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Abstract

Experience replay is a technique that allows off-policy reinforcement-learning methods to
reuse past experiences. The stability and speed of convergence of reinforcement learning, as
well as the eventual performance of the learned policy, are strongly dependent on the expe-
riences being replayed. Which experiences are replayed depends on two important choices.
The first is which and how many experiences to retain in the experience replay buffer. The
second choice is how to sample the experiences that are to be replayed from that buffer.
We propose new methods for the combined problem of experience retention and experience
sampling. We refer to the combination as experience selection. We focus our investiga-
tion specifically on the control of physical systems, such as robots, where exploration is
costly. To determine which experiences to keep and which to replay, we investigate differ-
ent proxies for their immediate and long-term utility. These proxies include age, temporal
difference error and the strength of the applied exploration noise. Since no currently avail-
able method works in all situations, we propose guidelines for using prior knowledge about
the characteristics of the control problem at hand to choose the appropriate experience
replay strategy.

Keywords: reinforcement learning, deep learning, experience replay, control, robotics

1. Introduction

Reinforcement learning is a powerful framework that makes it possible to learn complex
nonlinear policies for sequential decision making processes while requiring very little prior
knowledge. Especially the subfield of deep reinforcement learning, where neural networks
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are used as function approximators, has recently yielded some impressive results. Among
these results are learning to play Atari games (Mnih et al., 2015) and to control robots
(Levine et al., 2016) straight from raw images, as well as beating the top human player in
the game of Go (Silver et al., 2016).

Reinforcement learning methods can be divided into on-policy and off-policy methods.
On-policy methods directly optimize the policy that is used to make decisions, while off-
policy methods can learn about an optimal policy from data generated by another policy.
Neither approach is without its problems, which has motivated work on methods that
combine on and off-policy updates (Wang et al., 2017; Gu et al., 2017; O’Donoghue et al.,
2017).

When a reinforcement learning method is either partially or entirely off-policy, past
experiences can be stored in a buffer and reused for learning. Doing so not only reduces
the sample complexity of the learning algorithm, but can also be crucial for the stability of
reinforcement-learning algorithms that use deep neural networks as function approximators
(Mnih et al., 2015; Lillicrap et al., 2016; Schaul et al., 2016; Wang et al., 2017).

If we have access to a buffer with past experiences, an interesting question arises: how
should we sample the experiences to be replayed from this buffer? It has been shown
by Schaul et al. (2016) that a good answer to this question can significantly improve the
performance of the reinforcement-learning algorithm.

However, even if we know how to sample from the experience buffer, two additional
questions arise: what should the buffer capacity be and, once it is full, how do we decide
which experiences should be retained in the buffer and which ones can be overwritten with
new experiences? These questions are especially relevant when learning on systems with
a limited storage capacity, for instance when dealing with high-dimensional inputs such
as images. Finding a good answer to the question of which experiences to retain in the
buffer becomes even more important when exploration is costly. This can be the case
for physical systems such as robots, where exploratory actions cause wear or damage and
risks need to be minimized (Kober et al., 2013; Garcıa and Fernández, 2015; Tamar et al.,
2016; Koryakovskiy et al., 2017). It is also the case for tasks where a minimum level of
performance needs to be achieved at all times (Banerjee and Peng, 2004) or when the
policy that generates the experiences is out of our control (Seo and Zhang, 2000; Schaal,
1999).

We will refer to the combined problem of experience retention and experience sampling
as experience selection. The questions of which experiences to sample and which experiences
to retain in the buffer are related, since they both require a judgment on the utility of the
experiences. The difference between them is that determining which experiences to sample
requires a judgment on the instantaneous utility: from which experiences can the agent
learn the most at the moment of sampling? In contrast, a decision on experience retention
should be based on the expected long term utility of experiences. Experiences need to be
retained in a way that prevents insufficient coverage of the state action space in the future,
as experiences cannot be recovered once they have been discarded.

To know the true utility of an experience, it would be necessary to foresee the effects of
having the reinforcement-learning agent learn from the experience at any given time. Since
this is not possible, we instead investigate proxies for the experience utility that are cheap
to obtain.
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In this work, we investigate age, surprise (in the form of the temporal difference error),
and the amplitude of the exploration noise as proxies for the utility of experiences. To mo-
tivate the need for multiple proxies, we will start by showing the performance of different
experience selection methods on control benchmarks that, at first sight, seem very closely
related. As a motivating example we show how the current state-of-the-art experience se-
lection method of Schaul et al. (2016), based on retaining a large number of experiences
and sampling them according to their temporal difference error, compares on these bench-
marks to sampling uniformly at random from the experiences of the most recent episodes.
We show that the state-of-the-art method significantly outperforms the standard method
on one benchmark while significantly under -performing on the other, seemingly similar
benchmark.

The focus of this paper is on the control of physical systems such as robots. The
hardware limitations of these systems can impose constraints on the exploration policy and
the number of experiences that can be stored in the buffer. These factors make the correct
choice of experience sampling strategy especially important. As we show on additional, more
complex benchmarks, even when sustained exploration is possible, it can be beneficial to be
selective about which and how many experiences to retain in the buffer. The costs involved
in operating a robot mean that it is generally infeasible to rely on an extensive hyper-
parameter search to determine which experience selection strategy to use. We therefore
want to understand how this choice can be made based on prior knowledge of the control
task.

With this in mind, the contributions of this work are twofold:

1. We investigate how the utility of different experiences is influenced by the aspects of
the control problem. These aspects include properties of the system dynamics such
as the sampling frequency and noise, as well as constraints on the exploration.

2. We describe how to perform experience retention and experience sampling based on
experience utility proxies. We show how these two parts of experience selection work
together under a range of conditions. Based on this we provide guidelines on how
to use prior knowledge about the control problem at hand to choose an experience
selection strategy.

Note that for many of the experiments in this work most of the hyper-parameters of
the deep reinforcement-learning algorithms are kept fixed. While it would be possible to
improve the performance through a more extensive hyper-parameter search, our focus is
on showing the relationships between the performance of the different methods and the
properties of the control problems. While we do introduce new methods to address specific
problems, the intended outcome of this work is to be able to make more informed choices
regarding experience selection, rather than to promote any single method.

The rest of this paper is organized as follows. Section 2 gives an overview of related work.
In Section 3, the basics of reinforcement learning, as well as the deep reinforcement learning
and experience replay methods used as a starting point are discussed. Section 4 gives a high-
level overview of the simple benchmarks used in most of this work, with the mathematical
details presented in Appendix 9.3. The notation we use to distinguish between different
methods, as well as the performance criteria that we use, are discussed in Section 5. In

3



de Bruin, Kober, Tuyls and Babuška

Section 6, we investigate what spread over the state-action the experiences ideally should
have, based on the characteristics of the control problem to be solved. The proposed
methods to select experiences are detailed in Section 7, with the results of applying these
methods to the different scenarios in simple and more complex benchmarks are presented in
Section 8. The conclusions, as well as our recommended guidelines for choosing the buffer
size, retention proxy and sampling strategy are given in Section 9.

2. Related Work

When a learning system needs to learn a task from a set of examples, the order in which the
examples are presented to the learner can be very important. One method to improve the
learning performance on complex tasks is to gradually increase the difficulty of the examples
that are presented. This concept is known as shaping (Skinner, 1958) in animal training
and curriculum learning (Bengio et al., 2009) in machine learning. Sometimes it is possible
to generate training examples of just the right difficulty on-line. Recent machine learning
examples of this include generative adversarial networks (Goodfellow et al., 2014) and self
play in reinforcement learning (see for example the work by Silver et al. 2017). When the
training examples are fixed, learning can be sped up by repeating those examples that the
learning system is struggling with more often than those that it finds easy, as was shown
for supervised learning by, among others, Hinton (2007) and Loshchilov and Hutter (2015).
Additionally, the eventual performance of supervised-learning methods can be improved by
re-sampling the training data proportionally to the difficulty of the examples, as done in
the boosting technique (Valiant, 1984; Freund et al., 1999)

In on-line reinforcement learning, a set of examples is generally not available to start
with. Instead, an agent interacts with its environment and observes a stream of experiences
as a result. The experience replay technique was introduced to save those experiences in a
buffer and replay them from that buffer to the learning system (Lin, 1992). The introduction
of an experience buffer makes it possible to choose which examples should be presented to
the learning system again. As in supervised learning, we can replay those experiences that
induced the largest error (Schaul et al., 2016). Another option that has been investigated
in the literature is to replay more often those experiences that are associated with large
immediate rewards (Narasimhan et al., 2015).

In off-policy reinforcement learning the question of which experiences to learn from ex-
tends beyond choosing how to sample from a buffer. It begins with determining which
experiences should be in the buffer. Lipton et al. (2016) fill the buffer with successful ex-
periences from a pre-existing policy before learning starts. Other authors have investigated
criteria to determine which experiences should be retained in a buffer of limited capacity
when new experiences are observed. In this context, Pieters and Wiering (2016) have inves-
tigated keeping only experiences with the highest immediate rewards in the buffer, while our
previous work has focused on ensuring sufficient diversity in the state-action space (de Bruin
et al., 2016a,b).

Experience replay techniques, including those in this work, often take the stream of
experiences that the agent observes as given and attempt to learn from this stream in an
optimal way. Other authors have investigated ways to instill the desire to seek out informa-
tion that is useful for the learning process directly into the agent’s behavior (Schmidhuber,
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1991; Chentanez et al., 2004; Houthooft et al., 2016; Bellemare et al., 2016; Osband et al.,
2016). Due to the classical exploration-exploitation dilemma, changing the agents behavior
to obtain more informative experiences comes at the price of the agent acting less optimally
according to the original reward function.

A safer alternative to actively seeking out real informative but potentially dangerous
experiences is to learn, at least in part, from synthetic experiences. This can be done by
using an a priori available environment model such as a physics simulator (Barrett et al.,
2010; Rusu et al., 2016), or by learning a model from the stream of experiences itself and
using that to generate experiences (Sutton, 1991; Kuvayev and Sutton, 1996; Gu et al., 2016;
Caarls and Schuitema, 2016). The availability of a generative model still leaves the question
of which experiences to generate. Prioritized sweeping bases updates again on surprise, as
measured by the size of the change to the learned functions (Moore and Atkeson, 1993;
Andre et al., 1997). Ciosek and Whiteson (2017) dynamically adjusted the distribution of
experiences generated by a simulator to reduce the variance of learning updates.

Learning a model can reduce the sample complexity of a learning algorithm when learn-
ing the dynamics and reward functions is easy compared to learning the value function
or policy. However, it is not straightforward to get improved performance in general. In
contrast, the introduction of an experience replay buffer has shown to be both simple and
very beneficial for many deep reinforcement learning techniques (Mnih et al., 2015; Lilli-
crap et al., 2016; Wang et al., 2017; Gu et al., 2017). When a buffer is used, we can decide
which experiences to have in the buffer and which experiences to sample from the buffer.
In contrast to previous work on this topic we investigate the combined problem of experi-
ence retention and sampling. We also look at several different proxies for the usefulness of
experiences and how prior knowledge about the specific reinforcement learning problem at
hand can be used to choose between them, rather than attempting to find a single universal
experience-utility proxy.

3. Preliminaries

We consider a standard reinforcement learning setting (Section 3.1) in which an agent
learns to act optimally in an environment, using the implementation by Lillicrap et al.
(2016) of the off-policy actor-critic algorithm by Silver et al. (2014) (Section 3.2). Actor-
critic algorithms make it possible to deal with the continuous action spaces that are often
found in control applications. The off-policy nature of the algorithm enables the use of
experience replay (Section 3.3), which helps to reduce the number of environment steps
needed by the algorithm to learn a successful policy and improves the algorithms stability.
Here, we summarize the deep reinforcement learning (Lillicrap et al., 2016) and experience
replay (Schaul et al., 2016) methods that we use as a starting point.

3.1 Reinforcement Learning

In reinforcement learning, an agent interacts with an environment E with (normalized) state
sE by choosing (normalized) actions a according to its policy π: a = π(s), where s is the
agent’s perception of the environment state.

To simplify the analysis in Section 6 and 7, and to aid learning, we normalize the state
and action spaces in our benchmarks such that sE ∈ [−1, 1]n and aE ∈ [−1, 1]m, where n
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environment
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N (0, σa)
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N (0, σs)
s + +++

normalization

Figure 1: Reinforcement learning scheme and symbols used.

and m are the dimensions of the state and action spaces. We perform the (de)normalization
on the connections between the agent and the environment, so the agent only deals with
normalized states and actions.

We consider the dynamics of the environment to be deterministic: s′E = f(sE , aE). Here,
s′E is the state of the environment at the next time step after applying action aE in state
sE . Although the environment dynamics are deterministic, in some of our experiments we
do consider sensor and actuator noise. In these cases, the state s that the agent perceives
is perturbed from the actual environment state sE by additive Gaussian noise

s = sE +N (0, σs). (1)

Similarly, actuator noise changes the actions sent to the environment according to:

aE = a+N (0, σa). (2)

A reward function ρ describes the desirability of being in an unnormalized state sunnorm and
taking an unnormalized action aunnorm: rk = ρ(skunnorm, a

k
unnorm, s

k+1
unnorm), where k indicates

the time step. An overview of the different reinforcement learning signals and symbols used
is given in Figure 1.

The goal of the agent is to choose the actions that maximize the expected return from
the current state, where the return is the discounted sum of future rewards:

∑∞
k=0 γ

krk.
The discount factor 0 ≤ γ < 1 keeps this sum finite and allows trading off short-term and
long-term rewards.

Although we will come back to the effect of the sensor and actuator noise later on, in
the remainder of this section we will look at the reinforcement learning problem from the
perspective of the agent and consider the noise to be part of the environment. This makes
the transition dynamics and reward functions stochastic: F(s′|s, a) and P(r|s, a, s′).

3.2 Off-Policy Deep Actor-Critic Learning

In this paper we use the Deep Deterministic Policy Gradient (DDPG) reinforcement-learning
method of Lillicrap et al. (2016), with the exception of Section 6.3, where we compare it
to DQN (Mnih et al., 2015). In the DDPG method, based on the work of Silver et al.
(2014), a neural network with parameters θπ implements the policy: a = π(s; θπ). A second
neural network with parameters θQ, the critic, is used to approximate the Q function. The
Qπ(s, a) function gives the expected return when taking action a in state s and following
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the policy π from next time-step onwards

Qπ(s, a) = Eπ

[ ∞∑
k=0

γkrk|s0 = s, a0 = a

]
. (3)

The critic function Q (s, a; θQ) is trained to approximate the true Qπ(s, a) function by
minimizing the squared temporal difference error δ for experience 〈si, ai, s′i, ri〉

δi =
[
ri + γQ

(
s′i, π(s′i; θ

−
π ); θ−Q

)]
−Q (si, ai; θQ) , (4)

Li(θQ) = δ2
i ,

∆iθQ ∼ −OθQLi(θQ). (5)

The index i is a generic index for experiences that we will in the following use to indicate
the index of an experience in a buffer. The parameter vectors θ−π and θ−Q are copies of θπ
and θQ that are updated with a low-pass filter to slowly track θπ and θQ

θ−π ← (1− τ)θ−π + τθπ,

θ−Q ← (1− τ)θ−Q + τθQ,

with τ ∈ (0, 1), τ � 1. This was found to be important for ensuring stability when using
deep neural networks as function approximators in reinforcement learning (Mnih et al.,
2015; Lillicrap et al., 2016).

The parameters θπ of the policy neural network π(s; θπ) are updated in the direction
that changes the action a = π(s; θπ) in the direction for which the critic predicts the steepest
ascent in the expected sum of discounted rewards

∆θπ ∼ OaQ (si, π(si; θπ); θQ)Oθππ(si; θπ). (6)

3.3 Experience Replay

The actor and critic neural networks are trained by using sample-based estimates of the
gradients OθQ and Oθπ in a stochastic gradient optimization algorithm such as ADAM
(Kingma and Ba, 2015). These algorithms are based on the assumption of independent
and identically distributed (i.i.d.) data. This assumption is violated when the experiences
〈si, ai, s′i, ri〉 in (5) and (6) are used in the same order during the optimization of the
networks as they were observed by the agent. This is because the subsequent samples are
strongly correlated, since the world only changes slowly over time. To solve this problem,
an experience replay (Lin, 1992) buffer B with some finite capacity C can be introduced.

Most commonly, experiences are written to this buffer in a First In First Out (FIFO)
manner. When experiences are needed to train the neural networks, they are sampled
uniformly at random from the buffer. This breaks the temporal correlations of the updates
and restores the i.i.d. assumption of the optimization algorithms, which improves their
performance (Mnih et al., 2015; Montavon et al., 2012). The increased stability comes in
addition to the main advantage of experience replay, which is that experiences can be used
multiple times for updates, increasing the sample efficiency of the algorithm.
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3.3.1 Prioritized Experience Replay

Although sampling experiences uniformly at random from the experience buffer is an easy
default, the performance of reinforcement-learning algorithms can be improved by choosing
the experience samples used for training in a smarter way. Here, we summarize one of
the variants of Prioritized Experience Replay (PER) that was introduced by Schaul et al.
(2016). Our enhancements to experience replay are given in Section 7.

The PER technique is based on the idea that the temporal difference error (4) provides
a good proxy for the instantaneous utility of an experience. Schaul et al. (2016) argue that,
when the critic made a large error on an experience the last time it was used in an update,
there is more to be learned from the experience. Therefore, its probability of being sampled
again should be higher than that of an experience associated with a low temporal difference
error.

In this work we consider the rank-based stochastic PER variant. In this method, the
probability of sampling an experience i from the buffer is approximately given by:

P (i) ≈

(
1

rank(i)

)α
∑

j

(
1

rank(j)

)α . (7)

Here, rank(i) is the rank of sample i according to the absolute value of the temporal dif-
ference error |δ| according to (4), calculated when the experience was last used to train the
critic. All experiences that have not yet been used for training have δ = ∞, resulting in a
large probability of being sampled. The parameter α determines how strongly the proba-
bility of sampling an experience depends on δ. We use α = 0.7 as proposed by Schaul et al.
(2016) and have included a sensitivity analysis for different buffer sizes in Appendix 9.3.
Note that the relation is only approximate as sampling from this probability distribution
directly is inefficient. For efficient sampling, (7) is used to divide the buffer B into S seg-
ments of equal cumulative probability, where S is taken as the number of experiences per
training mini batch. During training, one experience is sampled uniformly at random from
each of the segments.

3.3.2 Importance Sampling

The estimation of an expected value with stochastic updates relies on those updates cor-
responding to the same distribution as its expectation. Schaul et al. (2016) proposed to
compensate for the fact that the changed sampling procedure can affect the value of the
expectation in (3) by multiplying the gradients (5) with an Importance Sampling (IS) weight

ωi =

(
1

C
1

P (i)

)β
. (8)

Here, β allows scaling between not compensating at all (β = 0) to fully compensating for
the changes in the sample distribution caused by the sampling strategy (β = 1). In our
experiments, when IS is used, we follow Schaul et al. (2016) in scaling β linearly per episode
from 0.5 at the start of a learning run to β = 1 at the end of the learning run. C indicates
the capacity of the buffer.
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Not all changes to the sampling distribution need to be compensated for. Since we
use a deterministic policy gradient algorithm with a Q-learning critic, we do not need to
compensate for the fact that the samples are obtained by a different policy than the one we
are optimizing for (Silver et al., 2014). We can change the sampling distribution from the
buffer, without compensating for the change, so long as these samples accurately represent
the transition and reward functions.

Sampling based on the TD error can cause issues here, as infrequently occurring tran-
sitions or rewards will tend to be surprising. Replaying these samples more often will
introduce a bias, which should be corrected through importance sampling.

However, the temporal difference error will also be partly caused by the function ap-
proximation error. These errors will be present even for a stationary sample distribution
after learning has converged. The errors will vary over the state-action space and their
magnitude will be related to the sample density. Sampling based on this part of the tempo-
ral difference error will make the function approximation accuracy more consistent over the
state-space. This effect might be unwanted when the learned controller will be tested on the
same initial state distribution as it was trained on. In that case, it is preferable to have the
function approximation accuracy be highest where the sample density is highest. However,
when the aim is to train a controller that generalizes to a larger part of the state space, we
might not want to use importance sampling to correct this effect. Note that importance
sampling based on the sample distribution over the state space is heuristically motivated
and based on function approximation considerations. The motivation does not stem from
the reinforcement learning theory, where most methods assume that the Markov decision
process is ergodic and that the initial state distribution does not factor into the optimal
policy (Aslanides et al., 2017). In practice however, deep reinforcement-learning methods
can be rather sensitive to the initial state distribution (Rajeswaran et al., 2017).

Unfortunately, we do not know to what extent the temporal difference error is caused by
the stochasticity of the environment dynamics and to what extent it is caused by function
approximation errors. We will empirically investigate the use of importance sampling in
Section 8.4.

4. Experimental Benchmarks

In this section, we discuss two relatively simple control tasks that are considered in this
paper, so that an understanding of their properties can be used in the following sections.
The relative simplicity of these tasks enables a thorough analysis. We test our findings on
more challenging benchmarks in Section 8.5.

We perform our tests on two simulated control benchmarks: a pendulum swing-up
task and a magnetic manipulation problem. Both were previously discussed by Alibekov
et al. (2018). Although both represent dynamical systems with a two dimensional state-
space, it will be shown in Section 6 that they are quite different when it comes to the
optimal experience selection strategy. Here, a high level description of these benchmarks is
presented, with the full mathematical description given in Appendix 9.3.

The first task is the classic under-actuated pendulum swing-up problem, shown in Fig-
ure 2a. The pendulum starts out hanging down under gravity. The goal is to balance the
pendulum in the upright position. The motor is torque limited such that a swing to one
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Figure 2: The two benchmark problems considered in this paper. In the pendulum task,
an underactuated pendulum needs to be swung up and balanced in the upright
position by controlling the torque applied by a motor. In the magnetic manipu-
lation (magman) task, a steel ball (top) needs to be positioned by controlling the
currents through four electromagnets. The magnetic forces exerted on the ball are
shown at the bottom of the figure and can be seen to be a nonlinear function of
the position. The forces scale linearly with the actions a1, ..., a4, which represent
the squared currents through the magnets.

side is needed to build up momentum before swinging towards the upright position in the
opposite direction. Once the pendulum is upright it needs to stabilize around this unstable
equilibrium point. The state of the problem sE consists of normalized versions of the angle
θ and angular velocity θ̇ of the pendulum. The action space is a normalized version of the
voltage applied to the motor that applies a torque to the pendulum. A reward is given
at every time-step, based on the absolute distance of the state from the reference state of
being upright with no rotational velocity.

The second benchmark is a magnetic manipulation (magman) task, in which the goal
is to accurately position a steel ball on a 1-D track by dynamically changing a magnetic
field. The relative magnitude and direction of the force that each magnet exerts on the ball
is shown in Figure 2b. This force is linearly dependent on the actions, which represent the
squared currents through the electromagnet coils. Normalized versions of the position x
and velocity ẋ form the state-space of the problem. A reward is given at every time-step,
based on the absolute distance of the state from the reference state of having the ball at
the fixed desired position.

In experiments where the buffer capacity C is limited, we take C = 104 experiences,
unless stated otherwise. All our experiments have episodes which last four seconds. Unless
stated otherwise, a sampling frequency of 50 Hz is used, which means the buffer can store
50 episodes of experience tuples 〈si, ai, s′i, ri〉.

Since we are especially interested in physical control problems where sustained exhaus-
tive exploration is infeasible, the amount of exploration is reduced over time from its max-
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imum at episode 1, to a minimum level from episode 500 onwards in all our experiments.
At the minimum level, the amplitude of the exploration noise we add to the neural network
policy is 10% of the amplitude at episode 1. Details of the exploration strategies used are
given in Appendix 9.3.

5. Performance Measures and Experience Selection Notation

This section introduces the performance measures used and the notation used to distinguish
between the experience selection strategies.

5.1 Performance Measures

When we investigate the performance of the learning methods in Sections 6 and 8, we are
interested in the effect that these methods might have on three aspects of the learning
performance: the learning stability, the maximum controller performance and the learning
speed. We define performance metrics for these aspects, related to the normalized mean
reward per episode µr. The normalization is performed such that µr = 0 is the performance
achieved by a random controller, while µr = 1 is the performance of the off-line dynamic
programming method described in Appendix 9.3. This baseline method is, at least for the
noise-free tests, proven to be close to optimal.

The first learning performance aspect we consider is the stability of the learning process.
As we have discussed in previous work (de Bruin et al., 2015, 2016a), even when a good pol-
icy has already been learned, the learning process can become unstable and the performance
can drop significantly when the properties of the training data change. We investigate to
what extent different experience replay methods can help prevent this instability. We use
the mean of µr over the last 100 episodes of each learning run, where the learning runs
should have converged to good behavior already, as a measure of learning stability. We
denote this measure by µfinal

r .

Although changing the data distribution might help stability, it could at the same time
prevent us from accurately approximating the true optimal policy. Therefore we also report
the maximum performance achieved per learning trial µmax

r .

Finally, we want to know the effects of the experience selection methods on the learning
speed. We therefore report the number of episodes before the learning method achieves a
normalized mean reward per episode of µr = 0.8 and denote this by Rise-time 0.8.

For these performance metrics we report the means and the 95% confidence bounds
of those means over 50 trials for each experiment. The confidence bounds are based on
bootstrapping (Efron, 1992).

5.2 Experience Selection Strategy Notation

We consider the problem of experience selection, which we have defined as the combina-
tion of experience retention and experience sampling. The experience retention strategy
determines which experiences are discarded when new experiences are available to a full
buffer. The sampling strategy determines which experiences are used in the updates of the
reinforcement-learning algorithm. We use the following notation for the complete experience
selection strategy: retention strategy[sampling strategy]. Our abbreviations for the retention
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Notation Proxy Explanation

FIFO age The oldest experiences are overwritten with new ones.

FULL DB - The buffer capacity C is chosen to be large enough to retain all
experiences.

Table 1: Commonly used experience retention strategies for deep reinforcement learning.

Notation Proxy Explanation

Uniform - Experiences are sampled uniformly at random.

PER surprise Experiences are sampled using rank-based stochastic prioritized
experience replay based on the temporal difference error.
See Section 3.3.1.

PER+IS surprise Sampling as above, but with weighted importance sampling
to compensate for the distribution changes caused by the sampling
procedure. See Section 3.3.2.

Table 2: Experience sampling strategies from the literature.

and sampling strategies commonly used in deep RL that were introduced in Section 3.3 are
given in Tables 1 and 2 respectively. The abbreviations used for the new or uncommonly
used methods introduced in Section 7 are given there, in Tables 4 and 5.

6. Analysis of Experience Utility

As previously noted by Schaul et al. (2016); Narasimhan et al. (2015); Pieters and Wiering
(2016) and de Bruin et al. (2016a, 2015), when using experience replay, the criterion that
determines which experiences are used to train the reinforcement learning agent can have
a large impact on the performance of the method. The aim of this section is to investigate
what makes an experience useful and how this usefulness depends on several identifiable
characteristics of the control problem at hand.

In the following sections, we mention only some relevant aspects of our implementation
of the deep reinforcement-learning methods, with more details given in Appendix 9.3.

6.1 The Limitations of a Single Proxy

To motivate the need for understanding how the properties of a control problem influence
the applicability of different experience selection strategies, and the need for multiple proxies
for the utility of experiences rather than one universal proxy, we compare the performance of
the two strategies from the literature that were presented in Section 3.3 on the benchmarks
described in Section 4.
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Figure 3: Comparison of the state-of-the-art (FULL DB[PER]) and the default method
(FIFO[Uniform]) for experience selection on our two benchmark problems.

The first experience selection strategy tested is FIFO[Uniform]: overwriting the oldest
experiences when the buffer is full and sampling uniformly at random from the buffer. We
compare this strategy to the state-of-the-art prioritized experience replay method FULL
DB[PER] by Schaul et al. (2016). Here, the buffer capacity C is chosen such that all
experiences are retained during the entire learning run (C = N = 4× 105 for this test).1

The sampling strategy is the rank-based stochastic prioritized experience replay strategy as
described in Section 3.3. The results of the experiments are shown in Figure 3.

Figure 3 shows that FULL DB[PER] method, which samples training batches based
on the temporal difference error from a buffer that is large enough to contain all previous
experiences, works well for the pendulum swing-up task. The method very reliably finds a
near optimal policy. The FIFO[Uniform] method, which keeps only the experiences from
the last 50 episodes in memory, performs much worse. As we reported previously (de Bruin
et al., 2016a), the performance degrades over time as the amount of exploration is reduced
and the experiences in the buffer fail to cover the state-action space sufficiently.

If we look at the result on the magman benchmark in Figure 3, the situation is reversed.
Compared to simply sampling uniformly from the most recent experiences, sampling from
all previous experiences according to their temporal difference error limits the final perfor-
mance significantly. As shown in Appendix 9.3, this is not simply a matter of the function
approximator capacity, as even much larger networks trained on all available data are out-
performed by small networks trained on only recent data. When choosing an experience
selection strategy for a reinforcement learning task, it seems therefore important to have
some insights into how the characteristics of the task determine the need for specific kinds
of experiences during training. We will investigate some of these characteristics below.

1. Schaul et al. (2016) use a FIFO database with a capacity of 106 experiences. We here denote this as
FULL DB since all our experiments use a smaller number of time-steps in total.
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6.2 Generalizability and Sample Diversity

One important aspect of the problem, which at least partly explains the differences in
performance for the two methods on the two benchmarks in Figure 3, is the complexity of
generalizing the value function and policy across the state and action spaces.

For the pendulum task, learning actor and critic functions that generalize across the
entire state and action spaces will be relatively simple as a sufficiently deep neural network
can efficiently exploit the symmetry in the value and policy functions (Montufar et al., 2014).
Figure 4b shows the learned policy after 100 episodes for a learning run with FIFO[Uniform]
experience selection. Due to the thorough initial exploration, the experiences in the buffer
cover much of the state-action space. As a result, a policy has been learned that is capable
of swinging the pendulum up and stabilizing it in both the clockwise and anticlockwise
directions, although the current policy favors one direction over the other.

For the next 300 episodes this favored direction does not change and as the amount of
exploration is decayed, the experiences in the buffer become less diverse and more centered
around this favored trajectory through the state-action space. Even though the information
on how to further improve the policy becomes increasingly local, the updates to the network
parameters can cause the policy to be changed over the whole state space, as neural networks
are global function approximators. This can be seen from Figure 4d, where the updates
that further refine the policy for swinging up in the currently preferred direction have
removed the previously obtained skill of swinging up in the opposite direction. The policy
has suffered from catastrophic forgetting (Goodfellow et al., 2013) and has over-fitted to the
currently preferred swing up direction.

For the pendulum swing up task, this over-fitting is particularly risky since the preferred
swing up direction can and does change during learning, since both directions are equivalent
with respect to the reward function. When this happens, the FIFO experience retention
method can cause the data distribution in the buffer to change rapidly, which by itself can
cause instability. In addition, the updates (4) and (6) now use the critic Q (s, a; θQ) function
in regions of the state-action space that it has not been trained on in a while, resulting in
potentially bad gradients. Both of these factors might destabilize the learning process. This
can be seen in Figure 4f where, after the preferred swing up direction has rapidly changed a
few times, the learning process is destabilized and the policy has deteriorated to the point
that it no longer accomplishes the balancing task. By keeping all experiences in memory and
ensuring the critic error δ stays low over the entire state-action space, the FULL DB[PER]
method largely avoids these learning stability issues. We believe that this accounts for the
much better performance for this benchmark shown in Figure 3.

For the magman task, a policy that generalizes over the whole state-space might be
harder to find. This is because the effects of the actions, shown as the colored lines in
Figure 2b, are strongly nonlinear functions of the (position)-state. The actor and critic
functions must therefore be very accurate for the states that are visited under the policy.
Requiring the critic to explain all of the experiences that have been collected so far might
limit the ability of the function approximators to achieve sufficient accuracy for the relevant
states.
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Figure 4: The critic Q (s, π(s; θπ); θQ) and actor π(s; θπ) functions trained on the pendulum
swing up task using FIFO[Uniform] experience selection. The surfaces represent
the functions. The black dots show the trajectories through the state-action space
resulting from deterministically following the current policy. The red and blue
lines show respectively the positive and negative ‘forces’ that shape the surfaces
caused by the experiences in the buffer: for the critic these are δ(s, a) (note a 6=
π(s; θπ)). For the actor these forces represent ∂Q (s, π(s; θπ); θQ) /∂a. Animations
of these graphs for different experience selection strategies are available at https:
//youtu.be/Hli1ky0bgT4. The episodes are chosen to illustrate the effect of
reduced sample diversity described in Section 6.2.
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Figure 5: The effect on the mean performance during the last 100 episodes of the learning
runs µfinal

r of the FIFO[Uniform] method when changing a fraction of the observed
experiences with synthetic experiences, for different buffer sizes.

6.2.1 Buffer Size and Synthetic Sample Fraction

To test the hypothesis that the differences in performance observed in Figure 3 revolve
around sample diversity, we will artificially alter the sample diversity and investigate how
this affects the reinforcement learning performance. We will do so by performing the fol-
lowing experiment. We use the plain FIFO[Uniform] method as a baseline. However, with
a certain probability we make a change to an experience 〈si, ai, s′i, ri〉 before it is written
to the buffer. We change either the state si or the action ai. The changed states and
actions are sampled uniformly at random from the state and action spaces. When the state
is re-sampled the action is recalculated as the policy action for the new state including
exploration. In both cases, the next state and reward are recalculated to complete the
altered experience. To calculate the next state and reward, we use the real system model.
This is not possible for most practical problems; it serves here merely to gain a better
understanding of the need for sample diversity.

The results of performing this experiment for different probabilities and buffer sizes are
given in Figures 5 and 6. Interestingly, for the pendulum swing up task, changing some
fraction of the experiences to be more diverse improves the stability of the learning method
dramatically, regardless of whether the diversity is in the states or in the actions. The effect
is especially noticeable for smaller experience buffers.
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Figure 6: The effects on the learning performance of the FIFO[Uniform] method when re-
placing a fraction of the observed experiences with synthetic experiences, for
different buffer sizes.
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For the magman benchmark, as expected, having more diverse states reduces the per-
formance significantly. Having a carefully chosen fraction of more diverse actions in the
original states can however improve the stability and learning speed slightly. This can be
explained from the fact that even though the effects of the actions are strongly nonlinear
in the state-space, they are linear in the action space. Generalizing across the action space
might thus be more straightforward and it is helped by having the training data spread out
over this domain.

6.3 Reinforcement-Learning Algorithm

The need for experience diversity also depends on the algorithm that is used to learn from
those experiences. In the rest of this work we exclusively consider the DDPG actor-critic
algorithm, as the explicitly parameterized policy enables continuous actions, which makes
it especially suitable for control. An alternative to using continuous actions is to discretize
the action space. In this subsection, we compare the need for diverse data of the actor-
critic DDPG algorithm (Lillicrap et al., 2016; Silver et al., 2014) to that of the closely
related critic-only DQN algorithm (Mnih et al., 2015). The experiments are performed on
the pendulum benchmark, where the one dimensional action is divided uniformly into 15
discrete actions. Results for the magman benchmark are omitted as the four dimensional
action space makes discretization impractical.

For the actor-critic scheme to work, the critic needs to learn a general dependency of
the Q-values on the states and actions. For the DQN critic, this is not the case as the
Q-values for different actions are separate. Although the processing of the inputs is shared,
the algorithm can learn at least partially independent value predictions for the different
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Figure 7: RL algorithm dependent effect of adding synthetic experiences to the
FIFO[Uniform] method. Experiments on the pendulum benchmark. The effect
on µmax

r is given in Figure 22 in Appendix 9.3.
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actions. These functions additionally do not need to be correct, as long as the optimal
action in a state has a higher value than the sub-optimal actions.

These effects can be seen in Figure 7. The DDPG algorithm can make more efficient
use of the state-action space samples by learning a single value prediction, resulting in
significantly faster learning than the DQN algorithm. The DDPG algorithm additionally
benefits from more diverse samples, with the performance improving for higher fractions
of randomly sampled states or actions. The DQN algorithm conversely seems to suffer
from a more uniform sampling of the state-action space. This could be because it is now
tasked with learning accurate mappings from the states to the state-action values for all
actions. While doing so might not help to improve the predictions in the relevant parts of
the state-action space, it could increase the time required to learn the function and limit
the function approximation capacity available for those parts of the state-space where the
values need to be accurate. Note again that learning precise Q-values for all actions over
the whole state-space is not needed, as long as the optimal action has the largest Q-value.

Due to the better scalability of policy-gradient methods in continuous control settings,
we exclusively consider the DDPG algorithm in the remainder of this work.

6.3.1 Sample Age

In the model-free setting it is not possible to add synthetic experiences to the buffer. Instead,
in Section 7 we will introduce ways to select real experiences that have desirable properties
and should be remembered for a longer time and replayed more often. This will inevitably
mean that some experiences are used more often than others, which could have detrimental
effects such as that the learning agent could over-fit to those particular experiences.
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To investigate the effects of adding older experiences for diversity, we perform the fol-
lowing experiment. As before, a FIFO buffer is used with a certain fraction of synthetic
experiences. However, when a synthetic experience is about to be over-written, we only
sample a new synthetic experience with a certain probability. Otherwise, the experience
is left unchanged. The result of this experiment is shown in Figure 8. For the pendulum
benchmark, old experiences only hurt when they were added to provide diversity in the
action space in states that were visited by an older policy. For the magman benchmark the
age of the synthetic experiences is not seen to affect the learning performance.

6.4 Sampling Frequency

An important property of control problems that can influence the need for experience diver-
sity is the frequency at which the agent needs to produce control decisions. The sampling
frequency of a task is something that is often considered a given property of the environment
in reinforcement learning. For control tasks however, a sufficiently high sampling frequency
can be crucial for the performance of the controller and for disturbance rejection (Franklin
et al., 1998). At the same time, higher sampling frequencies can make reinforcement learn-
ing more difficult as the effect of taking an action for a single time-step diminishes for
increasing sampling frequencies (Baird, 1994). Since the sampling rate can be an impor-
tant hyperparameter to choose, we investigate whether changing it changes the diversity
demands for the experiences to be replayed.

In Figure 9, the performance of the FIFO[Uniform] method is shown for different sam-
pling frequencies, with and without synthetic samples. The first thing to note is that, as
expected, low sampling frequencies limit the controller performance. Interestingly, much
of the performance loss on the pendulum at low frequencies can be prevented through in-
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Appendix 9.3.
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Figure 10: The effect of synthetic actions and stochastically preventing experiences from be-
ing written to the buffer [DE] for the FIFO[Uniform] method on the benchmarks
with increased sampling frequencies.

creased sample diversity. This indicates that on this benchmark most of the performance
loss at the tested control frequencies stems from the learning process rather than the funda-
mental control limitations. When increasing the sampling frequencies beyond our baseline
frequency of 50Hz, sample diversity becomes more important for both stability and per-
formance. For the pendulum swing-up it can be seen that as sampling frequency increases
further, increased diversity in the state-space becomes more important. For the magman,
adding synthetic action samples has clear benefits. This is very likely related to the idea
that the effects of actions become harder to distinguish for higher sampling frequencies
(Baird, 1994; de Bruin et al., 2016b).

There are several possible additional causes for the performance decrease at higher
frequencies. The first is that by increasing the sampling frequency, we have increased the
number of data points that are obtained and learned from per episode. Yet the amount of
information that the data contains has not increased by the same amount. Since the buffer
capacity is kept equal, the amount of information that the buffer contains has decreased
and the learning rate has effectively increased. To compensate for these specific effects,
experiments are performed in which samples are stochastically prevented from being written
to the buffer with a probability proportional to the increase in sampling frequency. The
results of these experiments are indicated with [DE] (dropped experiences) in Figure 10 and
are indeed better, but still worse than the performance for lower sampling frequencies.

The second potential reason for the drop in performance is that we have changed the
problem definition by changing the sampling frequency. This is because the forgetting factor
γ determines how far into the future we consider the effects of our actions according to:

γ = e
−Ts
τγ ,
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Figure 11: Experiments with altered experiences and sensor and actuator noise. Results are
from the last 100 episodes of 50 learning runs. A description of the performance
measures is given in Section 5.1.

where Ts is the sampling period in seconds and τγ is the lookahead horizon in seconds. To
keep the same lookahead horizon, we recalculate γ, which is 0.95 in our other experiments
(Ts = 0.02), to be γpendulum = 0.9747 (Ts = 0.01) and γmagman = 0.9873 (Ts = 0.005). To
keep the scale of the Q functions the same, which prevents larger gradients, the rewards
are scaled down. Correcting the lookahead horizon was found to hurt performance on both
benchmarks. The likely cause of this is that higher values of γ increase the dependence on
the biased estimation of Q over the unbiased immediate reward signal (see Equation (4)).
This can cause instability (François-Lavet et al., 2015).

6.5 Noise

The final environment property that we consider is the presence of sensor and actuator
noise. So far, the agent has perceived the (normalized) environment state exactly and its
(de-normalized) chosen actions have been implemented without change. Now we consider
Equations (1) and (2) with σs = σa ∈ {0, 0.01, 0.02, 0.05}. The results of performing these
experiments are shown in Figure 11. The results indicate that the need for data diversity is
not dependent on the presence of noise. However, in Section 8.3 it will be shown that the
methods used to determine which experiences are useful can be affected by noise.

6.6 Summary

This section has presented an investigation into how different aspects of the reinforcement
learning problem at hand influence the need for experience diversity. In Table 3 a summary
is given of the investigated aspects and the strength of their effect on the need for experience
diversity. While this section has used the true environment model to examine the potential
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Property Effect Explanation

Benchmark Very high The need for diverse states and actions largely depends
on the ease and importance of generalizing across the
state-actions space, which is benchmark dependent.

RL algorithm Very high Generalizing across the action space is fundamental to
actor-critic algorithms, but not to critic-only algorithms
with discrete action spaces.

Sampling frequency High The stability of RL algorithms depends heavily on the
sampling frequency. Experience diversity can help
learning stability. Having diverse actions at higher
frequencies might be crucial as the size of their effect
on the observed returns diminishes.

Buffer size Medium Small buffers can lead to rapidly changing data
distributions, which causes unstable learning. Large
buffers have more inherent diversity.

Sample age Low Although retaining old samples could theoretically be
problematic, these problems were not clearly observable
in practice.

Noise None The presence of noise was not observed to influence the
need for experience diversity, although it can influence
experience selection strategies, as will be shown in
Section 8.3.

Table 3: The dependence of the need for diverse experiences on the investigated environ-
ment and reinforcement learning properties.

benefits of diversity, the next section will propose strategies to obtain diverse experiences
in ways that are feasible on real problems.

7. New Experience-Selection Strategies

For the reasons discussed in Section 2, we do not consider changing the stream of experi-
ences that an agent observes by either changing the exploration or by generating synthetic
experiences. Instead, to be able to replay experiences with desired properties, valuable
experiences need to be identified, so that they can be retained in the buffer and replayed
from it. In this section we look at how several proxies for the utility of experiences can be
used in experience selection methods.
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7.1 Experience Retention

Although we showed in Section 6.4 that high sampling rates might warrant dropping expe-
riences, in general we assume that each new experience has at least some utility. Therefore,
unless stated otherwise, we will always write newly obtained experiences to the buffer.
When the buffer is full, this means that we need some metric that can be used to decide
which experiences should be overwritten.

7.1.1 Experience Utility Proxies

A criterion used to manage the contents of an experience replay buffer should be cheap
enough to calculate,2 should be a good proxy for the usefulness of the experiences and
should not depend on the learning process in a way that would cause a feedback loop and
possibly might destabilize that learning process. We consider three criteria for overwriting
experiences.

Age: The default and simplest criterion is age. Since the policy is constantly changing and
we are trying to learn its current effects, recent experiences might be more relevant
than older ones. This (FIFO) criterion is computationally as cheap as it gets, since
determining which experience to overwrite involves simply incrementing a buffer index.
For smaller buffers, this does however make the buffer contents quite sensitive to the
learning process, as a changing policy can quickly change the distribution of the
experiences in the buffer. As seen in Figure 4, this can lead to instability.

Besides FIFO, we also consider reservoir sampling (Vitter, 1985). When the buffer is
full, new experiences are added to it with a probability C/i where i is the index of
the current experience. If the experience is written to the buffer, the experience it
replaces is chosen uniformly at random. Note that this is the only retention strategy
we consider that does not write all new experiences to the buffer. Reservoir sampling
ensures that at every stage of learning, each experience observed so far has an equal
probability of being in the buffer. As such, initial exploratory samples are kept in
memory and the data distribution converges over time. These properties are shared
with the FULL DB strategy, without needing the same amount of memory. The
method might in some cases even improve the learning stability compared to using
a full buffer, as the data distribution converges faster. However, when the buffer
is too small this convergence can be premature, resulting in a buffer that does not
adequately reflect the policy distribution. This can seriously compromise the learning
performance.

Surprise: Another possible criterion is the unexpectedness of the experience, as measured
by the temporal difference error δ from (4). The success of the Prioritized Experience
Replay (PER) method of Schaul et al. (2016) shows that this can be a good proxy for
the utility of experiences. Since the values have to be calculated to update the critic,
the computational cost is very small if we accept that the utility values might not be

2. We have discussed the need for experience diversity in Section 6 and we have previously proposed
overwriting a buffer in a way that directly optimized for diversity (de Bruin et al., 2016a). However,
calculating the experience density in the state-action space is very expensive and therefore prohibits
using the method on anything but small-scale problems.

24



Experience Selection in Deep RL for Control

current since they are only updated for experiences that are sampled. The criterion
is however strongly linked with the learning process, as we are actively trying to
minimize δ. This means that, when the critic is able to accurately predict the long
term rewards of the policy in a certain region of the state-action space, these samples
can be overwritten. If the predictions of the critic later become worse in this region,
there is no way of getting these samples back. An additional problem might be that
the error according to (4) will be caused partially by state and actuator noise. Keeping
experiences for which the temporal difference error is high might therefore cause the
samples saved in the buffer to be more noisy than necessary.

Exploration: We introduce a new criterion based on the observation that problems can
occur when the amount of exploration is reduced. On physical systems that are
susceptible to damage or wear, or for tasks where adequate performance is required
even during training, exploration can be costly. This means that preventing the
problems caused by insufficiently diverse experiences observed in Section 6 simply
by sustained thorough exploration might not be an option. We therefore view the
amount of exploration performed during an experience as a proxy for its usefulness.
We take the 1-norm of the deviation from the policy action to be the usefulness
metric. In our experiments on the small scale benchmarks we follow the original
DDPG paper (Lillicrap et al., 2016) in using an Ornstein-Uhlenbeck noise process
added to the output of the policy network. The details of the implementation are given
in Appendix 9.3. In the experiments in Section 8.5 a copy of the policy network with
noise added to the parameters is used to calculate the exploratory actions (Plappert
et al., 2018).

For discrete actions, the cost of taking exploratory actions could be used as a measure
of experience utility as well. The inverse of the probability of taking an action could
be seen as a measure of the cost of the action. It could also be worth investigating the
use of a low-pass filter, as a series of (semi)consecutive exploratory actions would be
more likely to result in states that differ from the policy distribution in a meaningful
way. These ideas are not tested here, as we only consider continuous actions in the
remainder of this work.

Note that the size of the exploration signal is the deviation of the chosen action in a
certain state from the policy action for that state. Since the policy evolves over time
we could recalculate this measure of deviation from the policy actions per experience
at a later time. Although we have investigated using this policy deviation proxy
previously (de Bruin et al., 2016b), we found empirically that using the strength of
the initial exploration yields better results. This can partly be explained by the fact
that recalculating the policy deviation makes the proxy dependent on the learning
process and partly by the fact that sequences with more exploration also result in
different states being visited.

7.1.2 Stochastic Experience Retention Implementation

For the temporal difference error and exploration-based experience retention methods, keep-
ing some experiences in the buffer indefinitely might lead to over-fitting to these samples.
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Notation Proxy Explanation

Expl(α) Exploration Experiences with the least exploration are stochastically
overwritten with new ones.

TDE(α) Surprise Experiences with the smallest temporal difference error are
stochastically overwritten with new ones.

Resv Age The buffer is overwritten such that each experience observed
so far has an equal probability of being in the buffer.

Table 4: New and uncommon experience retention strategies considered in this work.

Notation Proxy Explanation

Uniform + FIS - Experiences are sampled uniformly at random,
FIS (Section 7.2) is used to account for the distribution
changes caused by the retention policy.

PER+FIS Surprise Experiences are sampled using rank based stochastic
prioritized experience replay based on the temporal
difference error. Full importance sampling is used to
account for the distribution changes caused by both
the retention and sampling policies.

Table 5: New experience sampling strategies considered in this work.

Additionally, although the overwrite metric we choose might provide a decent proxy for the
usefulness of experiences, we might still want to be able to scale the extent to which we base
the contents of the buffer on this proxy. We therefore use the same stochastic rank-based
selection criterion of (7) suggested by Schaul et al. (2016), but now to determine which
experience in the buffer is overwritten by a new experience. We denote this as TDE(α)
for the temporal difference-based retention strategy and Expl(α) for the exploration-based
policy. Here, α is the parameter in (7) which determines how strongly the buffer contents
will be based on the chosen utility proxy. A sensitivity analysis of α for both Expl and PER
is given in Appendix 9.3. The notation used for the new experience retention strategies is
given in Table 4.

7.2 Experience Sampling

For the choice of proxy when sampling experiences from the buffer, we consider the available
methods from the literature: sampling either uniformly at random [Uniform], using stochas-
tic rank-based prioritized experience replay [PER] and combining this with weighted impor-
tance sampling [PER+IS]. Given a buffer that contains useful experiences, these methods
have shown to work well. We therefore focus on investigating how the experience reten-
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tion and experience sampling strategies interact. In this context we introduce a weighted
importance sampling method that accounts for the full experience selection strategy.

Importance sampling according to (8) can be used when performing prioritized experi-
ence replay from a buffer that contains samples with a distribution that is unbiased with
respect to the environment dynamics. When this is not the case, we might need to com-
pensate for the effects of changing the contents of the buffer, potentially in addition to
the current change in the sampling probability. The contents of the buffer might be the
result of many subsequent retention probability distributions. Instead of keeping track of
all of these, we compensate for both the retention and sampling probabilities by using the
number of times an experience in the buffer has actually been replayed. When replaying an
experience i for the K-th time, we relate the importance-weight to the probability under
uniform sampling from a FIFO buffer of sampling an experience X times, where X is at
least K: Pr(X ≥ K|FIFO[Uniform]). We refer to this method as Full Importance Sampling
(FIS) and calculate the weights according to :

ωFIS
i =

 Pr(X ≥ K|FIFO[Uniform])[∑dnpe
j=1 Pr(X ≥ j|FIFO[Uniform])

]
/np

β

.

Here, n is the lifetime of an experience for a FIFO retention strategy in the number of
batch updates, which is the number of batch updates performed so far when the buffer is not
yet full. The probability of sampling an experience during a batch update when sampling
uniformly at random is denoted by p. Note that np is the expected number of replays per
experience, which following Schaul et al. (2016) we take as 8 by choosing the number of
batch updates per episode accordingly. As in Section 3.3.2 we use β to scale between not
correcting for the changes and correcting fully. Since the probability of being sampled at
least K times is always smaller than one for K > 0, we scale the weights such that the sum
of the importance weights for the expected np replays under FIFO[Uniform] sampling is the
same as when not using the importance weights (n · p · 1). The probability of sampling an
experience at least K times under FIFO[Uniform] sampling is calculated using the binomial
distribution:

Pr(X ≥ K|FIFO[Uniform]) = 1−
K∑
k=0

(
n

k

)
pk(1− p)n−k.

Correcting fully (β = 1) for the changed distributions would make the updates as unbi-
ased as those from the unbiased FIFO uniform distribution (Needell et al., 2016). However,
since the importance weights of experiences that are repeatedly sampled for stability will
quickly go to zero, it might also undo the stabilizing effects that were the intended outcome
of changing the distribution in the first place. Additionally, as discussed in Section 3.3.2,
the FIFO Uniform distribution is not the only valid distribution. As demonstrated in Sec-
tion 8.4, it is therefore important to determine whether compensating for the retention
strategy is necessary before doing so.

The notation for the selection strategies with this form of importance sampling is given
in Table 5.
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Figure 12: Performance of the experience selection methods under the default conditions of
moderate sampling frequencies and no state or actuator noise. A description of
the performance measures is given in Section 5.1.

8. Experience Selection Results

Using the experience retention and sampling methods discussed in Section 7, we revisit
the scenarios discussed in Section 6. We first focus on the methods without importance
sampling, which we discuss separately in Section 8.4. Besides the tests on the benchmarks
of Section 4, we also show results on six additional benchmarks in Section 8.5. There we
also discuss how to choose the size of the experience buffer.

8.1 Basic Configuration

We start by investigating how these methods perform on the benchmarks in their basic
configuration, with a sampling rate of 50 Hz and no sensor or actuator noise. The results
are given in Figure 12 and show that it is primarily the combination of retention method
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and buffer size that determines the performance. It is again clear that this choice here
depends on the benchmark. On the pendulum benchmark, where storing all experiences
works well, the Resv method works equally well while storing only 104 experiences, which
equals 50 of the 3000 episodes. On the magman benchmark, using a small buffer with only
recent experiences works better than any other method.

Sampling according to the temporal difference error can be seen to benefit primarily the
learning speed on the pendulum. On the magman, PER only speeds up the learning process
when sampling from recent experiences. When sampling from diverse experiences, PER will
attempt to make the function approximation errors more even across the state-action space,
which as discussed before, hurts performance on this benchmark.

8.2 Effect of the Sampling Frequency

For higher sampling frequencies, the performance of the different experience selection meth-
ods is shown in Figure 13. We again see that higher sampling frequencies place different
demands on the training data distribution. With the decreasing exploration, retaining the
right experiences becomes important. This is most visible on the Magman benchmark
where FIFO retention, which resulted in the best performance at the end of training for the
base sampling frequency, now performs worst. Retaining all experiences works well on both
benchmarks. When not all experiences can be retained, the reservoir retention method is
still a good option here, with the exploration-based method a close second.

8.3 Sensor and Actuator Noise

We also test the performance of the methods in the presence of noise, similarly to Section 6.5.
The main question here is how the noise might affect the methods that use the temporal
difference error δ as the usefulness proxy. The concern is that these methods might favor
noisy samples, since these samples might cause bigger errors. To test this we perform
learning runs on the pendulum task while collecting statistics on all of the experiences in
the mini-batches that are sampled for training. The mean absolute values of the noise in
the experiences that are sampled are given in Table 6. It can be seen that the temporal
difference error-based methods indeed promote noisy samples. The noise is highest for those
dimensions that have the largest influence on the value of Q.

In Figure 14 the performance of the different methods on the two benchmarks with noise
is given. The tendency to seek out noisy samples in the buffer is now clearly hurting the
performance of PER sampling, as the performance with PER is consistently worse than with
uniform sampling. For our chosen buffer size the retention strategy is still more influential
and interestingly the TDE-based retention method does not seem to suffer as much here.
The relative rankings of the retention strategies are similar to those without noise.
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Figure 13: Performance of the experience selection methods with increased sampling fre-
quencies. Results are from 50 learning runs. A description of the performance
measures is given in Section 5.1.

position velocity action

Expl(1.0)[Uniform] 1.584 ·10−2 1.582·10−2 1.594·10−2

Expl(1.0)[PER] 1.654 ·10−2 1.630·10−2 1.595·10−2

TDE(1.0)[Uniform] 1.713·10−2 1.627·10−2 1.598·10−2

TDE(1.0)[PER] 1.846·10−2 1.743·10−2 1.594·10−2

Table 6: Mean absolute magnitude of the noise per state-action dimension in the mini
batches as a function of the experience selection procedure.
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(b) Magman [σs = σa = 0.02]

Figure 14: Performance of the experience selection methods with with sensor and actuator
noise. Results are from 50 learning runs. A description of the performance
measures is given in Section 5.1.

31



de Bruin, Kober, Tuyls and Babuška

8.4 Importance Sampling

Finally, we investigate the different importance sampling strategies that were discussed in
Sections 3.3.2 and 7.2. We do this by using the FIFO, TDE and Resv retention strategies
as representative examples. We consider the benchmarks with noise, since as we discussed
in Section 3.3.2, the stochasticity in the environment can make importance sampling more
relevant. The results are shown in Figure 15. We discuss per retention strategy how the
sample distribution is changed and whether the change introduces a bias that should be
compensated for through importance sampling.

FIFO: This retention method results in an unbiased sample distribution. When combined
with uniform sampling, there is no reason to compensate for the selection method.
Doing so anyway (FIFO[Uniform + FIS]) results in downscaling the updates from
experiences that happen to have been sampled more often than expected, effectively
reducing the batch-size while not improving the distribution. The variance of the
updates is therefore increased without reducing bias. This can be seen to hurt perfor-
mance in Figure 15, especially on the swing-up task where sample diversity is most
important. Using PER also hurts performance in the noisy setting as this sampling
procedure does bias the sample distribution. Using importance sampling to compen-
sate for just the sampling procedure (FIFO[PER+IS]) helps, but the resulting method
is not clearly better than uniform sampling.

TDE: When the retention strategy is based on the temporal difference error, there is a
reason to compensate for the bias in the sample distribution. It can be seen from
Figure 15 however, that the full importance sampling scheme improves performance
on the magman benchmark, but not on the swing-up task. The likely reason is
again that importance sampling indiscriminately compensates for both the unwanted
re-sampling of the environment dynamics and reward distributions as well as the
beneficial re-sampling of the state-action space distribution. The detrimental effects
of compensating for the latter seen to outweigh the beneficial effects of compensating
for the former on this benchmark where state-action space diversity has been shown
to be so crucial.

Resv: The reservoir retention method is not biased with respect to the reward function or
the environment dynamics. Although the resulting distribution is strongly off-policy
(assuming the policy has changed during learning), this does not present a problem for
a deterministic policy gradient algorithm with Q-learning updates, other than that it
might be harder to learn a function that generalizes to a larger part of the state space.
When sampling uniformly, we do sample certain experiences, from early in the learning
process, far more often than would be expected under a FIFO[Uniform] selection
strategy. The FIS method compensates for this by weighing these experiences down,
effectively reducing the size of both the buffer and the mini-batches. In Figure 15,
this can be seen to severely hurt the performance on the swing-up problem, as well as
the learning stability on the magman benchmark.

Interesting to note is that on these two benchmarks, for all three considered retention
strategies, using importance sampling to compensate for the changes introduces by PER
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Figure 15: Performance of representative experience selection methods with and without
importance sampling on the benchmarks with sensor and actuator noise. A
description of the performance measures is given in Section 5.1.

only improved the performance significantly when using PER resulted in poorer performance
than not using PER. Similarly, using FIS to compensate for the changes introduced in the
buffer distribution only improved the performance when those changes should not have been
introduced to begin with.
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8.5 Additional Benchmarks

The computational and conceptual simplicity of the two benchmarks used so far allowed
for comprehensive tests and a good understanding of the characteristics of the benchmarks.
However, we also saw that the right experience selection strategy is benchmark dependent.
Furthermore, deep reinforcement learning yields most of its advantages over reinforcement
learning without simpler function approximation on problems with higher dimensional state
and action spaces. To obtain a more complete picture we therefore perform additional tests
on 6 benchmarks of varying complexity.

8.5.1 Benchmarks

In the interest of reproducibility, we use the open source RoboSchool (Klimov, 2017) bench-
marks together with the openAI baselines (Dhariwal et al., 2017) implementation of DDPG.
We have adapted the baselines code to include the experience selection methods considered
in this section. Our adapted code is available online.3

The baselines version of DDPG uses Gaussian noise added to the parameters of the
policy network for exploration (Plappert et al., 2018). In contrast to the other experiments
in this work, the strength of the exploration is kept constant during the entire learning run.
For the Expl method we still consider the 1-norm of the distance between the exploration
policy action and the unperturbed policy action as the utility of the sample.

For the benchmarks listed in Table 7, we compare the default FULL DB[Uniform] se-
lection strategy in the baselines code to the alternative retention strategies considered in
this work with uniform sampling. We show the maximum performance for these different
retention strategies as a function of the buffer size in Figure 16.

8.5.2 Results

As shown in Figure 16, on these noise-free benchmarks with constant exploration and mod-
erate sampling frequencies, the gains obtained by using the considered non-standard ex-
perience selection strategies are limited. However, in spite of the limited number of trials
performed due to the computational complexity, trends do emerge on most of the bench-

3. The code is available at https://github.com/timdebruin/baselines-experience-selection.

InvDoublePnd Reacher Hopper Walker2d HalfCheetah Ant

|S| 9 9 15 22 26 28

|A| 1 2 3 6 6 8

Table 7: The RoboSchool benchmarks considered in this section with the dimensionalities
of their state and action spaces.
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Figure 16: Maximum performance during a training run on the Roboschool benchmarks as
a function of the retention strategy and buffer size. Results for the individual
runs and their means are shown. In Appendix 9.3, we additionally show the
mean (Figure 26) and final (Figure 25) performance. Green lines indicate the
rule of thumb buffer sizes of Figure 17.
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marks. On all benchmarks, the best performance is seen not when retaining all experiences,
but rather when learning from a smaller number of experiences. This is most visible on the
reacher task, which involves learning a policy for a 2-DOF arm to move from one random
location in its workspace to another random location. For this task, the best performance
for all retention strategies is observed when retaining less than a tenth of all experiences.

For these noise-free benchmarks, the temporal difference error is an effective proxy for
the utility of the experiences, resulting in the highest or close to the highest maximum
performance on all benchmarks.

The exploration-based retention strategy was introduced to prevent problems when re-
ducing exploration and for high sampling frequencies. Since the exploration is not decayed
and the sampling frequencies are modest, there is no real benefit when applying this strategy
to these benchmarks. However, it also does not seem to hurt performance compared to the
age-based retention strategies. The constant exploration on these benchmarks additionally
means that the performance of FIFO and Reservoir retention are rather close, although due
to premature convergence of the data distribution, reservoir retention does suffer the most
when the buffer capacity is too low.

Figures 16, 25 and 26 show that when the right proxy for the utility of experiences is
chosen, performance equal to and often exceeding that of retaining all experiences can be
obtained while using only a fraction of the memory. This begs the question of how to choose
the buffer size.

As it tends to result in more stable learning, retaining as many experiences as possible
seems a sensible first choice for the buffer size. We therefore base our suggestion for sub-
sequently tuning the buffer size on the learning curves of the FULL DB[Uniform] method.
The complexity of the control task at hand determines the minimal number of environment
steps required to learn a good policy, as well as the number of experiences that need to
be retained in a buffer for decent learning performance. We propose to use the number of
experiences needed to get to 90% of the final performance as a rough empirical estimate of
the optimal buffer size. We show this rule of thumb in Figure 17 and have indicated the
experiments with the proposed buffer sizes in Figure 16 with vertical green lines.

Instead of iteratively optimizing the buffer size over several reinforcement learning trials,
extrapolation of the learning curve (Domhan et al., 2015) could also be used to limit the
buffer capacity when the remaining learning performance increase is expected to be small.
This would allow the method to work immediately for novel tasks.
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Figure 17: Learning curves of the FULL DB method on the different benchmarks, averaged
over 5 trials. The curves are normalized by the final performance (the mean
performance over the last 2 · 105 steps). Indicated are the number of steps
needed to get to 90% of the final performance.

9. Conclusions and Recommendations

In this work, we have investigated how the characteristics of a control problem determine
what experiences should be replayed when using experience replay in deep reinforcement
learning.

We first investigated how factors such as the generalizability over the state-action space
and the sampling frequency of the control problem influenced the balance between the need
for on-policy experiences versus a broader coverage of the state-action space.

We then investigated a number of proxies for the utility of experiences which we used to
both decide which experiences to retain in a buffer and how to sample from that buffer. We
performed experiments that showed how these methods were affected by noise, increased
sampling frequencies and how their performance varied across benchmarks and experience
buffer sizes.

Based on these investigations we present a series of recommendations below for the
three choices concerning experience selection: how to choose the capacity of the experience
replay buffer, which experiences to retain in a buffer that has reached its capacity and how
to sample from that buffer. These choices together should ensure that the experiences that
are replayed to the reinforcement learning agent facilitate quick and stable learning of a
policy with good performance. An example of applying the procedure outlined below on
the Magman benchmark is given in Figure 18. Note the proposed methods are especially
relevant when faced by issues that might occur in a physical-control setting, such as a
need for constrained exploration, high or low sampling frequencies, the presence of noise
and hardware limitations that limit the experience buffer size. Section 8.5 shows that the
potential gains might be limited for processes where these problems do not occur.
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Figure 18: Demonstration of the proposed process for the magman benchmark. 1: Based
on the performance of the Full DB[Uniform] method, the rule of thumb indicates
a buffer capacity of 84× 103 experiences. As there are no special circumstances
such as high sampling frequencies and the magman requires a very precise policy
that does not easily generalize due to the highly nonlinear behavior of the mag-
nets, FIFO retention is used. 2: By exploring around the proposed buffer size,
a buffer capacity of 42× 103 experiences is chosen. 3: Sampling from the buffer
based on the temporal difference error can help speed up and stabilize learning,
but is very dependent on the experiences that are in the buffer to begin with.
4: Since the benchmark fully deterministic (noise free), importance sampling is
not needed in this case and can be seen to undo some of the benefits of PER.

38



Experience Selection in Deep RL for Control

9.1 Choosing the Buffer Capacity

Although it is not the best retention strategy in most of the benchmarks we have considered,
retaining as many experiences as possible is a good place to start. This tends to result in
more stable learning, even if the eventual performance is not always optimal.

If the learning curve for the FULL DB experiments reaches a level of performance close
to the performance after convergence in significantly fewer environment steps than there
are experience samples in the buffer, it might be worthwhile reducing the size of the buffer.
Our proposed rule of thumb is to to make the buffer size roughly equal to 90% the number
of environment steps needed to reach the final performance level.

9.2 Choosing the Experience Utility Proxy

When not all experiences are retained in the buffer, a proxy for the utility of the individual
experiences is needed to determine which experiences to retain and which to discard. In
this work, we have discussed strategies based on several proxies and shown that the right
strategy is problem dependent. Although finding the right one will likely require some
experimentation, we discuss here what properties of the control problem at hand make
certain strategies more likely or less likely to succeed.

FIFO: Although off-policy reinforcement-learning algorithms can learn from samples ob-
tained by a different policy than the optimal policy that is being learned, the reality
of deep reinforcement learning is that a finite amount of shared function approxima-
tion capacity is available to explain all of the training data. While simply using larger
networks might help, we show in Appendix 9.3 that learning only from more recent
data (which corresponds more closely to the policy being learned) can work better.
A large potential downfall presents itself when the policy suddenly changes in a way
that changes the distribution of the states that are visited. As shown in Section 6.2,
this can quickly destabilize the learning process. Extra care should be taken when
using FIFO retention in combination with decaying exploration. This is especially
true for problems where multiple policies are possible that give similar returns but
distinct state-space trajectories, such as swinging up a pendulum either clockwise or
anti-clockwise.

TDE: The idea behind selecting certain experiences over others is that more can be learned
from these samples. The temporal difference error is therefore an interesting proxy,
especially during the early stages of the learning process when the error is mostly
caused by the fact that the value function has not been accurately learned yet. In
the experiments of Schaul et al. (2016) as well as in our own experiments, prioritizing
experiences with larger TD errors was observed to improve both the speed of learning
as well as the eventual performance in many cases. The downside of using the TD
error as an experience utility proxy is that the error can also be caused by sensor
and actuator noise, environment stochasticity or function approximation accuracy
differences as a result of differences in the state space coverage. We have shown in
Section 8.3 how noise can hurt the performance of the algorithm when using this proxy
and argued in Section 3.3.2 how this proxy introduces a harmful bias in the presence
of environment stochasticity.
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Exploration: We introduced an additional proxy based on the observation that, on physical
systems, exploration can be costly. By using the strength of the exploration signal
as a proxy for the utility of the experience, some of the problems mentioned for the
FIFO strategy when reducing exploration can be ameliorated. As shown in Section 6.4
and Section 8.2, sufficient diversity in the action space is most important when the
dependency of the value function on the action is relatively small, such as for increased
sampling frequencies. The downside of this strategy is that since it focuses on early
experiences that are more off-policy, it can take longer for the true value function to
be learned. Besides the impact on training speed, the focus on off-policy data can
also limit the maximum controller performance.

Reservoir sampling: By using reservoir sampling as a retention strategy, the buffer contains,
at all times, samples from all stages of learning. As with the exploration-based policy,
this ensures that initial exploratory samples are retained which can significantly im-
prove learning stability on domains where FIFO retention does not work. However, of
the methods mentioned here, reservoir sampling is the one most severely impacted by
a too small experience buffer, as the data distribution in the buffer will converge pre-
maturely and will not cover the state-action space distribution of the optimal policy
well enough.

9.3 Experience Sampling and Importance Sampling

The experiences that are used to learn from are not just determined by the buffer retention
strategy, but also by the method of sampling experiences from the buffer. While the reten-
tion strategy needs to ensure that a good coverage of the state-action space is maintained
in the buffer throughout learning, the sampling strategy can seek out those experiences
that can result in the largest immediate improvement to the value function and policy. It
can therefore be beneficial to sample based on the temporal difference error (as suggested
by Schaul et al. 2016), which can improve learning speed and performance, while basing
the retention strategy on a more stable criterion that either promotes stability or ensures
that only samples from the relevant parts of the state-action space are considered by the
sampling procedure.

As discussed in Sections 3.3.2 and 8.4, selecting experiences based on the temporal
difference error in stochastic environments introduces a bias that should be compensated
for through weighted importance sampling in order to make the learning updates valid.
While the other experience selection methods in this work change the distribution of the
samples, these changed distributions are still valid for an off-policy deterministic gradient
algorithm.
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Appendix A. Simple Benchmarks

Here, a more detailed mathematical description is given of the pendulum swing-up and
magnetic manipulation benchmarks. A high level description of these benchmarks was
given in Section 4.

The benchmarks will be described based on their true (unnormalized) physical environ-
ment states sunnorm and actions aunnorm. In the main body of this work the components of
these states and actions are normalized: s, sE ∈ [−1, 1]n, a, aE ∈ [−1, 1]m. See Figure 1 for
a description of the symbols used.

The dynamics of both problems are defined as differential equations, which we use to
calculate the next environment state s′unnorm as a function of the current state sunnorm and
action aunnorm using the (fourth order) Runge-Kutta method. The reward is in both cases
given by:

r = −(W1|s′unnorm − sunnormref
|+W2|aunnorm|). (9)

In both cases a fixed reference state sunnormref
is used.

A.1 Pendulum Swing-Up

For the pendulum swing-up task, the state sunnorm is given by the angle θ ∈ [−π, π] and
angular velocity θ̇ of a pendulum, which starts out hanging down under gravity s0

unnorm =
[θ θ̇]T = [0 0]T . For the normalization of the velocities, θmin = −30 rad s−1 and θmax =
30 rad s−1 are used. The action space is one dimensional: it is the voltage applied to a
motor that exerts torque on the pendulum aunnorm ∈ [−3, 3] V. The angular acceleration
of the pendulum is given by:

θ̈ =
−Mgl sin(θ)− (b+K2/R)θ̇ + (K/R)aunnorm

J
.

Where J = 9.41× 10−4 kg m2, M = 5.5× 10−2 kg, g = 9.81 m s−2, l = 4.2× 10−2 m, b =
3× 10−6 kg m2 s−1, K = 5.36× 10−2 kg m2 s−2 A−1 and R = 9.5 V A−1 are respectively the
pendulum inertia, the pendulum mass, the acceleration due to gravity, pendulum length,
viscous damping coefficient, the torque constant and the rotor resistance (Alibekov et al.,
2018). For this task W1 = [50 1] and W2 = 10 and sunnormref

= [−π 0]T = [π 0]T . The
absolute value of the state is used in (9).

A.2 Magnetic Manipulation

In the magnetic manipulation problem, the action space represents the squared currents
through four electromagnets under the track; ajunnorm ∈ [0, 0.6]A2 for j = 1, 2, 3, 4. The
state of the problem is defined as the position x ∈ [−0.035, 0.105] m of the ball relative
to the center of the first magnet and the velocity ẋ m s−1 of the ball: sunnorm = [x ẋ]T .
For the normalization of the velocities, ẋmin = −0.4 m s−1 and ẋmax = 0.4 m s−1 are used.
When the position of the ball exceeds the bounds, the position is set to the bound and the
velocity is set to 0.01 m s−1 away from the wall. An additional reward of −1 is given for the
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time-step at which the collision occurred. The acceleration of the ball is given by:

ẍ = − b

m
ẋ+

1

m

4∑
j=1

g (x, j) ajunnorm,

with

g(x, j) =
−c1 (x− 0.025j)(

(x− 0.025j)2 + c2

)3 .

Here, g(x, j) is the nonlinear magnetic force equation, m = 3.200× 10−2 kg the ball mass,
and b = 1.613× 10−2 N s m−1 the viscous friction of the ball on the rail. The parameters
c1 and c2 were empirically determined from experiments on a physical setup to be c1 =
5.520× 10−10 N m5 A−1 and c2 = 1.750× 10−4 m2 (Alibekov et al., 2018).

For the magnetic manipulation problem we take W1 = [100 5], W2 = [0 0 0 0], s0
unnorm =

[0 0]T and sunnormref
= [0.035 0]T in (9).

Appendix B. Implementation Details

This appendix discusses the chosen hyperparameters of the methods discussed in Section 3,
that were used to obtain the results in this paper. Only those hyperparameters that were
not explicitly mentioned in the earlier sections of this work are mentioned here.

B.1 Neural Networks

This appendix describes the architecture and training procedure of the used neural networks.

Swing-up and Magman

To perform the experiments in this work, the DDPG method of Lillicrap et al. (2016) was
reimplemented in Torch (Collobert et al., 2011). For all experiments except for the control
experiment in Appendix 9.3, the actor and critic networks had the following configuration:

The actor is a fully connected network with two hidden layers, each with 50 units. The
hidden layers have rectified linear activation functions. The output layer has hyperbolic
tangent nonlinearities to map to the normalized action space.

The critic is a fully connected network with three hidden layers. The layers have rectified
linear activation functions and 50, 50 and 20 units respectively. The state is the input to
the first hidden layer, while the action is concatenated with the output of the first hidden
layer and used as input to the second hidden layer. The output layer is linear.

To train the networks, the ADAM optimization algorithm is used (Kingma and Ba,
2015). We use a batch size of 16 to calculate the gradients. For all experiments we use
0.9 and 0.999 as the exponential decay rates of the first and second order moment esti-
mates respectively. The step-sizes used are 10−4 for the actor and 10−3 for the critic. We
additionally use L2 regularization on the critic weights of 5× 10−3.

For the DQN experiments, a critic network similar to the DDPG critic was used. The
critic-only differs in the fact that instead of having actions as an input, the output size is
increased to the number of discrete actions considered. The parameters θ− of the target
critic are updated to equal the online parameters θ every 200 batch updates.
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Roboschool Benchmarks

For the experiments on the Roboschool benchmarks, we use a slightly modified version of
the DDPG implementation in the openAI baselines (Dhariwal et al., 2017) repository. We
have adapted the baselines code to include the experience selection methods considered
in this section. Our adapted code is available online.4 We here summarize the relevant
differences from the implementation used on the simple benchmarks.

The actor and critic networks have two hidden layers with 64 units each. Layer normal-
ization (Ba et al., 2016) is used in both networks after both hidden layers. The multiplier
of the L2 regularization on the weights of the critic with is 1× 10−2. A batch size of 64 is
used, with a sample reuse of 32. Training is performed every 100 environment steps, rather
than after completed episodes.

B.2 Exploration

Swing-Up and Magman

We use an Ornstein-Uhlenbeck noise process (Uhlenbeck and Ornstein, 1930) as advocated
by Lillicrap et al. (2016). The dynamics of the noise process are given by

u(k + 1) = u(k) + θN (0, 1)− σu(k).

The equation models the velocity of a Brownian particle with friction. We use θ = 5.14,
σ = 0.3. Using this temporally correlated noise allows for more effective exploration in
domains such as the pendulum swing-up. It also reduces the amount of damage on physical
systems relative to uncorrelated noise (Koryakovskiy et al., 2017). For high frequencies,
uncorrelated noise is unlikely to result in more than some small oscillations around the
downward equilibrium position.

The noise signal is clipped between -1 and 1 after which it is added to the policy action
and clipped again to get the normalized version of the control action a.

For the DQN experiments, epsilon greedy exploration was used with the probability of
taking an action uniformly at random decaying linearly from ε = 0.7 to ε = 0.01 over the
first 500 episodes.

Roboschool Benchmarks

For easy comparison to other work, we use the exploration strategy included in the baselines
code. This means that for the Roboschool benchmarks we do not decay the strength of the
exploration signal over time. Compared to our other benchmarks, the second difference is
that the noise is added in the parameter space of the policy rather than directly in the
action space (Plappert et al., 2018). The amplitude of the noise on the parameters is scaled
such that the standard deviation of the exploration signal in action-space is 0.2.

Appendix C. Baseline Controller

In this work we use the fuzzy Q-iteration algorithm of Buşoniu et al. (2010) as a baseline.
This algorithm uses full knowledge of the system dynamics and reward function to compute

4. The code is available at https://github.com/timdebruin/baselines-experience-selection.
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a controller that has a proven bound on its sub-optimality for the deterministic (noise-free)
case.

For the tests with sensor and actuator noise, the same controller as in the noise-free
setting is used. To make the performance normalization (Section 5.1) fair, the performance
of the controller is taken as the mean of 50 repetitions of taking the maximum obtained
mean reward per episode over 1000 episodes with different realizations of the noise:

rbaseline with noise =
1

50

50∑
i=1

max(rmean
episode i,1, . . . , r

mean
episode i,1000).

Note that although this equalizes the chances of getting a favorable realization of the sensor
and actuator noise sequences, it does not compensate for the fact that the fuzzy Q-iteration
algorithm is unsuitable for noisy environments. Since the DDPG method used in this work
can adjust the learned policy to the presence of noise in the environment, it outperforms
the baseline in some situations. This is not an issue since we are interested in the rela-
tive performance of different experience selection strategies and only use the baseline as a
reference point.

Appendix D. Additional Sensitivity Analyses and Figures

This section contains additional analyses and figures that were left out of the main body of
the paper for brevity.

D.1 Performance on the Magman Benchmark as a Function of Network Size

In the main body of the paper, a number of experiments are shown in which the perfor-
mance of the magman benchmark is better with a small FIFO experience buffer than it
is when retaining all experiences. As we use relatively small neural networks on the mag-
man benchmark, it could be expected that at least part of the reason that training on all
experiences results in poorer performance is that the function approximator simply does
not have enough capacity to accurately cover the state-action space. We therefore compare
the performance of the networks used on the magman benchmark in the main body of this
work to that of the original DDPG architecture, which has more than 40 times as many
parameters. Table 8 compares the network architectures and the number of parameters of

Architecture hidden layer units parameters swing-up parameters magman

Small-critic [50, 50, 20] 3791 3941

Small-actor [50, 50] 2751 2904

DDPG original-critic [400, 300] 122101 123001

DDPG original-actor [400, 300] 121801 122704

Table 8: The architectures of the networks compared in this section, with the number of
parameters.
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Figure 19: Influence of network size on the performance of the magman benchmark, when
retaining all 4× 105 experiences (FULL DB) versus retaining only the last 104

experiences (FIFO). The small policy network used for most of the experiments
on the magman has 2904 parameters, while the original DDPG network has
122704 parameters on the magman benchmark. In both cases the critic networks
had slightly more parameters.

these architectures. It can be seen from Figure 19 that, while the larger network is able
to learn more successfully from the FULL DB buffer, it is outperformed by both the small
and the large network using the FIFO buffer. The eventual performance is best for our
smaller network trained on a small buffer, although learning is somewhat faster with the
larger network.

D.2 Sensitivity Analysis α

In both the PER sampling as well as the TDE and Expl retention methods, the parameter
α (7) determines how strongly the used experience utility proxy influences the selection
method. Here, we show the sensitivity of both PER (Figure 21) and Expl (Figure 20) with
respect to this parameter.

In Figure 20 it can be seen that on the Pendulum benchmark, where Expl retention has
already been shown to aid stability, increasing α helps to improve the final performance
more. This increased stability comes at the cost of somewhat reduced maximum perfor-
mance. With PER sampling it does not seem to hurt the learning speed. On the Magman
benchmark, where FIFO retention works better than Expl retention, increasing α (and thus
relying more on the wrong proxy for the benchmark) hurts performance. Interesting to see
is that compared to uniform sampling, PER speeds up the learning for low values of α,
while it hurts for large values of α. This demonstrates again the need to choose both parts
of experience selection with care.
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Figure 20: Influence of α in the Expl algorithm for different sampling strategies.

In Figure 21 it can again be seen that the benefits of PER are mostly to the speed
of learning. Improvements to the maximum and final performance are possible when α is
chosen correctly, but depend mostly on the contents of the buffer that PER is sampling
from.
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Figure 21: Influence of α in the PER algorithm for the Full DB strategy (buffer capacity
= 4× 105 ) and FIFO retention (buffer capacity 1× 10−4 ).

47



de Bruin, Kober, Tuyls and Babuška

D.3 Additional Figures Related to the Main Body

This subsection contains several figures that were left out of the main text of this work for
brevity. They show the same experiments as Figures 6, 8, 16, according to the remaining
performance criteria.
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Figure 22: RL algorithm dependent effect of adding synthetic experiences to the
FIFO[Uniform] method on the maximum performance per episode µmax

r on the
pendulum swing-up benchmark. The effect on the final performance and the
rise-time is given in Figure 7.
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Figure 23: Sampling frequency dependent effect on the learning speed of adding synthetic
experiences to the FIFO[Uniform] method. The effect on the final and maximum
performance is given in Figure 9.
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Figure 24: The effects on the performance of the FIFO[Uniform] method when changing a
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thetic experiences are updated only with a certain probability each time they
are overwritten. The effects on µfinal

r is shown in Figure 8.
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Figure 25: Mean performance during the last 2× 105 training steps of a 1× 106 step train-
ing run on the Roboschool benchmarks as a function of the retention strategy
and buffer size. Results for the individual runs and their means are shown.
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Figure 26: Mean performance during the whole training run on the Roboschool benchmarks
as a function of the retention strategy and buffer size. Results for the individual
runs and their means are shown.

51



de Bruin, Kober, Tuyls and Babuška
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