de O.Sandes and A.C.M.A. de Melo. Retrieving smith-waterman alignments

with optimizations for megabase biological sequences using gpu. Parallel and Dis-

tributed Systems, IEEE Transactions on, 24(5):1009–1021, 2013.

[38] Z. Nawaz, M. Nadeem, J. van Someren, and K.L.M. Bertels. A parallel fpga design

of the smith-waterman traceback. In Field-Programmable Technology (FPT), 2010

International Conference on, pages 454–459, Beijing, China, December 2010.

[39] Z. Nawaz, H.E. Sumbul, and K.L.M. Bertels. Fast smith-waterman hardware

implementation. In Parallel Distributed Processing, Workshops and Phd Forum

(IPDPSW), 2010 IEEE International Symposium on, pages 1–4, Atlanta, USA,

April 2010.

[40] M. Gok and C. Yilmaz. Efficient cell designs for systolic smith-waterman imple-

mentations. In Field Programmable Logic and Applications, 2006. FPL ’06. Inter-

national Conference on, pages 1–4, 2006.

[41] L. Hasan, Y.M. Khawaja, and A. Bais. A systolic array architecture for the smith-

waterman algorithm with high performance cell design. In IADIS European Conf.

Data Mining, pages 35–44, 2008.

[42] Z. Nawaz, O.S. Dragomir, T. Marconi, E.M. Panainte, K.L.M. Bertels, and S. Vas-

siliadis. Recursive variable expansion: A loop transformation for reconfigurable

systems. In Field-Programmable Technology, 2007. ICFPT 2007. International

Conference on, pages 301–304, Kokurakita, Japan, December 2007.

[43] L. Hasan, Z. Al-Ars, Z. Nawaz, and K.L.M. Bertels. Hardware implementation

of the smith-waterman algorithm using recursive variable expansion. In Proc. 3rd

IEEE International Design and Test Workshop, pages 135–140, Monastir, Tunisia,

December 2008.

[44] L. Hasan and Z. Al-Ars. Performance comparison between linear rve and linear sys-

tolic array implementations of the smith-waterman algorithm. In Proc. 20th Annual

Workshop on Circuits, Systems and Signal Processing, pages 451–456, Veldhoven,

The Netherlands, November 2009.

[45] L. Hasan and Z. Al-Ars. An efficient and high performance linear recursive variable

expansion implementation of the smith-waterman algorithm. In Proc. 31st Annual

International Conference of the IEEE Engineering in Medicine and Biology Society,

pages 3845–3848, Minneapolis, USA, 2009.

[46] B. Strengholt and M. Brobbel. Acceleration of the smith-waterman algorithm for

dna sequence alignment using an fpga platform, June 2013.

Bibliography 48

[47] Wikipedia. Logic gate - wikipedia, the free encyclopedia, May 2013. URL http:

//en.wikipedia.org/wiki/Logic_gate.

[48] Pong P Chu. FPGA prototyping by VHDL examples: Xilinx Spartan-3 version.

Wiley-Interscience, 2008.

[49] Inc. Xilinx. 7 series fpgas. Technical report, San Jose, USA, 2013.

[50] Digi-Key Corporation. Price list. URL http://www.digikey.com.

[51] Premier Farnell plc. Price list. URL http://www.farnell.com.

[52] Stanford University. Folding@home. URL http://folding.stanford.edu/.

http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/Logic_gate
http://www.digikey.com
http://www.farnell.com
http://folding.stanford.edu/

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Bioinformatics
	1.2 Basic biology for bioinformatics applications
	1.2.1 Cell
	1.2.2 Chromosomes
	1.2.3 DNA, RNA and Proteins
	1.2.4 Genes

	1.3 Sequencing
	1.4 Alignment
	1.5 Applications of DNA sequencing and alignment
	1.6 Problem definition

	2 Algorithms
	2.1 Dynamic programming
	2.1.1 Global alignment
	2.1.2 Local alignment

	2.2 Heuristic algorithms
	2.2.1 FASTA
	2.2.2 BLAST

	2.3 Comparison
	2.4 Smith-Waterman explained
	2.4.1 Score measure
	2.4.2 Gap penalty
	2.4.3 Performing the alignment
	2.4.4 Important note

	2.5 Optional extensions
	2.5.1 Greedy algorithms
	2.5.2 Recursive variable expansion
	2.5.3 Divide and conquer

	3 Design Considerations
	3.1 Platforms
	3.1.1 CPU
	3.1.2 GPU
	3.1.3 FPGA
	3.1.4 Relevant properties
	3.1.5 Platform selection

	3.2 Optimization
	3.2.1 Linear Systolic Arrays (LSA)
	3.2.2 Recursive Variable Expansion (RVE)

	3.3 Differential Smith-Waterman

	4 Implementation & Results
	4.1 Functional Unit
	4.2 Basic Components
	4.2.1 Differential counter
	4.2.2 Zerocheck
	4.2.3 Shift register

	4.3 Processing Element
	4.3.1 Structural Description
	4.3.2 Inner working
	4.3.2.1 Algorithm execution
	4.3.2.2 Coupling

	4.3.3 Linear Systolic Array

	4.4 Control
	4.4.1 Main control unit for query sequence input
	4.4.2 Design considerations and overview
	4.4.3 Control for jump moment
	4.4.4 Adjusted shift register
	4.4.5 PE buffer array

	4.5 FIFO buffer
	4.5.1 Specifications
	4.5.2 Block diagram representation
	4.5.3 Implementation

	4.6 Results

	5 Conclusions and recommendations
	5.1 Conclusions
	5.2 Recommendations for Future Research
	5.2.1 GPU implementations
	5.2.2 RVE
	5.2.3 Affine gap penalty
	5.2.4 Divide and conquer
	5.2.5 Differential calculation

	A Work distribution
	Bibliography

