
 
 

Delft University of Technology

Approximate dynamic programming for constrained linear systems
A piecewise quadratic approximation approach
He, Kanghui; Shi, Shengling; van den Boom, Ton; De Schutter, Bart

DOI
10.1016/j.automatica.2023.111456
Publication date
2024
Document Version
Final published version
Published in
Automatica

Citation (APA)
He, K., Shi, S., van den Boom, T., & De Schutter, B. (2024). Approximate dynamic programming for
constrained linear systems: A piecewise quadratic approximation approach. Automatica, 160, Article
111456. https://doi.org/10.1016/j.automatica.2023.111456

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.automatica.2023.111456
https://doi.org/10.1016/j.automatica.2023.111456


Automatica 160 (2024) 111456

K

p
r
p
s
t
c
a
B
a
t
o
p

a
(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Approximate dynamic programming for constrained linear systems: A
piecewise quadratic approximation approach✩

anghui He ∗, Shengling Shi, Ton van den Boom, Bart De Schutter
Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

a r t i c l e i n f o

Article history:
Received 13 June 2022
Received in revised form 24 March 2023
Accepted 14 November 2023
Available online 9 December 2023

Keywords:
Approximate dynamic programming
Reinforcement learning
Model predictive control
Value function approximation
Neural networks
Constrained linear quadratic regulation

a b s t r a c t

Approximate dynamic programming (ADP) faces challenges in dealing with constraints in control
problems. Model predictive control (MPC) is, in comparison, well-known for its accommodation of
constraints and stability guarantees, although its computation is sometimes prohibitive. This paper
introduces an approach combining the two methodologies to overcome their individual limitations. The
predictive control law for constrained linear quadratic regulation (CLQR) problems has been proven to
be piecewise affine (PWA) while the value function is piecewise quadratic. We exploit these formal
results from MPC to design an ADP method for CLQR problems with a known model. A novel convex
and piecewise quadratic neural network with a local–global architecture is proposed to provide an
accurate approximation of the value function, which is used as the cost-to-go function in the online
dynamic programming problem. An efficient decomposition algorithm is developed to generate the
control policy and speed up the online computation. Rigorous stability analysis of the closed-loop
system is conducted for the proposed control scheme under the condition that a good approximation
of the value function is achieved. Comparative simulations are carried out to demonstrate the potential
of the proposed method in terms of online computation and optimality.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Model-based reinforcement learning RL, also known as (ap-
roximate) dynamic programming ((A)DP) (Werbos, 1992), has
eceived much attention for the synthesis of controllers. Com-
ared to its diverse industrial applications, the theoretical analy-
is on the stability and safety for RL faces great challenges. Thanks
o Lyapunov stability theory, the stability issue of ADP has been
omprehensively addressed, both for linear (Kleinman, 1968)
nd nonlinear systems (Al-Tamimi, Lewis, & Abu-Khalaf, 2008;
erkenkamp, Turchetta, Schoellig, & Krause, 2017). Although ADP
pproaches consider stability, safety is another important issue
hat needs further study. Safety means that the states and inputs
f closed-loop systems satisfy some constraints. Techniques em-
loyed by RL or ADP approaches for dealing with constraints can
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for publication in revised form by Associate Editor Alessandro Abate under the
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ttps://doi.org/10.1016/j.automatica.2023.111456
005-1098/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
be grouped into two categories: policy-projection-based methods
and policy-optimization-based methods. Policy-projection-based
methods consider the RL formulation in the unconstrained case
and involves a regulator to check and modify the policies that
may violate the constraints (Chen et al., 2018; Wabersich &
Zeilinger, 2021). These indirect methods, however, sometimes
fail to capture the optimal solution of the constrained problem
and lack stability guarantees. In comparison, optimization-based
methods intend to directly get the optimal value function for
the constrained problems by solving the constrained Bellman
equation. With the optimal value function available, the optimal
control policy can thereby be produced by solving a constrained
policy optimization problem. Chakrabarty, Quirynen, Danielson,
and Gao (2019) was the first investigation of this kind of method,
but it is limited to searching for the best linear feedback control
law and needs an initial stabilizing policy. Following this direc-
tion, Chakrabarty, Jha, Buzzard, Wang, and Vamvoudakis (2020)
explores an estimation approach to find an initial stabilizing
policy even when there are uncertain nonlinear dynamics.

In constrained cases, neither the optimal policy nor the op-
timal value function is readily available, even for the most ba-
sic infinite-horizon linear quadratic regulation (LQR) problems.
This to some extent restricts the development of the policy-
optimization-based RL methods for constrained control problems.
In comparison, model predictive control (MPC) (Borrelli, Bem-
porad, & Morari, 2017), an optimization-based control scheme
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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idely adopted in the control community, has a mature sta-
ility and robustness theory as well as an inherent constraint
andling. For infinite-horizon LQR problems, MPC can render
he exact optimal control law due to the equivalence of finite
nd infinite optimal control as long as the horizon is sufficiently
ong (Chmielewski & Manousiouthakis, 1996). With this funda-
ental property, infinite-horizon LQR problems can be solved
y either implementing MPC online or explicit MPC (Bemporad,
orari, Dua, & Pistikopoulos, 2002), and the solution is proven to
e piecewise affine (PWA) in the state space (Bemporad et al.,
002). However, the computational complexity of both online
PC and explicit MPC grows dramatically with the increase of the
roblem size. This is one of the main drawbacks of MPC compared
ith RL or ADP.
Dedicated to overcoming this drawback, approximation meth-

ds of predictive control laws have received much attention in
ecent years. An emerging methodology is using specific function
egression techniques such as PWA neural networks (NNs) (Chen
t al., 2018; Karg & Lucia, 2020; Maddalena, de Silva Moraes,
altrich, & Jones, 2019). Nevertheless, no guarantees of closed-

oop stability are conveniently available, even through the final
pproximation error is small enough. Using NN-based controllers
o warm start the solver in online MPC (Chen, Wang, Atanasov,
umar, & Morari, 2022) can inherently guarantee stability, and
earning Lyapunov functions to verify the stability of NN-based
ontrollers (Chen, Fazlyab, Morari, Pappas, & Preciado, 2020) is
lso an alternative way. However, additional computation is re-
uired in the optimization or learning procedure.
Observing that MPC has computational limitations and ap-

roximation in the policy space lacks performance guarantees,
e aim to attain a computationally inexpensive control scheme

or linear systems with stability and feasibility guarantees. To
his end, we approximate the value function via ADP and shorten
he prediction horizon to one. We focus on the infinite-horizon
QR problem with state and input constraints. Different from the
esearch on approximating the MPC policy (Chen et al., 2018;
arg & Lucia, 2020; Maddalena et al., 2019), we propose a value
unction approximation scheme. The optimal value function that
s characterized by explicit MPC, is approximated by a piece-
ise quadratic (PWQ) NN. The synthesis of the control law is
onducted in a DP problem, where stability, feasibility, and sub-
ptimality can be guaranteed if a good approximation is ob-
ained. Meanwhile, note that one disadvantage of approximat-
ng the value function is that it needs online policy optimiza-
ion. To address this issue, we develop algorithms so that online
ptimization can be done efficiently.
The contributions of the paper are highlighted as follows:
(1) We propose a novel NN structure to approximate the solu-

ion of the constrained LQR problem based on ADP. The proposed
N structure can capture the PWQ and convex properties of
he value function. Different from policy-based approximation
pproaches (Chen et al., 2018; Karg & Lucia, 2020; Maddalena,
e Silva Moraes, Waltrich, & Jones, 2020), our approach has the
mportant advantage that the resulting controller has safety and
tability guarantees.
(2) We propose an efficient algorithm to solve the policy

ptimization problem, which is a convex piecewise quadratic
rogram. In particular, this program is simplified to a collection
f quadratic programs (QPs). Note that the main difficulty that
revents ones from considering more complex approximation
tructures is the increase in online computational time. We solve
his problem in Algorithm 1. Complexity analysis and simulation
esults show that the proposed method requires much less online
omputation time than implicit MPC.
(3) Compared to Chakrabarty et al. (2019), the first exploration
f ADP in a constrained LQR setting, the proposed approach

2

eliminates the restriction of searching for a linear feedback law
and does not require an initially stabilizing policy nor an initial
state belonging to an invariant set.

(4) We do a rigorous stability analysis, give stability condi-
tions, and provide a tractable way to verify them.

2. Preliminaries

Let N = {0, 1, 2, . . .} and let λmax(P) and λmin(P) represent
the maximum and minimum eigenvalues of a symmetric positive
definite matrix P . The boundary of the set P is ∂P , and int(P)
stands for the interior of P . We use Ai,· to represent the ith row
of the matrix A.

2.1. Infinite-horizon optimal control and MPC

We study the infinite-horizon constrained linear quadratic
regulation (CLQR) problem

J∗
∞
(x) =min

U∞

{
J∞
(
x0,U∞

)
≜

∞∑
k=0

xTkQxk + uT
kRuk

}
s.t.xk+1 = Axk + Buk, k = 0, 1, . . . , x0 = x

xk ∈ X , uk ∈ U, k = 0, 1, . . . (1)

where xk ∈ Rn, uk ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, X and U are
polyhedra that contain the origin in their interior, and U∞ =
[u0, u1, . . . , u∞] is the infinite-dimensional decision variable. Ma-
trices A and B are known. Like (Chen et al., 2018; Kerrigan &
Maciejowski, 2000), it is also assumed that
Assumption A1: (A, B) is stabilizable, Q > 0, and R > 0. More-
over, there exists an initial state, such that there exists a sequence
of admissible input vectors u0, u1, . . . that can steer the state
to the origin, i.e., X̄ ≜ {x ∈ Rn

|∃U∞ s.t. xk ∈ X , uk ∈ U, and
J∗
∞
(x)<∞, ∀k ∈ N

}
is not empty.

With Assumption A1, let K ∈ Rm×n be a stabilizing gain matrix
for the unconstrained plant xk+1 = Axk + Buk. As in Chmielewski
and Manousiouthakis (1996), we consider the admissible set
of states under a given stabilizing control gain K as X̄K =

{x ∈ Rn
| x ∈ X ,−Kx ∈ U}.

If the constraints in (1) are removed, the problem admits a
unique linear solution uLQR

k = −K ∗xk, k = 0, 1, . . . where K ∗ =(
R+ BTP∗B

)−1 BTP∗A and P∗ = P∗T is the unique positive-definite
solution of the algebraic Riccati equation (Kleinman, 1968). Then,
J∗
∞
(x) = xTP∗x in the absence of constraints.
In the constrained case, if the state is close to the origin, the

unconstrained LQR solution uLQR
k = −K ∗xk, k = 0, 1, . . . may not

violate the constraints so that the solution to (1) is identical to the
unconstrained LQR solution −K ∗xk as if there is no constraint at
all. This motivates the consideration of the maximal LQR invariant
set OLQR

∞
=
{
x ∈ Rn

| (A− BK ∗)k x ∈ X̄K∗ ,∀k ∈ N ⊆ Rn
}
for the

autonomous constrained linear system xk+1 = (A− BK ∗) xk, xk ∈
X ,∀k ∈ N (Borrelli et al., 2017; Chmielewski & Manousiouthakis,
1996). With this definition, the existing literature (Chmielewski
& Manousiouthakis, 1996) considers using a finite-horizon prob-
lem:

J∗N (x) = min
{uk}

N−1
k=0

N−1∑
k=0

xTkQxk + uT
kRuk + xTNP

∗xN

s.t. xk+1 = Axk + Buk, k = 0, 1, . . . ,N − 1, x0 = x

xk ∈ X , uk ∈ U, k = 0, 1, . . . ,N − 1 (2)

to approximate the infinite-horizon LQR problem (1). In (2), U =
[u0, u1, . . . , uN−1] is the decision variable and U∗(x) is the solu-

tion. The rationale behind this design is that after a sufficient
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ong horizon, the resulting xN will fall into OLQR
∞

where the un-
onstrained LQR solution uN = −K ∗xN will not violate the
onstraints. As the result, the terminal cost xTNP

∗xN is an ex-
act representation for J∗

∞
(xN). The following theorem, proposed

in Chmielewski and Manousiouthakis (1996), formally demon-
strates the validity of this design.

Theorem 1 (Chmielewski & Manousiouthakis, 1996). Let J̄ be an
upper bound on J∗

∞
(x). Suppose that Assumption A1 holds. For any

x ∈ X̄ , if N >
(
J̄ − p

)
/q where 0 < q ≤ qm ≜ infx/∈OLQR

∞

{
xTQx

}
and

0 < p ≤ pm=̂ infx/∈OLQR
∞

{
xTPx

}
, then xN ∈ OLQR

∞
and problem (2) is

equivalent to problem (1) in the sense of J∗
∞
(x) = J∗N (x), ∀x ∈ X̄ .

Throughout the paper, we assume that N in (2) is chosen such
that the equivalence in Theorem 1 is satisfied.

By substituting the state update equation into J∗N (x) and the
constraints, (2) can be reformulated as a multi-parametric
quadratic program (mpQP). See Borrelli et al. (2017), He, van den
Boom, and De Schutter (2022) for details. Explicit MPC aims to
directly solve the mpQP for all possible x in a feasible set, and find
the relationship between the optimizer U∗(x) and x. The results
from explicit MPC show that the optimizer U∗(·) is PWA. So, the
first element u∗0(·) of U

∗(·) satisfies

u∗0(x) = Fjx+ gj if x ∈ Rj, j = 1, . . . ,Nr (3)

where the polyhedral sets Rj =
{
x ∈ Rn

: Hjx ≤ hj
}
, j = 1, . . . ,

Nr constitute a finite partition of a compact set of initial condi-
tions X0 ⊆ X̄ .

2.2. Problem formulation

The explicit controller is easy to compute offline in the case
of a short horizon and a low-dimensional input vector. However,
with the increase of the horizon and the system’s dimension, the
number of regions in (3) grows exponentially (Bemporad et al.,
2002) and the representations of these regions become more
complex, which may make the offline computation and online
implementation intractable.

Artificial NNs with at least one hidden layer have the capa-
bility of universal approximation for any continuous function,
provided that the hidden layer has enough units. Herein, we can
use NNs to represent the explicit MPC law, without any need
to identify the regions in (3). Related work is reported in Chen
et al. (2018), Karg and Lucia (2020), Maddalena et al. (2020),
combined with supervised learning or policy gradient methods.
The NN-based controllers proposed in Chen et al. (2018), Karg and
Lucia (2020), Maddalena et al. (2020) require an online feasibility
certificate to determine whether the outputs of the NNs are safe.
These NN-based policy approximators, however, inherently lack
stability guarantees.

To address the computational burden of MPC and the lack
of guarantees of policy-based approximation, we adopt value
function approximation and shorten the MPC horizon to one. The
main challenges are thereby (i) the design of the value function
approximator, which is expected to output a function akin to the
optimal value function, (ii) the relation between those guarantees
and the quality of the approximation, and (iii) further reduction
of online computation time concerning that the one-step problem
contains a function approximator.

Before establishing our approximation structure, we concen-
trate on the properties of J∗

∞
(·).

Theorem 2 (Borrelli et al., 2017). With Assumption A1 satisfied, in
a compact polyhedral set of the initial conditions X0 ⊆ X̄ , J∗

∞
(·) is

continuous, convex, and PWQ over polyhedra:

J∗ (x) = J (x) =xTP x+ qT x+ v ,

∞ i i i i

3

if x ∈ Ri, i = 1, . . . ,Nr (4)

Moreover, if the mpQP problem (2) is not degenerate, then J∗
∞
(·) is

continuously differentiable.

Theorem 3 (Baotić, Borrelli, Bemporad, & Morari, 2008). Assume
that (1) results in a non-degenerate mpQP. Let Ri,Rj be two neigh-
boring polyhedra and Ai,Aj be the corresponding sets of active
constraints at the optimum of (2). Then, (i) Pi − Pj ≤ 0 if Ai ⊂ Aj,
and (ii) P∗ − Pj ≤ 0, ∀j ∈ {1, 2, . . . ,Nr}.

For the detailed description of degeneracy, see He et al. (2022),
Tøndel, Johansen, and Bemporad (2003).

3. ADP design for CLQR problem

3.1. NN design for approximation in value space

According to Theorems 2 and 3, the value function approxi-
mator, denoted by Ĵ(·, θ ) where θ refers to some parameters, is
expected to have the following features: (F1) It can partition its
input space into polyhedral regions. (F2) It can produce a convex
and PWQ function partitioned by polyhedra. (F3) For x in a small
region containing the origin, the approximator can provide the
exact representation for the value function, i.e., Ĵ(x, θ ) = xTP∗x.

We will use a feed-forward NN to capture the relationship
between the state x and J∗

∞
(x). A feed-forward NN is composed

of one or more hidden layers and an output layer, where each
hidden layer contains an affine map fl (κl−1) = Wlκl−1 + bl,
followed by a nonlinear map κl = gl(fl). Here, Wl ∈ RMl×Ml−1

and bl ∈ RMl are the weights and biases, gl(·) : RMl → RMl is
a nonlinear activation function, Ml is the width of the lth layer,
referring to the number of units in the layer, and M0 = n. Based
on these definitions, an NN with L hidden layers and Ml units in
the lth layer can be represented by fNN(x, θ ) = [fL+1 ◦ gL ◦ fL ◦ · · · ◦
g1◦f1](x), where θ contains all the weights and biases of the affine
functions in all the layers, and the symbol ◦ means the layers are
connected in series.

The activation function plays an important role in the approx-
imation of NNs. In this paper, we consider the rectifier linear unit
(ReLU), which is defined as gReLU(x) = max {0, x}. An important
property of the ReLU is that it can produce a series of PWA
functions with polyhedral partitions, combined with an affine
transformation (Montufar, Pascanu, Cho, & Bengio, 2014). Actu-
ally, the output of an NN with ReLUs as activation functions is
PWA. However, as the optimal value function is PWQ, we are
interested in producing a class of PWQ basis functions that can
efficiently represent the value function.

Let us focus on the last hidden layer. All activation units in this
layer can still be written as a continuous PWA function over the
input space of the network (Fahandezh-Saadi & Tomizuka, 2020).
The element-wise product of any two vector-valued continuous
PWA functions with the same number of components is a con-
tinuous PWQ function. We therefore calculate the element-wise
product of all the units κL in the last hidden layer

ϕ = p (κL) ≜ diag(κL)κL ∈ RML

to generate a series of PWQ functions ϕ(x) = [ϕ1(x) ϕ2(x)
· · · ϕML (x)]

T . This can be viewed as a layer in the NN, denoted
by the product layer p(κL).

The output layer is a weighted sum of the outputs of the
previous layer fL+1(ϕ) = rTϕ =

∑ML
i=1 riϕi.

To make the proposed approximator satisfy F3, we develop a
‘‘local–global’’ architecture, which decomposes the outputs of the
approximator into two parts

Ĵ x,W , b, r = xTP∗x+ [f ◦ p ◦ g ◦ f ](x) (5)
( ) 2 1 1
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ith P∗ the solution to the algebraic Riccati equation. The term
TP∗x is included to capture ‘‘global’’ aspects of J∗

∞
(·), while the

eural-network-based term is exploited to identify the polyhe-
ral partition in (4) and capture the local residuals J∗

∞
(x)− xTP∗x.

Since the known term xTP∗x that dominates the value function
is extracted and fixed, using such a ‘‘local–global" architecture is
possible to enhance the quality of approximation.

We hereafter denoteM1 byM , and Ĵ (·,W , b, r) by Ĵ (·, θ), with
all the parameters condensed in θ .

3.2. NN training and convexity analysis

Training data needs to be generated offline by solving (2)
for Nx different initial states

{
x(i)
}Nx
i=1, x

(i)
∈ X0, and getting the

state-value pairs {(x(i), J∗
∞
(x(i)))}Nx

i=1. Let {u
(i)∗
k }

N−1
k=0 and {x(i)∗k }

N
k=0

denote the solution to the MPC problem for the initial state x(i)
and the corresponding trajectories of the closed-loop controlled
system. We present an efficient sampling strategy by leveraging
the equivalence in Theorem 1. Suppose that we have obtained the
optimal control sequence {u(i)∗

k }
N−1
k=0 and the corresponding value

J∗N
(
x(i)
)

for different x(i), consider the sub-problems whereby
we start at x(i)∗k , for k = 1, . . . ,N − 1 and wish to mini-
mize J∞(x(i)∗k ,U) in (1). According to the principle of optimal-
ity (Bertsekas, 2019), the truncated optimal control sequence
{u(i)∗

j }
N−1
j=k is also optimal for these sub-problems. Hence, the op-

timal value functions for these subsequent trajectories x(i)∗k , k =
1, . . . ,N − 1 can directly be computed as J∗

∞
(x(i)∗k ) = J∗N (x

(i)∗
k ) =

J∗N (x
(i)) −

∑k−1
j=0 x(i)∗Tj Qx(i)∗j + u(i)∗T

j Ru(i)∗
j , with no need to solve (2)

repeatedly.
With this design, we can offline generate NxN state-value pairs

by only solving (2) Nx times. With the NxN state-value pairs
available, the NN is trained so that its parameters approximate
the solution to

min
b<0,W ,r≥0

1
NNx

Nx∑
i=1

N−1∑
k=0

e(x(i)∗k , θ ) (6)

where e(x(i)∗k , θ ) = (Ĵ(x(i)∗k , θ ) − J∗
∞
(x(i)∗k ))2 is the square of the

approximation error for each training pair, and x(i)∗0 = x(i), ∀i ∈
{1, . . . ,Nx}. The constraint b < 0 is introduced to guarantee that
no units in the hidden layer are activated when x is near the
origin, i.e., to fulfill F3, while the constraint r ≥ 0 is responsible
for maintaining convexity of Ĵ(·, θ ).

Problem (6) is a nonlinear least-squares problem, which can be
successfully solved by the gradient descent method (Goodfellow,
Bengio, & Courville, 2016). The constraints on the NN parameters
can be handled by constraint elimination, i.e., by letting r =(
r̄21 , r̄

2
2 , . . . , r̄

2
M

)T , which can always guarantee r ≥ 0, penalizing
the constraint violation in the loss function, or reducing the
number of hidden units if constraint violation is detected.

After the NN is trained, the system can be run and the control
signals are computed by solving a DP problem. With a specific
structure, our proposed NN allows to produce a convex function
Ĵ(·, θ ) so that any locally optimal point is also globally optimal.
Suppose that the output of the proposed approximator has the
following PWQ form:

Ĵ(x, θ )= Ĵ j(x)=xT P̂jx+ q̂Tj x+ v̂j, if x ∈ R̂j, j=1, . . . , N̂r (7)

where R̂j are polyhedra defined by the hyperplanes {Wl,·x+ bl =
0}Ml=1. Define R̄ = diag(r) and we can rewrite (5) as Ĵ(x, θ ) =
xTP∗x + κT R̄κ , where κ , the output of the hidden layer, is PWA
w.r.t. x. In the following, we will show that any feasible solutions
to (6) can ensure the positive semi-definiteness of R̄.
4

Proposition 1. Consider the PWQ NN (5). With a non-negative
r and a negative b, the function Ĵ(·, θ ) that the NN produces is
continuously differentiable and convex w.r.t. its input.

The proof of Proposition 1 and of subsequent theorems and
lemmas can be found in the appendices of the paper.

3.3. Suboptimal control law based on DP

With a well-fitted Ĵ(·, θ ) available, at each time step t ∈ N, we
can obtain a suboptimal control policy by solving the one-step DP
problem

min
ut

Q̂ (xt , ut ) ≜ xTt Qxt + uT
t Rut + Ĵ (Axt + But , θ)

s.t. ut ∈ U, Axt + But ∈ C (8)

where Q̂ (xt , ut ) can be viewed as the approximated optimal Q-
function (Bertsekas, 2019) for (1). Denote the solution to (8) by û∗t .
Here, we use another subscript (·)t to indicate that (8) is solved
online at each time step t .

In (8), C is chosen as X̄ or Rn, depending on whether X̄ is
computable. In particular, if the iterative algorithm for computing
X̄ , e.g., Algorithm 10.3 in Borrelli et al. (2017) does not terminate
in finite time, we drop the constraint on Axt + But . This could
happen, e.g., when there is no state constraint in (1). In both cases
problem (8) is recursively feasible since X̄ is a control invariant
set (CIS) (Borrelli et al., 2017).

The objective function in (8) is nonlinear and contains an NN.
Standard solvers such as the ellipsoid algorithm or the interior-
point algorithm require the computation of the Hessian ∇2

u Q̂ (x, u)
or the gradient ∇uQ̂ (x, u) in each iteration. Such computation
can only be carried out by visiting all units in the hidden lay-
ers and extracting the activated ones. The advantage of low
computational complexity brought by DP will then inevitably
diminish.

In view of this, we intend to avoid frequently calculating
∇

2
u Q̂ (x, u) and ∇uQ̂ (x, u) by decomposing the Q-function Q̂ (xt , ut )

into some quadratic functions. In particular, we develop an op-
timization algorithm in which problem (8) is reduced to a QP
problem in each iteration. For a given xt , t ∈ N, consider the set
of activated ReLU units in Ĵ (Ax+ Bu, θ):

Ā(u) =
{
i ∈ {1, . . . ,M} | Wi,·(Axt + Bu)+ bi > 0

}
(9)

With (9), Q̂ (xt , u) can thus be computed as

Q̂ (xt , u) = uT P̄(Ā(u))u+ q̄T (Ā(u))u+ v̄(Ā(u)) (10)

where

P̄(Ā(u)) = R+ BT (P∗ +
∑

i∈Ā(u)

riW T
i,·Wi,·)B

q̄T (Ā(u)) = 2xTt A
TP∗B+ 2(

∑
i∈Ā(u)

ri
(
Wi,·Axt + bi

)
Wi,·)B

v̄(Ā(u)) = xTt (Q + ATP∗A)xt +
∑

i∈Ā(u)

ri
(
Wi,·Axt + bi

)2 (11)

Since P̄(Ā(u)) > 0, the right-hand side of (10) is a convex
quadratic function if Ā(u) is fixed. An algorithm that can effec-
tively solve general piecewise convex programs (PCP) is proposed
in Louveaux (1978), called the PCP Algorithm. We adapt it to
solving problem (8). For extra details see He et al. (2022). On
the other hand, the PCP Algorithm is not the ideal choice for
solving our DP problem, because it needs to iteratively compute
the intersection of some sets and one of the auxiliary QPs contains
numerous constraints if the NN has a large number of hidden
units. This motivates us to consider the following design. In each
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teration s, s ∈ N+, let u(s) be an initial input (for s = 1) or the
input calculated from the last iteration (for s > 1). We compute
the set of activated units Ā(u(s)) at u(s), and thereby get P̄(Ā(u(s)))
nd q̄T (Ā(u(s))) from (11). Then, we solve the QP:
(s+1)
= argmin

u
uT P̄(Ā(u(s)))u+ q̄T (Ā(u(s)))u

.t. u ∈ U, Axt + Bu ∈ C
(12)

hich returns u(s+1) for the next iteration. In the next iteration,
after computing Ā(u(s+1)), we can terminate and output u(s+1) if
¯(u(s+1)) = Ā(u(s)). If a cycle occurs, i.e., Ā(u(s+1)) = Ā(u(k)), ∃k ∈
{1, . . . , s − 1}, we arbitrarily choose another Ā(u(s+1)) that has
not been involved in previous iterations. The proposed method is
summarized in Algorithm 1.
Algorithm 1 Decomposition algorithm for solving (8)

Input: State xt at time step t , input ut−1 at the last time step
t − 1 (if t > 0), the optimal Q-function Q̂ (·, ·), C
Output: Control input ut
Initialize a starting point u(1)

← ut−1
for s = 1, 2, . . . do .

Update the set of activated units Ā(u(s)) by (9).
if Ā(u(s)) = Ā(u(s−1)) and s > 1 then let sm ← s, return

ut ← u(sm), and break.
else

if Ā(u(s)) = Ā(u(k)), ∃k ∈ {1, . . . , s − 2} and s > 2
then reset Ā(u(s)) to be a new set of activated units that never
occurred previously.

end if
Compute the coefficients P̄(Ā(u(s))) and q̄T (Ā(u(s))) asso-

ciated with Ā(u(s)) through (11).
Update the policy through (12) and get u(s+1).

end if
end for
In Algorithm 1, the starting point u(1)

= ut−1 is initialized with
the last control input, which can be viewed as a warm start for
the algorithm.

Compared to the PCP Algorithm, Algorithm 1 only needs to
solve one QP per iteration, in which the constraints are the
same as those in (8). Additionally, Algorithm 1 circumvents the
calculations of some sets that are necessary in the PCP Algorithm.
Meanwhile, Algorithm 1 can achieve finite termination as well as
the optimality for problem (8).

Theorem 4. Consider the DP problem (8). For any xt that makes
(8) feasible, the decomposition algorithm (Algorithm 1) terminates
in a finite number of iterations, i.e., there exists a finite sm such that
Ā
(
u(sm)

)
= Ā

(
u(sm−1)

)
. If Ā

(
u(sm)

)
= Ā

(
u(sm−1)

)
, then u(sm) is the

olution to (8).

In general, the amount of data needed in our method is in
eneral less than that in policy-based methods (Karg & Lucia,
020) because the value function is a scalar, but the policy may
e multi-dimensional.

. Analysis of the proposed method

.1. Stability analysis

Recursive feasibility of (8) is inherently guaranteed. In this
ection, we investigate the stability of the proposed control law.
ince both J∗

∞
(·) and Ĵ (·, θ) are PWQ on polyhedra, the intersec-

ion of any Ri and R̂j, i = 1, . . . ,Nr, j = 1, . . . , N̂r is still
olyhedral. Let Ri,j denote this intersection if such intersection
epresents a full-dimensional region, i.e., Ri,j ≜ Ri ∩ R̂j, i ∈
1, . . . ,Nr} , j ∈ {1, . . . , N̂r} and dim(Ri ∩ R̂j) = n. It is clear

hat all Ri,j constitute a partition of X0.

5

To certify the stability, we need to know the upper bound of
the approximation error for all x belonging to X0, i.e., we will
compute a positive constant ζ such that

|e(x)| ≜

⏐⏐⏐⏐⏐ Ĵ (x, θ)

J∗
∞

(x)
− 1

⏐⏐⏐⏐⏐ ≤ ζ , ∀x ∈ X0. (13)

We propose to leverage the Lipschitz continuity of ∇ Ĵ(·, θ ) and
∇J∗
∞
(·). Before doing this, we need the following assumption to

ensure the density of samples.
Assumption A2: For the partition Ri,j of X0, there exists at least
one training point in each int(Ri,j).

Since we can compute the approximation error of the pro-
posed NN at the training points, it is possible to obtain an up-
per bound of the approximation error for all x in X0. In the
interior of each Ri,j, both J∗

∞
(·) and Ĵ (·, θ) are quadratic and

hence twice continuously differentiable. According to Borrelli
et al. (2017, Lemma 3.2), ∇xJ∗∞(·) and ∇x Ĵ (·, θ) are locally Lips-
chitz on int(Ri,j), i.e., there exist non-negative constants Li and L̂j
such that for all (x, y) ∈ int(Ri,j)× int(Ri,j), we have

J∗
∞

(y) ≤ J∗
∞

(x)+∇T J∗
∞

(x) (y− x)+
Li
2
∥y− x∥22

Ĵ (y, θ) ≤ Ĵ (x, θ)+∇T Ĵ (x, θ) (y− x)+
L̂j
2
∥y− x∥22

(14)

here Li and L̂j can be chosen as the largest eigenvalue of Pi and
ˆj (Borrelli et al., 2017, Lemma 3.2), respectively.

We define a measure of the gradient error as egrad (x) ≜∇ Ĵ(x,θ)−∇J∗∞(x)

2

J∗∞(x) , and let ē and ēgrad stand for the maximum values
of |e(·)| and egrad(·) over all samples.

Let R1 refer to the polyhedron where no constraints in the
pQP derived from (2) are active, i.e.,R1 = OLQR

∞
, and accordingly

let R̂1 represent the polyhedron where no ReLU units in Ĵ (·, θ)
are activated. In the region R1,1 = R1 ∩ R̂1, we have |e(x)| ≡
0 due to (5). For every Ri,j except R1,1, the following lemma
presents an upper bound of |e(x)|

Lemma 1. With Assumption A2 satisfied, for any x ∈ int(Ri,j),
(i, j) ̸= (1, 1), |e (x)| is upper bounded by

ζi,j ≜
1

1− β(y)di,j

(
ē+ ēgraddi,j +

(L̂j + Li)d2i,j
2J∗
∞

(y)

)
(15)

where y ∈ int(Ri,j) is the training or testing point closest to x,
β(y) =

∇T J∗
∞

(y)

2/J
∗
∞

(y), and di,j denotes the maximum Eu-
clidean distance between any nearest training or testing points in
Ri,j.

Finally, since e(·) is continuous on the closure of Ri,j, the
bound ζi,j applies to all x in Ri,j. In addition, thanks to Assumption
A2, the value of ζ in (13) can be determined by computing the
right-hand side of (15) at all training/testing points and choosing
the largest one.

With the property of boundedness for e(·) established, we can
assess the stability for the closed-loop system with the approxi-
mate controller û∗. Corresponding to the selection of C in (8), we
consider two cases: (1) C = X̄ and (2) C = Rn.

Theorem 5. Let û∗t be the solution to problem (19) with C = X̄ .
Then, û∗t is recursively feasible for the initial condition x0 ∈ X̄ .
Furthermore, suppose that Assumptions A1–A2 hold with X0 = X̄ .
If ζ in (13) satisfies

1− ζ 2
> 2 sup

Ĵ (x, θ)
T , (16)
ζ x∈X0\{0} x Qx
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hen the origin of the closed-loop system xt+1 = Axt + Bû∗t , t =
, 1, . . . is asymptotically stable with domain of attraction X̄ .

In the case of X0 ⊂ X̄ , where the set X0 may not be invariant
or the closed-loop system xt+1 = Axt + Bû∗t , t = 0, 1, . . . , the
orresponding stability conditions are described in the following
orollary:

orollary 1. Let û∗t be the solution to problem (19) with C = Rn.
For a given X0 ⊂ X̄ , suppose that Assumptions A1-A2 hold. Define
a compact set as Ω ≜ {x ∈ Rn

| Ĵ (x, θ) ≤ χ} where χ ≜
nfx∈∂X0 Ĵ (x, θ). If ζ (13) satisfies (16), then û∗t is recursively feasible
for the initial condition x0 ∈ Ω , and the origin of the closed-loop
system xt+1 = Axt +Bû∗t , t = 0, 1, . . . is asymptotically stable with
omain of attraction Ω .

According to Theorem 5 and Corollary 1, asymptotic stability
s achieved if the condition in (16) holds. (16) can be satisfied
y making ζ small enough since the right-hand side of (16) is
pper bounded. Besides, in view of (15), ζ is determined mainly
y ē, ēgrad, and di,j. The condition (16) can thereby be guaranteed
n two ways. One is to add more hidden units into the NN
o that ē and ēgrad could be smaller according to the universal
pproximation theorem (Hornik, Stinchcombe, & White, 1989).
nother possibility is to involve more state-value/gradient data
o test the upper bounds ē and ēgrad so that di,j is reduced.

.2. Complexity analysis

We analyze the offline storage requirement as well as the
nline computational complexity of the proposed control scheme,
nd compare them with other methods, such as implicit MPC, ex-
licit MPC, and the policy approximation methods of MPC (Chen
t al., 2022; Karg & Lucia, 2020). Storage space is dominated by
he number of regions and control laws (for explicit MPC), or the
tructure of the NN (for approximate MPC). The storage of some
ystem’s parameters, such as A, B, X , U , Q , and R, are neglected
or consistency.

Explicit MPC requires the storage of Nr regions and affine
eedback laws. Suppose that each region Rj is defined by n(j)

c

onstraints. Then, explicit MPC needs to store (n+ 1)
∑Nr

j=1 n
(j)
c +

r (mn+m) real numbers. As for the proposed method, it needs
o construct a PWQ NN before running the system. The NN con-
ains 3 parameters: W , b, and r , so the storage of the proposed
N requires nM + 2M real numbers in total. In addition, as for
he policy approximation methods reported in Chen et al. (2022),
arg and Lucia (2020), the total storage demand of the NNs is
n+ n0 + 1)M + (L− 1) (M + 1)M , with n0 = m for Karg and
ucia (2020) and n0 = N(m+2n+nc+mc) for Chen et al. (2022),
espectively. Here, L denotes the number of hidden layers, and nc
nd mc denote the number of constraints specified by X and U .
n general, using an NN that requires much smaller storage space
han explicit MPC can get an acceptable performance.

Online computation time will be evaluated in terms of floating
oint operations (flops) for the computations that should be
erformed online. Implicit MPC needs to solve the QP (2) at each
ime step. Solving (2) for a given x requires fQP (Nm, N (mc + nc))

lops in the worst case ((2) has no redundant constraints). Here,
QP (nD, nI) represents the number of flops needed to solve a QP
ith nD decision variables and nI linear inequalities. So in an

nterior-point method, solving (2) requires O
(
N3m3

)
flops per

teration. In comparison, the number of flops for explicit MPC is
n
∑Nr

j=1 n
(j)
c (Borrelli et al., 2017).

In our proposed control scheme, solving the DP problem (8)
auses computational complexity. In the PCP Algorithm and Al-
orithm 1, the number of flops to determine Ā

(
u(s)
)

and to
6

ompute the coefficients P̄
(
Ā
(
u(s)
))

, q̄T
(
Ā
(
u(s)
))

is bounded by
act = M(2n2

+ n + m2
+ 5m + 2mn + 2) + 2mn + m(m + 3)/2

n total. Then, in each iteration the PCP Algorithm has to solve
different QPs, which need fQP (m, ns) and fQP (m, M + nc + lc)

lops. Here, ns stands for the number of inequalities that define Us.
lgorithm 1 needs only fQP (m, nc + lc) flops to find u(s) in each
teration. Besides, some other calculation includes the update of
s (2m2

+ 2m − 1 flops per iteration) and the comparison of
¯(u(s)) and Ā(u(s−1)) (M flops per iteration). Therefore, the total
umber of flops to implement the PCP Algorithm is falgo1 =
m(fact+fQP (m, M+nc + lc)+ 2m2

+ 2m− 1)+
∑sm

s=1 fQP (m, ns)
nd the number of flops to calculate the control input by using
lgorithm 1 is falgo2 = sm(fact + fQP (m, nc + lc) + M), which can
e much less than those in the PCP Algorithm. Theoretically, the
aximum value of sm can be the number of polyhedral regions

n the partition for the NN, and thus can grow exponentially
ith the system’s dimension. However, the above analysis largely
verestimates the complexity, as it does not take into account
hat most regions are never visited, and that we use a warm start
or the proposed algorithm.

. Numerical example

A case study is presented to assess the feasibility and effec-
iveness of the proposed control scheme. The stability result in
orollary 1 is verified. In addition, some other methods including
mplicit MPC and the policy approximation method of MPC (Karg
Lucia, 2020), are also compared with the proposed method. All

he results have been obtained in MATLAB R2021a on an AMD
ore R7-5800H CPU @3.20 GHz machine.
Consider a 2-dimensional linear system with

=

[
1 0.1
−0.1 1

]
, B =

[
1 0.05
0.5 1

]
and input constraints

= {u ∈ R2
| ∥u∥∞ ≤ 0.5}. We are interested in stabilizing

he system at the origin and meanwhile minimizing the cost
∞

k=0 x
T
kQxk + uT

kRuk with Q = I2 and R = 0.1I2. We choose
he region of interest X0 =

{
x ∈ R2

| ∥x∥∞ ≤ 3
}
. By applying the

lgorithm in Chmielewski and Manousiouthakis (1996), it can be
erified that the vertices of X0 can be steered to an ellipsoidal
ubset of OLQR

∞
with the horizon N = 10. By solving the explicit

PC problem with N = 10, the partition of the state space for
he optimal control law on the region X0 can be obtained, and is
epicted in Fig. 1(a).
To illustrate that the proposed PWQ NN has a good approxima-

ion performance, different types of NNs are compared in Fig. 1(c).
esides, a strictly global architecture without the quadratic term
TP∗x is also compared. 4410 state samples are selected to train
he NNs. We use multi-start local optimization (Rinnooy Kan &
immer, 1987) with 20 starting points to reduce sub-optimality.
hoosing the learning rate α = 0.1, we compare the absolute
ean square errors in Fig. 1(c). From Fig. 1(c), it is observed

hat the training objectives for the NNs decrease consistently
ver epochs, while the proposed approach has the smallest mean
quare error during the training process. Additionally, increasing
he width does not necessarily improve the approximation ability
f the proposed NN.
Fig. 1(b) depicts the polyhedral partition for the proposed

N with width 15. It is noticed that the partition of the NN
oncentrates in the areas where the explicit MPC law changes
apidly. We also compare the output of the PWQ NN with the real
ptimal value function in Fig. 1(d), from which one can observe
hat the proposed method is able to closely approximate the
ptimal value function with a very simple network architecture.
To verify the stability of the closed-loop system, we note that

he maximal stabilizable set X̄ is open and thereby not com-
utable. So, we concentrate on checking (16) with X replaced by
0
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Fig. 1. Performance of the proposed PWQ NN.

Fig. 2. Closed-loop simulation. In (b), the white region represents Ω , the colored
ines refer to the trajectories, and the colored points are the starting state points.

. The approximation error bounds at the samples are ē = 0.122
and ēgrad = 0.395. Based on (15), ζ = 0.188. Next, the value of
he right-hand side of (16) is 4.904. As a result, it can be readily
erified that (16) holds.
In the closed-loop simulation, the proposed method, implicit

PC, and the policy-approximation method of Karg and Lucia
2020) are compared. The implementation details are given in He
t al. (2022). From Fig. 2(a), it can be seen that the proposed
ethod can properly approximate the MPC controller, and that

he corresponding trajectory is stabilized at the origin. In compar-
son, the policy-approximation method experiences some fluc-
uations when the state is close to the origin. This is probably
ecause the value of the optimal control input is small if x is

around the origin, so a slight approximation error of the policy
may lead to drastic changes in the dynamic response. Besides,
we can verify the stability by illustrating the invariance of the
sub-level set Ω ≜ {x ∈ Rn

| Ĵ (x, θ) ≤ χ}. We select some initial
states that are at the boundary of Ω , and plot the behavior of the
closed-loop system with the proposed controller in Fig. 2(b). It is
seen that the trajectories starting from the boundary of Ω will
always stay in Ω , which is computed by Corollary 1.

To illustrate the computational performance of the proposed
method on larger-size examples we consider the problem of
7

Table 1
Comparison of different methods regarding the average CPU time and the total
cost in the 8-D system.
Methods CPU time Total cost

Proposed + PCP Algorithm 1.2300 2004.2
Proposed + Algorithm 1 0.2225 2004.2
Proposed + nonlinear solver 0.7309 2004.2
Online MPC 1.7279 1857.3
Policy-approximation method 0.1845 2607.5

regulating a system of oscillating masses (Wang & Boyd, 2009),
which is an 8-D system. For the detailed setup, see He et al.
(2022). Table 1 shows the average CPU time of the different
methods, as well as their total cost after running the system
for 100 time steps. The policy-approximation method needs the
least simulation time since it just needs to compute a single
projection (solve a QP) at each time step. The proposed method
with Algorithm 1 requires shorter computation time than online
MPC. Besides, compared with the nonlinear solver and the PCP
Algorithm, Algorithm 1 significantly reduces the computational
complexity. In other aspects, the control law generated by the
proposed method is nearly optimal since its total cost is very close
to that of MPC, while the total cost of the policy-approximation
method is the largest (about 140% of that of MPC), due to the fluc-
tuations near the origin. Besides, one can refer to He et al. (2022)
for the comparison of the storage demand in both examples.

Moreover, in He et al. (2022), the stability conditions in The-
orem 5 and the comparison between the proposed method and
another ADP method in Chakrabarty et al. (2019) are illustrated
through another problem with both state and input constraints.
The results in He et al. (2022) can clearly show that the proposed
controller is stabilizing and feasible even for those initial states
on the boundary of X̄ . Combined with Algorithm 1, the proposed
ethod takes less total computation time (0.142 s) than the ADP
ethod (0.270 s) in Chakrabarty et al. (2019) and implicit MPC

0.161 s).

. Conclusions

We have developed an ADP control framework for infinite-
orizon optimal control of linear systems subject to state and
nput constraints. Compared to some common NNs such as ReLU
Ns, the proposed NNmaintains the PWQ property and convexity
f the real value function and has a much better approximation
erformance. These properties and superiority contribute to the
eduction of the online computation as well as the construction
f explicit stability criteria. Therefore, advantages of our method
nclude low computational requirements, stability assurance, and
xcellent approximation of the optimal control law.

ppendix A. Proof of Proposition 1

In the interior of any R̂j, j = 1, . . . , N̂r, continuous differen-
iability of Ĵ(·, θ ) is clear since Ĵ(·, θ ) has a quadratic form, and
onvexity of Ĵ(·, θ ) follows from the positive semi-definiteness of
R̄. Then, we have P̂j−P∗ ≥ 0 for all j = 1, . . . , N̂r. At the boundary
of any neighboring R̂i and R̂j, without loss of generality, suppose
hat R̂i, R̂j are partitioned by the hyperplane W1,·x + b1 = 0. It
ollows from (7) that Ĵ j(x) = Ĵ i(x)+ r1(W1,·x+b1)2. Differentiating
oth sides yields ∇x Ĵj(x, θ ) = ∇x Ĵi(x, θ ), ∀x ∈ {x ∈ Rn

|W1,·x +
1 = 0} which proves continuous differentiability of Ĵ(x, θ ) at the
oundary.
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Furthermore, since Ĵ(x, θ ) is differentiable, convexity of Ĵ(x, θ )
at the boundary can be checked through the first-order condi-
tion (Boyd, Boyd, & Vandenberghe, 2004). Without loss of gener-
ality, let x1 ∈ R̂i and x2 ∈ R̂j, then we have

Ĵ (x2, θ)− Ĵ (x1, θ)−∇x Ĵ (x1, θ)T (x2 − x1)

=xT2Pix2 + qTi x2 + r1
(
W1,·x2 + b1

)2
− xT1Pix1 + qTi x1 −

(
xT1Pi + qTi

)
(x2 − x1)

= (x2−x1)T Pi (x2−x1)+ r1
(
W1,·x2 + b1

)2
≥ 0

which demonstrates that Ĵ(·, θ ) satisfies the first-order condition
at the boundary. □

Appendix B. Proof of Theorem 4

We first show that if Algorithm 1 stops, it outputs a solution
to (8). According to Algorithm 1, u(sm) minimizes Q̄u(sm) (xt , u) ≜
uT P̄(Ā(u(sm)))u+q̄T (Ā(u(sm)))u+v̄(Ā(u(sm))) subject to u ∈ U, Axt+
Bu ∈ C∞ if Ā(u(sm)) = Ā(u(sm−1)). In this case, the inequality

∇
T
u Q̄u(sm) (xt , u(sm))(u− u(sm)) ≥ 0 (B.1)

holds for all u ∈ U1 ≜ {u|u ∈ U, Axt + Bu ∈ C. Using the fact
that ∇T

u Q̄u(sm)
(
xt , u(sm)

)
= ∇

T
u Q̂

(
xt , u(sm)

)
, the gradient inequality

for the convex PWQ function Q̂ (xt , ·) can be applied at u(sm):
Q̂ (xt , u) ≥ Q̂ (xt , u(sm)) + ∇T

u Q̂u(sm) (xt , u(sm))(u − u(sm)), which,
combined with (B.1), shows that Q̂ (xt , u) ≥ Q̂

(
xt , u(sm)

)
∀u ∈ U1.

Thus, optimality of u(sm) is proven.
If a cycle occurs, i.e., ∃k ∈ {1, 2, . . . , s− 2} such that Ā(u(s)) =

Ā(u(k)) for some s, according to Algorithm 1, we select another
set of activated units that has never been considered in problem
(12). As the number of combinations of activated units is finite,
the algorithm must stop in a finite number iterations. □

Appendix C. Proof of Lemma 1

Consider the following three cases:

Case 1: e (x) ≥ 0, ∀x ∈ int(Ri,j). In this case, for any x ∈ int(Ri,j),
let y ∈ int(Ri,j) denote the training or testing point closest to x.
Then (14) results in

|e (x)| ≤
Ĵ (y, θ)+∇T Ĵ (y, θ) (x− y)+ L̂j ∥x− y∥22 /2

J∗
∞

(y)+∇T J∗
∞

(y) (x− y)
− 1

≤
Ĵ(y, θ)−J∗

∞
(y)+(∇Ĵ (y, θ)−∇J∗

∞
(y))

T
(x−y)+L̂j∥x−y∥22/2

J∗
∞

(y)−
∇T J∗

∞
(y)

2 ∥x− y∥2

≤
|e (y)| + egrad (y) ∥x− y∥2 + L̂j ∥x− y∥22 /

(
2J∗
∞

(y)
)

1− β(y) ∥x− y∥2

here β(y) =
∇T J∗

∞
(y)

2/J
∗
∞

(y). The first inequality is true due
o the second inequality of (14) and the convexity of J∗

∞
(·). Using

he fact that |e(y)| ≤ ē, egrad (y) ≤ ēgrad , we have

|e (x)| ≤
1

1− β(y)di,j

(
ē+ ēgraddi,j +

L̂jd2i,j
2J∗
∞

(y)

)
(C.1)

olds for any x ∈ int(Ri,j). Note that β(y) is bounded on all Ri,j
xcept R1,1, since J∗

∞
(·) can only equal 0 at origin, which is in

1,1. Therefore, one can always make di,j sufficiently small so that
− β(y)di,j > 0.

ase 2: e (x) ≤ 0, ∀x ∈ int(Ri,j). Similarly to Case 1, we can
eadily get almost the same expression of the upper bound as
8

he right-hand side of (C.1), and the only difference is that L̂j is
eplaced by Li.

ase 3: ∃x1, x2 ∈ int(Ri,j) such that e(x1) > 0 and e(x2) < 0. In this
case, for all x ∈ int(Ri,j) subject to Ĵ (x, θ) ≥ J∗

∞
(x), we can get

the same upper bound for |e(x)| as in (C.1), and for all x ∈ int(Ri,j)
subject to Ĵ (x, θ) < J∗

∞
(x), (C.1) holds with L̂j replaced by Li.

Appendix D. Proofs of Theorem 5 and Corollary 1

In Theorem 5, C = X̄ . First consider the solution to (2). For
every xt , t = 0, 1, . . . , the MPC control law u∗t , which contains the
first m elements of U∗(xt ), will be applied to the system. From the
equivalence in Theorem 1,

{
u∗t
}∞
t=0 is also a solution to the (1). As

a result, Axt + Bu∗t ∈ X̄ for any xt ∈ X̄ , (else, J∗
∞
(Axt + Bu∗t ) = ∞

and J∗
∞
(xt ) = ∞, which contradicts the claim that xt ∈ X̄).

Suppose that xt ∈ X̄\{0}. Applying the Bellman Optimality
Equation (Bertsekas, 2019) for (1) leads to

J∗
∞

(
Axt + Bu∗t

)
= J∗
∞

(xt)− xTt Qxt − u∗Tt Ru∗t
< J∗
∞

(xt)− xTt Qxt (D.1)

Combining (D.1) with (13), we have

xTt Qxt + û∗Tt Rû∗t + Ĵ
(
Axt + Bû∗t , θ

)
≤xTt Qxt + u∗Tt Ru∗t + Ĵ

(
Axt + Bu∗t , θ

)
≤xTt Qxt+u∗Tt Ru∗t +J∗

∞

(
Axt+Bu∗t

)
+ζ J∗

∞

(
Axt+Bu∗t

)
<J∗
∞

(xt)+ ζ J∗
∞

(xt)− ζxTt Qxt
<Ĵ (xt , θ)+ 2ζ J∗

∞
(xt)− ζxTt Qxt

The first inequality is true since û∗t is a minimizer of (8). The
second and last inequalities hold due to (13), and the third line
is true thanks to the optimal Bellman equation in (D.1). Then,
combining (13) and (16) yields

1+ ζ

ζ
> 2 sup

x∈X̄\{0}

Ĵ (x, θ)

(1− ζ )xTQx
> 2 sup

x∈X̄\{0}

J∗
∞

(x)
xTQx

which implies

Ĵ
(
Axt + Bû∗t , θ

)
− Ĵ (xt , θ)

<−(1+ζ )xTt Qxt−û∗Tt Rû∗t +2ζ J∗
∞

(xt)<0, ∀xt ∈ X̄\{0}

Let x0 ∈ X̄\{0} and x1, x2, . . . be the trajectory of the closed-
loop system xt+1 = Axt + Bû∗t , t = 0, 1, ... The sequence
Ĵ (x0, θ) , Ĵ (x1, θ) , . . . is strictly decreasing. Besides, it is easy to
check that Ĵ (0, θ) = 0, Ĵ (x, θ) > 0, ∀x ∈ X̄\{0}, and Ĵ (·, θ)

is continuous at the origin, finite in X̄ . Then, Ĵ (·, θ) is therefore
a Lyapunov Function according to Borrelli et al. (2017, Theorem
7.2). So, the asymptotic stability of the origin for any x ∈ X̄
follows. □

For the proof of Corollary 1, from the definition of Ω and the
continuity of Ĵ (·, θ), we know that Ω ⊆ X0. Following the proof
of Theorem 5, we can show that for all xt ∈ Ω , Ĵ

(
Axt + Bû∗t , θ

)
−

Ĵ (xt , θ) < 0 holds. As a result, the set Ω is positively invariant
w.r.t. the closed-loop system xt+1 = Axt + Bû∗t . The recursive
feasibility thus follows from Ω ⊆ X0 ⊆ X . Similar to the proof
of Theorem 5, it can be shown that Ĵ(·, θ ) is a Lyapunov function
and the stability of the origin follows. □
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