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Preface

Preface
This document is the thesis for the Master’s end project in Maritime Engineering: Influence of Or-
thotropic Material Properties on Additively Manufactured Structures. The research for this thesis
was conducted at Delft University of Technology by a single master’s student during the academic
years 2023 and 2024. The research topic was provided by Dr. A. Grammatikopoulos, who aimed to
investigate a possible explanation for the discrepancy found in an earlier thesis, that aimed to develop
a 3D printed elastic model. This report describes the process of determining the orthotropic material
properties of 3D-printed PETG and their degree of influence on the dynamic response of a scale model
catamaran.

It is expected that the reader has basic knowledge of the maritime industry and the terms used with
additive manufacturing. Readers that wish to know about the determination of the material properties
can find this in chapter 1. Chapter 2 shows how the isotropic numerical model was modified to account
for the measure material values and finally chapter 3 shows the impact of these values upon the struc-
ture.

I would like to express my gratitude to my supervisor Dr. A. Grammatikopoulos for providing this project
and for always being available for support.

Valentijn van Troost - 5085101
Delft, November 2024
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Summary

The objective of this research was to address how the material properties that appear in additively
manufactured structures influence the behaviour of a fully elastic model that is produced with a 3D
printer. andWhat considerations for the design can be made to reduce the influence. This investigation
focused on the orthotropic and frequency-dependent behaviour of 3D-printed PETGmaterial, along with
the impact of a watertight epoxy layer on the outside of the model which is required to prevent water
ingress.

To explore these aspects, test specimens were printed in all three principal printing directions and
tested using a shaker setup. The specimens were specifically designed to evaluate both torsional
and bending responses; they were thin-walled and designed to be arranged in consecutive sections
suitable for 3D printing. Two testing configurations were employed: a weighted setup to lower the
minimum measurable frequency range, and an unweighted setup to measure shear moduli. However,
results from the weighted setup presented an issue where the eigenfrequencies from the second mode
onward were higher than in the unweighted test. Consequently, Young’s modulus values from the
unweighted shear setup, which had their own errors with a negative viscous component, were used for
further analyses.

These material properties were then incorporated into the numerical model, which was divided into four
different material models. Laminate theory was applied to bulkheads and other transverse structures
to predict the behaviour of horizontally printed sections, with the exception of the rear bulkhead, which
had an additional epoxy layer. An orthotropic material model was applied to the longitudinal walls,
including the deck and side walls. While the outermost skins combined orthotropic properties with an
epoxy coating. Additionally, a Boundary element method was used to assess the effect of the water
surrounding the model, generating an added mass matrix and hydrodynamic stiffness effects.

The updated model allowed for the assessment of each material property’s influence on the dynamic
response. The orthotropic behaviour was examined by varying the degree of orthotropic behaviour in
relation to the base values of the vertical Young’s modulus. For the epoxy comparison, the numeri-
cal model was run with and without the epoxy layer. Frequency dependency was evaluated through
multiple manual iterations until convergence of the frequency.

Results indicated that among the three orthotropic Young’s moduli, E1 consistently impacted eigen-
frequencies, largely due to its effect on transverse stiffness in both bulkheads and plating. E3 only
became relevant in the fourth mode, which is dominated by a two-point bending of the right pontoon.
The inclusion of the epoxy layer increased the eigenfrequencies by 2.6% across the mode shapes,
which is attributed to the added stiffness of the outer skin. Frequency dependency was not found to be
significant for the first four frequencies, with only a 0.22 Hz variation across these eigenfrequencies.

To address the influence of the epoxy layer, it is recommended to reduce the epoxy thickness by apply-
ing thinner layers or investigating if the structure can be made waterproof by melting the outer surface
thought or chemical process. The orthotropic behaviour may be harder to address; however, a combi-
nation of printing settings that yields a more isotropic result could be pursued. Alternatively, E1 could
be used as the primary Young’s modulus for model scaling to improve dynamic response alignment.
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1
Introduction

Additive manufacturing is a production method that builds up multiple layers of material. Following a
CAD design that is prepared in advance. This production method can also be used within the maritime
industry, as additive manufacturing has already been used to construct full scaled ships[1]. More inter-
esting for maritime research, it has the capability to create fully flexible models as shown by the work
of A. Keser [2]. However the choice of 3D printed materials is not without consequence as there are
somematerial properties present within 3D printed structures that can influence the behaviour of elastic
models. Which require additional consideration when one wants to use this method of production for
these models.

1.1. Literary background
The use of models to predict the behaviour of full-scale ships dates back to 1872, when William Froude
built the first basin for testing. These tanks have been instrumental in predicting the hydrodynamic inter-
actions of ships, encompassing aspects such as resistance, propulsion, maneuverability, seakeeping,
and structural response [3]. Thanks to advances in computational power within the computer industry,
it has also become possible to determine most of these values using CFD programs. However, due
to the excessive computational cost of CFD tools, they are still reserved for niche applications rather
than wide engineering applications. This means experimental methods are still essential [4]. While
most experimental results can be gained using simpler, rigid models, predicting or validating structural
responses often requires flexible models.

Flexible models can realistically deform under fluid excitation with near-identical strains in both model
and full-scale. This is achieved through three possible methods. The first involves joining multiple
segments of the model via an elastic backbone scaled to have the same bending properties [5]. The
second method joins ship segments via a series of flexible joints [6]. The final method, and the one we
are most interested in, employs a fully elastic model which captures the full deformation of all structural
elements [4]. The first two types are mainly used to measure longitudinal response but fall short when
investigating higher frequencies dominated by non-longitudinal bending modes. Fully elastic models
can account for these higher frequencies, but their presence in literature is limited due to design and
production difficulties [2].

Advances in additive manufacturing now make it possible to produce structures with sufficient internal
detail to include the influence of shear and transverse components, without the high costs associated
with other production methods [7]. This production method can thus be used to create fully flexible
models, as demonstrated by [2] and [8]. However, it also introduces certain dynamic material properties
that must be accounted for. To properly scale the thickness of the structure, the Young’s modulus
needs to be determined. The Young’s modulus of 3D-printed materials is influenced by many factors,
one being that 3D-printed structures are orthotropic, requiring different thicknesses in each direction for
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1.2. Properties additive manufacturing 2

proper scaling. Additionally, the Young’s modulus of these materials is strain-rate dependent, meaning
that wall thickness must also vary depending on the frequency range of interest. This variability makes
finding an appropriate scaling factor challenging [3].

Figure 1.1: Different types of elastic models [3]

1.2. Properties additive manufacturing
Considerable research has already been conducted to determine the material characteristics of 3D-
printed materials and the effects of different printing settings. S.H. Ahn et al.[9] Looks qualitatively at
the influence of different printing settings on the ultimate tensile strength (UTS). These consist of Air-
Gap/infill-ratio, raster angle, bead width, print temp, and colour. From which only the first two seem
to have an impact on the ultimate tensile strength. O.A. Mohamed et all.[10] works with a regression
model to look at the influence of layer thickness, air gap, raster angle, build orientation, bead width
and numbers of contours on the complex modulus and dynamic viscosity of the material instead of just
the static value. It finds that the air gap and number of contours have the largest impact. While J.L.C.
Quintana et al.[11] looks at the effect of frequency, strain and raster angle on the complex Young’s
modulus, they show how at higher frequencies the material seems to harden as shown in figure 1.2.
J. Chacón et all.[12] looks at the effect of build orientation and layer thickness on the static Young’s
modulus and UTS. M. Somireddy et al.[13] looks at the effect of layup and layer thickness on the static
flexural stiffness and flexural strength. Y.H. Huang et al.[14] looked into the effect of layer height. But
more importantly, they looked into the effect of different testing planes on the specimen, where they
found the difference to be negligible. This resulted in a reduction in the types of specimens needed
from 6 to 3. These specimens were then tested for their eigenfrequencies and successfully used to
determine the 9 material properties. These results can be used to reduce the amount of experiments
required.

Figure 1.2: Complex Young’s modulus from 3d
Printed structures [11]

Continuing on A. Milovanović et al.[15] looked qualitatively
at the influence of layer height, infill density and raster ori-
entation for PP printing material. They also find that air-
Gap/infill ratio seems to have the largest impact. Meanwhile
P. Biswas et al. [16] worked on predicting the effect of dif-
ferent printing parameters upon the degree of an-isotropic
behaviour. Using a representative volume element, they
modeled the micro structure of 3d printed samples and
compared the resulting material behaviour. They also did
a parametric study upon layer height, filament width, and
bond width. It was found that the porosity, which was cre-
ated as off the result of the changes, influenced the or-
thotropic behaviour. Similarly L. Sosa-Vivas et al[17] looked
into the effect of printing parameters on the elastic modulus
in both directions in the printing plane. They found that print-
ing speed doesn’t effect the degree of orthotropic behaviour
or the density. Additionally they suggest a relationship be-

tween the two factors.
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Some studies focus on models predicting the elastic behaviour in any direction of 3D printed specimens
based on nine engineering constants. Consisting of Young’s moduli, Poisson ratio’s and shear mod-
uli. The initial work seems to have been done by J.F. Rodrguez et al[18]. These Moduli are all added
to a stiffness matrix and used to calculate the stresses from the strain, measured in experiments. R.
Zou et al [19] gave a simplified linear relationship between raster angle and ultimate strength, while
modelling the specimens as transversely orthotropic material. T. Yao et al[20] shows that the Tsai-Hill
anisotropic yield criterion can be used to determine ultimate tensile strength (UTS) for any angle, while
also measuring the effect of layer thickness on the UTS. The resulting line is seen to agree better than
the linear relationship of R. Zou et al[19]. T. Yao et al[21]’s work is similar but includes the third dimen-
sion allowing for prediction of mechanical properties in any arbitrary direction. Both of these combined
show that the isotropic material theory of I.M. Daniel et al [22] can be applied to 3D printed structures to
predict mechanical properties. This also gives a model for the horizontal parts of 3d printed structures
which can be treated as composite materials. This saves time and samples as only the principle Young
moduli need to be determined.

Finally, some papers investigate finite element analysis(FEA) of 3D printed structures to predict static
and dynamic behaviour. M. Domingo et al [23] looked into the static response of a simple printed struc-
tures. They found that when given the full stiffness matrix the FEA could predict within 7.3% deviation
the response of the structure. S. Jiang et al [24] used FEA to predict the vibration response of a 3d
printed laminated specimen, showing a discrepancy of around 0.63% to 1.75% for the eigenfrequen-
cies.

From the above research, two main gaps were identified to be the focus of my MEP. Firstly, while
there is significant knowledge about the degree to which 3D-printed material is orthotropic and has a
strain rate-dependent elastic modulus, there is a lack of understanding regarding how these material
properties impact the dynamic response, particularly in structures resembling the internals of a ship.
Secondly, although much research has been conducted on the material properties, including ultimate
failure strength, it has primarily focused on specific materials with printer settings that differ from those
we are using. As a result, the findings from previous studies cannot be directly applied to our research,
leaving us with no clear understanding of these properties in our own material, therefore requiring us
to determine them for our own.
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1.3. Proposed research
The aim of this research is to characterise the impact of selecting additive manufacturing as the pro-
duction method for creating a fully elastic ship model. The primary focus is on the material properties
that influence the dynamic response of the ship model. But we will also look at the effect of the needed
watertight layer on the outside of the models. Specifically, this study delves into examining the effects
of orthotropic behaviour and frequency dependant properties in thinned wall structures. The research
question is formulated as follows:

• How do the dynamic properties of 3d printed structures effect the response of thin walled struc-
tures.

This main research question will be further subdivided into the following sub-questions to create a struc-
ture with which we will answer the main question.

• What material properties present in 3d printed structures should be determined for the design of
3d printed structures subjected to dynamic loads?

– What types of experiments need to be performed to obtain those properties?
– At what frequency does the shift from static to dynamic modulus occur?

• Which FEM model should be used to predict the impact of the material properties?

– How can we predict the behaviour of parts of the structure which are neither vertical nor
horizontal?

• What variable will be used for the impact of the material properties?

1.4. Planning and structure
To answer the research question the project was divided into three parts. The design of the initial
experiments and their specimens to determine the different material values of 3d printed thin walled
structures. The modification and validation of a existing FEM model with a existing elastic model cre-
ated by A. Keser [2], and finally this model will be used to determine the impact of different material
variables. Appendix A show the planning that was used during the project.

For those interested in the determination of the material properties of the PETG filament, this informa-
tion is provided in Chapter 2. Chapter 3 focuses on translating these material properties into those used
in the FEM of the elastic model, along with the incorporation of the epoxy layer and the hydrodynamic
effects of the surrounding water. Chapter 4 examines the impact of different degrees of orthotropic
behaviour, the epoxy layer and frequency-dependent behaviour. Finally the report concludes with a
possible measures that can be taken to reduce the effect of the found influence.



2
Material properties of 3D printed

structures

In order to determine the impact of the dynamic behaviour of 3d printed structures, we will first char-
acterize the degree to which these material properties are present. In this chapter we will be detailing
which material properties need to be investigated, the design of the specimen that were used in the
experiments and the experiments themselves. But first we will cover Froude scaling and why it is
important to correctly determine the Young’s modulus.

2.1. Material characteristics of Froude scaling
As stated before, models are often used to investigate the behaviour of larger structures, to validate
theoretical or numerical models. This scaling can be as simple as taking any length dimension and
applying the chosen scaling factor. However when working with ship models only linear scaling of
length fails to account for forces such as wave resistance. So instead, when creating a model that is
meant for the towing tank, Froude scaling is used. This is a scaling method that scales both the length
dimension and time dimension based of the Froude number:

Fr =
Vm√

g ∗ Lwl,m

=
Vs√

g ∗ Lwl,s

(2.1)

This scaling method results in the scaling factors in table 2.1 for length and time. This results in the
correct scaling of wave Resistance created by the model. One aspect that the Froude scaling doesn’t
account for, in the scaling of the hydrodynamic forces, is the viscous resistance. In order to scale this
aspect properly the Reynolds number should be used. This method of scaling isn’t used because it
requires having to test at a significantly higher speed.

For the design of a fully elastic model it require that not only the hydro dynamic properties are the same
but also the global bending dynamics. This means that the Young’s modulus, stiffness and mass of
this model should also be scaled with Froude scaling. This means that if the area moment is scaled
directly one would scale with the quadratic of the scaling factor. This would result in thicknesses so
thin that it would be impossible to produce and if successfully produced the resulting structure would
be to fragile to resist any force put upon it. Instead of scaling the area moment it is easier to scale
the bending stiffness EI. The bending stiffness is scaled by a combination of the scaling factor of the
Young’s modulus and area moment resulting in a scaling factor of the 5th power. Therefore allowing
the structure to retain a minimal thickness by scaling down the Young’s modulus instead.

Using this method of scaling the bending stiffness A. keser [2] created a fully elastic model based on a
offshore installation catamaran. This vessel was scaled with a factor of 180 resulting in the dimension
seen in table 2.2.

5



2.2. Experiments 6

Variable Unit Scale factor
Length m λ
Time s λ0.5

Mass* kg λ3

Speed m/s λ0.5

Inertia m4 λ4

Force kgm
s2 λ3

Pressure n/m2 or Pa λ
Frequency 1/s λ−0.5

Table 2.1: Froude scaling factor for different values.
*only holds when the density ratio of the water equals

1[3]

Item Ship Model
L 198 [m] 1100 [mm]
B 90 [m] 500 [mm]
H 26 [m] 144.4 [mm]
D 10.5 m 58.3[mm]
M 84603.5 [ton] 14.52[kg]

Table 2.2: Scaled dimensions of model[2]

The model consisted of three main parts: the main hull, the crane and the cargo. The size of each
of these parts was to large to print them using a single print requiring them to be split up in smaller
section that could be printed. The hull was split into three parts longitudinally and at each bulkhead
transversely. The last part in the design of the model entailed adding additional weight as the density
of the JPEG used for the production was significantly less then that of steel. The weights are placed in
such a way that they provide the correct center of gravity and the dynamic response remains the same.
The completed model can be seen in figure 2.1

Figure 2.1: Completed model [2]

The model was designed with an isotropic Young’s modulus of PETG with the value of 1.2e109[Pa] and
a Poisson ratio of 0.3887. However as stated before 3d printed structures aren’t perfectly isotropic.
They display orthotropic and frequency dependant behaviour. To see to what level these material
behaviours would cause problems with Froude scaling, we first have to obtain the degree to which
orthotropic behaviour and the frequency dependent behaviour are present.

2.2. Experiments
The degree of orthotropic behaviour and frequency dependency was determined through experimental
analysis of 3d printed specimens. In order to fully define the behaviour, the experiment had to find the
elastic properties in three directions. These direction are: longitudinal, transversal and vertical. These
can also be revered to as the local x/y/z-directions, the coordinate system is shown in figure 2.2. These
variables will allow for the construction of a complete stiffness matrix.
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Figure 2.2: Local coordinate system of 3D printed material

2.2.1. Experimental theory
Flexural modulus
To find the flexural elastic modulus we will use the theory of free transversal vibration of beams as can
be found in [25] and [26]. To determine the differential equation of the bending beam, we will look at
a infinitesimally small slice of a beam which is located at (x). The slice is shown in figure 2.3. In this
picture M is defined as the moment, V is shear force within the beam and F is the loading per unit length
put on the beam.

Figure 2.3: Moment and shear forces [25]

Using Newton’s second law of motion, the sum of the moments around the block looks as follows.

F = ma

M +
δM

δx
δx−M − (V +

δV

δx
δx)δx− F (x, t)δx

δx

2
= ρAδx

δx

2

δ2v

δt2

(2.2)

Two things should be noted when looking at this equation. Firstly the sum is taken around the left
side and secondly the rotational inertia is neglected. By letting δx in equation 2.2 approach zero, the
following relationship is created.

δM

δx
= V (2.3)

To gain the dynamic equilibrium for the transverse bending we also use newton’s second law in the
transversal direction. As shown in equation 2.4.

ρAδx
δ2v

δt2
= V − V − δV

δx
δx− F (x, t)δx (2.4)
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This equation is further refined by canceling out the shear forces and by applying 2.2 to the change of
shear over the beam. The following equation is created.

ρA
δ2v

δt2
= −δ

2M

δx2
− F (x, t) (2.5)

Using the Euler Bernoulli theory, the bending moment can be expressed as a function of the vertical
displacement. Resulting in equation 2.6.

M = EI
δ2v

δx2
(2.6)

By putting 2.6 into 2.5 we get the following.

ρA
δ2v

δt2
= −δ

4EIv

δx4
− F (x, t) (2.7)

The beam in question is assumed to be free of any external forces which allows us to say F(x,t) =0. At
the same time we can assume that E and I are constant for the length of the whole beam. Allowing us
to rewrite 2.7 to:

ρA
δ2v

δt2
= −EI δ

4v

δx4
(2.8)

Which in turn can be expressed as

δ2v

δt2
= −c2 δ

4v

δx4
(2.9)

with the constant C:

c =

√
EI

ρA
(2.10)

Equation 2.9 is a fourth order differential equation, in order to solve it we use variable separation.
Thereby splitting it in the time dependant part and the space dependant part.

v = ϕ(x)ψ(t) (2.11)

Substituting this into 2.9 obtains the following:

ϕ(x)
δ2ψ(t)

δt2
= −c2 δ

4ϕ(x)

δx4
ψ(t)− > ϕ(x)ψ”(t) = −c2ϕ(x)

′′′′
ψ(t) (2.12)

By assuming a sinusoidal function within the time dependency, we can define the constant ω as follows.

ψ”(t)

ψ(t)
= −c2ϕ(x)

′′′′

ϕ(x)
= −ω2 (2.13)

This allows us to separate the spacial en time terms along the following lines.

ψ”(t) + ω2ψ(t) = 0, ϕ(x)
′′′′

− (
ω2

c2
)ϕ(x) = 0 (2.14)

The time dependant equation is a simple second order equation, which means it can expressed as
following:

ψ(t) = B1cos(ωt) +B2sin(ωt) (2.15)
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In order to solve the spacial dependant part of the equation, we assume that ϕ(x) = Aie
λx this creates

the following series of equations with η =
√
ω/c.

ϕ(x)
′′′′

− (
ω2

c2
)ϕ(x) = 0

λ4Aeλx − ω2

c2
Aeλx = 0

(λ4 − η4)Aeλx = 0

λ4 − η4 = 0

(2.16)

There are four solutions to this equation, meaning that the spacial component of the solution looks as
follows:

ϕ(x) = A1e
ηx +A2e

−ηx +A3e
iηx +A4e

−iηx (2.17)

Which in turn can be rewritten using Eulers complex notation to the following.

ϕ(x) = A5cos(ηx) +A6sin(ηx) +A7cosh(ηx) +A8sinh(ηx) (2.18)

Using these equation 2.12 yields.

v(x, t) = (B1cos(ωt) +B2sin(ωt))(A5cos(ηx) +A5sin(ηx) +A5cosh(ηx) +A5cosh(ηx)) (2.19)

With the following eigenfrequencies.

ω =
(ηL)2i
L2

√
EI

ρA
(2.20)

As can be seen in equation 2.20 the eigenfrequency is dependant upon the value of the constant ηL.
This constant is in turn determined by the boundary condition on either end of the beam. These ends
can be either free, pinned, clammed or possibly have a mass placed at the end. As it will later be used
during the experiment we also include the derivation of the free-free condition. For a free-free beam
the end condition consist of no moment or shear force at either end. This means that for x=0 and x=L
equation 2.6 and 2.3 also equals 0.

δ2ϕ(0)

δx2
= 0 → −A5η

2cos(0)−A6η
2sin(0) + A7η

2cosh(0) +A8η
2sinh(0) = 0

δ2ϕ(L)

δx2
= 0 → −A5η

2cos(ηL)−A6η
2sin(ηL) +A7η

2cosh(ηL) +A8η
2sinh(ηL) = 0

δ3ϕ(0)

δx3
= 0 → A5η

3sin(0)−A6η
3cos(0) + A7η

3sinh(0) + A8η
3cosh(0) = 0

δ3ϕ(L)

δx3
= 0 → A5η

3sin(ηL)−A6η
3cos(ηL) +A7η

3sinh(ηL) +A8η
3cosh(ηL) = 0

(2.21)

These equations yield the following:

−A5 +A7 = 0

−A5cos(ηL)−A6sin(ηL) +A7cosh(ηL) +A8sinh(ηL) = 0

−A6 +A8 = 0

A5sin(ηL)−A6cos(ηL) +A7sinh(ηL) +A8cosh(ηL) = 0

(2.22)
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These equation allow us to say that A5 = A7 and A6 = A8. leaving us with two equations.

A5(−cos(ηL) + cosh(ηL)) +A6(−sin(ηL) + sinh(ηL)) = 0

A5(sin(ηL) + sinh(ηL)) +A6(−cos(ηL) + cosh(ηL)) = 0
(2.23)

In order for there to be non-trivial solutions to these equation the determinant should be zero. This
result in the following value for η.

cos(ηL)cosh(ηL) = 1 (2.24)
The equation has an infinite number of solutions each corresponding to a different eigenmode. One
solution to highlight is the zero solution as it represents the rigid body motions, with increasing values
representing higher modes. We are therefore able to link the elastic modulus to the eigenfrequencies.

Shear modulus
The flexural elastic modulus wasn’t the only elastic value that we were interested in. The shear modulus
can be found using the torsional vibration of beams. The method is largely the same beginning with
a infinitesimally small slice of a beam with shear modulus G, density of ρ and an polar inertia of J at
location x which can be seen in figure 2.4.

Figure 2.4: Moment and sheaf forces [25]

Using Newtons second lay we obtain the following equation for the dynamic behaviour for this free
beam.

ρJ
δ2θ

δt2
δx = T +

δT

δx
δx− Tδx (2.25)

Equation 2.25 is a second order differential equation which we can solve in the samemethod of variable
separation as equation 2.12. This separation gives two second order differential equations which when
solved, give the following equation for the spacial and time equation.

ϕ(x) = A1cos(
ωx

c
) +A2sin(

ωx

c
), ψ(t) = B1cos(ωt) +B2sin(ωt) (2.26)

For these equations the value of A1, A2, B1, B2 and ω are dependant on the boundary equation of the
beam. Here we will also use a free-free condition to asses the shear modulus at different frequencies.
The boundary equations for torsional bending become T (0) = 0 and T (L) = 0. With these two boundary
equations 2.26 results in the following:

A1
ω

c
sin(

ωL

c
) = 0 (2.27)

In order for there to be a non trivial solution the sinus term in the equation should be zero meaning the
the eigenfrequency of the torsional bending is as follows. For n = 0,1,2,3,4,... with n=0 being the rigid
body motion.

ω =
nπ

L

√
G

ρ
(2.28)
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However this method of calculating the bending and torsional eigenfrequency, assumes that the beam
can be approximated as a Euler beam. One of the assumption of the Euler beam is that the cross
section doesn’t change due to bending. This causes a conflict with one of the design principles of the
specimen that we wish to use later on to determine the different elastic moduli, namely that we want a
thin walled structure. Which cause warping to become a contributor to bending. Instead of this equation
a Fem, using shell elements, will be created to determine the different moduli.

The thin wall nature of the bending doesn’t only cause warping which prevents a Euler beam assump-
tion, it also causes us to measure different shear moduli at the same time. In the case of vertical
specimen everything is fine as the method of printing results in the GOL being measured along the
length of the whole cross section. For the other two specimen types there is a combination of different
shear moduli making up the elastic response. For the longitudinal specimen this consist of GLT for the
web and GLO for the flanges of the cross section. This means that the G that is measured from the
shaker testing is a combination of these two. In order to find the ratio to which these two are combined,
we used Saint Venant theory, for torsion in open thin structures. This theory holds that total torsional
stiffness of a cross section can be found by adding the torsional stiffness of each section separately
where GItot =

∑
GI1,2,3. The Area moment in this formula is equal to α ∗ b ∗ t3 with α being equal to

1/3 for thickness ratios larger then 1/10 [27]. Due to the square nature of the specimen, the measured
shear modulus for the longitudinal specimen is equal to 1

3GLT + 2
3GLO and the measured modulus for

the transversal specimen is 1
3GTL + 2

3GTO.

With the above mentioned relationships and the FEM we are able to determine the shear modulus
as a function of frequency. This leaves one variable which we need to define the Stiffness matrix,
the Poisson ratio’s for each direction. As can be seen from the above theory the Poisson ratio can’t
be determined from the eigenfrequencies as the term doesn’t appear anywhere within the derivation.
Instead we have to determine the Poisson ratio’s from the elastic properties. Thus equation 2.30 is
used to calculate the poisson ratio, keeping in mind that it relies upon an isotropic assumption, no other
option was seen as viable to find the Poisson ratios. Due to the symmetric nature of the stiffness matrix
we only have to determine the value of half of the Poisson ration’s, the other half can be found using
the following equation.

νij
Ei

=
νji
Ej

(2.29)

The Poisson ratio’s that will be used for the material model are the following νxy, νyz, νxz. As these are
the one’s that are used by ANSYS mechanical as material characteristics. For isotropic materials the
following equation is used to determine the Poisson ratio.

G =
E

2(ν + 1)
(2.30)

But in order to use this equation we must identify which E,G and ν are to be used together. For this the
equation was changed to the following:

Gij =
Ei

2(νij + 1)

νij =
Ei

2Gij
− 1

(2.31)

With these it was hoped to determine all Poisson’s ratios and shear moduli but as will shortly be shown
the measured shear moduli resulted in impossible values indicating a different method should be used.
Direct measurement is highly advised
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2.2.2. Specimen Design
When designing the test specimens that would be used for the determination of the different mate-
rial values, we needed to keep several design rules in mind if we wanted the resulting values to be
representative of those found in A. Keser’s model. These design rules were as follows:

• Thin-walled - As previously mention we were interested in a thinned wall structure, because a
normal 3D print usually consists of two distinct parts: the perimeters and the internal volume of
the print. Perimeters, which circle around the internal volume, can be up to three or four lines
thick and serve to improve the horizontal surface finish of the print and the resistance of the print
to buckling. The internal volume consists of a zigzagging pattern that, depending on the infill
percentage, fills the internal volume of the print, with larger percentages dramatically increasing
the stiffness of any structure and the failure strength. As A. Keser’s model was scaled down to
wall thicknesses measured in millimetres, as such it mostly consists of perimeters. In order to
create a similar structure, our specimen is designed to mimic this structure.

• Torsion and bending - The second aspect that we wish to include was to make a single specimen
that could be used for both the shear modulus and the flexural modulus. This will decrease the
required printing time, as a smaller amount of samples needs to be created and tested, the results
in the total amount being nine instead of 18 for each direction.

• Consecutive - This requirement comes down to the limitation of the production method of additive
manufacturing. A 3D printer is only capable of creating items of a certain scale dictated by the
size of the printing bed and the height of the gantry on which the extruder is mounted. In the
case of our 3D printer, it has a volume of 21x22x25 cm for length, width, and height. Using
these small lengths increases the eigenfrequency of a beam as per 2.20 and 2.28. Which results
in an expected eigenfrequency above the interested frequency range. To address the limited
length of any sample, it was decided that by gluing multiple samples together, one could lower
the frequencies. This does, however, require the individual sections to be attached to one another
in a secure manner.

• Printable - Another limitation of the 3D printer is encountered with the presence of overhanging
layers. This happens when the angle of any wall and the build plate are acute, causing the printer
to place a line partially unsupported. Larger angles often don’t cause issues, but angles of 40°
or smaller can cause loose lines or lines that aren’t melted together properly. Because of this, it
was decided to avoid overhangs in the main direction of the testing specimen for each of the 3D
testing directions.

With these design principles in mind, the following steps were followed in search of the final shape.
Initially, a dog bone-type specimen was envisioned, as it was previously used in other research to
determine the static elastic modulus [17]. While this shape did fit with some of the above-mentioned
design rules, it was found lacking in others. The expected order of magnitude for the elastic and shear
moduli indicated significant differences in eigenfrequencies, with bending being in the range of 0.001
Hz and torsional frequencies being in the range of 100 Hz. The second problem arose with the printing
of the specimen in the Z-direction. This would require a print that consisted of a single wall. Previous
experience with 3D printing and examples shown to us by Professor A. Grammatikopoulos, tells us that
such a print has a high likelihood of vibration-induced defects in higher layers, or even the separation
of the printed layers due to the limited cross-section in contact with the printing bed.

The next shape that was investigated consisted of a continuously square cross-section with a side
length of around 1.0 cm. This continuous shape would allow for an increase in stability while printing
and enhance bed adhesion. However, it was found that the bending frequency was still orders of magni-
tude larger than those of the torsional eigenfrequencies and that we would be unable to differentiate the
different shear moduli. As this same design also didn’t follow the thin-walled approach, it was quickly
abandoned and replaced with a hollowed-out version. This lowered the expected frequencies to the
desired range without requiring the sample to be meters in length.

The use of a hollowed-out section was seen as promising, so that design was iterated upon. In order to
meet the consecutive criterion, it was decided to set the length of a single section to 20 cm and to place
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flat caps at the ends. This would add rigidity to the torsional bending and allow for easier attachment
to one another. This design meets most of our criteria except that the vertical specimen would have a
small overhang but it was decided to use support here as the overhang wasn’t in the direction of testing.
The final design can be seen in 2.5 with it dimension in table 2.3.

Length Width Height Thickness Mass
20 [cm] 1 [cm] 1 [cm] 0.8 [mm] 5.12 [g]

Table 2.3: Vibrational specimen as designed.

Figure 2.5: Individual piece of vibration beam

2.2.3. 3D printer settings
Because of the high amount of variable that can influence the material characteristic of 3d printed
structure, [9–12, 28] we printed with the same parameters as those used by A. Keser [2]. This means
that the following printing parameters were used in the production of specimens. Nozzle diameter is
set 0.25 mm with a brass nozzle resulting in layers with a thickness around 0.28 mm. The Chosen
filament is the eSUN PETG filament. In the previous study the filament was dried at 50°C to remove
any moisture present in the roll due to long storage. The printing temperature was set of 230°C and
the bed temperature to 80°C. Initial layer height was set to 0.15 mm with the following layer being set
to 0.125 mm. Printing speed was set to 32 mm/s which is the same as the internal walls and bulkheads
of the model. Any faster speed was found to cause skipping in the extrusion gears.

One of the produced transversal sample’s can be seen in figure 2.6. upon inspecting the printed sample
it was found that the most prevalent error was at the corners, these had bulging. It is suspected that
this was caused by the lack of outer layers being present to hide this and the constant printer speed
setting as the printer usually slows down for these corners. These bulges were removed with a scalpel
to allow for the samples to be glue together. To check the accuracy of thicknesses produced by the
printer a electronic caliper was used. Table 2.4 contains the measured dimensions of all three types of
samples. The thickness of the sides was measured at 3 points for each side 1 cm from the ends and in
the middle. Additionally all sample were weighed after they were joined together. This weight, together
with the calculated volume resulted in a average density of the printed material of 1073.5 kg/m3. This
density is lower than the expected range of 1.270-1.380 [29]. This is likely due to the bulging of the
outside and the presents of air between the layers lowering the measured density.

Figure 2.6: Individual specimen transversal direction
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Specimen Length Width Thickness Volume(calculated) Mass
Longitudinal-X 60.5± 0.4 [cm] 1.03± 0.007[cm] 0.76 ±0.02 [mm] 15.8 [cm3] 15.8± 0.08 [g]
Transversal-Y 59.86± 0.09 [cm] 1.05± 0.01[cm] 0.90 ±0.02 [mm] 16.1 [cm3] 16.6±=0 [g]
Vertical-Z 61.1667± 0.23 [cm] 1.03± 0.007[cm] 0.88 ±0.03 [mm] 15.8 [cm3] 16.53±0.33 [g]

Table 2.4: Measured dimensions test specimens

2.2.4. Experimental setup
Initially it was envisioned that a impact hammer would be used to determine the different eigenfrequen-
cies of the specimens but after several attempts it was found that the specimen were too light and our
experience with the impact hammer to little to produce usable results. With the specimens often jump-
ing wildly or even breaking. Instead it was decided to make use of a modal shaker which was used by a
fellow student who could explain the setup and workings. Using the modal shaker, two different setups
were used for testing. A weighted approach for the flexural modulus and an un-weighted approach to
find the shear modulus. However we will first go over the data acquisition system (DAQ) and equipment
used as seen in 2.7 and 2.8 below.

Figure 2.7: Sirius DAQ and laptop running DewesoftX

In the figure 2.7 two things are visible: A HP Z-book laptop running DewesoftX and a Dewesoft Sirius-
HD-16xAcc Data Acquisition System. The latter is used to measure the voltages coming form the
accelerometers and control the modal DS-MS-100 shaker, which excite the different specimens con-
nected to it. The laptop is running DewesoftX 2024.2 which takes the measured results from the DAQ
and determines the Frequencies Response Function (FRF) of the excitation.
DewesoftX also required the creation of a setup file which contained the different setting for the mea-
surements. The acquisition range was set to 5000 Hz which gave a measured bandwidth of 2498 Hz.
Next all sensors were set from Volt to IEPE and a 200± mV measuring range was set, to avoid either
overload or losing resolution. For the settings of the modal shaker, the excitation of the beam was set
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to be a continuous random wave with a amplitude of 0.2V, resulting in a impact for of 0.3 N. With a
signal overlap of 66.7%. The FRF was calculated with the average over a 100 hits with a resolution of
.5 Hz. The shaker itself was attached 3 cm form the middle so the anti-symmetric modes would also
be excited.

Figure 2.8: Setup weighted test

The first physical test setup can be seen in figure 2.8. Here one can see the joined specimens placed
on top of two pieces of isolation foam placed 29 cm apart. This setup is used to approach a free-free
condition. Initial for the hammer testing it was attempted to suspend the specimen from elastic bands
but it was found that it was too light causing it to jump to the point that the strings were no longer in
tension. For the modal shaker it was decided to place the specimen on foam and make sure it stayed
in constant contact during the runtime to avoid any non-linear effect.

As stated two different setups would be used with the modal shaker to test for the eigenfrequencies of
the material. For the weighted test 3 28.5 gram weights were attached to the specimen using double
sided tape. This was done in order to lower the eigenfrequencies to below 10 Hz, as this was the lower
end of the frequency band that we were interested in. In addition to these weights 11 1-directional PCB
Piezotronics 352C22 accelerometers were used to measure the response of the beam to the excitation.
They were placed in a even spacing along the length of the specimen, with the outer sensors being
placed on top off the weights. As seen in 2.8.

The second test was meant to measure the shear modulus of the material. This method consisted of
placing the shaker on one side of the specimen in such a way that it would cause a torsional moment
in the beam, which would excite the torsional bending modes. In this case 10 accelerometers were
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placed along the length of the specimen in groups of 2, with them being placed side by side. This would
allow for the identification of the torsional and bending modes of this setup.

In the figure we can also see the attachment point of the DS-MS-100 modal shaker on the left in the
figure. This shaker is connected to the specimen with a thin rod, topped off by a force sensor. This
force sensors is used to measure the excitation forces and is connected to the same DAQ as the
accelerometers. The force sensor itself is attached to the specimen with a piece of double sided tape
between them, to maintain continuous contact between the shaker and the specimen.

2.3. Results: modal shaker testing
In this section we will go over the resulting FRF of the shaker testing and determine the different elastic
moduli. In total 9 different specimens were tested for each of the different printing directions. The FRF
and Phase diagram for one of the nodes of a longitudinal specimen, are shown below in figures 2.9
and 2.10. These figures show the amplitude of the response for the selected output channels on a
log-linear diagram as well as the phase of that response.

Figure 2.9: Frequency response function longitudinal direction

Figure 2.10: Phase diagram response function

The FRF (Frequency Response Function) displays the various resonance and anti-resonance peaks
of the node in response to random excitation. The eigenfrequencies can be identified based on both
a visible peak in the response function, as highlighted by the yellow line in Fig. 2.9, and the presence
of a backwards phase shift in Fig. 2.10. During the measurements, a total of 10 or 11 FRFs were
generated per specimen, each corresponding to the response of a single accelerometer. While it is
possible to analyze each FRF separately, it was considered time-consuming and unneeded. The FRF’s
where combined into the CMIF(complex modal indicator function) shown in figure 2.11, where the peaks
indicate the presence of a modal eigenfrequencies.
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Figure 2.11: CMIF diagram

The peaks found in CMIF could be collected using the estimation function setting from Dewesoft. For
the lower modes it was possible to directly identify them, but higher modes could only be identified
as either being even or odd modes. This was done by looking at the phase difference between outer
points. Using this method the following eigenfrequencies were found for each of the test setups.

Table 2.5: Bending eigenfrequencies in [Hz] found by the weighted shaker testing

Type 2b 3b 4b 5b 6b
L 10.35± 0.77 127.40± 8.57 247.27± 21.42 392.23± 31.42 532.13± 15.67
T 10.40± 0.94 126.28± 10.21 250.33± 8.39 366.70± 23.56 501.55± 13.78
O 10.39± 0.39 121.09± 6.10 235.23± 14.81 351.62± 22.76 499.32± 31.21

Type 7b 8b 9b 10b
L 654.24± 35.41 826.53± 42.25 914.60± 52.08 1249.22± 32.34
T 612.63± 25.42 851.38± 27.85 941.96± 67.81 1206.10± 16.08
O 606.22± 7.72 814.78± 39.78 886.63± 2.16 1127.50± 19.43

The same table values were also collected for the shear test setup.

Table 2.6: Bending eigenfrequencies in [Hz] found by the torsion type experiment

Type 2b 3b 4b 5b 6b
L 31.63 ± 2.60 82.83 ± 3.43 166.11 ± 8.60 271.06 ± 37.38 393.58 ± 15.51
T 33.79 ± 2.02 84.26 ± 3.37 158.14 ± 5.05 255.36 ± 38.45 389.13 ± 11.35
V 28.38 ± 4.18 82.63 ± 4.10 155.16 ± 17.85 250.98 ± 25.37 368.26 ± 10.42

Type 6b 7b 8b 9b
L 606.13 ± 31.11 741.81 ± 23.41 1023.40 ± 13.03 1249.80 ± 102.30
T 563.46 ± 51.74 719.63 ± 6.46 1024.74 ± 4.49 1233.00 ± 38.28
V 554.33 ± 32.01 724.39 ± 63.00 961.06 ± 70.11 1156.42 ± 67.65

In addition to the bending mode this test setup was also used to determine the torsional modes.
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Table 2.7: Torsional eigen frequencies in [Hz] found by the shaker testing

Type 1t 2t 3t 4t 5t 6t 7t
L 46.83 ± 11.4 110.63 ± 9.0 218.25 ± 9.7 338.71 ± 19.1 621.42 ± 27.9 864.10 ± 20.9 1073.58 ± 13.3
T 41.95 ± 8.9 111.10 ± 27.3 207.05 ± 14.6 368.39 ± 2.7 607.50 ± 9.5 869.10 ± 15.0 1063.94 ± 15.8
V 44.17 ± 1.0 107.83 ± 22.2 204.52 ± 11.3 437.27 ± 28.8 639.69 ± 12.6 831.52 ± 26.8 1065.40 ± 18.7

As stated during 2.2 experimental theory, the thinned-walled nature of the specimens makes the as-
sumptions of Euler beam theory untrue, so instead the program ANSYS MECHANICAL APDL was
used to determine the resulting elastic moduli from the different eigenfrequencies using shell elements.

A total of six different Fem models were created, each with the different dimensions measured from
the specimens as found in table 2.4. While it was initially proposed to use beam elements, the addition
of bulkheads in between the specimens necessitated the use of shell elements, to properly model the
behavior. In this regard, the element type SHELL181 was chosen for its use in structural analyses.
Additionally the element type MASS21 was also used to add the masses of the accelerometers ad
weights to the FEM. According to the manufacturer, these 352C22 type accelerometers weigh 0.5
grams [30], and with the total specimen weight of only 16 grams it was felt that their inclusion was
necessary. For the geometry of the model the connecting sections of the specimen where modelled as
twice the thickness of a regular wall section. This means that any effect of the added weight due to the
superglue or improper bonding were ignored.

With the geometry sorted the next step is to mesh and run the model. For this the mesh size was set
to 0.5 mm as was determine by a convergence study as partly seen in table 2.8 with a convergence
criteria of 1% across all interested modes. With the next mesh size only differing by 0.58% the mesh
size. The initial difference isn’t only caused by a rough mess, the placement of the weight upon that
rough mesh will also effect the outcome with finer meshes allowing more precise placement of the
weights.

It should be noted that not all measured results will be used to determine the material properties. As
higher modes are more difficult, both in their prediction using FEM’s and their measurement in the
dewesoft, the following modes where chosen for the measurements.

Table 2.8: Mesh convergency study interested modes of shear type experiment

Mesh size 2b 3b 4b 5b
0.0100 24.9726 68.8836 144.45 251.644
0.0050 25.56 70.54 147.84 250.62
0.0025 26.05 71.86 150.60 255.17
0.0013 26.23 72.33 151.48 256.73
0.0006 26.30 72.57 151.90 257.23

Mesh size 1t 2t 3t 4t
0.0100 38.32 84.45 176.97 320.982
0.0050 42.15 94.53 196.83 337.07
0.0025 40.81 91.18 190.06 335.93
0.0013 41.22 92.60 193.31 336.50
0.0006 40.98 92.26 192.95 336.28

The MAPDL code itself was run via a script in python that would automatically generate different values
of the Young’s modulus and Shear modulus and then put them in different text files to be run. These
files were then run individually within Mechanical APDL and the output was saved. The Python code
and an example MAPDL code can be seen in appendix B. To determine the uncertainty of the found
Young’s moduli it was decided to use first order error propagation which was done with the derivative
of the frequency-stiffness dependency curve found.

One of the generated geometries can be seen in figure 2.12.
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Figure 2.12: Pre-mesh MAPDL geomertry

Using the first natural frequency to determine the material properties for the two different testing meth-
ods, the results from APDL are as follows.

Table 2.9: Comparison between predicted eigenfrequencies of ANSYS and the measured eigenfrequencies (exp) in Hz with
constant young modulus

Longitudinal E=1.74e9 G = 6.92e8 Transversal E=1.82e9 G = 3.47e8 Vertical E = 1.29e9 G = 3.6e8
Mode type Ansys Hz Experimental [Hz] Error % Ansys Hz Experimental [Hz] Error % Ansys Hz Experimental [Hz] Error %
2b 31.64 31.63 0.0% 33.79 33.79 0.0% 28.33 28.38 -0.2%
3b 87.34 82.83 5.5% 92.37 84.26 9.6% 77.49 82.63 -6.2%
4b 182.83 166.11 10.1% 190.34 158.14 20.4% 159.76 155.16 3.0%
5b 308.17 271.06 13.7% 317.44 255.36 24.3% 267.27 250.98 6.5%

t1 46.77 46.83 -0.1% 41.94 41.95 0.0% 44.20 44.17 0.1%
t2 107.42 110.63 -2.9% 101.71 107.58 -5.5% 99.24 107.83 -8.0%
t3 227.90 218.25 4.4% 221.42 203.98 8.6% 204.15 203.17 0.5%
t4 400.77 338.71 18.3% 392.73 376.45 4.3% 346.07 437.27 -20.9%

Table 2.10: Comparison between predicted eigenfrequencies of ANSYS and the measured eigenfrequencies (exp) in Hz for
the weighted testing

Longitudinal E = 1.54e9 G 4.1e8 Transversal E=1.365e9 3.60E+08 Vertical E = 1.31e9 G = 3.3e8
Mode type Ansys Hz Experimental [Hz] Error % Ansys Hz Experimental [Hz] Error % Ansys Hz Experimental [Hz] Error %
2b 10.38 10.35 0.2% 10.42 10.40 0.2% 10.35 10.39 -0.4%
3b 63.06 127.40 -50.5% 61.26 126.28 -51.5% 59.52 121.09 -50.8%
4b 103.21 247.27 -58.3% 100.77 250.33 -59.7% 97.73 235.23 -58.5%
5b 239.39 392.23 -39.0% 235.41 366.70 -35.8% 224.49 351.62 -36.2%
6b 303.91 532.13 -42.9% 297.12 501.55 -40.8% 289.95 499.32 -41.9%
7b 375.76 654.24 -42.6% 355.82 612.63 -41.9% 356.63 606.22 -41.2%

From these results it should be clear that there is something wrong with the eigenfrequencies of the
weighted measurements. When one looks at the eigenfrequencies of a system with added masses one
would expect lower eigenfrequencies for the same modes. However looking at the frequencies in the
tables above, this is only the case for the first mode. The other modes are higher then their equivalent
in the ’shear’ tests. Theses deviations are also found when looking at the results from ANSYS where
second mode is at 63 Hz instead of the 127 Hz measured. Because of these facts it is concluded that
there was a error in the measurements of the weighted modes. The near identical setups between the
different modes makes it difficult to say were the error could arise from. It is assumed at this point that
the error is due to a way the masses were added to the specimens.

Frequency dependency.
The above values where for a constant Young’s Modulus across the frequency range. But we also
wished to investigate the frequency dependency of the material. In order to do this the Young’s mod-
ulus of the Fem was changed so that the predicted mode matched that of the measured results. This
was then noted down and the Young’s modulus was plotted against the frequency. But before we can
say anything about the frequency dependency of the response we need to determine a elastic model
with which to curve fit these points. For Thermoplastics there are several options [31]. It was decided
to use The basic the kelvin model also know as the Voigt-kelvin model. This model consist of a linear
elastic part and a dashpot/viscous part placed in parallel. Other models such as the Maxwell and the
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Weichert model were also considered but were either focused upon creep or meant for thermoset plas-
tics respectively.

The relationship between the complex dynamic modulus and the frequency for this type of material is
as follows:

E∗(ω) = E0(1 + iωτ) (2.32)

Were ω is the excitation frequency and ωτ is the loss modulus, this means that there is a linear rela-
tionship between the Young’s modulus and frequency. Using this relationship the following trend lines
were plotted.

The determined material values can be found in table C.1 in appendix C.

Figure 2.13: Measured frequencies dependant flexural modulus

Plotting all results in the same graph without the deviation range, results the following graph with trend
lines.
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Figure 2.14: Flexural modulus

In addition to the Young’s modulus we will also plot the shear modulus using the Voigt model which is
practically the same except for the use of torsional elements.

Figure 2.15: Measured frequencies dependancy shear modulus

The shear moduli plotted in the figures above where obtained with the Young’s moduli at the eigenfre-
quencies but their values are impossible. The range of values is to large and some values would cause
negative Poisson ratio’s to the points that the fourth torsional mode require a higher shear moduli then
Young’s moduli. Because of this it was decided to use a set Poisson ratio of 0.33 and calculate the



2.3. Results: modal shaker testing 22

shear moduli from the Young’s moduli with that Poisson ratio, instead of working with the measured
results.

The final material properties are as follows:

Figure 2.16: Chosen trend lines for flexural moduli

Using the Poisson ratio the shear moduli are as follows.

Figure 2.17: Chosen trend lines for shear moduli

Using the frequency dependency the first four frequencies are found and compared to the measured
results.

Table 2.11: Torsional eigen frequencies in [Hz] found with frequency dependent Young’s moduli

Longitudinal E=1.74e9 G = 6.92e8 Transversal E=1.82e9 G = 3.47e8 Vertical E = 1.29e9 G = 3.6e8
Mode type Ansys Hz Exp [Hz] error % Ansys Hz Exp [Hz] error % Ansys Hz Exp [Hz] Error %
2b 31.07 31.63 -1.8% 32.41 33.79 -4.1% 29.33 28.38 3.3%
3b 83.65 82.83 1.0% 85.64 84.26 1.6% 78.68 82.63 -4.8%
4b 167.74 166.11 1.0% 163.78 158.14 3.6% 157.03 155.16 1.2%
5b 267.51 271.06 -1.3% 249.30 255.36 -2.4% 251.93 250.98 0.4%

t1 43.89 46.83 -6.3% 52.63 41.95 25.5% 50.74 44.17 14.9%
t2 99.44 110.63 -10.1% 110.80 107.58 3.0% 108.12 107.83 0.3%
t3 202.22 218.25 -7.3% 204.95 203.98 0.5% 207.44 203.17 2.1%
t4 332.05 338.71 -2.0% 302.33 376.45 -19.7% 324.36 437.27 -25.8%
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2.4. Reflection upon experiments.
During the process of determining the material properties, various experimental setups were used.
Some produced useful results, while others did not, highlighting areas where improvements or changes
could be made. This section will discuss the different experiments, detailing what worked and what
didn’t.

As stated earlier, the initial modal analysis was attempted with an impact hammer instead of a modal
shaker. However, several factors prevented this method from producing usable results. The first issue
was the boundary conditions of the specimen. Initially, it was thought that the specimen could be
clamped to a surface, to mimic a clamped-free condition. However, the necessary clamping force to
achieve a clamped condition would cause the thin walls of the specimen to buckle and crush. This
might bee mitigated by partially filling the specimen with a 100% infill for 1 cm, which could withstand
the clamping force without being crushed. However, this approach introduced a discontinuity in the
structure.

Instead, a different boundary condition was attempted: a free-free condition. First, the specimen was
placed on a foam pad and tested with the impact hammer. Here, it was found that the specimen
would jump unpredictably and was more fragile than initially anticipated. In one of the exploratory trials,
an impact split the specimen’s walls, resulting in the loss of that particular sample. Additionally, an
attempt was made to suspend the specimen in the air with elastic bands. This method also failed, as
it was difficult to strike the specimen with sufficient force, and repeated hits did not produce any clear
mode shapes in Dewesoft. It is suspected that this was due to the difficulty in striking the same spot
consistently on a swaying, lightweight beam.

This led to the selection of the shaker method to excite the different specimens. Here, also, different
setups were used as discussed above. For the weighted approach, it became clear that adding weights
altered the boundary conditions, making it no longer a true free-free condition. It is suspected that the
weight ratio between the specimen and the added masses caused the weights to act as boundary
constraints. With the weights being 6 times the weight of the beam. Since the purpose of adding
weights was to further reduce the eigenfrequency to below 10 Hz, future attempts to achieve such
a low eigenfrequency should instead increase the specimen length rather than adding weights. The
modal shaker was also used for the torsion experiment, which aimed to measure the shear moduli of
the specimen. However, it was only successful in determining the Young’s modulus. This may be due
to a combination of the attachment method used for the shaker and the principles of Saint-Venant’s
theory. For the torsion setup, double-sided tape was used to attach the force sensor of the shaker to
the top of one of the side walls. Although it was checked that the attachment was secure both before
and after each measurement, the contact surface was quite small. Since the force sensor allows for
different attachment heads, it might be possible to machine a better attachment for the shaker in future
experiments. Additionally, an alternative method for determining Gxy, Gxz and Gyz from the measured
stiffness is needed. With the current approach, which relies on the assumptions of both orthotropic and
isotropic behaviour, the calculated Poisson’s ratios are below 0 which is outside the expected range of
0.2-0.4.

While there were reasons for the way the specimen was designed, in any future study one would seri-
ously have to consider a different design. Due to the thin nature of the specimens small imperfections
often caused the loss of the whole specimen. As a small break of blob would lead to disintegration the
rest of the wall at that point. In addition it might also be wise to consider the nozzle size when deciding
the scale of the model. The reason for this is that during the print, the 0.25 mm nozzle was prone to
clogging, which can cause problems if one were to attempt to print larger sections. When designing
their specimen one should also take into account what they are measuring. As the current one size fit
all approach doesn’t leads to optimal results for any of searched after variables.

The measured value of the flexural moduli we found (1.41-1.81 MPa) is above the expected range that
the producer of the PETG filament stated in its technical documentation (1.07 MPa) [32]. While some
change compared tot the base material could be expected due to uncertainty in the testing method.
The degree seen here indicates some process is hardening the material to a significant degree.

For future work it might be worth looking into a different testing method all together. Even if the current
method is successfully, there is only a limited amount of points in the frequency range for which the
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moduli can be determined. A method using bulk wave experiments or guided wave experiment would
allow for the determination of the Young’s modulus for a continuos frequency sweep instead of the
different setups which are needed for the current setups to get multiple points in the wanted frequencies
band. However the reasons for not choosing those method would still need to be addressed. While
bulk wave type experiments allow for the measurement of the speeds of P and S type waves though a
material, which allows for the measurement of both bulk and shear moduli, those waves require thick
section to move through for proper measurement which would required the dropping of the thin walled
nature of the material research additionally the internal structure of 3D printed material could cause the
waves to internally reflect. It does appear however that it is possible to test in the interested frequency
range as [11] shows that it’s possible to use DMA and measure the complex youngs modulus between
0.1 and 100 Hz.

2.5. Conclusion
The purpose of this chapter was to explain why and how the material properties of PETG were obtained
using modal analysis for a model scaled with Froude scaling.

The chapter begins by outlining the method used to scale down the structural stiffness for a fully flexible
model using Froude scaling. It explains how the total stiffness of a scaled-down section depends on
the Young’s modulus of the material for the scaled model. Next, the experimental theory covers the
relationship between the eigenfrequency and the Young’s/shear modulus, including the use of Saint-
Venant theory to determine the shear moduli G12 ,G13 and G23 from the measured GL GT, and GV.
This approach to determine the shear modulus did not produce usable results.

The chapter then details the various experimental setups used during the modal analysis. Beginning
with the design of the specimen, initial attempts were made using an impact hammer, but ultimately a
shaker was chosen for its more consistent results. It was found that the weighted approach somehow
increased the eigenfrequencies of the 2nd and 3rd modes compared to the unweighted approach,
likely due to the large mass ratio of the weights relative to the hollow beams. Consequently, only the
unweighted frequencies were used to determine the Young’s moduli.

These frequencies were converted into Young’s moduli using a FEM, from which it was found that the
vertical Young’s modulus was 75% of the longitudinal and transversal moduli. For frequency depen-
dency, it was observed that at higher frequencies, there was a decrease in the measured moduli.

For future research into the frequency dependency of 3D-printed materials, it is recommended to use
either bulk or guided wave experiments, as these methods allow for a continuous frequency domain
to be investigated, rather than being limited to the three points which was aimed for with the current
method. Bulk waves measurements may also enable direct measurement of the shear moduli, avoiding
the need for calculations based on Saint-Venant theory.



3
FEM model

Investigating the effect of the orthotropic and frequency-dependant material value with the physical
model shown in figure 2.1 would be difficult as there is no orthotropic model to compare to. Helpfully A.
Keser also created a complete Finite Element Model (FEM) of the catamaran 3.1. This chapter will go
into detail how the material values determined in the last chapter were applied to the FEM. And how
the effect of the surrounding water was accounted for in the resulting analysis of the model.

Figure 3.1: MESH scaled model

3.1. Model for orthotropic behaviour
As stated in the design guide lines for the vibration specimens 3D printed structures consist of 2 different
structural types that effect the elastic properties: the outer lines, a.k.a. the perimeter, highlighted with
red in figure 3.2 and the internal structure, a.k.a. the infill, highlighted in figure 3.8. While both of these
structures are anisotropic, they do differ with the perimeters acting like fully orthotropic and the infill
acting more like a transverse isotropic material.

3.1.1. Orthotropic model - walls

Figure 3.2: Perimeters of 3D print

25
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Using the material values gathered in 2.2, we can construct a stiffness matrix. This shows the elastic
relationship between stress and strain for each of the principal directions of the 3D printed structure.
This matrix [C] is referred to as the compliance matrix.
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γ23
γ13
γ12
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G23
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G13
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σ1
σ2
σ3
τ23
τ13
τ12

 (3.1)

Using this matrix, we predict the elastic deformation of a orthotropic material. However this compliance
matrix can only be used for the main coordinate system of the material. This is only the case in straight
walls without any overhang, requiring us to transform the compliance matrix to fit the different local
coordinate systems that are present in our model. Simple 90◦ rotation can be used for straight walls
and single layer thick floors. The stiffness matrix must be transformed for the other curved walls. To
transform the stiffness matrix accordingly, we will be using a transformation matrix as explained by [22].
This method works by transforming the stress and engineering strain using a transformation matrix[T].
This matrix is determined by the angle from each coordinate axis from the material(123), to the axes of
the local coordinate system(xyz). This results in a total of nine angles to consider. Three of the angles
are shown in figure 3.3. A quick way of determining these angles is the use a rotation matrix for a 3
dimensional system. After this we use the dot product to find the angles needed in table 3.3.

Figure 3.3: Rotation angles form x-axis [22]

m1 = cos(θx1) n1 = cos(θy1) p1 = cos(θz1)

m2 = cos(θx2) n2 = cos(θy2) p2 = cos(θz2)

m3 = cos(θx3) n3 = cos(θy3) p3 = cos(θz3)

(3.2)

[T ] =


m2

1 n21 p21 2n1p1 2p1m1 2M1n1
m2

2 n22 p22 2n2p2 2p2m2 2M2n2
m2

3 n23 p23 2n3p3 2p3m3 2M3n3
m2m3 n2n3 p2p3 n2p3 + n3p2 p2m3 + p3m2 m2n3 +m3n2
m3m1 n3n1 p3p1 n3p1 + n1p3 p3m1 + p1m3 m3n1 +m1n3
m1m2 n1n2 p1p2 n1p2 + n2p1 p1m2 + p2m1 m1n2 +m2n1

 (3.3)



3.1. Model for orthotropic behaviour 27

This transformation matrix works with engineering strains which differ from the tensoral strain vector in
3.1 by a factor of 2 for the shear strain, requiring us to transform the tensoral strain into the engineering
strain with matrix [L].

[ϵ]engineering = [L][ϵ]tensoral
ϵx
ϵy
ϵz
γyz
γxz
γxy

 =


1

1
1

2
2

2




ϵx
ϵy
ϵz

0.5γyz
0.5γxz
0.5γxy


(3.4)

In order to transform the strain from 3.1, we first change it into a tensoral strain, followed by a transfor-
mation with [T], and then turn it back to an engineering strain which looks as follows:

[ϵ123] = [L][T ][L]−1[ϵxyz] (3.5)

The transformation of the stress is easier and looks as follows

[σ123] = [T ][σxyz] (3.6)

Combining 3.1, 3.5 and 3.6 we acquire the following results for the compliance matrix in any direction.

[ϵ123] = [C][σ123]

[L][T ][L]−1[ϵxyz] = [C][T ][σxyz]

[ϵxyz] = ([L][T ][L]−1)−1[C][T ][σxyz]

[Cxyz] = [L][T ]−1[L]−1[C][T ]

(3.7)

With this methode we can rewrite equation 3.1 to the following arbitrary coordinate system XYZ
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With this compliance matrix we can now model the elastic moduli in any of the local coordinate systems.
As stated before this can be used to model the walls of the printed structure by rotating around the
vertical axis. A rotation around the transversal axis is used to account for the curving of the hull and the
middle deck. Figure 3.4 shows how the elastic moduli differ with rotation around the longitudinal axis,
with 3.5 and 3.6 showing the rotation over the transversal and vertical axis, based upon the material
values at 40 Hz.

Table 3.1: Material values at 40 Hz

Elastic moduli E_1 E_2 E_3 nu_12 nu_13 nu_23 G_12 G_13 G_23
1b 1.66e9 1.70e9 1.37e9 0.38 0.38 0.38 6.03e8 6.03e8 6.15e8

These material values were used with the internal structure of the model (see 3.10) and the skin of the
model without an epoxy layer.
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Figure 3.4: Plots of of the elastic moduli as rotated around the longitudinal axis at 40 Hz

(a) a (b) b

Figure 3.5: Plots of of the elastic moduli as rotated around the transversal axis at 40 Hz

(a) a (b) b

Figure 3.6: Plots of of the elastic moduli as rotated around the vertical axis at 40 Hz
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Figure 3.7: Internal walls modeled as orthotropic material

3.1.2. Composite - bulkheads and web frames

Figure 3.8: Infill 3D print

The second type of material is the infill. This is used to fill most of the internal volume of any print.
Normally this consists of around 3–7 solid layers, followed by layers that are hollow, and finally again
3–7 layers of solid infill to cap off. Due to the thin walled nature of the model created by A. Keser, this
middle layer is absent. Instead the bulkhead and other horizontally printed elements were solid.

In order to model the elastic characteristics we could use the composite theory from [22]. However this
theory is based upon a 2D plane and assumes that the mid-plane is inextensible e.i. ϵzz = 0 and does
not account for the torsion or bending in the third plane.

Instead the ACP-pre module of Ansys Mechanical will be used to determine the material values in all
directions. This allows for a direct definition and use of the laminate material within the same program.
However to do so we first need to determine the first layup of the infill. As this will determine the ori-
entation of the individual layers. The default layup settings for most slicers use a repeating [45,-45]
pattern for the layup relative to the build plate. The average thickness of a bulkhead was 0.56 mm [2]
and with a layer thickens described before, a total of 4 layers should be present with the following layup
and thicknesses: [-45,45,-45,45], [0.15,0.125,0.125,0.125]. The measured difference in total thickness
could be caused by uncertainty in the thickness of the different layers as was found in [2].

These layups were recreated within the ACP module and the resulting material values extracted and
applied to the horizontally printed bulkheads as an orthotropicmaterial. It was initially attempted to apply
the ACP module directly to the model of [2] but this caused the numerical model to no longer work. The
cause of which was discovered to late in the process to address. This had two consequences: the
vertical Young’s modulus for stacking direction had to be determine by spring in series theory and the
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coupling between bending and tension present in composite structures is neglected. This results in the
following elastic properties for the layup for the bulkheads at 40 Hz.

Table 3.2: Material values of the bulkheads at 40 Hz

Elastic moduli E_1 E_2 E_3 nu_12 nu_13 nu_23 G_12 G_13 G_23
value [Pa] 1.67e9 1.67e9 1.37e9 0.39 0.37 0.37 6.07e8 6.09e8 6.09e8

These material values were used with the internal bulkheads of the model (see 3.10) and the rear of
the model without an epoxy layer.

Figure 3.9: Internal bulkhead modeled as composite structures

3.1.3. Composite - epoxy coated structure
In addition to the bulkheads, the outer layer of the model also consisted of multiple layers. When
constructing the initial model A. Keser joined the individual section with the use of epoxy resin. Addi-
tionally to waterproof the structure a final layer of epoxy was applied around the whole model. The total
weight of resin added was 140g. Because this resin was added to the outside and could also effect the
response, it will also be accounted for in the numerical model.

The resin used was poly service THV-500 and harder 355. We used the material properties found on
polyservice.nl [33], which state that the hardened epoxy has a Young’s modulus of 2.6e9 Pa and an
assumed Poison ratio of 0.33. The surface area of the scale model is 1415181.61 mm2 as measured
from the Rhino model provided by A. Keser. This together with the density given by the manufac-
turer of 1.1 [g/cm3] give a average thickness of 0.089 mm. This means that the layup for the sec-
tions which have epoxy coating is as follows: [0.53,0.089] mm for the skin and the local rotation and
[0.089,0.15,0.125,0.125,0.125,0.125] mm for the stern of the model.

This gives the following material values for the skin 3.3 and the stern 3.4 of the model:

Table 3.3: Material values of the epoxy coated bulkhead at 40 Hz

Elastic moduli E_1 E_2 E_3 nu_12 nu_13 nu_23 G_12 G_13 G_23
1.79e9 1.79e9 1.44e9 0.38 0.35 0.35 6.52e8 6.62e8 6.62e8
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Table 3.4: Material values of the epoxy coated skin at 40 Hz

Elastic moduli E_1 E_2 E_3 nu_12 nu_13 nu_23 G_12 G_13 G_23
1.77e9 1.76e9 1.50e9 0.35 0.37 0.34 6.52e8 6.43e8 6.59e8

These material values were used with the skin of the model, where the epoxy is present.

Figure 3.10: Skin section modelled with epoxy.

3.2. Added Mass of surrounding water
With the material properties of the elastic model now fully defined we can predict the ”dry” response
of the model. However as the elastic model is meant for use within a towing tank to predict the hydro
dynamic interaction, we will also include effects of the surrounding water to mimic the ”wet” response.
The method by which the hydro elastic interaction is modelled with numerical analysis is based upon
the framework presented by [34] and [35], the latter of which is a fellow master student who was able
to provide in-depth explanation of the method and a code modified to the need of this project.

3.2.1. 3D structual model
The numerical analysis is based on mode superposition and consists of three components: a 3D struc-
tural model, a 3D hydrodynamic model and lastly a iterative procedure for a ’wet’ eigenvalue analysis.

The 3D structural model in our case is A. Keser’s model, modified with the material properties found
above. This model was meshed with square shell elements. Initially it was thought that it might be
possible to cut the model in two to save calculation power, but it was found that the eigenmodes which
where of interest to us weren’t symmetrical in the XZ-plane of the model. What was simplified were the
structures of the crane and tower, located on the deck of the model. These were replaced with point
masses that where constrained to the deck surface, as we are mostly interested in the dynamics of the
hull.
In the structural model the only forces that are present are those of the structure itself. This means there
is no influence of hydrodynamic dampening or hydro static stiffness making this the ’dry’ eigenvalue
analysis. With the only forces present in the model being the inertia of the model and the stiffness of
the material, neglecting external forces and damping as we did with the material properties. Based on
this Newtons second law looks like:

MstrU”dry + 0 + KstrUdry = 0 (3.9)

With U being the degree of freedom for each element in the model and M and K being the structural
mass and stiffness matrices. Similar to the way that the 2D beams modal shape consisted of a time
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dependant part and a location dependant part, we can assume the degree off freedom to consist of a
time/frequency dependant part and the eigenvectors. By splitting these up and taking the derivative we
can rewrite the above equation as follows.

(Kstr − (ωstr)2Mstr)Φ = 0 (3.10)

Where ωstr are the eigen frequencies and Φ is the eigenvector matrix from which we can get the dry
eigen mode. By extracting the values for the degrees of freedom in x,y, and z for each point we can
find Φx,Φy,Φz for the dry isotropic model which are the displacements in x,y and z for each point. The
first 10 frequencies are shown below.

Mode rigid-1 rigid-2 rigid-3 rigid-4 rigid-5 rigid-6 flex-1 flex-2 flex-3 flex-4
Freq[Hz] 0 0 0 0 0 0 25.507 28.095 46.358 50.657

Table 3.5: ’Dry’ eigen frequencies of orthotropic model

Because of the lack of outside forces the model is free to move in any direction without a restoring force.
This means that the translation and rotation in the 6 degrees of freedom are unbound, resulting in a
eigenfrequency of zero for the surge, sway, heave, roll, pitch and yaw. Once the effect of hydrostatic
stiffness is added we should see the heave, roll and pitch to have values above zero. The 4 non-
zero values represent the bending modes of the structure. These are there due to the flexibility of the
structure itself.
The last part of the ’dry’ solution is to find the ’dry’ modal mass and ’dry’ modal stiffness matrices. These
matrices are calculated by combining the eigen vectors and the mass/stiffness matrix as shown in the
equation below.

(Φ)T ∗Mstr ∗ Φ =Mmodal

(Φ)T ∗ Kstr ∗ Φ = Kmodal

(3.11)

The value in these matrices represent to which degree the mass/stiffness, that is present within the
structural model, contributes to each of the bending modes. More importantly by creating these modal
matrices we will be able to calculate the ’wet’ eigenfreqency without having to involve the whole struc-
tural analysis. For the model these matrices have the following values*.

Location 1 2 3 4 5 6 7 8 9 10
Mass[kg] 14.29 4.987 4.896 3.738 7.368 4.009 5.098 4.035 5.390 2.979

Table 3.6: Modal mass of each mode shape

Location 1 2 3 4 5 6 7 8 9 10
Stiffness[kN/m] 0 0 0 0 0 0 81.0 85.8 302.8 207.7

Table 3.7: Modal stiffness for each mode shape

*Both matrices are diagonal matrices.

3.2.2. 3D hydrodynamic model
Due to the different needs of the structural and hydrodynamic analysis two different meshes were re-
quired. The difference being found in the parts of the scale model that needs to be included, compared
to the mesh of the structural model the Mesh of the hydrodynamical model was also hollowed out and
cut down to the waterline. This had a height of 5.83 [cm]. The reason for doing so was because of
the use of a boundary element method (BEM) which doesn’t require either the internal structure or
the above waterline skin. This means that the eigenvector displacement needs to be translated to the
new mesh in order to use the eigenmodes in the hydrodynamic simulations. For each of the flexural
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modes the displacement is found for each point with Φx,Φy,Φz from the dry eigen vectors. These are
then plotted against the coordinates of the new mesh. Interpolation is used to determine the correct
displacement for the ’wet’ mesh.

Figure 3.11: Hydro dynamic mesh used with BEM solve

In addition to the displacement of the mesh from the structural deformation, it was also assumed that
for the rigid motion the model is undergoing small oscillations in each of the 6 degrees of freedom. The
BEM is used to solve the values of the added mass matrix and the hydrostatic- and gravitation-stiffness
which are the solutions of the radiation problem with the following equation:

Aij −
i

ω
Bij = ρ

∫∫
S

niφjdS (3.12)

Where Aij in this equation is a component of the added mass and Bij is the hydrodynamic dampening
matrix. The ni is the normal vector of the skin which is used together with φ, which is the mode
shape together with a participation factor for the wave excitation frequency of ω. This means that each
frequency has its own mass matrix which will be addressed further on. The BEM calculates the values
of Bij with the following empirical relationship.

Bij = 2ζ
√

(Mij +Aij(ωwet))(Cij + kij) (3.13)

For i = j = 3,4,5,6,7,...,N whereAij(ω
wet) is the addedmass for themodes 3,4,5,6,..,N that correspond to

the wet natural frequencies and ζ is the damping ratio. Lastly Cij are the coefficients of the generalized
hydrostatic-gravitational stiffness matrix which are given by the following equation.

Cij = ρwaterg

∫∫
(nj(wi + drDi))ds+ g

∫∫∫
ρstructure(uj

δwi

δx
+ vj

δwi

δy
+ wj

δwi

δz
) (3.14)

This consist of a hydrostatic and gravitational part. The u,w,v in this equation are the displacement
degrees of freedom for the wet eigenmodes, while Dr and Di are the draft of the model and the diver-
gence of the displacement vector. With all of these matrices defined it is possible to solve the forces
present in the system in the same way as equation 3.9 which then looks as follows.

[−ω2(Mij +Aij) + iω(Bij) + (Cij +Kij)]Uwet = Fi (3.15)

This formula can be used to find the wet eigenfrequencies and eigenvectors based upon the ’wet’
model.

3.2.3. The iterative procedure
With the procedure described above we are able to make a first guess at the wet eigenfrequencies, but
due to the frequency dependency of the added mass matrix, solving these equations is only the first
step. In order to solve this problem a iterative procedure was used whereby each mode was solved
individually with each cycle generating it’s own mass matrix, stiffness matrix and wet eigenmodes. The
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maximum amount of iterations was set to 1000, while the final tolerance was set to 0.001 [rad/s] for
each eigenfrequency. The full process is shown in the figure below.

Figure 3.12: Diagram of used procedure as found it [34]

In addition to the above discussed, the paper by Loukogeorgaki [34] also went into the use of these wet
eigenmodes in the prediction of the effectiveness of floating barriers. This is not something we made
use of and therefore Stage II of the hydrodynamical model is left out.

With this method the following ’wet’ eigenfrequencies were found for the different mode shapes at a
wave frequency of 28 rad/s.

Mode rigid-1 rigid-2 rigid-3 pitch roll heave flex-1 flex-2 flex-3 flex-4
Freq[Hz] 0 0 0 0.68 0.8 1.71 17.66 26.64 38.59 48.22

Table 3.8: ’Wet’ eigen frequencies of model

One last check needed to be preformed before these values could be used. Because of the way
that the added masses were added to the modal mass matrix there is no way to know if the ’dry’
eigenmode frequency is the same ’wet’ eigenfrequency, as the mathematical operation that determines
the outcome has no way of keeping track of the mode shape. It was decided to take the diagonal part of
the total mass matrix and the diagonal part of the total stiffness matrix and putting them in the following
formula.

ωi =

√
Kii

Mii
(3.16)

Here it was found that no flip had occurred for any of the frequencies. It should be noted that this
method ignores the non-diagonal parts of the added mass and stiffness matrices. A better way of
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checking would be to directly incorporate the hydrodynamic effect into the FEM but this is extremely
costly in computational power.

One way to validate the results from the BEM is to check the values for the ’wet’ rigid-6 frequencies
which in our case is the heave frequency. One can check these values by comparing the ship to a
simple 1 degree of freedom mass spring system. In such a system one can predict the natural heave
frequency with the formula below:

ω =

√
K

M
=

√
ρ ∗Awl ∗ g

∆ ∗ ρ
≈

√
9.81 ∗ 0.248

0.0146
= 2.054[Hz] (3.17)

This is higher then the predicted value from the BEM but it also doesn’t include the hydrodynamic
dampening or added mass.

3.3. Conclusion
The purpose of this chapter was to demonstrate how the material properties gathered in Chapter 2
were applied to the numerical model created by A. Keser [2]. This was achieved by illustrating how the
identified materials were rotated to align with different sections of the material model. Subsequently,
the ANSYS ACP Pre module was employed to predict the behaviour of the model’s various transverse
components using laminate theory. Additionally, an epoxy layer was included in the numerical model
to represent the layer applied to the physical model to prevent water ingress.

To incorporate the effect of the surrounding water on the numerical model, a boundary element method
(BEM) was used to calculate the addedmass and stiffnessmatrices for eachmode shape. The diagonal
entries of the total mass and stiffness matrices were then utilized to determine the eigenfrequencies
and assess whether the added mass influenced the sequence of the mode shapes.

However, the modified model retains certain shortcomings and limitations. Assigning orthotropic mate-
rial values requires a coordinate system. Initially, the model had a single coordinate system coinciding
with the global system. To accommodate the different sections of the model, seven additional coor-
dinate systems were introduced. The xz-plane system was used for vertical surfaces in that plane,
the xy-plane system was used for horizontal surface such as decks and floors. The remaining six co-
ordinate systems corresponded to curved sections of the structure, including the four bulges and the
curvature around the wet deck. These coordinate systems were placed at the centre of curvature for
their respective sections. For future work, a coordinate system that follows the surface geometry more
closely could improve accuracy.

Another limitation lies in the method used to incorporate laminate material properties. The orthotropic
material approach, rather than laminate theory, omits the coupling between bending and tension typi-
cally present in non-symmetrical ply layups. Additionally, the model assumes that the flexural modulus
equals the elastic modulus. Future improvements could address these issues by incorporating more
accurate material behaviour.

In the next chapter, we will explore how the changes to the numerical model have influenced its dynamic
behaviour.



4
Response and comparison

In this chapter we will be discussing the impact of the different material properties upon the dynamic
response. First we will look at the impact of the orthotropic behaviour of the model compared to an
isotropic response. Next we will look at the effect of epoxy upon a isotropic model and finally we will
compare the completed model to the measurements made by M. Katsouros [35]

4.1. Isotropic response
As with any good comparison the first step is to set up a base line against which all others will be
compared. In our case this baseline scenario is the isotropic material model. This model will use the
Young’s modulus of the vertical direction as this is seen as the main printing direction. This gives the
following material values for the plot.

E [Pa] ν [-] G [Pa]
1.37e9 0.38 4.96e8

Table 4.1: Isotropic material values

This gives the following dry and wet eigenfrequencies.

Mode surge sway yaw pitch roll heave flex-1 flex-2 flex-3 flex-4
Freq[Hz] 0 0 0 0 0 0 23.443 25.865 43.115 48.125

Table 4.2: ’Dry’ eigenvalues of isotropic material model

mode surge sway yaw pitch roll heave flex-1 flex-2 flex-3 flex-4
freq[Hz] 0 0 0 0.681 0.806 1.72 16.08 24.53 36.6 45.32

Table 4.3: ’Wet’ eigenvalues of isotropic material model

Each of these eigenfrequencies correspond to an eigenvector. These eigenvectors determine how the
structure of the ship is deformed. They will also be used to see to which degree the orthotropic material
values have an effect on the shape of these eigenmodes.

36
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Figure 4.1: ’Dry’ mode shape at 23.443 Hz Figure 4.2: ’Dry’ mode shape at 25.865 Hz

Figure 4.3: ’Dry’ mode shape at 43.155 Hz Figure 4.4: ’Dry’ mode shape at 48.125 Hz

These eigenvectors will form the baseline behaviour to compare with the other material models. This
comparison can be done via a few methods. The first method considered for use was the Modal As-
surance Criterion(MAC). This is a mathematical formula used to compare and differentiate different
eigenvectors. However it isn’t perfect for our proposes. It can compare whole eigenvector for differ-
ences but it can’t tell where the differences are or even to a sufficient degree how large they are, only
that they are present. Hereby turning us away from this particular approach of determining the impact.

The second method, was to imitate the use of Strain gauges within the model. This involved scaling
all the displacement to have the same amplitude across the different material values and then deter-
mining the difference in strain on predetermined locations. This method would allow for a qualitative
comparison of the difference in mode shapes, and would allow for a complete comparison of multiple
material models instead of individual comparison. This would be required when comparing strain in the
total structure. However this does reduce the degree to which the difference in response are visible to
those points, which if chosen poorly could show reduced impact. So a middle ground was sought.

This middle ground was found in the displacement of the main deck. As a 2D structure it would allow
for a large area to be compared and the results easily displayed without having to inspect multiple
layers. Additionally the physical model was also created to measured the deformation of the model
with a digital imaging camera (DIC) setup through a spotted pattern on the main deck. This does mean
that that we wont see the effect of the water upon the eigenvectors, as this deck isn’t part of the mesh
of the BEM.

4.2. Orthotropic response
The first material properties to be investigated are the orthotropic properties. In order to determine the
effect of different levels of orthotropic behaviour the material model for the ship will be created over
a range of different Young’s moduli and Shear moduli. For this part the Poisson ratios will be kept
constant. According to this setup the following material values were tested.
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E [Pa] ν G[pa]
1.37e9-1.78e9 [Pa] 0.33 [-] 4.96e8-6.45e8 [Pa]

Table 4.4: Material value range

All three youngs moduli were varied across this range with a 5 steps. Creating a total of 125 points
of measurement for the orthotropic behaviour. This behaviour was then plotted with a scatter plot in
3D space. Finally all Young’s moduli were expressed as a fraction of isotropic E3 to create a non
dimensional view of the orthtropic behaviour

Figure 4.5: Spread of Young’s moduli

The figure above shows the different Young’s moduli for each degree of orthotropic behaviour. E1, E2

and E3 are the modulus in the longitudinal, transversal and vertical direction respectively. Or in other
words E1 is along the hull vertically, E2 is into the skin of the hull, and E3 is along the length of the
model.

4.2.1. First mode
The first eigenmode can be seen in figure 4.1 and can be roughly described as a two node bending of
the model with the node lines being across the deck, These are indicated by the two blue lines seen
in the figure. Using the different material values from figure 4.5 the following figure was made for the
change in the eigenfrequencies.

Figure 4.6: ’Dry’&’wet’ eigenfrequency across orthotropic range

looking at the Figures 4.6, one can see the behaviour of the eigenfrequency over the different material
values. For the first mode it appears that the eigenfrequency is mostly determined by the behaviour
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of E1 and E2 which could be expected as the frequency would mostly be influenced by the transverse
stiffness of the model. Which is made up of the bulkhead and horizontal decks, these in turn have there
stiffness in that direction determined by E2 and E1 respectively. Additionally the Green dot visible at
the right corner indicate the measured orthtropic relationship.

Next we will look at the change in the eigenmode that corresponds to the different extremes in Young’s
moduli for each directions. These are shown below.

Figure 4.7: Effect upon eigenmode 1 from increasing E1

Figure 4.8: Effect upon eigenmode 1 from increasing E2

Figure 4.9: Effect upon eigenmode 1 from increasing E3

Figures 4.7 to 4.9 show the shape of the eigenmode in the deck and the difference in total displacement
of the eigenmodes for the different axis of orthotropic behaviour with the isotropic eigenmode being
used as the point of comparison. Looking at the total deformation difference we can see that E1 and
E2, compared to the E3 seem to have the smallest amount of effect upon the mode shape reflecting
it’s impact upon the eigenfrequencies. In comparison E1 and E2 seem to shift the node lines in an anti
clockwise and clockwise direction respectively. It appears than when both E1 and E2 are increased,
the changes in the mode shape seem to cancel each other out as can be seen in the figure below.
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Figure 4.10: Effect upon eigenmode 1 from increasing E1&E2

This means this mode shape is not effected by the orthotropic behaviour of the 3d printed material to
any large degree.

4.2.2. Second mode
The second eigenmode can be seen in figure 4.2 and can be described as a torsional bending mode
of the model. This eigenmode is mostly present in the deck of the model, with the two hulls remaining
undeformed. Plotting the dry eigenmodes, the following frequencies were found across the material
range.

Figure 4.11: ’Dry’ eigenfrequency across orthotropic range

Similarly to the first mode the second mode doesn’t seem to be effected by changes to the E3. Com-
pared to E2, E1 is slightly more important compared tot the first mode. The reason for this could be the
method of the shear modulus determination. With both G12 an G13 being determined by E1 and G23
being derived from E2. This would also explain the limited effect of E3. Next we will look at the effect
upon the mode shape.
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Figure 4.12: Effect upon eigenmode 2 from increasing E1

Figure 4.13: Effect upon eigenmode 2 from increasing E2

Figure 4.14: Effect upon eigenmode 2 from increasing E3

Figures 4.12 to 4.14 show the differences in the eigenmodes for the second mode shape. Compared
to the first mode shape the overall level of difference is lower with the maximal difference being only
0.15. With E3 showing the smallest amount of difference overall. The effect of changing E2 is more
apparent. Compared to the first mode, it appears that instead of torsional behaviour being measured,
the mode-shape has shifted to bending behaviour with two node lines. With E1 seemingly having the
opposite effect.

4.2.3. Third mode
The third eigenmode of the model [seen in figure 4.3] is best defined as a 3 point bending mode, with
each pontoon and the middle of the deck being the nodes for the bending movement. Additionally there
is also a small amount of bending present in the starboard pontoon. Using the orthotropic material
values the following dependency was found.
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Figure 4.15: ’Dry’ eigenfrequency across orthotropic range

For the third mode the third Young’s modulus does appear to have a impact upon the response slightly
increasing it. But the overall behaviour is still determined by E1 and E2. Because they form the cross
deck stiffness of the structure. The effect of the third direction seems to come from the bending of the
starboard pontoon.

Figure 4.16: Effect upon eigenmode 3 from increasing E1

Figure 4.17: Effect upon eigenmode 3 from increasing E2
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Figure 4.18: Effect upon eigenmode 3 from increasing E3

For the third mode it appears that E1 has the smallest effect upon the mode shape mostly increasing
the presences of the bending behaviour in the pontoon. Additionally it appears that the amplitude of
the bending in the rest of the structure is largely decreased. E2 seems to have a similair effect, but with
more emphasize upon the increase of the bending behaviour, compared to the decrease in the overall
bending. Finally a increase in E3 seems to reduce the bending behaviour of the starboard hull while
increasing the amplitude of the 3 point bending behaviour of the rest of the structure.

4.2.4. Fourth mode
The fourth eigenmode of the model is seen in figure 4.4. It consists of a two node bending of the
starboard pontoon. This mode fully shows the bending present in mode three without the torsional
component. This also means that the left hull and the working deck are largely undeformed. Using the
different material values the following figure is made.

Figure 4.19: ’Dry’ eigenfrequency across orthotropic range

Looking at the mode shape one would expect that E3 would dominate this mode shape, and out of all
the mode-shapes that are of interest it does show the clearest dependency upon it. However it appears
that E1 also effects the frequency of this mode to a similar degree. E2 doesn’t appear to have any effect
on this mode. This is in contrast to the mode shapes in which E2 causes the largest shift compared to
the other two, as can be seen below.
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Figure 4.20: Effect upon eigenmode 4 from increasing E1

Figure 4.21: Effect upon eigenmode 4 from increasing E2

Figure 4.22: Effect upon eigenmode 4 from increasing E3

When looking at the mode shapes one might at first glance think that an increase of the E3 shows
an increase in the bending behaviour of the pontoon. This is not the case however. Since all mode
shapes were scaled to have a maximum distortion of 1, and the point of the pontoon has the largest
displacement. A decrease in bending is visible as a relative increase behind the point of the pontoon,
which itself has an increase of zero. This has caused the relative values behind the point too increase,
which is visible in the figure as the red colour. With the opposite effect being visible with the increase
of E1 and E2.

From all the different plots above we can conclude the following. While the eigenfrequencies do change
across the orthotropic range, there isn’t any material value for which they switch in order. Secondly
when looking at the mode shapes we can say the following: when a stiffness in any particular direction
is below the average of all directions the mode shapes associated with that direction will be more
pronounced and when the stiffness is above the average that behaviour is suppressed, when compared
to a isotropic material.

4.3. Epoxy
With the impact of the orthotropic behaviour now characterised our next step is to look at the influence
of the epoxy layer upon the model. For this we will be comparing the dry, wet and eigenmode of the
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model with and without a epoxy layer.
The material values of this comparison are as follows.

Table 4.5: Material values for impact epoxy

E [Pa] nu G [Pa]
PETG 1.37e9 0.38 4.96e8
Epoxy 2.6e9 0.33 9.77e8

These material values were put into the model which gave the following eigenfrequencies which we
can compare to the model without epoxy.

Table 4.6: Results of impact epoxy

1st 2nd 3rd 4th
Dry 23.443 25.865 43.115 48.125
Dry + epoxy 24.021 26.679 44.052 49.495

Table 4.7: Wet eigenvalues of isotropic material model

Mode surge sway yaw pitch roll heave flex-1 flex-2 flex-3 flex-4
Wet [Hz] 0 0 0 0.68 0.81 1.78 16.08 24.53 36.6 45.32

Wet + epoxy 0 0 0 0.68 0.81 1.78 16.79 25.19 37.52 46.44

For both the wet and the dry frequencies it appears that the adding of the epoxy has increased the
measured frequency as one would expect. The average increase seems to be around 2.9 % when
compared to the isotropic case. With an average increase of the measured frequency of 0.8805 [Hz].
It should be noted however that is the case for the scale model. When scaling back up to the predicted
response for the full model this becomes an average increase of 0.068 [Hz] when compared to the
isotropic case.

Figure 4.23: Effect upon eigenmode 1 from epoxy

Figure 4.24: Effect upon eigenmode 2 from epoxy
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Figure 4.25: Effect upon eigenmode 3 from epoxy

Figure 4.26: Effect upon eigenmode 4 from epoxy

Compared to the orthotropic response it seems that the epoxy has a limited effect upon the mode
shapes. With the largest measured difference being 0.06, the mode shapes themselves are remarkably
similair to the behaviour of the orthtropic changes. With the first mode being similar to an increase in
E1, the second E1, the third E3 and the fourth E3. This can be explained with the way the epoxy was
applied upon the outer skin. Where it contributes to the stiffness in the directions of E1 and E3. With
E2 only being relevant for the bulkheads and even then only the rear most bulkhead had epoxy applied
to it. It was observed that the change of each mode shape seems to be based upon it’s dependency
of orthotropic behaviour. The first and second mode shape have a larger change corresponding to E1
and the third and fourth mode have a larger change to their amplitude for a increase in E3 compared
to E1.

4.4. Full material model with epoxy
With the degree of orthotropic and epoxy covered behaviour now determined, we can look at the ef-
fect with the complete elastic model including the frequency dependency found in chapter 2. This
was done with a manual iterative method. This involved calculating the wet natural frequency of any
mode followed by inputting the corresponding material properties found for the next round. Using this
method the following wet frequencies were found. Because of the orthotropic behaviour it was decided
that in addition to the isotropic case based upon the measured value for E3*, we will also compare
the frequency with a similarly orthotropic model for a better comparison for the frequency dependent
behaviour.

Table 4.8: Change in predicted frequency due to frequency dependant material properties in ’wet’ model

frequency 1st 2nd 3rd 4th
Experimental 18 21 - 40
Isotropic dry 25.507 28.095 46.358 50.657
Isotropic wet 16.08 24.53 36.6 45.32
Isotropic+epoxy wet 16.79 25.19 37.52 46.44
Orthotropic wet 18.22 27.76 39.67 49.52
Complete ’wet’ 18.23 27.64 39.51 49.3
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Looking at the frequency, we can see that compared tot the isotropic model the frequency overall
increased. However with the addition of the orthotropic comparison it becomes clear that this is caused
by the increase in E1 and E2. The frequency dependency does appear to have an effect. Changing the
measured frequency to a lower value when compared to the static frequency of the same orthogonal
measurement. It appears that even with the steep frequency dependency the small frequency range
only causes a difference by 0.22 [Hz] for the highest mode. The mode shape will also be compared.

Figure 4.27: Effect upon eigenmode 1 from epoxy

Figure 4.28: Effect upon eigenmode 2 from epoxy

Figure 4.29: Effect upon eigenmode 3 from epoxy

Figure 4.30: Effect upon eigenmode 4 from epoxy
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The mode shape for the frequency dependent model does differ from the basic model but this seems
to be due to the orthtropic behaviour and the change in frequency. With all modes following largely the
same behaviour as the increase in E1.

4.4.1. Compared to physical model experimental testing
With the model complete we can compare it to the numerical predictions with the measured values for
M. katsouros [35], which were acquired by hammer testing in water.

Table 4.9 shows the different predicted modes of the numerical model and the measured result from
the in water testing. The 1st, 2nd and 4th mode shapes of the numerical model were matched to the
1st, 2nd and 3rd mode shapes respectively of the physical measurements. With the predicted 3rd
modeshape not being found. This was done based upon the assignment of [35]. This is in contrast to
the finding of A. Keser [2] where the first and second mode shapes of the experimental results were
reversed. With the second mode shape having a frequency of 20 and the first having a frequency of
22.

Initially it was thought that the observed differences between the numerical model and the experimental
model could be attributed to several factors. Including: the presence of epoxy in the experimental
model, the effect of the added mass, variations in transverse stiffness and the exact placement of
weights within the model.

Having now addressed several of these unknown factors it can be concluded that the difference in
behaviour is not caused by the addition of epoxy layer or the inclusion of hydro dynamic effects. Ad-
ditionally the effect of frequency dependency for the interested frequency range is also limited. This
would mean that the remaining unknown factors consist of the precise placement of the weights in the
model and the transversal thicknesses of the bulkheads and the influence of the coupling between the
bending and tension of 3D printed laminates.
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mode shape frequencies
numerical physical numerical physical

18.23 18

27.64 21

39.51 -

49.3 40

Table 4.9: Table comparison between numerically model and fully elastic model with accelerometers in water as found in [35]

4.4.2. Recommendations
With the influence upon the eigenfrequencies and eigenmodes of the different material properties now
determined, we will quickly go over some possible counter measures in design and construction meth-
ods that could be attempted to reduce the influence.

Orthotropic behavior: From the material analysis it appear that the relationship between E1, E2 and
E3 for the interested range is 1,1,0.8 which does effect the measured eigenfrequency here. With the
overall dominance of the first Young’s modulus it is advised to use that modulus for the design of the
model. One possible way of solving this problem is to vary the printer settings in search of a reduced
orthotropic behaviour.

Epoxy coating: With the influence of the epoxy on the structure now understood, two primary options
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emerge to mitigate its effects. The first option is to explore alternative sealing methods, while the
second involves reducing the epoxy’s thickness without compromising water tightness. The different
sealing approaches could consist of melting the outside of the model either with heat or possibly by
chemically dissolving the outermost layer. Both approaches pose there own difficulties, Heating thin
walls can be difficult as melting thought the thin walls would be a significant risk. The chemical approach
would in-tail vaporizing ethyl acetate and placing the whole model in this vapour. Another option is to
apply the epoxy with an airbrush, resulting in a thinner coat. However, it remains uncertain whether an
airbrushed epoxy coating would achieve adequate water tightness.

frequency dependency: While it is seen that the frequency dependency that is measured was only for
a small frequency range, it’s limited effect indicated that with the expected frequency range one would
not have to compensate for the shift.
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4.5. Conclusion
The goal of this chapter was to discuss the impact of various material properties associated with 3D-
printed PETG using the updated numerical model.

The first material property investigated was the orthotropic behaviour, where different degrees of or-
thotropy were compared. It was found that while an increase in Young’s modulus suppresses specific
mode shapes within a given mode, the orthotropic behaviour does not alter the sequence of these
mode shapes.

Additionally, the effect of adding a watertight epoxy layer to the outer surface of the structure was
examined. This layer was shown to increase the stiffness of the outer layers, resulting in a higher
measured frequency, while not significantly influencing the mode shapes.

Finally, the previous material properties were combined with the frequency dependency measured in
Chapter 2 to assess the shift in frequency for the targeted mode shape. This analysis revealed a
frequency shift of -0.22 Hz for the fourth mode when compared to the static material properties.

While the new model accounted for these material properties, There is still a significant difference
between the measured values and those predicted by the model namely there is a increasing error at
higher frequencies. It is suspected that this is caused by the material values of the PETG being to high.
for the model itself there are still points of improvement: The unknown thicknesses of the transverse
sections, the coupling between tension and shear, and the precise placement of the weights as likely
causes of the observed difference. Together with the possible material value difference.



5
Conclusion

The primary aim of this research was to investigate the dynamic material properties of 3D-printed PETG
and understand how these properties influence the design of fully elastic models.

To obtain the material values for this study, shaker experiments were conducted on PETG specimens.
These tests revealed that the 3D-printed PETG exhibits both orthotropic and frequency-dependent
behaviour. However, the shaker method proved inadequate for capturing the continuous frequency
dependency accurately, highlighting the need for a more suitable testing approach. For future stud-
ies a setup utilizing guided waves is recommended, as it would likely provide a clearer picture of the
frequency-dependent properties across a broader frequency range.

The determined material properties were integrated into a numerical model, with PETG treated as an
orthotropic material. Additionally, the model accounted for the impact of an epoxy layer applied to the
physical structure by incorporating laminate theory to simulate this layer’s influence. To capture the
hydrodynamic effects of the water surrounding the model, a Boundary Element Method (BEM) was
employed, providing the necessary added mass and hydrodynamic stiffness matrices.

The updated numerical model was subsequently used to assess the impact of the various material
models. The results indicated that none of the examined material properties led to differences when
compared to the behaviour observed in the physical model. Furthermore, the frequency dependency
within the examined range was found to have only a limited effect, suggesting it may not be as critical
as initially anticipated for the first four eigenfrequencies of this elastic model.

It was also observed that the orthotropic behaviour of the PETG and the presence of the epoxy layer
had measurable effects on the eigenfrequencies, indicating that these aspects should be considered
carefully in future additively manufactured designs. Specifically, strategies should be developed to
minimize the influence of these factors for future designs.

It should be noted that the numerical model as it exists now has certain limitations. Due to the use of an
orthotropic material model for the composite sections, it does not account for coupling effects between
bending and shear, and the flexural modulus is assumed to be equal to the elastic modulus. Future
work could explore modifications to address these limitations, thereby enhancing the model’s accuracy
and reliability for applications involving complex material behaviour.
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6
Recommended research

While this report has addressed some aspects of material behaviour and model accuracy, other sub-
jects remain open for further investigation. Either due to time constraints or them laying outside the
scope of this report. These subject can be sorted in the following overall categories: Material determi-
nation, numerical model improvement and fabrication adjustments.

Material determination

• Used guided wave upon 3D printed specimen to determine the Young’s modulus for a continuous
frequency band.

• independent measuring of the different shear moduli with Poisson ratio’s.

Numerical model improvement

• Modify the model to include the coupling between bending and torsion of composite sections
through the use of the ACP module in ANSYS Mechanical.

• Investigate the changing of behaviour with differing placement of weights within the structure.

Fabrication adjustments

• Investigate the viability of creating a watertight epoxy layer with airbrush or the sealing of outside
layers by sculpting tool.

• sealing the outside of the 3D printed structure through chemically dissolving layers
• Investigate if the printing settings can be adjusted to minimize the orthotropic behaviour.
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B
Codes used

B.1. Example ANSYS code
finish
/CLEAR
beam_count = 3

!gerenal u-beam dimensions
L_beam = 0.200505797
B_beam = 0.01041575
H_beam = 0.01041575
Thickness_beam = 0.00085775

youngsmodulus = 950000000.0
nu = 0.3
/output,T_shear001,out

meshsize = 0.001
/prep7

mp,dens,1,1073
mp,ex,1,youngsmodulus
mp,prxy,1,nu

*DO,n,0,beam_count,1
k,1+4*n,L_beam*n,B_beam/2,H_beam
k,2+4*n,L_beam*n,B_beam/2,0
k,3+4*n,L_beam*n,-B_beam/2,0
k,4+4*n,L_beam*n,-B_beam/2,H_beam
*ENDDO

!adding outside walls
*DO,m,0,beam_count-1,1
A,1+4*m,4+4*m,8+4*m,5+4*m
A,4+4*m,3+4*m,7+4*m,8+4*m
A,3+4*m,2+4*m,6+4*m,7+4*m
*ENDDO

!adding bulkhead between sections.
*DO,m,0,beam_count,1
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a,1+4*m,2+4*m,3+4*m,4+4*m
*ENDDO

ALLSEL
*IF,beam_count,GT,1,THEN
*DO,n,1,beam_count-1,1
Asel,u,loc,x,L_beam*n
*ENDDO
*ENDIF

ET,1,181
secnum,1
sectype,1,shell
secdata,Thickness_beam
SECOFFSET,top

aesize,all,meshsize
amesh,all

Asel,inve

ET,2,181
secnum,2
sectype,2,shell
secdata,Thickness_beam*2

aesize,all,meshsize
amesh,all

mass_sensor = 0.0005
ET,3,mass21 !adding masses of differen sensors to count for testing.
r,3,mass_sensor,mass_sensor,mass_sensor
TYPE,3
REAL,3
e,3713
e,3772
e,3842
e,10541
e,10642
e,17331
e,17400
e,17459

mass_weight_aded = 0.0305
ET,4,mass21 !adding masses of differen sensors to count for testing.
r,4,mass_weight_aded,mass_weight_aded,mass_weight_aded
TYPE,4
REAL,4
e,3652
e,10591
e,17521

allsel

/solu
antype,2
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modopt,lanb,60,0,,
mxpand,60,,,yes
outres,all,all
solve
/out

B.2. Python code to produce ANSYS codes
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 20 17:34:22 2024

@author: valen
"""

simulation_count = 5
beam_type = 'T'
import numpy as np

APDL_RUNCODE = f"C:\\Users\\valen\\OneDrive\\Bureaublad\\ansys text files\\APDL_RUNCODE_{beam_type}.txt"

L_beam = 0.200505797*np.ones(simulation_count)#np.random.normal(0.605/3,0.04082/3,simulation_count)
B_beam = 0.010515103*np.ones(simulation_count)#np.random.normal(0.0103222,0.00007857,simulation_count)
H_beam = 0.010515103*np.ones(simulation_count)#np.random.normal(0.0103222,0.00007857,simulation_count)
Thickness_beam = 0.00085775*np.ones(simulation_count)#np.random.normal(0.00076875,0.000021176,simulation_count)
youngsmodulus = np.linspace(8e8,1.4e9,simulation_count) #np.random.normal(1.025e9,1e7,simulation_count)
nu = 0.3*np.ones(simulation_count)#np.random.normal(0.3887,0.04,simulation_count)

for n in range(0,simulation_count,1):
file_path = "C:\\Users\\valen\\OneDrive\\Bureaublad\\ansys text files\\"+beam_type+f"{n:03d}.txt"
with open(file_path, 'w') as APDL_code:

APDL_code.write("finish\n/CLEAR\nbeam_count = 3\n\n!gerenal u-beam dimensions\nL_beam = "+str(L_beam[n])+
"\nB_beam = "+str(B_beam[n])+
"\nH_beam = "+str(H_beam[n])+
"\nThickness_beam = "+str(Thickness_beam[n])+
"\n\nyoungsmodulus = "+str(youngsmodulus[n])+
"\nnu = "+str(nu[n])+"\n/output,"+beam_type+f"{n:03d},out\n")

print(f"File created successfully at: {file_path}")
with open(APDL_RUNCODE,'r') as runcode:

runcode_content= runcode.read()
with open(file_path, 'a') as file:

file.write("\n"+runcode_content)
output = '/clear\n'
for n in range(0,simulation_count,1):

output = output+"*use,"+beam_type+f"{n:03d}.txt\nfinish\n"

with open(r'C:\Users\valen\OneDrive\Bureaublad\ansys text files\get.txt','w') as get_code:
get_code.write(output)
print('get file created')

#%%

frequency_count = 60
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data_array = np.zeros([frequency_count,simulation_count])

for n in range(0,simulation_count):
linenum = 0
data = open(rf"C:\Users\valen\OneDrive\Bureaublad\ansys text files\{beam_type}{n:03d}.out")
data_frequencies = data.readlines()
for line in data_frequencies :

linenum +=1
if line.find(' MODE FREQUENCY (HERTZ) ')>=0:

break
print(linenum)
ANSYS_CALCULATED_FREQUENCIES=data_frequencies[linenum+2:linenum+2+frequency_count]
for m in range(0,frequency_count):

data_array[m,n]=ANSYS_CALCULATED_FREQUENCIES[m].split()[1]
data_array = np.matrix.transpose(np.round(data_array,2))



C
Determined Youngs modulus for each

point

Table C.1: Resulting elastic moduli from shaker testing

Bending L Sigma T Sigma V Sigma
2b 1.74E+09 2.89E+08 1.82E+09 2.18E+08 1.29E+09 3.85E+08
3b 1.55E+09 1.32E+08 1.50E+09 1.22E+08 1.46E+09 1.47E+08
4b 1.41E+09 1.44E+08 1.23E+09 7.91E+07 1.21E+09 2.79E+08
5b 1.35E+09 3.79E+08 1.15E+09 3.42E+08 1.12E+09 2.25E+08

Torsion
1t 7.00E+08 5.43E+08 3.51E+08 2.96E+08 3.80E+08 3.63E+07
2t 8.00E+08 7.82E+07 5.50E+08 1.38E+08 4.70E+08 1.02E+08
3t 7.79E+08 1.06E+08 4.69E+08 1.08E+08 3.90E+08 8.35E+07
4t 5.60E+08 3.93E+07
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