TUDelft

Exploring Heuristic Methods for the
Resource-Constrained Project Scheduling Problem with
Logical Constraints

Melle Schoenmaker

Supervisor: Emir Demirovié¢
EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

Abstract

This paper presents the use of a heuristic solution method to improve the process
of creating a conjunctive normal form (CNF) encoding of and finding optimal solu-
tions to instances of the resource-constrained project scheduling problem with logical
constraints (RCPSP-Log).

The RCPSP is an optimisation problem consisting of a set of resources with constant
availability per time period, a set of activities with a duration and resource consumption
rate, and a set of AND precedence relation pairs (7, j); activity j can start only if activity
¢ has finished. The goal is to construct a schedule that minimises the total duration
(makespan) of the project while satisfying all resource and precedence constraints.
RCPSP-Log extends RCPSP by introducing two types of precedence relations OR and
BI. OR relations allow a successor to be scheduled when at least one of its predecessors
has finished. The BI relation prevents two jobs from running in parallel. The RCPSP
is known to be NP-hard, thus the same holds for this extension.

To find solutions to the RCPSP-Log, activities can be assigned a priority value based
on a heuristic function. The heuristic function makes use of the critical path method
to calculate the latest finishing time (LFT) of an activity. By using the heuristic
greedily a feasible sub-optimal solution is generated for a problem instance, which is
then used to reduce the size of the instance’s CNF encoding. A maximum satisfiability
(MaxSAT) solving algorithm is used to search for a variable assignment for the CNF
encoded problem and to prove whether it has an optimal makespan while satisfying all
precedence and resource constraints.

The computational results of encoding and solving RCPSP instances from a well-
known dataset with both the standard and the reduced encoding show that there is
a clear advantage to using a heuristic algorithm, in terms of the time needed to find
optimal solutions, to provide a starting point to the SAT solver.

1 Introduction

Project scheduling is a complicated problem that applies to various industries. For instance,
the efficiency of factory processes and logistical schedules are heavily dependent on the time
it takes to complete all sub-tasks. This has lead to various researchers looking for efficient
algorithms that are able to find optimal schedules within a reasonable amount of time [1],
2], [3]-

To find optimal solutions to problem instances it should be clear what is and is not
allowed when constructing a schedule, which is where a problem definition is used to clarify
all of a problem’s rules. The resource constrained project scheduling problem (RCPSP) is a
generalised problem statement that can be used to describe simple projects. It consists of
a set of resources with constant availability and a set of activities with a duration, resource
consumption and a set of predecessors. An activity is only allowed to be scheduled if there are
enough resources available and all predecessors have finished executing, and once an activity
is scheduled it must be finished. The RCPSP can already be used to model complicated
processes, but the downside of this problem definition is that it limits the model to only
have so-called AND precedence constraints, where all of an activity’s predecessors need to
be finished before it can be scheduled. Realistically, there are cases where the RCPSP does
not suffice, which is where variations that extend the problem definition are needed. RCPSP
with Logical constraints (RCPSP-Log) is a variation of the RCPSP, which extends the type
of precedence constraints with two new precedence relations: OR and BI.

The main reference article [3| of this paper originally introduced the problem definition
of the RCPSP-Log and a meta-heuristic algorithm to find solutions to instances of the

RCPSP-Log. To our knowledge [3] is the only publication to propose a complete method
of solving the RCPSP with either OR or BI precedence relations. However, the use of a
meta-heuristic algorithm as proposed by Vanhoucke and Coelho is not in line with the goal
of our research, as we look to improve the exact satisfiability (SAT) solving algorithm using
a heuristic algorithm. Another piece of related work defines an encoding for the RCPSP
with no overlap BI constraints into conjunctive normal form (CNF), and solving it with the
Z3 satisfiability modulo theories (SMT) solver [4]. This thesis has overlap with our paper
as it discusses a method of encoding RCPSP into a boolean satisfiability encoding, but does
not cover the use of heuristics to improve the SAT solving process.

From these previous works there is a clear gap in research on the inclusion of simple
heuristics into the SAT solving process. In this paper we will reiterate and slightly alter the
problem definition, clarifying the notation that will be used throughout the rest of the paper.
We introduce a different solving approach, which greedily uses a priority heuristic based on
critical paths to find upper bounds to the makespan of problem instances of varying sizes.
The aim of our research is to study the use of these simple heuristic methods to create a SAT
encoding of reduced size for the RCPSP-Log to study the increase in performance compared
to a standard encoding when applied to large problem instances. The main research question
that is answered in this paper is: "May SAT solving algorithms be augmented with domain-
specific information to improve the solving of the RCPSP-Log?".

This research has two main contributions. First it demonstrates how the solutions found
through a heuristic method are able to be used to significantly reduce the size of a problem’s
encoding and how reducing encodings speeds up the SAT solving process, allowing it to find
better solutions when ran with a time bound. Secondly we provide a method to encode
RCPSP-Log instances into propositional logic so that MaxSAT solvers can be used to find
optimal schedules. The use of SAT solvers instead of problem specific algorithms is promising
due to the consistent improvements that are being made to SAT solvers [5]. Writing an
algorithm to produce the CNF encoding of a problem only has to be done once, allowing the
progressive improvements in SAT solvers to speed up the solving of RCPSP-Log problem
instances.

The main conclusions that are we have drawn is that reducing the encoding constructed
by using the upper bound found with heuristics can provide a significant advantage to the
SAT solver, especially for larger problem instances that have a high amount of added OR
or BI logical constraints. The results have shown a significant decrease in both the size of
the encoding and the time needed to encode and solve the problem instance after limiting
it with the heuristic upper bound. Lastly the results show that for larger problem instances
with 90 and 120 activities more instances can be solved to optimality after reducing the
encoding.

The structure of this paper is as follows: First of all, section 2 provides a definition of the
RCPSP and the RCPSP-Log extension. Then, section 3 illustrates the main ideas that are
used for the heuristic algorithm and the SAT encoding. Section 4 states the experimental
setup and presents the results, alongside a discussion of the results. Next, section 5 reflects
on the ethical aspects of this research and the reproducibility of results. Finally section 6
covers the conclusion and potential future work.

2 Problem Description

As understanding a problem and clearly defining it is necessary to propose a solution, this
section defines the RCPSP and how RCPSP-Log differs. An illustrative example problem

instance is explained with a figure to showcase all elements of the RCPSP-Log.

The Resource Constrained Project Scheduling Problem (RCPSP)

The RCPSP is an NP-Hard problem, with the goal of scheduling each activity at a certain
time, so that the total makespan of the project is minimised. The makespan of a project
is defined as the finish time of the end activity, which can only be scheduled once all other
activities have finished.

A project consists of a set of jobs N that all need to be executed to finish the project
and a set of resources R with a constant availability ax. Every job i € N has: a non-
negative integer duration d; and a non-negative integer resource requirement r; j, for every
resource k € R. The project network is represented by a topologically ordered activity-on-
the-node (AoN) format where A is the set of pairs of activities between which a finish-start
precedence relationship with time lag 0 exists [3, p. 578]. For a job to be scheduled the
following requirements have to hold: all of its predecessors have to be finished at or before
the start time of the job and each resource’s availability minus the resource consumption of
active jobs has to be greater or equal to the job’s resource requirements.

The Resource Constrained Project Scheduling Problem with Logical
Constraints (RCPSP-Log)

The RCPSP-Log introduces two new types of precedence constraints, OR and BI. It still
has the AND constraint that is imposed in the original RCPSP, which allows a job to be
scheduled if and only if all of its predecessors have finished.

The OR constraint is similar to AND as it also has a set of predecessor jobs. However,
unlike the AND constraint, only one of these jobs needs to finish before being able to
schedule the successor job. Coelho and Vanhoucke add an additional constraint in their
problem definition that says that successors of an activity with OR precedence can only
start once all predecessors of the activity have also been finished [3, pp. 578-579]. This
is a necessity for their solution method of converting the problem to one with only AND
constraints. However, this adds an additional level of complexity to the OR constraint which
is undesirable. Instead this paper interprets OR precedence as an activity requiring at least
1 predecessor to finish with the only additional constraint being that all activities need to
finish before the end activity can start.

The BI constraint, also called a no-overlap constraint, can only exist between a pair of
jobs, and prevents these two jobs from being executed in parallel. In addition a changeover
time is specified for each BI constraint as the resource needs to be transferred between the
two activities. This changeover time is often modelled as an additional job that is executed
between the two jobs specified in a BI constraint. To reduce the time needed to encode and
solve instances, this paper analyses only the BI constraint with a changeover time of 0, since
each additional value for the changeover time would require 16 instance sets to be solved.
It is possible, however, to make slight modifications to the encoder to include support for a
variable changeover time.

An example project and schedule can be seen in Figure 1. This example shows the dura-
tions above and resource requirements below the activities. The traditional AND constraints
are represented with solid arrows between two jobs, OR constraints as dotted arrows from
one job to another, and BI constraints as a pair of dotted arrows, as is present between jobs
E and F. The top schedule is one that regards the OR relations as AND, and disregards

Resource |
Use
F
C G
E
A B D H
11 Time
Resource |
Use
F
C
B
G
A D E
11 Time

Figure 1: An example project with eight jobs and 2 dummy jobs Start and End, and
two possible schedules (Above: without OR and BI constraints, Below: with OR and BI
constraints)

Source: [3, Fig. 1]

the BI constraint. The bottom schedule is made while respecting the AND, OR and BI
precedence relations.

3 Heuristic augmentation of SAT solvers

Experimental work

Multiple methods have been employed to solve the RCPSP-Log. The use of SAT solvers is
interesting due to the continuous improvements that are made to SAT solving algorithms
[5]. A problem encoding has to be made only once, but can be solved with progressively
faster SAT solver algorithms.

Aside from improvements to the SAT solver, the encoding can also be optimised, by
reducing redundancy and unnecessary clauses, to further improve the speed at which problem
instances can be solved. Heuristics can also play a role in reducing the runtime of both the
encoding and the SAT solver. The size of the encoding depends on the planning horizon T
of a project, which can be much larger than the optimal makespan of the project. A heuristic
solver can be used to find a sub-optimal solution to the problem instance, the makespan of
this solution can then be used as an upper bound of the makespan for the encoding. The
heuristically found solution can also be converted into a variable assignment to provide the
SAT solver an initial solution to start with. Lastly, a heuristic can be included in the SAT
solver to adapt its variable selection procedure, this problem specific information can help
the SAT solver make better decisions towards the optimal solution.

1Sum of the durations of all activities

Heuristic: Latest Finishing Time

The heuristic that was implemented to help find solutions for the RCPSP-Log is based
on the latest finishing time principle, which is part of the Critical Path Method [6]. The
heuristic iterates through all paths from an activity to the end activity while summing up
the duration of each activity. The heuristic provides the priority with which an activity
should be finished to not cause delays to the makespan of the project. If an activity has a
lower latest finishing time than another activity it means that this low priority activity can
be scheduled at a later time without impacting the makespan.

By using this heuristic a feasible sub-optimal solution can be found for the problem
instance within a single search, this is a quick way of getting an upper bound on the minimal
makespan of the project. An exact solution would have to look through a set of permutations
that grows exponentially with the number of activities in the project. The downside of the
heuristic approach is that the solution is not guaranteed to be optimal, which is due to
the additional resource and logical precedence constraints that are part of the RCPSP-Log.
Therefore optimal solutions still have to be found using exact solving methods.

CNF Encoding

To find optimal solutions using the results from the heuristic method the problem can be
transformed into a CNF encoding adapted from [4]. This encoding consists of a set of literals
and a set of clauses. For instance, literals are created for each activity ¢ at each time period
t where:

_)1 If activity i starts in period t.
Yit = 0 If activity i does not start in period t.

This set of literals is used to construct clauses that represent completion, precedence, con-
sistency and resource constraints.

Completion Clauses

Completion clauses ensure that each activity starts early enough to finish before reaching
the horizon T of the project. A completion clause for an activity ¢ with duration d; is
constructed as follows:

Si = V{Zg"yie
These clauses are then combined into a set of completion clauses:

S = /\?:Jro1 Si

Resource Constraint Clauses

The RCPSP-Log, like the RCPSP, has resource constraints. These constraints are defined

as:
n+1

Zﬂ%tﬁ,k <a, Vtel0,..T],YkeR

i=0
The equation states that for all time periods and for all resources, the sum of every active
activity’s resource consumption is less than or equal to the available amount of that resource.

To construct clauses that capture resource constraints new literals have to be created
corresponding to x;;.

{1 If activity i is active in period t.
Tit =

0 If activity i is not active in period t.

It is important that x;; is assigned a value that is consistent with the start time of the activity
i, which is guaranteed by consistency clauses. Note that these literals are not necessary for
the dummy activities 0 and n + 1, as these have duration 0 and therefore are never active.
The consistency clauses for one activity ¢ are constructed as:

_ AT—d; t+d;—1
Ci = Ny " Nt ™ Wit V T

These are combined into the set of all consistency clauses as:

Resource constraints can now be formulated using the new literals z;;. The resource con-
straint of resource k at time ¢ is formulated as the pseudo-boolean constraint:

n
Ry = E TyTik < Qg
=1

This pseudo-boolean can be converted into CNF to allow a standard SAT solver to handle
it. The complete set of resource constraint clauses is constructed as:

R = Nier A?:o Ry

Precedence Clauses

To ensure that no activity is started before its precedence constraints are satisfied, prece-
dence clauses are constructed. Since there are three different types of precedence relations,
there are different encodings for each. To simplify the notation, we define z;;, which repre-
sents whether activity ¢ is finished by time ¢.

t—d;
Zit = \/u:OZ Yiu

For an AND precedence relation (i, j) € A4™¢, to schedule j it must hold that z;; = 1. This
implication y;; == z;; can be rewritten to the logical equivalent —y;; V z;;. Putting these
two together the precedence clause is thus formulated as:

A T—d;
Pijnd _ /\t:O j ﬁyjt V, Zit
And each of these clauses are again combined into a set of AND precedence clauses:
And And
P nt — /\(i,j)GAA"dPijn

For the OR precedence relations (i1, j) € A9, optionally (iz, §), (i3,7) € A", to schedule
J it must hold for one predecessor 7123 #;,+ = 1. This implication y;; == z;+ can be
rewritten to the logical equivalent —y;; \/Lj”:l1 2i,t- Putting these two together the precedence

clause is thus formulated as:

Or T—d; ||
Pii" = Neo ' Wit Va1 Zit

And each of these clauses are combined into a set of OR precedence clauses:

P = N jeaor Py

For a BI precedence relation i,j € AP?, to schedule j it must hold that
Ve [0,...,T)(zy Nxje #1)

which is equivalent to
Vt € [0, ...,T}("(Eit V L = 1)

By using the aforementioned literals x;; used for resource constraints, a single BI relation
can be encoded as follows:

Pl?l = Af:oﬁxit V _‘xjt
These are then combined into a set of BI precedence clauses:

pPBi = /\(i,j)GABiPi?i

Finally, the three sets of clauses corresponding to each precedence type are combined
into one set of precedence clauses:

P = PAnd A POT A PBi

Soft Clauses

For the SAT solver to find an optimal solution, soft clauses are added corresponding to the
makespan of the project schedule. A soft clause is a clause that can be violated without
making an assignment unsatisfiable, by increasing the cost of the solution by the weight of
the clause. The makespan of the project is translated into a cost by adding a soft clause for
every Yn+1,+ with weight 1.

T
W = Zyn-i-l,t x 1
0

Complete CNF Encoding

The complete CNF encoding ¢ can now be constructed by taking all of the aforementioned
sets of clauses and combining them:

¢=SANCARAPAW

SAT solver

A SAT solver is an algorithm that is able to efficiently assign values to the boolean literals
to find an assignment where all clauses are satisfied. The MaxSAT solver is a variation of
standard solvers that also takes in a set of soft clauses, each having a cost. It solves this
weighted CNF while also minimising the sum of costs of violated soft clauses by iteratively
looking for assignments with totalcost = bestknowncost — 1. The encoded problem is given
as input to the MaxSAT solver, which then reports the variable assignment, cost of the soft
clauses and the time taken to find the solution. Most SAT solving algorithms are also able
to take additional inputs such as a timeout, to halt the solver after a certain amount of time,
and a list of assumptions which can be used to provide the solver with variable assignments
representing an initial or partial solution.

4 Experimental Setup and Results

The problem instances that were used to compare the standard encoding to the reduced
encoding are the single mode problems with 30, 60, 90 and 120 jobs from PSPLIB [7]. The
heuristic solving algorithm is coded in C++, which was run using Visual Studio with the
C++ ISO version C++17 on an Intel® Core™ i7-8750H CPU with 8GB RAM. The SAT
encoder was coded in Python version 3.8.10 64-bit using the PySAT library [8], and its output
was run on the pumpkin MaxSAT solver which was made available to us by our supervisor.
The runtime of the heuristic solving algorithm was added to the encoding and the solving
time of the reduced encoding when calculating the difference with the standard encoding.
Both the encoder and the pumpkin solver were run on compute nodes of the Delftse High
Performance Computing (DHPC) DelftBlue Cluster [9], each instance was allocated 1 core
of an Intel® XEON E5-6248R 24C 3.0GHz and 16 GB RAM. To speed up the process of
encoding and solving each variation, each set of instances was broken up into batches of 40
problem instances, which could then be run in parallel.

Creating RCPSP-Log instances from RCPSP

There are no pre-existing datasets for the RCPSP-Log, making it necessary to define a
procedure to convert RCPSP instances into RCPSP-Log. As proposed in [3, p. 585] this is
done by defining two variables k1 and k9, that determine the starting activity and percentage
of activities whose precedences are converted. For activity ¢ the AND relations with all of
their predecessors will be converted into OR relations if (i + 1) mod kg = 0. Similarly, for
BI relations, activities are selected with the same formula, but only the AND relation with
the immediate predecessor with the lowest activity number is converted into a BI relation
while the others do not change.

Experimental Findings

Each set of instances, j30.sm, j60.sm, j90.sm, j120.sm was transformed into instances with
OR and instances with Bl relations with ko € {0,1,2,5,10}. Results of encoding and solving
these datasets have been summarised in Table 1, and the individual results can be found in
our repository?. The results are shown for both the standard and the heuristically reduced
encoding as standard|reduced for the following measured values: the number of proven
optimal solutions #0PT, the number of timeouts #1TIM EOUT, the number of instances
without an initial solution #NOSOL. Alongside those values, the average percentage differ-
ence between the standard and reduced encoding is presented for: the number of variables
%Dif fre, the number of clauses %Di f f,,., the time to encode %Dif fine, the time to prove
optimality (excluding timeouts) %Dif fisoive, the total time to encode and prove optimality
%Dif firotal, the found makespan %Dif fimakespan- The quality of the results is determined
by #OPT, #TIMEQOUT, #NOSOL and %Dif fmakespan-

Discussion

Since the heuristic solving algorithm was run separately from the encoder and solver, its
runtime was included in the comparison of both the encoding and the solving time of the
standard and upper bounded method. This does mean that the difference in total runtime is

2https://github.com/MelleSch/RP_Code_Results_RCPSP-Log

Table 1: Comparative results of the PSPLIB j30, j60, j90 and j120 instances with varying
amounts of transformed precedence constraints. #OPT, #TIMFEOUT and #NOSOL de-
note the number of problem instances, with notation standard|reduced, for which a proven
optimal solution was found, the timeout was reached, and no initial solution was found,
reSpeCtiVely %Diffnv,nc,tEnc,tSolve,tTotal,makespan each show the average percentage differ-
ence between the standard and the reduced encoding for the number of variables, number of
clauses, time to encode, time to prove optimality (excluding timeouts), total time to encode
and prove optimality, and the makespan.

330 OR BI
K1 B i i i i i i 1 1
Ko - 10 5 2 1 10 5 2 1
Percent Log 0 10 20 50 100 10 20 50 100
#OPT 465 [464 | 457 [461 450 | 449 424 | 427 328 | 334 | 461 | 463 458 | 457 434|438 383 | 383
#TIMEOUT || 15|16 | 23[19 30|31 56|53 152|146 | 19|17 22|23 46|42 97|97
#NOSOL 00 00 00 00 01 010 010 010 00
BDif fro 63.2 -64.11 -64.92 -66.88 -70.32 -61.23 -60.48 -60.02 -60.42
BDif fne -63.43 -64.32 -65.13 -67.12 -70.61 -61.37 -60.6 -60.12 -60.51
%Dif fibne -65.32 -67.23 -68.40 -70.63 -73.70 -64.51 -63.61 -62.90 -62.00
%Dif fisolve -39.75 -37.42 -24.67 -27.13 -20.12 -28.87 -19.46 -31.11 -19.96
%Dif firotal -52.42 -51.92 -44.97 -45.61 -37.50 -46.52 -38.92 -43.05 -35.78
%Dif frmakespan 0.02 0.01 -0.01 -0.08 -0.02 0.01 -0.02 -0.01 0.05
360
#OPT 395 | 395 | 391 | 390 374 | 373 314|318 170 | 177 | 392 392 375 | 381 343 [351 271|276
#TIMEOUT | 85|85 | 89|90 106|107 166|162 310|303 | 88|88 105]99 137|129 209 | 204
#NOSOL 09 16 115 208 931 010 010 01 157
%Dif fro -75.38 -76.27 -76.93 -78.79 -81.12 -74.78 74,47 74,71 -75.79
%Dif fue -75.44 -76.31 -76.98 -78.83 -81.18 -74.80 -74.49 74,71 7578
%Dif fiEne -79.03 -81.06 -81.49 -83.08 -84.96 -79.57 -78.90 7874 -79.03
P%Dif fisolve -68.33 -66.56 -75.90 -74.99 -62.16 -64.69 -65.07 -67.77 -71.06
%Dif firotal -76.49 7748 -80.16 -81.23 -77.93 -75.83 -75.57 -75.99 -77.01
%Dif frmakespan || -0.30 -0.08 -0.01 -0.67 -1.26 -0.51 -0.26 -0.39 -0.93
390
K1 B i i i i i i 1 1
Ko - 10 5 2 1 10 5 2 1
Percent Log 0 10 20 50 100 10 20 50 100
#OPT 373 [377 | 365 | 370 346 | 353 284 | 207 126 | 132 | 369 | 374 359 | 364 327 340 245 | 260
#TIMEOUT || 107|103 | 115 | 110 134|127 196|183 354|348 | 111|106 121|116 153|140 235|220
#NOSOL 0126 0131 2|32 7145 32|101 | 04 1)1 01 1913
BDif fro -80.68 -81.51 -82.14 -83.79 -85.78 -80.55 -80.53 -80.75 -81.85
BDif fne -80.70 -81.52 -82.15 -83.80 -85.79 -80.54 -80.52 -80.73 -81.82
%Dif fibne -84.06 -86.06 -86.53 -87.88 -89.52 -85.04 -84.78 -84.54 -85.07
%Dif fisolve -84.71 -86.54 -84.86 -86.94 -78.93 -85.51 -83.08 -80.76 -80.46
%Dif firotal -84.26 -86.21 -86.26 -87.75 -87.22 -85.20 -84.53 -83.81 84.17
%Dif fmakespan || -0.95 -1.81 -2.25 -3.77 -9.19 -1.46 -2.18 441 -9.07
120
r1 - 1 1 1 1 1 1 1 1
Ko - 10 5 2 1 10 5 2 1
Percent Log 0 10 20 50 100 10 20 50 100
#OPT 222 [241 | 199 [226 176 | 202 88| 108 11|15 | 198233 193|222 139|173 66 | 84
#TIMEOUT || 378 | 359 | 401 | 374 424|398 512|492 589 | 585 | 402 | 367 407 | 378 461 | 427 534 | 516
#NOSOL 10172 | 3|141 5|146 19]175 22[266 | 2|47 3017 54 18] 17
%Dif fuo -80.26 -80.51 -80.75 -81.32 -82.19 -79.34 -78.82 7827 -78.23
%Dif fue -80.27 -80.52 -80.76 -81.34 -82.22 -79.33 -78.80 -78.25 -78.22
%Dif firne -85.32 -87.19 -87.39 -87.70 -88.34 -86.12 -85.44 -84.60 -83.94
%Dif fisolve -80.07 -84.92 -86.69 -85.15 -72.53 -81.57 -83.10 8214 -84.14
%Dif fisolve -84.19 -86.75 -87.29 -87.24 -84.26 -85.26 -84.98 -84.13 -84.07
BDif frmakespan | -7-91 -9.68 -11.59 -15.38 -20.66 -18.46 -13.66 1947 -25.67

a little lower than the weighted average of %Dif figne and %Dif fisorve, Which was corrected
for by calculating the total time separately.
The results in Table 1 show that for instances from j30, the quality of the solutions found

10

by the SAT solver barely differ, the number of proven optimal solutions found within the
60 second timeout differs by at most 6 for OR %Log=100. The makespans found for the
reduced encoding also only have less than 0.1% difference from the standard encoding. Some
bigger differences are present in the size of the encoding and the time to encode or solve,
with the number of variables and clauses of reduced encodings being around 60% smaller
than those of the standard encoding and the time to encode and solve being around 65%
and 25% smaller, respectively. The total time to solve was around 40% to 50% faster by
using the heuristic.

The j60 instances show differences similar to those present for j30 instances between the
quality of the solutions of the two encodings, but with more timeouts and instances without
initial solutions being found. The size is around 75% smaller for the reduced encoding, with
the time to encode and the time to find optimal solutions being about being 80% and 65%
shorter, respectively. For the total time to solve a 75% to 80% speedup was gained.

In the j90 instances a larger increase was found in the number of proven optimal solutions
found by reduced encoding compared to the standrard encoding, especially for the instances
with high %Log. The number of instances that time out or do not have an initial solution
after 60 seconds is again slightly larger. The average difference between makespans is quite
a bit larger than they were for j30 and j60 instances, again with larger differences showing
up for instances with higher %Log. The encoding is shrunk by 80%, and the time to encode
and solve are 85% and 80% less, respectively, for the reduced encoding compared to the
standard encoding. In total the process was around 85% faster by calculating the upper
bound.

Lastly, the j120 instances show the largest difference between the two encodings, the
number of optimal solutions found for the reduced encodings is around 10% higher than
that of the standard encoding. Similarly to the pattern seen between the j60 and j90
instances the number of timeouts is larger again. The difference in makespans ranges from
8% to upwards of 25%, also with higher differences for instances with a higher %Log. The
reduction in encoding size is slightly smaller than for j90 instances with a difference of about
80%. The times needed to encode and solve and their sum have a similar reduction as is
present for j90 instances, with an 85%, 80% and 85% reduction for the reduced encodings,
respectively.

5 Responsible Research

The field of project scheduling problems does not directly involve certain ethical concerns.
There exist negative effects that bad schedules can potentially have on the people that have
to follow the schedule, but these are often related to poor estimations of the duration and
resources necessary to complete tasks [10]. There are, however, several concerns that affect
research on algorithmic scheduling. These concerns were explained in a seminar by Rubén
Ruiz [11], with the main concern being the ability to make fair comparisons between results.
To address these concerns we have given detailed descriptions of our methods, results and
comparisons.

To ensure reproducibility of the experiments that were performed for this paper we have
taken several precautions. The experiments were all performed on the standard single mode
RCPSP instances of the PSPLIB dataset. This dataset was specifically generated with the
purpose of evaluating solution procedures for single- and multi-mode resource-constrained
project scheduling problems [7]. To transform this dataset into RCPSP-Log instances the
procedure explained in [3, p. 585| is taken with the same k; and ko as listed in [3, Tab.

11

2]. Due to a nuance in the definition of OR precedence relations by Coelho and Vanhoucke,
which was not in line with the logical definition of OR relations, we do not compare our
results to theirs.

Another precaution we took is to publish the code used to generate the results and the
results for each individual problem instance to a public repository?, this allows others to
review the code for errors and to rerun the code to verify the validity of the results, or to
benchmark the code on a machine with different specifications. Frequently, comparisons
between execution times are made based on the results table of previous research and the
newly found results, which causes misleading comparisons, since the past benchmarks were
run on older hardware and different software versions providing different computational
power [11]. Comparisons in execution time were done by, whenever applicable, writing code
in the same language and running it on the same machine with the same resources.

Finally all single mode instances of 30, 60, 90 and 120 activities have been solved with
the same code version and the results have been listed for each percentage (10%, 20%,
50% and 100%) of logical constraints. The results are compared by calculating the average
percentage deviation between the makespans we find using the standard and the reduced
encoding. Notably the time needed to solve instances heuristically was added to both the
encoding and the solving time, meaning that the total process speeds up slightly more than
the weighted average of the two percentages. This does give the reduced encoding a slight
disadvantage over the standard encoding, but the advantage is that the encoding and solving
time can be compared in a fair manner.

6 Conclusions and Future Work

The goal of this paper is to study whether problem specific heuristics can provide an ad-
vantage when using SAT solvers for the RCPSP-Log. As presented in the discussion, using
a heuristic to calculate an upper bound to the solution of a problem has proven to signifi-
cantly reduce the size of and time needed to encode and solve an encoding of any single mode
RCPSP instance from PSPLIB. As far as the quality of the results, j30 and j60 instances
show no clear advantage to using the reduced encoding compared with the standard encod-
ing, however, the time needed to reach optimal solutions is significantly less when using the
reduced encoding compared to the standard encoding. Bigger differences were found for
the larger problem instances j90 and j120, where using a reduced encoding allows the SAT
solver to find more optimal solutions and the makespan of solutions found for the reduced
encoding are below those found for the standard encoding by a decent margin. This margin
is most clear for instances of the j120 problem set where makespans for reduced encodings
are 8% to 25% smaller after running the solver for one minute.

Possible future work to expand on the findings presented in this paper, would be to use
different heuristics to calculate multiple upper bounds to the makespan of an instance, after
which the lowest upper bound can be used to limit the size of the encoding. Another
extension to this research could be the addition of assumptions, based on the solution
found by the greedy heuristic algorithm, that the SAT solver can use to construct an initial
solution, this would reduce the time that the SAT solver spends on finding the initial solution
which was already constructed using the heuristic solver. Making use of these assumptions
can further improve the results found for the reduced encoding compared to the standard
encoding. Replacing some of the exact searching performed by the SAT solver with a faster

3https://github.com/MelleSch/RP_Code_Results_RCPSP-Log

12

greedy heuristic search would allow the solving time to be shortened even further. Lastly
we used a timeout of 60 seconds to limit complex instances from taking up more time
than necessary. Despite being able to compare the intermediate solutions, we do miss out
on some interesting information about how well the heuristic reduction helps with solving
these instances. Running these instances with a greater timeout or until a proven optimal
solution is found can add more context to our results.

All in all this paper shows the added value of heuristically computing upper bounds to
reduce the size of RCPSP-Log encodings and increase the speed with which optimal solutions
can be found for problem instances with 30, 60, 90 and 120 single mode activities from the
PSPLIB dataset.

References

[1] D. Debels and M. Vanhoucke. A decomposition-based genetic algorithm for the
resource-constrained project-scheduling problem. Operations Research, 55:457-469, 06
2007.

[2] S. Hartmann and R. Kolisch. Experimental evaluation of state-of-the-art heuristics for
the resource-constrained project scheduling problem. European Journal of Operational
Research, 127(2):394-407, 2000.

[3] M. Vanhoucke and J. Coelho. An approach using sat solvers for the repsp with logical
constraints. European Journal of Operational Research, 249(2):577-591, 2016.

[4] M.E. de Jager. Solving resource-constrained project scheduling problems subject to
no-overlap constraints using boolean satisfiability encoding. Master’s thesis, University
of Groningen, 2021.

[5] M. Jérvisalo, D. Le Berre, O. Roussel, and L. Simon. The international sat solver
competitions. AIMag, 33(1):89-92, 2012.

[6] J.E. Kelley Jr and M.R. Walker. Critical-path planning and scheduling. Papers pre-
sented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference
on - IRE-AIEE-ACM °59 (Eastern), page 160, 1959.

[7] R. Kolisch and A. Sprecher. Psplib - a project scheduling problem library: Or software -
orsep operations research software exchange program. European Journal of Operational
Research, 96(1):205-216, 1997.

[8] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit
for prototyping with SAT oracles. In SAT, pages 428-437, 2018.

[9] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase
1). https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhasel, 2022.

[10] M.P. Nepal, M. Park, and B. Son. Effects of schedule pressure on construction perfor-
mance. Journal of Construction Engineering and Management, 132(2):182-188, 2006.

[11] R. Ruiz. State-of-the-art flowshop scheduling heuristics. https://www.youtube. com/
watch?v=F3Ykmaleqny, 2021. Accessed:2022-6-8.

13

