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Abstract

In recent years, the need for explainable artificial intelligence (XAI) has become increas-
ingly important as complex black-box models are used in critical applications. While
many methods have been developed to interpret these models, there is also potential
in enhancing the models themselves to improve their inherent explainability. This pa-
per investigates various techniques aimed at improving the explainability of black-box
models. Through a systematic literature review, these techniques are categorized, and
their impact on predictive uncertainty, adversarial robustness, and generative capac-
ity is analyzed to understand how these factors contribute to the overall explainability.
The snowballing methodology is used for the systematic literature review, starting with
papers retrieved from four databases: IEEExplore, Scopus, ArXiv, and the ACM Dig-
ital Library to form the initial set. This process continued with backward and forward
snowballing through four iterations, resulting in a total of 50 papers reviewed. Only
papers focused on improving model explainability are included in the review. Due to
time limitations, additional search constraints are applied for feasibility. The initial set
of papers is filtered to those published since 2013. These constraints and their possible
impacts are considered when interpreting the results. Findings reveal that techniques
such as Bayesian approaches and variational inference, adversarial robustness, model
compression and distillation, uncertainty and ensembles, regularization, self-explaining
models, and hybrid techniques are used for advancing model explainability. The paper
concludes with a discussion on the implications of these techniques for future research.

1 Introduction
The rapid advancement of artificial intelligence (AI) has led to the widespread deployment of
complex black-box models in various critical domains such as banking, e-commerce, health-
care, and public services and safety [29]. While these models exhibit high accuracy, they
often lack transparency. This opacity poses significant challenges, including difficulties in
interpreting model behaviors [42], a lack of trust from end-users [59], and issues in meeting
regulatory requirements [27].

Related Work
In response to the challenges posed by the opacity of black-box models, the field of ex-
plainable AI (XAI) has emerged, focusing on developing methods to make AI models more
interpretable. Traditional XAI approaches, such as SHAP [44] and LIME [59], provide post-
hoc explanations for model predictions. These methods are popular due to their ability to
attribute importance to individual features [51] and generate understandable explanations
for model outputs [5]. However, they do not address the fundamental opacity of the models
themselves, as they offer explanations that are separate from the model’s inherent structure
and processes [60].

Counterfactual explanations (CE) also provide post-hoc insights but do so by identifying
changes in input data that would lead to different outputs, thereby offering a more intuitive
way to understand model decisions. CE ensures full fidelity to the model by construction,
meaning that the generated counterfactuals faithfully represent the model’s decision-making
process [2]. This characteristic makes CE particularly useful for generating explanations that
are accurate and reflective of the model’s internal logic.

Recent advancements in CE, such as the ECCCo framework (Explainable Counterfac-
tual Explanations through Constrained Optimization), further enhance this approach. The
ECCCo framework generates counterfactual explanations that are as plausible as the model
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allows, providing a more faithful representation of the model’s decision boundaries [1]. It
helps in evaluating the inherent explainability of the models.

Despite the usefulness of XAI methods, there is an interest in enhancing the inherent
explainability of black-box. This research aims to investigate what work has been done to
improve black-box models to deliver better explanations. Unlike other research that gener-
ally provides theoretical insights into the challenges and future directions of explainable AI
[61], this study focuses less on comparing XAI methods and focuses more on "Provided we
have tools to faithfully explain models, how do some models deliver better explanations?".
It offers insights into what makes models explainable, aiming to advance the understanding
of the factors contributing to the explainability of black-box models. Focusing on these
improvements helps to identify which models produce more plausible and faithful counter-
factual explanations.

Research Questions
Understanding and improving the inherent explainability of black-box models involves ex-
amining various aspects that contribute to model transparency and trustworthiness [62].
Analyzing predictive uncertainty is crucial because it provides insights into how confident a
model is in its predictions. Also, it has been shown that uncertainty quantification methods
helps reduce the complexity of explanations [20]. When models can quantify their uncer-
tainty, users can better trust and interpret the decisions made by the model, as they have a
clearer understanding of the model’s confidence in different scenarios [49].

Adversarial robustness is another critical aspect because models that are resistant to
adversarial attacks are less likely to be misled by small, malicious perturbations. This
stability ensures that the explanations provided by the model remain valid and reliable even
under adversarial conditions [47]. It has been shown that adversarial robustness improves
explainability [6].

Lastly, generative capacity is essential for producing realistic counterfactual explanations
and for making the latent representations of data more interpretable [67]. Generative models
that accurately capture the data distribution help generate more plausible and faithful
counterfactual explanations, which in turn enhance the model’s explainability by providing
a clearer understanding of the data generation process and hypothetical scenarios [39]. This
report analyzes how these aspects in various techniques improve the explainability of black-
box models.

This approach aligns with the overarching goal of advancing XAI by not just explaining
the models by various methods, but by enhancing the models to inherently support bet-
ter explanations. This research aims to systematically review and categorize the various
techniques developed to enhance the explainability of black-box models. The aim is to un-
derstand how these techniques impact the model’s ability to provide advanced explanations.
Sometimes, both interpretability and explainability terms can be used interchangeably in
the broad general sense of understandability in human terms [14], and this is also the case
in this paper. The possible consequences of this assumption are considered in Chapter 4.

The main contributions of this research are as follows:

• C1: Categorization of techniques aimed at improving the inherent explainability of
black-box models.

• C2: An analysis of the impact of these techniques on predictive uncertainty, adver-
sarial robustness, and generative capacity.

• C3: Insights into the practical implications of these techniques for enhancing model
explainability.
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While trying to answer the main question, the sub-questions in Table 1 are evaluated.
These sub-questions give insight on what the overall research goals seek to achieve. Detailed
reasoning for why these questions were addressed can be found in the ’Motivation’ column.
C1, C2 and C3 refer to contributions.

Table 1: Sub-questions to help answer the main research question with their motivations
Sub-question Motivation

1 What are the key model
improvement techniques
used to enhance ex-
plainability in black-box
models?

Related to C1. Identifying the various techniques allows
for a clear categorization of the different approaches re-
searchers have taken. This helps in understanding the
diversity of methods and their respective contributions.

2 How do these model im-
provement techniques im-
pact the quality of expla-
nations provided by the
models?

Related to C1 and C3. Assessing the impact on explana-
tion quality ensures that the focus remains on improv-
ing interpretability rather than just performance met-
rics. This sub-question evaluates how effective these
techniques are in making the models more explainable.

3 How do these techniques
affect the predictive un-
certainty?

Related to C2. Understanding this impact helps to de-
termine if improved explainability also leads to better
handling of uncertainty in predictions, which is crucial
for trust and reliability in real-world applications.

4 How do these techniques
affect the adversarial ro-
bustness of the models?

Related to C2. Evaluating the impact on adversarial ro-
bustness ensures that the models not only provide better
explanations but are also resilient to adversarial attacks.
This is important for the practical deployment of these
models in security-sensitive applications.

5 How do these techniques
affect the generative ca-
pacity of the models?

Related to C2. Investigating this relationship helps to
understand if improved explainability compromises the
model’s ability to generate new data or representations,
which is essential for tasks like data augmentation and
anomaly detection.

6 What are the key find-
ings and insights from
the research on improving
black-box models for bet-
ter explanations?

Related to C3. Summarizing the key findings provides a
concise overview of the major contributions and insights
gained from the research, highlighting the most effective
and innovative approaches.

The rest of the paper is organized as follows: Section 2 describes the methodology used,
including the initial sourcing from four databases and the subsequent snowballing method-
ology. Section 3 presents the results of the research. Section 4 discusses the reproducibility
and ethical aspects of the review. Section 5 discusses the results, and Section 6 concludes
with recommendations for future work.

2 Methodology
This paper is structured according to Preferred Reporting Items for Systematic reviews and
Meta-Analyses (PRISMA) guidelines [56]. This section outlines the methodology employed
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to conduct a systematic literature review using the snowballing approach. The aim is to
provide a clear and detailed explanation of the steps taken to answer the research questions
and to justify the chosen methods.

2.1 Snowballing Procedure
In this paper, the snowballing methodology is used as a search approach for the systematic
literature review. Snowballing is chosen for its effectiveness in uncovering comprehensive
and significant studies by iteratively expanding the set of reviewed papers. Guidelines from
Wohlin [71] are followed for a systematic snowballing procedure. The procedure consists
of two main phases: the initial sourcing of papers to form a start set and the subsequent
snowballing iterations.

2.1.1 Start Set

The first step in the snowballing process was to establish a start set of papers. The criteria
for selecting relevant papers for the start set included:

• Identifying records from 4 different databases to avoid missing relevant papers from
independent clusters.

• Including a sufficient number of papers to ensure a diversity of techniques, preventing
all papers from focusing on the same technique.

• Diversity in terms of publishers, years, and authors to capture a wide range of per-
spectives.

To form a start set, relevant keywords and their synonyms from the research question
listed in Table 2 were used:

Table 2: Relevant keywords and their synonyms from the research question
Keywords Synonyms
black-box model "black-box model*", "opaque model*", "complex

model*", "neural network*"
explainable explainab*, interpret*, "model explanation", clear*
improve improv*, enhanc*, advanc*, refin*, optimiz*

The papers in the initial set are collected from the following databases with a date
filtering to include papers from 2013 onwards as follows: IEEE Xplore1 ([12], [74]); ACM
Digital Library2 ([3], [8], [12], [16], [24], [58], [65]); ArXiv3 ([3], [8], [16], [24], [26], [30],
[32], [39], [47], [58], [74]); Scopus4 ([3], [24], [26], [30], [39], [47], [58], [74]). After removing
duplicated papers, 13 papers were selected for the initial set: [3], [8], [12], [16], [24], [26],
[30], [32], [39], [47], [58], [65], [74].

2.1.2 Iterations

After establishing the start set, the snowballing process proceeded through four iterations,
each consisting of backward and forward snowballing.

1https://ieeexplore.ieee.org
2https://dl.acm.org
3https://arxiv.org/
4https://www.scopus.com
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Backward Snowballing: The references of the selected papers were reviewed to identify
new relevant papers.

Forward Snowballing: Involved identifying new papers that cited the selected papers.
For both backward and forward snowballing, the following steps were taken:

1. Initial Screening: The titles were examined to determine their relevance.
2. Context Evaluation: The context in which the paper was cited was considered to

evaluate its relevance.
3. Abstract Review: The abstracts of the potential papers were read, followed by selective

reading of other parts if necessary.
4. Inclusion Decision: Only papers that met the inclusion criteria from Section 2.1.3 were

included for further snowballing.

The snowballing process is illustrated in Figure 1. It includes the results of the four
iterations (no more papers were found after iteration 4).

Initial Set: [3], [8], [12], [16], [24], [26], [30], [32], [39], [47], [58], [65], [74]

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Backward: [10], [28], [33],
[40], [53], [64], [66]

Forward: [4], [7], [9], [19],
[21], [22], [23], [25], [31], [38],
[57], [63], [72], [73]

Backward: [17], [41], [45] Forward: [11], [15], [36], [43],
[46], [48], [70]

Backward: [50] Forward: [52], [54], [55]

Backward: [35] Forward: [37]

Figure 1: The Snowballing Process

2.1.3 Inclusion and Exclusion Criteria

To ensure the quality and relevance of the papers included in the literature review, the
following inclusion and exclusion criteria were applied:

Inclusion Criteria:

• Paper introduces a technique to improve model explainability. (Ensuring relevance to
the core objective of advancing explainability)
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• Paper introduces a framework to improve the model which can directly/indirectly
advance explainability. (Including frameworks that contribute to the overall goal of
better model explainability)

• Paper is from the Computer Science or Machine Learning field. (Maintaining focus
on relevant academic disciplines)

Exclusion Criteria:

• Paper not written in English. (Ensuring accessibility and ease of review)
• Paper only comparing XAI methods. (Focusing more on model improvements rather

than comparisons)
• Paper only using existing XAI methods on various models. (Focusing more on model

improvements rather than explanatory descriptions)
• Paper only explaining how a specific XAI method works. (Focusing more on model

improvements rather than XAI methods)
• Paper with insufficient or unclear methodology details. (Ensuring rigor findings)

2.1.4 Data Extraction

This paper aims to answer "What makes models more explainable?". Many papers exist to
compare different explainability methods [34], but there is currently a gap in the literature
when it comes to reviewing the improvements done to black-box models to advance explain-
ability. To answer our questions, papers are reviewed and data is extracted using specific
criteria. The extracted information includes the title, author(s), and year of publication
to prevent duplication, considering that different databases might include the same papers
and many papers are frequently referenced or cited by others. The data extraction focused
on answering specific sub-questions: the model improvement technique (Sub-question 1),
the impact on explanation quality (Sub-question 2), the relationship with predictive uncer-
tainty (Sub-question 3), the relationship with adversarial robustness (Sub-question 4), the
relationship with generative capacity (Sub-question 5), and key findings (Sub-question 6).
The results of this data extraction are discussed in Section 3.

2.1.5 Reliability and Validity

The reliability and validity of the snowballing procedure were ensured by adhering to sys-
tematic guidelines. Specifically, the guidelines from Wohlin [71] were followed to main-
tain consistency throughout the iterations. The guidelines followed included: Systematic
Search Process to ensure a structured approach for both backward and forward snowballing,
Consistent Application of Inclusion and Exclusion Criteria throughout the iterations, Docu-
mentation of Decisions by carefully documenting included papers and Contextual Evaluation
where the context is evaluated in which references and citations occurred to ensure relevance.
Each step of the snowballing process was carefully documented, and all decisions regarding
the inclusion or exclusion of papers were based on predefined criteria from Section 2.1.3.

By iteratively expanding the set of reviewed papers through backward and forward snow-
balling, the study achieved a thorough understanding of the research area, uncovering various
studies that might have been missed using traditional search methods alone.
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3 Results
This section presents the analysis of the literature reviewed on improving black-box models
to advance explainability. The data collected has been discussed in several subsections,
including model improvement techniques, their impact on explanation quality, and their
influences on predictive uncertainty, adversarial robustness, and generative capacity. Each
subsection delves into these aspects in detail, providing an overview of the state of research
in this domain.

3.1 Model Improvement Techniques
This section categorizes and summarizes the techniques used in the selected papers to im-
prove the explainability of black-box models. Further details about the categorization can
be found in Appendix A.

Figure 2: Frequency of Techniques

The bar chart in Figure 2 shows the distribution of different techniques. This visualiza-
tion helps in understanding the frequency of use of different methods. The most common
technique in this review was Bayesian approaches and variational inference with 19 relevant
papers and the least common was self-explaining methods with 1 relevant paper.

Bayesian approaches and variational inference techniques integrate probabilistic models
into neural networks, providing a framework for handling uncertainty in model predictions.
Models like Bayesian Neural Networks (BNNs) and Variational Autoencoders (VAEs) use
Bayesian inference to estimate the distribution over model parameters or latent variables.
This allows the model to express uncertainty about its predictions and to learn representa-
tions that align closely with the data distribution. Methods such as dropout as a Bayesian
approximation, which treats dropout as a variational Bayesian method to estimate uncer-
tainty in model predictions [24], Bayes-by-Backprop, which performs variational inference
by learning distributions over network weights [8], and Auto-Encoding Variational Bayes,
which learns latent variable models for representing complex data distributions [39] are fur-
ther refinements. The relevant 19 papers for this category are: [7, 8, 9, 22, 23, 24, 25, 28,
31, 35, 36, 39, 45, 46, 52, 53, 54, 58, 74].
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Adversarial robustness techniques are designed to make models resistant to adversarial
attacks, which are small perturbations in input data that can cause significant changes in
model output. Methods such as adversarial training, which incorporates adversarial exam-
ples into the training process [47], and provable defenses that use mathematical techniques
to guarantee robustness against certain types of attacks [72], are commonly employed. These
techniques enhance the stability of the model by ensuring that its predictions remain con-
sistent even when the inputs are slightly altered in a way designed to deceive the model.
The relevant 10 papers for this category are: [4, 12, 26, 40, 47, 57, 63, 66, 72, 73].

Model compression and distillation techniques aim to reduce the complexity of neural
networks while maintaining their performance. Model distillation [32] involves training a
smaller "student" model to mimic the behavior of a larger "teacher" model [69]. Compression
techniques, such as pruning, quantization, and low-rank factorization, reduce the number
of parameters and operations in the model [18]. These methods streamline the model by
eliminating redundancies and focusing on the most critical parts of the network, thereby
simplifying its structure without significant loss in accuracy. The relevant 2 papers for this
category are: [10, 32].

Uncertainty and Ensembles represent another important technique used to enhance
model explainability. Ensemble methods combine multiple models to improve prediction
accuracy and estimate uncertainty. Techniques like bagging, boosting, and stacking in-
volve training several models and aggregating their predictions [41]. Bayesian ensembling
combines the strengths of Bayesian inference with ensemble methods to provide robust un-
certainty estimates [55]. By leveraging the diversity among the ensemble members, these
methods capture a broader range of model behaviors and uncertainties, resulting in more
reliable predictions. The relevant 5 papers for this category are: [21, 41, 48, 55, 70].

Regularization techniques aim to prevent overfitting and improve the generalization of
neural networks. Techniques such as L0/L1/L2 regularization, dropout, and batch normal-
ization add constraints or modifications to the training process to ensure that the model
does not become overly complex. These techniques penalize large weights, enforce sparsity,
or introduce noise during training, encouraging the model to learn more robust and general-
ized patterns rather than memorizing the training data [68]. The relevant 6 papers for this
category are: [33, 37, 43, 50, 64, 65].

Self-explaining models are designed with inherent mechanisms that provide explanations
as part of their architecture. These models integrate explanation-generation processes di-
rectly into their structure, ensuring that the outputs are accompanied by understandable
reasons. Examples include attention mechanisms in neural networks [3], which highlight
the parts of the input that are most relevant to the prediction, and models that output
human-readable rules or decision trees. The relevant paper for this category is: [3].

Hybrid techniques combine multiple methods to enhance both model performance and
explainability. These approaches integrate various improvement techniques, such as com-
bining Bayesian inference with adversarial training or using ensemble methods alongside
regularization. The goal is to leverage the strengths of different techniques to create models
that are both robust and interpretable [38]. The relevant 3 papers for this category are:
[17, 30, 38].

Other techniques include various innovative techniques that contribute to model ex-
plainability but do not fit into the previously mentioned categories. Techniques like neural
ordinary differential equations (ODEs) provide a mathematical framework for modeling
continuous-time dynamics, enhancing explainability by allowing users to track how inputs
transform continuously through the model [16]. Augmented neural ODEs expand this con-
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cept by adding latent dimensions to better capture complex data distributions, resulting in
more flexible modeling and clearer explanations of the model’s behavior [19]. Additionally,
the exploration of disentangled representations focuses on learning representations that cap-
ture distinct, interpretable features of the data [11]. By identifying and isolating factors
contributing to disentanglement in variational autoencoders, these techniques help in un-
derstanding the underlying data generation processes, thus improving model interpretability
[15]. These methods enhance the transparency and interpretability of complex models by
leveraging advanced mathematical frameworks and representation learning techniques. The
relevant 4 papers for this category are: [11, 15, 16, 19].

3.2 Impact on Explanation Quality
The improvement techniques directly impact the quality of explanations provided by the
models by making their decision-making processes more transparent and understandable.

Bayesian Approaches and Variational Inference
The integration of Bayesian methods significantly enhances the explainability of black-box
models by providing probabilistic interpretations of predictions. This means that instead
of giving a single deterministic output, the model provides a distribution, which reflects its
confidence in the predictions. This helps users understand not just what the model predicts,
but how certain it is about those predictions. This approach is demonstrated in techniques
such as Bayesian Convolutional Neural Networks [23], where uncertainty estimation helps
in understanding the model’s confidence. In safety-critical applications, knowing the un-
certainty of a prediction can be crucial. By capturing and communicating this uncertainty,
Bayesian models make their decision-making process more transparent, thereby increasing
trust and enabling better-informed decisions based on model outputs [54].

Adversarial Robustness
Improving adversarial robustness contributes to the reliability and trustworthiness of model
explanations. When a model is robust to adversarial attacks, its predictions are less likely
to be affected by small changes in input data. This stability ensures that the explanations
generated by the model are consistent and reliable. Robust models provide explanations
that are more aligned with the actual decision boundaries learned from the training data,
making it easier to understand and trust the modelâs behavior [13]. This increased reliabil-
ity is crucial for applications where the consequences of incorrect predictions are severe.

Model Compression and Distillation
These techniques enhance explainability by reducing model complexity while retaining pre-
dictive accuracy. Training a single model to mimic the behavior of an ensemble captures
the ensemble’s decision boundaries in a more interpretable form [10]. Similarly, using soft
targets provided by a larger model during knowledge distillation allows the distilled model to
retain essential predictive features with fewer parameters [32]. This process improves inter-
pretability by simplifying the model structure and making it easier to trace and understand
the decision-making process, while also being efficient for deployment in resource-constrained
environments.

Uncertainty and Ensembles
Ensembles enhance the explainability of models by providing multiple perspectives on the
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data and offering insights into the variability of predictions. The aggregated output from an
ensemble reflects a consensus view, which tends to be more robust and less sensitive to in-
dividual model biases [21]. Additionally, ensembles can provide confidence intervals around
predictions, helping users understand the range of possible outcomes and the confidence of
the model in its predictions. This added layer of transparency is crucial for building trust
in the model, as it communicates the reliability and stability of the predictions.

Regularization Techniques
Regularization enhances the explainability of models by simplifying their structure and mak-
ing their decision boundaries smoother and more generalizable. A regularized model is less
likely to overfit to noise in the training data [43], leading to more consistent and reliable
predictions. This consistency translates to clearer and more straightforward explanations,
as the model’s behavior is governed by broader, more interpretable patterns. Regularized
models are easier to analyze and understand, as they tend to avoid the complexities and
intricacies of overfitted models [50].

Self-Explaining Models
Self-explaining models enhance explainability by integrating interpretability directly into
their architecture. Self-Explaining Neural Networks (SENNs) decompose predictions into
concept vectors and corresponding importance scores, making it clear which features con-
tribute to decisions [3]. This method ensures that users can understand the rationale behind
each decision, which is particularly useful in critical applications.

Hybrid Techniques
Hybrid techniques enhance explainability by integrating multiple methods. InfoGAN com-
bines generative adversarial networks with information maximization to learn interpretable
representations by maximizing mutual information between latent variables and generated
data [17]. Generating visual explanations using natural language justifications helps users
understand predictions by combining classification and sentence generation, improving ex-
planation quality with discriminative class label loss during training [30]. Additionally,
semi-supervised learning with deep generative models captures data distributions and ex-
plains underlying data structures by combining generative modeling with semi-supervised
learning techniques [38]. This approach provides robust and comprehensive explanations,
making it easier for users to trust and comprehend the model’s behavior in complex scenarios.

Other Techniques
Other techniques enhance explainability by introducing novel ways of understanding and
interpreting the modelâs internal processes. Techniques like disentangled representations
allow for a clearer interpretation of the latent space, making it easier to understand how
different factors influence the modelâs outputs [11]. Neural ODEs provide a mathemati-
cally rigorous framework that enhances transparency and interpretability by modeling the
continuous evolution of data [19]. These innovative approaches contribute to a deeper and
more nuanced understanding of model behavior, expanding the toolkit available for making
black-box models more transparent and explainable.
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3.3 Impact on Predictive Uncertainty
Predictive uncertainty plays a role in model explainability. Techniques that quantify un-
certainty help in understanding and trusting model predictions. Appendix B represents the
scores for each paper from 1 to 5 to represent their impact on predictive uncertainty. Based
on their model improvement technique, these papers are clustered and Figure 3 shows the
average values for each technique.

The highest correlation with predictive uncertainty is shown by Uncertainty and Ensem-
bles, with the highest average score. For example, in [41], it is demonstrated how combining
multiple models in an ensemble can provide robust uncertainty estimates. This is achieved
by aggregating the predictions from different models, which helps in capturing the variability
and confidence in the predictions.

Figure 3: Impact on Predictive Uncertainty

Bayesian approaches and varia-
tional inference follow closely. Tech-
niques like [24] and [23] provide a prob-
abilistic framework for handling un-
certainty in model predictions. By
treating model parameters as random
variables and estimating their distribu-
tions, these methods offer insights into
the confidence of the modelâs predic-
tions.

Regularization techniques, such as
those discussed in [64], show moder-
ate correlations with predictive uncer-
tainty. These techniques add noise dur-
ing training to prevent overfitting, in-

directly helping in understanding the confidence of the modelâs predictions.
Self-explaining models and hybrid techniques exhibit moderate correlations as well. Self-

explaining models like those described in [3] provide inherent explanations for their predic-
tions, enhancing the understanding of model confidence. Hybrid techniques, combining
Bayesian methods with regularization, further enhance the reliability of predictions.

Model compression and distillation, along with other techniques, show lower correla-
tions. Techniques like [32] focus more on reducing model complexity while maintaining
performance, with less emphasis on directly addressing predictive uncertainty.

3.4 Impact on Adversarial Robustness
Adversarial robustness is important for ensuring that model explanations are reliable and not
easily manipulated. Appendix B includes the scores for each paper from 1 to 5 to represent
their impact on adversarial robustness. Based on their model improvement technique, these
papers are clustered and Figure 4 shows the average values for each technique.

Techniques such as those discussed in [47] use adversarial training, incorporating adver-
sarial examples into the training process to improve robustness. Uncertainty and ensembles
techniques also demonstrate a high correlation with adversarial robustness. These methods,
such as those in [41] leverage the diversity among multiple models to improve robustness
against adversarial attacks by providing more stable and reliable predictions.

Self-explaining models exhibit a moderate correlation with adversarial robustness. Self-
explaining models, like those in [3] provide explanations that are inherently robust to ad-
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versarial perturbations by integrating interpretability directly into their architecture.

Figure 4: Impact on Adversarial Robustness

Regularization techniques show a
significant correlation with adversarial
robustness. Methods like those dis-
cussed in [33] help make models robust
to overfitting and adversarial attacks
by enforcing constraints on the model
parameters.

Model compression and distillation
techniques also show a notable correla-
tion with adversarial robustness. Tech-
niques such as those described in [32]
use model distillation to improve ro-
bustness by training a smaller, simpler
model to mimic the behavior of a more
complex one, stabilizing the model’s re-

sponses to adversarial inputs.
Hybrid techniques demonstrate a lower impact on adversarial robustness. These meth-

ods, such as those in [4] combine adversarial training with other techniques to enhance
robustness, highlighting the importance of a multifaceted approach.

Bayesian approaches and variational inference and other methods show lower correlations
with adversarial robustness. These techniques, while excelling in areas like uncertainty
estimation and generative capacity, are not primarily designed for enhancing robustness
against adversarial attacks.

3.5 Impact on Generative Capacity
Generative models can provide insights into the data generation process, contributing to
model explainability. Appendix B represents the scores for each paper from 1 to 5 to
represent their impact on generative capacity. Based on their model improvement technique,
these papers are clustered and Figure 5 shows the average values for each technique.

Figure 5: Impact on Generative Capacity

"Other" techniques and "Hybrid
Techniques" show the highest correla-
tion with generative capacity, reflect-
ing their focus on advanced generative
processes. For instance, techniques in
[11] aim to disentangle the latent space,
enhancing the interpretability and gen-
erative capabilities of models.

Model compression and distillation
shows a relatively high correlation with
generative capacity. Techniques such
as [32] help streamline the model, mak-
ing it easier to generate new data rep-
resentations while retaining the origi-
nal model’s knowledge. Bayesian Ap-

proaches and Variational Inference also exhibit a high correlation with generative capacity.
Techniques like [39] capture the data distribution and generate realistic samples, crucial
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for meaningful counterfactual explanations. Similarly, [58] demonstrates how integrating
Bayesian methods can improve generative capacity by modeling the underlying data distri-
bution.

Uncertainty and ensembles, regularization techniques, and self-explaining models show
moderate correlations with generative capacity. Methods like [38] leverage generative models
to improve interpretability by capturing and explaining the underlying data distribution.

Adversarial robustness shows the least correlation with generative capacity, indicating
that its primary focus is on enhancing model stability and robustness rather than on data
generation. Techniques in this category prioritize preventing models from being misled by
adversarial inputs, which does not directly contribute to their generative capabilities.

4 Responsible Research
This section mentions the risk of bias in this research, reproducibility of results and further
ethical considerations for a responsible research.

Risk of Bias
This systematic literature review (SLR) was conducted by a single researcher, which intro-
duces potential risks of bias and errors. The involvement of a single researcher may lead
to inadvertent mistakes during the paper selection and data extraction stages. To mitigate
these risks, the methodology was carefully standardized, and clear criteria were established
for selecting relevant studies and extracting data. However, it is acknowledged that complete
elimination of bias is not achievable.

An additional consideration is the interdisciplinary nature of this research, which requires
a thorough understanding of both machine learning techniques and methods for improving
model explainability. While the primary researcher has a background in Computer Science,
efforts were made to bridge any knowledge gaps by consulting relevant literature and seeking
guidance from experts in the field. This approach ensured that the interpretation of results
and conclusions drawn were based on a comprehensive understanding of the subject matter.

In this literature review ’interpretability’ and ’explainability’ terms are be used inter-
changeably. This decision is based on the understanding that both terms, while sometimes
nuanced differently in specific research contexts, fundamentally aim to address the same core
issue: making AI models and their decisions more understandable to humans. However, it
is worth acknowledging that this interchangeability carries a risk. Specifically, conflating
the terms may obscure important differences in their precise definitions and applications in
some cases.

Reproducibility of Results
To ensure the reproducibility of this review, the methodology was described in detail. The
search strategy, including databases and keywords used, was thoroughly documented. The
inclusion and exclusion criteria for selecting relevant papers were clearly defined. All rele-
vant stages of the review process, including paper selection and data extraction, were doc-
umented. By following the described methodology, future researchers can verify the results
and potentially uncover additional insights. All papers included in the review were cited
and listed in the bibliography, providing a comprehensive overview of the literature analyzed.

Ethical Considerations
In conducting this research, ethical considerations were taken into account to ensure the in-
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tegrity and credibility of the work. All sources were properly cited to give credit to original
authors, and efforts were made to avoid plagiarism. The analysis was conducted objectively,
and any potential conflicts of interest were disclosed.

By adhering to these principles, this research strives to maintain high standards of ethical
conduct and scientific rigor, ensuring that the findings are reliable and contribute meaning-
fully to the field of explainable AI.

5 Discussion
This section summarizes the findings of this systematic literature review. Before discussing
these findings, possible impact of the start set and feasibility constraints are mentioned.

Possible Impact of Start Set and Feasibility Constraints on Results
Identifying a start set of papers is a challenge for the snowballing procedure [71]. Due
to time constraints, the initial set of papers was restricted to those published from 2013
onwards, considering the inclusion of recent advancements but potentially excluding foun-
dational studies and introducing a bias towards current trends. The review initially focused
on papers retrieved from four databases: IEEExplore, Scopus, ArXiv, and the ACM Digital
Library. This approach helps manage the volume of publications. However, in subsequent it-
erations, papers from different databases (e.g. Semantic Scholar 5 [28]) and earlier years (e.g.
2006 [10]), were considered to broaden the scope and diversity of the review. The quality of
the initial papers is critical, as influential papers are likely to lead to other related studies.
While the constraints applied to the initial set were necessary for feasibility, they may affect
the comprehensiveness and diversity of the review. These impacts were considered to ensure
a thorough analysis of techniques aimed at improving the explainability of black-box models.

Results discussion
The analysis of the literature reveals several key findings regarding techniques to enhance
the explainability of black-box models. Bayesian approaches and variational inference, iden-
tified in 19 papers, improve predictive uncertainty by providing probabilistic interpretations
that help users understand the confidence of model predictions [24]. Adversarial robustness
techniques, found in 10 papers, enhance the stability of model explanations by making pre-
dictions more reliable under adversarial conditions, ensuring consistent explanations even
with perturbed inputs [47].

Model compression and distillation techniques, identified in 2 papers, simplify models
by reducing complexity and focusing on critical parts of the network, thereby making the
models more interpretable [32]. Uncertainty and ensemble methods, discussed in 5 papers,
enhance explainability by providing robust uncertainty estimates through the combination
of multiple models, capturing variability and confidence in predictions [41]. Regularization
techniques, present in 6 papers, prevent overfitting and improve generalization by adding
noise during training or enforcing constraints on parameters, leading to more consistent
predictions and clearer decision-making processes [64].

Self-explaining models, although represented by only one paper, enhance transparency by
integrating explanation mechanisms directly into the model architecture, providing built-in
explanations for predictions [3]. Hybrid techniques, discussed in 3 papers, combine mul-
tiple methods to leverage their strengths, resulting in models that are both robust and

5https://www.semanticscholar.org/
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interpretable, improving interpretability by capturing and explaining underlying data dis-
tributions [38].

Neural ordinary differential equations (ODEs) provide a framework for modeling continuous-
time dynamics, enhancing interpretability by allowing users to track how inputs transform
continuously through the model [16]. Disentangled representations improve model inter-
pretability by learning distinct, interpretable features of the data, facilitating a better un-
derstanding of the underlying data generation processes [11].

6 Conclusions and Future Work
This research aimed to answer the question: "What makes models more explainable?".
Through the review of 50 related papers, techniques that enhance model explainability are
identified and categorized. Findings highlight the importance of Bayesian approaches, ad-
versarial robustness, model compression and distillation, uncertainty and ensembles, regular-
ization techniques, self-explaining models, hybrid techniques, and other innovative methods
in making black-box models more explainable.

Improving the inherent explainability of black-box models influence how plausible and
faithful counterfactuals are. Counterfactual explanations are post-hoc, but they offer full
fidelity by construction [2], ensuring that the generated explanations faithfully represent the
model’s decision boundaries. Techniques that improve model explainability contribute to
the quality of CEs, making them more understandable and reliable.

In conclusion, while there has been significant progress in improving black-box model
explainability, ongoing research is crucial for addressing remaining challenges and fully re-
alizing the potential of these techniques in practical applications. Open issues remain, such
as the scalability of these techniques to larger and more complex models and the need
for standardized metrics to evaluate explainability. Future research should focus on devel-
oping new techniques to enhance explainability, and investigating their applicability across
different domains and model architectures to provide deeper insights into their generalizabil-
ity. Combining these methods with counterfactual explanations could create comprehensive
frameworks for model explainability. Addressing scalability and applicability across differ-
ent types of models and datasets is essential to ensure these advancements lead to more
trustworthy and explainable AI systems.
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A Model Improvement Techniques Categorization

Reference Category Relevance
[24] Bayesian Approaches and

Variational Inference
Probabilistic interpretation aids in under-
standing and explaining the model’s confi-
dence in its predictions.

[8] Bayesian Approaches and
Variational Inference

Incorporates uncertainty in the weights of neu-
ral networks, enhancing the model’s ability to
represent and explain uncertainty.

[39] Bayesian Approaches and
Variational Inference

Method for variational inference in latent vari-
able models, learning disentangled and prob-
abilistically sound representations.

[58] Bayesian Approaches and
Variational Inference

Develops stochastic backpropagation tech-
niques, improving the explainability of gen-
erative models through a probabilistic frame-
work.

[26] Adversarial Robustness Provides insights into adversarial examples
and proposes methods to defend against them,
enhancing model robustness and explainabil-
ity.

[47] Adversarial Robustness Proposes adversarial training methods to im-
prove model robustness, making their predic-
tions more reliable and explainable.

[3] Self-Explaining Models Proposes self-explaining neural networks, in-
tegrating explanation mechanisms into the
model architecture.

[32] Model Compression and Dis-
tillation

Introduces knowledge distillation to compress
neural networks, making them simpler and
more explainable.

Continued on next page
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Table 3 – continued from previous page
Reference Category Relevance
[30] Hybrid Techniques Develops methods for generating visual expla-

nations, combining explainability techniques
with visual data.

[16] Other Methods Introduces neural ODEs for continuous-time
modeling, improving explainability by provid-
ing a clear mathematical framework.

[65] Regularization Techniques Discusses the role of proper initialization and
momentum in training, impacting model sta-
bility and interpretability.

[53] Bayesian Approaches and
Variational Inference

Introduces Bayesian methods for neural net-
works, providing a framework for incorporat-
ing uncertainty and enhancing interpretabil-
ity.

[64] Regularization Techniques Proposes dropout as a regularization tech-
nique to prevent overfitting, improving model
robustness and interpretability.

[28] Bayesian Approaches and
Variational Inference

Presents variational inference methods for
neural networks, enhancing model uncertainty
quantification and explainability.

[33] Regularization Techniques Introduces complexity penalization to pro-
mote simpler, more interpretable models.

[66] Adversarial Robustness Explores neural networks’ vulnerability to ad-
versarial examples, contributing to the devel-
opment of more robust and interpretable mod-
els.

[40] Adversarial Robustness Discusses scaling adversarial training, improv-
ing model robustness and reliability.

[12] Adversarial Robustness Provides methods for robustness evaluation,
ensuring valid explanations under adversarial
conditions.

[10] Model Compression and Dis-
tillation

Presents methods for compressing models,
simplifying their structure and enhancing in-
terpretability.

[25] Bayesian Approaches and
Variational Inference

Applies dropout with learned rates, enhancing
uncertainty estimation and explainability by
providing probabilistic interpretations.

[22] Bayesian Approaches and
Variational Inference

Comprehensive framework for uncertainty
representation in deep learning, improving
model transparency and interpretability.

[21] Uncertainty and Ensembles Uses deep ensembles to improve predictive un-
certainty, enhancing the robustness and inter-
pretability of model predictions.

Continued on next page
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Table 3 – continued from previous page
Reference Category Relevance
[23] Bayesian Approaches and

Variational Inference
Provides a framework for capturing uncer-
tainty in convolutional networks, improving
confidence in model predictions.

[31] Bayesian Approaches and
Variational Inference

Introduces regularization for learning inter-
pretable latent variables, enhancing the mod-
elâs explainability.

[7] Bayesian Approaches and
Variational Inference

Offers a thorough review of variational infer-
ence methods, essential for approximating and
interpreting complex models.

[38] Hybrid Techniques Combines generative models with semi-
supervised learning, improving the inter-
pretability of data representations.

[63] Adversarial Robustness Presents computationally efficient adversarial
training methods, enhancing robustness and
the reliability of explanations.

[57] Adversarial Robustness Enhances robustness by local linearization,
ensuring valid explanations under adversarial
conditions.

[4] Adversarial Robustness Improves adversarial training methods, ad-
dressing overfitting and enhancing the relia-
bility of model explanations.

[73] Adversarial Robustness Demonstrates the importance of unlabeled
data for robustness, supporting reliable and
interpretable model explanations.

[72] Adversarial Robustness Introduces a method for provable defenses
against adversarial attacks, ensuring stable
and reliable model predictions, enhancing ex-
plainability through robustness.

[19] Other Methods Enhances neural ODEs by adding dimensions
to the latent space, improving the model’s ca-
pacity to capture complex dynamics, and pro-
viding a clear mathematical framework.

[9] Bayesian Approaches and
Variational Inference

Proposes a learnable dropout rate within a
Bayesian framework, enhancing uncertainty
estimation and making model predictions
more interpretable and reliable.

[45] Bayesian Approaches and
Variational Inference

Provides a foundational Bayesian framework
for neural networks, allowing probabilistic in-
terpretation of weights and outputs, thus im-
proving model transparency.

[17] Hybrid Techniques Introduces a method for learning disentangled
representations in GANs, enhancing the inter-
pretability of the model’s internal representa-
tions.

Continued on next page
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Table 3 – continued from previous page
Reference Category Relevance
[41] Uncertainty and Ensembles Uses deep ensembles to estimate predictive un-

certainty, improving the robustness and inter-
pretability of model predictions.

[46] Bayesian Approaches and
Variational Inference

Presents a straightforward method for in-
corporating Bayesian uncertainty, enhancing
the interpretability and trustworthiness of the
model’s predictions.

[43] Regularization Techniques Introduces L0 regularization to induce spar-
sity, simplifying the model and making its
decision-making process more understandable.

[36] Bayesian Approaches and
Variational Inference

Distinguishes between different types of uncer-
tainties, providing a framework for better un-
derstanding and explaining model predictions,
especially in computer vision.

[48] Uncertainty and Ensembles Introduces Prior Networks to estimate predic-
tive uncertainty, enhancing model explainabil-
ity by providing clear confidence levels in pre-
dictions.

[70] Uncertainty and Ensembles Evaluates multiple hyperparameter configura-
tions to enhance robustness and quantify un-
certainty, improving interpretability through
robust measures.

[11] Other Methods Investigates β-VAE’s disentangling properties,
enhancing interpretability by aligning latent
space with human-interpretable features.

[15] Other Methods Explores disentanglement mechanisms in
VAEs, improving model explainability by clar-
ifying latent variable roles in output genera-
tion.

[74] Bayesian Approaches and
Variational Inference

Reviews advancements in variational in-
ference, enhancing explainability through
improved probabilistic approximations and
clearer model behavior insights.

[50] Regularization Techniques Introduces variational dropout for sparsify-
ing networks, simplifying models and making
decision-making processes more transparent.

[55] Uncertainty and Ensembles Assesses predictive uncertainty under dataset
shifts, ensuring reliability and informativeness
of uncertainty estimates for better model ex-
plainability.

[54] Bayesian Approaches and
Variational Inference

Integrates Bayesian principles into deep learn-
ing, providing probabilistic interpretations
and uncertainty estimates to enhance model
transparency.

Continued on next page
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Table 3 – continued from previous page
Reference Category Relevance
[52] Bayesian Approaches and

Variational Inference
Evaluates Bayesian methods for semantic seg-
mentation, providing insights into uncertainty
and interpretability improvements for segmen-
tation models.

[35] Bayesian Approaches and
Variational Inference

Integrates Bayesian methods into SegNet, pro-
viding uncertainty estimates for scene under-
standing tasks, enhancing interpretability of
model outputs.

[37] Regularization Techniques Proposes empirical Bayes approach to vari-
ational dropout, sparsifying networks and
enhancing explainability by reducing model
complexity.

B Impact on Explainability
The table below presents the scores assigned to various papers based on their impact on
predictive uncertainty, adversarial robustness, and generative capacity. The scores range
from 1 to 5, with 1 indicating minimal impact and 5 indicating significant impact.

Predictive Uncertainty:

1: The technique provides minimal or no insights into the uncertainty of model
predictions.

2: The technique offers limited insights into prediction confidence but lacks robust
probabilistic interpretation.

3: The technique provides moderate insights into prediction uncertainty with some
probabilistic interpretation.

4: The technique offers substantial insights into prediction uncertainty with robust
probabilistic interpretation.

5: The technique provides comprehensive probabilistic interpretations, significantly
enhancing understanding of model prediction confidence.

Adversarial Robustness:

1: The technique provides minimal or no defense against adversarial attacks.
2: The technique offers limited robustness against adversarial examples but is not

comprehensive.
3: The technique provides moderate robustness, improving stability under some ad-

versarial conditions.
4: The technique offers substantial robustness, ensuring stable predictions under

various adversarial conditions.
5: The technique provides comprehensive defense mechanisms, significantly enhanc-

ing stability and reliability under adversarial conditions.

Generative Capacity:
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1: The technique provides minimal or no generative capabilities.

2: The technique offers limited generative capacity.

3: The technique provides moderate generative capacity.

4: The technique offers substantial generative capacity, generating data closely match-
ing the original distribution.

5: The technique provides comprehensive generative capabilities, producing highly
realistic and plausible data, significantly enhancing model interpretability.

Reference Predictive
Uncertainty

Adversarial
Robustness

Generative
Capacity

[24] 5 1 2
[8] 5 2 2
[39] 4 1 5
[58] 4 1 5
[26] 2 5 1
[47] 2 5 1
[3] 3 2 2
[30] 2 2 3
[32] 3 2 2
[16] 3 2 4
[65] 2 3 1
[53] 5 2 3
[64] 5 2 2
[28] 4 2 4
[33] 3 2 2
[66] 2 5 2
[40] 1 5 1
[12] 1 5 1
[10] 2 1 3
[25] 5 1 3
[22] 5 1 2
[21] 5 2 3
[23] 5 2 3
[31] 3 1 5
[7] 4 1 4
[38] 3 1 5
[63] 1 5 1
[57] 1 5 1
[4] 1 5 1
[73] 1 5 1
[72] 1 5 1
[19] 3 1 4
[9] 5 1 3
[45] 5 1 3

Continued on next page
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Table 4 – continued from previous page
Reference Predictive

Uncertainty
Adversarial
Robustness

Generative
Capacity

[17] 1 1 5
[41] 5 2 1
[46] 5 2 1
[43] 3 1 1
[36] 5 1 1
[48] 5 2 1
[70] 5 4 1
[11] 2 1 5
[15] 2 1 5
[74] 4 1 4
[50] 4 2 1
[55] 5 1 1
[54] 5 1 1
[52] 5 1 1
[35] 5 1 1
[37] 4 1 1
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