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Paulraj. The ACMA deals with the beamforming problem associated with constant modu-

lus co-channel signal interference in wireless communication. Co-channel interference occur when
multiple signals are transmitted simultaneously at the same frequency from different sources.
Beamforming is a technique applied in spatial signal processing to separate out individual signals
using an antenna array. ACMA provides an efficient analytical approach to solve beamforming.
It is a blind beamforming algorithm as it does not require any knowledge of the signals and
the channels. The scope of this thesis work is to implement a low cost, low power, embedded
Multi-input receiver application. The Multi-input receiver system shall handle partially and fully
overlapping constant modulus signals from distinct sources. The signals are modulated using a
generic modulation scheme. The Multi-input receiver shall separate out individual signals using
the ACMA (blind beamforming) and demodulate each signal. The system shall be software de-
fined such that the beamforming and demodulator are implemented in software on an embedded
Digital Signal Processor (DSP) platform. The Multi-input receiver system shall be optimized for
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Introduction 1
Multi-input receivers are used in wireless communication to improve communication
performance when there are multiple radio channels transmitted simultaneously. This
technology is based on multiple antennas to receive signals.

1.1 Background

Beamforming is a spatial signal processing technique applied in wireless commu-
nication to extract overlapping signals (co-channel interference) using an antenna
array. Overlapping of signals occur when multiple signals are transmitted at the
same frequency and at the same time from distinct sources. The objective is to
separate out individual signals without interferences. The beamformer computes the
proper weight vector wi so that the individual signals can be derived from the lin-
early combed output of the antennas. This situation can be mathematically described as,

X = A S

where X is the measured data at the antenna array, S is the original source signal,
A is array response matrix. The weight matrix W = A† the pseudo-inverse of A.

Beamforming is called blind beamforming when the weigh vectors are calculated
only from the measured data and without any knowledge of signals or channels. Constant
Modulus Algorithms such as Godard and CMA are generally used for blind beamform-
ing [23]. CMA have the drawback that they are iterative in nature and have limited
performance.

This master thesis work is inspired by the ‘Analytical Constant Modulus Algorithm’
(ACMA) [23] proposed by Alle-Jan van der Veen and Arogyaswami Paulraj. The ACMA
algorithm provides an efficient analytical solution to blind beamforming.

ACMA solution to the blind beamforming problem demonstrates several advantages
over other Constant Modulus Algorithm (CMA) schemes. The conventional CMAs can
detect only one signal from a set of overlapping signals, where ACMA can detect multiple
signals with an upper limit on the number of antennas. A multi-stage (iterative) CMA
can be used to detect more than one signal, but it comes with the price of processing.
Moreover in practice ACMA demonstrates better performance to CMA in detecting
signals. Another advantage is that ACMA requires only a moderate amount of input
signal samples.

1



2 CHAPTER 1. INTRODUCTION

This thesis work involves implementing a low cost, low power, Multi-input receiver
system. The input data packet consists of a binary bit stream (message), Cyclic Redun-
dancy Check (CRC-16) and start & end flags (8 bit). The bit streams (messages) are
of fixed length. CRC are added to this bit stream to detect accidental errors occurring
during transmission. A start flag and end flag are added to this in order to detect a data
packet. The complete message is then modulated using a constant modulus modulation
scheme. The data packets containing distinct messages are transmitted from different
sources at the same frequency and at the same time. This results in partial or full overlap
interference of the signals.

The Multi-input receiver is a software defined radio which can successfully extract
individual signals negating the signal interferences and noise. It has three basic building
blocks; antenna array, tuner module and digital signal processor. The front-end is an
antenna array and the analog tuner module. The tuner module extract the required
frequency band and perform analog to digital conversion. The resulting signals are
processed by the digital signal processor. The DSP performs the blind beamforming
(ACMA) [23] to detect and extract individual signals from the input mixture. The
individual signals are then demodulated. A message is identified using the start flag, end
flags and the length of bit stream and CRC. CRC checks are then applied in order to
detect any possible transmission errors. Finally the valid messages are extracted.

The Multi-input receiver system shall be optimized for the DSP platform in order
to achieve real-time performance in terms of speed and stay within the power budget of
the system. The receiver shall work efficiently in the presence of noise and interferences.

1.2 Scope of work

The Multi-input receiver is software defined as the key components, the beamforming
and the demodulator are implemented in software.

The scope of this thesis work is,

• Understand the Multi-input receiver system. It includes blind beamforming algo-
rithm and demodulator.

• Investigate the Multi-input receiver system for performance optimization in terms
of speed on an embedded DSP platform.

• Implement the Multi-input receiver system on Texas Instruments 674x DSP plat-
form for an antenna array of four (4) antennas.

• Optimize the Multi-input receiver system to achieve real-time performance for
Texas Instruments 674x DSP processor. For the thesis, a reference case has been
defined such that the Multi-input receiver shall process each group of overlapping
signals (maximum of four (4)) in less than 25 milliseconds and the power con-
sumption shall be less than 600 milliwatts.
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• Investigate the performance (speed and power consumption) of Multi-input receiver
system in the presence of noise and overlapping signals for realistic scenarios.

1.3 Research Objectives

The research objectives are,

• Investigate the Multi-input receiver for performance improvement in terms of num-
ber of successful retrievals.

• Investigate the Multi-input receiver (blind beamforming, demodulator) for perfor-
mance optimization on Texas Instruments 674x DSP.

• Investigate the Multi-input receiver power consumption on Texas Instruments 674x
DSP.

1.4 Document Structure

The document is structured as follows: In Chapter 2 we discuss general DSP architec-
ture and discuss the target processor for the Multi-input receiver application, the Texas
Instruments TMS320C6748 floating point processor. The objective is to understand the
DSP architecture for optimization purposes. In Chapter 3 we focus on the blind beam-
forming (ACMA) algorithm. We summarize the work by Alle-Jan van der Veen and
Arogyaswami Paulraj in their paper ‘An Analytical Constant Modulus Algorithm’ [23].
In Chapter 4 we focus on optimizing the Multi-input receiver for the TMS320C6748
DSP platform to achieve real-time performance. We discuss the various optimization
techniques applied and present our experiments and results. We also look at the power
consumption of the system. Finally in Chapter 5 we provide our conclusion and future
scope for this thesis work.
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Digital Signal Processor
Concepts 2
Digital Signal Processors (DSP) are special type of processors designed for computational
intensive signal processing operations. Applications such as video or speech processing
require real-time performance with high computational capabilities. DSPs can provide
these performances with low -cost and low power consumption.

Conventional general purpose processors are designed to execute instructions sequen-
tially. Signal processing applications typically have operations which can be executed
parallel. DSP architecture is designed to exploit this characteristic of signal processing
applications. It is important to understand the DSP architecture in order to optimize
an application on the target application. In this chapter we focus on the architecture of
digital signal processors.

This chapter is organized as follows. In Section 2.1 we discuss concept of digital
signal processing. In Section 2.2 we discuss common DSP algorithms and its mathe-
matical representations. In Section 2.3 we derive the general DSP architecture from the
characteristics of signal processing algorithms. We discuss the functional units, memory
architecture, addressing modes and hardware pipelining. Finally in Section 2.4 we dis-
cuss the target platform for the Multi-input receiver, Texas instruments TMS320C6748
floating point DSP processor.

2.1 Digital Signal Processing

Signal Processing deals with operations on or analysis of signals in discrete or continuous
time domain. Examples of signals are sound, images, control system signals, telecom-
munication signals, electrocardiogram, sonar and radar signals, seismic data, biomedical
signals and many others.

Analog to Digital 
Converter 

Digital to Analog 
Converter 

Digital Signal 
Processor 

Analog 
Signal 

Analog 
Signal 

Figure 2.1: A simple digital signal processing system

The traditional method of signal processing is the Analog Signal Processing. Analog
signal processing is the signal processing performed on analog signals by using analog

5



6 CHAPTER 2. DIGITAL SIGNAL PROCESSOR CONCEPTS

components such as resistors, capacitors, inductors, transistors and amplifiers. Analog
stands for parameters such as voltage or current is mathematically represented as a set
of continuous values. Examples of analog operations are convolution, Fourier transform
and Laplace transform. Examples of analog signal processing are bass, treble and volume
control filters in HiFi equipments.

Digital Signal Processing (DSP) is an alternate method to process analog signals. In
DSP, the analog signals are converted into digital signals. Digital signals are sequence
of binary numbers which represents the real world analog signals. They are easy to
store in memory and process using a microprocessor. Numerical operations can be easily
applied to the digital signal in order to change, enhance or modify the signal. It gives
the flexibility to perform complex signal processing tasks much easier than by means of
analog circuit. Once the digital signal is processed it can be converted back to analog
form.

Figure 2.2: ADC: Sampling and approximation

The steps involved in digital signal processing are shown in Figure 2.1. The analog
signals are converted into digital domain by an analog-to-digital converter (ADC) circuit.
The ADC uses sampling and approximation as shown in Figure 2.2, where the analog
signals are sampled at specific time instances. The analog samples are measured using
approximation circuit and converted into numerical (digital) format. The digital signal
is processed by the Digital Signal Processor. Finally the digital signals are converted
into analog format by using a digital-to-analog converter (DAC) circuit.

Digital signals can be proceed using general purpose (sequential) processors, but this
may result in slower processing rate. Most of the signal processing applications have
real-time performance requirement. The real-time [15, 17] constraints are based on the
application. For example a speech processing application has a signal frequency of 4 KHz.
According to Nyquist theory this signal has to be sampled at 8 KHz or higher in-order
to produce non-corrupt (non aliased) samples. Let us assume the sampling frequency
is 10 KHz. Now the time period between successive samples is 100µs. If there are 100
instructions each instruction must execute in 1µs to meet the real-time requirements.
The sampling frequency for music can be for example 48 KHz, Video Phone 6.5 MHz,
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TV 27 MHz, and HDTV 144 MHz. As you can see the processing requirements are
getting more and more demanding. To address the high performance requirements of
DSP applications the digital signal processors have parallel architecture.

2.1.1 Advantages and Disadvantages of DSP

DSP has many advantages over analog signal processing which makes it a popular choice
for specific applications.

1. Digital samples are easier to manipulate using hardware and software than tra-
ditional analog techniques. It is able to provide better levels of signal processing
than possible with analog hardware alone.

2. Digital Signal Processing is more deterministic, robust and flexible.

3. Digital Signal Processing is more reliable as the processing is not affected by the
temperature or age of the components.

4. It is easy to update a digital signal processor by updating its software.

5. In Digital Signal Processing we can implement functions which are not possible with
analog hardware. FIR filter is an example of a digital signal processing function.

Digital Signal Processing has the following disadvantages;

1. Since the digital samples are approximations of the original analog signal it is not
possible to provide the perfect demodulation, filtering or other functions.

2. It can be more expensive than the analog solutions, hence in some cases it may
not provide the most cost effective solution.

2.1.2 Classification of DSP

Digital Signal Processing elements can be classified based on its evolution.

• Discrete logic: The first generation of digital signal processing tools was based
discrete logic gates. They were implemented using bipolar SSI, MSI technology.
They were used for non-real time applications.

• Building block: The next generation DSPs were based on building blocks such
as single chip bipolar multiplier and Flash ADC. They were used for digital com-
munication and military radars.

• Single Chip DSP: Single Chip DSPs with its own microprocessor architec-
ture based on NMOS/CMOS technology. They were used in control systems and
telecommunications.

• Function/Application specific chips: These DSPs are based on vector pro-
cessing and parallel processing. They find applications in computers and commu-
nications.
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• Multiprocessing: These is advanced multiprocessing DSPs based on Very Long
Instruction Word (VLIW) or Multiple Instructions Multiple Data (MIMD) tech-
nology. They are used in high end video/image processing.

• Single-chip multiprocessing: These are low power multi-processing single-chip
DSPs. They find applications in Wireless devices and Portable multimedia devices.

• SoC multiprocessing: The advanced DSPs are low power multiprocessing
System-on-Chip. They find applications are low power portable devices such as
high end mobile phones.

2.1.3 DSP Applications

Digital Signal Processors are widely used in many signal processing applications where
high processing is required at low cost and low power consumption. They are designed
to process multiple instructions simultaneously. They typically run one program unlike
general purpose processors. DSP applications typically have hard real-time constraints.

DSPs find applications in many areas. They are widely used for multimedia applica-
tion for audio/video processing. They are used in Televisions, Digital Cameras, Mobile
phones and other portable devices. They are widely used in Networking and Telecom-
munication such as cellular telephony. They are used for medical applications such as
image processing. They are used in military, industrial control, storage products etc.
They are also used for Speech coding, Speech recognition, Speech synthesis, identifica-
tion high end audio systems, Audio equalization, Noise cancellation, Modems, Ambient
Aquatic emulations, Audio/Video editing and mixing, Navigation, Visual systems such
as security cameras, Image manipulations, beamforming, Spectral Estimation etc.

2.2 DSP Algorithms

Typical analog signal processing algorithms are convolution, Laplace transform, Fourier
transform etc. When the signals are converted into digital domain, digital signal process-
ing algorithms are applied on the digital signals. DSP algorithms are the counterpart of
its analog signal processing algorithms. Common DSP algorithms are Discrete Fourier
Transforms (DFT), Fast Fourier Transforms (FFT), convolution, correlation, digital fil-
tering (FIR, IIR), searching paths for decision trees in finite state machine (FSM) di-
agrams etc. The architecture of the Digital Signal Processor and its Instruction Set
Architecture (ISA) are derived from the signal processing operations [18]. So it is im-
portant to understand the basic structure of signal processing algorithms to design DSP
hardware.

Most DSP algorithms such as FFT, convolution, filters can be represented in simple
form using sum-of-product equation as;

Y =
N∑

n=1

An ∗Xn (2.1)
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2.2.1 Classification of DSP Algorithms

DSP algorithms can be classified based on their usage and their implementation.

Based on the usage DSP algorithms are classified as

• Time domain: Time domain signals are where the information is encoded in the
shape of the waveform of the signal. Time domain algorithms are used to process
these signals. Operations include DC removal, waveform shaping etc.

• Frequency domain: In frequency domain signals the information is encoded in
the amplitude, frequency and the phase of the sinusoidal components which con-
stitutes the signal. Frequency domain algorithms process these signals to separate
frequency bands from one another.

• Custom: Custom algorithms are those which are used for specific requirements
other than time and frequency domain operations.

Based on the implementation DSP algorithms are classified as

• Recursive: They have a feedback connection from output to the input signal.
Example of recursive algorithm is Infinite Impulse Response (IIR) filter.

• Non recursive: Non recursive filters have no feedback connection from output
to input. Examples of such filters are convolution, Finite Impulse Response (FIR)
filter. They have better performance than recursive filters but they are slower in
nature.

2.2.2 Examples of DSP operations

Let us consider some common DSP algorithms and its mathematical representations.

Finite Impulse Response (FIR) filter: It is a discrete time filter used for many
applications such as speech or image processing. The FIR filter is defined as;

y[n] =

N∑
i=0

hi ∗ x[n− i] (2.2)

x [n] is the input signal y [n] is the output signal, hi are the filter coefficients, also known
as tap weights, and N is the filter order – an Nth-order filter has(N+ 1) coefficients.

Infinite Impulse Response (IIR) filter: IIR is defined as;

y[i] =

M−1∑
k=1

a[k] ∗ y[i− k] +

N−1∑
k=0

b[k] ∗ x[i− k] (2.3)

x [n] is the input signal y [n] is the output signal, ai,bi are the filter coefficients.
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Discrete Fourier Transform(DFT): It is used for spectral analysis in the fre-
quency domain.

y[k] =
N−1∑
n=0

Wnk
N ∗ x[n]; where W = e

−2jπ
N (2.4)

x [n] is the input signal in time domain. y [n] is the output signal in frequency domain.
for k=0,1,2,...,N-1

Inverse Discrete Fourier Transform(IDFT):

x[n] =
N−1∑
k=0

W−nkN ∗ y[k]; where W = e
−2jπ
N (2.5)

for n=0,1,2,...,N-1

Fast Fourier Transform(FFT): It is an efficient method for finding the DFT.

Discrete Cosine Transform(DCT) and Inverse DCT: Is commonly used in
video compression.

y[k] = e(k)

N−1∑
n=0

cos[
(2n+ 1)kπ

2N
] ∗ x[n]; for k = 0, 1, 2..N − 1 (2.6)

x[n] =
2

N

N−1∑
k=0

e(k) ∗ cos[ (2n+ 1)kπ

2N
] ∗ y[n]; for k = 0, 1, 2..N − 1 (2.7)

From the above examples it is obvious that the DSP algorithms can be represented
in simple sum-of-product equations. The basic operations needed to implement sum-
of-product equations are multiplication and addition. These operations are repeated a
number of times (looped) for each sample. To design DSP hardware one has to provide
these basic functionalities along with storage for input samples and coefficients. The
main design goal of a Digital Signal Processor is to provide high speed functionality and
high throughput with minimal hardware complexity [22].

2.3 DSP Architecture

In this section we discuss the basic digital signal processor architecture and the archi-
tecture features in detail.

Special Purpose DSP processors (ASICs): They have specific hardware de-
signed for 1) the execution of specific DSP algorithms or 2) execution of specific
DSP applications. Examples of algorithm specific DSP hardware are FFT processor
(PDSP16515A) and programmable FIR filters (VPDSP16256). Example of application
specific DSP hardware is Mitel's multi-channel telephony voice echo canceler (MT9300).
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General Purpose DSP processors: They are high speed general purpose pro-
cessors with hardware and instruction set optimized for execution of DSP operations.
Examples of general purpose DSP processors are Texas Instruments TMS320C64x and
Analog Devices ADSP21xxx SHARC processors. In this work focus on general purpose
DSP processors.

2.3.1 High level Block diagram

Digital Signal Processor 

Memory 

Input Digital 
Signal X[n] 

Algorithm 
Coefficients A[n] 

Output Digital 
Signal Y[n] 

Functional Units 

Bus 

A[n] X[n] 

Y[n] 

Figure 2.3: High level block diagram of a DSP processor derived from the DSP algorithms

From the previous section we have seen that the DSP algorithms are represented as
the sum-of-products equation

Y =
N∑

n=1

An ∗Xn (2.8)

Where X[n] is the input signal, A[n] are algorithm coefficients and Y[n] is the output
signal in digital format.

The high level block diagram of a DSP processor derived the Equation 2.8 is shown
in Figure 2.3. The DSP is interfaced with the memory where the input signals, the
coefficients and the output signals are stored. It reads A[n] and X[n] from the memory
and calculates the output signal Y[n]. The output is then saved to the memory.

2.3.2 Functional Units

Most DSP algorithms can be represented as sum-of-products Equation 2.8. The ba-
sic functional unit required for this operation is a hardware Multiplier which can
multiply two numbers Ai and Xi. Once the multiplication is completed we need an
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Adder/Subtracter functional unit to perform the summation. It is typically implemented
with an Arithmetic and Logic Unit(ALU) which can additionally perform logical oper-
ations like AND,OR and XOR. Now we need Storage for holding the variables Yi, Ai

and Xi. We can use internal registers (accumulator) as the storage for temporary vari-
ables needed for computation. The easiest way to implement such a DSP hardware is a
Multiplier and Accumulator (MAC) unit is shown in Figure 2.4.

The multiplication of two n bit numbers will produce a 2n bit result. It may cause
overflow of the result. To avoid such situation either a wider accumulator could be used
or perform a shift and round adder before the ALU as shown in Figure 2.4.

Figure 2.4: Multiplier and Accumulator (MAC) Functional Unit. Wider Accumulator
MAC and sift right and round product MAC

The MAC functional unit of the first commercial DSP processor, Texas Instruments
TMS32010 is shown in Figure 2.5.

Figure 2.5: Texas Instruments TMS32010 processor

In programing when an operation or a sequence of operations are to be performed
a number of times, it is a common practice to use a loop mechanism in order to avoid
repetitive code. Using a loop helps to reduce the code size and hence to save the valuable
program memory. The advanced DSPs [17] provide additional functional unit to perform
the branching/looping operation. It allows you to set the loop counter and increment or
decrement the loop counter through instruction. Based on the value in the loop counter
it facilitates jump or conditional jump to a different location in the program sequence.
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Another functional unit commonly seen in commercial DSPs are the load/store func-
tional unit. General purpose CPUs supports Complex instruction set computing (CISC)
which allows direct addressing mode where we can use a memory address as operands.
For example, MOV A,30h instruction copies the content of memory location 30h to the
accumulator. Most of the advanced DSPs uses load/store Reduced instruction set com-
puting (RISC) Architecture [17,19]. In this operations are performed on the data in the
following way;

1. Load data from the memory to the internal registers.

2. Perform operations on the data stored on the internal register using functional
units.

3. Store the result from internal register to the memory.

Figure 2.6: Functional Units in advanced load/store RISC based DSPs. TI TMS320C6x
Processing Unit [17]

The load and store operations are performed using indirect addressing mode(using
pointers) The advantage of load/store based RISC architecture is that it makes the hard-
ware simpler and programming easier and efficient. Texas Instruments DSP processors
and Analog Devices Blackfin processors are examples of RISC DSP processors.
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The advanced DSPs have separate functional units to perform various operations in-
stead of conventional MAC unit. For example the functionals unit for an advanced Texas
Instruments TMS320C6x processor is shown in Figure 2.6. It has 8 functional units. In
this diagram M1, M2 are the Multiplication units, L1, L2 are the ALUs, S1, S2 are the
Branching units and D1, D2 are the Load/Store unit. All these functional units are
capable of performing 32 bit operations. A and B are two Register files, each containing
16, 32-bit registers. Such architecture is capable of executing up to 8 instructions in a
single clock cycle.

DSP functional units can be implementation as fixed point or floating point. Fixed
point operations are faster than floating point operations as it requires less hardware
resources (logic gates). Functional units may support additional features like modulo
arithmetic, saturation, rounding, single instruction multiple data operations. More de-
tails about the TI TMS320C6x DSP platform are given in Section 2.4.

2.3.3 DSP Architecture Features

In this section we discuss the architecture features of digital signal processors. We
discuss the memory architecture in DSPs, the specialized addressing modes, specialized
instructions and hardware pipelining used in DSPs.

2.3.3.1 Memory Architecture

We have seen from the DSP architecture that they are designed to perform multiple
operations simultaneously. One of the major bottlenecks in DSP processor is transferring
large amount of data (program instruction and operands) to and from the memory to
cope up with the computation speed [19]. For example if we want to multiply two
numbers we need to fetch the program instruction as well the two operands. If we are
executing 8 such instructions in parallel, it needs to fetch 8 instructions and 16 operands
at each cycle.

Figure 2.7: Von Neumann architecture; single memory for instructions and data [19]

The traditional Von Neumann architecture [19] is shown in Figure 2.7 has common
instruction and data memory. It is a satisfactory solution when instructions are exe-
cuted in serial fashion. For parallel execution of instructions as in DSPs, the Harvard
Architecture [19] shown in Figure 2.8 provides better bandwidth to the memory. It uses
separate instruction(program) and data memory and with separate bus connections to
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each. This dual bus architecture allows the processor to fetch program and data at the
same time. Most modern DSPs use the dual bus architecture.

Figure 2.8: Harvard Architecture; Separate memory for instructions and data [19]

2.3.3.2 Addressing Modes

CPUs have several addressing modes supported by their instruction set architecture
(ISA). Addressing modes define how the processing unit can reach an operand defined in
an instruction in its machine language. The addressing mode specifies how to calculate
the effective memory address of an operand.

Figure 2.9: Address Calculation Unit for DSPs

Typically general purpose processors support many addressing modes, where a DSP
processors support a limited set of addressing modes. DSPs typically implement dedi-
cated address generation Units. In this section we discuss briefly the various addressing
modes supported by the DSPs.

The most common addressing modes supported by DSPs are immediate and displace-
ment addressing modes. MOV A,#20h is an example of immediate addressing. This
instruction stores the immediate value mentioned to the register A. Add R4, 100(R1)
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is an example of displacement addressing mode where the content of memory address
R1+100 is added with content of register R4.

Another most common addressing mode supported by DSPs are register indirect . In
load/store architectures [17] register indirect addressing is the only way to access memory.
In this data is loaded from the memory using pointers and stored in its internal register.
Operations are performed on the data saved in its internal register. The result is stored
back to the memory from internal register using pointers.

Auto-increment/Auto-decrement register indirect is another addressing mode sup-
ported by DSPs. For example in LW R1,0(R2)+ loads the content of memory at address
stored in register R2 to register R1 and increments the pointer R2 to address the next
memory location. This addressing mode is very effective to access data inside a loop.

The bit-reversed addressing mode to access circular buffers [19] are another com-
mon addressing mode in DSPs. Some algorithms such as Infinite Impulse Response
(IIR) filters perform better in multiple stages. Multiple stages require circular buffers to
store intermediate data. When DSPs are used for Fast Fourier Transforms (FFT) the
bit-reversed addressing mode into the circular buffers provides faster execution of the
algorithm. In bit reversed addressing mode subsequent address are generated by revers-
ing the address bits from LSB to MSB. Another special addressing mode supported by
DSPs are the modulo(circular) addressing mode. A typical address calculation unit for
DSPs is shown in Figure 2.9. It supports modulo and bit-reversed addressing. It is often
duplicated to calculate multiple addresses per cycle.

2.3.3.3 Special Instructions

In this section we discuss the typical DSP instructions. In DSPs the most common
instructions are Multiplication and Addition. All DSPs support multiplication as a single
instruction instead of being implemented using other instructions. Addition/Subtraction
is supported through ALUs which can perform logical operations such as AND, OR,
XOR etc. Most DSPs support MAC instructions which are the basic element in DSP
algorithms.

DSPs have branch/loop instructions typically supported by the hardware to reduce
the branch loop latency. Conditional branching instruction is commonly supported by
DSPs. They also support saturated shift operation arithmetic.

DSPs support specialized complex instructions [17] to support signal processing al-
gorithms. For example a 32 bit adder could perform two 16-bit addition or four 8-bit
additions to make the computation faster for applications which has data width of 16-bit
or less.

2.3.3.4 Hardware Pipelining

In-order to improve the performance DSPs provide parallel hardware. Typically DSPs
are capable of fetching, decoding and executing multiple instructions in parallel. For
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example the Texas Instruments TMS320C6x architecture has 8 functional units, which
means it can fetch 8 instructions, decode them and execute them simultaneously. One
of the most important features in a processor to speed up the execution is pipelined
architecture. In this section we discuss the concepts of Pipelining and explain how it is
used in DSPs.

2.3.3.5 Pipelining

The basic stages involved in executing an instruction are 1) Instruction fetch (F) 2)
Instruction Decode (D) 3)Instruction Execute (E). Let us assume that each step takes
one cycle to execute.

F1 D1 E1 F2 D2 E2 F3 D3 E3 

F1 D1 E1 F4 D4 E4 F7 D7 E7 

F2 D2 E2 F5 D5 E5 F8 D8 

F3 D3 E3 F6 D5 E6 F9 

 Non pipelined  

Pipelined  

Pipeline full 

Figure 2.10: Concept of Pipelining

Conventional processors perform all these steps in a serial (non-pipelined) fashion as
shown in Figure 2.10. An instruction is fetched, decoded and executed and the steps are
repeated for the next instruction. It is called the non-pipelined architecture. As you can
see each instruction takes 3 one cycle to execute. If there are 10 instructions it will take
30 clock cycles to complete the execution.

Modern processors uses parallel hardware (separate functional units, memories and
buses) which enables it to overlap these stages in time as shown in Figure 2.10. For
example in the 1st clock cycle the first instruction is fetched. In the 2nd clock cycles while
the the first instruction is decoded, the second instruction can be fetched. From third
cycle onwards one instruction can be fetched, decoded and executed in every clock cycle.
This is called the pipelined architecture where several instructions can be in different
stages of their execution cycles. The pipeline is full when all the stages are operating
simultaneously. The benefit of the pipelined architecture is that when the pipeline is full
each instruction takes only one cycle to execute. To execute 10 instructions, it takes 12
cycles instead of 30 cycles.

The advantage of pipelining is faster execution. The disadvantage is that whenever
there is a branching or interrupt the pipeline has to be flushed; discarding the already
fetched instruction and start over again with new fetch.
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2.3.3.6 Pipelining in DSPs

Pipelining in DSPs is complex than its definition in the previous section. In this sec-
tion we explain how the pipelining is implemented in a Texas Instruments TMS320C6x
VelociTI [17,19] fixed point processor architecture.

The basic phases in pipelining fetch, decode and execute are divided into stages and
each stage is pipelined.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S1 PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 PG PS 

S2 PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 PG 

S3 PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 

S4 PG PS PW PR DP DC E1 E2 E3 E4 E5 

S5 PG PS PW PR DP DC E1 E2 E3 E4 

S6 PG PS PW PR DP DC E1 E2 E3 

S7 PG PS PW PR DP DC E1 E2 

S8 PG PS PW PR DP DC E1 

S9 PG PS PW PR DP DC 

S10 PG PS PW PR DP 

S11 PG PS PW PR 

S12 PG PS PW 

Pipeline Full 

Figure 2.11: Advanced Pipelining used in TI TMS320C6x Architecture [19]

The program fetch phase consists of 4 stages,

• PG: Program address generates. It computes the address of the next fetch packet.

• PS: Program address sends to memory.

• PW: Wait for the memory to be ready to send the fetch packet.

• PR: Program fetch packet receives.

The decode phase has 2 stages,

• DP: Instruction dispatch. TI uses a concept of fetch packets where each packet
consists of up to 8 instructions. Fetch packets are separated into execute packets.
The instruction of execute packets are routed to the decode unit of the appropriate
functional unit.



2.4. TARGET PLATFORM: TI 674X DSP 19

• DC: Instruction decode. In this stage each instruction is decoded.

The execution phase is divided into 6 stages (10 stages for TMS3206X floating point
architecture). Each instruction requires a fixed number of stages to complete the exe-
cution. The 6 execution stages link directly to the latency involved in executing each
instruction. For example an addition can be performed in 1 cycle without any latency.
A multiplication instruction has a latency of 1 cycle and it takes 2 cycles to complete the
execution. Similarly a load instruction has a latency of 4 cycles and branch instruction
has a latency of 5 cycles.

In the TMS320C6x VelociTI Architecture [17] the pipeline has 12 stages consist of 4
fetch stages, 2 decode stages and 6 execution stages as shown in Figure 2.11.

2.4 Target Platform: TI 674x DSP

So far in this chapter we have studied the generic architecture of DSP processor and how
they are derived. We have also looked into the processing units of Texas Instruments
TMS320C6x processor and its pipeline organization. In this section we provide some
information specific to the target platform for our Multi-input receiver application.

The target platform chosen for our application is Texas Instruments TMS320C6748
VLIW DSP core. It is a floating point DSP processor, compatible with 64x+ fixed point
DSP processor. It means that the 674x core can execute both floating point and fixed
point instruction. From the optimization perspective, sometimes fixed point arithmetic
can provide better performance. The processor can run at 375/456 MHz clock frequency.

The block diagram of the target platform is shown in Figure 2.12 [25]. The basic
functional units of the system are shown in Figure 2.6. The 674x DSP Central Processing
Unit(CPU) consist of 8 functional (execution) units, two register files and two data paths.
The two general purpose register files A and B contain thirty two 32-bit registers each.
It can be used for storing data as well as data address pointers (674x DSP has load/store
architecture). The data types supported are packed in 8 bit, 16 bit, 32 bit, 40 bit and
64 bit data.

The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, .S2) are capable of
executing one instruction every clock cycle. .M functional unit perform the multiplica-
tion operations. .L performs all the arithmetic and logical operations. .S performs the
branching operations. .S can also be used for arithmetic and logic operations. .D is used
for loading and storing data between register files and memory.

674x DSP can perform both fixed point and floating point arithmetic.

The capabilities of .M units for performing floating point operations on single preci-
sion (SP) and double precision (DP) arithmetic are,

• Two SP x SP to produce SP in every clock cycle.



20 CHAPTER 2. DIGITAL SIGNAL PROCESSOR CONCEPTS

• Two SP x SP to produce DP in every two clock cycles.

• Two SP x DP to produce DP in every three clock cycles.

• Two DP x DP to produce DP in every four clock cycles.

Figure 2.12: Functional Block Diagram of the target platform - TI 674x DSP [25]

The .M unit can perform the following fixed point arithmetic in one clock cycle,

• Two 32 x 32

• Four 16 x 16

• Eight 8 x 8
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The .L unit can perform parallel operation on each execution units. For example it
can perform one 32 x 32 or two 16 x 16 or four 8 x 8 arithmetic and logic operation on
each execution unit per cycle.

Figure 2.13: Internal block diagram of TI 674x DSP [24]

The .S unit supports SPLOOP, a small instruction buffer in the CPU which helps
the software pipelining of loops. In software pipelining method multiple iterations of the
loop are executed in parallel.

The DSP subsystem and the internal memory bandwidth are shown in Figure 2.13.
The features of the C674x DSP CPU subsystem are,

• 32KB L1 Program (L1P)/Cache (32KB).
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• 32KB L1 Data (L1D)/Cache (32KB)

• 256KB Unified Mapped RAM/Cache (L2)

• Boot ROM (cannot be used for application code)

• Little endian

2.5 Summary

In this chapter we have discussed the Digital Signal Processor concepts. We have focused
on the design of DSP hardware. We have seen that DSP hardware is derived from basic
DSP signal processing algorithms. The core processing unit of a DSP is a multiplication
and accumulation (MAC) unit. The rest of the DSP architecture is designed to keep
the MAC unit busy. In order to achieve the high computation requirements of todays
applications, DSPs adapt multiple functional units, multiple memories and buses to per-
form operations in parallel. It also uses specific addressing modes to suit faster signal
processing algorithm implementations. It efficiently uses hardware pipeline for its advan-
tage. Additionally advanced DSPs make use of extended parallelism (Single instruction,
multiple data (SIMD) processing, and Very-long-instruction-word (VLIW) processing)
to achieve increased computational performance. Todays DSP provide low-cost solution,
high performance, low power consumption and low latency, which makes them an ideal
co-processor for portable devices. Understanding of DSP processor architecture is very
important when optimizing the code for performance on a given target platform.



An Analytical Constant
Modulus Algorithm 3
Many communication signals have the constant modulus (CM) property. Frequency
modulation (FM), Phase modulation (PM), Frequency-shift keying (FSK), Phase-shift
keying (PSK) are example of constant modulus signals. If the signals are corrupted
by noise/interference, the CM property is lost. Constant modulus algorithms (CMA)
can restore this property by finding a filter W and without having knowledge of the
sources. In this chapter we focus on a new approach an Analytical Constant Modulus
Algorithm (ACMA).

This chapter we briefly summarize the work of Alle-Jan van der Veen and Aro-
gyaswami Paulraj [23]. In Section 2.1 we describe the beamforming problem for constant
modulus co-channel overlapping signals. We also briefly describe the generic solutions
using Constant Modulus Algorithms (CMA) to separate out individual signals. In Sec-
tion 2.2 we describe the proposed ACMA algorithm. Finally in Section 2.3 we discuss
the advantages of ACMA algorithm which makes it suitable for our application.

3.1 Beamforming

Figure 3.1: Blind beamforming scenario [23]

23
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Consider a number of sources at distinct locations transmitting signals at the same
frequency and at the same time as shown in Figure 3.1. It causes co-channel interference
of the signals. Beamforming is a method used in spatial signals processing to receive
individual signals negating the interferences based on its direction of arrival. It requires
an antenna array to receive the signals. Beamforming is done by means of computing
a weight vector wi . If the weight vectors are solved only from the measured antenna
array data (without any information about the signals, channel or direction of arrival)
it is called blind beam forming [23].

This scenario can be mathematically represented as,

X = A S,

Where the matrix X contains n samples from the m antennas. X has a dimension
of m x n. A is the array response matrix of size m x d, where d is the number of signal
sources. S is a d x n source signal matrix. Each row si corresponds to signal from
respective source. This model describes the stationary propagation environment as the
multiple source signal paths have negligible delay. The beamforming problem can now
be visualized as structured matrix factorization problem; given X, find the factors A and
S satisfying certain structural properties. Once A is known we can calculate W = A†,
the pseudo-inverse of A. The weight vectors wi is given by the rows of the matrix W [23].

Constant Modulus Algorithms (CMA) [20, 23] are typically used to solve the blind
beamforming problem for multi-input data.

The CMA algorithms have several disadvantages in the retrieval of all the individual
signals present in the channel. The CMA algorithm can filter out one of the interfering
signals rather than all the desired signals. To capture more than one signal, a multi stage
(iterative) CMA is required. In a multi-stage CMA implementation, after detecting the
first signal, it is removed from the source signal to detect the second signal. This process
is repeated to retrieve more source signals. The number of signals retrieved by CMA
algorithm is limited by the number of antennas. Moreover they are noisy and slow.

3.2 Analytical Constant Modulus Algorithm (ACMA)

A new approach was proposed for constant modulus factorization problem [23]. It is
treated as a generalized Eigenvalue problem and is solved analytically.

This method uses a deterministic algorithm and uses only a modest amount of sample
from the antenna array. For d <= m sources, and without noise, n > d2 samples are
sufficient to compute A and S exactly. For n > d2, it is possible to detect the number
of CM signals present in X. With X distorted by additive noise, a generalization of the
algorithm is robust in finding S, even when n is quite small.

“The algorithm is derived by assigning the weight vector w such that wX is a con-
stant modulus signal. This gives n quadratic equations in the entries of w are linearized
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by writing in terms of the Kronecker product w⊗w′. The Kronecker product is a vector
with d2 entries (w’ is the complex conjugate of w). If d2, then the dimensionality of
the solution space of this linear system of equations indicates how many constant mod-
ulus signals are present in X. Most solution vectors of the linear system do not have
the Kronecker structure w ⊗ w′. The core of the constant modulus problem is to find
those which possess a Kronecker structure w ⊗ w′. This problem can be transformed
into a generalization of an eigenvalue problem by the simultaneous diagonalization of
a number of matrices. In the absence of noise, this problem has an essentially unique
solution which can be found using standard linear algebra tools. In the presence of noise
an approximate simultaneous diagonalization can be be found” [23]. The paper [23]
propose an algorithm which shows quadratic convergence.

The number of signals detected by ACMA is limited by the number of antennas.

3.3 Advantages of ACMA

In this section we discuss the advantages of ACMA algorithm which makes it well suitable
for our multi-input application.

Typical CMA algorithms can extract only one signal. To extract more than one sig-
nal, a multi-stage (iterative) CMA implementation is required. This process is iterative
and requires more processing. Moreover this multi-stage approach has practical limita-
tions in terms of number of signals it can retrieve. ACMA algorithm can extract all the
signals in single iteration.

ACMA algorithm requires only a modest amount of antenna array input samples. In
idle case (in the absence of noise) n > d2 (d is the number of source signals) samples
are required to calculate the input signals. Even when the input signal is distorted by
addictive noise, the algorithm is robust for small values of n.

ACMA is a block algorithm applied to a collection of samples. It does not process
sample by sample which saves computations. It is a blind beamforming algorithm, which
does not require antenna calibration or information about the signals or channels. It is
robust in the presence of noise. In short the ACMA algorithm can provide a simple
solution to the beamforming problem.

3.4 Summary

In this chapter we have studied the beamforming problem to separate out same frequency
overlapping signals using an antenna array. The CMA algorithms, which are used to
solve the blind beamforming problem have many disadvantages. The ACMA algorithm
describes an efficient way to solve the blind beamforming problem using an analytical
approach. This new approach has may advantages which makes it a good candidate for
our multi-input problem.
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Mapping, Optimization And
Results 4
The Multi-input receiver application extracts partially and fully overlapping co-channel
constant modulus signal using the blind beamforming (ACMA) algorithm. The applica-
tion was first successfully simulated in MATLAB to prove the concept of blind beam-
forming. In this chapter we discuss the mapping of Multi-input input receiver application
using software on an embedded DSP platform. We use an antenna array of four (4) an-
tennas as the front end, which allows detecting up to four signals. We focus on various
optimization techniques to achieve real-time performance on the selected DSP platform.

In Section 5.1 we briefly describe our intended Multi-input receiver application and
more importantly the performance requirements on the target DSP platform. In Section
5.2 we justify our selection of the target platform, the Texas Instruments TMS320C6748
floating point DSP processor. In Section 5.3 we describe the implementation process of
the Multi-input receiver application on the target platform. In Section 5.4 we explain the
various optimization techniques applied to archive real-time performance. We present our
experiments and provide the results and analysis. We also study the power consumption
of the system.

4.1 Application

The input data packet consists of a binary bit stream (message), Cyclic Redundancy
Check (CRC-16) and start & end flags (8 bit). The bit streams (messages) are of fixed
length. CRC are added to this bit stream to detect accidental errors occurring during
transmission. A start flag and end flag are added to this in order to detect a data packet.
The complete packet is then modulated using a constant modulus modulation scheme.
The signals containing distinct messages are transmitted from different sources at the
same frequency and at the same time. This results in partial or full overlap interference
of the signals.

The Multi-input receiver is a software defined radio which can successfully extract
individual signals negating the signal interferences and noise. It has three basic building
blocks; antenna array, tuner module and digital signal processor. The front-end is an
antenna array and the analog tuner module. The tuner module extract the required
frequency band and perform analog to digital conversion. The resulting signals are
processed by the digital signal processor. The DSP performs the blind beamforming
(ACMA) [23] to detect and extract individual signals from the input mixture. The
individual signals are then demodulated. A packet is identified using the start flag, end
flags and the length of bit stream and CRC. CRC checks are then applied in order to
detect any possible transmission errors. Finally the valid messages are extracted.

27
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The length or duration of a data packet is referred as a slot. The number of signals
extracted by the ACMA algorithm is limited by the number of antennas in the antenna
array [23]. Our current implementation uses an antenna array of four (4) antennas
which can be easily extended and configured using software. As a result the Multi-input
receiver described in this thesis can detect up to a maximum of four (4) packets per slot.

4.1.1 Requirements

The Multi-input receiver implementation on the embedded DSP platform shall adhere
to the following requirements.

• Execution Speed: The Multi-input receiver shall consume less than 25 ms per
slot. Which means it shall perform beam forming and demodulation up to four
signals in that time period.

• Power: The power budget of the target platform is limited to 600 mW.

• Input: The Multi-input receiver needs to be tested for realistic inputs. The real-
istic input consists of signal interferences and noise. The major factor contributing
to the noise is the ‘thermal noise’ (Johnson-Nyquist noise). It is the electronic noise
generated by the thermal agitation of the electrons inside the electronics compo-
nents of the receiver such as the antenna arrays, front end amplifiers and more.
Noise figure which is the degradation of the signal-to-noise ratio (SNR) caused by
components in a radio frequency (RF) signal chain, can also affect the input signal.
Signal interference can vary from a few to hundred of signals.

4.2 Embedded Platform

The receiver system is a software defined radio. The target processor chosen was Texas
Instrument TMS320C6748 floating point DSP processor. The development platform
chosen was OMAP L-138 [6]. OMAP L-138 consists of an ARM9 processor and Texas
Instruments TMS320C6748 (674x) DSP processor implemented on a single chip. The
functional block diagram of the OMAP L-138 is shown in Figure 4.1. We have used
only the DSP core for our application. The major reasons for choosing the TI 674x DSP
platform were:

• The receiver system requires high computation performance and low power con-
sumption. The performance constraint dictate each packet to be processed and de-
modulated in less than 25 ms. The DSP processor can execute up to 8 instructions
in parallel at 375/456 MHz, which is expected to provide sufficient computational
power for the application.

• The power constraint dictates that the processor shall not consume more than
600 mW. The Power consumption of TI 674x ranges from 11 mW deep sleep mode
power to 470 mW total power in full speed. This value gives the power consumption
of the processing cores and internal memory. Most practical embedded applications
requires external memory access and peripherals. Since external memory access
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consumes significant power [1] we would like to keep it as low as possible. In order
to save power we have clocked the processor at 300 MHz.

• In our system the received signals are complex single precision floating values. The
TI 674x has native support for single precision and double precision floating point
instructions. Moreover this processor is compatible with fixed point instructions
of TI 64x+ processors. Some part of the algorithm could be implemented using
fixed point arithmetic to gain faster implementation when needed.

• Large internal memory. The system has 128 KB on chip SRAM memory. It has
two level cache hierarchy; 32KB of level 1 (L1) program cache and 32KB of L1
data cache and 256 KB of shared L2 program and data cache. L2 can also be used
as SRAM memory.

• Dedicated hardware support for custom optimizations. For example, software
pipeline loop (SPLOOP) buffers for optimizing loop performance.

• A rich set of peripherals: I2C, SPI with DMA support. Internal and External
DMA for fast memory or peripheral data transfer.

• Good development environment (Code Composer Studio (CCS) Integrated Design
Environment [3, 21]).

• Availability of highly optimized DSP libraries.

4.3 Implementation

The starting point of this thesis work was a reference implementation of Multi-input
receiver on MATLAB and WINDOWS using C. The scope of the work involved:

• Improve the Windows reference implementation in terms of number of detected
messages and optimize it for speed.

• Map the Windows reference implementation to TI 674x DSP processor.

• Optimize the DSP implementation to achieve the desired real-time performance in
terms of power and speed, without compromising on signals recovery and demod-
ulation performance.

The first step was to improve the Windows reference implementation for performance
by using generic C code optimization techniques [8]. The beamforming and demodula-
tion functions were improved for speed by rearranging statements and expression and
improving locality of reference .

Next step was to map the Multi-input receiver application to the TI 674x DSP plat-
form. Embedded systems have limited resources in terms of memory and peripherals. It
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is a common practice to share resources among various tasks in embedded systems. Dy-
namic memory allocation is a technique used in programming to allocate storage during
run-time of the program. In order to increase the reliability of an embedded system it is
desirable to use static memory allocation techniques where memory is allocated during
compile time. The Windows reference implementation was based on dynamic memory
allocation. It was modified to use static memory allocation for the DSP platform.

Figure 4.1: Functional block diagram of OMAP-L138 platform [6]

The Windows reference implementation uses double precision floating point arith-
metic. Single-precision floating-point values are 32-bit values which can be stored in
a single 32 bit register. Double-precision floating-point values are 64-bit values which
needs a register pair for storage. Since single precision arithmetic was sufficient for our
application the Multi-input receiver algorithm was converted into single precision. It
saved required memory for data storage and provide faster execution as single-precision
instructions are faster than double-precision instructions.

LAPACK [5, 12] is a software library for numerical linear algebra. It provides rou-
tines to solve system of linear equations, linear least squares, Eigen value problems,
singular value decomposition and matrix factorizations (LU, QR, Cholesky and Schur
decomposition) and more. The beamforming algorithm uses the complex singular value
decomposition (svd) function from the LAPACK library. The receiver application also
uses various matrix factorizations routines from the LAPACK library. LAPACK was ini-
tially written in FORTAN and later ported to C programming language (CLAPACK).
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The CLAPACK routines depends on Basic Linear Algebra Subprograms (BLAS) and
Fortran to C conversion (F2C) software libraries.

LAPACK is a freely-available software package for various platforms. There is no free
available implementation of LAPACK for TI 674x DSP. To prove the functionality of
the Multi-input receiver on the DSP platform, we needed to port the CLAPACK, BLAS
and F2C software libraries into DSP platform. Once we had integrated the ported CLA-
PACK, BLAS, F2C libraries to the receiver application, we could prove that the receiver
system on the embedded DSP platform could successfully separate and demodulate sig-
nals. The test inputs were obtained from a scenario simulator tool which generated
realistic signals. The receiver output on the embedded platform was tested thoroughly
for receiver output correctness.

We could observe that the embedded DSP implementation has a better performance
compared to the MATLAB reference implementation in terms of number of successful
separation and demodulation of signals. For example the Table 4.1 gives a comparison of
performance of two test inputs. The table provides the number of successful retrieval of
packets for MATLAB, Windows and DSP (unoptimized) implementations. The packets
per slot gives the number of input interfering signals.

Multi-input Receiver 
(MATLAB/Windows)

CLAPACK /BLAS/F2C
(Windows)

Multi-input Receiver 
(TI 674x DSP)

CLAPACK/BLAS/F2C  
(TI 674x DSP)

Multi-input Receiver 
(TI 674x DSP)

Optimized LINPACK  
(TI 674x DSP)

Integrate

Integrate

Integrate

PortPort / Algorithm 
Optimize

Optimize

Figure 4.2: Multi-Input receiver Implementation process on 674x DSP (top-down)

We noticed that the receiver application is not fast enough to perform the operations
in real time as it consumed 2.67 seconds per slot. The bottleneck for this application
was the ported unoptimized CLAPACK and BLAS routines. It was observed that the
singular value decomposition (svd) function was computation expensive and was required
frequently by the blind beamforming algorithm. It was consuming 93 ms per call for an
input matrix of size 4x100 on the DSP platform. Since optimizing CLAPACK, BLAS
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Input MatLab Windows (C) TI 674x DSP

80 slots (2 packets per slot) 80 91 104

501 slots (1 packet per slot) 305 338 364

Table 4.1: The number of successful retrieval of messages for various implementations
(up optimized). The packets per slot gives the number of input interfering signals.

CLAPACK ported to TI DSP LINPACK library

Average time per packet slot 2.67 seconds 667 milliseconds

Table 4.2: Average time consumed per slot for Multi-input receiver integrated with
ported CLAPACK and optimized LINPACK libraries.

and F2C libraries were out of the scope of this work they were replaced by third party
licensed LINPACK (Linear Algebra Package) [4] library assembly optimized for TI 674
x DSP platforms. The observed svd timing for the input matrix of size 4x100 was less
than 2.5 ms. Table 4.2 provides the comparison of the performance of the Multi-input
receiver system integrated for LAPACK ported to DSP and the third party optimized
LINPACK library.

We could observe that the performance of the Multi-input receiver on the DSP plat-
form has improved significantly with the replacement of ported CLAPACK libraries by
the optimized LINPACK library. The packets in each slot could be processed in 667
ms instead of 2.67 seconds. At this point we need improvement in speed by a factor
of 27 to achieve the real time performance (<25 ms). Various optimization techniques
are performed on the algorithm as described in the next section to achieve the desired
results. The steps involved in mapping the Windows reference implementation to the
674x DSP platform are depicted in Figure 4.2.

4.4 Optimizations and Observations

In this section we focus on optimizing the Multi-input receiver algorithm to achieve faster
execution time. The first step was to allow compiler to optimize the code to minimize
the time taken to execute the program. The second step was to optimize the algorithm
by using highly optimized software libraries and look up tables. The third step was to
optimize the code using various techniques like software pipeline, loop unrolling, improve
cache performance and more. In order to achieve high optimization, it is important to
understand the hardware architecture of the target platform. The architecture features
of 674x DSP were explained in Chapter 2. The most important features for optimization
are the CPU architecture, hardware pipelining and memory architecture. In this section
we emphasize on various experiments performed on optimization techniques. The perfor-
mance is measured in terms of time taken to extract (blind beamform) and demodulate
signals in a packet slot.
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4.4.1 Compiler optimization

Compiler can be configured to minimize, maximize or adapt certain attributes the pro-
gram like execution speed, memory usage and power consumption. Compiler optimiza-
tions are commonly used in DSP to reduce the execution time of a program.

We know that the 674x DSP has eight functional units which can execute up to
eight instruction is parallel. The basic task of the compiler optimization is to facilitate
execution of more instruction in parallel. For example the following unoptimized
assembly code represents the basic sum-of-products equation,

∑N
x=0 a[N ] ∗ b[N ].

MOV A0, 0
MOV B0, N

[loop] LOAD .D1 *A1, A6
NOP 4
LOAD .D2 *B1, B6
NOP 4
MUL .M1 A6, B6, A8
NOP
ADD .L1 A8, A0
SUB .L2 B0, 1, B0

[B0] BRANCH .S1 loop
NOP 5

The location of input arrays a and b are given by the pointers A1 and B1. The
loop counter is initialized to the maximum value N in register B0 and decremented by
one in each iterations. At the end of each iteration the functional units .S performs the
conditional branching based on the value in register B0. The NOP is the no operation
instruction and is added to compensate for the delay associated intrusions. NOP x
represents x delay cycles. The multiplication instruction has a delay of one (1), load
instruction has a delay of four (4) and the branch instruction has a delay of five (5)
CPU clock cycles. Other instructions can be executed without any delay. The memory
pointers A0 and A1 are auto incremented.

We could observe that each iteration of the loop consumes 20 cycles. This can
be optimized to improve the execution speed as multiple functional units can be
used in parallel and the delay cycles can be reduced. The functional units can be
used effectively by executing the instructions which does not depend on each other in
parallel and re arranging the order of execution (out-of-order execution). The optimized
sum-of-product equation can be pipelined as follows,

MOV A0, 0
MOV B0, N
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O0 O2 O3

Beamforming 208 ms 152 ms 145 ms

Demodulator 459 ms 335 ms 323 ms

Total 667 ms 487 ms 468 ms

Table 4.3: The compiler optimization results for the receiver application.

[loop] LOAD .D1 *A1, A6
|| LOAD .D2 *B1, B6

SUB .L2 B0, 1, B0
[B0] BRANCH .S1 loop

NOP 2
MUL .M1 A6, B6, A8
NOP
ADD .L1 A8, A0

Here the two load instruction which are independent can be executed in parallel.
The ’||’ sign indicates that instructions are executed at the same CPU cycle. While
waiting for the load instructions to complete the delay slots can be used to execute other
instructions which are not depended on the outcome of the load instruction. Thus the
decrement of the loop counter and the branch instruction are executed in the next two
CPU cycles. Now the multiplication unit has to wait for another two CPU cycles for the
load to be completed. It multiplies the two values and the results are available after one
delay cycle. It is then added and saved to the register. By the time the add instruction
is executed the five delay cycles associated with branch institution are completed. Now
we can observe that each iteration is completed in 8 cycles instead of 20 cycles.

Apart from optimizing the hardware pipelining compiler apply various methods like
loop optimizations, locality of reference (cache), machine code optimization, replacing
complex instructions by simple instructions and more. For example the two cycle mul-
tiplication operation of a value by a power of two (2) can be replaced by a single cycle
left-shift operation. Compiler optimizations can improve the execution speed signifi-
cantly. The optimization level option for the compiler was set to -O2 or -O3. The Debug
(-g) information was removed from the generated code. The ‘opt-level=O3’ provides
the highest compiler optimization. The execution times of the Multi-input receiver algo-
rithm for different compiler optimization settings are given in Table 4.3. The compiler
optimized code process each packet slot in 468 ms instead of unoptimized (-O0) code in
667 ms.

4.4.2 Algorithm Logic Optimization

The Multi-input receiver algorithm was further optimized by using assembly optimized
library routines, custom look-up tables and fine tuning the code structure by rearranging
the statements and expressions.



4.4. OPTIMIZATIONS AND OBSERVATIONS 35

Time per slot

Beamforming 121.4 ms

Demodulator 267.3 ms

Total 388.3 ms

Table 4.4: The performance improvement after applying algorithm optimization on com-
piler optimized code (-O3)

TMS320C67x DSP Library (DSPLIB) [9] and TMS320C67x Fast Run-Time Support
Library (FastRTS) [2] were used to provide assembly optimized floating point functions.
For example DSPF sp fir cplx function from DSPLIB was used to perform Complex FIR
Filter and sine, cosine, exp, atan and more floating point math functions were used from
the FastRTS library.

The sine and cosine values are used extensively by the demodulator function. The
single precision sine (73 cycles per calculation) and cosine (76 cycles per calculation) [10]
functions are computationally expensive. Since the used values are periodic, repetitive
and chosen from a finite set of values, we have replaced them with Lookup-Tables. These
Lookup-Tables are pre-calculated and stored in the memory during the initialization of
the application. These values can be reused during the execution of the program. Hence
sine and cosine function calls were improved to an average speed of 4 cycles per call.
The time taken to process each packet slot of the Multi-input receiver after applying
algorithm optimizations are shown in Table 4.4.

4.4.3 Optimization Techniques and Analysis

The algorithm optimized code needed to be further improved to achieve the required
execution speed. It is observed from the profiling information that the Multi-input
receiver algorithm consumes most of its time executing the loops. In order to improve
the execution speed, the loops needs to run as fast as possible. A variety of techniques like
software pipelining, loop unrolling, loop inversion, loop invariant code motion, improved
locality of reference by using cache techniques can be applied to improve the speed.
In this section we perform various experiments using these techniques and provide our
observations. The performance is measured in terms of speed up. It is defined as the
ratio of execution time for unoptimized and optimized code. The complier and algorithm
optimized code (388 ms per slot) is used as the reference code. Various optimization
experiments are performed on this reference code and the time taken per slot is measured.
The ratio of the reference time per slot and the measured time per slot gives the speed
up. The experiments are performed for realistic inputs with noise and interferences.

4.4.3.1 Experiment 1 - software pipelining

Software pipelining [16] is a loop optimization method using out-of-order execution of
different iterations of the loop. It is used in processors with multiple functional units
like in DSPs. The reordering of instructions is performed by the compiler.
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Let us consider the following example.

for(i=0; i <10; i++){
X = A[i];
X = X+1;
A[i] = x;

}
The assembly instructions for single iteration is given as,

LOAD A[i], A15
NOP 4
ADD A15,1
LOAD A15, A[i]

Here the add instruction has to wait for four (4) cycles as the value of X depends on
the load instruction. However there are no dependencies between loading of A[i] of the
second iteration and the first iteration of the loop. Hence it may start before the add
instruction of the first iteration begins. Software pipelining tries to keep the functional
units busy by executing instructions from different iterations of the loop which are not
dependent on each other. This scenario is depicted in figure 4.3. In this example, the non-
software pipelined loop would consume 49 cycles for 7 iterations where as the software
pipelined loop executes it in 13 cycles. The region where maximum or all the functional
units are busy is called loop kernel. The stages above the kernel are called prolog and
below are called epilog. Software pipelining is effective when different iteration of the
loop are independent.

LOAD A[0]

NOP LOAD A[1]

NOP NOP LOAD A[2]

NOP NOP NOP LOAD A[3]

NOP NOP NOP NOP LOAD A[4]

ADD A10, 1 NOP NOP NOP NOP LOAD A[5]

LOAD A10, A[0] ADD A11, 1 NOP NOP NOP NOP LOAD A[6]

LOAD A11, A[1] ADD A12, 1 NOP NOP NOP NOP

LOAD A12, A[2] ADD A13, 1 NOP NOP NOP

LOAD A13, A[3] ADD A14, 1 NOP NOP

LOAD A14, A4] ADD A15, 1 NOP

LOAD A15, A[5] ADD A16, 1

LOAD A10, A[6]

Figure 4.3: Software pipelining of loops. Multiple iterations of the loops are executed in
parallel

Software pipelining can be enabled in the CCS Compiler at optimization level O2
and O3. In TI 674x DSP platform it is supported by hardware SPLOOP buffers, which
helps to reduce the code size. The compiler can generate information about the software
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pipelining applied on loops. Figure 4.4 shows an example of the compiler generated
software pipelined loop information. This information is very useful to understand and
improve the performance of loops. Examples of information generated by the compiler
are:

Figure 4.4: Example of software pipeline loop information generated by the compiler.
Useful for further optimization.

• Minimum and maximum number of the times the loop was executed and hence the
number of times the loop can be unrolled.

• The number of times each functional unit, register files and cross paths accessed.
Cross path is the connection between set of functional units (Data path 1 and Data
path 2) in the TI 6x DSP core. This information can be used to balance the usage
of the functional units.

• Register usage.

In our first experiment the effect of software pipelining is studied on Multi-input
receiver algorithm. We have enabled the software pipelining for optimization level O3.
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#packets/slot #demodulated packet Unoptimized Optimized Speed up

1 1 382.44 ms 372.41 ms 1.029

2 2 382.73 ms 372.54 ms 1.029

4 4 382.89 ms 372.16 ms 1.029

More than 4 4 382.56 ms 372.45 ms 1.029

Table 4.5: Software pipelining

The results of this experiment are given in Table 4.5. Software pipelining is often used
in combination with loop unrolling. This combination of techniques often provides far
better optimization than software pipelining or loop unrolling alone.

4.4.3.2 Experiment 2 - Memory Aliasing

Memory aliasing is the situation where same memory locations are accessed using dif-
ferent symbolic names in the program. Thus modifying the data through one symbol
modifies all the values associated with every alias of the data, which may produce unex-
pected results. A very common scenario of symbolic names in programming are memory
pointers. Memory pointers (for example arrays) are typically used in function calls as
arguments. Let us consider a function as shown bellow,

void function(int * a, int * b, int * out){
for(i=0; i < N; i++){

out[i] = a[i] + b[i];
}

}

In this example aliasing occurs if a,b or out point to the same memory location
at any stage of the execution. If the compiler does not know explicitly that the two
pointers do not overlap, it expects that aliasing may occur. Hence it does not perform
any optimization on the code in order to avoid incorrect results. This scenario can
occur in Code Composer Studio tool if the caller function is located in different file.
The assembly code for the function is given as,

LOAD .D1 a,A0
NOP 4
LOAD .D2 b, B0
NOP 4
ADD A0, B0, A3
STORE .D1 A3, out

If it can be told to the compiler that the symbols (pointers) don’t have dependen-
cies, compiler can be aggressive in optimizing the code by pipelining the instructions
efficiently. Memory aliasing can be avoided by using the restrict keyword. Restrict tells
the compiler that the symbol (pointer) is the only access point to the object (memory).
The usage of restrict keyword is given bellow,
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#packets/slot #demodulated packet Unoptimized Optimized Speed up

1 1 382.12 ms 367.82 ms 1.041

2 2 382.23 ms 368.12 ms 1.041

4 4 382.34 ms 367.92 ms 1.041

More than 4 4 382.45 ms 368.11 ms 1.041

Table 4.6: Memory Aliasing

void function(int * restrict a, int * restrict b, int * out)

In the above example since the compiler knows that the two inputs are not alias to
each other it can execute them in parallel as,

LOAD .D1 a,A0
|| LOAD .D2 b, B0

NOP 4
ADD A0, B0, A3
STORE .D1 A3, out

In this experiment the effect of Memory Aliasing on Multi-input receiver algorithm
is studied. The results of this experiment are given in Table 4.6. It is observed that the
performance gained only from eliminating memory aliasing is very marginal.

4.4.3.3 Experiment 3 - Loop invariant code motion

The loop invariant code motion is a technique in which the invariant statements or
expressions are moved outside the body of the loop without affecting the results of the
program. Hence the invariant code is executed less often providing speedup.

Let us consider the example,

for(i=0; i < N; i++){
for(j=0; j < M; j++){

a = x + y;
b = j * i + x * i;
c = j * j + y * x;

}
}

In this example the variables a (x+y) and y*x can be calculated outside both the
loops. The variable x*i can be calculated outside the inner loop as shown,

a = x + y;
n = y * x;
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#packets/slot #demodulated packet Unoptimized Optimized Speed up

1 1 382.12 ms 364.23 ms 1.049

2 2 382.23 ms 364.21 ms 1.049

4 4 382.34 ms 364.12 ms 1.049

More than 4 4 382.45 ms 364.32 ms 1.049

Table 4.7: Loop Invariant Code Motion

for(i=0; i < N; i++){
m = x * i;
for(j=0; j < M; j++){

b = j * i + m;
c = j * j + n;

}
}

The advantage of loop invariant code motion is that the invariant values can be
calculated and stored in internal registers. It eliminates calculating the values in each
iterations and saves valuable memory access cycles. This is one of the tricks applied to
speed up the loops in the demodulator function. The inner loop in demodulator function
has invariant expressions which involves many load operations. For 674x DSP architec-
ture load operation is expensive as it consume five (one execution and four delay) CPU
cycles. In this experiment the effect of Loop Invariant Code Motion is studied. The
results of this experiment are given in Table 4.7. The invariant Code Motion Technique
provides better speed up compared to the techniques discussed above. The disadvantage
of this techniques is that it can affect the readability of the code.

4.4.3.4 Experiment 4 - Loop Unrolling

The Loop unrolling is a loop transformation technique to optimize the execution speed
of a code. It provides speed up by reducing or eliminating the ‘end of loop’ test in each
iteration by duplicating the body of the loop. The price one has to pay for loop unrolling
is that of increased code size.

let us consider the sum-of-products example given bellow,

MOV A0, 0
MOV B0, N

[loop] LOAD .D1 *A1, A6
|| LOAD .D2 *B1, B6

SUB .L2 B0, 1, B0
[B0] BRANCH .S1 loop

NOP 2
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MUL .M1 A6, B6, A8
NOP
ADD .L1 A8, A0

In this example the loop needs to be iterated N times. The loop can be unrolled by
a factor 2 by replicating the code inside the loop as,

MOV A0, 0
MOV B0, N

[loop] LOAD .D1 *A1, A6
|| LOAD .D2 *B1, B6

NOP 2
MUL .M1 A6, B6, A8
NOP
ADD .L1 A8, A0

LOAD .D1 *A1, A6
|| LOAD .D2 *B1, B6

SUB .L2 B0, 2, B0
[B0] BRANCH .S1 loop

NOP 2
MUL .M1 A6, B6, A8
NOP
ADD .L1 A8, A0

We could see that the branch instructions required by the loop is reduce by the
unroll factor. This code can execute faster as the branch instruction are expensive on
any platform. In TI 674x DSP branch instruction requires 6 cycles to execute. This
code can be further optimized by using out-of-order execution techniques as shown,

MOV A0, 0
MOV B0, N

[loop] LOAD .D1 *A1, A6
|| LOAD .D2 *B1, B6

NOP 2
MUL .M1 A6, B6, A8

|| LOAD .D1 *A1, A7
|| LOAD .D2 *B1, B7

SUB .L2 B0, 2, B0
ADD .L1 A8, A0

||[B0] BRANCH .S1 loop
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#packets/slot #demodulated packet Unoptimized Optimized Speed up

1 1 382.44 ms 348.296 ms 1.102

2 2 382.84 ms 348.298 ms 1.102

4 4 382.42 ms 348.291 ms 1.102

More than 4 4 384.67 ms 348.299 ms 1.102

Table 4.8: Loop unrolling

#packets/slot #demodulated packet Unoptimized Optimized Speed up

1 1 382.44 ms 324.763 ms 1.172

2 2 382.84 ms 324.759 ms 1.172

4 4 382.42 ms 324.761 ms 1.172

More than 4 4 384.67 ms 324.760 ms 1.172

Table 4.9: Software pipelining applied on loop unrolled code

NOP 2
MUL .M1 A7, B7, A8
NOP
ADD .L1 A8, A0

The loop execution speed by can be improved by choosing a higher unroll factor.
In practice unrolling speeds up the code to a certain point after which only the code
size increases, not speed. The loop unrolled code can be further improved by using
out-of-order execution techniques.

The advantage of loop unrolling is that it can provide additional performance gain
by using software pipelining. The disadvantage is the increased code size which is un-
desirable for embedded applications. Increase in code size can potentially increase the
cache misses which may affect the performance. Normally a trade off is made among
unrolling factor, code size and performance. If loop unrolling is done manually it can
make the code unreadable.

In this experiment the effect of Loop Unrolling is studied. The results of this
experiment are given in Table 4.8. As expected the loop unrolling provides significant
speed up. This technique is able to optimize the loops in demodulator as well as beam-
forming functions. We have also tested the loop unrolling along with software pipelining
technique. We could observe that the loop unrolling is more effective when used with
software pipelining and vica versa. We had to be careful in choosing the unroll factor
so that software pipeline does not collapse to find a schedule. The results are shown in
Table 4.9.
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#packets/ #demodulated packet Unoptimized Optimized Speed up

1 1 382.12 ms 376.23 ms 1.015

2 2 382.23 ms 376.85 ms 1.015

4 4 382.94 ms 376.64 ms 1.015

More than 4 4 382.83 ms 376.54 ms 1.015

Table 4.10: Data Alignment

4.4.3.5 Experiment 5 - Data Alignment

CCS tool allows the data to be aligned on any boundary on memory. It is observed that
if the data values are aligned on word (4 bytes) or double word (8 bytes) boundary on the
memory, the Memory Management Unit (MMU) can access them faster. The On-chip
bandwidth of the memory is 256 bits (8 words) as explained in Chapter 2. This means
that the 674x architecture allows up to 8 bytes to be accessed in a single load operation.
Data alignment makes it possible to access multiple data types of size less than 8 bytes
to be accessed in single load operation. For example instead of loading four 16-bit data
types in four operations, it can be loaded in one double word (8 byte) access if aligned
on 2 byte boundary.

This allows to use word wide optimizations and packed data processing techniques
to achieve better performance. Let us consider four 16 bit variables a0, a1, b0 and b1.
Let us assume we need the results (a0 * b0) and (a1 * b1). The normal way to perform
this operation is to load a0 and b0 to registers and perform the multiplication operation
and repeat the same process for a1 and b1. If the data values a0, a1 and b0, b1 are
aligned on a 2 byte boundary we can load the values a0, a1 to a single register say A0 (32
bit) using a single load operation (LOAD *ptr1, A0). The same can be done for values
b0 and b1 (LOAD *ptr2, A1). Word wide optimization allows multiple 8bit and 16 bit
operations on a single 32 bit functional unit. In this example MPY instruction perform
the lower 16 bit multiplication and MPYH perform the higher 16 bit multiplication.
The advantage of this technique is that we would require less load instructions and the
multiplications can be performed in parallel. Packed data processing is very similar to
word wide optimization. It is also referred as single instruction multiple data (SIMD),
for which each instruction has more than one data value.

For DSP applications data alignment can provide significant performance. Our re-
ceiver application requires large data buffers to store input and intermediate data. In
this experiment the effect of Data Alignment on Multi-input receiver is studied. The
results of this experiment are given in Table 4.10. It is observed that the gain obtained
from Data Alignment is very marginal. The reason is the limited usage of packed data
processing and word-wide optimization techniques.

4.4.3.6 Experiment 6 - Loop Inversion

Loop inversion is a technique reduce branch overhead. In Loop inversion while loops are
replaced by do-while with if block or for loops. It is observed that the number of branch
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#packets/slot #demodulated packet Unoptimized Optimized Speed up

1 1 382.92 ms 374.94 ms 1.021

2 2 382.95 ms 374.05 ms 1.021

4 4 382.21 ms 374.33 ms 1.021

More than 4 4 382.54 ms 374.21 ms 1.021

Table 4.11: Loop Inversion

instructions is reduced when the loop is converted. Branch miss can affect the hardware
pipeline and cause delay. Loop inversion can reduce the branch instructions and thus
provide speed up.

In this experiment the effect of Loop inversion is studied. The results of this
experiment are given in Table 4.11. The Loop inversion technique is effectively used in
the main demodulator loop. It is observed that this has an impact on the code speed.

4.4.3.7 Experiment 7 - Memory management

Using memory efficiently is important in optimizing the performance. In Chapter 2 we
have described the memory architecture of TI 674x DSP platform. It has two level cache
architecture, L1 and L2. Level L1 has 32 KBs of separate instruction and data cache.
L2 is 256 KB shared instruction and data cache. L2 is an addressable memory unlike
L1. L2 can be used as a mapped memory, cache or a combination of both. Additionally
there is 128 KB of on chip DRAM memory and external memory (up to 4 GB) which
can be accessed through external memory interface.

-stack           0x0001FFFF
-heap            0x00016200

MEMORY
{
   dsp_l2_ram:      ORIGIN = 0x11800000  LENGTH = 0x00040000
   shared_ram:      ORIGIN = 0x80000000  LENGTH = 0x00020000
   external_ram:    ORIGIN = 0xC0000000  LENGTH = 0x08000000
   arm_local_ram:   ORIGIN = 0xFFFF0000  LENGTH = 0x00002000
}

SECTIONS
{
   .text   : ALIGN(8) {}   > external_ram
   .const  : ALIGN(8) {}   > external_ram
   .bss    : ALIGN(8) {}   > external_ram
   .far    : ALIGN(8) {}   > external_ram
   .switch : ALIGN(8) {}   > external_ram
   .stack  : ALIGN(8) {}   > external_ram
   .data   : ALIGN(8) {}   > external_ram
   .cinit  : ALIGN(8) {}   > external_ram
   .sysmem : ALIGN(8) {}   > external_ram
   .cio    : ALIGN(8) {}   > external_ram
   .recv   : ALIGN(8) {}   > external_ram
}

Figure 4.5: Example of Linker Command File.
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Using the linker command file of the CCS tool, various linked objects can be allocated
to specific location on memory on the target platform. The MEMORY specifies the
regions on the memory and the SECTION specifies how the linker objects are associated
with memory regions. The ‘.text’ section contains the code and ‘.bss’ contain the global
and static variables. The linker command file used to generate the primary results is
shown in Figure 4.5. The linker command file plays a key role in memory management
and hence providing better performance on the target platform.

To optimize performance it is important that all memory requirements of the appli-
cation are satisfied by on-chip memory. Additionally from the date sheet [1] external
memory access causes more power consumption than internal memory access. When it
is not possible to keep everything on-chip, we have to look for ways to keep the critical
code and data in the on-chip memory to provide faster execution. This can be achieved
by defining custom sections in the code/data and allocate them in the on-chip memory
using the linker command file.

It is important to allocate stack and heap sections on-chip to improve the perfor-
mance. The stack is a location in the memory where local variables are stored when a
function is called. The stack location is shared for all the functions. Heap section is used
for dynamic memory is allocation. .

Cache Memory

-stack           0x00021000
-heap            0x00016500

MEMORY
{
   dsp_l2_ram:      ORIGIN = 0x11800000  LENGTH = 0x00040000
   shared_ram:      ORIGIN = 0x80000000  LENGTH = 0x00020000
   external_ram:    ORIGIN = 0xC0000000  LENGTH = 0x08000000
   arm_local_ram:   ORIGIN = 0xFFFF0000  LENGTH = 0x00002000
}

SECTIONS
{
   .text   : ALIGN(8) {}   > shared_ram
   .const  : ALIGN(8) {}   > dsp_l2_ram
   .bss    : ALIGN(8) {}   > dsp_l2_ram
   .far    : ALIGN(8) {}   > external_ram
   .switch : ALIGN(8) {}   > dsp_l2_ram
   .stack  : ALIGN(8) {}   > dsp_l2_ram
   .data   : ALIGN(8) {}   > dsp_l2_ram
   .cinit  : ALIGN(8) {}   > external_ram
   .sysmem : ALIGN(8) {}   > dsp_l2_ram
   .cio    : ALIGN(8) {}   > dsp_l2_ram
   .cri1   : ALIGN(8) {}   > dsp_l2_ram
   .cri2   : ALIGN(8) {}   > dsp_l2_ram
   .cri3   : ALIGN(8) {}   > dsp_l2_ram
   .cri4   : ALIGN(8) {}   > dsp_l2_ram
}

Figure 4.6: Linker command file used for speed optimization

Cache memory keeps a local scratch copy of code and data in L1 memory. L1 Cache
memory is the closest to the processor and has lowest latency. Cache memory provides
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#packets/slot #demodulated packet Unoptimized Optimized Speed up

1 1 382.44 ms 42.937 ms 8.901

2 2 382.84 ms 42.963 ms 8.901

4 4 382.42 ms 42.534 ms 8.901

More than 4 4 384.67 ms 42.971 ms 8.901

Table 4.12: Cache Memory & Efficient Memory management

#packets/slot #demodulated packet Unoptimized Optimized Speed up

1 1 382.44 ms 24.492 ms 15.614

2 2 382.84 ms 24.501 ms 15.614

4 4 382.42 ms 24.499 ms 15.614

More than 4 4 384.67 ms 24.498 ms 15.614

Table 4.13: Combined Optimization

performance by reusing the local copies of instruction and data in cache memory. Cache
misses are costly as it would require fetching fresh instruction and data from higher level
memories which have larger latencies. L1 program is a direct mapped cache [13] where
as L1 data is 2 way set associative cache [14]. L2 can be used as 4 way set associative
cache or can be used as RAM memory. To improve performance it is important to
avoid L1 instruction cache misses. Since the L1 program cache is direct mapped, proper
placement of code section in the memory is needed. It can be achieved by good code
placement strategies.

In this experiment the effect of Cache Memory & Efficient Memory manage-
ment is studied. The results of this experiment are given in Table 4.12. Based on the
profile information generated by the compiler we could place the critical sections of the
code in memory close to the processor. The L2 cache is effectively used as an on-chip
memory for that purpose. The linker command file used for achieving the results is
shown in Figure 4.6. We could observe that memory management and reducing instruc-
tion cache miss by proper placement of code in the appropriate memory can provide the
best performance gain among all the techniques studied.

4.4.3.8 Experiment 8 - All Optimizations combined

In this experiment the combined effect of all the optimization techniques are studied.
The results of this experiment are given in Table 4.13.

We observed that when all the optimization techniques were applied together the
multi-input receiver could perform the beamforming and demodulation in less than 25
ms. This satisfies the real-time speed up criteria of the multi-input receiver. This has
a speed up factor of over 15.6 to the compiler optimized code. We could observe that
the effect of various optimization techniques depends on each other. The performance
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Power Consumption Idle Power Active Power

Measured Board Power 650mW 1150mW

SATA controller 330mW 330mW

Peripherals Power 40mW 40mW

External Memory 200mW 200mW

Other Controllers 35mW 35mW

Power consumed DSP (CPU and Internal Memory) 45mW 445mW

Table 4.14: Power consumption

depends on how well the instructions can be pipelined to keep the functional units
busy and reducing the latencies by modifying the instructions. For example a software
pipelining is more effective on an unrolled loop than applied alone. Hence it was possible
to achieve more performance than the contribution of individual techniques by making
proper trade offs.

4.4.3.9 Experiment 9 - Power Consumption Analysis

In this experiment we study the power consumption of the DSP processor. We have
measured the power consumption of the target board ‘ZOOM OMAP-L138 EXPERI-
MENTER KIT’ [11]. Though the silicon used in the experiment board is a preliminary
silicon and is not meant to be power accurate it could give comparable results. The
only way to measure the power consumption on the DSP was by measuring the voltage
drop across a known resistor connected in series. It is done by measuring the current at
the output of a DC-DC converter using a multimeter. The register is located between
the DC-DC converter and the DSP core. The measurements are given in Table 4.14.
We have compared the calculated power with the values on the datasheet for various
operating modes of the DSP. From the datasheet the idle power is 11 mW and the power
on active mode is 475 mW. We observed that the measure power was not accurate and
had an error margin of +20%.

The measured power is the accumulative power consumed by the DSP, peripherals,
external memory and other controllers (SATA clock generator, Ethernet, USB etc) on
board. Hence the DSP power (mainly the processing units and internal memory) con-
sumption is calculated by subtracting the other power consumption which is available
from the datasheets [7].

From the datasheet the DC-DC converter has an efficiency of 0.8. So to calculate
the actual power consumption we have to compensate for this value. Hence the power
is 125% (1/0.8) of the measured value. The Idle power is 45mW x 1.25 = 56mW
and the Active power is 445mW x 1.25 = 556mW. These values fit within the power
requirement (600 mW) of the receiver system. Since the measured values depends on
the silicon and the inaccuracy of the measurements we assume that the actual values are
smaller than observed.
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4.4.3.10 Analysis

In this section we study the effect of different optimization techniques applied to Multi-
input receiver application.

Figure 4.7 gives the comparison of the Multi-input receiver speed performance during
various stages of optimization on the target platform. The test inputs with noise and
interferences were generated using a simulation tool. The performance is measured in
teams of time consumed (in millisecond) to separate out and demodulate each group
of overlapping signals (slots). We compare the performance of unoptimized code with
LINPACK library integrated, compiler optimized, algorithm logic optimized and finally
the Optimized code. The speed performance of the Multi-input receiver system has
improved from 2.67 seconds per slot to 24.5 ms per slot. From experiment 9, the power
consumption of the Multi-input receiver on the target platform is within the power
budget of the system in its active mode.

The comparison of Speedup provided by each optimization technique is given in Fig-
ure 4.8. It is obvious that among the different optimization techniques applied on the
embedded DSP platform, cache and memory management has most impact on perfor-
mance.
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Figure 4.7: Comparison of the various stages of Optimization for Multi-input receiver
(time consumed per millisecond).



4.4. OPTIMIZATIONS AND OBSERVATIONS 49

#packets/slot Total beamforming demodulator

1 14.96 ms 7.12 ms 3.720 ms

2 18.12 ms 7.12 ms 7.641 ms

4 24.49 ms 7.12 ms 14.37 ms

More than 4 24.49 ms 7.12 ms 14.38 ms

Table 4.15: Performance in the absence of noise for optimized code

It is observed that the beamforming consumes approximately 7 ms and the demod-
ulator consumes 14 ms per slot in the final optimized version. The input signals with
less number of packets per slot are expected perform faster than input signals with four
or more packets per slot. In practice the time consumed for different number of packets
per slots are almost the same. The reason for such behavior is false signal detection.
To test the Multi-input receiver for real scenarios the test inputs are considered with
noise such that the ’signal to noise ratio’ is kept low. In the presence of noise, false
signals are detected which invokes the demodulator more number of times than actual
number of signals present in input. In the current implementation the demodulator can
be invoked maximum of four times per slot. We have provided the speed performance
of the Multi-input receiver for test inputs without noise. The observations are provided
in Table 4.15. We could observe that the demodulator shows better performance in the
absence of noise.
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We could observe from the memory map file generated by CCS tool that the code
and data memory requirements are fulfilled by the on chip SRAM and addressable L2
memory used as SRAM. As a result no external memory is required by the algorithm.

4.5 Summary

In this chapter we have described the various optimization techniques applied to achieve
real-time performance. Among the different optimization techniques applied on the
embedded DSP platform, cache and memory management has the most impact on per-
formance. By applying all of the studied methods we could achieve the required per-
formance in terms of processing speed. The external memory power consumption is
expensive from the datasheets. The on-chip memory alone is sufficient to handle the
Multi-input receiver algorithm. By reducing external memory usage we could reduce the
power consumption of the system. We could also observe that the power consumption
of the target platform is within the power budget of the system. We could achieve the
goals without compromising on message recovery or demodulation.
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5.1 Conclusion

When signals are transmitted from distinct sources at the same time and at the same
frequency they get overlapped with each other. It is called co-channel interference.
Constant Modulus Algorithms (CMA) is a spatial signal processing technique to negate
such interferences for constant modulus signals such as phase shift keying (PSK) and
frequency shift keying (FSK). It use a beamforming technique which is based on a
antenna array to separate out individual signals. This master thesis work was inspired by
the practical aspects of the ‘Analytical Constant Modulus Algorithm’ (ACMA) proposed
by Alle-Jan van der Veen and Arogyaswami Paulraj. The ACMA algorithm proposes an
efficient analytical approach to separate out individual signals using an antenna array.
The ACMA algorithm is a blind beamforming algorithm as it does not require any
knowledge of the signals and the channel.

ACMA solution to blind beamforming problem demonstrates several advantages over
other Constant Modulus Algorithms (CMA). The conventional CMAs can detect only
one signal from the set of overlapping signals, where ACMA can detect more signals
based on the number of antennas. A multi-stage CMA can be used to detect more than
one signal based on the number of antennas, but it requires more processing. Moreover in
practice ACMA demonstrates better performance to CMA in detecting signals. Another
advantage is that ACMA requires only a moderate amount of samples.

The scope of this thesis work was to implement a low cost, low power real-time
Multi-input receiver application. The Multi-input receiver was capable of handling co-
channel signal from different sources which are partially and fully overlapped. The basic
requirements of the Multi-input receiver system was that each group of overlapping
messages (slots) to be processed in less than 25 ms and the power consumption to be
less than 600 mW.

The front end of the receiver system consists of an antenna array of four (4) antennas.
The front end extracts the desired frequency channels, performs analog to digital con-
version and down sampling of antenna array inputs. The receiver system separates out
individual signals using the blind beamforming (ACMA) algorithm. The demodulator
performs demodulation. It identifies a valid signal (message) by its start and end flags
and by using an error detection mechanism (Cyclic Redundancy Check).

The Multi-input receiver system is software defined as the important functionalities,
beamforming and demodulation are implemented in software. The platform chosen from
implementation is Texas Instruments TMS320C6748 (674x) DSP. The reasons were the
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following. It is a high performance, low power DSP processor, well suited for signal
processing applications. It has a load and store RISC architecture. It can execute up
to 8 instructions in parallel at 375/456 MHz frequency. It can perform both fixed point
as well as floating point arithmetic operations. These features can provide sufficient
computations to achieve the real-time performance required by the Multi-input receiver.
The TMS320C6748 is low power device as it consumes 470 mW in the active mode. It
satisfies our basic power requirement. However power is a critical resource for the Multi-
input receiver on the embedded platform. Hence the DSP processor was clocked at a
lower frequency of 300 MHz to save more power. The DSP has a rich set of peripherals
and high amount of on chip memory.

The blind beamforming algorithm requires certain functions such as singular value
decomposition (svd) from the Linear Algebra Package (LAPACK) library. Since there
were no free LACPCK implementations were available for Texas Instruments DSP plat-
form an open source WINDOWS implementation CLAPACK library was ported to TI
674x DSP platform. The observed performance of the Multi-input receiver was 2.67
seconds per slot to perform beamforming and demodulation for up to four messages. We
observed that the LAPACK functions requires significant amount of time to perform.
Since the LAPACK library was not optimized it was replaced by a third party highly
optimized LINPACK library. Additionally the algorithm was modified from double pre-
cision to single precision arithmetic. The observed performance was improved to 667 ms
per slot. The receiver algorithm was then optimized by using the compiler tool chain
which gave us a performance of 468 ms per slot. The Multi-input receiver algorithm was
further optimized by using assembly optimized library routines from Texas Instruments
such as FIR filters and look-up tables for sine and cosine. The observed performance was
388 ms per slot.

The code needed to be further optimized in order to achieve real-time performance
(less than 25 ms per slot). Since most of the execution time of the Multi-input receiver
was spend in ‘loops’ they were targeted for optimization. Various optimization techniques
were experimented and the effects were studied. The optimization techniques involve
software pipelining, loop unrolling, avoiding memory aliasing problem, providing data
alignment in memory, using efficient memory management and utilizing cache memory.
We observed that each technique has variable impact on the performance. Techniques
such as loop unrolling is more effective when applied along with software pipelining than
applied alone. We could observe that memory management and cache provided the
best performance gain to the receiver application. We gained performance by proper
placement of critical code in memory close to the processor so as to minimize instruction
cache misses. We observed that the cache misses are expensive as it results in re-fetching
of instructions from higher level memory with additional latency. Moreover minimizing
the external memory access can save power.

The final optimized code has a performance of 24.5 ms per slot which is well within
the limits of the real-time requirement. We also observed that the power consumption of
the system is approximately 500 mW which is also within the power budget allocated
for the system. Hence all the objectives of the thesis work were achieved.
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5.2 Future Work

In this work we have implemented a low power, low cost Multi-input receiver using
blind beamforming algorithm. This algorithm can find many applications especially
for low power mobile devices which require wireless communication. In the current
implementation we have used only 4 antennas. The ACMA algorithm is scalable which
means more signals can be detected by increasing the number of antennas and proving
sufficient computations. It is observed that the processing load increases exponentially
with the number of antennas. It will be interesting to study the scalability of the Multi-
input receiver and the impact on processing load. Another scope of this work is to
further optimize the beam forming and demodulation algorithms. We can optimize the
demodulator function using fixed point arithmetic. Further optimization can be done by
storing the antenna data in 16 bit format instead of 32 bit and utilizing the packed data
processing and word wide optimization techniques provided by Texas Instruments DSP
processor. 16 bit data storage can save the memory to store the data values.
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