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Abstract—Bluetooth trackers, or tags, have quickly become
ubiquitous and widely supported by multiple vendors. Beyond
their original design of finding lost objects, these devices have
the ability to extend the capabilities of current wireless smart
devices. Since its launch in 2019, Apple’s FindMy enables any
devices from their brand to be easily tracked by more than 1
billion active iPhones and iPads on the market. While convenient,
these systems may even serve further uses, including as a result
of this work, crowd sensing and a side channel for mobile
communication. But they also raise privacy concerns for their
users. In this paper, we demonstrate how Apple FindMy can be
used as a privacy-friendly tool for crowd monitoring, and how
it may inadvertently leak information on a person’s location in
case of deliberate tracking. Additionally, we design and evaluate a
proof of concept protocol, using the Apple FindMy and a crafted
tag using a simple microcontroller. We show how such system
could be used to transmit information at very low bit rates, while
the devices transporting the information remain unaware of this
covert channel, yielding an out of band communication channel.

Index Terms—sensing, location privacy, crowd monitoring,
mobile communication, covert exfiltration

I. INTRODUCTION

Bluetooth trackers, or tags, have become ubiquitous, being

primarily used to track and find lost objects. This growing

pervasiveness allowed manufacturers to create a network of

tracker owners to anonymously report about any nearby tag,

such as Tile and Apple FindMy. This crowdsourced reporting

provides obvious primary benefits for its users, but also en-

ables alternative uses for which it was not originally designed.

In this paper, we explore two such alternative uses as the

main objective of our work: (1) a fully anonymous crowd

sensing system and (2) a covert communication channel built

on top of Apple’s FindMy system: As an auxiliary finding, our

work revealed potential privacy issues that could affect billions

of Apple devices [1], for which the only current mitigation is

disabling Bluetooth or opting-out of the FindMy service.

Crowd Sensing: Sensing and monitoring different aspects of a

(large) crowd may serve numerous purposes, such as steering

people flows to safety under pressing conditions. However,

automated methods for crowd monitoring, such as image-

based tracking, may raise privacy concerns [2]. Individuals are

bothered by sensors capturing any form of personal identifiable

information (PII) that, if stored permanently, may require

explicit consent from those being monitored.

Current solutions to this privacy problem in crowd mon-

itoring may rely on computing all relevant metrics at the

edge [2]. However, these systems still handle PII and those

being monitored simply have to trust their personal data are

being dealt with appropriately. Therefore, a reliable source of

crowd data while guaranteeing the privacy of its subjects is

still a relevant open problem that we explore with this paper.

We use handcrafted Apple tags enabled by the reverse-

engineering work of Heinrich et al. [1], in which single board

computers and microcontrollers can be used as tags. Apple

allows the owner of tags to download all location reports

within a week. Through a series of comprehensive analyses,

we demonstrate the capability of such system using trackers,

or sensory-tags, for coarse crowd monitoring, including deter-

mining counts/density and flows.

Covert Data Channel: We also demonstrate how such tracker

systems could be used to create a side channel for commu-

nication, while sending information silently through nearby

mobile devices. Our proof-of-concept enables out-of-band

communication at low bit-rate, without awareness of those

partially carrying the information.

Deliberate Tracking: We explore potential privacy risks as-

sociated with Apple FindMy as a side effect of its sensing

capabilities. The threats we reveal concern the possibility of

exposing location information of a victim from the timestamps

contained in each location report. We demonstrate their feasi-

bility through proof of concept examples and discuss possible

mitigation approaches to these threats.

Our work exposes and discusses alternative usages for an

established secure system, including potential malicious ones.

We present an evaluation of the Apple FindMy network and

its main properties that are pertinent to the proposed solutions.

Furthermore, we design and test a simple protocol, with basic

characteristics to ensure a successful transmission of data

with our system. Finally, we discuss the implications of this

work, along with possible mitigation strategies for users and

developers of similar systems. We reported all uncovered
issues to Apple several months prior to the submission of this
manuscript.
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Our contributions: (1) We thoroughly analyse the timing and

conditions in which location reports are sent for a lost smart

tag in the Apple finder network (§ IV). (2) We demonstrate the

feasibility and accuracy of using such anonymous location re-

ports for sensing two different aspects of a crowd, namely flow

and size/density, from a series of real-world measurements

compared to state of the art solutions (§ VI). (3) We reveal the

feasibility of timing attacks, using the Apple finder network

that could reveal information about a person’s whereabouts

without their consent (§ VII). (4) We show such tags can be

used to transmit information through a side-channel, and we

name it TagComm (§ VIII). (5) Complementing the original

work by Heinrich et al. [1], we provide open source code that

enables other devices to be used as sensory-tags as well as

be used for covert communication: macOS devices and the

Amazon Echo [3], [4]. (6) We discuss the privacy and ethical

implications of our work (§ IX).

II. RELATED WORK

1) Apple Ecosystem: Recently, various papers evaluated the

security of different Apple services. Analysis by Martin et al.
of the Handoff services, that enables seamless communication

between multiple Apple devices under the same iCloud ac-

count, reveals how Apple’s proprietary protocol can undermine

MAC address randomization and allow the identification of

devices belonging to a single user [5]. Furthermore, a study

by Stute et al. demonstrated how the Apple Wireless Direct

Link (AWDL) works, including the reverse engineering of its

protocols and Wireshark plugins. These examples support the

importance of scrutinizing such proprietary systems that may

affect users of billions of devices worldwide [6].

2) Bluetooth LE trackers: A recent study by Weller et
al. evaluated different Bluetooth trackers and their cloud

services [7]. Their study revealed a series of security issues,

including privacy risks with all products tested, although it

did not include Apple’s FindMy as no commercial product

was available at the time. Focusing exclusively on the Apple

service, Heinrich et al. dissected how FindMy components

work [1]. Their study reverse engineered the protocol used

by lost devices, finders and how owners can retrieve available

location reports for their tags. Their open source code was

used as the foundation for our present paper.

3) Security and Privacy: Security and privacy literature

has a vast number of systems that exploit different vectors to

covertly exfiltrate data from systems (e.g. [8]). Various systems

have used keyboard or HDD indicator LEDs [9], as well as

inaudible (or indistinguishable) sound from speakers [10], fans

or HDDs [11]. In this paper, the proof-of-concept we present

enables a covert channel, through which any information

can transmitted at low bit rates. To foster further research,

we extend [1] by macOS support that runs without root
privilege [3], [4].

4) Crowd Monitoring: Assessing and understanding large

crowds has been studied with a myriad of sensors and methods,

but not without its privacy implications [2]. However, several

challenges are still open when it comes to scalability and

integration of multiple systems towards a common decision

support [12]. The COVID-19 pandemic has stimulated crowd

monitoring research, for example, ensuring social distanc-

ing [13] as a valuable approach to reduce infections [14].

5) Our Work: In this paper, we further analyse the Apple

FindMy service, and we present two proof-of-concept systems,

one which allows coarse crowd monitoring, and other that

allows side-channel communication as well as their potential

risks for users’ privacy. Note that, while [1] reverse engineered

the client-side managing of tags, we extend our understanding

of this system while exposing possible security and privacy

leaks FindMy users are currently subject to.

III. BACKGROUND

In this section, we present basic functionality of Apple

FindMy as the underlying system for our current work. Fur-

thermore, we present relevant concepts of Bluetooth LE.

0x123456FF

Lost

Device

Finder

Owner

Apple FindMy

HTTP POST {Report, …}

HTTP GET
{Report, …}

Report

Timestamp Confidence

0x123456FF

Lat Lng Acc Status

AES-GCM Authentication

Fig. 1: Delay in sensing and reporting a tag.

A. Apple FindMy Service

This finder network was released in 2019, in which devices

that explicitly opt-in are tracked through anonymous crowd-

sourced location reports. When devices are marked as lost,

their owners receive location reports through their iCloud ac-

count and view them, e.g., using the FindMy application [15].

Heinrich et al. [1] reverse-engineered this system, allowing

a series of Bluetooth Low Energy (BLE) devices to appear as

tags inside Apple’s FindMy network. Any of such tags will

beacon at all times, regardless of the presence of its owner.

Furthermore, when marked as lost the owner of a tag may then

receive any available location report. To get started, an iCloud

user, the owner of a tag, creates a public-private key pair

(ek, dk) through a series of API calls, for tracking a device.

1) Beaconing: To enable tracking, a device broadcasts a

BLE advertising packet using a specific MAC address that

is derived from the above public key ek. Finder devices

listen for Apple FindMy beacons and check for each received

beacon if the advertised payload and MAC address are a valid

“match”. A tag derives both payload and MAC address from

the public key (ek) created by its owner (see [1] for details
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on their algorithm), so that only valid packets are processed

further. Finder devices receiving such beacons can then furnish

location reports for nearby tags, anonymously to iCloud.

2) Reporting a tag: The reporting process is depicted in

Figure 1. A tag broadcasts an appropriate BLE beacon, as

described above. A finder device passing by will identify

this as a lost device and store a location report, containing

(1) the beacon reception time, termed contact (tc), (2) the

confidence about that contact (similar to accuracy in (4)),

(3) the public key ek, (4) the location information, encrypted

using ek and containing geographical coordinates, horizontal

accuracy, and status, and (5) an authentication label AES-GCM

to validate the report. These reports are uploaded securely

(HTTPS POST) after some time to Apple’s iCloud, where they

are stored until being requested by the tag owner. In addition

to these data fields, a bundle of reports submitted by a single

finder is annotated with the timestamp of when the entire batch

was received on the server side (tr).

3) Reading reports: With the public keys (ek) of their

own tags, users query their iCloud account for available

location reports with HTTPS GET requests; each user can then

decrypt the location information contained in a report using

the corresponding private key (dk).

B. BLE Advertising and Our Experimental Setup

The BLE standard allows advertising packets of devices

to include up to 31 bytes of information. These beacons are

broadcast at intervals between 20 ms and 10 s on any of three

channels used for advertisements [16]. Their successful recep-

tion by a nearby finder device is stochastic: the transmission

(TX) power for the advertising packets may influence proper

reception, as well as distance between finder and tag and the

environmental conditions (e.g., radio interference). Also, both

finder and tag continuously switch channels and would need

to use the same one when a packet is sent.

Our Setup: Given these constraints, and to better understand

the conditions in which locations of devices are reported,

we carry out a series of experiments to build a thorough

understanding of how sensing and reporting work in the Apple

FindMy network. We use a series of ESP32 microcontrollers

as tags for our experiments. These low-power devices provide

programmable BLE support through an API which allows full

control of its Bluetooth controller, including TX power and

advertising interval, which are often not accessible on other

platforms. These experiments allow us to draw observations

which set the foundation to the side-channel communication

we discuss on the following sections.

IV. FINDMY SYSTEM CHARACTERIZATION

In this section, we present the results of a series of ex-

periments we conducted in controlled environments as well

as in the wild. We first present our findings on the behavior

of Apple devices when reporting smart tags to the FindMy

network. Next, based on observations drawn from our afore-

mentioned findings, we present results from crowd monitoring

measurements compared to state of the art alternatives, as well

as a possible side-channel attack.

A. Uploading of reports is determined by device settings

As discussed in Section III, finder devices often bundle a

series of reports before uploading them to iCloud. To better

characterize this behavior, we analyzed the traffic between

iCloud and two jailbroken1 iPhones (7 and 8, on iOS14.6)

using an HTTP proxy. With a Bluetooth tracker, continuously

beaconing, placed next to these phones for intervals of 72

hours, we tested how different settings influenced the upload-

ing intervals. We present the distribution of these intervals in

Figure 2 for various settings, with a clear distinction between

being on Wi-Fi (median ∼15 minutes) or Cellular (median ∼3

hours), on power supply or battery. Additionally, with Low

Data Mode enabled, the phones uploaded reports less often

(median ∼36 minutes), whereas other modes did not affect

reporting significantly. Therefore, the phone settings explain

differences between the contact time tc reported and received

time tr, when a bundle of reports is sent.

102 103 104 105
Time between uploads [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Wi-Fi
Cell +
LowPowerMode
Cell

15 min 1 h 4 h

Fig. 2: Delay in sensing and reporting a SmartTag.

B. Over 50% of reports are uploaded within 15 minutes

We ran a set of measurements in the wild, at a large public

space. These observations lasted for a total 24 hours, and

were conducted on various days from July to September 2021.

From these data, we computed the delay between sensing a

tag (tc) and uploading the reports to iCloud (tr), for which

the distribution is depicted in Figure 3. This delay shows a

strong mode around 15 minutes, a median of 13.15 minutes,

and has 95% of its values between 6 seconds and 8 hours

(shaded area).

10−1 100 101 102 103 104 105 106

Uploading delay [s]

0

14000

Fr
eq

ue
nc

y

1 s 15 s 15 min 1 day

Fig. 3: Distribution of the delay in sensing and uploading.

1Required as iCloud HTTPS communication requires certificate pinning.
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C. Uploading time uniquely identifies a finder

As reports are bundled, their receiving time tr is appended

on the server side with the precision of milliseconds. This,

in turn, allows us to uniquely identify a finder for a series

of reports as those will contain the same tr with several

decimal points of precision. As discussed above, the uploading

of reports may be done hours apart from their actual contact

time. It is important to note that each upload may contain up

to 255 reports and up to 4 per tag. That is, if a nearby finder

is connected to Wi-Fi, only up to 4 location reports will be

uploaded every 15 minutes.

D. Short advertising intervals lead to no reports

During our measurements in the wild using short BLE ad-

vertising intervals (e.g., 20 ms), we observed that the FindMy

network discards all location reports for a tag, possibly due

to uploads happening too frequently. Although we were not

able to precisely determine the best limit, the fastest we could

advertise without periods of missing data was 1022.5 ms. For

that, in all measurements discussed in Section VI we carried

tags configured at that BLE advertising interval (as suggested

by Apple [17]) and at maximum TX power (+9 dBm).

Takeaway (§IV): FindMy provides limited but valuable in-

formation on nearby finders and that depends on the settings

of their mobile devices. Moreover, the reports upload may be

delayed from 15 minutes to several hours.

V. GENERAL OVERVIEW

Owner

Time

N̂

v

P(
v)

(a)

Time

Sx

thometbar toffice

Owner
Finder 

Destination

tr ≈ thome

(b)

Owner

{ }
= "message"

Time

Tag Finder

(d)
Time

Sx Owner
{

}

, t0 ,
, t1 ,
, t2 ,
, t3

Finder 

Path

tagID

(c)

tc
tr

Fig. 4: Overview of alternative uses for the Apple FindMy ser-

vice. (a) Crowd monitoring. (b) Remote destination inference.

(c) Path reconstruction. (d) Covert communication.

Given the observations drawn from the characterization of

FindMy (§ IV), we now look at how the spatial and temporal

availability of tags can be further exploited to create alternative

uses. Using Figure 4 as a guide: (a) In an area with multiple

finders, using a single tag in a fixed location we can estimate

how crowded a monitored area is (§ VI-A), while using

multiple tags in fixed locations we can study properties of

their flow (§ VI-B). (b) Targeting a single finder, using a

single tag, placed for a short period in proximity with a target,

and have this finder move to a commonly visited place, we

(or an attacker) can estimate where this target finder could

have gone from a list of possible destinations (§ VII-A). (c)

Again, targeting a single finder, but this time using multiple
tags, each placed along any arbitrary area (or paths), we

(or an attacker) can estimate the trajectory taken by this

finder (§ VII-B). (d) Using multiple tags (or simply emulating

multiple tagIDs with a single transmitter) and any arbitrary

number of finders, we can encode a message into the sequence

these tagIDs are transmitted. As we will discuss, in (b), (c)

and (d) the respective finder(s) are unaware of the respective

use. Currently, only disabling Bluetooth or opting out of the

FindMy service can mitigate this issue.

VI. CROWD MONITORING

We now evaluate how well smart tags on Apple’s FindMy

network can be used for crowd monitoring. We first present our

results for crowd size estimates, evaluated against a state-of-

the-art image recognition approach. Next, we present results

for crowd flow which we evaluate against passive measure-

ments of commonly used Wi-Fi management frames [2].

A. Crowd Size – Using a single tag

For this evaluation, we conducted 8 measurements, of 3

hours each, from July to September 2021 in a large public

square in the city of Munich, Germany. During these months,

this main square is often crowded due to shops, restaurants

and metro stations nearby. Our smart tag setup consisted

of an ESP32, advertising at ∼1 second intervals and using

high TX power (+9 dBm) for maximum discoverability. We

evaluate these measurements against the people count obtained

by image recognition, which we describe next.

1) Image recognition: The use of images for crowd esti-

mates produces some of the most accurate results with the

use of inexpensive hardware [2]. Modern approaches based

on Convolutional Neural Networks have quickly become the

state of the art for all image recognition tasks, and in spite of

their capabilities, such methods are not extensively used due to

privacy concerns raised by their usage. Those concerns include

regulatory legislation in several countries. For our evaluation,

we used images from a publicly available web-cam , openly

streaming images at 5 seconds per frame, with a 2048x1536

resolution. For that, we use the Mask R-CNN [18], from

which we extract the total count of persons per frame. Mask
R-CNN performs multi-class object instance segmentation,

detecting and dividing each class instance in the prediction.

This segmentation is of key importance for the detection of

people in a large environment since they tend to stay in groups.

Mask R-CNN is able to detect different people that overlap

each other, increasing the accuracy of the model [18].

2) Size Measurements Description: For crowd size analy-

sis, we correlate the total number of persons identified using

image recognition against our smart tags approach. From the

latter, we identify a unique device using the time a set of

reports was uploaded to iCloud (see § IV).

3) Results: To best estimate the time window to aggregate

tag reports, we correlated the number of identified finders

over different time window (Wt, or bin sizes). Figure 5a

depicts how the Pearson correlation value changed with bin

sizes, while it also shows the p-value for those sizes. The

p-value estimates the probability the estimated correlation
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coefficient was due to randomness, and we adopt p-value
< 0.001 as our confidence interval, below which results are

deemed acceptable. From the analysis, we note that only

after Wt of 8 minutes do we obtained p-value below the

confidence interval, and the correlation coefficient reaches its

maximum value at 18 minutes, with a value of 0.58 which

corresponds to a strong correlation between both values. The

highest values around 15 minutes could be explained by the

expected time an iPhone takes to upload location reports (see

§ IV). Figure 5b depicts the best relationship between the

normalized values for tags (NT ) and from images (NI ), at

Wt 18 minutes. Thus, coarse-grained crowd size monitoring

with a modest time lag appears feasible.

4 6 8 10 12 14 16 18 20
Wt [minutes]

0.0

0.1
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0.3
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(a) Correlation and bin sizes (Wt)

0.4 0.8 1.2 1.6 2.0
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1.2

1.6

2.0

N
T
/N̂
T

(b) Wt = 18mins

Fig. 5: Relationship numbers from tags (NT ) and from images

(NI ), for different bin sizes (Wt). (N̂∗: mean N∗)

B. Crowd flow – Using multiple tags

We now evaluate how smart tags could be used to study

the flow of a crowd. That is, we explore how well we can

measure moving time and waiting time (or dwell time) using

a pair of smart tags in a large urban environment. We compare

our method with measurements done using Wi-Fi management

frames, as those are currently widely adopted by researchers

and commercial applications [2].

1) Wi-Fi Management Frames: Mainly due to its simplicity

and reported accuracy [2], [19], crowd monitoring using Wi-

Fi management frames is extensively used. In principle, all

Wi-Fi enabled devices send a series of management frames,

often used to search for available access points and to es-

tablish/maintain existing connections. These frames contain

a device identifier (MAC), which can, in turn, be tracked

through space and time while uniquely identifying a mobile

device. To mitigate this traceability, since 2014, mobile devices

perform MAC randomization at ever increasing rates and new

schemes [20]. For our purposes, however, discarding locally

managed addresses and subsampling our measurements with

only global addresses suffices for our first order approxima-

tions of time between vantage points. From our measurements,

on average, 26% of management frames captured were from

non-random MAC addresses. We measured this using a Rasp-

berry Pi 3, with two external antennas, hopping between the

non-overlapping channels 1, 6 and 11.

2) Flow Measurements Description: For crowd flow anal-

ysis, we compare the distribution of time intervals a set of

devices takes to be observed between two vantage points.

These points were 176 meters apart and were chosen at the city

center of Munich, Germany, in a commercial area where only

pedestrians are allowed. We conducted 3 measurements of 2

hours each on 6/7/8 September 2021. From the measurements

of the smart tags, we identify a unique device using the time

a set of reports was uploaded to iCloud (tr, see § IV). If

such a bundle of reports contained at least one record at each

vantage point, we could then infer the time interval the device

took between both locations. Similarly from Wi-Fi frames, this

interval corresponds to the time between consecutive records

at each observed location.

3) Results: The left panel on Figure 6 shows the histogram

of measured times between vantage points, with a mode at

2 minutes from both sources. Furthermore, to meaningfully

analyze our measurements, we decompose them into log-

normal distributions, using the widely used Gaussian-Mixture

Model. This unsupervised learning method decomposes an

input set into a pre-determined number of Gaussians. To select

the best number of clusters, we used the BIC method [21]

which estimates how well a given model explains the variance

in the measured value. Our empirical results suggest that

the ideal number of clusters for the Wi-Fi and smart tags

measurements is 3. Following this classification, the right

panel on Figure 6 depicts the similarities in the distributions

of the estimated walking and waiting times from tags and

Wi-Fi. The average walking time was 2.41±0.04 minutes

using tags and 2.28±0.04 minutes using Wi-Fi. That yields

an equivalent ∼4.5 km/h walking speed, in line with exist-

ing urban pedestrian research [22]. The average estimated

waiting time (assuming the mean walking time above) was

19.33±1.44 minutes using tags and 20.54±0.69 using Wi-Fi.

A possible interpretation of these values is the expected time

pedestrians have spent at shops along the way.

101 102 103 104
Time [s]

0

160

Fr
eq

ue
nc

y

Wi-Fi

101 102 103 104
Time [s]

10−3

10−2

10−1

100

C
C

D
F

WiFi Walk
Tags Walk
WiFi Wait
Tags Wait

0

80

SmartTags

15 s 2 min 15 min 2 h

Fig. 6: Crod Flow [Left] Time between vantage points. [Right]

Estimated walking and waiting times between vantage points.

Takeaway (§ VI): Bluetooth trackers can be used for crowd

monitoring, with comparable results to widely used alternative

solutions. These alternatives, however, may disclose personal

information and always generate data that needs to be han-

dled with care, such as personal identities. For crowd sizes,

estimates with a single tag strongly correlate with estimates

using state of the art image recognition. Furthermore, different

aspects of crowd flow were accurately estimated using multiple

tags when compared to Wi-Fi measurements. In both use-

cases, our approach always guarantees the anonymity of the

400

Authorized licensed use limited to: TU Delft Library. Downloaded on August 18,2022 at 11:11:06 UTC from IEEE Xplore.  Restrictions apply. 



studied subjects given the reporting mechanism and end-to-end

encryption of this Apple service.

VII. DELIBERATE TRACKING

In this section, we present proof of concept (PoC) evalua-

tions and possible mitigation strategies to information being

leaked by the Apple FindMy service. We demonstrate how

this leakage may allow an attacker to track a victim’s device

through timing attacks, enabled by the reporting system im-

plemented by Apple. The experiments we present used only

our own devices to avoid disclosing unwanted information

from other subjects. Apart from privacy concerns, it was

necessary to have control of the phone’s settings and times

when connected to Wi-Fi or cellular network.

Overview: We demonstrate two examples of information

leakage: A) Destination inference, in which the timing between

sensing a tag and uploading a report may disclose where a

victim could have gone; B) Path reconstruction, in which a

sequence of visited places can be precisely inferred. Both

examples rely on the bundling of reports (see § III) as well as

the difference in uploading delay when connected to different

networks (see § IV). Note that the threats we present only
require the victim being near a tag for a brief period of time,
and not being tracked by inadvertently carrying a tag.

A. Remote Destination Inference – Using a single tag

This attack relies on the timing of location reports, but pre-

cisely the difference between sensing a tag (tc) and uploading

a report (tr). Furthermore, the modulation of the TX power

can limit the range of BLE beacons, helping ensure only a

victim’s phone is affected.

1) Threat Model: An attacker, who wants to know where a

victim has gone after an encounter, performs a timing attack

using one tag. The attacker knows the victim’s most visited

locations, and the victim is only connected to cellular while

outdoors and connects immediately to Wi-Fi when reaching

her destination. During the encounter, the attacker “tags”

a victim’s phone by transmitting a series of beacons. The

victim’s phone, while on cellular, will store the reports until

reaching her destination where, on Wi-Fi, it will upload all

location reports for the attacker’s tag. With the difference

between sensing and uploading the reports, an attacker can

limit (or pinpoint) the most likely destination of the victim.

The victim is unaware this attack is tracking place, and only

disabling Bluetooth or the FindMy service can mitigate it.

2) PoC Description: For this, we used an iPhone 12 (iOS

15) and one tag, configured at -6 dBm ensuring only at close

proximity our phone would sense our tag. We enabled our tag

next to our iPhone for 1 minute, then moved 18.5 km (11.5

miles) to a destination, where we finally enabled Wi-Fi.

3) Results: Our moving time was ∼29 minutes, and the

difference between tc and tr was ∼35 minutes. Furthermore,

we observed similar behavior on sensing and immediately

uploading reports once on Wi-Fi, as previously discussed.

B. Path reconstruction – Using multiple tags

Given the bundling of reports (see § III), intentionally posi-

tioned lost tags can form a sequence of “breadcrumbs” which

can then disclose the path followed by a phone. Similarly to

the previous example, TX power can be modulated to ensure

shorter coverage from each tag. As a proof of concept, we

conduct one experiment.

1) Threat Model: An attacker, willing to find out the

whereabouts of a victim through an area of interest, places

tags at known locations. This attack relies on the victim

having her phone connected to the cellular network only while

moving and eventually connecting to Wi-Fi after the monitored

journey. The victim’s phone will then sense these tags, keeping

the order of the observed tags. Once uploaded, the location

reports disclose where and when the victim had been. The

unique tr, appended by iCloud when receiving a bundle of

reports, uniquely identifies a finder device (see § III). The

victim is unaware this attack is taking place, and only disabling

Bluetooth or the FindMy service can mitigate it.

2) PoC Description: For this example, we used 3 iPhones

(7 and 8 on iOS 14.8 and 12 on iOS 15), and placed 3 pairs

of tags in a straight line, with each pair at 150 meters away

from the next pair, configured at -6 dBm to ensure that only at

close proximity devices would sense our tags. We stayed for

5 minutes, at a distance of 2 meters from each pair of tags,

then walked to the next location (in ∼2 minutes). We disabled

Wi-Fi until reaching a planned location away from the tags to

ensure it did not unexpectedly upload any reports.

3) Results: From all three phones, we were able to recon-

struct the path and timing taken at each location. Figure 7

depicts the transitions between each state (static or mobile)

as well as the corresponding tc contained in each location

report. We also noted that, on all phones, the upload of

reports happens within the first 5 minutes of switching to

Wi-Fi from cellular-only. With such information, an attacker

can reconstruct the set of visits of a victim and obtain an

accurate estimation of the time spent at each place. However,

if a finder device uploads a bundle of reports before all visits

are done, then the attacker will not be able to fully reconstruct

a trajectory.

0 5 7 12 14 19
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Reports
loc1

walking

loc2
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Mobile

Fig. 7: Path reconstruction.
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C. Mitigation

We now discuss mitigation strategies applicable to both path

reconstruction and destination inference cases. Until Apple

addresses these issues, users can only disable Bluetooth or

the FindMy services to prevent their location information

unknowingly being leaked, impairing the functionally of the

service. From the system’s perspective, providers like Apple

could (1) reduce the granularity of the received timestamps

(tr) or remove them altogether from the location reports, (2)

randomize when reports are uploaded, no longer determined

by the connectivity available, or (3) initiate the uploading of

reports after moving a random distance. None of these systems

solutions should impact the functionality of the service, while

still protecting the privacy of its users.

VIII. TAGCOMM – COVERT CHANNEL USING BLE

TRACKERS

Now, we turn to an illustration of a side-channel communi-

cation, built on the FindMy service, which we name TagComm.

In this section, we delve into the design a simple unicast

protocol, which essentially uses the sensing of tags by nearby

iPhones to encode and transport information. Figure 8 outlines

our proposed design: we create an artificial tag that changes

its beaconed tag ID over time (chosen from a pre-defined

alphabet, encoding messages as sequences of the transmitted

tag IDs, without the awareness of any nearby finder. Our

proposed system could, for example, be used by an attacker

trying to exfiltrate data from an air gapped system (cf. [8]).

Note that, the transmission is end-to-end encrypted as neither

the finder nor Apple are able to decode that any specific tag

ID is being transmitted. The decoding of the IDs transmitted,

and therefore the final message, is only possible by the owner

as discussed in Section III.

Overview: Our protocol uses a set of tag IDs and their per-

mutations to encode information. That is, for N available tags

we can encode �log2 (N !)� bits of information. Additionally,

we include a set of header bits as well as a parity bit to be

encoded along with the message payload. These extra bits and

Sender

(“Lost”)

Finder

◉ ■ ◉ ■ ◉ ■ ◉

Apple

Receiver

(“Owner”)

{◉, __, ■,

__, , ■,

◉, }

{◉, __, ■,

__, , ■,

◉, }

“Message"

{◉, ,■}

@Sender

“Message"

@Receiver

{◉, __, ■,

__, , ■,

◉, }

Algorithm 1

(Encode)

Algorithm 2

(Decode)

time

Fig. 8: TagComm protocol example, encoding a message as

a sequence of tag IDs, silently and securely transmitted by a

finder.

a pre-defined number of tags guarantee a transmitted message

can eventually be recovered, as will be presented next.

A. Encoding

In order to maximize the amount of information being sent

and provide basic integrity guarantees, we use the permuta-

tions of N tag IDs to encode the information we want to

transmit. Furthermore, the understanding of the sensing and

reporting behavior from Section IV establishes bounds to how

fast information can be transmitted.

Algorithm 1: Encoding input word into sequences

Input: S,w; /* Symbols and word encoded */
Output: E; /* Encoded sequence */

1 L ← length(S) ; /* Length of S */
2 assert(L! >= w) ; /* From � */
3 E ← [ceil(w/(L− 1)!)] ; /* One item list */
4 for idx ∈ range(L− 1, 0,−1) do /* From � */
5 w −= (E[−1]− 1) ∗ idx! ; /*E[−1]: last */
6 e = ceil(w/(idx− 1)!);
7 E.append(e);

1) Input to sequence of symbols: Given an input message to

be transmitted W and a set of encoding symbols of size N, we

iteratively divide the interval of N! to find the corresponding

sequence to be used. Note that this requires W < N! (as �).

For example, for N=5 and W=42, we define an order for the

resulting set of symbols, i.e., a<b<c<d<e (�). Next, we

split the interval 5! into 5 equally sized blocks, as depicted

in Figure 10a. As 42 is found within the second block, the

symbol b is removed and set as the first symbol. These steps

are repeated until all symbols have been removed, yielding

the final sequence bdeca. This procedure allows us to encode

log2 (N !) bits of information using N tags. Algorithm 1

systematically describes these steps.

2) Defining N=16: Given �, we define the code efficiency

as the ratio �log2 N !�/�N log2 N	 (as �). That is, the maxi-

mum number of bits encoded by the minimum number of bits

required for all used symbols N. Given these observations,

Figure 9 shows the variation in � for different values of N up

to 20 tags2, with its highest efficiency at N=16, which we use

in our experiments. This leaves us with a total of 44 bits, and

their use will be further described next.

3) Frame and supporting bits: To ensure the integrity of

the information being transmitted and to allow the receiver

to decode that information, we define a simple frame to

our protocol, illustrate in Figure 10b. Three header bits (as

MSB) distinguish different message types: STX (0b000) the

start of transmission, F0 and F1 alternating even and odd

frames (0b010 and 0b100, respectively), and EOT end of

transmission (0b110). These bits ensure the receiver can

deterministically identify the start of a transmission, new

frames as well as the end of a transmission. This guarantee

2Largest number of permutations that fits in 64 bits.
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Fig. 9: Code efficiency given the number of symbols (tag IDs)

being used to endcode a message, with its maximum at 16.

is achieved by ensuring the initial symbol of a sequence

will be unique for each frame type, as a consequence of the

values chosen for the header bits. Additionally, a parity bit (as

LSB) provides a minimal “checksum” to the message being

transmitted once its decoded. Finally, the remaining bits are

used for the message payload, which in our setup, consists of

40 bits.
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Fig. 10: Protocol definitions. (a) Encoding a value as a

sequence of symbols. (b) Frame bitmap.

4) Transmission integrity: To transmit a block of informa-

tion W using Tagcomm, a node will chunk it into words w of 40

bits. A transmission will start with an STX frame (i.e., header

bits set to 0b000) that will carry the total number of words

to be expected in its payload. Next, each word is encoded

as a sequence (as described above) as alternating frames of

type F0 and F1. Finally, a transmission is terminated with an

EOT frame. Note that, as the protocol requires all symbols to

be transmitted, if a receiver is unable to reconstruct an entire

sequence, the corresponding word w cannot be retrieved. For

details on error recovery, see Section VIII-B.

B. Decoding

Once received by the owner device, location reports for a

series of tag IDs should be decoded into its original message.

Essentially, this is done by inverting the steps done while

encoding a frame into a sequence. Once the different frames

are decoded and parity bits verified, the original message can

finally be reconstructed.

1) Tags alignment: As the duration of each tag being

transmitted is predefined (e.g., ttag), the first step in decoding

a message is aligning each received tag in slots of size ttag.

2) Frames alignment: As discussed in Section VIII-A, each

frame type starts distinct symbols, represented and transmitted

in TagComm as tags. Similar to the tags alignment, the

duration of how long a frame is sent is also predefined, for

example 5 minutes. This way, knowing the expected sequence

of frames, i.e., STX, F0, F1, ..., EOT (as �), and their

corresponding starting symbols, we can align all received

frames and start the decoding step.

3) Decoding frames: Once the sequences that encode each

frame are identified, we can decode the information by revers-

ing the steps explained in Section VIII-A. That is, assuming

a predefined order between tags (e.g., �), and taking the

encoded sequence as input, we can recover the initial message

by adding up the partial contributions each symbol had in

splitting the N! interval, as described in Algorithm 2. After

decoding, we then verify the presence of errors in the next

step.

Algorithm 2: Decoding sequences into words

Input: S, E; /* Symbols and encoded seq. */
Output: w; /* Decoded word */

1 L ← length(S) ; /* Length of S */
2 P ← [ ] ; /* Empty list */
3 for i, e ∈ enumerate(E) do
4 idx ← S.index(c) ; /* Symbol e index */
5 P.append((L− 1− i) ∗ idx); /*Partial sum*/
6 S.pop(idx)

7 w ← sum(P ) ; /* Add up all partials */

4) Error Correction: Once each frame has been decoded

from the input sequences, we can validate the integrity of the

frame with its parity bit. Furthermore, the expected sequence

of frame types (i.e., �), combined with a parity bit, allows us

to recover messages when a single tag (out of a sequence) is

not received. The position of the missing tag can be determined

when aligning the tags in each frame (see above), and finally

verified with the corresponding parity bit, allowing us to

reconstruct the orginal message in the next step.

5) Final message reconstruction: Once all frames have

been decoded, the total number of expected frames sent as

the payload of STX frames can be read and verified. Finally,

all the information encoded in a series of sequences of tags

can be reconstructed.

C. TagComm Experiment

In this section, we describe the set of experiments we

conducted to test our TagComm system. Furthermore, we

present a series of observations made from the results obtained.
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D. Setup

For all measurements, we transmitted a set of 10 randomly

generated words of 40 bits. These were transmitted using the

protocol described in Section VIII. As previously discussed,

we used a single ESP32 as our lost tag, which implemented

the transmitter/encoder logic (see § VIII-A. As a finder, we

had an iPhone 12 (iOS 15) nearby, connected to Wi-Fi at all

times. As discussed in Section III, this setting allows us to

estimate a best-case scenario given the expected frequency the

iPhone would publish location reports for our tag (i.e., within

15 minutes more than 50% of the time).

E. Results

We were able to successfully transmit a set of random

words, as described above. To better verify the limits of our

system, we varied some of the parameters, such as word

duration and BLE advertisement interval.

Definitions: For this analysis, we define the error rate as the

fraction of tag slots during which no reports were received.

That is, given the tag slot duration (e.g., 30 s), the error rate of

a transmission corresponds to tag slot intervals during which a

finder was present but no report was sent. Further, we define

the time until done (TUD) as the expected minimum time

required to decode a complete message, from starting the

transmission until it is fully decoded by the owner’s device.
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Fig. 11: Error rate and TUD for different settings. (a) CDF

of error rate and different frame duration (Wt). (b) Error rate

and BLE advertisement intervals. (c) CDF of TUD and Wt.

Frame duration and error rate: The different frame dura-

tions we tested produced small differences between error rates.

We observed 26.17% for 20 minutes, 24.73% for 15 minutes,

and 28.82% for 10 minutes on average, and their distributions

are depicted in Figure 11a. This indicates that repeating a tag

at a certain position for longer periods of time does not affect

the probability it will be detected by a Finder.

Larger BLE advertisement intervals increase error rate:

We compare the effect different Bluetooth LE advertising in-

tervals had in the error rate. From our measurements, we note

that for larger advertising intervals, less tags were observed

per unit of time. Figure 11b depicts the monotonic increase in

error rate with increased adv. intervals. This could be explained

by the probabilistic nature of these intervals, and to which

transmitters do not have any control [16].

Frame duration and time until done: We tested frame

window sizes around 15 minutes (10, 15, 20), as previous

experiments showed that to be the expected time over 50% of

reports take to be published. We measured each configuration

for 72 hours, and computed expected values for TUD from

100 different random starting points in each setting. For these

measurements, we observed 7.73±0.22 hours with 20 minutes,

9.57±0.30 hours with 15 minutes, and 10.36±0.36 hours with

10 minutes. The distributions of TUD for each configuration

is depicted on Figure 11c. Interestingly, using two iPhones

on the same iCloud account and placed near a tag, did not

produce statistically significant improvements.

F. Mitigation

Currently, users can avoid inadvertently transporting infor-

mation with a similar system by disabling Bluetooth on their

phones or opting out of the FindMy services. From the system

side, while keeping the main functionality of the FindMy

services, Apple can limit the number of updates issues by

a finder, as well as limit the number of available reports

per tag or decrease the accuracy of the time stamps used.

Notably, Apple currently does not notify users about one of

these crafted tags being around, as we did not get a single

notification during our experiments, using multiple iCloud

accounts.

IX. DISCUSSION

Privacy: To preserve privacy of the individuals part of our

crowd sensing experiments, we (1) discard all original MAC

addresses from the Wi-Fi measurements, leaving records that

can no longer identify the owners of the original devices, (2)

we compute the metrics from each image and store only the

counts per frame, using publicly available images, and (3) used

our own equipment to demonstrate the possible information

leakage from the FindMy services. For the communication

experiments, by using our own devices and iCloud accounts,

we ensure the privacy and resources of other individuals were

not affected by our work. However, our work unveils possible

attack vectors which could be exploited, compromising the

security and privacy of the subjects involved.

Ethics: Our measurements and analysis were designed and

executed to minimize exposing information about subjects

being studied. Whenever possible, we limited our study to

our own devices, and when studying crowds we discarded all

identifiable information. However, we understand the methods

presented could be used in other unintended ways. Therefore,

we believe such study may contribute to the design of future

versions of Bluetooth tracking systems.

Crowd Sensing: Our analyses show acceptable results using

a single tag on the Apple FindMy service to sense aspects

of a crowd. More importantly, our system provides privacy

guarantees when used with a large group of subjects. Unlike

in the deliberate tracking examples, a large group of unknown

individuals ensures no single subject can be identified or have

further information disclosed.
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Extended support to other platforms: To enable further

studies with such smart tags system, we extend the support

originally implemented by Heinrich et al. [1] to macOS
(e.g., developing of new applications and debugging) and the

Amazon Echo [3], [4] (e.g., home IoT turn into sensing device)

to be used as a tag.

More Finders may increase Tagcomm delivery guarantees:

During our Tagcomm experiments, using a single extra Finder

did not yield significant improvements in the reliability of

sending messages. For applications deployed in spaces where

multiple finders could be passing by may increase further the

guarantees messages are transmitted.

X. CONCLUSION

In this paper, we present how Bluetooth trackers (or tags)

can be used beyond their originally designed purpose, of

tracking lost devices. We show how crafted tags can be used as

crowd sensing devices, with relative estimates of large groups

of people. These estimates include crowd size estimated with

a single tag, and also crowd flow by using multiple tags

along a monitored path. Furthermore, we demonstrate through

a series of controlled experiments how the Apple FindMy

service currently discloses sensitive location information from

passive finder devices. An attacker may, in turn, reconstruct a

victim’s path and visits as well as a possible final destination,

currently exposing billions of Apple devices [1].

In addition, we also present Tagcomm, a proof-of-concept

out-of-band communication channel using Apple tags. Using

a simple protocol, we demonstrate how various tag IDs can be

used to encode any arbitrary information and transmitted over

a secure end-to-end encrypted channel, without the knowledge

of the phones that handle part of this communication path. Our

intent is to raise awareness of such possibility, while discussing

possible uses which include side-channel communication that

could leak sensitive information from a compromised system.

Future iterations of our work will consider other Bluetooth

trackers for crowd sensing, and leverage TagComm to estimate

users’ behavior. Furthermore, similar systems providing raw

reports (i.e., not aggregates over time) will be verified for the

vulnerabilities presented here.

Reproducibility: To foster further research, we make our

code and sample data openly available [4] along with an

extended support for other platforms to be used for either

communication or sensing [3].
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