Stereo Pointclouds for

Sa

—Ort

ety Monitoring of

—NVIroNMents

—emke Middelnoek




Stereo Pointclouds for
Safety Monitoring of Port

—NVIronments

by

—emke Middelhoek

to obtain the degree of Master of Science
at the Delft University of Technology
to be defended on September 20, 2023 at 13:00

Thesis committee:
Chair: Dr. H. Caesar
Supervisors: Dr. H. Caesar
Dr. F. ter Haar
External examiner: Dr. R. T. Rajan
Dr. J. Kooij
Place: Faculty of Mechanical Engineering, Delft
Project Duration: December, 2022 - September, 2023
Student number; 4552091

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Mechanical Engineering - Delft University of Technology


http://repository.tudelft.nl/

T Delft

U D e I ft University of
Technology

Copyright © Femke Middelhoek, 2023

All rights reserved.



Stereo Pointclouds for Safety Monitoring of Port Environments

Femke Middelhoek *
* 4552091, f.middelhoek @student.tudelft.nl, Delft University of Technology

Abstract—The MOSES project develops an autonomous vessel
equipped with an autonomous crane to optimise the supply chain of short-
sea shipping. This study focusses on monitoring the safety of the port
environment based on stereo camera data generated by sensors attached
to the crane at 15m altitude, oriented 45 °downward. The objective is to
detect individuals and estimate their motion. Semi Global Block Matching
is implemented for stereo pointcloud generation (a pointcloud based on
the disparity image and stereo camera calibration information). Voxel-
averaged stereo pointcloud downsampling is performed for improved data
compliance with CenterPoint. Background subtraction is implemented
with Gaussian Mixture Models (GMMs). The study proposes a novel
implementation to fit a GMM on per-point 3D spatial (xyz) and color
information for enhanced background-foreground segmentation of the
stereo pointclouds. 3D object detection and velocity prediction are
based on CenterPoint, customised to take color features into account.
The result is a robust detection pipeline with a top performance of
81.5% mAP, 4% Average Orientation Error and 9.4% Average Velocity
Error on a simulated dense port environment dataset. Background
subtraction is implemented to improve cross-environment generalisation,
an important feature for MOSES considering the mobile nature of the
vessel and the likelihood that it would attend unseen environments. Voxel-
averaged downsampling of the stereo pointcloud advances this by creating
a uniform data structure, further facilitating the transfer of learnt
features to previously unobserved scenes. Including color information
of the current frame reduces the impact of spatial uncertainty of the
stereo pointcloud. It improves detection performance, particularly when
excluding the color information of the temporal reference frames included
for velocity prediction. The transferability of the pipeline developed in
simulation to reality is demonstrated on a basic real-world scenario.

Keywords— Stereo Pointclouds, Gaussian Mixture Models, Center-
Point, 3D Object Detection, Cross-Environment Generalisation

I. INTRODUCTION

Staff shortage, lack of skill, or cost reduction efforts force industries to
research the applicability of autonomous systems in new areas. Already
found in factories and manufacturing sites, the reach of autonomous
machinery is now extending to unstructured environments [1]. Such an
environment is the location of the autonomous crane of the Robotic
Container-Handling System created for the European Project titled:
AutoMated Vessels and Supply Chain Optimization for Sustainable Short
SEa Shipping (MOSES) [2, 3]. In pursuit of designing an autonomous
vessel capable of docking, loading, and unloading containers by an
autonomous crane while safeguarding human activity in the port envi-
ronment, the design of the sensor suite is an integral part of the system.

The MOSES project is focused on small ports and requires a precise
perception of the surrounding environment. Small ports exhibit distinct
characteristics compared to large industrial ports, including a greater
diversity of objects in the scene, relative openness of the environment,
lower occupancy, and a higher likelihood of objects entering and exiting
the scene. The focus of safety monitoring in this study includes the
detection of individuals within the port area and the estimation of their
future motion. Small objects, such as personnel and equipment, often
have limited visual cues, are sensitive to noise, and can easily blend into
the complex background of the port [4, 5]. Furthermore, the dynamic
nature of port operations, where objects may be in motion, entering or
leaving the scene, or occluded by other structures, and the variability in
lighting conditions further complicate the task of detecting these objects
[6].

The expected interaction between objects and environment is estimated
to evaluate the safety of crane operations in relation to the predicted

Fig. 1. Output visualisation of the MOSES pipeline. 3D stereo reconstruction
of a real-world dataset. Object detections are shown in green and t+1, t+2,
t+3 object motion estimates in red, yellow, and blue.

motion of individuals. To predict the velocity of objects, a 3D environ-
ment reconstruction is required. The sensor suite designed to achieve
this objective is located at the top of the crane, looking diagonally
at the scene. It features two Velodyne VLP-16 LiDAR sensors along
with a stereo camera setup. The pointcloud generated by the VLP-16
sensors is too sparse for the detection of small objects (persons), a known
weakness of the LIDAR sensors [7]. Consequently, the decision was made
to reconstruct the environment in 3D using stereo disparity matching. The
disparity image can be converted to a 3D pointcloud with stereo camera
calibration information, and this pointcloud with 3D spatial and color
information will be referred to as a stereo pointcloud. This image-based
approach highlights high-texture regions and better retains small objects
such as persons [8, 9]. However, it has weaknesses including object
artefacts, depth ambiguity, and sensitivity to environmental conditions
[10]. In the current study, the effect of object artefacts on object detection
performance is minor due to the sparsity of the environment and the
simpler scene structures minimise the chances and impact of depth
ambiguity. The environmental conditions are simulated by incorporating
sensor noise. This noise can replicate the uncertainties and variations
encountered by real-world sensors, which, in conjunction with an ex-
periment on real-world data, gives an indication of the robustness of
the method developed in simulation to the changing and challenging
conditions as encountered in real-world scenarios.

The contribution of this study to the state-of-the-art is the accurate
estimation of the position and motion of 3D objects in a port environment
using an end-to-end processing pipeline. A new combination of building
blocks is used to achieve this; Semi-Global Block Matching [11] for
stereo pointcloud generation and 3D environment reconstruction, Gaus-
sian Mixture Models (GMM) [12-14] for background subtraction, and
CenterPoint [15] with per-point color information to detect and estimate
the 3D motion of objects. To emphasise the crucial elements, distinct
aspects of our pipeline are explained in more detail:



o Cross-Environment Generalisation: As the MOSES crane attends
to various ports, some of which are unseen, learning an object
representation independent of the environment is desired. In ad-
dition, this would make the method more flexible. To enforce
the cross-environment generalisation of learnt features, voxel-based
downsampling of the stereo pointcloud and background subtraction
are implemented. Voxel-based downsampling, while retaining the
voxel average as a representative point, reorders the unstructured
pointcloud in a structured grid format. Background subtraction
enhances object isolation, which tackles the problem of small objects
blending in with the background, and, simultaneously, makes the
limited visual cues of objects more pronounced in the reduced
pointcloud size. The small structured pointcloud enables CenterPoint
to learn a more robust representation of objects of interest. The
structured grid format and background subtraction combined with
the facilitated learnt robust object representation were found to
significantly improve performance in unseen environments, thereby
enhancing the cross-environment generalisation of the MOSES
pipeline and its adaptability to new scenarios.

o 3D Stereo Pointcloud based Gaussian Mixture Models: GMMs are
implemented for background subtraction. The objective of back-
ground subtraction for MOSES is to extract objects of interest
from the stereo pointcloud. Here, foreground components can have
appearance features similar to those of background components.
In addition, objects of interest might be visible next to, behind
or partially occluded by background components which have a
similar associated depth. Finally, for increasing sensor noise or
challenging environmental conditions, the depth value resulting from
stereo matching becomes more uncertain, and a GMM fails to
capture the underlying data distribution. Therefore, color alone or
color and depth do not provide sufficient information for accurate
segmentation. To address this challenge, Gaussian Mixture Models
are fit on the stereo pointcloud with 3D spatial (xyz) and RGB color
information for optimal performance.

o Color Information for improved Object Detection Performance:
Stereo pointclouds contain noise and are relatively unstructured
compared to LiDAR pointclouds. If an object of interest is close
to another object in the scene, detecting object boundaries becomes
challenging, which affects object localisation accuracy. This phe-
nomenon also becomes evident when multiple frames are included
with the current frame as temporal references for velocity prediction.
Consequently, integrating the appearance features of the current
frame and excluding the color information of the frames included
for temporal reference improves the detection performance. This
improvement is more pronounced in dense environments, where
object boundaries are more often less distinct. Therefore, this study
proposes to adapt CenterPoint, originally designed for LiDAR data,
to accommodate per-point color information.

For performance evaluation, a MOSES Detection Score (MDS) is
proposed. With the objective of safety monitoring based on the detection
of individuals and the estimation of their future motion, accurate object
localisation, orientation detection, and velocity prediction form the main
performance indicators. Therefore, the MDS is a weighted average of the
Bird’s-Eye View (BEV) centerpoint detection distance, average velocity
error, and average orientation error. Experiments reveal an MDS of 0.781
on the simulated data set of a small port environment, 0.816 on the
simulated data set of a dense port environment, and an MDS of 0.664 for
an environment where 10x as much camera sensor noise is introduced.
The proposed end-to-end processing pipeline is robust and accurate and
generalises well to unseen sceneries. Testing the pipeline on a real-
world dataset shows an average precision similar to that of the simulated
datasets, proving its applicability to real-world scenarios.

The structure of the paper is as follows: In Section II, related work
to the problem at hand is presented: outdoor safety monitoring, stereo
pointcloud generation, background subtraction, and 3D object detection
and motion estimation methods. Section III discusses all aspects of the
simulation including Gazebo, sensor setup, and environment design. The

method comprises data generation, background subtraction, CenterPoint,
and 3D motion visualisation, as detailed in Section IV. Section V presents
experiments showing the performance of the proposed method and abla-
tion studies that examine the influence of separate pipeline components
on the final result. In addition, the performance of the proposed end-to-
end pipeline is demonstrated on a real-world dataset. Section VI critically
evaluates the presented work and motivates directions for further research.

II. RELATED WORK

A. Unstructured Environment Safety Monitoring

Outdoor safety monitoring setups often have camera sensors (e.g.,
video surveillance). The sensor perspective is similar to that of MOSES,
as cameras are often attached to walls or ceilings and look down at
the environment. Moving objects are mostly detected in the 2D image
plane [16-20]. Object tracking is done in 2D and converted to 3D results
[16], directly in 3D [18-20] or in 2D and 3D concurrently and merged
afterwards [17]. The cameras do not return depth information, and the
third dimension is obtained using multiview methods [17, 18, 20] or by
applying 3D estimation models [16, 19]. 3D estimation models often
rely on environmental assumptions, such as probabilistic scan matching
[16]. CraneNet [1] performs top view detection of ground workers with
a camera sensor attached to a telescopic crane. Illustrating the relevance
of the current research direction by stating that the ground workforce
cannot be aware of their surrounding environment during crane operations
at complex sites, it is noted that the objective in the article remains
limited to workforce detection. As the current objective is 3D motion
estimation, which requires velocity prediction and insight into the object’s
interaction with the environment, detection is done on a 3D environment
reconstruction from stereo camera data (stereo pointclouds).

B. Stereo Pointcloud Generation

Methods for constructing stereo pointclouds from disparity images
and stereo camera calibration information information can be classified
as either handcrafted or based on deep learning. Common handcrafted
approaches for estimating disparity are Semi Global Block Matching
(SGBM) [11] and Block Matching (BM) [21]. Although these methods
can cope with complex scenarios and provide interpretability, they require
parameter finetuning for scenarios that exhibit substantial variation from
one another. SGBM differs from BM by including the global context and
is therefore of both higher accuracy and higher computational complexity.
More recent studies alleviate the last concern and exploit and apply
SGBM for real-time applications [22, 23]. Pseudo LiDAR++ [24] and
Pyramid Stereo Matching [25] (PSM-Net) are two deep learning-based
approaches that use neural networks to learn mappings between stereo
images and dense pointclouds. Pseudo LiDAR ++ proposed two advances
to the prior Pseudo-LiDAR framework [26]; first, to change the loss
composition for the stereo depth network from disparity loss to depth
loss to correct for the strong emphasis of tiny depth errors on nearby
objects. Second, a depth correction of the resulting dense predicted
depth map based on extremely sparse but accurate LIDAR measurements
to correct the limitation of the discrete nature of disparity estimation
(quantisation of depth at pixel level while the depth is continuous in
the real world). PSM-Net leverages multi-scale image representations
of the scene to handle different levels of detail and variations in scene
depth, texture, and lightning. PSM-Net consists of two main modules;
a spatial pyramid module to aggregate global context in different scales
and locations to form a cost volume and a 3D Convolutional Neural
Network (CNN) that learns to regularise this cost volume. While PSM-
Net and Pseudo LiDAR++ excel at managing challenging scenarios, they
require much labelled data and expensive computational training. The
returned stereo pointcloud is dense and would still require downsampling
to be compatible with the current proposed pipeline. In addition, both
deep learning methods are optimised for Autonomous Driving Systems
and the additional challenges of a sensor suite at altitude looking down
at the scene of interest are not addressed yet. Such challenges include
perspective distortion and coping with terrain height variations. Therefore,
a handcrafted stereo-matching method is preferred within the current
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Fig. 2. Image of Sensor Setup. Dimensions not to scale. Blue: Automated
vessel with Autonomous crane. Gray: Dock. Green: Sensor Orientation.
Yellow: Vertical Field of View of Camera.

objective of presenting an end-to-end pipeline. SGBM emerges as a
reliable, adaptable, and efficient method for creating stereo pointclouds
in various practical applications such as the MOSES project.

C. Background Subtraction

Deep learning methods and the continuous enhancement of traditional
approaches for background subtraction have contributed to the advances
in computer vision. Background subtraction can be performed to speed
up object detection and classification by constraining the search window
[27]. In addition, efficiency is enforced for subsequent deep learning im-
plementations by using the foreground as input. The challenges of back-
ground subtraction are numerous and include dealing with moving ob-
jects, changes in illumination, and dealing with shadows and reflections.
Currently, no single method can tackle all challenges robustly [28]. CNNs
have demonstrated remarkable capabilities in capturing complex spatial
and temporal representations, leading to accurate foreground detection
and background modelling [28-30]. [28] proposes CNN-SFC, a U-net
encoder-decoder architecture that learns to combine the result of several
background subtraction algorithms into a single output image. SubSENSE
[31] detects change based on spatio-temporal binary features and color
features, FTSG [32] proposes a hybrid method combining motion detec-
tion, appearance comparison and foreground-background segmentation.
Finally, CwisarDH+ [33] applies weightless neural networks to each
picture in the region of interest for background model learning. CNN-
SFC learns to effectively use the output of the three mentioned methods
for background segmentation, outperforming each method individually.
In parallel, non-deep learning-based methods, such as Gaussian mixture
models (GMM) and adaptive modelling techniques, have progressed
significantly [34, 35]. GMM methods model the intensities of the pixels
as a mixture of Gaussian distributions [12—14]. With this, they enable a
flexible background representation which can be updated continuously.
Adaptive background modelling algorithms can update the background
model to accommodate gradual scene changes. Adaptive algorithms
are GMM, Frame Differencing, and Running Average Methods. Frame
differencing detects moving objects by subtracting consecutive frames
[36]. Running Average methods capture slow changes in the environment
by keeping e.g. an exponential moving average or a Gaussian average of
the background over time [34].

A combination of traditional methods can be implemented to improve
performance [37]. Deep learning methods are more robust and excel
in coping with complex scenarios, but require training data for every
new or changed scene; non-deep learning methods are simple, adaptable,
and suitable for situations with constrained resources or gradual scene
changes. They can adapt the background model over time using an
incremental learning process and learn the background model when
attending a new scene. As MOSES attends to various (unseen) port
environments with evolving backgrounds and limited reference data, an

Fig. 3. Noisy Port Environment Design. On the left is the port of Mykonos
(Google Earth Screenshot), which is the inspiration for the simulated world
as seen on the right.

adaptable traditional method is chosen and implemented for background
subtraction (Gaussian Mixture Models).

D. 3D Object Detection and Motion Estimation

For 3D motion estimation, an object detection method can be combined
with a motion estimation method, or the two can be integrated. Various
techniques have emerged for 3D object detection using pointclouds or
stereo pointclouds. These can be classified as point-based, voxel-based,
or projection-based methods. PointRCNN [38] is a point-based pointcloud
method performing 3D bottom-up proposal generation. PointNet++ [39]
uses the property of PointNet [40] to convert a set of local features
into higher feature representations and applies this recursively to the
pointcloud input to learn features at different scales. PointNet is the
backbone of other object detection algorithms [41-43]. Pointcloud voxel-
based methods such as the 3D backbone VoxelNet [44] segment the
pointcloud into a regular 3D grid where voxel features are learned with a
3D CNN. In 2D representation-based processing, the pointcloud features
are projected to e.g. BEV. In BEV, occlusions are avoided and object
size is unambiguous. CenterPoint [15] uses VoxelNet as a backbone
and performs projection to 2D to create features suitable for 2D CNNss.
Pointpillars [45] is a 3D backbone that utilises PointNet to organise
the pointcloud in vertical pillars. An encoder learns features that can
be stacked to a pseudo-image. To the pseudo-image, any standard 2D
convolutional detection architecture can be applied. Some 3D object
detection methods exploit the combination of a 3D pointcloud and
semantic image features to exploit the localisation capabilities of LIDAR
methods and the classification advantages of 2D images [7, 46—48]. In the
current application, the LiDAR pointcloud is too sparse to be a resource
and only a few of the above-mentioned techniques may be applicable to
stereo pointclouds. A promising technique such as CenterPoint, a LIDAR-
based 3D object detection method that can potentially process augmented
point features, is explored for our application and enhanced with colour
information to improve its performance.

Within the domain of 3D pointclouds, motion estimation can be
approached through both manual and learning-based methods. Manual
methods for motion estimation such as Kalman filters [49] and particle
filters [18, 50] rely on motion models. Kalman filters estimate motion
using a recursive mathematical model based on a combination of measure-
ments and predictions. Particle filters use probabilistic sampling to predict
motion. Filter-based motion estimation methods are based on handcrafted
motion rules [49]. An advantage of motion model methods is their
simplicity and speed [51]. These hand-crafted methods are interpretable
and suitable for particular motion patterns, but may struggle with non-
linear or complex motions [52]. Most learning-based advances regarding
object motion in 3D pointclouds are focused on object tracking. However,
in the current context, the objective is motion estimation rather than ret-
rospective object-track association. There is one 3D object detection and
tracking method suitable to apply in the current context. CenterPoint [15]
estimates motion by combining object detection and velocity prediction.
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Only requiring two additional regression outputs, the velocity in the BEV
plane, the velocity prediction method is efficient and effective. This study
uses CenterPoint as an enabling technology for its strength in estimating
the position of objects and predicting velocity. Its center-based approach
and efficient processing make it ideal for identifying individuals, and its
predicted velocity output facilitates straightforward motion estimation.
By tuning the stereo pointcloud representation towards CenterPoint, the
network is applicable to the current situation.

III. SIMULATION

A. Gazebo

As no real-world model of the crane has been deployed yet, the
method proposed in this paper relies on simulated data from Gazebo.
Robot Operating System (ROS) handles the interaction between sub-
components. Static environments with dynamic objects are created, where
the dynamic objects are persons designed with varying appearances.
A recursive A* algorithm with obstacle avoidance was developed to
simulate motion. Locations and realistic orientations are generated at
each timestep for each person manoeuvring through the environment.
A challenge in achieving synchronisation in ROS and Gazebo is the
uncertain time lags that may occur in the process in any sub-component
or during component interaction. The objective of synchronising actual
object positions and captured camera frames revealed that some sub-
components were asynchronous. A thorough examination revealed that
the main time lag in the process occurred due to the hardware our
simulation was running on. The computational resources available limit
the visualisation speed of model position updates in the simulator and
prevent the achievement of real-time processing. A key factor in this
process is the real-time factor, representing the ratio of simulation time
to real-world time. In an ideal scenario, the real-time factor equals 1
and the simulation runs in real-time. For MOSES, a decision was made
to limit the Real Time Factor within the simulation to 0.1 to improve
synchronisation between the registration of model position updates in
the Gazebo software and the visualisation speed of model position
updates in the environment by the graphics engine. This facilitates the
automated extraction of ground-truth annotations. ROS handles sensor
output synchronisation and produces two synchronised data packages per
second. Two data packages per second is a low frequency compared
to the camera sensor update rate of 30 Frames Per Second (FPS).
However, as the Gazebo simulation is only used for data generation
to evaluate the proposed end-to-end pipeline, the mentioned values for
data synchronisation speed and the real-time factor are inconsequential.
An important consequence of the low data generation frequency is the
potential for the trajectories that people follow to appear discontinuous,
which poses challenges for the subsequent parts of the pipeline.

. Green: Background Subtraction Module. Red: CenterPoint. Blue: 3D Motion

B. Sensor Setup

The configuration of the stereo camera setup of MOSES is illustrated
in Figure 2. The baseline distance equals 0.7m, and the left-camera
coordinates are (1.5,0.35,15) with a positive pitch around the y-axis
of 45°. With the current setup and the coordinates as mentioned, a focal
length (f) of 1690.7 and image height of 2048 (hjmage), the vertical
FOV (VFOV) equals 60° (Equation 1, [53]). Accordingly, the ground
plane distance in the x-direction within the FOV of the images (i.e., the
depth to where objects are within camera FOV) is 5.5m to 56m. The depth
within FOV of the sensor suite depends on the altitude and orientation
of the stereo camera setup and is a design consideration for real-world
applications.

0.5 h;
VFOV = 2. atan(———229%)

1
7 O

C. Environment Design

Challenges that need to be overcome when modifying Gazebo worlds
include accurate physics modelling, the inclusion of atmospheric con-
ditions and the modelling of interactions between objects and the envi-
ronment. Including an object with mass and inertia can have unforeseen
effects on the simulation. In addition, detecting and resolving collisions
between objects is computationally intensive and can cause unrealistic
behaviour. Therefore, for each environment, the objects are set to be
weightless and static at their exact location except when explicitly modi-
fied. Three environments were designed in Gazebo for data generation; a
sparse environment, dense environment, and a noisy environment (Figure
20, Figure 21 and Figure 22 as visualised in Appendix A.). The sparse
environment hosts containers and people and serves as a baseline for
method development and evaluation. The dense environment is more
chaotic and has a random spread of containers, dumpsters, trucks, cars
and fire hydrants. The dense environment dataset is more complex and
can serve as an indication of the adaptability of the proposed method
to different small port environments. The noisy environment replicates
real-world conditions more closely with increased color, lighting, and
10% camera sensor noise. Figure 3 shows the design of the noisy port
environment and the inspiration for the scene’s layout; a Google Earth
screenshot of the small port of Mykonos in Greece.

IV. METHOD

The proposed end-to-end pipeline for 3D motion estimation is visu-
alised in Figure 4. The method is divided into subparts; stereo pointcloud
generation, background subtraction, CenterPoint and 3D Motion Estima-
tion and Visualisation.

A. Stereo Pointcloud Generation

1) Stereo Matching: For MOSES, an efficient stereo pointcloud
generation method able to reconstruct the environment without strict ad-
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as foreground elements.

herence to full pixel-to-pixel matching is desired. During the initial phase
of the study, PSM-Net [25] was exploited for stereo matching. However,
our current hardware proved inadequate to accommodate the memory
demands of the framework. Therefore, Semi-Global Block Matching
(SGBM) [11], a simple handcrafted approach with adjustable thresholds
for matching confidence, is implemented. SGBM is a stereo-matching
algorithm that uses stereo image pairs to estimate disparity maps. It
divides the images into small blocks and minimises a cost function to
match blocks between two images. The algorithm integrates local and
global information by evaluating the cost along multiple paths. A median
filter with a 5x5 window is applied to the created disparity map to reduce
noise, outliers and depth artefacts and improve the robustness against
illumination variations and textureless regions [22]. The configuration
of the SGBM algorithm and the way the environment is perceived is
sensitive to the sensor configuration. For example, the disparity range
considered should be increased for sensors at low altitudes to match both
far-away objects and nearby objects accurately.

2) Stereo Pointcloud Preprocessing: Stereo Preprocessing involves
viewpoint reorientation and stereo pointcloud downsampling. Viewpoint
reorientation transforms the stereo pointclouds from the left-camera
coordinate system to the world coordinate system. The transformation
provides a consistent reference frame for all crane subsystems and
improves 3D object motion estimation. Aligning the stereo pointcloud
with the larger spatial enables a more thorough understanding of object-
environment interactions, such as collision avoidance and path planning
for autonomous crane operations.

Among the methodologies employed to downsample stereo pointclouds
with spatial and color information, voxel-based downsampling and reduc-
ing the image resolution are considered. Voxel-based downsampling while
retaining the voxel average as a representative point ensures a uniform
distribution of points in the downsampled pointcloud. Downsampling
decreases memory usage and simplifies the unstructured stereo pointcloud
data representation in a structured grid format. However, fine details may
be lost due to the smoothing effect on the pointcloud. Additionally,
depending on the strategy chosen to select representative points, it
could introduce depth inaccuracies in subsequent pipeline components.
Similarly, pointcloud downsampling by decreasing the image resolution
can effectively reduce the computational load of subsequent parts of
the pipeline. Decreasing the image resolution is not without limitations,
however, as it reduces the number of pixels available for accurate disparity
matching, especially for small objects such as persons. Particularly,
significantly reducing image resolution before the Semi-Global Block
Matching (SGBM) process carries the risk of failed matches and the loss
of objects in the environment.

A hybrid method is implemented to address these considerations
within the MOSES pipeline. The image resolution is reduced by 50%
(2592x2048 to 1296x1024) to improve the processing speed of the SGBM
while retaining detailed texture information in the image. Subsequently,
voxel-based downsampling is performed, using a voxel size of 0.1 and
averaging all points within the voxel to one representative point with
spatial and color attributes. While this might introduce depth discrep-

Color +z Color + xy Color + xyz

Fig. 6. The effect of each 3D coordinate on GMM Background Subtraction.
Including xyz coordinates retains the most information. Blue: ground-truth
bounding boxes. Light blue: ground-truth velocities.

ancies, the latency advantages of the method outweigh its limitations
for the current implementation. Importantly, this downsampling process
successfully retains the necessary level of detailed scene information,
striking a balance between computational efficiency and preserving scene
intricacies.

B. Background Subtraction

Gaussian Mixture Modeling (GMM) is a probabilistic framework
applied in scenarios where the data distribution can be characterised by
multiple modes [13]. Most studies apply GMM to images [12, 13, 34, 35].
Here, the distribution of feature vectors (e.g. color or color and gradient)
is modelled without explicitly taking into account pixel coordinates [54].
[55] uses GMMs on data generated by a RGB-D camera, expanding
the feature vector of each pixel with measured depth. The depth values
of a stereo pointcloud become more erroneous for increasing sensor
noise or in challenging environmental conditions. Here, characterising
the different components in the stereo pointcloud based on only color or
color and depth becomes less reliable or even infeasible. Therefore, within
the MOSES processing pipeline, GMM is leveraged for background
subtraction using 3D stereo pointclouds with per-point 3D spatial (xyz)
and color attributes. Figure 5 supports the inclusion of spatial features for
GMM background subtraction and Figure 6 illustrates the relevance of
including each of the 3 coordinates (xyz) explicitly. Figure 6 shows that
Color + zyz outperforms Color + z (implicit inclusion of image pixel
coordinates and explicit depth information similar to [55]) with respect
to the preservation of information of objects of interest. Color + zyz
explicitly takes the color and 3D coordinates of each point in the stereo
pointcloud into account, shows the best performance, and is therefore
implemented in the MOSES pipeline. The combination of information
improves the segmentation and makes the implementation more robust.
In addition, the background model can be updated directly based on the
remaining points after object detection, without the need to project the
3D points to 2D for GMM fitting. Moreover, the 3D stereo pointcloud is
more sparse than the 2D images, so fitting the GMM on the background
and evaluating the similarity of a new stereo pointcloud is faster. An
acknowledged disadvantage of GMMs is the required prior knowledge
of the environment, as the number of components used for background
model fitting must be sufficient to capture the complexity of the scene.
Addressing this challenge is beyond the scope of the current study.

GMMs describe data as a distribution of a linear combination of
Gaussian components (Equation 2, [13]).

K
P(X)=> mN(Xl, 5, @

i=1
In Equation 2 X is the observed data, K the number of Gaussian
components, ; the weight of the i-th component (the proportion of the
data assigned to the i-th component), 11; the mean vector, and >, the co-
variance of the i-th Gaussian component of the background model. In the
context of background subtraction, the objective of GMMs is to identify
pixels or data points in new input data that deviate from the established
distribution of background components. To achieve this, GMMs first fit
a probabilistic model to the background pointcloud, allowing for the
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derivation of individual Gaussian distributions corresponding to different
components of the background scene. When a new stereo pointcloud is
introduced, the log-likelihood sum is computed for each point, which
is the sum of its potential association with any background component.
As these log-likelihood values become more negative, they indicate a
decreasing likelihood that the points associated with these likelihood
scores are similar to the background distribution. The score values do
not have a directly interpretable meaning in terms of physical units or
probabilities. They represent the relative likelihood that a point belongs
to the background model compared to other points and components in
the GMM.

A preprocessing step is executed for the log-likelihood scores to
refine the outcome. Each likelihood sum is transformed using: Score =
Log(—Score). Now, a high log-likelihood value indicates a decreasing
likelihood of a point being part of the background. This recalibration
enables the visualisation of the different components in the foreground,
facilitating subsequent filtering and background subtraction. Figure 7
shows the transformed likelihood scores per point of a new stereo
pointcloud based on a fitting of five Gaussian components to a back-
ground model of the sparse environment dataset. While five Gaussian
distributions are discernible in the likelihood scores of foreground points,
the background model is considered a single distribution for which a
measure to determine both similarity and dissimilarity is desired.

To effectively split foreground points from the background in the new
stereo pointcloud, a threshold mechanism is employed. Data points with
log-likelihood values exceeding this threshold are classified as foreground
elements, implying that they belong to a component which is distinct from
the background distribution. On the contrary, points with log-likelihood
values below the threshold are retained as background elements. The
threshold value is determined as the sum of the mean and twice the
standard deviation (mean + 2 - stddev) of the current likelihood scores.
This threshold helps to establish a clear division between the foreground
and background points for the current observation of the environment.
The result of this process is visualised in Figure 8.

In addition to background subtraction as detailed, background model
initialisation and background model maintenance are essential. Initiali-
sation and maintenance follow the same structure. Establishing a robust
background model in a dynamic environment starts with gathering the
residual points after object detection from a buffer of N frames. From
those frames, static elements must be identified as they are likely to be
(new) background parts; therefore, the buffer needs to be evaluated for
temporal consistency. By applying a GMM to the buffer, it can identify
clusters with narrower, taller curves that indicate stable, unchanging

c)

Fig. 8. Background Subtraction. a) Stereo pointcloud of the current frame.
b) Retained background. c¢) Resulting foreground after subtraction.

background points. On the contrary, broader, shorter curves form clusters
of points that are likely to belong to moving objects or noise, highlighting
variations over time. These clusters are likely to indicate points that do
not belong to the background. The points corresponding to a taller curve
are added to the background model for every N frames. The delayed
updates ensure that points belonging to a false negative detection are not
included in the background model and thus improves model robustness.
For the MOSES-pipeline, N = 4 is implemented.

C. CenterPoint

CenterPoint is chosen for its integration of object detection and object
velocity prediction [15]. While the predicted velocity is most often
applied for tracking [7], in MOSES, the velocity is used to estimate
the motion of objects. CenterPoint uses VoxelNet [44] as a 3D backbone
to handle the stereo pointcloud data. VoxelNet divides the 3D space into
a grid where each cell contains information about all points within the
voxel bounds. Each voxel is projected to BEV to enable the use of 2D
convolutional networks, ideal for MOSES where ground plane movement
is of predominant interest. Subsequently, the 2D CenterNet architecture
[56] is applied, which uses heatmaps to predict the centerpoints of
the object based on the BEV data, where high probabilities indicate a
high likelihood of an object being present. Decoding these heatmaps for
each object attribute produces precise 3D bounding box predictions by
identifying peak points as potential object centers. The velocity estimation
module matches detected 3D centerpoints of objects across frames and
computes their motion vectors, allowing for the prediction of their speed
and direction of movement.

1) Temporal Information: CenterPoint requires temporal information
for velocity prediction. For this, each point is augmented with a timestamp
in an additional feature channel. The current frame t is assigned a
timestamp of 0, while preceding frames receive positive time increments
relative to frame t. The MOSES pipeline uses frames t, t-1, t-2, and
t-3 as input, providing three temporal references for accurate velocity
estimation.

2) Color Information: Stereo pointclouds generated based on images
allow us to exploit the per-point color information. Therefore, the
colors can be learned as discriminative features to improve detection
performance [24, 46, 57]. In addition, stereo pointclouds are unstructured
pointclouds where the spatial structure of the points representing the ob-
jects of interest is not always a robust representation of the object features.
Therefore, the decision was made to include per-point color information
as input into the CenterPoint network. This required customisation of
the network architecture. The number of per-point input features was
changed from 5 (X, y, z, intensity, time) to 7 (X, y, z, 1, g, b, time),
since a stereo pointcloud has no intensity attributes but does have color
information. The color information of the current frame t is included, and
the color information of frames t-1, t-2 and t-3 is excluded. This improves
detection performance and helps the network discriminate between the
points in the current frame for object detection and the points included
as temporal information for velocity prediction.

D. 3D Motion Estimation and Visualization

3D Motion Estimation is based on the desired prediction horizon for the
current application. The velocity of the object is assumed to be constant
over the prediction horizon and is modelled from its centerpoint. The



Dataset mAP 1 | Recall 7 | AOE (rad) | | AVE (m/s) | | IoU 0.25 1 | MDS 1

Sparse Environment 0.749 0.768 0.128 0.248 0.666 0.781

Dense Environment 0.815 0.794 0.127 0.240 0.777 0.816

Noisy Environment 0.550 0.625 0.153 0.290 0.407 0.664
TABLE I

PERFORMANCE EVALUATION OF MOSES PIPELINE. BOLD HIGHLIGHTS THE BEST ENTRY PER COLUMN.

Fig. 9. Qualitative results of the MOSES pipeline on the Dense Environment
validation set. Ground-truth bounding boxes are shown in blue, ground-truth
velocities are shown in light blue, detected bounding boxes are shown in
green, and predicted velocities are shown in red.

prediction horizon is long-term (1.5s) [58]. The visualisation takes the
network output and displays object detection and motion prediction on
the downsampled stereo pointcloud to facilitate a practical representation
for operational implementations.

V. EXPERIMENTS

A. Settings

1) Implementation Details: The implementation of CenterPoint in
the OpenPCDet Python library is used. For MOSES, the loss of all outputs
of the network is equally weighted (x, y, z, dx, dy, dz, yaw, vx, vy).
Training is done for 20 epochs with a batch size of 4. Inference times
are measured on a GeForce GTX 970 GPU and an Intel Core i7 CPU.
The times presented serve to compare and evaluate design decisions for
the MOSES pipeline.

2) Datasets: Datasets used during the experiments are simulated
datasets of a sparse environment, a dense environment, and a noisy
environment. The sparse environment dataset consists of 1611 frames,
the dense dataset of 1811 frames and the noisy dataset of 1745 frames.
The distribution of locations and orientations included in the datasets,
object velocities and other specifics can be found in Appendix A. For
each dataset, the voxel size is set to (0.125, 0.15, 0.25) with a detection
range of x [0,50], y [-30,30], and z [0,10] corresponding to the stereo
pointcloud dimensions. The x-axis points towards the scene, the y-axis
from right to left, and the z-axis points upward. The number of voxels
for training and testing is set to 80000. The training dataset is augmented
with 5% random scaling, random rotation by 45 °, and random flipping
along the x-axis similar to [59]. 70% of the data is used for training and
30% for validation.

3) Evaluation Metrics: Evaluation metrics to examine the perfor-
mance of the MOSES pipeline are mAP [60], Recall, Intersection over
Union (IoU) at 0.25 overlap [61], and the true positive metrics Average
Orientation Error (AOE), and Average Velocity Error (AVE) [62]. The
mAP is based on a BEV centerpoint distance of 0.1, 0.3, and 0.5m. AOE
represents the smallest difference in yaw angle between the predicted
and ground-truth orientations in radians. AVE is the absolute velocity
prediction error in m/s. Recall, AVE and AOE are reported for an
object centerpoint distance of 0.3m. The metrics are consolidated in a
downscaled nuScenes Detection Score [62], the MOSES Detection Score

Fig. 10. 7 frame trajectory of a single person. Ground-truth bounding boxes
are shown in blue, ground-truth velocities are shown in light blue, detected
bounding boxes are shown in green, and predicted velocities are shown in
red.

[ Processing Step [ SGBM | Downsampling [ BS | 3D Detection |
\ Time | 131.6 ms | 77.9 ms | 70.7 ms | 156 ms |

TABLE 11
DETAILED TIMING ANALYSIS OF MOSES.

(MDS). The true positive metrics (AVE, AOE) are converted as Errorscore
= 1-Error. A weight of 2 is assigned to mAP and a weight of 1 to
each error. The MDS is divided by 4 to calculate the normalised sum.
Notably, while IoU @ 0.25 currently lacks distinctiveness in evaluating
person detection performance, its significance could potentially increase
with the inclusion of more object categories in the detection network.
Therefore, it is presented for reference but not incorporated into the
MDS calculation, as person localisation is valued over object dimension
detection for MOSES.

B. Experiment Results

1) Performance evaluation: Figure 9 presents a visualisation of the
3D object detection and motion estimation output of the MOSES pipeline.
Figure 10 shows a segment of an object trajectory. The ground-truth
velocity is based on a single previous frame and, therefore, is sensitive
to sudden changes in object location. The predicted velocity takes the
previous three frames into account and changes more gradually as a result.
Quantitative results of the proposed pipeline on the validation set of the
sparse, dense and noisy environment can be seen in Table I. It is noted
that the mAP score for the dense environment dataset is higher than for
the sparse environment dataset. This can be attributed to a difference in
dataset composition (e.g. different number of frames, number of partially
occluded objects). For the dense environment, an orientation error of
0.127 rad equals 7.3°, an error of 4% at a maximum of 180°difference.
The velocity error of 0.240 m/s at a maximum object velocity of 2.55
m/s gives an error of 9.4%. The higher velocity error can be influenced
by two key factors; manual preprocessing of the dataset for compatibility,
and sudden changes in object location (and consequently velocity) due
to inconsistencies in the data generation frequency of the simulation.
In addition, stereo pointclouds come with a particular depth uncertainty,
possibly increased by the downsampling of the stereo pointcloud. This
is expected to affect the localisation accuracy and, as a consequence,
the velocity prediction accuracy of the MOSES pipeline. Orientation
detection is less affected by these factors. As the noisy environment has
more sensor noise introduced to the camera sensors, the performance
of the pipeline on the dataset is expected to degrade, which can be
seen in Table I. Although performance is satisfactory, there is room
for improvement. With more sensor noise, the stereo pointcloud is less
accurate in depth direction, and learning robust features in a stereo
pointcloud with higher spatial uncertainty requires more reference data.
A next step would be to increase the size of the dataset used for the
experiment to evaluate this hypothesis.



Dataset Color mAP 1 | Recall T | AOE (rad) | | AVE (m/s) | | IoU 0.25 1 | MDS 1
Sparse Environment frame t 0.749 0.768 0.128 0.248 0.666 0.781
frame t, t-1, t-2, t-3 0.632 0.691 0.180 0.276 0.498 0.702
Dense Environment frame t 0.815 0.794 0.127 0.240 0.777 0.816
frame t, t-1, t-2, t-3 0.616 0.682 0.218 0.303 0.517 0.678
TABLE III

THE EFFECT OF INCLUDING COLOR INFORMATION ON MOSES PIPELINE PERFORMANCE. BOLD HIGHLIGHTS THE BEST ENTRY FOR EACH DATASET.
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Fig. 11. AOE versus Temporal Information.

2) Latency Assessment: As object detection and velocity prediction
in port environments will only be of added value if the pipeline has
real-time or near real-time performance, the latency of the MOSES
pipeline is evaluated. The definition of real-time performance depends
on the application. For some applications, ~ 11FPS equals real-time
performance [59] and for others ~ 30F PS or higher is required [22].
For MOSES, the processing frequency of other components (e.g. the
container detection and localisation pipeline) equals 10 FPS, which
serves as a real-time processing reference. Table II illustrates the latency
breakdown of the MOSES pipeline proposed in this study for a single set
of stereo images. The total processing time (with our current hardware)
is equal to ~ 3FPS. Nevertheless, the computer is not considered high
performance, which significantly affects the latency. High-performance
hardware and pipeline optimisation by means of process parallelisation is
expected to increase the processing speed to (near) real-time performance.
Furthermore, the breakdown of the processing speed of ~ 3FPS can
serve as an indication of directions for further research. From Table
II, it can be deduced that the bottlenecks in the current processing
pipeline are SGBM for pointcloud creation and the subsequent voxel-
based downsampling of the pointcloud. The optimisation of these building
blocks is a potential research direction to further decrease the latency of
the end-to-end method in place.

3) Temporal Information: The influence of number of temporal
reference frames provided as input to CenterPoint on the performance of
the MOSES pipeline is seen in Figure 11 and Figure 12. It can be seen
that increasing the extra frames included improves the AOE and AVE
at 0.3m centerpoint distance. The performance improvement indicates
that the temporal correlation among sequential frames plays a role in
refining object detection and localisation. The improvement stagnates
at the inclusion of frames t-1, t-2, and t-3 as temporal information,
which suggests that the network can only effectively use information
from a limited temporal window. Therefore, an additional three frames
are provided as input to the network for temporal reference to balance
enhanced performance and increased model complexity. Increasing the
number of input frames increases the computational requirements of
the network, including memory and processing power. In real-time
applications, this could introduce latency concerns. However, for MOSES
with pointclouds of ~1000 points (for the current sensor noise setting)
after background subtraction, the increase in computational requirements
is negligible.

4) Color Information: The color information experiment is per-
formed to understand the effects of including color data from the current
frame (frame t) while retaining the temporal context provided by frames
t-1, t-2, and t-3. The effect of including color information for the current
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Fig. 12. AVE versus Temporal Information.

frame (frame t) or for all frames (frame t, t-1, t-2, and t-3) on the
performance of the proposed MOSES pipeline is visualised in Table III.
The results demonstrate that introducing color information exclusively for
the current frame leads to improvements in the performance evaluation
metrics. Augmenting 3D points with color information for the current
timestamp can help the network better differentiate object boundaries
and other characteristics. This is particularly beneficial when objects
have complex shapes or textures. The decrease in mAP for the inclusion
of color information from all frames could indicate the struggle of the
network to distinguish the boundaries of the objects from the temporal
window provided when each frame is augmented with appearance fea-
tures. The performance improvement caused by adding color information
is more pronounced for the dense port environment (+32.3% mAP for the
dense environment versus +18.51% mAP for the sparse environment).
An explanation is that in an occupied environment the persons are
more often in the proximity of background objects, making it harder
to distinguish object boundaries. Therefore, the performance increases
more significantly when color information is included.

5) Cross-Environment Generalisation: Cross-environment general-
isation is examined to validate the hypothesis that voxel-based down-
sampling and background subtraction aid in enforcing a robust object
representation within a neural network. This representation, in turn,
should facilitate accurate object detection in diverse and previously un-
seen environments, provided that voxel-based downsampling is performed
and the background is also subtracted in those environments. The effect
of voxel-based downsampling and background subtraction are evaluated
separately for clarification. To assess the effect of background subtraction,
two datasets were selected to train the network: one consisting of the
sparse port environment with background subtraction and the other
featuring the same environment without background subtraction. The
generalisation of the learned features across environments was assessed
by testing the network on the noisy environment and dense environment
with and without background subtraction according to the respective
training dataset. Table IV shows the results of the experiment. The best
performance for cross-environment generalisation was achieved when the
model was trained on the sparse environment dataset with background
subtraction, as shown by the test results on unseen datasets with back-
ground subtraction. The findings support the hypothesis of the advantage
of background subtraction for cross-environment generalisation, of value
for a mobile sensor setup such as MOSES which is expected to attend
to new port environments by autonomous vessel continuously. The
conducted experiment highlights the potential benefits of background
subtraction in the context of cross-environment generalisation for object
detection within small port environments. While the results are promising,



CROSS-ENVIRONMENT GENERALISATION EXPERIMENT OF MOSES-PIPELINE. BGS STANDS FOR BACKGROUND SUBTRACTION. BOLD HIGHLIGHTS

THE BEST ENTRY FOR EACH TEST DATASET.

Training Data Test Data mAP 1 | Recall t | AOE (rad) | | AVE (m/s) | | IoU 0.25 1+ | MDS 1
Sparse Environment (BGS) Depse Env_ironment (BGS) 0.612 0.746 0.141 0.255 0.641 0.707
Noisy Environment (BGS) 0.422 0.405 0.226 0.311 0.288 0.577
Sparse Environment Der}se Env.ironment 0.487 0.541 0.257 0.311 0.326 0.536
Noisy Environment 0.013 0.011 0.019 0.013 0.0083 0.49
TABLE IV

Training Data Downsampling Test Data mAP 1 | Recall T | AOE (rad) | | AVE (m/s) | | IoU 0.25 1+ | MDS 1
Sparse Environment YES Dense Environment 0.612 0.746 0.141 0.255 0.641 0.707
’ Noisy Environment 0.422 0.405 0.226 0.311 0.288 0.577
Sparse Environment NO Dense Environment 0.378 0.599 0.1864 0.2627 0.308 0.577
Noisy Environment 0.169 0.238 0.189 0.236 0.0796 0.478
TABLE V

EFFECT OF VOXEL DOWNSAMPLING ON CROSS-ENVIRONMENT GENERALISATION. BOLD HIGHLIGHTS THE BEST ENTRY FOR EACH TEST DATASET.

Fig. 13. Dense Port Environment with Fig. 14. Effect of noise on SGBM
20% Sensor Noise. matching result.

Sensor Noise (stddev) | SGBM (points) | Downsampling (points)
0.007 1,312,487 90,142
0.01 1,265,180 87,989
0.05 520,408 94,285
0.1 204,082 19,591
0.2 47,551 2,857
0.3 10,204 612
04 714 143
0.5 204 41
TABLE VI

EFFECT OF INCREASING NOISE ON POINTCLOUD SIZE FOR THE DENSE
PORT ENVIRONMENT.

there are challenges and limitations associated with this approach. It is
essential to note that the network is trained with the same settings for
both datasets, with and without background subtraction. The observed
performance variations can be therefore be partly attributed to the limited
time that the network is given to learn the increased input space. Table
IV also shows the weakness of MDS. The bottom row shows that an
extremely low mAP corresponds to low AOE and low AVE. This occurs
when only a few true positives are detected, and those detected are very
accurate. The resulting MDS of 0.499, while it seems to demonstrate
good performance, is meaningless. The identical sensitivity flaw can be
identified in the widely recognised nuScenes Detection Score, making
it acceptable to keep the MDS calculation as is and always report it in
combination with mAP, AVE and AOE.

The effect of voxel-based downsampling on cross-environment gener-
alisation is evaluated with two baseline datasets, one without downsam-
pling and one with voxel-based downsampling, but both with background
subtraction. Table V shows the results of the experiment performed. It can
be seen that voxel-based downsampling outperforms a method where no
downsampling would be applied for both test datasets. It should be noted
that without downsampling, the AOE and AVE in the noisy environment
test dataset are lower than the errors when testing is performed on the
noisy dataset with voxel-based downsampling. The reason for this is
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Fig. 15. Effect of increasing sensor noise on mAP on the validation set of
the Sparse and Dense Environment

similar to that previously mentioned. AOE and AVE are true positive
metrics, which are biased toward the accuracy of orientation detection
and velocity prediction compared to the number of object detections.

6) Sensitivity to Noise: In Gazebo, camera sensor noise is modeled
by independently adding a Gaussian-sampled disturbance to each pixel,
with adjustable mean and standard deviation. The default standard devi-
ation (stddev) is set to 0.007. To achieve a realistic simulation of real-
world environments, standard deviations in the range of 0.01 to 0.5 are
considered, with lower values applicable to daylight conditions and higher
values to simulate adverse weather conditions. Figure 13 visualises the
effect of 0.2 stddev noise on the 3D information that can be retrieved by
the SGBM algorithm. While the reduction in matched pixels is significant,
it can be seen that high-texture regions (such as persons) are retained, a
valuable finding for the subsequent evaluation of the impact of noise on
the performance of the MOSES-pipeline.

The impact of elevated sensor noise on the stereo pointcloud size
generated by the SGBM and number of points that remain after down-
sampling is visualised in Table VI. The results show the pointcloud size
as sensor noise is increased for the simulated dense port environment. The
observations seem to indicate that up to a 0.2 standard deviation increase
in sensor noise, an adequate amount of information is retrieved. However,
augmenting the noise beyond this threshold leaves too few points for
accurate background subtraction and subsequent object detection.

The final part of this experiment evaluates the MOSES pipeline
performance for 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 standard deviation
Gaussian noise introduced to the camera sensors to evaluate low, moderate
and high noise conditions. Datasets are created for each noise level for
both the sparse and the dense environment. Figure 15 shows the effect
of increasing sensor noise on the mAP performance indicator. For the
sparse environment dataset, a significant degradation in performance is
visible for noise greater than 0.3 stddev. At 0.4 standard deviation the
mAP nears zero, indicating that learning becomes almost impossible.



Dataset Downsampling Latency mAP 1 | Recall 1 | AOE (rad) | | AVE (m/s) | | IoU 0.25 1 | MDS 1
Voxel (Averaged Center) 77.9 ms 0.749 0.768 0.128 0.248 0.666 0.781
Sparse Environment | Voxel (Nearest Centroid) | 26357.9 ms 0.643 0.764 0.311 0.355 0.494 0.698
Angular Downsampling 100 ms 0.678 0.720 0.201 0.289 0.559 0.716
TABLE VII
ABLATION STUDY FOR STEREO POINTCLOUD DOWNSAMPLING. BOLD HIGHLIGHTS THE BEST ENTRY PER COLUMN.
Dataset BGS Training Time | mAP 1 | Recall ¥ | AOE (rad) | | AVE (m/s) | | IoU 0.251 | MDS 1
Sparse Environment YES 00:06:15 0.749 0.768 0.128 0.248 0.666 0.781
P NO 02:55:10 0.601 0.643 0.250 0.319 0.549 0.659
Dense Environment YES 00:06:55 0.815 0.794 0.127 0.240 0.777 0.816
NO 03:15:10 0.768 0.792 0.250 0.348 0.680 0.736
TABLE VIII
ABLATION STUDY FOR BACKGROUND SUBTRACTION (BGS). BOLD HIGHLIGHTS THE BEST ENTRY PER DATASET.
Dataset Color Information | mAP 1 | Recall T | AOE (rad) | | AVE (m/s) | | IoU 0.25 7 | MDS 1
RGB 0.749 0.768 0.128 0.248 0.666 0.781
Sparse Environment Gray 0.760 0.768 0.159 0.271 0.649 0.772
None 0.707 0.738 0.160 0.275 0.648 0.745
RGB 0.815 0.794 0.127 0.240 0.777 0.816
Dense Environment Gray 0.795 0.797 0.174 0.260 0.691 0.789
None 0.738 0.763 0.223 0.293 0.674 0.740
TABLE IX

ABLATION STUDY FOR COLOR INFORMATION. BOLD HIGHLIGHTS THE BEST ENTRY PER DATASET.

On the dense environment the pipeline experiences a steep decrease
in performance from 0.2 to 0.3 stddev sensor noise. Object detection
in sparse environments is more robust to sensor noise compared to a
more occupied environment as the reduced occlusion and surrounding
objects facilitate more reliable object detection. Therefore, the network
is expected to learn predictions accurately up to a Gaussian sensor noise
with 0.2 standard deviation for diverse port environments (when presented
with adequate data). After that, the MOSES pipeline fails to learn and
perform.

C. Ablation Studies

1) Stereo Pointcloud Downsampling: 1t is acknowledged that the
current implementation of voxel-based downsampling could introduce
depth discrepancies in the subsequent parts of the pipeline. Therefore, an
ablation study is performed considering other downsampling approaches.
As the image resolution has already been decreased, further reduction
of this is left out of scope to avoid the risk of losing fine details in
the environment during stereo matching. The downsampling methods
considered along with voxel-based downsampling while retaining the
averaged center and color information as a representative point (Voxel
(Average Center) in Table VII) are voxel-based downsampling while
retaining the point nearest to the voxel centroid as a representative point
(Voxel (Nearest Centroid)) and Angular Downsampling [24]. Angular
Downsampling returns spatial and color information of points at specific
angles similar to the data generated by a LiDAR sensor, which might
improve the performance of CenterPoint (originally built for LIDAR data)
on the generated stereo pointcloud data. However, angular downsam-
pling may lead to an uneven point distribution, potentially resulting in
underrepresentation of the environment and loss of fine details (small
objects). Voxel (Nearest Centroid) might alleviate the concern of depth
discrepancies introduced by point averaging, as it retains a point that
was part of the original stereo pointcloud. Nevertheless, the resulting
point distribution is irregular and influenced by noise and outliers.

Table VII shows the performance of the MOSES pipeline on the
sparse environment dataset with different stereo pointcloud downsampling
methods. The Voxel (Averaged Center) approach introduces the lowest
latency into the pipeline while achieving high performance. The Voxel
(Nearest Centroid) method has similar precision but increased AOE, AVE
and latency. It should be noted that the implementation of Voxel (Nearest
Centroid) downsampling might not be optimised yet, but the current low

latency limits its broader application. Voxel (Nearest Centroid) was eval-
uated for its possible improvement with regards to localisation accuracy.
However, it seems that the irregularity of a pointcloud based on voxel
centroids compared to a stereo pointcloud based on Voxel (Averaged
Center) downsampling results in an increase in detection and prediction
errors. Angular Downsampling strikes a balance between latency and
performance metrics, showing timely and reasonably accurate object
detection. In practical implementations, the selection of a downsampling
method should be in line with real-world requirements. For MOSES
the Voxel Averaged Center method outperforms all other downsampling
methods on the current evaluation metrics, therefore, the choice of
downsampling method is validated.

2) Background Subtraction: In the framework of the MOSES
pipeline, the background subtraction (BGS) module holds significant
importance. In early stages of the study, other background subtraction
methods were considered. Spatial Color Thresholding was implemented,
where points in the current frame were segmented into foreground
and background points based on their nearest neighbour distance (both
based on color and 3D location) to the background model. For optimal
performance, the method required a different threshold for each environ-
ment. As the aim of the MOSES-pipeline is to generalise to diverse
environments and changing circumstances, this method is unsuitable.
Therefore, the current ablation study focusses on the inclusion or exclu-
sion of background subtraction in the pipeline, and not on the effect of
different background subtraction approaches. Table VIII emphasises the
advantages of background subtraction in the proposed MOSES pipeline,
demonstrating improvements in performance metrics such as increased
mAP, improved recall, reduced AOE, and higher IoU scores in sparse
and dense environments. It is important to note that the network is
trained with identical settings for both dataset types (with and without
background subtraction). Part of the observed performance discrepancy
can therefore be attributed to the difference in input variables and the
insufficient training time for the network to acquire a robust feature
representation of the input when no background subtraction is performed.
An advantage of BGS is its computational efficiency and simplification
of the learning process, resulting in faster convergence and improved
cross-environment generalisation. It is important to consider the potential
limitations of background subtraction. The main concern is the risk of
removing relevant points due to the implementation of an aggressive
background subtraction method. Within the current pipeline, efforts are
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Fig. 16. Background Subtraction (BGS) result on the real-world dataset. The two images for top and side view show the stereo pointcloud before and after

BGS based on a 5 component GMM is performed.

made to alleviate this concern by means of the N-frame buffer before
background model initialisation and model updates are performed.

3) Color Information: The integration of color information increases
the computational complexity of the pipeline due to the augmentation
of stereo pointcloud features. An ablation study is therefore essential
to validate the design decision. The upcoming ablation study examines
the effects of the inclusion of color information, and illustrates the
justification for selecting RGB over grayscale representation. RGB color
information has been shown to lead to better discrimination, resulting
in improved object detection performance, as indicated in Table IX.
The data demonstrates that incorporating RGB information yields slight
performance enhancements for the sparse port environment dataset, and
more significant enhancement for the dense port environment. In the
sparse environment, including an appearance cue of either grayscale or
RGB yields an approximately similar performance improvement. For the
dense environment, with more diverse and more complex objects, RGB
information is demonstrated to be a more discriminative feature. With
closely spaced objects and more frequent occlusions, the inclusion of
multi-scale RGB color information disambiguates objects more effec-
tively compared to grayscale information. The data in Table IX show that
incorporating RGB color information improves detection performance
when looking at all environments, with higher mAP, recall, reduced AOE,
and AVE, along with increased IoU scores. Although the ablation study
supports the design decision and current implementation, it is essential to
recognise potential downsides. Integrating RGB information introduces
an additional processing burden due to increased input dimensionality.
Additionally, color variations arising from challenging lighting conditions
and changing object appearances were not addressed in the simulation,
but could reduce or eliminate the performance improvement used as
motivation for the design decision.

D. Real Dataset

After concluding a thorough examination of the proposed method by
means of experiments, and a validation of the pipeline design decisions by
ablation of its main components, a final experiment is conducted on a real-
world dataset. The dataset is generated at 12.5 m altitude with downward
oriented stereo cameras at an angle of 45°. The environment has a static
tree close to the sensors, static cars, and three persons walking along
almost horizontal lines. The real-world dataset is visualised in Figure
17. The sensor setup is similar to that of the virtual setup in Gazebo,
and therefore the hypothesis is that the optimised MOSES pipeline and
the conclusions of the ablation study based on simulated data can be
transferred to the real-world dataset and the applicability of the MOSES
pipeline to real-world scenarios can be proved. The real dataset consists of
189 frames for which the ground truth boxes had to be manually labelled.
To facilitate the annotation process, we used existing 2D labels on the
images of the left camera. A 5x5 window around the center of the 2D
bounding boxes is projected on the depth image and used as a prior for
the 3D object centerpoint location. After automated generation of the 3D
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Fig. 17.
pointclouds. Static cars, the central tree and trajectories followed by the three
walking persons can be identified.

Real-world Dataset. Screencapture of an overlay of 9 stereo

boxes, their locations and dimensions were manually refined. Ground-
truth velocities are established by performing a greedy Euler distance
association of annotations for each frame t and t-1. Velocities in the x and
y directions are based on the centerpoint distance between the annotations
in the two consecutive frames. For an Euler distance exceeding 1m, the
velocity is generalised to 1m/s in the negative or positive y direction,
depending on the displacement of the person between the two frames.
Manual annotation of 3D bounding boxes proved challenging, as it
relied on visual inspection of stereo pointclouds as the only reference.
Hence, inaccuracies in object position, potentially up to decimeter-scale,
and consequently velocity inaccuracies are present. Furthermore, ground-
truth orientation was not annotated. Two experiments are performed with
the real-world dataset; a general performance evaluation and a cross-
environment generalisation assessment from data generated in simulation
to real-world data.

1) Real Dataset Performance: At first, the performance of the
pipeline on the real-world dataset is assessed. For this, the dataset is
divided into 142 frames for training and 47 frames for validation. The
first building blocks of the pipeline are voxel-based downsampling and
GMM based background subtraction. Figure 16 shows the output of this
process on the real-world dataset. The leftmost top view shows a voxel-
based downsampled stereo pointcloud where the data is reordered in



a) b)

d)

Fig. 18. MOSES Pipeline output on the real-world dataset on a single frame zoomed in on one bounding box. Blue: ground-truth bounding box. Light blue:
ground-truth velocity. Green: predicted bounding box. Red: predicted velocity. a) Top view. b) Front view. ¢) Side view. d) Trajectory visualisation.

Real-world Dataset
Cross-Environment Generalisation

0.4 0.6

X 0.8
BEV center distance (m)
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Fig. 19. Performance of MOSES pipeline on real-world dataset and Cross-
Environment Generalisation with training on dense dataset environment,
testing on real-world data. AP versus BEV center distance between ground
truth and predicted object location.

a structured grid format. Both images to the right of Figure 16 (top
and side view) show the remaining points before and after BGS with a
5-component GMM is performed. The CenterPoint output on a single
frame zoomed in to one bounding box is shown in Figure 18. Figures a),
b) and c) illustrate that the ground-truth annotations and the detections
each capture a different part of the points representing the object and
thereby visualises the inaccuracies in the ground-truth annotations. As
the ground-truth annotations have an inherent object location deviation,
the evaluation metrics cannot become completely accurate. However, the
qualitative illustration of object detection and prediction of object velocity
shows reasonable performance. Figure 18 d) illustrates the trajectory of
one person and the associated predicted and ground-truth velocities. Here,
it is important to illustrate that the created ground-truth velocities do not
nearly represent the trajectory of the object well. However, the end-to-end
pipeline is capable of predicting the trajectory of the person over time
very accurately.

Figure 19 presents the increasing precision of the MOSES-pipeline for
an increase in allowed distance between ground truth object centers and
predicted object centerpoints. While this might seem a trivial statement,
its purpose here is to be able to assess the performance on the real-
world data while taking into consideration the inaccuracy of the manual
annotations. It can be seen that for an increase in allowed center distance,
the precision quickly increases to above 90% accuracy (at 0.5m), and
the improvement in performance stagnates afterward. Therefore, it is
expected that in the case of more precise labels, the mAP as considered
for the simulated data (averaged over 0.1, 0.3, 0.5 m center distance) will
illustrate highly accurate performance on the real-world dataset. Hence,
the hypothesis, as mentioned above, that the MOSES pipeline can be
applied to real-world data is adequately verified. Evaluation of AOE and
AVE is left out of scope, as the ground-truth velocities are inaccurate
(Figure 18 d) ) and no ground-truth orientations were annotated.
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2) Cross-Environment Generalisation (Simulation to Real-World):
Cross-environment generalisation of the proposed pipeline was evaluated
for the datasets generated in the simulation. We assessed how well the
features learnt on a sparse port environment dataset adapt to datasets
of dense and noisy port environments. A deeper level of understanding
of cross-environment generalisation of the proposed end-to-end MOSES
pipeline can be gained when an evaluation is done where the training
dataset is simulated and the test is performed on real-world data. For this
experiment, the dense environment dataset is chosen as a training dataset,
as it is expected that the appearances of persons are more challenging and
diverse compared to the sparse environment and the representations learnt
will be more robust to transfer to real-world data. Figure 19 illustrates the
precision for increasing BEV center distance range for a network trained
on the dense environment and tested on the real-world data. Considering
the difference in environmental conditions, the coarse manual labelling
of the real-world data and the small dataset size, an AP of 0.291 at 0.5m
centerpoint distance is promising. Similar to Figure 19, the performance
improvement stagnates after 0.5m distance. Future works can be pursued
in the direction of training on a large simulated dataset and finetuning
the network parameters on a small real-world dataset to improve the
performance of the end-to-end pipeline in real-world conditions.

VI. DISCUSSION

The main objective of this study is to address the challenges associated
with person detection and velocity prediction in small port environments
using a sensor suite located on an autonomous crane. The focus is on
designing a robust processing pipeline that incorporates stereo camera
information for 3D object motion estimation and safety monitoring.
The main components of the proposed pipeline are the stereo matching
method, background subtraction based on Gaussian Mixture Models
and the usage of CenterPoint on stereo pointclouds. Experiments are
performed on simulated data as no real-world model of the crane has
been deployed yet. The results of the experiment provide clear insight into
both the strengths and limitations of the approach, which, together with
an experiment on a basic real-world scenario, are crucial for assessing
its practicality in the real world.

A general performance evaluation reveals an mAP of 81.5%, an
orientation error of 4% and a velocity error of 9.4%. The metrics show
a satisfactory level of accuracy but simultaneously expose areas for
refinement. The main sources of error are the depth uncertainty inherent
to the disparity matching method (due to e.g. image noise and the discrete
nature of disparity levels) and the downsampling of stereo pointclouds.
The vulnerability of the velocity prediction to these factors is evident,
as velocity depends on localisation accuracy. The experiments illustrated
that 3 temporal reference frames ensure optimal velocity prediction and
orientation detection. A downside to using three time steps is the delay
in the prediction of velocity, which makes an object of interest less safe.
In addition, for more complex real-world trajectories, the motivation
behind 3 frames for temporal reference might not endure. Therefore,
for real-world applications, using one frame as a temporal reference



might be more suitable. Moreover, if movement toward the crane can be
detected, the object of interest will be visible in subsequent frames, and
the velocity prediction can be refined afterwards. An evaluation of end-to-
end processing of simulated data revealed a processing frequency ~ 3 fps.
The FPS is expected to increase by using more advanced hardware. A
latency breakdown revealed that the bottlenecks in the current pipeline are
SGBM and voxel-based downsampling. Therefore, the trade-off between
a large image required for small object disparity matching and a concise
stereo pointcloud for efficient background subtraction and subsequent 3D
object detection and velocity prediction must be investigated. Augmenting
points with color information as input into CenterPoint was found to
improve the performance of the MOSES pipeline, particularly in more
occupied environments where the detection of object boundaries is chal-
lenging. Aspects not addressed in the simulation are possible variations in
object color caused by challenging lighting conditions or changing object
appearances. These could diminish the illustrated performance gains or
even counteract the proposed method, removing the motivation for the
design decision. The final part of the pipeline to consider is the subtraction
of the background. A novel method for background subtraction with
Gaussian Mixture Models is proposed, where the model is fit on a
stereo pointcloud with per-point color and 3D spatial (xyz) information.
This has superior performance on both simulated and real-world data
compared to other implementations. Background subtraction was included
in the pipeline to foster cross-environment generalisation by establishing
a robust object representation that generalises to unseen environments.
The pipeline trained with background-subtracted data outperforms that
trained on data without background subtraction. This finding underlines
the significance of background subtraction in enhancing general features
within the network, improving performance in unseen environments - a
valuable finding for MOSES, given its mobile sensor setup. The sensi-
tivity of background subtraction to changes in lighting and challenging
environmental factors remains to be evaluated.

A final test was performed on a real-world dataset with a sensor
configuration similar to the stereo cameras on the autonomous crane.
The dataset had to be manually annotated, which introduced position and
velocity inaccuracies in the ground-truth labels and led to the exclusion
of object orientation information. A performance evaluation revealed an
accuracy of >90% on an allowed center distance of 0.5m. This is a
good indication that the pipeline developed on simulated data is robust
and applicable to the real world. It is expected that similar performance
can be achieved at a smaller allowed center distance if the ground-truth
annotations are refined. However, the current evaluation is limited to
a basic real-world scenario, and more complex scenarios remain to be
assessed. A cross-environment generalisation experiment revealed that the
motivation for background subtraction and voxel-based downsampling to
create a uniform object representation also applies to the transition of
simulated data to real-world data. Training on the dense environment
dataset and testing on real-world data resulted in an AP of 0.291 on
0.5m center distance. This preliminary assessment of transfer learning is
promising.

Future research recommendations are to evaluate pipeline latency on
high-performing hardware with respect to the desired real-time perfor-
mance (10 fps) and to perform experiments on more and larger real-world
datasets. More experiments on real-world data should provide insight
into the effect of challenging lighting conditions and changing object
appearances on the performance of the MOSES pipeline. Additionally,
realistic real-world scenarios might present other aspects that should
be considered, but were not reproduced in simulation, such as object-
object interactions and complex object trajectories. Also, it is expected
that e.g. terrain height differences significantly affect the result of the
stereo-matching module and with this all subsequent parts of the pipeline.
Taking these real-world scenarios into account will increase the overall
robustness of the proposed MOSES pipeline.

VII. CONCLUSION

This paper presents an end-to-end pipeline for stereo point cloud-based
3D object detection and motion estimation in small port environments for

safety monitoring where stereo cameras are attached to an autonomous
crane on an autonomous vessel. Main pipeline components are stereo
pointcloud generation, background subtraction, and CenterPoint for object
detection and velocity prediction. The voxel-based downsampling of the
stereo point cloud and subsequent Gaussian Mixture Modelling-based
background subtraction create a structured downsized pointcloud repre-
sentation improving the robustness of learned features and consequently
the cross-environment generalisation of the pipeline. The novel method
in which a Gaussian Mixture Model is fit on the stereopoint cloud with
per-point color and 3D spatial (xyz) information shows excellent perfor-
mance both in simulation and reality. The inclusion of color information
enhances the performance of CenterPoint. Experiments on a real-world
dataset prove that the Moses pipeline designed and tuned in simulation
also works for a real-world scenario. Future work recommendations
focus on latency evaluation on high-performing hardware to reveal the
bottlenecks for real-time performance and experimenting on real-world
data of more complex scenarios to evaluate the effect of noise, changing
lighting conditions and challenging object trajectories on the performance
of the proposed pipeline.
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APPENDIX A

DATASET ANALYSIS

This appendix presents a detailed overview of the characteristic of each dataset simulated for the current study. Figure 20 shows the sparse
environment design, Figure 21 the dense environment design and Figure 22 the noisy environment. The main function of the sparse environment
is to serve as a baseline for method development. Applying the method to the dense environment can give indications about the behaviour of the
pipeline when the input data gets more cluttered. Finally, the noisy environment aims to present a first step towards evaluating the performance of
the MOSES-pipeline in more realistic real-world scenarios.

Fig. 20. Sparse Port Environment

Fig. 21. Dense Port Environment

Fig. 22. Noisy Port Environment

Table X shows the numeric characteristics of the different datasets. Each environment was simulated to generate 2000 samples, after which the
first preprocessing step entailed getting rid of all frames without objects. Since the trajectories for the dynamic objects are randomly generated, this
resulted in a reduced dataset of different size for each environment. 70% of each dataset is used for training and 30% for validation.

DETAILED DATASET ANALYSIS.

Dataset Frames | Training Frames | Validation Frames | 3D Boxes | Object Velocity (mean/min/max) (m/s)
Sparse Port Environment 1611 1119 492 3533 0.977/0.200/2.55
Dense Port Environment 1811 1256 555 2842 0.971/0.200/2.55
Noisy Port Environment 1785 1300 485 3278 1.00/0.200/2.26
TABLE X

Object attributes of interest to the MOSES pipeline are object location, object orientation and object velocity. Object velocity per dataset is showed
in Table X. Figure 23 illustrates the object orientations per dataset. It is evident that within the simulation trajectories from left to right or right to
left are preferred, corresponding with an object orientation of 0 or 7.

I Sparse Environment
W Dense Environment

1000+ mmmm Noisy Environment
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Fig. 23. Distribution of Object Orientations per Dataset.
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The distribution of object x,y locations over the environment is displayed in Figure 24. The main takeaway from the figure is that no area is
omitted in the trajectory generation. The open spaces that are visible are the objects present in the environment. Therefore, the conclusion can be
drawn that the dataset generated is representative for object localization throughout the simulated environments.
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Fig. 24. Variation of Object Locations per Dataset.

Figure 25 and Figure 26 show an example ground truth annotation and respective output of the MOSES pipeline for a single frame in the sparse
environment dataset. Figure 27 and Figure 28 present the same data for the dense environment. Finally, Figure 29 and Figure 30 depict identical
information but for the noisy environment dataset. The figures give an intuition of the data format used in the MOSES pipeline and visualise the
annotations and output of the method per dataset.

. . . . . Fig. 26. Output visualisation of the MOSES pipeline on the sparse environ-
Fig. 25. Ground-truth annotation for a single frame in the sparse environment .. Object detections are shown in green and t+1, t+2, t+3 object motion
dataset. Blue: ground-truth bounding box. Light blue: ground-truth velocity. ogtimates are shown in in red yellow, and blue.
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Fig. 27. Ground-truth annotation for a single frame in the dense environment Fig. 28. Output visualisation of the MOSES pipeline on the dense environ-
dataset. Blue: ground-truth bounding box. Light blue: ground-truth velocity. ment. Object detections are shown in green and t+1, t+2, t+3 object motion
estimates are shown in red, yellow, and blue

Fig. 30. Output visualisation of the MOSES pipeline on the noisy environ-
ment. Object detections are shown in green and t+1, t+2, t+3 object motion
estimates are shown in red, yellow, and blue

Fig. 29. Ground-truth annotation for a single frame in the noisy environment
dataset. Blue: ground-truth bounding box. Light blue: ground-truth velocity.

18



	On the electrodynamics of moving bodies
	Introduction
	Background
	Methodology
	Results & Discussion
	Conclusion


