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ARTICLE

Monitoring single-cell gene regulation under
dynamically controllable conditions with integrated
microfluidics and software
Matthias Kaiser1, Florian Jug2, Thomas Julou 1, Siddharth Deshpande 3,4, Thomas Pfohl 3,

Olin K. Silander1,5, Gene Myers2 & Erik van Nimwegen1

Much is still not understood about how gene regulatory interactions control cell fate

decisions in single cells, in part due to the difficulty of directly observing gene regulatory

processes in vivo. We introduce here a novel integrated setup consisting of a microfluidic

chip and accompanying analysis software that enable long-term quantitative tracking of

growth and gene expression in single cells. The dual-input Mother Machine (DIMM) chip

enables controlled and continuous variation of external conditions, allowing direct observa-

tion of gene regulatory responses to changing conditions in single cells. The Mother Machine

Analyzer (MoMA) software achieves unprecedented accuracy in segmenting and tracking

cells, and streamlines high-throughput curation with a novel leveraged editing procedure. We

demonstrate the power of the method by uncovering several novel features of an iconic gene

regulatory program: the induction of Escherichia coli’s lac operon in response to a switch from

glucose to lactose.
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Gene regulation is one of the key processes that underlie the
complex behavior of biological systems, allowing cells to
adapt to varying environments, and allowing multi-cellular

organisms to express a large number of phenotypically distinct cell
types from a single genotype. In spite of more than half a century
of intense study since the discovery of the basic mechanism of
gene regulation1, much remains to be understood about the ways
in which gene regulatory interactions control cell fate decisions.
Because of a number of challenges, it is still difficult to directly
observe and measure gene regulation in vivo. First, gene regulation
is inherently stochastic, and genetically identical cells in homo-
geneous environments often exhibit heterogeneous behaviors2,3.
This implies that bulk expression measurements are often mis-
leading, thus necessitating methods for studying gene regulation in
single cells. Second, while methods such as flow cytometry,
smFISH, and single-cell RNA-seq provide snapshots of gene
expression distributions across single cells (see e.g. refs. 3–5),
understanding the processes that shape these distributions often
requires that single-cell gene expression be followed in time (e.g.
refs. 6,7). The most common approach in such studies is to grow
cells on a surface while tracking gene expression and growth using
quantitative fluorescence time-lapse microscopy (QFTM).

Three key issues currently limit the power of such studies. First,
to capture crucial regulatory events, long-term observations
stretching over many cell cycles are often required. Second,
measuring gene regulatory responses requires the ability to
accurately control and vary environmental conditions. And third,
to accurately characterize the statistics of single-cell responses,
powerful image-analysis tools are needed to automatically extract
large numbers of quantitative phenotypes from the time-lapse
measurements. Considering bacteria, while it is possible to expose
cells growing on surfaces to changing conditions8–10, gathering
long time courses is not possible because the microcolonies grow
out of the field of view or start to form multiple layers.

Recently developed microfluidic devices solve this problem by
growing cells in micro-fabricated geometries that confine their
location and movement11–13. An especially attractive design is the
so-called Mother Machine11, in which cells grow single-file within
narrow growth-channels that are perpendicularly connected to a
main flow-channel that supplies nutrients and washes away cells
extruding from the growth channels. However, all current designs
expect a single media to be used as input, necessitating manual
switching of the input to alter conditions, e.g. refs. 14,15, which
precludes the accurate temporal control of the growth environ-
ment that is desired to study gene regulation in vivo.

In addition, beyond specific technical problems, many
researchers are likely discouraged from studying gene regulation
using a combination of microfluidics and time-lapse microscopy,
because of the high costs associated with establishing the necessary
methods. One not only needs to obtain designs for microfluidic
devices, learn how to manufacture these, and work out experi-
mental protocols for performing time-lapse experiments, one also
needs sophisticated image-analysis and post-processing methods to
obtain accurate quantitative information from the data. While there
are a number of software tools for analyzing QFTM data of micro-
colonies on agar16–18, they perform poorly on data from micro-
fluidic devices such as the Mother Machine, because cells undergo
larger movements between consecutive frames. In addition, phase
contrast images in microfluidic devices often suffer from non-
uniformity due to varying background and opacity. For this reason,
most require a dedicated fluorescent reporter to assist segmentation.
Although a number of labs are analyzing data from microfluidic
devices using various inhouse image-analysis solutions11,14,19–21,
there is currently no publically available tool that allows automated
analysis of such data with the throughput and accuracy required for
quantifying growth and gene expression in large data sets.

To address these problems, we here present an integrated
experimental and computational setup for studying gene
regulation in single cells using microfluidics in combination with
time-lapse microscopy. Our approach consists of the combination
of, first, a new microfluidic device, called the dual-input Mother
Machine (DIMM), that allows arbitrary time-varying mixtures of
two input media, such that cells can be exposed to a precisely
controlled set of varying external conditions. Second, to enable
high-throughput and high accuracy analysis of phenotypic mea-
surements from the DIMM, we accompany it with a software
suite, called MoMA (Mother Machine Analyzer). The Mother
Machine Analyzer takes specific advantage of the geometry of the
device to accurately segment and track cells using only phase-
contrast images, and further provides a curation user interface
with leveraged-editing, meaning that a set of related errors are
often fixed with a single click. The combination of MoMA’s
accuracy and curation efficiency allows analyses of data sets
involving millions of single-cell observations. Third, we provide
several methods for precise quantification and characterization of
the accuracy of growth and gene expression measurements. By
making the entire framework including the microfluidic device’s
design, protocols for manufacture and time-lapse experiments,
the open source MoMA software, and post-processing methods,
all jointly available, we aim to dramatically lower the entrance
costs for researchers to adopt this methodology. To demonstrate
the power of the method, we apply it to the iconic lac operon
regulatory system that underlies the discovery of gene regulation,
and uncovers several novel unexpected features of its stochastic
induction dynamics.

Results
The dual-input Mother Machine. The design of our DIMM
device closely follows that of the original Mother Machine11,
consisting of a main channel and small dead-end growth channels
that open into the main channel (Fig. 1a, c). Nutrients diffuse
from the main channel into the growth-channels in which cells
are trapped (Fig. 1c), and as the cells in the growth-channels grow
and divide, cells closest to the channel’s exit are pushed out and
are transported away by the flow in the main channel. In contrast
to previous designs, our device has dual-input ports and mixing
serpentines which, in combination with programmable pumps,
allow for arbitrary time-dependent mixing of two input media.
The two inputs meet in a dial-a-wave junction22 consisting of two
inlets and three outlets (Fig. 1b). While the middle outlet feeds
into the main channel of the device, the outer outlets function as
waste channels and allow the flow in the middle outlet to vary
from carrying only one of the two inputs (black in Fig. 1b), to
carrying only the other input (green in Fig. 1b), without
getting backflow into the inactive inlet. Note that arbitrary
mixtures of the two input media are possible (see Methods,
Performance of the environmental control) so that, for example,
dynamically changing concentrations of particular nutrients or
stressors can be realized. Details on the loading of the DIMM are
provided in the Methods (Priming and loading of the microfluidic
devices).

To demonstrate the power of our approach, we applied it to the
archetypical example of a gene regulatory system: the induction of
Escherichia coli’s lac operon when switching between glucose and
lactose as a carbon source. We used a modified E. coli
MG1655 strain that carries a translational lacZ-gfp (green fluorescent
protein) fusion at its native locus7. Time lapse movies of 22−24 h
were obtained in duplicate for three different setups (1. a constant
supply of M9 minimal media+0.2% glucose, 2. a constant supply
of M9+0.2% lactose, and 3. switching between these two media every
4 h), taking a frame every 3min (see Supplementary Movie 1
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(https://www.youtube.com/watch?v=2Tznm868fmc (2015))).
Together with additional control conditions (strain without GFP,
and switching media where lactose is supplemented with 500
μM IPTG (isopropyl β-D-1-thiogalactopyranoside), we thus

analyzed eight different time-lapse experiments all together,
amounting to data from 180 growth-channels, more than 10,000
full cell cycles, and more than 500,000 single-cell observations
(Supplementary Table 1).
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Fig. 1 The dual-input Mother Machine. a Overview of the dual-input Mother Machine (DIMM) design. b Dial-a-wave junction in three different switching
states, top: 100% from input 1 (unlabeled) and 0% from input 2 (green), middle: 50% from both inputs, bottom: 0% from input 1 and 100% from input 2. c
Phase contrast image of growing Escherichia coli cells in three growth-channels of the DIMM. d A time series of a single growth-channel containing E. coli
cells expressing LacZ-GFP from the lac promoter while being exposed to media which alternate between containing glucose and lactose as a carbon source.
e Overview of the automated and curation phases of the MoMA analysis pipeline. f Histogram of the fraction of curated frames per single growth-channel
time course. g Estimated measurement errors on cell size (blue) and number of GFP molecules (red). Dark blue points indicate the typical range of cell
sizes. Error bars show standard errors. The black line shows the fitted function 1:01=
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Image analysis and data processing. The analysis of the image
sequences acquired by a DIMM is performed in three phases by
the MoMA software suite (see Methods, The Mother Machine
Analyzer, and following sections). Although MoMA, by default,
uses phase contrast images to segment and track the cells, leaving
all fluorescent channels for measurement of gene expression and
allowing tracking on non-fluorescent (e.g. wild-type) cells, the
user can opt to let MoMA use fluorescence images for tracking.
The first automated phase begins by registering the frames of a
movie to sub-pixel accuracy to correct for jitter and stage drift.
Then the growth-channels in each time frame are cropped out
and reorganized into a time-series for each channel. Each growth-
channel movie is then segmented and tracked. Unlike most image
analysis tools that first segment each of the images and then link
these segmentations into a tracking, MoMA uses an algorithm
that first over-predicts a hierarchy of feasible cell objects (seg-
mentations) for each time point and then simultaneously selects
what it thinks are the true cells and the tracking links between
them23. This is accomplished by formulating prior information as
a collection of integer linear constraints that guarantee only valid
cell trackings satisfy the constraints, and finding among this space
of valid trackings, the one of minimum cost. Since cost reflects the
likelihood of the solution considering both the observations and
prior constraints, this is equivalent to finding the maximum a
posteriori solution in Bayesian statistics. We use Gurobi, a potent
off-the-shelf integer linear program solver to do so (see Methods).

In the second curation phase, an interactive graphical user
interface is opened that allows users to browse the results, identify
errors, and correct them. In contrast to existing methods, where
data curation is performed by directly editing the segmentations
or linking graphs, MoMA offers various possibilities to browse
through alternate segmentation hypotheses and tracking paths.
Once a user makes an adjustment, e.g. by selecting an alternative
segment or link, MoMA formulates the user’s choice as an
additional constraint and restarts the optimization in order to
find the new optimum solution incorporating this constraint. In
this way corrections automatically percolate to nearby time
points, typically fixing multiple mistakes at once. For the
individual growth-channels of the 22–24 h time courses analyzed
here, an average 0.3% of frames required a curation directive, and
roughly half of the growth-channels required no curation at all
(Fig. 1f). In our hands, it typically takes 1–2 min to curate 100
frames (see Methods, Curations statistics).

In the final quantification phase, we developed methods to
quantitate the sizes of cells and the amount of fluorescent
reporter, as well as to quantify the size of the errors on these
measurements. When growing in a constant environment, cell
sizes across the cell cycle closely follow an exponential growth
curve in both conditions (median squared-correlation R2 ≈ 0.99,
see Methods, Cell size and growth rate estimation) and this allows
us to estimate an upper bound on the errors of individual size
measurements, which we find to be approximately 3% (Fig. 1g,
and see Methods, Cell size and growth rate estimation). Growth
rates of individual cell cycles can be estimated within an error of
1–3% and we find average growth rates of 0.75 (glucose) and 0.69
(lactose) doublings per hour, which vary by 17% across cells (see
Methods, Cell size and growth rate estimation). Growth rates
during the lactose and glucose phases of the switching conditions
have virtually the same distribution as in the corresponding
constant conditions (see Methods, Cell size and growth rate
estimation).

We observed that cell fluorescence spreads significantly beyond
the cell, approximately as a Cauchy distribution as a function of
distance from the cell, and we use a Bayesian mixture model to
accurately estimate the fluorescence of a given cell (see Methods,
Cell fluorescence estimation). This procedure removes auto-

fluorescence due to the PDMS (polydimethylsiloxane) but not the
auto-fluorescence of the cell and media. Using measurements on
wild-type cells, we observed that auto-fluorescence is propor-
tional to cell size and used this to subtract the contribution of
auto-fluorescence to GFP fluorescence measurements (see
Methods, Cell auto-fluorescence estimation). Finally, to estimate
the conversion factor between fluorescence level and the number
of GFP molecules we adapted the method of Rosenfeld et al.24

which is based on the assumption that fluctuations in the
fluorescence levels of two daughter cells immediately after
division derive from random binomial partitioning of the
mother’s GFP molecules to the two daughters. We substantially
improve on this method by (a) taking advantage of the DIMM
design to use data only from the glucose phases in which no GFP
synthesis occurs, (b) incorporating the slow fluorescence decay
due to bleaching and protein decay (see Methods, Estimating
GFP's bleaching and degradation), and (c) taking into account
that fluctuations in the sizes of the daughters contribute
significantly to the fluorescence fluctuations. We integrated all
this into a Bayesian procedure and determined the posterior
distribution of the conversion factor between fluorescence and
number of LacZ-GFP tetramers (see Methods, Estimating the
conversion factor between fluorescence and number of GFP
molecules). Using this we find that, when growing in lactose, cells
contain 3000–6000 GFP molecules at birth and 6000–12,000 GFP
molecules just before division. Finally, we estimated the
measurement errors of individual GFP measurements by
quantifying the deviations of measured GFP levels from a simple
exponential decay during the glucose phases of the switching
experiment. In contrast to the relative error on size estimates,
which are approximately independent of absolute size, we find
that the error on GFP molecule number G scales as 1=

ffiffiffiffi
G

p
(Fig. 1g), which suggests that this measurement error is likely
dominated by shot noise.

One problem encountered with sophisticated image analysis
for cell tracking is that methods often poorly generalize to data
from setups other than the specific one used in developing the
methods. However, MoMA’s novel approach in which segmenta-
tion and tracking are treated as a joint optimization problem
under a system of constraints ensures a high level of robustness to
changes in the setup. To directly demonstrate MoMA’s general
applicability, we reached out to MoMA’s emerging user
community and obtained time-lapse data sets that were produced
in other labs, using different microfluidic devices, different strains
and species of bacteria, and different growth conditions
(Supplementary Table 2). We confirmed that MoMA shows
excellent performance on these data sets, both in terms of the
needed curation interactions (Supplementary Fig. 1), and the
quality of the resulting growth curves (Supplementary Fig. 2). We
find that, depending on strains and conditions, growth rate
fluctuations range between 10 and 20% of the average growth rate
(Supplementary Fig. 3), and that the accuracy of estimated
growth rates is determined to a large extent by the number of
measurements per cell cycle (Supplementary Fig. 3).

Single-cell dynamics of the lac operon. Figure 2a illustrates how
our methodology allows accurate tracking of growth and gene
expression across lineages of single cells as the environment is
varied. As an example application, we focused our analysis on the
single-cell dynamics of lac operon induction. Even before the
discovery of gene regulation, it was already known that the
induction of the lac operon is stochastic, with different single cells
inducing at different times25. Further support for the stochasticity
of this system has come from studies showing that, when expo-
nentially growing populations are treated with artificial inducers
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such as IPTG or TMG (methyl-β-D-thiogalactoside), population
snapshots often show a bimodal distribution of lac expression in
single cells. The current consensus is that, in order for a cell to
switch from a low expression to a high expression state, a suffi-
ciently large stochastic burst of lac operon expression is needed26–
28. A first attempt to measure the distribution of lac induction lag
times in single cells was made by Boulineau et al.10, and a wide
distribution of lag times was observed. However, the lack of a
precise control of the growth media in that work not only pre-
cluded accurate time resolution of the lag times, but also caused
the switch from glucose to lactose to be so gradual that only some
cells experienced a transient reduction in growth rate, while
others continued without any change in growth rate.

In contrast, we find that upon a controlled sudden switch from
glucose to lactose, the effect on growth is not stochastic at all: all
cells completely arrest growth within 3 min of the switch (Fig. 2a).
Other aspects that are extremely reproducible are the fact that all
cells exit growth arrest as soon as LacZ-GFP is at detectable levels
(i.e. 100−200 molecules), and that LacZ-GFP production is halted
almost immediately after switching back to glucose (Supplemen-
tary Fig. 4). Thus, while induction of the lac operon is highly

stochastic, its shutdown and the coupling of growth to lac
expression appears essentially deterministic.

Interestingly, while it might have been expected that, after
exiting growth arrest, initial growth rates would be low when
LacZ-GFP levels are still far below steady-state levels, we find that
cells immediately grow at rates that are close to those observed in
constant lactose, and reach steady-state growth rates within an
hour of induction (Supplementary Fig. 5). We estimated
instantaneous growth rate as a function of LacZ-GFP concentra-
tion and found only a substantial decrease when concentration is
more than 10-fold below the steady-state levels of 2000–3000
molecules per μm of cell length (Supplementary Fig. 5). That is,
cells can sustain high growth rates in lactose with lac operon
expression that is fivefold or more below steady-state levels, in
line with previous observations10. This raises the question as to
why LacZ steady-state levels are so much higher than required for
growth. One intriguing possibility is that such high expression
levels allow for a memory of growth in lactose that lasts over
several generations, something that has been observed previously
at the population level13. Indeed, during the glucose phase the
total fluorescence in each cell shows a slow exponential decay,
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mostly due to bleaching, and approximately halves at each cell
division (Fig. 2a). By the time of the second switch to lactose,
LacZ-GFP levels have diluted back to low levels, but the
remaining lac expression is enough to ensure that all progeny
of cells that induced in the first switch continue growth without
an obvious decrease in growth rate, and quickly recommence
LacZ-GFP production (Supplementary Fig. 6).

Our methodology allows, for the first time, the accurate
measurement of the distribution of lag times for single cells to exit
their growth arrest after the first switch from glucose to lactose.
We not only observe a wide distribution of lag times, but find that
this distribution is multi-modal: 27% of cells induce within 25–45
min, 68% induce within 50–240min, and 5% of cells do not
induce at all (Fig. 2b, c). Importantly, this observation is directly
at odds with the current view in the literature that all lags are
determined by the waiting time to a single stochastic event.
Instead, the multi-modal distribution suggests that naive cells can
exist in different states that determine their ability to respond to
lactose.

We investigated whether lag times correlate with simple
physiological quantities such as growth rate, cell cycle stage, or
LacZ-GFP levels at the time of the switch, but found that none of
these variables correlate with lag times (Supplementary Fig. 7).
However, we find strong correlations of the lag times of cells that
had the same mother, grand-mother, or even great-grandmother
cell (Fig. 2c and Supplementary Fig. 8). It is especially striking
that these genealogical correlations are larger for lag time than for
any other physiological quantity that we measured, including
quantities such as cell size and LacZ-GFP concentration, that are
known to be directly inherited from the mother (Supplementary
Fig. 9). In particular, only lag time shows significant correlations
in cousins and second cousins. These results strongly suggest that
lag time is controlled by an inheritable epigenetic factor that, in
contrast to other physiological quantities such as LacZ-GFP
expression, growth rate, and cell size, shows significant correla-
tions over 2–3 generations.

Although a full investigation of the mechanistic interpretation
of the multi-modal lag time distribution is beyond the scope of
this work, we can propose an interpretation that we consider
most plausible. We propose that the first and second modes of the
lag distribution correspond to cells that, at the time of the switch,
have either nonzero expression of both LacZ-GFP and LacY
permease, or zero expression of either of these molecules. When
both LacY and LacZ-GFP molecules are present at the switch,
lactose can presumably immediately enter the cell, where it is
metabolized into allolactose, causing lac operon derepression and
LacZ-GFP production. In contrast, when no LacY/LacZ-GFP is
present, lactose can either not enter the cell, or it cannot be
metabolized, and cells first have to wait for a stochastic burst of
lac operon expression, causing a longer lag time. If this
interpretation is correct, then no long lags should be observed
when an artificial inducer is added that can diffuse into the cell
without LacY permease and binds directly to the LacI repressor.
Indeed, when we add IPTG to the medium containing lactose we
only observe short lags (Supplementary Fig. 10). Our interpreta-
tion also requires that, when growing in glucose, the majority of
cells should contain either no LacY or no LacZ-GFP at all. This
prediction is consistent with our LacZ-GFP measurements in
glucose that predict the distribution of lacZ-GFP per cell
significantly overlaps zero molecules (Supplementary Fig. 11). It
is also broadly consistent with previous observations that, in
similar growth conditions, roughly 50% of cells contain no
LacY27, and 65% of the cells contain no LacZ29. Finally, we note
that Choi et al.27 estimated that, when growing in the absence of
lactose, small bursts in which around 40 LacY molecules are
produced occur every 2–3 cell cycles, which is consistent with the

waiting times of up to 240 min that we observe for cells of the
second mode of the distribution.

Discussion
We have here presented an integrated experimental and compu-
tational setup for quantifying gene expression dynamics at the
single-cell level over long periods of time in dynamically changing
environments that are precisely controlled. This methodology
opens up a wide array of possibilities for studying gene regulatory
mechanisms at the single-cell level. A single experiment with our
setup was able to uncover several novel and unexpected features of
one of the most intensely studied regulatory systems: lac operon
expression under growth conditions that change between glucose
and lactose as a carbon source. However, the technology enables
many other types of investigations, e.g. it can be used to quantify
how expression fluctuations affect growth rates at the single-cell
level, to investigate how regulatory responses depend on the
concentration and length of exposure to an inducing nutrient or
stress, and how memories of regulatory responses are maintained
across lineages of cells. More generally, its power extends beyond
the scope of gene regulation studies. For example, it is becoming
increasingly appreciated that single-cell heterogeneity plays an
important role in persistence and evolution of resistance to anti-
biotics, and our methodology could be used to accurately quantify
how single-cell growth and survival varies as a function of both the
concentration and time of exposure to particular antibiotics, and
as a function of the physiological states of the cells. In summary,
we believe that the integrated experimental and computational
methodology that we present here will be an important tool for
studying gene regulatory mechanisms at the single-cell level. As
detailed in the Data Availability section below, to facilitate access
of other labs to our integrated methodology, we have collected all
relevant information in a web repository, including files with the
CAD designs of the device, information on fabrication of the
device, detailed protocols for running the experiments, and links
to the open source MoMA software. MoMA and its documenta-
tion, including tutorial videos are available online30 and, to make
MoMA easily available to any user of ImageJ, we have also made
MoMA available as a Fiji plugin.

Methods
Design and fabrication of the microfluidics devices. Escherichia coli cells take on
different sizes depending on the media they are grown in, e.g. LB versus
M9 minimal medium. Since the growth-channels aim to trap the cells growing in
single file, the width of the channels needs to match the width of the cells as closely
as possible. To account for this, our DIMM device contains channels with a range
of widths, ranging from 0.8 to 1.6 μm, and lengths of 25 μm on one side of the
device, and 55 μm on the other. For the results presented here, the growth-channel
sections were ~0.9 μm (height) x ~0.8 μm (width), and 25 μm (length). These
dimensions worked nicely with cells growing in M9+0.2% glucose or 0.2% lactose
respectively. Experiments with other media and strains might require slightly
different dimensions. In order to reduce the flow rates compared to the original
mother machine device, the dimensions of the main channels were reduced to a
diameter of 6 μm (height) by 50 μm (width) in the device presented here. The
resulting flow rates are discussed in more detail in the section discussing loading
and flow control. We note that reflections from the PDMS in the main channel can
affect the phase contrast images near the top of the growth-channels, such that a
segment of the growth-channels nearest to the exit needs to be discarded. To
minimize this effect it is advisable to keep the main channel relatively shallow.

The device was designed using AutoCAD® (AUTODESK®) and is freely
available at Metafluidics, an open repository for fluidic systems31. We outsourced
both the production of the photomask and the production of the masters to pour
the PDMS devices from. A 5″ quartz mask with chrome layer was ordered from the
Compugraphics Jena GmbH. Using this mask, Microresist (Berlin) produced the
master using UV-lithography with SU-8 photoresists (for more details see ref. 11).
To make the chips, we use the Sylgard Elastomer Kit 184 with a 1:10 curing agent
to base ratio. Curing was performed at 65 °C overnight or longer. Harris Uni-Core
0.75 mm biopsy punches were used to create in- and outlets. Before bonding, both
the PDMS mold and a cover slip were washed with isopropanol and dried with air.
Surface activation was done in a plasma cleaner (PDC-32G, Harrick Plasma)
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operated at high intensity with vacuum at 1500 mTorr for 40 s. After bonding the
devices were incubated at 65 °C for at least 1 h.

Performance of the environmental control. The design presented here not only
allows switching between different media but also allows for continuous control
over the ratios of two different input media. Because flows in micro-channels are
strictly laminar, only diffusive mixing occurs at these scales22. To keep the design

simple we introduced 2D mixing serpentines to the device. These serpentines
guarantee that the media coming together in the junction are flowing together long
enough to allow for diffusive mixing before the mix reaches the cells. The required
length of these mixing serpentines depends on the flow speed (fluid velocity), the
width of the micro-channels, and the diffusion coefficient of the molecule of
interest in the medium used32.

To demonstrate mixing in the device we used M9 minimal medium labeled with
fluorescein (1 g/ml) (Syringe 2) mixed with unlabeled M9 minimal medium
(Syringe 1). We first obtained a reference fluorescence level for the medium
containing fluorescein by measuring fluorescence every 15 s for 70 min, and taking
the average of these 280 measurements. For 13 different relative flow rates of the
two syringes, ranging from 20% of the total flow from Syringe 2 to 80% of the total
flow from Syringe 2, we then measured fluorescence every 15 s for 10 min (40 min)
and divided this by the reference fluorescence level to obtain a relative fluorescence.
We then calculated the mean and standard deviation of 40 relative fluorescence
levels for each relative flow rate. The results are shown in Fig. 3a, demonstrating
how the system presented here can generate different mixing ratios and thus can be
used to precisely control the growth environment. Figure 3b shows the normalized
fluorescent intensity along a section through the main channel downstream of the
mixing serpentines at different flow regimes. Because of small imperfections in the
mold the intensity profile is not perfectly symmetrical even in the unmixed state
(black line). However in the different mixed states, the shape of the profile stays the
same indicating complete mixing is guaranteed in the flow regimes tested here.

Strains and growth conditions. Strains were streaked from freezer stocks onto LB
plates before experiments. Overnight precultures were grown from single colonies
in M9 minimal medium supplemented with the same carbon source that the cells
were to experience in the initial phase of the experiment (0.2% glucose or 0.2%
lactose). The next day, cells were diluted 100-fold into fresh medium with the same
carbon source. Cells were harvested after 4–6 h to be concentrated and loaded into
the microfluidic device (typically, a culture at OD ≈ 0.2 was concentrated 100-fold).
Growth occurred at 37 °C for both the precultures and the microscopy experi-
ments. The growth conditions used during the microscopy experiments are
described in Table 1.

Priming and loading of the microfluidic devices. The DIMM design presented
here has two inlets and two outlets. This leads to some complications in the cell
loading process compared to the original Mother Machine design. Here we
describe the adjusted loading procedure we developed. As described in ref. 11, a
mixture of salmon sperm DNA (10 mg/ml) and BSA (bovine serum albumin, 10
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Fig. 3 Mixing of fluorescein-labeled medium with non-labeled medium at different input flow rate ratios. a Total fluorescence was measured in a square
region in the main channel downstream of the mixing serpentines as the input ratio was changed in a stepwise manner from 0% fluorescein input to 100%
fluorescein input (up: blue) and back to 0% fluorescein input again (down: red). The fluorescence measured for the mixture relative to the fluorescence
measured for pure fluorescein-labeled medium (Syringe 2 only) is plot against the input of Syringe 2 as a fraction of the total input from both Syringes 1 and
2. b Normalized fluorescence along a section through the main channel downstream of the mixing serpentines at different mixing ratios

Table 1 Experimental conditions used in this study

Condition Sequence of growth media Strain

No GFP 12 h: M9+0.2% glucose MG1655
12 h: M9+0.2% lactose

Glucose 22 h: M9+0.2% glucose ASC662

Lactose 22 h: M9+0.2% lactose ASC662

Switch 4 h: M9+0.2% glucose ASC662
4 h: M9+0.2% lactose
4 h: M9+0.2% glucose
4 h: M9+0.2% lactose
4 h: M9+0.2% glucose
4 h: M9+0.2% lactose

Switch IPTG 4 h: M9+0.2% glucose ASC662
4 h: M9+0.2% lactose
+500 μM IPTG
4 h: M9+0.2% glucose
4 h: M9+0.2% lactose
+500 μM IPTG

Strain MG1655 is a reference K12 strain46, and ASC662 was derived from it by integrating a
translational fusion lacZ-gfp in the native lac operon7. Note that for each condition, the first step
of its sequence of growth media was preceded by 2 h in the same media (in order to reach
growth steady-state under fluorescence illumination conditions) that were discarded from the
data analysis
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mg/ml) (at a ratio 1:3) is used to passivate the device before loading the cells. The
salmon sperm DNA is denatured at 95 °C for 10 min and is mixed with the BSA
after cooling down. This passivation buffer is also added to the growth medium in
the experiment in a concentration of 1/100. In addition, one medium was always
labeled with non-fluorescent microspheres (Polybead® polystyrene 1 μm beads) to
monitor medium flow at the dial-a-wave junction. As shown in Fig. 4a, the two
dial-a-wave waste channels cannot be pressured separately because they both end
in the same outlet. Therefore to prevent blockage of one of the waste channels by
passivation buffer it is recommended to flow water into the waste channel outlet
while the passivation buffer is loaded into the cell outlet. Once the main channel
(with the growth-channels) is filled with passivation buffer and the inlets (input 1
and input 2) are full of liquid (mixture of water and passivation buffer), both the
flow of water and of passivation buffer can be stopped. The device is now incubated
for ca. 1 h at 37 °C before the loading of the cells is started.

After the passivation step, cell loading can begin. To get rid of the passivation
buffer, the two inlets are connected to the pumps with the two different media that
will be used in the experiment. At this point the tubing for the waste outlet can also
be installed and connected to a waste container. Both pumps are now set to a flow
rate of 1.5 μl/min. When all channels are clear, this flow regime will lead to a 50:50
ratio between the two inputs at the dial-a-wave junction. If the device leaks at this
point or fails to establish a 50:50 ratio at the dial-a-wave junction (one medium is
labeled with beads to check the flow under the microscope), most likely the
resistance of some channel is altered by a blockage and the device cannot be used. If
the device works properly, the dial-a-wave junction can be switched to the medium
that will be used first. This step is necessary to ensure that the cells that are loaded
afterwards only encounter the media condition in which they will begin growth.
For a complete switch we use flow rates of 0.6 μl/min for the inactive inlet and 2.4
μl/min for the active one (Fig. 3a). After a few minutes (depending on the flow rate)
the main channel and cell outlet should be free of the medium from the initial
input and the cell loading process can begin. The cells are harvested in exponential
phase and are concentrated by centrifugation (~100−200×). Once the device is fully
switched to the desired input, one can load the cells using a 1 ml syringe into the
tubing that will later serve as the waste tube. This tubing is inserted into the cell
outlet and can be pressured by hand to flow the cells into the main channel (the
loading process is observed under the microscope). It is important not to stop the
flow at the inlets during the whole loading process. This allows cell loading without
getting cells into the inlets where they might become stuck and grow. Once the cells
reach the growth-channels we used a custom-made clamp to hold a precise level of
pressure on the 1 ml syringe for cell loading. The pressure here has to be

continuously adjusted to make sure the cells stop flowing in the main channel and
can enter the growth-channels. As shown in Fig. 4b there is a constant flow
through the inlets and the waste channels (green) while the main channel is
pressured to achieve zero flow where the growth-channels are (red). If cells move
up to the dial-a-wave junction they are removed through the waste channels and
the inlets stay clear. Loading continues until a satisfactory number of channels
contain cells (typically 20−60 min). When complete, the 1 ml syringe used for
loading is removed, and the end of its tubing is put into the waste container
together with the tubing from the waste channel outlet. After loading the cells are
allowed to recover for at least 2 h before the experiment starts.

Growth media are delivered from air-tight glass syringes (Hamilton) that are
connected to the device using PTFE tubing with an inner diameter of 0.56 mm and
an outer diameter of 1.07 mm. The syringes are controlled by two low pressure
pumps (Cetoni GmbH) so that the total flow during the experiment is 3 μl/min.

Microscopy and data preprocessing. An inverted Nikon TI-E microscope
equipped with a motorized xy-stage with linear encoders was used to perform the
experiments. All experiments were performed in an incubator maintained at 37 °C.
The sample was fixed on the stage using metal clamps and focus was maintained
using the Perfect Focus System from Nikon. Images were recorded using a CFI Plan
Apochromat Lambda DM ×100 objective (NA 1.45, WD 0.13 mm) and a CMOS
camera (Hamamatsu Orca-Flash 4.0). The setup was controlled using Micro-
Manager33 and timelapse movies were recorded with its Multi-Dimensional
Acquisition engine (customized using runnables). Every 3 min one phase contrast
image and one GFP fluorescence image were acquired, typically for six different
positions. Phase contrast images were acquired using 100 ms exposure with the
transmitted light source at full power (CoolLED pE-100). Images of GFP fluor-
escence were acquired using 2 s exposure, illuminating the sample with a Lumencor
SpectraX (Cyan LED) set to 17% and dimmed using a ND4 filter in the light path;
the excitation (475/35 nm) and emission filters (525/50 nm) were used with a
dichroic beam-splitter at 495 nm. For the switching experiments images of the dial-
a-wave junction were also acquired. Here the GFP channel was replaced with an
additional phase contrast image with a short exposure time (10 ms) to visualize the
beads in the flow.

The MoMA tracking software expects to be given image data sets in which a
single growth-channel is present, with the growth-channel opening at the top, and
with phase contrast being the first channel. With our microfluidic design, the
camera field of view covers ca. 30 growth-channels so the images must be split into
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Fig. 4 Priming and loading of the device. a Passivation buffer loading. To prevent blocking of the waste channels by passivation buffer, the waste channels
are loaded with water through the waste channel outlet (blue) while loading of passivation buffer is done through the cell outlet (orange). Putting both
outlets under pressure assures complete loading of the main channel with passivation buffer while the waste channels stay clear of passivation buffer. b A
constant flow in both inlets (input 1 and input 2) prevents cells entering the inlets during the loading. The concentrated cell solution can be loaded through
the cell outlet. First some pressure is applied to fill the whole main channel with cells. Afterwards the pressure is controlled to maintain zero flow in the
main channel (red) while there is a constant flow through the inlets and in the waste channels (green) to remove cells that make it up to the dial-a-wave
junction
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individual growth-channels and preprocessed in order to match MoMA’s
requirements. The preprocessing consists of the following tasks:

1. Load the microscopy data set, one position at a time, in a format-independent
manner using the Bio-Formats library (in order to open a specific position,
one must use the Java API rather than functions available in ImageJ).

2. Register all frames to the first frame of the first channel in order to correct the
sample drift over time, as well as the jitter introduced by acquiring multiple
positions in parallel. To do this, we develop HyperStackReg, a custom
extension of the StackReg ImageJ plugin that is able to handle hyperstacks, i.e.
data sets with several channels.

3. Crop the image to keep only the area of the growth-channels and rotate the
images (so that the growth-channel opening is at the top).

4. Save images as a tiff data set with one file per frame.
5. Straighten the image so that growth-channels are oriented vertically (using

bicubic interpolation).
6. Identify the growth-channels in the first-phase contrast frame and save one

data set per cropped growth-channel.

All steps are run in Fiji with the help of two utility plugin released together with
MoMA: HyperStackReg and MMPreprocess. This preprocessing step is
documented extensively on MoMA’s Wiki30, including how to run it from the
command line. Note that in order to preprocess data sets from the command line,
Fiji must be run using a virtual window environment (using Xvfb), since the
headless mode is not compatible with some important ImageJ features.

The Mother Machine Analyzer. Today’s predominant tracking methods origi-
nated in the 1960s34,35 and were developed to track single or a hand-full of objects
with complex distinguishing features such as ships or airplanes. However, here we
require the tracking of objects that are visually almost identical. In some cases this
can be resolved by maintaining multiple association hypotheses over multiple time
points36. However, although particle trackers and state space models can produce
high-quality results, proofreading (data curation) is always required in order to
guarantee error-free tracks. Notably, computer-assisted approaches for proof-
reading are usually not related to the method that produced the automated results
in the first place.

Interactive error correction is rarely part of available tracking systems and
usually turns out to be difficult to implement and integrate, leaving the user with an
inflexible patchwork of multiple tools. Part of the reason for this is the way classical
tracking models work. Their local and iterative solvers are highly specialized, not
offering intrinsic possibilities to constrain the space of possible solutions in a user-
driven way. In other words, they intrinsically do not offer any interaction
capabilities that can be employed by users to prevent the tracking system from
making certain mistakes.

Assignment Models promise to make a difference in all these respects. The
novelty of this type of tracking system is the way in which solutions are found. A
tracking problem is formulated as a global optimization problem under constraints
that can be solved using discrete optimization methods. MoMA is based on such an
optimization-based assignment model that allows the user to furnish constraints in
an interactive manner. Hence, we can offer unprecedented user interactions for
data curation—a process we call leveraged editing.

In particular, MoMA offers the following leveraged editing primitives: (i)
Forcing solutions to contain a selected cell (segment), (ii) forcing solutions not to
include specific segments, (iii) forcing a cell to a given movement or division
(assignment), or to (iv) avoid such an assignment, and (v) specifying the number of
cells visible at a given time. We will show that the very nature of the underlying
optimization problem allows us to seamlessly incorporate these leveraged editing
primitives.

Automated tracking with MoMA. Here we briefly review the class of tracking
methods called assignment models23,37–40. We provide sufficient technical detail to
prepare the reader for later sections, introducing leveraged editing primitives used
in MoMA.

Tracking consists of two equally important tasks: Cells need to be segmented in
each frame, and segments of the same cell in consecutive frames need to be linked.
Tracking by assignment approaches these tasks by formulating and solving a joint
global optimization problem. In this context, the segmentation task consists of
selecting a subset of segments in each image, i.e. corresponding to the cells in the
image. To do this, the algorithm first generates a large collection of possible
segment hypotheses that are contained in a (possibly heavy) oversegmentation of
the images. Joint segmentation and tracking then boils down to enumerating many
potential subsets of segments together with potential ways of linking (assigning)
these between consecutive frames. To identify, among all these possible joint
segment/assignment subsets, an optimal solution, each of the potential segments
and assignments is given a cost. The cost of a joint segmentation/assignment
hypothesis aims to reflect how unlikely it is that the corresponding dynamics
occurs in the real system, i.e. the corresponding movement, growth, and division of
the cells in our system. That is, the total cost can be thought of as a negative log-
likelihood of the segmentation/assignment hypothesis38,41 and an optimal solution
minimizes this cost.

The cost function is designed to reflect the knowledge of domain experts. To
give an example, in our application, the cost function for a cell division assignment
that links one segment to two segments in the next frame contains a term that
evaluates the size of the three segments to be linked which implements the physical
constraint that the sum of the sizes of the two daughter cells should be similar to
that of the mother cell. Structural knowledge about which assignments can be
chosen simultaneously is encoded in terms of constraints that ensure that only
physically meaningful solutions can be chosen. That is, solutions that do not
describe impossible events like cells popping into existence out of nowhere, cells
moving to two places at once, etc. In our implementation, these constraints force or
prohibit certain segments and assignments to be jointly contained in a
segmentation/assignment solution. Notably, in formulating these constraints we of
course take advantage of the fact that the microfluidic device organizes cells into
one-dimensional arrays.

Once the segmentation and tracking problem has been formalized in this
manner in terms of costs and constraints, well-established discrete optimization
methods can be used to obtain a solution that is (i) feasible, i.e., free of conflicts,
and (ii) cost-minimal. In the following we will put these notions on formal
grounds. A more in-depth description can be found in ref. 23, where we described
in detail the assignment model upon which MoMA operates. In the next section we
will briefly summarize this model in order to lay the foundation to understand the
leveraged editing primitives introduced thereafter.

The assignment tracking system in MoMA. First, an excess of segment
hypotheses H(t) is generated for each frame t, with many hypotheses partially
overlapping and thereby providing alternative and mutually exclusive interpreta-
tions of where the cells are appearing in the image23. To represent possible solu-
tions, a binary segmentation variable h(t) is associated to each possible segment
hypothesis in H(t). Whenever h(t) = 1, it indicates that this segment hypothesis is
part of the proposed solution. Similarly, a set of assignment hypotheses A(t) and
associated binary assignment variables a(t) are generated, that link segment
hypotheses at time point t to segment hypotheses at t+1. For example, a mapping
assignment aðtÞi 7!j connects two segment hypotheses hðtÞi and hðtþ1Þ

j .
Thus, a proposed segment/assignment solution consists of a selection of binary

segmentation and assignment variables v that are set to 1. As mentioned above, a
cost function is defined that associates to every such variable v, a cost cv 2 R of
including it in a solution. For details on the cost function used for mother machine
devices, we refer to ref. 23. In a nutshell, the cost measures how much a segment/
assignment deviates from the expected appearance/dynamic behavior of bacterial
cells. The total cost C of a particular solution is then simply the summed cost over
all active variables

C ¼
X
i

vi � cvi : ð1Þ

Linear constraints are used to restrict the solution space to only include conflict-
free and structurally sound solutions. As a simple example, two segment
hypotheses that offer conflicting explanations of a particular pixel cannot
simultaneously be active in any feasible solution. To introduce some notation that
will be required below, we look in detail at one particular constraint. Continuity
constraints ensure that each active segment at frame t (i.e. each cell) must be
involved in exactly one assignment entering from frame t−1 and must also be
involved in exactly one assignment towards t+1. In other words, each cell must
have a past and a future. Formally, this statement can be written as

8t 2 f2; ¼ ;T � 1g; 8hðtÞ 2 HðtÞ :
X

aðt�1Þ2ΓL hðtÞð Þ
aðt�1Þ ¼ hðtÞ ¼

X
aðtÞ2ΓR hðtÞð Þ

aðtÞ: ð2Þ

Here we image time frames ordered from left to right and use the notation ΓL(h) to
denote the set of assignments directly to the left of segmentation variable h (i.e. its
left neighborhood) and ΓR(h) to denote the set of assignments directly to the right
of h (its right neighborhood). That is, the left neighborhood ΓL(h) is the set of all
assignments entering h from the previous frame and the right neighborhood ΓR(h)
is the set of all assignments leaving h towards the next frame. The equation above
then says that, for each cell at time t, there should be one assignment in the
previous time frame, and one in the following time frame.

A globally optimal solution, i.e. picking a set of conflict-free assignments of
minimal cost can be achieved by solving an integer linear program (ILP)23,38–40.

An ILP is an optimization problem that is fully specified by (i) an objective
function that is a linear function of a set of variables V, and (ii) a set of constraints
that are formalized as (in-)equalities on these variables. The space of feasible
solutions is defined by all variable assignments that obey all constraints. An
optimal solution is a feasible solution that minimizes the objective function.

The joint segmentation and tracking formulation introduced above is already in
ILP form: The set of variables V comprises binary segmentation and assignment
variables. The objective to minimize is the cost C defined in Eq. (1). Note that this
is a linear function of the variables v 2 V. In Eq. (2) we also gave an example of
how constraints can be formalized as linear equalities.

Integer linear programming is a well-understood problem42, and given the
above formulation we can turn to off-the-shelf solvers like Gurobi to find an
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optimal solution. Although finding an optimal ILP solution is NP-hard, recent
success solving relatively large tracking problems23,38–40 suggests that assignment
models pose well-natured instances to be solved as ILPs.

In the following we will make use of a particular feature of many ILP solvers,
namely the ability to perform “warm-starts”. One speaks about a warm start if a
solver can benefit from residual intermediate results created during a preceding
optimization. This can speed-up optimization significantly as shown in ref. 23.

Additional performance for solving the ILP underlying a tracking instance can
be gained by reducing variable redundancy via substitution. The set of variables V
contains variables h for available segments, and a, for available assignments.
However, note that whenever the segmentation variable for a segment i is active, i.e.
hi = 1, then at least one assignment a that involves a segment i must be active as
well. Using these constraints, the segmentation variables can be removed from the
model entirely23. That is, after adequate constraints are added to the ILP, each
occurrence of hðtÞi can be substituted by a sum over all assignment variables in ΓL

hðtÞi
� �

(or ΓR hðtÞi
� �

).

Leveraged editing of tracking solutions. In this section we discuss how MoMA
modifies the underlying optimization problem in response to user feedback.
MoMA first of all provides the user with a graphical interface that allows the user
to browse through the tracking solution that the optimization has provided for a
given movie. The basic idea of leveraged editing is simple: When a user identifies a
segmentation or tracking error, (s)he suggests the correct alternative or simply
points at the error in the graphical interface, leaving the algorithm to search for a
corrected solution to the model. In MoMA, the given feedback is incorporated into
the ILP via additional constraints. Using warm-starts allows optimizing the
modified problem fast enough for interactive use. Fixing a single error will usually
resolve a bulk of transitive errors. These interaction-based modifications and re-
optimizations are iterated until the found solution is satisfactory to the user, i.e.,
appears to be free of errors.

Here we introduce five specific interaction primitives implemented in MoMA.
We will see that they do not introduce significant changes to the existing
assignment tracking formulation and can be implemented efficiently. To illustrate
how leveraged editing works in practice, a tutorial movie is available on MoMA’s
Wiki page30, showing several of these primitives in action.

One possible error is that the tracking may have failed to include a particular
cell, possibly even across multiple frames. In this case, the user wants to choose an
adequate segment and force it to be included in the tracking solution. In MoMA
this can be achieved by hovering the mouse over the part of the image where a cell
was not picked up by the original optimization. Segment hypotheses located at the
mouse position will be highlighted interactively, and simply clicking on any
highlighted segment will cause (i) adequate modifications of the ILP (as described
below), and (ii) a re-run of the solver to obtain an optimal solution for the given
data, now constrained to include the forced segment.

Technically this can be achieved by adding a single constraint to the ILP,
namely hi = 1 where hi is the chosen segment. Applying the redundancy reduction
discussed in the previous section, the constraint to be added can be expressed in
terms of assignment variables as X

a2ΓR hð Þ
a ¼ 1; ð3Þ

where ΓR(h) is the right neighborhood of h, i.e. the set of all assignments leaving h
towards the next frame.

In addition to allowing users to force missing segments to be included, the user
can also tell MoMA to exclude certain segments from solutions. The re-solved ILP
will correspond to the minimal cost solution for the data, constraint to exclude the
chosen segment. Analogously to forcing segments, the constraint to be added to the
ILP is X

a2ΓR hð Þ
a ¼ 0: ð4Þ

Instead of interacting with segments, a user might want to directly work with
individual assignments. To do so, users can browse through a library of available
assignments. Assignments can be included or excluded from tracking solutions.

Browsing the library of available assignments can be done in only a few mouse-
clicks. Since there is precisely one binary variable a corresponding to the chosen
assignment, the constraint to be added to the ILP to force or exclude this
assignment is simply a = 1 and a = 0, respectively.

The last interaction primitive of MoMA is particularly powerful, often capable
of fixing multiple tracking errors at once. The idea is simply to let MoMA know
how many cells are contained in a given time point. We constrain the solution
space to only allow solutions that contain k segmented cells at time point t.
Formally this is accomplished by adding the constraintX

h2HðtÞ

X
v2ΓRðhÞ

v ¼ k; ð5Þ

where H(t) is the set of all segments existing at time t.

Installation of MoMA. The installation of MoMA can be performed via Fiji43,44.
In Fiji, simply activate the MoMA update site. Once installed, the Fiji updater will
automatically install future versions of MoMA containing new features and bug-
fixes. The MoMA Wiki pages contain further information about how to install and
use MoMA30.

Implementation of MoMA. MoMA is implemented in Java, using the imaging
library ImgLib245 and other components from the open source universe around
ImageJ and Fiji43,44. For solving ILPs we use Gurobi. The source code of MoMA is
a Maven project, hosted on GitHub30.

Additional features of MoMA. Additional useful features of MoMA include (i)
the ability to optimize (solve) only parts of a loaded data set, (ii) save a fully or
partially curated data set, and (iii) the possibility to export a found tracking
solution for downstream processing.

If a loaded data set contains 1000 or even more time points, the optimization of
MoMA’s assignment model can take tens of seconds. While this is still fast, e.g.
when compared to the data acquisition time for such a data set, leveraged editing
can become cumbersome when the user is forced to wait tens of seconds between
interactions for the optimization to finish. In order to guarantee fast interactive
response times, MoMA allows users to define a subrange of time points [ta, tb]
across which to perform the optimization.

All assignments that are not in [ta, tb] are either set to the value computed at a
previous (partial) optimization run, or simply clamped to be 0. Formally this can be
expressed by

8t =2 ta; ¼ ; tb½ �; 8aðtÞ 2 AðtÞ : aðtÞ ¼ 1 if aðtÞ was set to 1 previously; or
0 otherwise:

"
ð6Þ

Once correct solutions are found, it is important that users can save and load
the curations that they performed. Leveraged editing primitive introduces
additional constraint to the underlying optimization problem, and MoMA is
capable of serializing all edits to file.

But not only leveraged edits can be saved, also MoMA’s segmentation and
tracking results can be exported for subsequent downstream processing. An
exhaustive list of exportable data is given below. MoMA’s Wiki page contains a
formal specification of the used data format30.

● Data source.
● Total number of cells observed in the data set.
● Number of channels in the raw data, i.e. phase contrast and fluorescent

channels.
● Growth channel (growth-channel) height and image height in pixels.
● (Vertical) position of the growth-channel in the image.
● For each cell, its cell id, and lineage information (the ids of its ancestors).
● For each time point in the life of each cell: position in the growth-channel

[pixels and cell number]; bounding box area; intensity histogram, intensity
percentiles, and pixel intensities for all channels.

Curation statistics. MoMA was tested on Mother Machine data with ~30 frames
per cell cycle, stable focus over the experiment and both phase contrast and
fluorescence imaged. To estimate the time the user needs to spend to curate data
sets, we analyzed an unbiased selection of growth-channels and measured the time
spend curating. For the selection of the growth-channels there was no visual
inspection of the growth-channels other than checking that they harbor cells on the
first frame. Therefore, this sample also harbored growth-channels in which the cells
are lost during the experiment, and some that show structural defects. We only
used the times for the growth-channels in which we had cells until the end of the
experiment. Defect growth-channels were excluded as well. There are also rare
growth-channels in which a cell is lysing or shows other abnormalities. In such
cases, even with the eyes of an experienced observer, it is difficult to decide on the
border of such cells, and such growth-channels were excluded as well.

Figure 1f shows a histogram of the fraction of frames needing curation across
the growth-channels. Roughly half of the growth-channels required no curation at
all, and most growth-channels require less than 1% of frames curated, with about
3% of frames needing curation in the worst case.

To give an impression of the amount of time that these curation statistics
correspond to, in our hands, Fig. 5 shows the distribution of curation times per 100
frames across the growth-channels we analyzed. For each growth-channel, the total
number of curated frames was extracted from the serialized file of curation
interactions that MoMA saves. The inset of Fig. 5 shows that curation times are
generally correlated with the fraction of frames that required curation.

All the curating with MoMA was performed on a MacBookPro (2.4 GHz Intel
Core i7, 8 GB of memory). On this setup loading, initialization and the first round
of optimization of a data set with 480 frames with two channels typically takes
around 1min. After curating the data the export step takes another 30 s.
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Cell size and growth rate estimation. From the imaging data we obtain, for each
cell, pictures for each time point during its life-cycle. As an estimate of cell size, the
software provides the dimension of the rectangular bounding-box within which the
cell is contained. We have found that, both on our own data as on the data from
other devices and microscopy setups, virtually all cells accurately follow simple
exponential growth curves as a function of time, supporting the robustness of the
estimation procedure. However, it is clear that the cell size estimation is quite
coarse and we aimed to quantify the accuracy of these size estimates. This is
difficult to do directly because we do not have independent measurements of cell
sizes that can be used as a gold standard. However, if we find that the estimated cell
size s(t) accurately follows a simple exponential or linear form as a function of time
t, then this suggests the errors in cell size are at most as large as the fluctuations of s
(t) away from the simple exponential or linear growth law.

Let s(t) be the estimated size of the cell at time t and xðtÞ ¼ log½sðtÞ�. We used
the data sets from the constant environments and used all cells which were
monitored from birth to division, corresponding to 4016 cell cycles in glucose and
3387 cell cycles in lactose. For each cell cycle, we calculated the Pearson correlation
between x(t) and t across the cell cycle, as well as the Pearson correlation between s
(t) and t. Figure 6 shows the cumulative distributions of the squared Pearson
correlation of the growth curves with exponential (black) and linear (orange)
functions for cells grown in lactose (Fig. 6a) and in glucose (Fig. 6b).

We see that the growth curves are very well described by exponential functions
of time, i.e. the median squared correlation coefficient is approximately 0.99 and
almost all cells have correlation coefficients larger than 0.98. Correlation
coefficients are substantially lower for fits to linear growth curves. Note that,
whereas correlation coefficients are still very high for the linear growth fits, the log-
likelihood for a growth-curve with squared correlation r2 and T time points scales
as �T log½1� r2�. Thus, for a typical cell-cycle with T = 30 time points, the
likelihood ratio between a fit with r2 = 0.99 and one with r2 = 0.98 is
expð20:8Þ � 109. That is, the differences in the qualities of the linear and
exponential fits are highly significant.

Since the elongation of cells is very well described by an exponential model, we
can estimate the measurement error by studying the residuals of these fits. These
residuals represent an upper bound on length measurement errors since they also
include biological fluctuations around constant exponential growth. For each cell
size observation in each cell cycle, we calculate the squared residual from the
exponential fit, and obtained a squared relative error by dividing by the square of
the estimated size. We then stratified the errors according to size and calculated, for
each size class, the means and standard deviations of the squared relative errors.
Taking the square-roots of these values we finally obtain the relative errors of the
size measurements as a function of estimated size (Fig. 1g). We find that the
measurement error on size is between 2 and 3%, and approximately independent of
the length itself.

To estimate the average growth rate of an individual cell cycle we use linear
regression of the log-sizes xðtÞ ¼ log½sðtÞ� across the time points t in the cell-cycle,
i.e. assuming all deviations from a perfect linear relationship x(t) = a(t−t0)+x0 are
due to errors in the log-size estimates x(t). Marginalizing over the cell-size x0 at the
time of birth t0, we find that the standard-deviation of the posterior distribution
over growth-rate a is given by

σðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞð1� r2Þ
ðT � 1ÞvarðtÞ

s
; ð7Þ

where var(x) and var(t) are the variances of the log-sizes x(t) and measurement
times t, T is the number of measurements in the cell cycle, and r is the Pearson-
correlation of the linear fit. The relative error on the estimated slope a* = cov(x, t)/
var(t) is given by the ratio σ(a)/a*.

Figure 6c shows the distribution of growth rates that we observe in constant
glucose and lactose, and Fig. 6d shows the distribution of relative errors on growth
rate. For the large majority of cell cycles, the error on the estimate of the growth
rate is between 1 and 3%. The average growth rate is a bit higher in glucose (0.75
doublings per hour) than in lactose (0.69 doublings per hour). Notably, the
variation in the growth rates of individual cell cycles is much larger than the
measurement errors on these growth rates, indicating that growth rates vary

considerably across single cells. We find that growth rates vary by about 17% in
both glucose and lactose (i.e. one standard deviation), and we observe cell cycles
that differ by more than twofold in their growth rates.

We also investigated whether growth rates during the switching conditions vary
systematically from growth rates in the corresponding constant conditions.
Figure 6 shows the distribution of growth rates for individual cell cycle separately
for the first, second, and third time segment in both glucose (Fig. 6e) and lactose
(Fig. 6f) during the switching conditions.

We see that the growth rate distributions during individual time segments in
the switching experiments are very similar to the distributions in the corresponding
constant conditions. The only exception is the slightly higher growth rates in the
first time segment in glucose during the switching conditions. Although we have
not investigated the origin of the slightly higher growth rates in this time segment
in detail, we believe that it results from a combination of two effects. First, we note
that the growth rates in glucose are slightly higher in all three segments during the
switching conditions than in the constant conditions. This suggests that a subtle
change in the conditions on the day of the experiment may have caused slightly
increased growth rates during the switching conditions. Second, when fluorescence
measurements are taken, the light from the illumination causes some small stress to
the cells, which is reflected in slightly lower growth rates compared to conditions
where no fluorescence measurements are taken. As a consequence, we observe that
cells slightly lower their growth rates during the first hours of the experiment. To
correct for this systematic effect we only start recording measurements in each
experiment, after 2 h in conditions with illumination. We hypothesize that during
the first glucose segment in the switching experiments, the cells had not yet fully
adapted to the illumination conditions.

Cell fluorescence estimation. To estimate the GFP content of each cell, we post-
process the fluorescence data as follows. The raw data consist of fluorescence
intensities for all pixels within the segment of the picture containing the cell. This
segment is 100 pixels wide, with the growth-channel covering approximately 13
pixels in the center of the picture. We first obtain column-sums ci by summing the
pixel intensities of all pixels in each of the 100 columns i. Note that we assume that
these column sums are dominated by the fluorescence coming from the cell in
question, i.e. that the fluorescence coming from neighboring cells above and below
the cell are negligible. We find that this is a good approximation when cells in a
given growth-channel all have similar fluorescences but note that, in conditions
where neighboring cells may have fluorescences that differ by orders of magnitude,
this assumption may break down. Figure 7 shows the profiles of column sums ci for
a cell at three time points of its cell cycle while growing in lactose (top three panels)
and for a cell growing in glucose (bottom three panels). From prior biological
knowledge, we know that GFP is highly expressed during the growth on lactose,
and that it is very lowly expressed during the growth on glucose.

Remarkably, the growth-channel (central 13 pixel positions in the figures) is not
detectable at all in the fluorescence curves. Instead, the fluorescence signal shows a
long-tailed peak centered in the middle of the growth-channel, extending far
beyond the width of the growth-channel, and reaching a minimum at positions
halfway between neighboring growth-channels, i.e. near the left and right ends of
the profiles in Fig. 7. As the cell grows, i.e. from the leftmost to rightmost panel, the
length of the segment grows and the column-sums grow proportionally to the
segment length. Notably, the minimal fluorescence level is almost twice as high
when growing in lactose compared to when growing in glucose. We conclude from
these observations that the fluorescence from each cell spreads over significant
distances across the image and that this also causes background levels to depend on
the overall expression levels in neighboring growth-channels. Therefore, to
properly estimate the amount of fluorescence emerging from the cell we need to fit
the background intensity within each segment and we need a mathematical model
for the long-tailed shape of the peak.

We found that the shape of the peak is very well described by a Cauchy (or
Lorentzian) distribution, giving an overall form of the fluorescence profile:

ci ¼ noiseþ Bþ A

1þ i�imid
w

� �2 ; ð8Þ
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Fig. 5 Histogram of the curation times per 100 frames for a representative set of growth-channels. The inset shows a scatter plot of curation times (per 100
frames) as a function of the fraction of frames that were curated. The line shows a linear regression (least squares) fit
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where i is the horizontal position, imid is the center of the peak, w its width, A the
amplitude of the signal, ‘noise’ is the measurement noise, and B the background
fluorescence. Assuming that the measurement noise is Gaussian distributed, it is
straight forward to fit this model using expectation maximization. We find that,
systematically, the center imid ≈ 50–52, and the width w ≈ 5–6 pixels. We interpret
the amplitude A to be proportional to the total number of GFP molecules in the
cell, and the background B to correspond to the combined effects of the camera
offset, the auto-fluorescence of the microfluidic chip and the media, and stray
fluorescence from neighboring cells. The expectation maximization procedure for
fitting the fluorescence profile is

1. Find the maximum and minimal fluorescence column-sums cmax and cmin

across the profile.
2. Initialize B to cmin, A to cmax−cmin, w to 5.5 and imid to 50, i.e. in the middle of

the profile.
3. Calculate a theoretical profile:

ρi ¼ 1þ i� imid

w

� �2
" #�1

; ð9Þ

and its integral ρ ¼PN
i¼1 ρi .
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4. Set a new value of the background B′:

B′ ¼ 1
N

XN
i¼1

Bci
Bþ Aρi

: ð10Þ

5. Set a new value for the amplitude A′:

A′ ¼ 1
ρ

XN
i¼1

Aciρi
Bþ Aρi

: ð11Þ

6. Using the updated values A′ and B′, calculate an updated profile ρi and
optimize imid by finding the zero of the derivative:

XN
i¼1

i� imidð Þρ2i �1þ ci
B′ þ A′ρi

� �
: ð12Þ

7. Using the updated values A′, B′, and imid, optimize w by finding the zero of the
derivative: XN

i¼1

ρið1� ρiÞ �1þ ci
B′ þ A′ρi

� �
: ð13Þ

The accuracy of this method to estimate the total fluorescence of the cell can be
quantified by taking advantage of the precise environment control allowed by our
new setup, as discussed in the next section. We distribute a post-processing script
with the MoMA code that allows users to apply this fluorescence amplitude
estimation to exported output files from MoMA.

Cell auto-fluorescence estimation. In addition to the background fluorescence of
the PDMS and stray fluorescence from nearby cells that are corrected for by the
methods described in the previous section, there is background fluorescence
coming from the auto-fluorescence of the cells and media. To estimate this auto-
fluorescence, we measured the wild-type strain of E. coli MG1655, i.e. without the
fluorescent reporter, in the conditions where we switch between glucose and lac-
tose. We observed that the estimated total fluorescence, i.e. the amplitude A from
the previous section, correlates well with the size of the cells during their cell cycle.
That is, fitting a linear relationship A = aS+b of the fluorescence A as a function of
the estimated cell size S typically yields Pearson correlation coefficients of r ≈ 0.9.
Moreover, we observed that the vast majority of fits were consistent with b = 0, i.e.
the total fluorescence being directly proportional to cell size, supporting that this
signal corresponds to the auto-fluorescence of the cell. Note that any uniform
fluorescence coming from the growth medium would also be accounted for by this
procedure (in the parameter a).

To fit the auto-fluorescence a (per micrometre of cell length) we selected all
cells that were observed for a full cell cycle, who never got within 100 pixels of the
end of the growth-channel during their cell cycle, and whose length as a function of
time was well fit by a simple exponential growth curve (r2 ≥ 0.99). This latter
restriction mainly serves to remove cells that had a transient stop in growth after
the first switch to lactose. In total there were 284 cells that passed all these criteria.
For each of these cells we replaced the directly estimated sizes St at each time point
t, with the sizes ~St estimated from the exponential fit of St as a function of time
(reasoning that these estimates are more accurate than the direct measurements).
For each cell we then fit a function At ¼ a~St , assuming Gaussian measurement
noise of unknown variance.

That is, for a single cell we write

P Dja; σð Þ / σ�T exp �
X
t

At � a~St
� �2

2σ2

" #
: ð14Þ

Using a scale prior on σ of the form P(σ) ∝ 1/σ, and integrating over σ we obtain

PðajDÞ / ~S2
	 


a� A~S
	 

~S2
	 


 !2

þ A2
	 
� A~S

	 

~S2
	 


" #�T=2

; ð15Þ

where T is the number of time points in the cell cycle and the averages are over the
time points in the cell cycle.

The optimal value of a is given by

a� ¼
A~S
	 

~S2
	 
 : ð16Þ

Approximating the posterior by a Gaussian we obtain for the standard deviation
of the estimated a

σa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

A2h i
~S2
	 
 � a2�

" #vuut : ð17Þ

Figure 8a shows the estimated value a* and its error bar σa for each of the 284
cells. Note that, although most cells have fluorescence values between 400 and
500 per μm, there are some outliers at higher fluorescence. This is also evident from
the combined probability density of a values (Fig. 8b).
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If we assume there is one common background fluorescence per micrometre α
for all cells, then the probability of the data given α is given by

PðDjαÞ ¼
Y
c

1
σaðcÞ exp � a�ðcÞ � αð Þ2

2σaðcÞ2
" #

; ð18Þ

where the product is over the 284 cells c.
Maximizing this function with respect to α yields

α ¼
X
c

a�ðcÞ
σaðcÞ2

X
c

1

σaðcÞ2
" #�1

¼ 433:5: ð19Þ

If we allow that there are some ‘outlier’ cells whose value of a is described by a
uniform distribution of width W = amax − amin, then the likelihood of the data as a
function of α and the fraction of non-outlier measurements ρ is given by

PðDjα; ρÞ ¼
Y
c

1� ρ

W
þ
ρ exp � α�a�ðcÞð Þ2

2σaðcÞ2
� �
ffiffiffiffiffi
2π

p
σaðcÞ

2
4

3
5: ð20Þ

Maximizing this function with respect to α and ρ yields α = 421.8 and ρ = 0.31.
In the following we will use this latter value of α for the auto-fluorescence per
micrometre of cell length. For each cell with estimated size S and total fluorescence
A, we thus obtain an auto-fluorescence corrected fluorescence level ~A ¼ A� αS.

Estimating GFP’s bleaching and degradation. As shown in Fig. 2a, while the lac
operon is induced in the lactose phases, GFP production ceases during the glucose
phases. In this regime, the total cell fluorescence slowly decreases during the cell
cycle, and approximately divides in half at each cell division. We reasoned that the
slow continuous decay of fluorescence during the cell cycles is the result of GFP
bleaching and, potentially, also some GFP degradation. Inspection of the data
indeed shows that the total fluorescence decrease is captured well by an exponential

model. For this analysis, we consider only observations between 30 min after the
switch to glucose and before the next switch to lactose, and to cells with at least 10
points in this time window. This corresponded to 33,052 independent cell obser-
vations over 1220 cells.

As shown in Fig. 8c, the GFP degradation across time is well fit by an
exponential model for most cells. Assuming that a cell undergoes bleaching+GFP
degradation at a rate μ per second, we estimated μ for each cell from a linear
regression of log(GFP level) against time (Fig. 8d). Combining information from
the estimates of individual rates for each cell and their standard deviations, we
estimate the overall rate μ* to be equal to 5.3×10−5± 5×10−7 (mean ± s.d.)
per second. Note that this corresponds to a loss of about 18% of the GFP signal per
hour due to bleaching and GFP decay.

Accuracy of the fluorescence estimation. We also took advantage of our unique
ability to study the growth regime where no GFP is produced to quantify the
measurement errors on the total GFP. Since, in the glucose phases of the switching
experiments, the GFP dynamics is dominated by bleaching and degradation, and
well described by an exponential decay model, we computed the squared residuals
(normalized by the squared value) from the independent fits of log(GFP) as a
function of time for each cell. As for the analysis of measurement errors on length,
residuals are stratified into bins based on total GFP, and the means and standard
errors of the normalized squared residuals (i.e. relative to total GFP) are computed
for each bin (Fig. 2g). We find that the squared relative error on the GFP mea-
surement scales inversely with the total GFP level (i.e. a power-law fit has exponent
1.01), which indicates that, as in shot noise, the squared error is inversely pro-
portional to total GFP level. In practice, the absolute error is around 20 molecules
when the cell has 200 GFP molecules (i.e. 10%), and around 80 molecules when the
total is 4000 GFP molecules (i.e. 2%).

Estimating the fluorescence per GFP molecule. To estimate the conversion
factor between the background-corrected total fluorescence ~A and the number of
GFP molecules, we will use data on the fluctuations in fluorescence levels of
newborn sibling pairs. To avoid confounding effects from GFP production, we
collected division events from the glucose phases in our switching experiments,
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when GFP production has ceased. Collecting division events from these phases has
the added advantage that absolute GFP levels vary over a considerable range across
cells during these phases, allowing us to quantify the size of fluctuations in sibling
fluorescence as a function of total fluorescence. Our observations consist of
fluorescence levels at birth (xi, yi) for sibling pairs of daughters, where i runs from 1
to N, with N the total number of such sibling pairs. Using the same criteria as in the
decay analysis for mothers and daughters, we collected N = 357 sibling pairs. GFP
levels at birth were estimated in each daughter cell as average of the levels at all
time points corrected for the previously estimated decay. Assuming that the GFP
molecules in the mother cell are distributed randomly between the daughters, the
fluctuations in the numbers of GFP molecules going to each daughter should be
binomial distributed, and this has been used previously to infer a conversion factor
between GFP molecule numbers and fluorescence levels24. In particular, assuming
binomial fluctuations, the expectation of the square of the difference ðni �miÞ2

	 

should be equal to the total count ni+mi. Given a conversion factor λ, such that the
GFP molecule counts correspond to (ni, mi) = λ(xi, yi), one can estimate λ by
observing

1 ¼ ni �mið Þ2
ni þmi

� �
¼ λ

xi � yið Þ2
xi þ yi

� �
: ð21Þ

However, using this “naive” approach, we find that the conversion factor λ
systematically decreases with total fluorescence (Fig. 9a), changing by as much as
fourfold depending on whether division events with low or high absolute
fluorescence are used. This result implies that the variance of fluorescence
fluctuations grows faster than linear with total fluorescence, suggesting that there
are additional fluctuations with variance proportional to total fluorescence squared.
Inspection of the data strongly suggests that these additional fluctuations derive
from fluctuations in the cell size of the daughters. That is, in addition to the
binomial fluctuations there are fluctuations caused by the daughters having
unequal size. Practically, cell size at birth is estimated in each daughter cell by
extrapolating the linear fit of log(length) as a function of time. Indeed, we observe a
substantial correlation between the relative sizes of the siblings and the relative
amounts of fluorescence each sibling receives (Fig. 9b, Pearson correlation r = 0.44).

We thus developed a more sophisticated model, which takes into account
fluctuations in the cell sizes, the binomial fluctuations, as well as measurement
noise. For a given division event i, let ρi denote the measured fraction of the
cytoplasm that went to the first daughter, and let qi = xi/(xi+yi) be the measured
fraction of the fluorescence that went to the first daughter. We will assume that qi is
a noisy measurement of the true fraction of molecules q = ni/(ni+mi) that went to
the first daughter, and that ρi is a noisy measurement of the true fraction of the
mother’s cytoplasm ρ that went to the first daughter. Given ρ and a total number of
molecules n = (ni+mi), the molecule numbers (ni, mi) will show binomial
fluctuations and the fraction q will have a variance var(q) = ρ(1−ρ)/n. In addition to
this variance we will assume there is a total measurement noise of variance v, so
that the total expected square-deviation between the measurements qi and ρi
should be v+ρ(1−ρ)/n. We will assume that the sum of these fluctuations due to the
binomial noise and measurement noise is approximately Gaussian distributed.
Finally, we will assume that the binomial variance ρ(1−ρ)/n is well approximated
by the measured values ρi(1−ρi)/(λ(xi+yi)).

Under this model, the probability of observing the fraction qi, given the
measured volume fraction ρi, the conversion factor λ, and the total measurement

noise v is given by

P qijρi; λ; vð Þ ¼ v þ ρið1� ρiÞ
λ xi þ yið Þ

� ��1=2

exp � qi � ρið Þ2

2 v þ ρið1�ρiÞ
λ xiþyið Þ

� �
2
4

3
5: ð22Þ

The log-likelihood of λ and v is now given by a sum over the N division events:

Lðλ; vÞ ¼ � 1
2

XN
i¼1

ðqi � ρiÞ2

v þ ρið1�ρiÞ
λðxiþyiÞ

� �þ log v þ ρið1� ρiÞ
λðxi þ yiÞ

 �
: ð23Þ

To obtain the posterior probability of λ we marginalize over the unknown
variance v (using a uniform prior). That is, we calculate
LðλÞ ¼ log

R
exp½Lðλ; vÞ�dv� �

, performing the integral numerically. Using this
model, the maximal likelihood value of λ is given by

λ� ¼ 0:0361; ð24Þ

and the symmetric 95% posterior probability interval is given by λ ∈ [0.026, 0.112].
Figure 9c shows the posterior distribution P(λ|D) obtained with our model. For

comparison, Fig. 9c also shows the conversion factors that would be obtained with
the naive method that assumes there is only binomial noise, i.e. using all data the
number of molecules would be underestimated by almost twofold.

Data availability.

● The designs of the DIMM device, as well as a handbook with detailed
experimental methods, are available from Metafluidics web repository at
https://metafluidics.org/devices/dual-input-mother-machine/.

● The MoMA software and source code is available on Github: https://github.
com/fjug/MoMA. For end users, MoMA is also available as a Fiji plugin at
http://sites.imagej.net/MoMA.

● Extensive documentation is provided as a Wiki page containing information
about MoMA’s installation and use, as well as tutorial videos: https://github.
com/fjug/MoMA/wiki.

● Raw image data of the analyzed growth-channels as well as processed data
(estimated cell sizes and fluorescence levels) for all experiments presented in
the paper are available from Zenodo at https://doi.org/10.5281/zenodo.746230.
A README file is provided with detailed explanation as to which file
corresponds to which experiment, and the file format of the processed data
files.

● A movie from a time lapse experiment in which E. coli ASC622 cells grow in
the DIMM under conditions that switch (every 4 h) between glucose and
lactose as a carbon source is available on Youtube: https://www.youtube.com/
watch?v=2Tznm868fmc. This movie is also available as Supplementary
Movie 1.
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