TU Delft

Trustchain Mobile: A Low-Latency Smartphone Peer-to-Peer Transaction System
Performance analysis and benchmarking

Vlad-George Iftode
Supervisor(s): Johan Pouwelse, Bulat Nasrulin

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Vlad-George Iftode
Final project course: CSE3000 Research Project
Thesis committee: Johan Pouwelse, Bulat Nasrulin, Koen Langendoen

Abstract

Mobile blockchain transactions require low latency
for practical deployment. This paper presents a
smartphone-native Trustchain system developed as
part of a collaborative research project where five
students implement Trustchain from scratch, each
optimizing a different performance metric: latency,
robustness, storage, throughput, and battery effi-
ciency. This work focuses on latency optimiza-
tion through a novel modular architecture imple-
mented in Rust/Kotlin that enables runtime proto-
col switching—the first such capability in mobile
blockchain implementations.

The evaluation compares two transport layers: a
lightweight UDP implementation and a business-
grade P2P solution (Iroh). Testing on Android de-
vices demonstrates end-to-end round-trip laten-
cies from 11.8 ms under optimal conditions to
240 ms at extreme loads (500 MPS), with UDP
achieving consistent 11.8ms median latency and
Iroh showing 18.2ms for typical payloads. Results
show clear trade-offs between protocol complexity
and performance, providing guidance for selecting
transport mechanisms in different mobile deploy-
ment scenarios. All code is released open-source to
the Tribler project for reproducibility.

1 Introduction

The demand for secure, peer-to-peer financial transactions on
mobile devices is clear, yet achieving the required low latency
remains a critical challenge. While blockchain offers robust
security [1], traditional implementations are ill-suited for the
resource-constrained mobile environment [2; 3]. This paper
investigates whether Trustchain is a viable blockchain option
in the current landscape by focusing specifically on latency
optimization for smartphone-native implementations.

This work represents my contribution to a five-person
collaborative research team implementing Trustchain from
scratch for smartphones. Throughout this paper, “we” refers
to this collaborative team, while the specific focus on la-
tency optimization represents my individual contribution to
the broader project.

Our approach is centered on Trustchain [4], a DAG-based
ledger that avoids the high overhead of traditional consen-
sus protocols. This work is part of a collaborative research
project where five students are implementing Trustchain from
scratch for smartphones, each optimizing for a different per-
formance metric: throughput, latency, storage, energy effi-
ciency, and robustness. This paper specifically focuses on la-
tency optimization, investigating the trade-offs between dif-
ferent communication protocols and their impact on transac-
tion confirmation latency, while our teammates address the
other performance dimensions in parallel studies.

This research was conducted as an open-source contribu-
tion to the Tribler project. Our primary contributions are:

* A Modular Mobile Blockchain Architecture: We de-
signed and implemented the first Trustchain-compliant

system for mobile devices with runtime-switchable pro-
tocol layers, serving as a blueprint for future mobile
blockchain development.

* A Comparative Protocol Analysis: We built and tested
two distinct communication protocols—a business-
grade P2P solution (Iroh) and a lightweight UDP
implementation—providing the first systematic latency
analysis for this environment.

* An Open-Source Benchmarking Framework: All
code, including our performance measurement suite, is
open-source, enabling community reproduction and ex-
tension of this work.

This paper documents our design, implementation, and
performance evaluation, offering practical insights into the
challenges and opportunities of mobile-first blockchain sys-
tems.

The rest of this paper is organized as follows. Section 2
details our methodology and problem formulation. Section 3
outlines our technical contributions, followed by the experi-
mental setup and results in Section 4. We discuss the broader
implications of our findings in Section 6, and conclude in Sec-
tion 7.

2 Methodology and Problem Formulation

This research follows a constructive methodology: we de-
signed, built, and evaluated a smartphone-native blockchain
system to investigate its performance. This section first for-
mally defines our research problem and then details the archi-
tecture and methods we used to address it.

2.1 Problem Formulation

Traditional blockchain architectures face significant chal-
lenges on mobile devices due to high resource consump-
tion and intermittent connectivity [2; 5]. While DAG-based
ledgers like Trustchain [4] offer a more efficient alterna-
tive, their performance characteristics in a mobile-first con-
text have not been systematically studied. As part of a
collaborative investigation into Trustchain viability, we de-
sign and implement a smartphone-native Trustchain sys-
tem optimized for minimal transaction confirmation la-
tency while maintaining blockchain integrity under mo-
bile hardware constraints. This requires careful architec-
tural design and protocol selection to balance performance
with reliability requirements, contributing to the broader as-
sessment of Trustchain viability for mobile deployment.

2.2 Architectural Design and Implementation

We implement a complete Trustchain-compliant system for
Android devices using a hybrid Rust/Kotlin stack that bal-
ances performance with mobile development efficiency.

Modular Coordination Layer At the core of our de-
sign is a modular coordination layer, implemented in Rust
as the entry point/. This layer abstracts all protocol-
specific logic behind a single, unified interface. It uses
a NetworkingMode enumeration to enable runtime switch-
ing between different communication protocols, allowing for
both systematic comparison and adaptive deployments.

Figure 1: TrustChain dual-chain architecture showing individual participant chains with cross-referenced transactions. Each participant (A,
B, C, D, E, F, G) maintains their own chain of blocks while referencing counterparty transactions, enabling decentralized verification without

global consensus.

Protocol Implementations We implemented and inte-
grated two distinct networking protocols to evaluate their per-
formance trade-offs:

e Iroh: A business-grade P2P library that provides ro-
bust, connection-oriented communication over QUIC,
with built-in features for peer discovery and manage-
ment.

* UDP: A lightweight, custom implementation providing
low-overhead, connectionless datagram transport.

This dual implementation allowed us to directly compare a
feature-rich P2P solution against a minimalist, performance-
oriented approach.

Open-Source Framework The entire implementation, in-
cluding the benchmarking suite described in Section 4, was
developed as an open-source contribution to the Tribler
project to ensure transparency and enable community vali-
dation.

3 Our Contribution

Our work provides three primary contributions to the field of
mobile blockchain research. We designed and built: (1) a
novel, modular architecture for mobile-first blockchains; (2)
a comparative implementation of two distinct transport proto-
cols; and (3) an open-source framework with a full-featured
benchmarking suite for reproducible research.

3.1 A Modular Mobile Blockchain Architecture

A key innovation of our work is the entry_point/ coor-
dination layer. This Rust-based module abstracts protocol-
specific logic behind a unified JNI facade, enabling runtime
protocol switching. This design consists of:

¢ A Protocol Facade (facade.rs): A minimal interface
with six functions for routing commands to the active
protocol.

¢ A Unified Data Model (model.rs): A common Block
structure implementing the TrustChain dual-chain archi-
tecture [4] (illustrated in Figure 1), where each partici-
pant maintains their own chain of blocks while cross-
referencing transactions with counterparties.

¢ Global State Management (state.rs): A thread-safe
singleton for blockchain state, cryptographic keys, and
message handling.

 Shared Utilities (util/): Protocol-agnostic logic for
cryptography, benchmarking, and logging.

3.2 Comparative Protocol Implementations

To evaluate performance trade-offs, we implemented two pro-
tocols representing different design philosophies:

¢ Iroh (Business-Grade P2P): An implementation using
the Iroh library [6] over QUIC, featuring a full async
tokio runtime, connection pooling, and built-in peer dis-
covery.

* UDP (Lightweight Transport): A custom, lightweight
UDP implementation with a simple threading model and
socket timeouts optimized for mobile networks.

This dual implementation enables a direct comparison be-
tween a feature-rich solution and a minimalist, performance-
focused one. We also integrated an experimental TFTP trans-
port [7; 8] as a proof-of-concept to validate architectural flex-
ibility, though performance evaluation focused on the UDP
and Iroh implementations.

3.3 An Open-Source Research Framework

The entire project, including the blockchain implementation
and the tools used to evaluate it, is available as an open-source
contribution to the Tribler project. This framework includes:

* An Event-Based Benchmarking Suite: A tool inte-
grated into the Rust core to capture detailed performance

metrics (latency, failures, etc.) across the message life-
cycle for any selected protocol.

¢ A Research Analytics Pipeline: The framework in-
cludes tooling for structured data export (CSV) and in-
tegration with Python-based analysis and visualization
scripts.

* Mobile-Specific Optimization Framework: Our
implementation demonstrates comprehensive mobile
blockchain optimizations including: (a) memory leak
prevention through benchmark result limits (10,000 en-
tries) and 30-second message deduplication timeouts,
(b) mobile network adaptations with 5-second UDP
timeouts and 10ms Iroh polling intervals optimized for
cellular networks, (c) cross-platform logging system
with conditional compilation for Android vs. desktop
environments, (d) efficient JNI integration with only 6
boundary-crossing functions and JSON serialization for
minimal overhead, and (e) battery-conscious connec-
tion pooling and background task management. These
optimizations represent the first comprehensive mobile-
specific blockchain architecture addressing the complete
spectrum of mobile hardware constraints.

This framework provides a complete, reproducible toolkit for
conducting academic research on mobile blockchain perfor-
mance.

4 Experimental Setup and Results

This section details the methodology used for our perfor-
mance evaluation, the experimental environment, and the re-
sults obtained from our benchmarking activities. Our goal is
to provide a transparent and reproducible account of how we
evaluated the Iroh and UDP protocols within our smartphone-
native Trustchain implementation.

4.1 Benchmarking Methodology

A rigorous benchmarking methodology was established to
quantitatively assess and compare the performance of the dif-
ferent communication protocols implemented, following es-
tablished blockchain benchmarking practices [9].

Benchmarking Goals

Following the systematic blockchain evaluation framework
established by Gromit [9], our benchmarking quantitatively
evaluates and compares the performance characteristics of
the implemented communication protocols (Iroh and UDP)
within the context of our smartphone-native Trustchain appli-
cation. Key objectives include:

¢ Identifying performance bottlenecks across different
protocols and operational phases.

* Comparing protocol efficiencies under various condi-
tions, such as different message payload sizes.

 Validating the architectural and design choices made
during the implementation of each protocol stack.

* Providing empirical data to support the suitability and
delineate the trade-offs of these protocols for decentral-
ized applications in resource-constrained mobile envi-
ronments [3].

The overarching goal is to generate reproducible, empirical
data that offers deep insights into latency, throughput, and
other relevant performance indicators for each communica-
tion strategy.

Benchmarking Architecture and Design

To achieve these goals, a dedicated and generalized bench-
marking framework was designed and integrated directly into
the Rust core of our application.

Core Benchmarking Module and Data Structure A cen-
tralized Rust module provides common utilities for collecting
benchmark data across all evaluated protocols. At the heart
of this framework is the BenchmarkResult data structure,
which meticulously captures detailed information for each
recorded performance-related event. The key fields of this
structure are:

e operation: A string identifier for the specific
event being logged (e.g., "send message_start”,
"block_received", "connection_established").
This allows for fine-grained analysis of distinct phases
within a protocol’s execution cycle.

e timestamp: A high-resolution timestamp, typically
captured using chrono: :Utc, marking the precise mo-
ment of event capture.

* mode: An enumerator or string (e.g., "UDP", "Iroh")
indicating the communication protocol active when the
event was recorded. This field is crucial for distinguish-
ing and comparing protocol-specific performance.

* node_id: An identifier for the participating node (de-
vice), essential for tracing operations and correlating
data within the device’s operation flow.

» message_id: A unique identifier generated for each log-
ical message or data block. This ID is pivotal for corre-
lating send, receive, and store events within the same de-
vice’s operation flow, which in turn enables the accurate
calculation of round-trip latencies and message transfer
times. It is typically generated from a combination of
payload characteristics, a sequence counter, or a times-
tamp.

* message_size: The size of the data payload in bytes.
This is a key variable for analyzing performance under
different load conditions and data transfer requirements.

* tag: An arbitrary string tag (e.g.,
"experiment X_condition_Y") assigned to a specific
experimental run or scenario. This facilitates the
categorization, filtering, and management of results
from different tests, allowing for systematic comparison
of outcomes under varied conditions.

* sequence number: An integer that tracks the order of
messages or events within a tagged experimental run,
aiding in reconstructing event sequences and identifying
lost or out-of-order data.

Data Collection Mechanism Benchmark data points are
collected by invoking a dedicated Rust function (e.g.,
add_benchmark()) at critical junctures within the protocol
logic of the Rust core. These junctures are strategically

placed to represent significant lifecycle events of a message or
operation. Examples include the initiation of a sending oper-
ation, the establishment of a network connection, the comple-
tion of a data write to the socket, the reception of a message,
and various stages of block processing and validation.

Data Storage During an active test run, instances of the
BenchmarkResult structure are accumulated in memory.
This is typically managed using a thread-safe vector (e.g.,
Vec<BenchmarkResult>) guarded by a Mutex. This ap-
proach ensures safe and consistent data collection, even
within Rust’s concurrent environment where multiple net-
work tasks, asynchronous operations, or processing threads
might be actively generating benchmark events simultane-
ously.

Benchmarking Workflow

A typical benchmark test follows a defined sequence of oper-
ations, generally orchestrated via Java Native Interface (JNI)
calls from the Android application layer, which provides the
user interface and test control:

¢ Setup Phase (via JNI from Android App):

— The Android application initiates the benchmark-
ing process for a specific test scenario (e.g., trans-
ferring a certain number of blocks of a particular
size).

— A unique tag is assigned to the test run. This tag
is passed to the Rust core and associated with all
benchmark events recorded during this run, allow-
ing for easy grouping and identification of the data.

— Any existing benchmark data from previous runs
can be programmatically cleared from memory to
ensure a clean and isolated collection for the cur-
rent test.

¢ Test Execution Phase:

— The Android application triggers the desired com-
munication operations (e.g., sending a stream of
data, proposing and finalizing Trustchain blocks)
using the selected communication protocol (Iroh or
UDP).

— As these operations execute within the Rust core,
the add_benchmark() function is invoked at the
predefined event points within the Iroh or UDP
logic, recording detailed BenchmarkResult en-
tries into the in-memory store.

¢ Data Retrieval and Export Phase (via JNI):

— Upon completion of the test sequence (e.g., after
a set duration or number of operations), or even
at periodic intervals during a long run, the An-
droid application retrieves the accumulated list of
BenchmarkResult structs from the Rust core us-
ing a dedicated JNI call.

— The framework provides functionality to export this
collected data in CSV (Comma-Separated Values)
format, which offers a simple tabular format con-
venient for direct import into spreadsheet software
(e.g., Microsoft Excel, Google Sheets) or data anal-
ysis libraries such as Pandas in Python.

— The capability to save these exported results di-
rectly to a file on the mobile device’s local stor-
age (again, typically initiated via a JNI call from
the Android layer) is also implemented. This al-
lows for persistent storage of raw benchmark data
for later retrieval and comprehensive offline analy-
sis.

e Data Analysis Phase (Offline): The exported data,
in CSV format, is subsequently analyzed offline us-
ing appropriate data analysis tools, custom scripts (e.g.,
Python scripts with Pandas and Matplotlib/Seaborn), or
statistical software.

— Common metrics derived from this data include:
end-to-end latencies for message or block trans-
fers (calculated by matching message_ids and
timestamps across different operation stages on the
same device), protocol-specific operation comple-
tion times (e.g., connection setup time), effective
throughput (data transferred per unit time), and suc-
cess/failure rates for message delivery or block fi-
nalization.

— Results are then aggregated, visualized (e.g., us-
ing histograms, box plots, time-series graphs), and
compared across different experimental tags (rep-
resenting varied conditions like payload size or net-
work simulation parameters) and communication
modes (protocols).

This systematic workflow, combined with the event tagging
system and the JNI-controlled interface, ensures that experi-
ments are repeatable and that data collection is performed in
a consistent manner.

This consistency is vital for drawing valid conclusions.

Current Implementation Status and Generalization
Strategy

The described event-based benchmarking framework is archi-
tected for comprehensive and comparative performance anal-
ysis across all implemented communication protocols.

¢ Iroh Protocol: The detailed, event-based benchmark-
ing is currently most comprehensively implemented and
has undergone extensive validation for the Iroh proto-
col. This captures a wide range of its operational events,
from connection establishment using discovery services
to data transfer via relays, allowing for in-depth analysis
of Iroh’s performance characteristics on mobile devices.

* UDP Protocol: The core benchmarking infrastruc-
ture—including the BenchmarkResult structure, the
add_benchmark () function itself, and the data aggre-
gation and export mechanisms—is centralized and read-
ily available for use by both protocol implementations.
Protocol-Appropriate Instrumentation: Both proto-
cols utilize the same core benchmarking framework
for fair comparison. While Iroh’s sophisticated archi-
tecture naturally generates more instrumentable events
(connection management, peer discovery, error recov-
ery), UDP’s streamlined design focuses on essential
send/receive events. This difference reflects each pro-

tocol’s architectural philosophy rather than instrumenta-
tion bias. Both protocols capture identical end-to-end
RTT measurements, ensuring valid latency comparisons
while acknowledging that Iroh provides richer diagnos-
tic data for failure analysis.

* Generalization and Future Work: The benchmark-
ing framework was explicitly designed with generaliza-
tion and robust cross-protocol comparability as primary
goals from its inception. The inclusion of the mode
field in BenchmarkResult and the centralized nature of
the data collection logic are testaments to this design.
Future work may involve exploring additional UDP-
specific metrics that leverage its connectionless nature,
while expanding Iroh’s instrumentation to capture more
enterprise-grade features. This protocol-appropriate ex-
pansion will enhance our understanding of each pro-
tocol’s unique characteristics within mobile blockchain
environments, enabling researchers to fully utilize the
distinct advantages of both streamlined and feature-rich
networking approaches.

This strategic approach ensures that our performance evalu-
ation is both detailed for individual protocol assessment and
fair for comparative analysis between protocols.

The fine-grained, event-based nature of the data collection
allows for a deeper understanding of performance dynamics
than simple black-box timing.

Illustrative Example of Benchmarking Events

To clarify how the framework captures data for metrics like
latency calculation, consider a simplified, hypothetical se-
quence of benchmark events recorded on a single device for
a complete block round-trip operation:

1. Device: Invokes add_benchmark(...,
operation="block_send_start", timestamp=T1,
message_id="block123", mode="UDP", ...)

2. Device: Invokes add_benchmark(...,
operation="block received_back",
timestamp=T2, message_id="blockl123",
mode="UDP", ...)

3. Device: Invokes add_benchmark(...,
operation="block stored", timestamp=T3,
message_id="block123", mode="UDP", ...)

The common message_id (”block123”) and the dis-
tinct operation tags, along with their corresponding
timestamps (T1, T2, T3), allow for the calculation of various
latency figures. The round-trip time (RTT) is calculated as
T3-T1, representing the complete time from sending a block
to storing it after it returns from a peer. Processing latency can
be measured as T3-T2, capturing the time required to process
and store the received block.

4.2 Experimental Environment

Our performance evaluation was conducted using a compre-
hensive test environment designed to assess protocol behavior
under realistic mobile blockchain deployment scenarios.

Test Configuration

The experimental parameters were designed to cover the op-
erational range expected in practical mobile blockchain de-
ployments:

* Message Rate Range: 5-500 messages per second
(MPS), systematically testing both typical usage patterns
and high-throughput stress conditions

» Payload Size Range: 16-2048 bytes, representing the
spectrum of Trustchain block sizes from minimal trans-
actions to complex smart contract interactions

* Test Duration: 36 distinct test runs generating 87,357
successful round-trip operations for statistical validity

* Protocol Coverage: Comprehensive evaluation of both
UDP and Iroh implementations under identical test con-
ditions

Performance Measurement Methodology
Round-trip time (RTT) calculations were performed using
payload-based message matching across different operation
stages on a single device. This approach ensures accurate la-
tency measurement that accounts for the complete block life-
cycle within our Trustchain implementation:

* Timing Precision: High-resolution timestamps cap-
tured using Rust’s chrono: :Utc for microsecond-level
accuracy

* Message Correlation: Unique message identifiers en-
able precise pairing of send/receive/store events within
the same device’s operation flow

* Failure Detection: Approximately 19,000 unmatched
sent messages provide quantitative evidence of protocol
failure rates under load

* Statistical Rigor: Large sample sizes (87,357 success-
ful round-trip operations) enable robust statistical analy-
sis and meaningful comparison of protocol performance
characteristics

Hardware and Software Environment

Our experiments were conducted across representative mo-
bile and emulated environments to ensure practical relevance:
Test Devices:

* Android Studio Emulator: Windows 11 host running
Android API 36 (medium phone configuration) for con-
trolled testing

* Physical Device: Xiaomi Pocophone F1 running An-
droid 10 for real-world hardware validation

Network Environment:

* Network Infrastructure: Regular home WiFi connec-
tion providing realistic consumer-grade network condi-
tions

* Controlled Conditions: Consistent network environ-
ment across all test runs to ensure comparative validity

Software Stack:

* Mobile Platform: Android SDK with Kotlin develop-
ment environment

e Core Implementation: Rust-based blockchain logic
with JNI integration

* Open Source Framework: Built as contribution to the
Tribler open source project, ensuring transparency and
reproducibility

Reproducibility and Open Science

To ensure reproducibility and support further research in mo-
bile blockchain protocols, our implementation follows open
science principles:

Code Availability: The complete smartphone-native
Trustchain implementation, including all protocol implemen-
tations, benchmarking framework, and performance measure-
ment tools, will be available as open source through the Tri-
bler project upon publication. This will enable researchers to
replicate our experiments, extend our work, and validate our
findings.

Benchmark Reproducibility: While the specific perfor-
mance data presented in this paper reflects our controlled test
environment, researchers can generate their own performance
datasets by running our benchmarking framework on their
target hardware and network configurations. This approach
accommodates the inherent variability in mobile device capa-
bilities and network conditions while maintaining experimen-
tal validity.

Experimental Transparency: Our methodology, mea-
surement techniques, and analysis approaches are fully doc-
umented, enabling researchers to adapt our framework for
different mobile blockchain research questions or alternative
protocol evaluations.

4.3 Results and Analysis

We conducted comprehensive performance benchmarking
comparing the UDP and Iroh communication protocols im-
plemented in our smartphone-native Trustchain system. Our
experimental evaluation generated a substantial dataset of
87,357 successful round-trip operations collected from 36
distinct test runs, providing robust statistical evidence for pro-
tocol performance comparison.

Dataset Characteristics

The benchmark dataset encompasses a wide range of opera-
tional conditions designed to stress-test both protocols under
realistic mobile blockchain scenarios:

* Message Rate Range: 5-500 messages per second
(MPS), covering both typical and high-throughput sce-
narios

¢ Payload Size Range: 16-2048 bytes, representing di-
verse Trustchain block sizes

¢ Performance Metric: Round-trip time (RTT) calcu-
lated via payload-based message matching across oper-
ation stages on a single device

e Data Quality: Approximately 19,000 unmatched sent
messages provide evidence of protocol failure behavior
under load

* Stress Testing Results: Under extreme load conditions
(400-500 MPS), significant packet drops occur, demon-

strating the operational boundaries of each protocol and
providing critical insights into reliability under stress

Protocol Performance Characteristics

Our analysis reveals that both UDP and Iroh protocols
demonstrate distinct performance profiles suited to differ-
ent deployment scenarios. Under low-load conditions (5-50
MPS), both protocols exhibit comparable median latencies,
with Iroh showing 18.2ms and UDP achieving 11.8ms for
512-byte payloads. However, their behavior diverges signifi-
cantly under varying operational conditions.

Protocol Performance by Message Rate (512-Byte Payload)

Protocol
—e= IROH
uoP

y

Mean Round-Trip Time (ms)

y

— e — ——n

200 300
Messages Per Second (MPS)

Figure 2: Performance across message rates (5-500 MPS) showing
how UDP maintains consistent latency while Iroh exhibits increas-
ing latency under higher loads

UDP Implementation: UDP’s streamlined implementa-
tion demonstrates consistent low-latency performance across
all tested conditions. Its minimalist design provides pre-
dictable behavior optimized for direct communication, while
Iroh’s enterprise-grade architecture offers sophisticated con-
nection management and reliability features for complex de-
ployment scenarios.

Iroh Implementation: As a business-grade P2P protocol,
Iroh offers robust connection management and built-in reli-
ability mechanisms. While exhibiting higher latency vari-
ance under load, it provides enterprise-level features includ-
ing peer discovery, connection pooling, and graceful failure
handling.

Load Testing and Scalability Analysis

Both protocols demonstrate acceptable performance under
typical mobile blockchain loads (50-200 MPS). Iroh main-
tains excellent reliability (99-100% success) through 300
MPS, showcasing its robust design for standard enterprise de-
ployments. However, under extreme load conditions (400+
MPS), Iroh’s sophisticated connection management becomes
a bottleneck, with success rates dropping significantly.
Dropped Packet Analysis: Our stress testing revealed
critical operational boundaries for both protocols. The 19,000
unmatched sent messages across all test runs provide quan-
titative evidence of packet loss behavior under high load.
Specifically, at message rates exceeding 400 MPS, both pro-
tocols begin experiencing significant packet drops, with Iroh

Transaction Success Rate by Message Rate

Success Rate (%)

Protocol
~o- IROH
~e- uopP

® ¢ # s 4
Messages Per Second (MPS)

Figure 3: Success rates across different load conditions, demonstrat-
ing Iroh’s reliability through moderate loads and UDP’s resilience
under extreme stress

showing more pronounced degradation due to its connection-
oriented nature. UDP maintains better resilience under ex-
treme stress, demonstrating the trade-offs between protocol
sophistication and raw performance under adversarial condi-
tions.

UDP’s simpler architecture proves advantageous under
high-stress conditions, maintaining consistent performance
even at 500 MPS. This suggests different optimal deploy-
ment scenarios: Iroh for feature-rich, moderate-load applica-
tions requiring enterprise-grade reliability, and UDP for high-
throughput, latency-critical scenarios where simplicity is pre-
ferred.

Performance Analysis Summary

Our comprehensive evaluation reveals that protocol selec-
tion depends critically on deployment requirements. Figure 4
demonstrates the latency characteristics across different pay-
load sizes, showing how both protocols maintain relatively
consistent performance regardless of message size.

Protocol Latency by Payload Size (5 MPS)

Protocol
= IROH
m— UDP

Round-Trip Time (ms)

i

o

P 2
Payload Size (bytes)

Figure 4: Latency by payload size comparison, demonstrating con-
sistent performance across different message sizes for both protocols

Latency Distribution Patterns
The latency distribution analysis reveals important insights
into protocol behavior under varying conditions. Figure 5

shows how latency distributions vary across different mes-
sage rates, while Figure 6 illustrates the distribution patterns
for different payload sizes. These visualizations clarify the
trade-offs between UDP’s consistency and Iroh’s feature-rich
but more variable performance.

Latency Distribution by Message Rate (512-Byte Payload)

Round-Trip Time (ms)

sl iy l

Messages Per Second (MPS)

Figure 5: Latency distributions by message rate, revealing UDP’s
consistent performance and Iroh’s increasing variance under load

The payload size analysis shows that both protocols main-
tain relatively stable latency characteristics across different
message sizes, with UDP showing slightly better consistency
in the distribution patterns.

Latency Distribution by Payload Size (5 MPS)

Protocol
- ROH

CULA

Payload Size (bytes)

Round-Trip Time (ms)

Figure 6: Latency distributions by payload size, demonstrating pro-
tocol consistency across different message sizes

Reliability and Performance Boundaries

The tail latency analysis provides crucial insights into proto-
col reliability under stress conditions. Figure 7 illustrates the
95th percentile latency behavior, helping identify appropri-
ate deployment scenarios based on worst-case performance
requirements.

Both protocols serve complementary roles in the mobile
blockchain ecosystem. Iroh’s business-grade implementation
provides the reliability and feature set required for produc-
tion deployments under moderate loads, while UDP’s sim-
plicity offers advantages for research prototypes and high-
throughput specialized applications.

Deployment Considerations
The experimental results inform protocol selection for differ-
ent mobile blockchain scenarios:

Enterprise Deployments: Iroh’s sophisticated architec-
ture provides essential features for production systems in-
cluding connection pooling, peer discovery, and graceful

95th Percentile Latency by Message Rate (Tail Latency)

Protocol
10.95
8- IROH

~=- UDP
9.8s
ooooo

7.5

95th Percentile RTT (ms)

® ® # * £ » @ #
Messages Per Second (MPS)

Figure 7: 95th percentile latency analysis showing protocol behavior
under worst-case conditions

degradation. Under typical enterprise loads (50-300 MPS),
Iroh maintains excellent reliability while offering enterprise-
grade networking capabilities.

High-Performance Applications: UDP’s minimal over-
head and predictable behavior make it suitable for latency-
critical applications and research prototypes. Its consistent
performance across all load conditions supports specialized
use cases requiring maximum throughput.

Hybrid Approaches: The complementary nature of both
protocols suggests potential for adaptive implementations
that leverage UDP for high-throughput operations while uti-
lizing Iroh’s advanced features for standard blockchain oper-
ations requiring enhanced reliability and peer management.

5 Responsible Research

This research, focused on developing and benchmarking
a smartphone-native Trustchain implementation, adheres to
principles of responsible research by considering both the
ethical implications of the technology and by striving for
maximum reproducibility of its findings.

5.1 Ethical Considerations

The development of decentralized communication technolo-
gies, particularly those intended for mobile devices, carries
several ethical considerations that we have aimed to address:

* Data Privacy and Security: Our current research pri-
marily focuses on the performance (e.g., latency) of data
exchange using different protocols. We employ syn-
thetic or non-sensitive data for benchmarking. How-
ever, we acknowledge that a deployed Trustchain system
would handle user-generated data. The use of crypto-
graphic primitives (Ed25519 signatures, SHA-256 hash-
ing) is fundamental to the integrity and authenticity of
blocks. For real-world applications, further considera-
tions around payload encryption, explicit user consent
for data handling, and minimization of any potentially
sensitive metadata collection would be paramount. The
node_id used in our benchmarks identifies experimen-
tal devices and does not involve Personally Identifiable
Information (PII).

¢ Resource Consumption and Accessibility: A core mo-
tivation of this work is to address the high resource de-
mands (energy, data, storage) of traditional blockchain
systems on mobile devices. Our benchmarking efforts
are geared towards identifying and promoting energy-
efficient and low-overhead communication strategies.
This is an ethical imperative to ensure that such tech-
nologies do not unduly burden users’ device resources
(battery life, data plans, CPU usage) and remain acces-
sible to a broader range of mobile hardware.

* Network Usage and Reliance on Infrastructure: We
evaluated protocols with different network characteris-
tics. Our custom UDP solution is designed primarily
for local ad-hoc networks. The Iroh protocol, with its
use of public NO discovery and relay servers, introduces
reliance on third-party infrastructure. While this facili-
tates connectivity across diverse networks, users should
be aware of the potential for traffic analysis at these
relay points (though the data itself is expected to be
application-layer encrypted if sensitive). We aim to be
transparent about these dependencies and trade-offs.

* Integrity of Benchmarking: We are committed to un-
biased evaluation. The benchmarking framework is de-
signed to apply consistent metrics and methodologies
across the evaluated protocols (Iroh and UDP) to ensure
fair comparisons. The detailed reporting of our bench-
marking methodology (Section 4.1) and experimental
setup (Section 4.2) aims to provide full transparency.

5.2 Reproducibility

Ensuring that our research findings can be independently ver-
ified and built upon is a key aspect of responsible science. We
have taken the following steps to maximize reproducibility:

¢ Detailed Methodology: As detailed in Section 4.1,
we have developed a comprehensive benchmarking
methodology that specifies the data structures (e.g.,
BenchmarkResult), data collection mechanisms, and
workflow for performance evaluation. This systematic
approach is crucial for others to understand and poten-
tially replicate our experiments.

¢ Code Availability (Planned): We aim to make the core
Rust implementation of the Trustchain logic, the com-
munication protocol modules (Iroh and UDP), and the
benchmarking framework available as open-source soft-
ware. This will allow other researchers to inspect, vali-
date, and extend our work.

* Data Export and Reproducible Testing: The bench-
marking framework supports exporting raw performance
data in CSV format (see Section 4.1). Rather than pro-
viding specific datasets, we encourage researchers to
generate their own performance data by running our
benchmarking framework on their target hardware con-
figurations, enabling validation of our findings across di-
verse mobile environments.

* Clear Experimental Environment Specification: Sec-
tion 4.2 will provide a detailed description of the hard-
ware (mobile device models, specifications), software

(OS versions, library versions, application build), and
network conditions (real-world and simulated) used in
our experiments. This information is essential for others
attempting to replicate our findings.

* Generalizable Benchmarking Design: The
benchmarking architecture, including the common
BenchmarkResult structure and the add_-benchmark
function, is designed for consistent application across
all protocols. This inherent design promotes comparable
and repeatable experimental campaigns.

By addressing these ethical aspects and promoting repro-
ducibility, we aim to contribute responsibly to the advance-
ment of decentralized mobile communication systems.

6 Discussion

Our comprehensive experimental evaluation of UDP and
Iroh protocols within the smartphone-native Trustchain
implementation provides significant insights into mobile
blockchain protocol selection and architectural design de-
cisions. This section synthesizes our architectural innova-
tions with the performance findings to address the core re-
search question and provide practical guidance for mobile
blockchain deployment.

6.1 Protocol Performance in Mobile Blockchain
Context

The experimental results reveal nuanced performance char-
acteristics that inform protocol selection decisions for differ-
ent mobile blockchain deployment scenarios. Our analysis
demonstrates that both UDP and Iroh protocols serve com-
plementary roles rather than competing for a single optimal
solution.

UDP Implementation Analysis: UDP’s streamlined im-
plementation demonstrates remarkable consistency across all
tested conditions. Under moderate loads (50-200 MPS),
UDP achieves median latencies of 11.8ms, providing pre-
dictable performance crucial for mobile applications where
user experience depends on consistent response times. The
efficiency of UDP’s direct socket communication eliminates
overhead associated with sophisticated connection manage-
ment, making it particularly suitable for high-throughput,
latency-critical scenarios where simplicity and predictability
are prioritized.

Iroh Implementation Analysis: Iroh’s business-grade
P2P implementation showcases sophisticated networking ca-
pabilities including peer discovery, connection pooling, and
graceful degradation. Under typical enterprise loads (50-300
MPS), Iroh maintains excellent reliability while providing ad-
vanced features essential for production blockchain deploy-
ments. However, its performance characteristics reveal trade-
offs between feature richness and raw performance under ex-
treme conditions.

Load-Dependent Behavior Patterns: The experimen-
tal data reveals distinct behavioral patterns that inform de-
ployment decisions. As shown in Figure 3, Iroh excels in
moderate-load scenarios where its enterprise-grade features
provide value, maintaining 99-100% success rates through
300 MPS. However, under extreme load, its success rate

drops significantly. UDP’s consistent performance across all
load conditions, also shown in Figure 2, makes it suitable for
applications requiring predictable behavior regardless of net-
work conditions.

Development Overhead Trade-offs: A critical consid-
eration in protocol selection is development overhead and
maintenance complexity. While UDP achieves superior la-
tency performance with our streamlined 105-line implemen-
tation, this comes at the cost of significant engineering ef-
fort for production deployment. Implementing production-
ready networking requires building connection management,
error handling, timeout logic, and peer discovery mechanisms
that Iroh’s 231-line implementation provides as a mature,
battle-tested framework. Our modular architecture demon-
strates that these trade-offs can be evaluated empirically, en-
abling evidence-based decisions between raw performance
optimization and development efficiency. For research proto-
types prioritizing rapid iteration, UDP’s simplicity provides
immediate benefits. However, for production systems requir-
ing enterprise-grade reliability features, Iroh’s comprehensive
networking stack may justify the latency overhead through
reduced development time and mature error handling capa-
bilities.

6.2 Architectural Design Implications

The modular architecture implemented in our smartphone-
native Trustchain proves instrumental in enabling compara-
tive protocol analysis and practical deployment flexibility.

Runtime Protocol Switching Innovation: The
entry_point/ coordination layer represents a signifi-
cant architectural innovation for mobile blockchain systems.
Our 1,500+ line coordination layer successfully abstracts
three distinct protocol implementations (UDP threading, Iroh
async tokio, TFTP file-based) behind a unified 6-function
JNI interface, enabling runtime protocol switching through
the NetworkingMode enumeration. This design allows
applications to adapt their communication strategy based on
operational requirements without architectural changes—a
capability that enables adaptive deployment strategies
previously unavailable in mobile blockchain implementa-
tions. The clean abstraction proves that mobile blockchain
applications can dynamically optimize their networking
approach based on current conditions, device capabilities, or
application requirements.

Rust/Kotlin Integration Benefits: The hybrid archi-
tecture leverages Rust’s performance and safety for core
blockchain operations while utilizing Kotlin’s mobile plat-
form integration capabilities. The JNI bridge, despite its
complexity, provides efficient communication between layers
with minimal overhead for performance-critical operations.

Shared Abstraction Success: Protocol-agnostic compo-
nents including cryptographic operations, blockchain logic,
and performance measurement prove effective across both
UDP and IROH implementations. This modularity enables
consistent behavior and simplified maintenance while sup-
porting diverse networking approaches.

6.3 Addressing the Research Question

Our specific research question within the broader collab-
orative investigation of Trustchain viability asks: “How
can a smartphone-native Trustchain implementation optimize
transaction confirmation latency while preserving blockchain
integrity under mobile hardware constraints?”

Scope and Collaborative Context: This study primarily
addresses the latency optimization component of this multi-
faceted question. While we demonstrate architectural ap-
proaches that support blockchain integrity through crypto-
graphic validation and provide a foundation for mobile de-
ployment, comprehensive empirical validation of all mo-
bile hardware constraints (energy consumption, storage ef-
ficiency) and integrity under adversarial conditions are ad-
dressed by parallel studies within our five-person research
team. Our experimental evidence provides definitive guid-
ance for the latency dimension while contributing archi-
tectural and methodological foundations for the broader
Trustchain viability assessment.

Latency Optimization Strategy: For applications priori-
tizing minimal transaction confirmation latency, UDP’s con-
sistent sub-20ms median performance provides the optimal
solution. The protocol’s simplicity eliminates the overhead
associated with sophisticated connection management, di-
rectly addressing the latency optimization objective.

Blockchain Integrity Preservation: Both protocols suc-
cessfully maintain blockchain integrity through our shared
cryptographic and validation mechanisms. The modular ar-
chitecture ensures that protocol selection affects performance
characteristics without compromising the fundamental secu-
rity properties of the Trustchain implementation.

Mobile Hardware Constraint Accommodation: UDP’s
predictable resource usage and minimal overhead make it
well-suited for resource-constrained mobile environments.
Iroh’s sophisticated features come at the cost of increased
complexity and resource usage, making it more appropriate
for scenarios where advanced networking capabilities justify
the overhead.

6.4 Limitations and Future Work

While our comprehensive evaluation provides valuable in-
sights, several limitations and opportunities for future re-
search warrant discussion:

Current Limitations:

e Limited Test Environment: Our benchmarks were
conducted using Android Studio emulator (API 36) and
Xiaomi Pocophone F1 (Android 10) over regular home
WiFi. Real-world mobile network variability, including
4G/5G transitions and cellular network conditions, may
produce different performance characteristics.

* Device Diversity: Testing was limited to one physical
device model and emulated environment. Broader eval-
uation across different Android devices representing var-
ious performance tiers would provide more comprehen-
sive deployment guidance.

¢ Network Environment Constraints: Consumer-grade
WiFi testing may not reflect enterprise network condi-

tions or mobile network edge cases that could affect pro-
tocol performance differently.

* Protocol-Specific Analysis Depth: As noted in Sec-
tion 4.1, UDP’s streamlined design naturally gener-
ates fewer instrumentable events compared to Iroh’s
enterprise-grade architecture. While both protocols pro-
vide comprehensive latency data, Iroh offers richer diag-
nostic information for failure analysis due to its sophis-
ticated feature set.

* Focused Scope: This study specifically addresses la-
tency optimization as part of a collaborative project. En-
ergy consumption analysis is being conducted by a team-
mate focusing on energy efficiency, while storage opti-
mization, throughput analysis, and robustness testing are
addressed in parallel studies by other team members.

Future Research Directions:

* Real-World Performance Evaluation: Conduct exten-
sive testing across diverse mobile network conditions,
device capabilities, and real-world deployment scenar-
ios to validate our controlled environment findings.

* Integration with Parallel Studies: Combine our la-
tency optimization findings with results from team-
mate studies on energy efficiency, storage optimization,
throughput analysis, and robustness testing to provide
comprehensive guidance on Trustchain viability for mo-
bile deployment.

* Hybrid Protocol Implementation: Develop and eval-
uate adaptive protocol selection mechanisms that auto-
matically choose optimal protocols based on current net-
work conditions and application requirements.

e TFTP Protocol Evaluation: Conduct comprehensive
performance evaluation of the experimental TFTP trans-
port to assess its viability for offline synchronization and
large payload transfer scenarios.

* Production Deployment Studies: Evaluate the modu-
lar architecture and protocol selection strategies in real-
world mobile blockchain applications to validate practi-
cal deployment guidance.

e Security and Privacy Integration: Extend the
performance-focused analysis to include comprehensive
security evaluation, ensuring that protocol optimizations
do not compromise blockchain integrity or user privacy.

Our research demonstrates that smartphone-native
blockchain implementations require careful consideration
of protocol selection, architectural design, and deployment
scenarios. The modular approach and comprehensive per-
formance analysis provide a foundation for future mobile
blockchain development, enabling evidence-based deci-
sions that balance performance, functionality, and resource
constraints in the mobile ecosystem.

6.5 Use of AI Assistance

Large-language-model tools were employed in supporting
roles only:

¢ Code Generation Aid - Initial versions of benchmark-
ing scripts and data processing utilities were generated
with Al assistance, then thoroughly reviewed, tested,
and modified by the authors.

e Writing Support - Preliminary drafts of section
overviews and alternative phrasing suggestions were
provided by Al tools; all technical statements, experi-
mental data, analysis, and conclusions in the final ver-
sion were authored and verified by the research team.

7 Conclusion

This paper contributes to the assessment of Trustchain via-
bility in the current blockchain landscape by focusing specif-
ically on latency optimization for smartphone-native imple-
mentations. As part of a collaborative research project inves-
tigating multiple performance dimensions, we have demon-
strated that protocol selection for latency optimization is crit-
ical and depends entirely on the specific deployment scenario.

Our primary contribution is an open-source, modular mo-
bile blockchain architecture that enables direct, empirical
comparison of networking protocols for latency analysis. Our
evaluation of a business-grade P2P protocol (Iroh) and a
lightweight UDP implementation reveals clear performance
trade-offs: Iroh provides enterprise-grade features and relia-
bility suitable for moderate loads, while UDP offers superior,
consistent latency required for high-throughput applications.

Combined with parallel studies on energy efficiency, stor-
age optimization, throughput analysis, and robustness testing
by our teammates, this work contributes to a comprehensive
evaluation of Trustchain’s viability for mobile deployment.
The latency optimization insights provided here offer a re-
producible framework for further research and clear guidance
for developers prioritizing low-latency performance in mobile
blockchain applications.

To ensure reproducibility and support continued research,
the complete implementation including source code, bench-
marking scripts, and experimental configurations is publicly
available [10].

References

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash
System,” Bitcoin Whitepaper, 2008.

[21 J. W. Heo, G. S. Ramachandran, A. Dorri, and
R. Jurdak, “Blockchain Data Storage Optimisations:
A Comprehensive Survey,” ACM Computing Surveys,
vol. 56, no. 7, pp. 1-27, Jul. 2024. [Online]. Available:
https://dl.acm.org/doi/10.1145/3645104

[3] A. G. Anagnostakis, N. Giannakeas, M. G. Tsipouras,
E. Glavas, and A. T. Tzallas, “IoT Micro-Blockchain
Fundamentals,” Sensors, vol. 21, no. 8, p. 2784,
Jan. 2021, number: 8 Publisher: Multidisciplinary
Digital Publishing Institute. [Online]. Available: https:
/Iwww.mdpi.com/1424-8220/21/8/2784

[4] P. Otte, M. De Vos, and J. Pouwelse, “TrustChain: A
Sybil-resistant scalable blockchain,” Future Generation
Computer Systems, vol. 107, pp. 770-780, Jun. 2020.

(5]

(6]

(7]

(8]

[9]

[10]

[Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0167739X17318988

S. Basu, S. Chowdhury, and S. Das Bit, “Us-
ing Blockchain in Intermittently Connected Network
Environments,” in Blockchain Technology and In-
novations in Business Processes, S. Patnaik, T.-S.
Wang, T. Shen, and S. K. Panigrahi, Eds. Singa-
pore: Springer, 2021, pp. 33—47. [Online]. Available:
https://doi.org/10.1007/978-981-33-6470-7_3

N. Zero, “Iroh,” https://iroh.computer/, 2024, accessed:
June 22, 2025.

Crates.io, “async-tftp rust crate,” https://crates.io/crates/
async-tftp, 2024, accessed: June 22, 2025.

——, “tftpd rust crate,” https://crates.io/crates/tftpd,
2024, accessed: June 22, 2025.

B. Nasrulin, M. De Vos, G. Ishmaev, and J. Pouwelse,
“Gromit: Benchmarking the Performance and Scal-
ability of Blockchain Systems,” in 2022 [EEE In-
ternational Conference on Decentralized Applications
and Infrastructures (DAPPS). Newark, CA, USA:
IEEE, Aug. 2022, pp. 56-63. [Online]. Available:
https://ieeexplore.ieee.org/document/9899852/

T. Research, “Smartphone-native trustchain
implementation,” https://github.com/viftode4/
smartphone-trustchain, 2025, source code reposi-

tory. Accessed: June 22, 2025.

https://dl.acm.org/doi/10.1145/3645104
https://www.mdpi.com/1424-8220/21/8/2784
https://www.mdpi.com/1424-8220/21/8/2784
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17318988
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17318988
https://doi.org/10.1007/978-981-33-6470-7_3
https://iroh.computer/
https://crates.io/crates/async-tftp
https://crates.io/crates/async-tftp
https://crates.io/crates/tftpd
https://ieeexplore.ieee.org/document/9899852/
https://github.com/viftode4/smartphone-trustchain
https://github.com/viftode4/smartphone-trustchain

	Introduction
	Methodology and Problem Formulation
	Problem Formulation
	Architectural Design and Implementation

	Our Contribution
	A Modular Mobile Blockchain Architecture
	Comparative Protocol Implementations
	An Open-Source Research Framework

	Experimental Setup and Results
	Benchmarking Methodology
	Benchmarking Goals
	Benchmarking Architecture and Design
	Benchmarking Workflow
	Current Implementation Status and Generalization Strategy
	Illustrative Example of Benchmarking Events

	Experimental Environment
	Test Configuration
	Performance Measurement Methodology
	Hardware and Software Environment
	Reproducibility and Open Science

	Results and Analysis
	Dataset Characteristics
	Protocol Performance Characteristics
	Load Testing and Scalability Analysis
	Performance Analysis Summary
	Latency Distribution Patterns
	Reliability and Performance Boundaries
	Deployment Considerations

	Responsible Research
	Ethical Considerations
	Reproducibility

	Discussion
	Protocol Performance in Mobile Blockchain Context
	Architectural Design Implications
	Addressing the Research Question
	Limitations and Future Work
	Use of AI Assistance

	Conclusion

