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Abstract

Network science studies a complex system as a network to capture the connectivity patterns and
topological features. Different network topologies have been observed to shape dynamic spread-
ing processes on the network in various ways, while the exact relationship is complicated and not
yet fully understood. Epidemic models are often applied to describe the spreading process on a
network and to facilitate studying the dynamic interactions. We apply a simple epidemic model,
the Susceptible-Infected-Susceptible (SIS) model, on the structural brain network to explore the
topological properties that drive the dynamic processes. A recent study examined the transfer
entropy of empirical data and observed a dominant posterior-anterior spreading pattern in the
brain. In both transfer entropy and delayed correlation measures, we show that hubs are more
sending information to the network than lower degree nodes. With our continuous-time simu-
lations, we also found the empirically-observed posterior-anterior global pattern. Based on our
results, the brain topology of hubs mainly located at the back of the brain seems to be responsible
for the emergence of the global pattern.

Keywords:

SIS epidemic spreading model, brain structural network, functional connectivity, effective con-
nectivity, delayed correlations, transfer entropy, directionality, global pattern
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Chapter 1

Introduction

1.1 Background

Network science is widely used to study complex systems and problems across various fields [1].
The network of interconnected neurones in the brain and the food web of predators and preys
in an ecosystem are examples of biological networks. Man-made networks include the telephone
infrastructure networks, railway roads, power grids, the well-known Internet of physically inter-
connected computer networks, and the World Wide Web (WWW) of virtually linked web pages.
Social network examples are various human interactions through physical contact and online so-
cial platforms.

The network approach conducts macroscopic analysis to reveal the whole picture of a problem
and thus has become popular in the study of many complicated systems. To extract the general
organisation properties and to disclose the topology of connection patterns, many details in a
system are disregarded and only elements and their interactions are considered. For instance, the
entities on the Internet are modelled as computers in general, regardless of differences in oper-
ating systems, transmission bandwidths limited by local service providers, as well as geographic
landscapes. Upon the resulting simplified topology of connection patterns, routing protocols can
be designed to conduct communications through shortest paths effectively and efficiently. How-
ever, due to the geographically dispersed locations, the Internet topology will not always appear
in regular shapes such as lattices or grids. The term complex network is then used to indicate a
network with complicated topology structures that are not as simple as networks of regular shape
or uniformly random structure but with a large size of elements and connections [2].

Topology analysis is helpful in allocating limited resources effectively to achieve the best overall
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2 Introduction

outcome of the network. For example, the topology of railway roads may show a transportation
railway located in the centre that is crucial for connecting many different places. Then high pri-
ority of reconstruction resources should be assigned to ensure the centre railway can function
properly in connecting various locations.

Apart from the static topology, there are often dynamic processes conducted upon the network
topology, such as the trains running on railways, communication packets transmitting on the In-
ternet and information propagating among social groups. Even if the same rumour is spreading
among two different social groups, the outcome of how fast and how widely the rumour is dis-
seminated among each social group can be largely different depending on their topologies. The
topology patterns have crucial impacts on shaping different dynamic behaviours and outcomes.
Knowledge of the topology can also help to prevent undesired consequences. Particularly during
the outbreak of global epidemic diseases, effective and efficient treatment and preventions are
crucial in controlling the disease spreading in a population network. During the SARS outbreak in
2003 and the Ebola virus outbreak in December 2013 for example, the lack of topology informa-
tion as well as spreading predictions had been a significant obstacle to the disease control. Hence,
one important question is to study the relationship of a topology and the outcome of a dynamic
process.

One important application of network analysis is to facilitate the understanding of healthy brain
operations as well as brain disorders such as Parkinson’s disease, epilepsy and Alzheimer’s disease.
The brain is already a very complex system, not mentioning the dynamics of neuronal signals. Re-
search has shown that studies on the brain can benefit from modelling the brain as a network,
eliminating intricate details and only focusing on the general properties and dynamics patterns
[3]. In recent years, relationships between the anatomical brain network and brain disorders have
been found with the help of network analysis [4]. Therefore, studying how the brain topology in-
fluences the dynamics is helpful to improve the understanding of how the healthy brain operates.
Once the influence is specified for the healthy brain, we can further study the injured brain by
making comparisons with the operation mechanism in the healthy brain and eventually improve
the treatment effectiveness.

1.2 Motivation

Modern network science mainly explores complex network topology properties and influences on
dynamic processes. Typical examples of spreading dynamics on complex networks are rumours
spreading on the social network, epidemic diseases spreading among populations and computer
viruses propagating on the Internet. The step-by-step spreading details during a dynamic process
is usually untraceable due to the large data size of a complex network. However, with the help of
the epidemic models, overall outcomes of the spreading process can be studied [5]. For example,
after a certain time of spreading how large is the infected population, which parameters lead to
a massive epidemic outbreak and the speed of disease spreading. Applying epidemic models to
real networks provide rough estimations of the dynamic process. Together with the underlying
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1.3 Thesis Outline 3

network topology, interesting properties such as nodes that are in charge of large outbreaks can
be mathematically studied. Limited resources could then be applied to the most effective node in
order to prevent further large outbreaks, especially in the case of epidemics global outbreak such
as the Ebola in 2014.

To study the dynamics outcome influenced by the network topology, various epidemic spreading
models [6] are proposed to characterise different types of dynamics that are not limited to epi-
demic disease spreading. The basic Susceptible-Infected-Susceptible (SIS) [7] model can be used
to describe simple spreading processes. Motivated by studying the topological influence on shap-
ing brain dynamics, we apply the SIS epidemic model on an anatomical brain network to simulate
the brain dynamics. We especially analyse the influence between pairs of elements by adding a
time delay variable to the time series correlation and calculating the so-called delayed correla-
tions. Based on the delayed correlations, we then investigate on the emergence of global patterns.

1.3 Thesis Outline

Following the background on applying network science to study the brain, Chapter 2 provides
mathematical notations on network science and useful metrics to analyse network topologies.
Chapter 3 illustrates the Susceptible-Infected-Susceptible (SIS) model from the exact Markovian
method to the N-Intertwined Mean Field Approximation (NIMFA), covering important concepts
of epidemic threshold and meta-stable states. A basic introduction to the continuous-time SIS
simulator (SISS) program is also included. Chapter 4 applies the SIS epidemic model to simulate
brain dynamics. Simulation results on the brain connectivity patterns are presented in compari-
son with related results from a previous literature. The delayed correlation is described in Chapter
5 to study the patterns of a dynamic process on the network. Analysis of the simulation results
of delayed correlations on a brain network as well as unique properties of the delayed autocor-
relation are presented. While Chapter 5 mainly investigate pairwise properties locally, Chapter
6 demonstrates the emergence of a global pattern from the analysis on the delayed correlation.
Transfer entropy is implemented to benchmark the simulation results. Finally, in Chapter 7, limi-
tations on our work and conclusions are given, as well as an outlook to future work.
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Chapter 2

Network Science

Real systems such as the World-Wide-Web, social networks or biological systems are composed of
interacting elements with different local properties that as a whole would form the global feature
of the system. In order to examine the global properties of the whole system, network theory de-
picts a system as a network and simplifies the analysis by ignoring individual micro-differences of
each element. This chapter introduces the graph theory and basic metrics to study network prop-
erties. The mathematical expressions in this report follow the notations from books [8] and [9].
While network science is a multidisciplinary subject involving mathematics, statistics, engineer-
ing and many other fields, here we only introduce metrics that are closely related to our work. For
example, Markovian theory and graph spectra are not illustrated here in detail, but comprehensive
explanations are provided in books [8] and [9].

2.1 Graph Theory

Traditional network science studies simple and practical problems such as making a round trip
through some places without repetition or distinguishing regions on a map using the minimum
number of colours as networks. Graph theory provides tools and measurements to study gen-
eral network properties. Graph theory was first used by mathematician Leonhard Euler to solve
the Königsberg 7 bridge problem in 1736 [10]. The problem was to make a round trip through the
Prussian city of Königsberg while traversing the seven bridges in the city once and only once. Euler
modelled the parts of the city as nodes connected by seven bridge links. Reformulating the prob-
lem as an abstract graph consisting of only nodes and links shed light on mathematical analysis
method on a set of similar problems.
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6 Network Science

Figure 2.1: An example of an undirected unweighted graph G(6,6).

In graph theory, elements in a system are regarded as nodes of a network, and the interactions of
these elements are illustrated as connections of links. A network is described as a graph G = (N ,L)
where N is the number of nodes in the network, and L is the number of links. A weighted value
is assigned to the link to describe different contexts, such as the frequency of communications or
the real spatial distance between two nodes. The links can also have directions, depicted as arrows
pointing from a source node towards a target node. However, mutual interactions characterised
as undirected links are usually used to describe the presence of connections. A general network
throughout this thesis consists of only undirected and unweighted links.

There are different network topologies and in Figure 2.2 we show some typical topology patterns:
(a) shows an example of a path graph G(5,4), the simplest type of topology where there are only
back and forth connections on a line; (b) shows an example of 2-dimension square lattice G(9,12);
(c) shows an example of branching tree G(11,10), starting the branching process from a root node
and there is no loop; (d) shows an example of star graph G(9, 8). There is a centre node located
in the middle, and others are leaf nodes. Every leaf node is connected to the centre node and no
links between leaf nodes exist; (e) shows an example of ring graph G(8,8). It is the simplest type of
regular graph where a node only connects to the left and right nearest nodes; (f) shows an example
of complete graph G(5,10). Every node is connected to every other node, so the number of links
equals L = N (N−1)

2 . The maximum possible links in any graph with node N is equal to the number
of links in the complete graph, where the term complete implies a full connection of all possible
links.

Adjacency matrix

The adjacency matrix A transforms a graph into matrix notation. An element in the adjacency
matrix ai j for undirected networks denotes the presence of a link between two nodes i and j , and
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2.1 Graph Theory 7

(a) (b)
(c)

(d)
(e)

(f)

Figure 2.2: Examples of typical topologies. (a) A path graph, (b) a 2D lattice, (c) a branching
tree, (d)a star graph, (e) a regular ring graph and (f) complete graph.

is a binary number such that

ai j =
{

1, if node i is connected to node j , j 6= i

0, otherwise.

Self-loops are not allowed and therefore the diagonal entries ai i are defined as 0. The adjacency
matrix of the example shown in Figure 2.1 is given as

A =



0 0 1 0 0 0
0 0 1 1 0 1
1 1 0 1 0 0
0 1 1 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0

 ,

where the adjacency matrix is symmetric, meaning the network is an undirected network with
bi-directional connections between nodes.

Degree

Xiangyu Zhou Master of Science Thesis



8 Network Science

If there is a link between nodes i and j , we consider them as neighbours. The degree of node i is
the number of neighbours and is denoted as

di =
N∑

j=1
a j i ,

where 0 ≤ di ≤ N −1 since we have N nodes in the network. The degree of a node is the simplest
measure of importance in the network, for example, changes regarding high degree nodes are
expected to have a huge impact on the network since more neighbours are influence than the
influence by changes of low degree nodes.

Distance metrics

A walk of length k from the node i to j includes a succession of k links/hops from the node i to j ,
which could include loops. The number of k-hop walks can be computed by Ak , where an element
(Ak )i j represents the number of k-hop walks from the node i to j . A path of length k from the node
i to j is walks of length k without loops and the shortest path is the path consisting of the smallest
number of links/hops from the node i to j . The hopcount Hi j is used to describe the number of
hops in the shortest path from the node i to j .

The eccentricity of a node i is the furthest length of shortest paths from node i to all other nodes,
which is denoted as

εi = max j∈N (Hi j ).

The diameter of a graph G is the length of the longest shortest path in the graph, i.e. the largest
eccentricity. A network with a small diameter can transmit information among nodes more effi-
ciently than a network with a larger diameter. The efficiency can be clearly observed if information
is delivered only through the shortest path on a network, where small diameter indicates nodes are
near to each other. Deliveries could be faster if then considering the shortest paths.

Clustering Coefficient

For an arbitrary node i in a network, clustering coefficient cG (i ) is defined as the ratio of links
between neighbours of node i (denoted as γ) to the maximum possible links between neighbours
of node i , which is written as

cG (i ) = γ

di (di −1)/2
.

The maximum links between the di neighbours of node i is equal to the links of a complete graph
with node number N = di . For the centre node in a star graph (see Figure 2.2(d)), the clustering
coefficient equals 0 since there are no connections between leaf nodes. So the clustering coeffi-
cient measures how often neighbours of a node form a triangle with this node as clusters or small
groups. The (global) clustering coefficient of a graph G is denoted as the average of the clustering
coefficient of individual nodes

cG = 1

N

N∑
v=1

cG (v).

Master of Science Thesis Xiangyu Zhou



2.1 Graph Theory 9

Closeness

The closeness of a node i measures the reciprocal of the sum of shortest hopcount to every other
nodes and is denoted as

Ci = 1∑N
j=1, j 6=i Hi j

.

In a network with a low diameter (or high clustering coefficient), there are small hopcounts be-
tween pairs of nodes and the reciprocal results in a high closeness.

Eigenvalue and eigenvectors

The eigenvalues of adjacency matrix A are a set of scalars λ = λ1,λ2, ... while the corresponding
eigenvectors are represented in columns x = [x1, x2, ..., xk , ...xN ]T . One eigenvalue scalar λk is cor-
responded with one eigenvector column xk and they satisfy the equation

Ax =λx.

A symmetric adjacency matrix produces real eigenvalues which are often sorted. In a descending
sort sequence, the largest eigenvalue is denoted as λ1, which is also called the spectra radius of the
graph. The principal eigenvector x1 is the one corresponding to the largest eigenvalue λ1 which
satisfies the equation

Ax1 =λ1x1. (2.1)

The largest eigenvalue is also an important parameter to estimate the lower bound of an epidemic
threshold [5].

The basic eigenvalue equation regarding the largest eigenvalue λ1 (Equation 2.1) for a node i can
be written as [9, Equation 1.3]

λ1(x1)i = (Axk )i =
N∑

j=1
ai j (x1) j , (2.2)

where the summation in the last term is taken on neighbours of node i since ai j = 1 only when
node i and j are connected and sum up eigenvector centralities of node i neighbours.

Then, the eigenvector centrality of node i regarding the principal eigenvector x1, denoted as x1i ,
is defined as the i th component of the principal eigenvector x1 belonging to the largest eigenvalue
λ1. The eigenvector centrality x1i can be computed from Equation 2.2 by diving theλ1 in all terms,
which gives

(x1)i = (Ax1)i

λ1
= 1

λ1

N∑
j=1

ai j (x1) j . (2.3)

In this way, the eigenvector centrality provides another ranking measure of the node's importance
in a network which can be interpreted as 'weighted degrees' [9]

Xiangyu Zhou Master of Science Thesis



10 Network Science

2.2 Network Models

The network science started with analysis on simple networks of small size that could be eas-
ily computed and all nodes or links have similar properties, such as a regular or purely random
topology. With the fast technology development in the 20th century, many real networks such
as the Internet, power grids, telephony infrastructures and transportation networks are evolving
rapidly to immense size with complex connections. Analysis of these networks often shows com-
plex properties that do not occur in simple networks: enormous network size that is infeasible
to do computation on the whole network, irregular and non-homogeneous properties for nodes
and links and even dynamically evolving topologies. To distinguish from simple networks and
highlight the complexity, networks of very large size and complex connections are categorised
as complex networks [11]. Empirical studies on complex networks have found two essential fea-
tures. One type of complex feature is the small-world property found by Watts and Strogatz in
1998 [12] that on average, arbitrary node pairs can be reached in relatively short paths of six hops.
Another type is the scale-free property found by Barabási and Albert in 1999 [13] that many large
size networks show a power law degree distribution. In the following paragraphs, we give a brief
illustration on two simple networks: the regular and purely random network, and two complex
models: the small-world and scale-free network.

Regular network

In a regular network all nodes have the same degree r , which means every node is connected to
r -nodes. An example is shown in Figure 2.3(a) on a graph with 20 nodes oriented on a circle.
Every node has 4 neighbours: two connections to the nearest nodes from left and right, and two
connections to the nodes separated by 3 other nodes on the circle both from left and right.

Random network

In a random network, the probability of a link existing between any pair of nodes is p. Probability
p = 0 indicates all nodes are independent and there is no connection in the network, while p = 1
results in a complete graph, as shown in Figure 2.3(c).

Small-world network

An important complex network model is the small-world network proposed by Watts and Stro-
gatz in 1998 [12]. As shown in the paper, the small-world network can be generated by randomly
rewiring the links in the regular graph by a certain value of randomness factor. Therefore, small-
world properties are often observed in between two extremes, the regular network and the random
network. The small-world network is named after the discovery of 'six-degree separation' in the
social network, indicating that the world is small since we can reach any strangers within an av-
eraged small number of intermediate friends [14]. The short distance between overall node pairs
also holds for large size small-world networks while a small network with only 20 nodes is shown
as an illustration.
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2.2 Network Models 11

(a) (b) (c)

Figure 2.3: An illustration of (a) a regular network, (b) small-world network and (d) random
network. The small-world network is generated from the regular network with a randomness
factor 0.1. In three cases, N=20 and nodes are fixed on a circle to show changes in connections.

Scale-free network

In a large size network, individual nodes may be hard to show the whole picture of the network and
extensive details of nodes are difficult to collect. A global network property that scientists usually
use to characterise large size network is the degree distribution, denoted as Pr [di = k]. The degree
distribution measures the probability of a node i having degree k, or the fraction of nodes having
degree k in the network. The Faloutsos brothers found the Internet and many other real networks
follow a power-law distribution [15] and is denoted as

Pr [di = k] ∝ k−α,α ∈ (2.2,2.5),

which is also called a scale-free network. A famous generation of a power-law network is using
preferential attachment proposed by Barabási and Albert in 1999 [13] : starting with some initial
connected nodes m0, new nodes are added to the network one by one. Each new node is con-
nected to the existing m nodes (m ≤ m0) with a probability proportional to the node’s current de-
gree. This method results in a 'preference' of new nodes connecting to high degree nodes, shown
as an example in Figure C.
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Figure 2.4: A power-law distributed network, with α= 2.3 and N = 300. All nodes are drawn on
a circle. The nodes located at top right corner is highly densely connected.
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Chapter 3

Epidemic Spreading Models

Epidemic models transform conceptual understanding of dynamic processes in networks into
computable results. In order to expose detail properties of the dynamic process in a network,
simple models are preferred so that desired properties would not be concealed in the complex-
ity of the model. To start with, general concept of the Susceptible-Infected-Susceptible (SIS) and
Susceptible-Infected-Removed (SIR) models are introduced, including the definition of meta-stable
regime which will be used in later chapters. Then equations for solving the 2N -state Markov model
and N-Intertwined Mean-Field Approximation (NIMFA) method will be presented.

3.1 The SIS model

An epidemic disease spreading on the links of a network yields two basic states of a node: [16]

• Susceptible status S, if a node is currently healthy and may become infected if in contact
with infected nodes;

• Infected status I, if a node is infected and become contagious to other healthy nodes.

as shown in the schematic graph in Figure 3.1(a). The status of a node i at time t is often described
as a Bernoulli random variable Xi (t ) ∈ {0,1}, where 0 represents the healthy and susceptible status,
and 1 represents the infected status [8].

A healthy node can become infected by interacting with infected neighbours. Once a node gets
infected, the curing process is automatically triggered. The curing process is modelled as a Poisson
process of curing rate δ which is independent of the spreading process. The average curing time

Xiangyu Zhou Master of Science Thesis



14 Epidemic Spreading Models

(a)

(b)

Figure 3.1: Schematic graph of (a) SIS and (b) SIR model. In both graphs, the term∑N
k=1 aki Xk (t ) is the number of infected neighbours of a node, β is the spreading rate on a

link. In the SIS model, δ is the curing rate while in the SIR model δ' is used to distinguish the
curing rate from that in the SIS model.

is measured as 1/δ unit time. An infected node can spread to neighbouring nodes before being
cured. In the spreading or infection process, an infected node spreads the disease to neighbouring
nodes through their connections. The spreading on each link is independent of the spreading on
other links and is modelled as a Poisson process with a spreading rate β.

The average spreading time on a link is then measured as 1/β unit time. The number of infected
neighbours of node i is computed as

∑N
k=1 aki Xk (t ), where aki = 1 if node k is a neighbour of node

i and Xk (t ) = 1 if node k is infected. The infection rate imposed on a node i will be the sum of
rates from all infected neighbours β

∑N
k=1 aki Xk (t ). This summation is due to the linear feature of

Poisson processes that the sum of two Poisson processes is still a Poisson process, and the new rate
is the sum of two original rates. Since the infection rate is proportional to the number of infected
neighbours, a node with more neighbours generally is infected more frequently.

The effective spreading rate in a network is defined as τ=β/δ, which influences the average frac-
tion of infected nodes in a long term. A high value of τ indicates a large epidemic outbreak and
large average fractions of infected nodes can be observed. On the contrary, the epidemic dies
out exponentially fast. The critical epidemic threshold (τc ) is usually used to quantify where a
spreading process changes from the early die-out phase to the massive infection phase. An ap-
proximation method for the epidemic threshold is introduced later.

Figure 3.2(a) shows the fractions of infected nodes of an example SIS model with high effective
spreading rate. Initialised by a small number of infected nodes, the fractions of infected nodes
increases exponentially fast during the initial phase of an epidemic outbreak. Then a stable level
of infected fractions is observed for a long time and the system is in a relatively stationary phase,
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3.1 The SIS model 15

time

fr
a
c
ti
o
n
 o

f 
in

fe
c
te

d
 n

o
d
e
s

I(t)

Meta-stable

state

Initial increasing phase

(a)

time

fr
a

c
ti
o

n
 o

f 
in

fe
c
te

d
 n

o
d

e
s

S(t)

I(t)

R(t)

Steady

state

(b)

Figure 3.2: Fraction of infected nodes of (a) SIS and (b) SIR model.

which is often characterised as the meta-stable state. In this thesis where we only consider the SIS
model, we define the meta-stable state as the later half of simulation time for simplicity. However,
after a very long time, there exists a steady state where all nodes are healthy (disregarding self-
infections). The steady state of a SIS model is only possible to observe after a very long time around
the scale of 107 unit times [17] and therefore, the meta-stable state is usually observed due to
feasibility.

An extensive review of various epidemic models can be found in [16]. A short illustration of the
Susceptible-Infected-Removed (SIR) model is presented in comparison of the schematic graph
(Figure 3.1) and the infected fractions (Figure 3.2) from those in the SIS model. The simple SIR
model removes the cured nodes from the network so that they would not be involved in the infec-
tion again and as a result, the network reaches the steady state more quickly than the SIS model.
The steady state in the SIR model can be easily observed within a period of time that is achievable
both in simulations and real experiments. In the case of removed nodes joins the network and in-
fection process again, a Susceptible-Infected-Removed-Susceptible model is usually used. More
complicated scenarios could be considered by other models derived from the basic SIS and SIR
models. To name a few, the Susceptible-Infected-Recovered-Susceptible (SIRS) model [18] char-
acterises newborn susceptible individuals coming into a population (recovered R to susceptible
S process) and the Susceptible-Exposed-Infected-Removed (SEIR) model [19] describes diseases
with an incubation process (the exposed E state) before symptoms appear.

We only apply the SIS model in this thesis work to remove exhaustive details and reduce com-
putation complexity, so as to provide a clear view on the global patterns of the whole network in
later chapters. Therefore, next section only illustrates the mathematical analysis based on the SIS
model which is used throughout this thesis work.
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16 Epidemic Spreading Models

3.2 The 2N-state Markov Chain

Node states in the SIS model are shown in the schematic graph (Figure 3.1). The infection and
curing processes are both Poisson processes independent of history status, which can be studied
as a two-state continuous Markov process. The infinitesimal generator describing transition rates
between different states is given as [8]

Qi (t ) =
[−qi (t ) qi (t )

δ −δ
]

, (3.1)

and the term qi (t ) describes the transition rate from a 0-state to 1-state, denoted as

qi (t ) =β
N∑

k=1
aki Xk (t ). (3.2)

A network of N nodes with each node having 2 states, yields a 2N -state Markov Chain. For exam-
ple, a 3 node network consists of 23 combinations of node states and the 8-state Markov Chain is
illustrated in the state diagram shown in Figure 3.3.

000

011

001 010

101 110

100

111

Figure 3.3: 2N -state Markov state transition diagram with N = 3.

In the general 2N -state Markov model, the term qi (t ) in Equation (3.2) is a random variable due
to the Bernoulli term Xk (t ). While there should be no random variables in the Markov theory, the
mean-field approximation is applied to average over all possible cases

E [qi (t )] =βE [
N∑

k=1
aki Xk (t )]. (3.3)
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3.3 N -Intertwined Mean-Field Approximation (NIMFA) 17

For Bernoulli random variables, the expectation is numerically equal to the probability of the state
being equal to 1 so we have

E [Xk (t )] = Pr [Xk (t ) = 1]. (3.4)

In Equation (3.3) there are 4 combinations of states of aki and Xk (t ): 00, 01, 10 and 11. The total

combinations for all nodes k of each node i will be 4N N
, which is a large number of equations to

solve increasing exponentially with network size of node N . Therefore, the 2N -state Markov model
is often infeasible to solve.

3.3 N-Intertwined Mean-Field Approximation (NIMFA)

The N -Intertwined Mean-Field Approximation (NIMFA) [5] method provides a feasible solution
to the SIS model. The governing equation describing the SIS spreading process is defined in the
form of a differential equation

d Xi (t )

d t
=−δXi (t )+ (1−Xi (t ))β

N∑
k=1

aki Xk (t ), (3.5)

and the mean value is computed as

dE [Xi (t )]

d t
=−δE [Xi (t )]+ (1−E [Xi (t )])β

N∑
k=1

aki E [Xk (t )]

=−δE [Xi (t )]+
N∑

k=1
aki {E [Xk (t )]−E [Xi (t )]E [Xi (t )] }. (3.6)

The NIMFA approximation reduces the complexity of calculating 2N -state joint probabilities of
the term E [Xi (t )Xk (t )] = Pr [Xi (t ) = 1, Xk (t ) = 1] [5] by assuming independence

E [Xi (t )X j (t )] = E [Xi (t )]E [Xk (t )] (3.7)

= Pr [Xi (t ) = 1]Pr [X j (t ) = 1]. (3.8)

Denoting the expected value E [Xi (t ) as vi (t ), Equation (3.6) becomes

d vi (t )

d t
=−δvi (t )+ (1− vi (t ))β

N∑
k=1

aki vi (t ), (3.9)

and the matrix form is
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18 Epidemic Spreading Models

dV (t )

d t
=βAV (t )−di ag (vi (t )) (βAV (t )+δu), (3.10)

where vector V (t ) = [v1(t ) v2(t ) ... vN (t )]T , di ag (vi (t )) is the diagonal matrix with elements
v1(t ), v2(t ), ...vN (t ), and u is a all-one vector.

Lower-bound on the critical epidemic threshold

The NIMFA equation provides an estimation on the critical epidemic threshold τc by solving the
vector form differential Equation (3.10) [5] as

V (t ) ≤ e(−δI+βA)t V (0), (3.11)

where vector element vi (t ) tends to be zero exponentially fast if eigenvalues of −δI +βA (depend-
ing on eigenvalues of the adjacency matrixA) are negative. And since the eigenvalues are assumed
to be arranging in descending order, the largest eigenvalue λ1(A) being negative can guarantee all
eigenvalues for −δI +βA are negative. Therefore if we have

−δ+βλ1(A) < 0, (3.12)

then we can obtain

τc > 1

λ1(A)
= τ(1)

c , (3.13)

where the first-order NIMFA threshold is denoted as τ(1)
c . The NIMFA provides a lower-bound τ(1)

c

of the critical epidemic threshold τc .

3.4 SIS Simulations

The SIS epidemic spreading model is applied throughout this thesis. The underlying simulation
tool is the continuous-time SIS Simulator (SISS) program provided by the work in[20]. The SISS is
a java program which takes the network adjacency matrix as an input and runs the SIS epidemic
spreading process on top of the network. The program then outputs the binary time series of node
states Xi (t ) of all nodes for the whole simulated time periods (see Figure 3.4).

Various other simulations are also feasible with the help of the SISS. Apart from the performed SIS
simulation function, the SISS contains many more functions of other models and parameters that
are not used in this thesis but could be utilised in future work. Here we only explain the outline of
the SIS simulation procedure which is used in this thesis.
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Figure 3.4: An example of output time series from the SISS. The red colour indicates an infected
state and green colour indicates the healthy state. The unit time from the simulator is defined
as seconds in this thesis work. The underlying network is a 78-node anatomical brain network
(described in Chapter 4). The SIS epidemic spreading is initialised by 15 random infected nodes.
The effective spreading rate is τ= 0.2 while the lower bound of the critical epidemic threshold is
τ(1)

c = 0.01.

To simulate the continuous time feature, the simulator interpolates event tickets onto a timeline.
The SIS model has two type of events, the spreading and curing event illustrating the spreading
and curing processes respectively. An event is represented in the form of a ticket with time infor-
mation and the indicated node index. An infected node always generates a ticket for the curing
event with an exponential time of rate δ, simulating the curing process. At the end of the curing
time, or in other words the node is cured, the node state converts from infected to susceptible. An
infected node also generates a spreading event ticket to simulate the infection spreading process
of an exponential time of rate β. The spreading event imposes infection on healthy neighbour-
ing nodes. An infected node can only generate spreading event tickets before the curing time is
reached.

In the example of the outputs, binary time series, is shown in Figure 3.4. The underlying topology
network is a 78-node structural brain network whose properties are described in Chapter 4. Time
series describe the simulated dynamics regarding node states at every time unit. Although the SISS
conducts continuous-time simulations, time series are sampled for the discrete data process using
Matlab. A high sampling rate (or more samples per unit time) provides the sampled data closer
to the continuous real data with little losses. However, in our study of SIS dynamics, a moderate
sampling rate is of sufficient accuracy since the time a node remains at current status is a Poisson
distributed time and it is not a transient time. Our analysis does not focus on the precise time
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20 Epidemic Spreading Models

when the node changes between S and I states, and high sampling rate will produce bulk size data
which requires much more data processing time. It is noteworthy that the simulated time has the
same unit as the Poisson rates δ and β. For simplicity, we take 'seconds' as our time unit in this
thesis and later analysis on dynamic processes especially in Chapter 5 and 6 are based on these
time series.

Real networks often work around a critical threshold where the system is in a transition phase
between massive and scarce infections [21]. In order to find the critical spreading rate τ for a
network, we average the fraction of infected nodes at meta-stable state for multiple simulation re-
alisations so as to remove extreme coincidence. The multiple simulation realisations are dynamics
of the same spreading rate β and curing rate δ conducting on the same underlying network topol-
ogy. Figure 3.5 shows the simulation results in finding the critical spreading rate τc . The critical
threshold is defined at averaged 1% of infected nodes at the meta-stable state is achieved [21]. In
the example shown, the critical β = 0.09 with a fixed δ = 0.5, which yields the critical spreading
rate τc = 0.18.
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Critical β = 0.09

Figure 3.5: Effective spreading rate τ. The critical τ is usually defined at 1% nodes activated or
infected in the meta-stable state. The figure is averaged over 10 simulation realisations on the
78-node structural network (see Chapter 4).
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Chapter 4

Brain Networks

The concern of this thesis is constrained to the human brain, the most complicated case among
all different species. In the rest of the thesis, the brain refers to the human brain if not specified
otherwise. This chapter justifies a simple model can be used to analyse general patterns of brain
connectivities.

4.1 Network Modelling of the Brain

The brain is the most important organ in a body but also the most complex system of human
knowledge and therefore studying how the brain operates is of highly research interest. The brain
performs centralised control over the body by electrical communications between 1011 neurones
located on the surface of the brain [22]. The surface structure is called the cerebral cortex and
consists of about 1015 neuronal connections upon which electrical signals can transmit. The cere-
bral cortex, therefore, plays a critical role in controlling the behaviour of an individual, such as in
emotions, thinking, intelligence, and movements.

Study on the cerebral cortex has been limited by data acquisition that only animal brains were
measured in the past due to the harm on subjects of invasive chemical tracing. With the develop-
ment of neuroimaging techniques, non-invasive methods can be applied to gather human brain
data. Brain functions which co-activate different brain regions can be measured by functional
magnetic resonance imaging (fMRI), revealing the actual functioning on the underlying anatom-
ical connections. The underlying anatomical structure can be measured by diffusion MRI and
a special form of (structure) MRI, called diffusion tensor imaging (DTI). The electroencephalog-
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22 Brain Networks

raphy (EEG) measure the electric flow between neurones and magneto-encephalography (MEG)
measures the magnetic fields generated by the electrical currents of neurone activities.

Various data acquisition technologies enhanced the study of the brain. With the help of a combi-
nation of non-invasive technologies, many projects, such as the Human Connectome Project [23]
and Human Brain Mapping Project [24], are working on a comprehensive mapping of the brain.
However, due to limitations in massive data storage and computation, it is still difficult to analyse
the brain as a whole. As a consequence, brain data needs to be integrated to a smaller scale in
order to perform data processing and there is always a trade-off between comprehensive details
and feasibility.

To gain an overall view of the brain, neuroscientists integrate groups of neurones into a small
number of regions according to the anatomical structure and functions. Two popular integration
levels are:

• Voxel-level: A neuroimaging analysis technique is to statistically average a million neurones
in a local area to be a voxel. A voxel can be understood as an element of 3-dimensional space
of an object, which is similar to the 2-dimensional pixel element of an image. The voxel-level
analysis projects the brain as a whole network while also provides detailed properties of the
brain [25].

• Region of Interests (ROIs): The brain can be divided into macro-scale cortical regions ac-
cording to anatomical architectures and cell organisations. The underlying brain network
used throughout this thesis work represents connections between 78 cortical regions of
some high-level functions[26]. The nodes representing major anatomical regions are de-
fined by the Automated Anatomical Labeling (AAL) [27]. Measured by the diffusion ten-
sor imaging (DTI) tractography, major connections observed in all 80 healthy subjects are
mapped as links to form a network of macroscopic anatomical regions. As a result, the
anatomical brain network is also called the structural network.

The complex topology results in even more complicated dynamics that is hard to analyse. How-
ever, research has found simple models that do not impose extra complexity from the model often
performs better to feature backbone properties and global patterns [28]. A simple SIS model has
been applied to simulate the dynamics on the brain network in discrete-time and connectivity
patterns are found analogous to the patterns from empirical data [21].

Following the same purpose of getting a rough but overall view of the brain, we apply the simple
SIS model with a more realistic continuous-time simulation performed. The SIS model provides
a good match of the two neurone states, activated to signalling and excitable, to the infected and
susceptible states. A neurone that is not signalling information is at the excitable state which can
be interpreted as the susceptible state. A neurone that is activated and sending electrical signals
can be mapped as a node at infected state. An activated neurone sending signals is considered
as the spreading process, and after some time the neurone restores to excitable state which is
considered as the curing process.
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4.2 Connectivity Patterns 23

However, one feature of the SIS model, however, needs to be carefully considered to confine the
modelling to actual brain dynamics. We choose the critical spreading rate due to the fact that
the brain is believed to be working around the critical threshold [29]. While a spreading process
around the epidemic threshold is in between of highly possible outbreak to the whole network
and rapidly dies out, the simulation realisations contain many rapid die out dynamics. On the
contrary, the brain dynamics never stops until the brain dies. The brain is considered to be work-
ing in the meta-stable state. Therefore, in all of the following analysis steps, the rapid die out dy-
namic realisations from the simulator should be removed, and only perform analyses on outbreak
realisations consisting of a long meta-stable state.

4.2 Connectivity Patterns

The structural brain topology largely influences the dynamics outcome since spreading process
is conducted on the connection links. There are two major connectivity patterns often observed
from the dynamics on the structural network, the functional connectivity and the effective con-
nectivity. Here we present analysis and comparisons of the connectivity patterns.

Structural Network

The underlying anatomical brain network describing the regional connections upon which brain
dynamics and communications occur is often referred to as the structural network. The link
weight is rather referred to as the structural connectivity. As mentioned in the previous section,
the anatomical network under the AAL atlas will be taken as the underlying structural network
throughout the whole work. A mapping of the AAL regions to the 78 nodes is provided in Appendix
A and the adjacency matrix of the structural network is shown in Figure 4.1(a).

The structural network contains 78 nodes and 329 links. The degree distribution of this structural
brain network is shown in Figure 4.1(b) and the average degree is E [D] = 8.43. The eccentricity
of the nodes ranges between 4 and 6, and the diameter of the network is 6. Since the diameter
is rather small, efficient spreading can be anticipated. Considering the highest degrees, there are
3 hubs in the structural network: node 21, 23 and 60. From the network science perspective, the
anatomic brain network also shows the small-world and high clustering properties [30, 31] and
thus falls into the complex network category as explained in Chapter 3. The NIMFA lower bound
for the epidemic spreading threshold is τ(1)

c = 1
λ1

= 0.095 with the largest eigenvalue λ1 = 10.47.

Simulation parameters

For the rest of the thesis, the following simulation parameters are taken as default if not specified
otherwise:

• Underlying network: the 78-node anatomical brain network, also named as the structural
network interchangeably in this thesis;
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Figure 4.1: (a) The adjacency matrix of the structural network, describing the connections
between AAL regions. The yellow colour represents a connection, i.e. ai j = 1. (b) Structural
network degree distribution with average degree 8.43.

• The network consists of nodes N = 78 and links L = 329;
• The average degree of the network is E [D] = 8.43;
• The largest eigenvalue is λ1 = 10.47;
• The NIMFA lower-bound on the critical epidemic threshold is τ(1)

c = 1
λ1

= 0.095;
• The SIS epidemic spreading process is initialised by 15 infected nodes which are randomly

chosen in every simulation realisations;
• The curing rate is fixed as δ = 0.5, and the default spreading rate is β = 0.1, resulting in an

effective spreading rate τ= 0.2 which is slightly above the lNIMFA lower-bound threshold;
• The default simulation time period is 4096 unit time, and the default unit time is taken as

seconds;
• The simulated results are sampled as rate 0.1, meaning taking 10 samples per second and

one sample represents 0.1 seconds;
• The delayed correlations (Chapter 5) is computed in the meta-stable state which is defined

as the range from t = 2048s to 4096s, the later half of the simulation time;
• Simulation results such as the delayed correlations are averaged over 100 realisations.

Functional Connectivity

Functional connectivity are often measured as macro-scale regional dynamics in the brain and is
defined as the correlation between regional communications. The dynamic process is modelled
as the SIS spreading process, thus the functional connectivity is the pairwise correlation of the SIS
time series. Details about correlation are explained in Chapter 5.

Figure 4.2(a) shows the functional connectivity by calculating the correlations of the SIS time se-
ries, averaged over 100 runs and applied supra-threshold [explain] to include the same number of
links as that in the structural network. The pattern is similar to the structural connectivity matrix.
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(a) (b)

(c) (d)

Figure 4.2: (a) Functional connectivity based on SIS simulations. (b) The effective connectivity,
which measures the influence of node i to j in next time unit. Both (a) and (b) matrices are
made binary by supra-thresholding so that there are the same number of links (L = 329) as that
in the structural network. (c) Empirical functional connectivity, measured by fMRI and (d) MEG.

Figure 4.2(c) and (d) shows two empirical function connectivity patterns measured in fMRI and
MEG from healthy controls. The pattern in fMRI has two slashes around the diagonal, while the
SIS model correlations reveal the general pattern of links around the diagonal and two 'blobes' on
the off-diagonal direction.

A comparison of correlations under different time lag h is performed in Figure 4.3. Note that this
is the matrix presentation of the delayed correlations in Chapter 5. From the matrix presentation,
the presence of links does not change significantly in different time delays.

Effective Connectivity

The effective connectivity is often taken to measure the influence of the network dynamics. Sim-
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(a) Functional connectivity of time lag 1.0s (b) Functional connectivity of time lag 4.0s

(c) Functional connectivity of time lag 8.0s (d) Functional connectivity of time lag 10.0s

Figure 4.3: Delayed correlations (see Chapter 5) displayed in the same way as the functional
connectivity. The delayed correlation also applied supra-threshold and displayed in as a binary
matrix for comparison with structural brain network. The yellow colour represents a link in the
matrix.

ilar to the definition and calculations from [21], we define the effective connectivity Ce f f of the
dynamics conducting on the structural brain network at delay h = 1 as

Ce f f =
Pr [X j (t +h) = 1|Xi (t ) = 1]+Pr [Xi (t +h) = 1|X j (t ) = 1]

2
, (4.1)

and the idea is to remove directionality in the time lag and remain mutual connections to com-
pare with the undirected structural network.The effective connectivity is shown in Figure 4.2(b)
in matrix presentation, which measures the probability of node i is infected before and following
with node j is infected. The effective connectivity showed four 'blobles' of communication flows
in one second.
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(a) Effective connectivity of time lag 2.0s (b) Effective connectivity of time lag 4.0s

(c) Effective connectivity of time lag 8.0s (d) Effective connectivity of time lag 10.0s

Figure 4.4: Effective connectivity with different delays. The effective connectivity matrix with
different delays also applied supra-threshold and displayed the same number of links as that in
the underlying network. The yellow colour represents a link in the matrix.
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The effective connectivity in Equation (4.1) is computed with other delays shown in Figure 4.4.
The connectivity patterns are very similar under different delays.

The effectivity connectivity reveals some interactions related to time delay, which can also further
help to explain the structure that shapes the dynamics. For example, in the effective connectivity,
many connections around the diagonal disappeared while the four 'blobes' remains visible, com-
paring to the structural network in Figure 4.2(a). This could be a consequence of the four 'blobes'
being connected hubs or rich-clubs. However, the exact relationship between the structural net-
work and the connectivity patterns is not yet clearly explained and more efforts are needed to
conduct more extensive research.

Studying the dynamics on the anatomical network provides perception on the formation of the
functional network, and thus reveals the mechanisms a brain operates [32]. Researchers have
been looking for mathematical functions that can portrait the relationship between the structural
and functional network analytically [33, 34]. To show visual relationships, Paper [35] studied the
functional connectivity in the brain and verified the feasibility of applying network science to the
brain. Furthermore, the paper proposed that analysis on healthy brain reveals the primitive mech-
anisms from which we can further study the brain disorders.

4.3 Confirmation of Simulation Results

Equipped with the continuous-time SIS simulator, simulations with much more accuracy to re-
ality can further verify previous results that have been done in the discrete-time simulator. Ref-
erencing to the work in [21], comparisons are performed on the node activation and the degree
versus activation plots in Figure 4.5, as well as the degree product versus functional and effective
connectivity scatter plot in Figure 4.6. In general, high degree nodes activate for a longer time or
more frequently. A rather negative correlation between degree and functional correlation is found
due to higher τ than critical τ. A positive correlation between degree and effective connectivity is
also confirmed at similar τ. General principals from previous work in discrete-time simulations
match with those from the continuous-time simulation.
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Figure 4.5: (a) Node activation time. (b) Degree versus node activation. (c)Node activation
time taken from [21]. (d) Degree versus node activation taken from [21]. The dynamics are
chosen at similar effective spreading rate, and the underlying structural network has taken the
same network used in this work.
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Figure 4.6: Degree product versus the (a) functional and (b) effective connectivity in log-log
scale. Degree product versus the (c) functional and (d) effective connectivity in log-log scale
taken from [21]. The dynamics are chosen at similar effective spreading rate, and the underlying
structural network has taken the same as use in this work.
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Chapter 5

Delayed Correlations

In this chapter, we will introduce the delayed correlation to explore the pairwise node influence
in a spreading process on the structural network. The delayed correlation is an easy and straight-
forward metric that simply measures the linear correlation as a function of time delay. Simulation
results will be provided in order to study the delayed correlation over different time delays.

5.1 Analytic Derivations

Pearson's Correlation Coefficient

The Pearson's correlation coefficient or often short as correlation is generally used to describe the
linear relationship of two simple data sets. The Pearson's correlation coefficient of node i and j is
defined as

cor r (i , j ) = Cov(Xi (t ), X j (t ))

σX iσX j
, (5.1)

which measures the covariance of two data sets dividing the product of standard deviation of each
data set. The conceptual formula can be expressed in various forms due to different interpreta-
tions on the concept [8]. Based on alternative expressions for covariance and standard deviation,
as well as denoting the data sets as time series Xi (t ) and X j (t ) of two nodes, an alternative expres-
sion for Equation (5.1) that is used throughout our work is written as

cor r (i , j ) = E [Xi (t )X j (t )]−E [Xi (t )]E [X j (t )]p
V ar [Xi (t )]

√
V ar [X j (t )]

. (5.2)
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Figure 5.1: Schematic graph for the computation of the delayed correlation. Xi (t ) and X j (t )
are time series of two nodes i and j , generated from one simulation and the first 100 seconds are
presented here as an example. The length of both time series will be shortened by the length of
the time lag in the calculation of delayed correlation to ensure both time series are of the same
length.

The linear correlation coefficient is always constrained to the range of [−1,1] [36]: a coefficient
equal to 1 means two data sets are linearly and positively related that increase (decrease) of one
series involves also an increase (decrease) in the other series; a coefficient equal to −1 means
that two data sets are linearly but negatively related that one series increase (decrease) results
in another series decrease (increase); a coefficient equal0 means two data sets are not linearly
correlated. The 0 correlation coefficient does not lead to independence while independence yields
0 correlation coefficient.

Delayed Correlations

Supplied by the SISS with time series Xi (t ) for all nodes in a network, an elementary query would
be to investigate the pairwise node correlation and interactions. The pairwise Pearson’s correla-
tion coefficient is measured as a function of time delay (or time lag) h to characterise the pairwise
relationship in a spreading process [37]. To highlight the time delay variable, the measurement
of linear correlation as a function of time delay is named as the 'delayed correlation'. It is note-
worthy that our 'delayed correlation' (from the statistics perspective) is the same concept as the
'cross-correlation' from the signal processing field [8].

The delayed correlation of node i and node j with certain time delay h is given as

cor rdel (i , j ,h) = E [Xi (t )X j (t +h)]−E [Xi (t )]E [X j (t +h)]
p

V ar [Xi (t )]
√

V ar [X j (t +h)]
, (5.3)

and a schematic graph in Figure 5.1 is shown as an example illustration.
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Figure 5.2: Delayed correlations of node 60 to all other 77 nodes as a function of time lag h.
Node numbe 60 is the node of highest degree. Different colours indicating delayed correlation of
k-hop neighbours of the node 60.

The correlation of two identical data set or a data set and itself with some time shifts is called the
autocorrelation which written following our notation is

autocor rdel (i ,h) = cor rdel (i , i ,h) = E [Xi (t )Xi (t +h)]−E [Xi (t )]E [Xi (t +h)]p
V ar [Xi (t )]

√
V ar [Xi (t +h)]

. (5.4)

5.2 Simulation Results

Delayed Correlations

Based on the time series of all nodes generated in Chapter 3, we then calculate the pairwise de-
layed correlation. For easy visualisation out of mass data on a graph, we explicitly show the de-
layed correlation of one node to all other 77 nodes in the structural network. The node number
60 has the highest degree and is taken as an example shown in Figure 5.2. The pairwise delayed
correlation of other nodes can be found at the end of Appendix C.

Pair wise correlations of three hub nodes 21, 23 and 60 to every other 77 nodes is shown in Fig-
ure 5.3. There are some common characteristics observed from both Figure 5.2 and Figure 5.3:

• the delayed correlations at a certain time lag decrease as node distance increases;
• neighbours have higher delayed correlations, which is due to neighbours are connected so

the influence spreads very fast between neighbours;

Xiangyu Zhou Master of Science Thesis



34 Delayed Correlations

0 1 2 3 4 5 6 7 8 9 10

time lag h
second

0

0.02

0.04

0.06

0.08

0.1

0.12

c
o

rr
d

e
l(i

=
6

0
,2

3
,2

1
, 

j,
 h

 )

j∈
 [

1
,7

8
] 

, 
j

6
0

,2
3

,2
1

x 2-hop neighbour

x 4-hop neighbour
x 3-hop neighbour

x direct neighbour

Figure 5.3: Delayed correlations of hubs node 21, 23 and 60 respectively, to all other 77 nodes
in the structural network.

• in both figures only 4 hops are seen, because the furthest distance from a hub node to any
other node is 4 hops in the structural network, and the diameter of the network is 6 hops;

• within a small delay interval 0 < h < 1, there is a small increasing phase especially between
neighbour nodes;

• the delayed correlation in general is decreasing over time lag h.

From the above observations we found at one delay, the delayed correlations seem to be decreas-
ing as node distances increase and neighbours have higher delayed correlations. This finding
agrees with previous knowledge that information are spreading on links. Since neighbours are di-
rectly connected, their states or information are more synchronised showing a higher correlations.
A node pair with larger distance needs more time in transmission which result in slower synchro-
nisation, therefore delayed correlations decrease accordingly. The simulation results confirmed
that nodes have more influence on neighbours because the epidemic is spreading hop-by-hop
and thus far away nodes are reached later.

Autocorrelations

A very small delay h in the variance V ar [Xi (t +h)] can be considered as no effect if the time series
is long and the denominator of autocorrelation can also be considered as a constant value. The nu-
merator of covariance with delay is found to be decreasing over time lag h, and a detailed deriva-
tion on the numerator can be found in Appendix B. The autocorrelation decreases over time lag h
as shown in Figure 5.4. Within very small time lag interval (for example h < 2s as observed), the
autocorrelations can be considered as decreasing exponentially (Figure 5.5). Further, the scatter
plot of autocorrelation versus node degree has a negative fitting slope in Figure 5.6. The negative
fitting slope can be interpreted as high degree nodes always have lower autocorrelations regard-
less of the delay. High degree nodes, or hubs, have more neighbours which according to findings
on the delayed correlations, should rapidly adapt to each other’s states due to fast transmission
on direct links. With more adaption to neighbour’s states, a node becomes less self-resemblance,
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Figure 5.4: Autocorrelations of all nodes over time lag h. The colors represents different nodes.

which results in a lower autocorrelations.
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Figure 5.5: Semi-log autocorrelations within very small time lag interval h < 2second s. For
every node, the log delayed autocorrelation is fitted by a line on the linear time lag.
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Chapter 6

Emergence of Global Patterns

In the previous chapter, we mainly investigated on the interaction and correlations between pairs
of nodes in the structural brain network. In this chapter, we will further study the influence by
exploring the direction of spreading on the network.

6.1 Directionality Measured by Delayed Correlations

In order to study the influence and functionality of the brain network, the direction of information
flow on the brain network is often analysed from various measurements of MEG, fMRI, EEG and
DTI[38, 39, 40] as mentioned in Chapter 4. A recent study has found from the empirical data
that brain dynamics often show a posterior-anterior global pattern [41]. We further explore on
the directionality using the SIS epidemic model to compare the model analysis with the empirical
results.

Chapter 5 explored non-symmetric interactions between two nodes under differently time delays.
To further enlarge the directionality, we normalise the delayed correlation to see which direction
dominates. Inspired by [41], we compute the normalised directed delayed correlation as

dcor r (i , j ,h) = cor rdel (i , j ,h)

cor rdel (i , j ,h)+ cor rdel ( j , i ,h)
. (6.1)

This normalisation method is valid if the delayed correlations are non-negative and the denom-
inator is non-zero. The correlations of the dynamic time series in the SIS model is proved to be
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38 Emergence of Global Patterns

non-negative of the whole spreading period [42]. Our simulation of 4096 seconds shows most de-
layed correlations are also positive while in case of a negative value, longer simulation period is
needed. The directed delayed correlation is then a value between 0 and 1 due to the normalisation,
and we interpret node i is more sending towards node j if dcor r (i , j ,h) ≥ 0.5 and more receiving
if the smaller than 0.5.

Peviously, we observed an increasing phase around time delay h = 0.5s of delayed correlations
before a general decreasing phase (see Figure 5.2 and Figure 5.3). A more spreading process may
result in such an increase phase of delayed correlations while a stable system does not generate
much changes. Therefore, we examine the directionality at this interesting time delay h = 0.5s and
another interesting time delay is introduced later as a benchmark. The resulting directed delayed
correlation matrix for the structural brain network is shown in Figure 6.1(b) where the delayed
correlations are displayed in matrix form in Figure 6.1(a).

We further take average on the sum of pairwise directed delayed correlation for each node, and
display as the directionality index of node i at time delay h as

di ndex (i ,h) = 1

N

N∑
j=1

dcor r (i , j ,h). (6.2)

The directionality index for all nodes in the network is shown in Figure 6.1(c). We characterise
the more sending or receiving feature of a node by regarding the node with directionality index
di ndex (i ,h) ≥ 0.5 to be sending node while the reverse as receiving.

The directionality index is interpreted as the information flow of regional communication in the
brain and is shown in Figure 6.1(d). A major information flow is from the back to front since more
sending nodes (in dark red colour) are observed in the back of the brain, where most hub nodes
are located at the back of the brain see Figure 6.2).

Empirical data often observe a posterior-anterior global pattern which can be quantified by the
PAx value was computed in [41]. The classification of posterior and anterior nodes of the anatomi-
cal brain network can found in the supporting material of paper. To quantify the posterior-anterior
pattern on the simulation data and make comparison with the empirical results, we compute the
PAx value in the same way

PAx =
{

di ndex (i ,h)
}

i∈poster i or
−

{
di ndex (i ,h)

}
i∈anter i or

. (6.3)

Another choice of delay time h = 2.9second s is taken for comparison with the work from [41]. The
computation of delay is interpreted in our notation as

del ay = number o f sampl es × number o f ROI s

tot al number o f st atus chang e i n the net wor k
,

where the number of samples is 40960 (sampling at every 0.1s), and the number of ROIs in our
structural brain network is 78 in AAL atlas, and the denominator is counted as the total number
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Figure 6.1: Directionality measured by normalisation of delayed correlations, h=0.5s. (a) De-
layed correlation matrix cor rdel (i , j ,h), computed by Equation 5.3 at h = 0.5s. (b) Directed
delayed correlation matrix dcor r (i , j ,h), computed by Equation 6.1 at h = 0.5s. (c) The direc-
tionality index di ndex (i ,h) at h = 0.5second s for all 78 nodes in the structural brain network as
computed in Equation 6.2. (d) The directionality index shown on a template brain. The figure
displays cerebral cortex of the brain in different views-the left, top, right, right midline and left
midline in clockwise order. The brain in the middle (from top view) shows both hemispheres, and
the posterior to frontal of the brain is bottom to top. The nodes or cortical regions on the brain
with a darker colour in red has higher directionality index and are considered as sending regions,
while the light colour in yellow represents receiving regions.
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40 Emergence of Global Patterns

Figure 6.2: Location of the hub nodes on a brain coloured in red. Three nodes, node 21, 23
and 60, with the highest degree are chosen as hubs. The figure displays cerebral cortex of the
brain in different views-the left, top, right, right midline and left midline in clockwise order.

of changes between 0s and 1s of all nodes in the whole simulation period of 4096 seconds. And
therefore, we computed the h = 2.9s. In Figure 6.3 shows the directionality found for time lag h =
2.9s, with each subfigure relate to the corresponding subfigure in Figure 6.1 of time lag h = 0.5s.

Directionality Measured by Correlation Flux

Another intuitive method to study directionality of information flow is to consider the delayed
correlation as a measure of the information flowing at certain delay time and compute the corre-
lation flux. Instead of computing the directed delayed correlation by normalisation in Equation
6.1, we compute the directed flux as

d f l ux(i , j ,h) = cor rdel (i , j ,h)− cor rdel ( j , i ,h). (6.4)

The directed flux is computed similarly as the previous computation for directed delayed correla-
tions in Equation 6.1. Both measures have a one to one relation that a dcor r (i , j ,h) ≥ 0.5 will have
d f l ux(i , j ,h) ≥ 0 and vice versa.

The directionality index of each node is computed as

d f l uxi ndex (i ,h) = 1

N

N∑
j=1

d f l ux(i , j ,h), (6.5)

which is similar to the computation of directionality index measured by normalised delayed cor-
relations in Equation 6.2.
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Figure 6.3: Directionality measured by normalisation of delayed correlations, h=2.9s. (a) De-
layed correlation matrix cor rdel (i , j ,h). (b) Directed delayed correlation matrix dcor r (i , j ,h), (c)
The directionality index di ndex (i ,h). (d) The directionality index shown on a template brain. The
figure displays cerebral cortex of the brain in different views-the left, top, right, right midline and
left midline in clockwise order. The brain in the middle (from top view) shows both hemispheres,
and the posterior to frontal of the brain is bottom to top. The nodes or cortical regions on the
brain with a darker colour in red has higher directionality index and are considered as sending
regions, while the light colour in yellow represents receiving regions.
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42 Emergence of Global Patterns

The directed flux matrix d f l ux(i , j ,h) at h = 0.5second s is shown in Figure 6.4(b) and the direc-
tionality index measured by flux d f l uxi ndex (i ,h) at the same time delay is shown in Figure 6.4(c).
The node with directionality index d f l uxi ndex (i ,h) ≥ 0 is considered as a more sending node
while node with d f l uxi ndex (i ,h) < 0 is considered as a more receiving node. The correlation flux
directionality index is also displayed on a template brain in Figure 6.4(d). Also, the directionality
is examined at another time lag h = 2.9s in Figure 6.5.

6.2 Directionality Measured by Transfer Entropy

Instead of the delayed correlation approach measuring the directionality in brain networks, an-
other method usually used in neuroscience is the transfer entropy (TE) [43, 44]. Data sets from
other fields may be much more complicated and thus the transfer entropy method is more useful
in analysing output series from oscillators [45]. In MEG measurements, the dynamics time series
can often be described as amplitudes and phases (such as a sine wave signal), neuroscientists of-
ten apply transfer entropy only to signal phase which is then called phase transfer entropy [46].
However, our SIS time series is binary so the phase transfer entropy would be inapplicable. Fol-
lowing the same concept in finding the directionality by delayed correlation, we will implement
the transfer entropy on our SIS dynamics time series to explore the directionality, and compare as
a benchmark.

In our notation, the transfer entropy computed on the SIS time series Xi (t ) is written as

T E(i , j ,h) = ∑
k,l ,m={0,1}

Pr [X j (t +h) = k, X j (t ) = l , Xi (t ) = m]

· log2(
Pr [X j (t +h) = k|X j (t ) = l , Xi (t ) = m]

Pr [X j (t +h) = k|X j (t ) = l ]
), (6.6)

and the length of time series Xi (t ) in the computation will also be shortened by length h, due to
consistency with the series length involving delay. The transfer entropy matrix is shown in Fig-
ure 6.6(a) as well as the directed transfer entropy in (b), which is computed as

dT E(i , j ,h) = T E(i , j ,h)

T E(i , j ,h)+T E( j , i ,h)
. (6.7)

Similarly to Equation 6.2, the transfer entropy directionality index is computed as

dT Ei ndex (i ,h) = 1

N

N∑
j=1

dT E(i , j ,h), (6.8)

and the result is shown in Figure 6.6(c). The node with directionality index dT Ei ndex (i ,h) ≥ 0.5 is
considered as a sending node, and node with dT Ei ndex (i ,h) < 0.5 as receiving node. The direc-
tionality measured by transfer entropy is shown on a template brain in Figure 6.6(d).

The directionality measured by transfer entropy in another time lag h = 2.9s is also shown in Fig-
ure 6.7 as a comparison.
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Figure 6.4: Directionality measured by correlation flux, h=0.5s. (a) Delayed correlation matrix
cor rdel (i , j ,h). (b)Directed flux matrix d f l ux(i , j ,h) at h = 0.5s. (c) Directionality index of
correlation flux d f l uxi ndex (i ,h) at h = 0.5s, of every 78 nodes in the structural brain network.
(d) The directionality index shown on a template brain. The figure displays cerebral cortex of
the brain in different views-the left, top, right, right midline and left midline in clockwise order.
The brain in the middle (from top view) shows both hemispheres, and the posterior to frontal of
the brain is bottom to top. The nodes or cortical regions on the brain with a darker colour in
red has higher directionality index and are considered as sending regions, while the light colour
in yellow represents receiving regions.
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Figure 6.5: Directionality measured by correlation flux, h=2.9s. (a) Delayed correlation matrix
cor rdel (i , j ,h). (b)Directed flux matrix d f l ux(i , j ,h) at h = 2.9s. (c) Directionality index of
correlation flux d f l uxi ndex (i ,h) at h = 2.9s, of every 78 nodes in the structural brain network.
(d) The directionality index shown on a template brain. The figure displays cerebral cortex of
the brain in different views-the left, top, right, right midline and left midline in clockwise order.
The brain in the middle (from top view) shows both hemispheres, and the posterior to frontal of
the brain is bottom to top. The nodes or cortical regions on the brain with a darker colour in
red has higher directionality index and are considered as sending regions, while the light colour
in yellow represents receiving regions.
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Figure 6.6: Directionality measured by transfer entropy, h=0.5s. (a) Transfer entropy matrix
T E(i , j ,h) at h = 0.5s. (b) Directed transfer entropy matrix dT E(i , j ,h) at h = 0.5s. (c) The
transfer entropy directionality index dT Ei ndex (i ,h) at h = 0.5s, for all 78 nodes in the structural
brain network. (d) The directionality index displayed on a template brain. The figure displays
cerebral cortex of the brain in different views-the left, top, right, right midline and left midline
in clockwise order. The brain in the middle (from top view) shows both hemispheres, and the
posterior to frontal of the brain is bottom to top. The nodes or cortical regions on the brain with
a darker colour in red has higher directionality index and are considered as sending regions, while
the light colour in yellow represents receiving regions
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Figure 6.7: Directionality measured by transfer entropy, h=2.9s. (a) Transfer entropy matrix
T E(i , j ,h) at h = 2.9s. (b) Directed transfer entropy matrix dT E(i , j ,h) at h = 2.9s. (c) The
transfer entropy directionality index dT Ei ndex (i ,h) at h = 2.9s, for all 78 nodes in the structural
brain network. (d) The directionality index displayed on a template brain. The figure displays
cerebral cortex of the brain in different views-the left, top, right, right midline and left midline
in clockwise order. The brain in the middle (from top view) shows both hemispheres, and the
posterior to frontal of the brain is bottom to top. The nodes or cortical regions on the brain with
a darker colour in red has higher directionality index and are considered as sending regions, while
the light colour in yellow represents receiving regions
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6.3 Discussion

Both the delayed correlation matrix (both in Figure 6.1(a) and Figure 6.3(a)) and the transfer en-
tropy matrix (Figure 6.6(a) and Figure 6.7(a)) show the same strucutre of the structural brain net-
work in Figure 4.1: there are strong connection along the matrix diagonal, and two 'blobles' con-
nections areas on the off-diagonal direction. The directed delayed correlation matrix (Figure 6.1(b)
and Figure 6.3(b)) computed by normalisation on delayed correlations shows some kind of pattern
that some nodes seem to be more sending while other nodes seem to be more receiving. Viewing
row-wise, some rows (e.g. rows 21 to 27) are with higher values (in yellow) and is considered as
sending more than receiving, while some rows (e.g. rows 41 to 50) are with lower values (in blue)
and is considered as receiving more than sending. The sending or receiving feature of a node is
represented clearly by the directionality index (Figure 6.1(c) and Figure 6.3(c)), plotted over the
degrees.

Both the directed transfer entropy matrix (Figure 6.6(b) and Figure 6.7(b)) and the correlation flux
matrix (Figure 6.4(a) and Figure 6.5(a)) does not show visible patterns. The directionality mea-
sured by flux is computed based on the value of delayed correlations, and there is a one-to-one
mapping that a directed correlation above 0.5 is equivalent to a positive directed flux.

The cortical region communication directionality by three methods: by directed delayed corre-
lation by normalisation, by correlation flux and by transfer entropy, shows a general posterior to
anterior (back to front) directionality. The posterior to anterior direction is quantified as the PAx
value where a positive PAx value indicates the strength of a back to front global direction. There-
fore, the direction of back to front information flow in the brain could be concluded which is also
in accordance with empirical results in [41]. The back to front information flow could be gener-
ated by the hubs locating at the back of the brain. Intuitively, hub nodes have more neighbours
and therefore, they have can largely impact on the network during dynamics [47].

The comparison of different measures also showed that simple analysis can already show global
dynamics patterns on the brain which is of highly research interest in characterising the dynamics
on a brain network [41].
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Chapter 7

Conclusions and Future Work

In this thesis, network properties on the structural brain network have been studied. A simple SIS
epidemic model has been applied to the structural network to study the dynamic spreading pro-
cesses. Previous research results were confirmed with a continuous-time simulator that is a closer
imitation of the reality world. The functional connectivity as a measure of the correlation of time
series is confirmed to resemble the underlying structural network. In comparison with empirical
data, the functional connectivity agrees more with the empirical data measured from MEG than
that from fMRI. The Effective connectivity as a measure of the conditional probability on the time
series is confirmed to be a rather fixed pattern that diagonal links are missing. The node activa-
tion as a function of degree and connection weight versus degree product were also confirmed that
high degree nodes are activated more frequently and neighbours have higher connection weights.

The delayed correlations of dynamic time series of the brain are closely analysed to reveal dynamic
pattens as a function of different time delays. Pairwise delayed correlations seem to be decreasing
in general, while within a small delay interval, the correlation conducts a small increase phase be-
fore monotonic decreasing. Pairwise correlations at one delay time seem to be ranking descending
according to distance increase that neighbours have higher correlations than that of other nodes
at each unit delay time. However, the correlation is negatively related with degrees at each unit de-
lay time that nodes with more neighbours seem to be changing status more often due to a direct
spreading between neighbours. In the SIS model used to study the dynamics of the brain, delays
within a small time interval are most interesting during which dynamics are rapidly spreading.
This increasing interval seems to be corresponding to the average spreading time in the network.

The delayed correlation also showed a direction of information flow from posterior to anterior,
which also agrees with results in [41]. The directionality is benchmarked with transfer entropy
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method in the favour of medical fields. Hubs located at the back of the brain seem to be con-
ducting crucial role in the spreading to the whole network. The directionality of spreading flow
can be considered as a type of influence that information given to the other node can ensure the
spreading towards the target nodes while the reverse cannot be guaranteed. Researching on the
direction of spreading flow reveals general sending and receiving properties of nodes in a network.
The sending and receiving property can be useful in conducting effective and efficiency spreading
in a network as well as in minimising an undesired spreading process. For example, an important
epidemic alert message spreading on a social network could benefit from the direction of spread-
ing flow that imposing the alert message on the sending nodes can result in a fast and effective
spreading to the whole network. Since hubs are found to be strong sending nodes, they have more
influence on the network. Therefore our results could be applied in the epilepsy treatment that
treatment should focus on stopping hubs to send overloaded signals on a disordered brain sys-
tem.

Applying the simple SIS model enables us to study the general connectivity patterns in the brain.
The simple delayed correlation method shows similar results to analysis of transfer entropy method
which is much more complex. Conducting dynamic processes on the brain network shows global
patterns and the emergence from the underlying topology can be studied via various network met-
rics. Knowledge of how the topology influences the dynamics can help to explain the underlying
dynamical mechanism. Dynamical outcomes can even be predicted if the topology influence is
well-studied, which can improve on the brain disorder treatments.

Future Work

The structural brain network used in this work is a rather small network containing only the impor-
tant regional connections and weaker detailed connections are discarded. A larger brain network
considering more regions could be applied to study the general properties of the brain network.
Other special topologies should be investigated on the emergence of a global pattern. For ex-
ample, does a lattice graph with no hubs still form a posterior-anterior pattern? Furthermore,
the machine learning approach has been implemented in computational neuroscience for brain
imaging on a vast amount of neuronal data, which also could be utilised to analyse the dynamic
connectivity pattern over a large amount of time series data.

Interdisciplinary research has provided valuable approaches to study the brain. Network science
is one major approach which can provide both local and universal network properties. Both par-
tially neuronal level or general regional level analysis are crucial results in enriching the knowledge
about the brain.
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Appendix A

AAL list

A list of cortical regions to the corresponding node index of the 78-node structural network [41]
is presented on the next page. The regions coloBrickRed in BrickRed are posterior regions and
regions coloBrickRed in OliveGreen are anterior regions.
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1 Rectus-L
2 Olfactory-L
3 Frontal-Sup-Orb-L
4 Frontal-Med-Orb-L
5 Frontal-Mid-Orb-L
6 Frontal-Inf-Orb-L
7 Frontal-Sup-L
8 Frontal-Mid-L
9 Frontal-Inf-Oper-L
10 Frontal-Inf-Tri-L
11 Frontal-Sup-Medial-L
12 Supp-Motor-Area-L
13 Paracentral-Lobule-L
14 Precentral-L
15 Rolandic-Oper-L
16 Postcentral-L
17 Parietal-Sup-L
18 Parietal-Inf-L
19 SupraMarginal-L
20 Angular-L
21 Precuneus-L
22 Occipital-Sup-L
23 Occipital-Mid-L
24 Occipital-Inf-L
25 Calcarine-L
26 Cuneus-L
27 Lingual-L
28 Fusiform-L
29 Heschl-L
30 Temporal-Sup-L
31 Temporal-Mid-L
32 Temporal-Inf-L
33 Temporal-Pole-Sup-L
34 Temporal-Pole-Mid-L
35 ParaHippocampal-L
36 Cingulum-Ant-L
37 Cingulum-Mid-L
38 Cingulum-Post-L
39 Insula-L

40 Rectus-R
41 Olfactory-R
42 Frontal-Sup-Orb-R
43 Frontal-Med-Orb-R
44 Frontal-Mid-Orb-R
45 Frontal-Inf-Orb-R
46 Frontal-Sup-R
47 Frontal-Mid-R
48 Frontal-Inf-Oper-R
49 Frontal-Inf-Tri-R
50 Frontal-Sup-Medial-R
51 Supp-Motor-Area-R
52 Paracentral-Lobule-R
53 Precentral-R
54 Rolandic-Oper-R
55 Postcentral-R
56 Parietal-Sup-R
57 Parietal-Inf-R
58 SupraMarginal-R
59 Angular-R
60 Precuneus-R
61 Occipital-Sup-R
62 Occipital-Mid-R
63 Occipital-Inf-R
64 Calcarine-R
65 Cuneus-R
66 Lingual-R
67 Fusiform-R
68 Heschl-R
69 Temporal-Sup-R
70 Temporal-Mid-R
71 Temporal-Inf-R
72 Temporal-Pole-Sup-R
73 Temporal-Pole-Mid-R
74 ParaHippocampal-R
75 Cingulum-Ant-R
76 Cingulum-Mid-R
77 Cingulum-Post-R
78 Insula-R
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Appendix B

Derivation on autocorrelation

The terms in the nominator of autocorrelation can be written as [48]

E [Xi (t )X j (t +h)] = (1−δh)E [Xi (t )X j (t )]+βh
N∑

k=1
ak j E [Xi (t )Xk (t )]

−βh
N∑

k=1
ak j E [Xi (t )X j (t )Xk (t )]+o(h), (B.1)

and

E [X j (t +h)] = (1−δh)E [X j (t )]+βh
N∑

k=1
ak j E [Xk (t )]−βh

N∑
k=1

ak j E [X j (t )Xk (t )]+o(h). (B.2)

For delayed auto-covariance j = i , Equation B.1 becomes Equation B.3, and Equation B.2 becomes
Equation B.4.

E [Xi (t )Xi (t +h)] = (1−δh)E [Xi (t )Xi (t )]+βh
N∑

k=1
aki E [Xi (t )Xk (t )]

−βh
N∑

k=1
aki E [Xi (t )Xi (t )Xk (t )]+o(h) (B.3)
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E [Xi (t +h)] = (1−δh)E [Xi (t )]+βh
N∑

k=1
aki E [Xk (t )]−βh

N∑
k=1

aki E [Xi (t )Xk (t )]+o(h) (B.4)

For j = i , the delayed auto-covariance is

ri (t ,h) = E [Xi (t )Xi (t +h)]−E [Xi (t )]E [Xi (t +h)] (B.5)

Substituting Equation B.3 and Equation B.4 into Equation B.5 we have delayed auto-covariance:

ri (t ,h) = (1−δh)E [Xi (t )Xi (t )]+βh
N∑

k=1
aki E [Xi (t )Xk (t )]−βh

N∑
k=1

aki E [Xi (t )Xi (t )Xk (t )]

− (1−δh)E [Xi (t )]E [Xi (t )]−βh
N∑

k=1
aki E [Xi (t )]E [Xk (t )]+βh

N∑
k=1

aki E [Xi (t )]E [Xi (t )Xk (t )]+o(h)

= (1−δh){E [Xi (t )Xi (t )]−E [Xi (t )]E [Xi (t )]}−βhE [Xi (t )]
N∑

k=1
aki {E [Xk (t )]−E [Xi (t )Xk (t )]}+o(h)

= (1−δh)V ar [Xi (t )]−βhE [Xi (t )]
N∑

k=1
aki {E [Xk (t )]−E [Xi (t )Xk (t )]}+o(h)

For Bernoulli random variables Xi ∈
{
0,1}, we have E [Xi (t )X j (t )] ≤ E [X j (t )], so the second term

of the above equation is non-positive. Then we have ri (t ,h) ≤V ar [Xi (t )] = ri (t ,0)

Simulation result for delayed auto-covariance

The decreasing feature of delayed auto-covariance ri (t ,h) is proved in the simulation result shown
in Figure B.3 (a). However, the decreasing feature is not guaranteed for delayed auto-correlation
ρ(Xi (t ), Xi (t + h)), although the delayed auto-correlation shows a decreasing trend in general,
shown in Figure B.3 (b).
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Figure B.1: AutoCorrelation of 1 run
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Figure B.3: Auto-Correlation (as a function of delay)
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Figure B.4: delayed auto-Cov and delayed auto-Corr
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Appendix C

Supporting Figures

C.1 Initial explorations

In Prof. Van Mieghem's Book [8] equati on(2.14) gave expected value of a random variable at high
moments:

E [X n] =∑
x

xnPr [X = x] (C.1)

For a Bernoulli random variable, x can only be 0 or 1, thus this equation becomes:

E [X n] =∑
x

xnPr [X = x]

= 1nPr [X = 1]+0nPr [X = 0]

= 1n ·Pr [X = 1]

= Pr [X = 1] (C.2)

Also :
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E [X ] =∑
x

xPr [X = x]

= 1 ·Pr [X = 1]+0 ·Pr [X = 0]

= Pr [X = 1] (C.3)

Thus, for a Bernoulli random variable we can say E [X n] = E [X ] .

The "Probability distribution function" in Prof. Van Mieghem's book section 3.2.3 as well as used
in the lecture slides, is actually the cumulative distribution function.

Simulation results explorations

Figure C.1: Time series for node 69 in Run 69, zoomed in from 30s to 70s. Simulator parameter
setup: time step is 0.01. Gong’s matrix, infection rate is 0.1, curing rate is 0.5, initially infect 15
node. Simulated time is 1000s, time step is 0.01s, 100 runs.

Figure C.1 shows node 69 changes status frequently in this zoomed in time period. From the exact
data, we know that this node is infected from 51.97s to 52.43s. The duration of this period is 0.46s.
So the 0.01s time step in our Simulator should be good enough (small enough) to (roughly) see
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the status change, considering both accuracy and programming speed. If we took a larger time
step, for example, took data for every 1s, then we wouldn’t see the node status changing within 1s,
instead we would see the averaged node status in this 1s, accuracy is worse.
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Figure C.2: Fraction of infected node in 1 run (Run 68)
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Figure C.3: Fraction of infected node in 1 run (Run 69), this run has a last node which was
immuned of die out
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Figure C.4: Fraction of infected nodes averaged over 100 runs
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ER network initial explorations

The infection fraction is also checked for ER network, generated with p=0.1096 which is calculated
according to gong’s matrix. Other settings are the same.
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Figure C.5: ER Fraction of infected node in 1 run (Run 6)
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Figure C.6: Fraction of infected node in 1 run (Run 7), this run has a last node which was
immuned of die out
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Figure C.7: ER Fraction of infected nodes averaged over 100 runs
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C.2 More Confirmed Plots

In this section, the simulation graphs serve the purpose of verifying the results from Prof. Stam's
paper in our continuous-time simulator. The equations and methods simulated are exactly the
same as stated in Prof. Stam's paper. here we clarify two important concept and equations.

Functional Connectivity

The "functional connectivity" is defined as the Pearson correlation coefficient of the integrated
time series.

For a node activation time series Xi (t ), the node states are represented in binary format as Xi (t ) =
1 if node i is activated or infected, and Xi (t ) = 0 if excitable. Take integration window w = 10, the
integrated time series becomes

Xi (n) = 1

w

w∑
k=1

Xi (n +k)

Then calculate the Pearson correlation coefficient for the integrated time series Xi (n) by

ρ(Xi (n), X j (n)) = E [Xi (n)X j (n)]−E [Xi (n)]E [X j (n)]p
V ar [Xi (n)]

√
V ar [X j (n)]

Effective Connectivity

The "effective connectivity" is used to measure the causal flow between pairs of nodes by comput-
ing the probability that node j is activated at time t +h when node i was activated at time t and
vice versa (h is the time lag, take h = 1 in Stam’s.) Since we have undirected graph,

Ce f f = Pr [X j (t +h) = 1|Xi (t ) = 1]+Pr [Xi (t +h) = 1|X j (t ) = 1]
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Figure C.8: File 'Gong.txt' . Node Status. N=78 p=0.1096 I0=15 beta=0.1 delta=0.5
Run=1 Time=420s Frame=10 E(D)=8.4 maxEig=10.47
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Figure C.9: Activation time as function of nodes an degrees with β= 0.5 (δ= 0.5), resulting in
an effective spreading τ= 1.0. Comparing to Prof. Stam’s work in discrete-time simulation, the
max value is different. We found the continuous-time simulator often give higher max value
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(a) Node vs Activation. Activation time of every node during the simula-
tion period.
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(b) Degree vs Activation.Similar to Stam’s.

Figure C.10: ER random graph
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C.3 Delayed Correlations

Initial Explores

Delayed SIS Correlation - 1-1

N=78 p=0.1096 I0=15 beta=0.1 delta=0.5
Run=1 Time=420s Frame=10 E(D)=8.4 maxEig=10.47

Source files: Gong’s matrix. GR1T420F10B1V1.txt.

Correlation with time lag l for all node pairs

Since Gong’s matrix has N=78 nodes, so we have
(78

2

)= 3003 node pairs. Take time lag l, the corre-
lation of all node pairs is displayed in Figure C.18 . There is 3003 dots on the graph.
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Figure C.11: Correlation of all node pairs at time lag l

Correlation of one node to all other nodes as function of time lag

For each node, it forms 78 node pairs to each of other nodes. Take node 1 for example, we have
node pair 1-2, 1-3,...,1-78. Correlation of these node pairs versus different time lags (0.1s to 10s) is
shown in Figure C.27. The circled line is the correlation between node 1 and its neighbours.

Since there are altogether 78 lines on Figure C.27, it is not easy to see the details. So we plot corre-
lation with node i’s neighbours and without neighbours separately in Figure C.28.

Fitting slope of Correlations versus time lag - node 1

For each correlation line in previous graph, we have a fitting line and we noted down the slope. In
our example, the slope of all 78 node pairs of node 1 is then plotted in Figure C.29 on which the
neighbours of node 1 is marked by *. Each point is the slope of node pair 1-1, 1-2, ..., 1-78.
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Figure C.12: Correlation of node 1 to all nodes versus time lag

The graph shows slope fluctuates around 0, so we cannot conclude the correlation is enhancing
or decreasing as a function of time lag.

Figure C.32 shows all 3003 slope values, they also fluctuates around 0.
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Figure C.13: Correlation of node 1 as function of time lag 0.1 10s
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Figure C.14: Slope of node 1 to all nodes
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Figure C.15: Slope of all nodes
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Fitting slope of avg correlations for each node versus time lag

In previously Figure C.29, we take the average of this line, i.e. the average slope of node 1 to all
78 nodes. For each node, we can plot such a graph as in Figure C.29. Therefore, for each node,
we have a averaged slope. This averaged slope is plotted in Figure C.30, and with and without
neighbours is plotted separately in Figure C.31.
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Figure C.16: Avg slope of each node
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Figure C.17: Avg slope of each node

Xiangyu Zhou Master of Science Thesis



74 Supporting Figures

Delayed SIS Correlation - 1-2

N=78 p=0.1096 I0=15 beta=0.1 delta=0.5
Run=1 Time=420s Frame=10 E(D)=8.4 maxEig=10.47

Source files: Gong’s matrix. GR1T420F10B1V1.txt.

Correlation with time lag l for all node pairs

Since Gong’s matrix has N=78 nodes, so we have
(78

2

)= 3003 node pairs. Take time lag l, the corre-
lation of all node pairs is displayed in Figure C.18 . There is 3003 dots on the graph.
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Figure C.18: Correlation of all node pairs at time lag l

Correlation of one node to all other nodes as function of time lag
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Figure C.19: Correlation of node 1 to all nodes versus time lag
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Figure C.20: Correlation of node 1 as function of time lag 0.1 10s

Fitting slope of Correlations versus time lag - node 1
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Figure C.21: Slope of node 1 to all nodes
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Figure C.22: slope of all nodes over u=0.1-10s
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Figure C.23: slope of all nodes over u=0.1-10s
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Zoom into u=0.1-1s :
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Figure C.24: Slope of node 1 to all nodes
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Figure C.25: slope of all nodes Zoom into u=0.1-1s
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Figure C.26: slope of all nodes Zoom into u=0.1-1s
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Delayed SIS Correlations - 1-3

Correlation of one node to all other nodes as function of time lag
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Figure C.27: Correlation of node 1 to all nodes versus time lag
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Figure C.28: Correlation of node 1 as function of time lag 0.1 10s

Fitting slope of Correlations versus time lag - node 1
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Figure C.29: boxplot
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Figure C.30: fitting slope of node 1 to all 78 nodes

node index
0 10 20 30 40 50 60 70 80

nu
m

be
r o

f p
os

iti
ve

 s
lo

pe

0

2

4

6

8

10

12

14

16

18

20
how many positive fitting slope

Number of positive slopes
degree of each node

1

0

0.5

1

1.5

2

2.5

3

Figure C.31: number of positive slopes

Master of Science Thesis Xiangyu Zhou



C.3 Delayed Correlations 81

node index
0 10 20 30 40 50 60 70 80

nu
m

be
r o

f p
os

iti
ve

 s
lo

pe

0

5

10

15

20

25

30

35

40

45

50
how many positive fitting slope

Number of positive slopes
degree of each node

1

15

20

25

30

35

40

45

Figure C.32: number of positive slopes
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Figure C.33: normalised number of positive slopes
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Figure C.34: normalised number of positive slopes
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C.3 Delayed Correlations 83

Supplimentary Figures

In this section, the degree of all 78 nodes is presented in a sorted order and delayed correlations of
nodes with an average degree or lowest degree are provided.
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Figure C.36: Sorted degree of all 78 nodes in the structural brain network.
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Figure C.37: Example of delayed correlations of node 8 to all other nodes. Node 8 has the
average degree.
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average degree.
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Figure C.39: Example of delayed correlations of node 29 to all other nodes. Node 29 is one of
the three nodes of lowest degree.
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Figure C.40: Example of delayed correlations of node 68 to all other nodes. Node 68 is one of
the three nodes of lowest degree.
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Appendix D

Scientific manuscript about the work

The major contents of the thesis work is included in the scientific manuscript "Applying the Epi-
demic Spreading Model to Explain Brain Activity". The manuscript was submitted to Conference
on Complex Systems (CCS) on May 13, 2016 and was accepted. The manuscript will be presented
at CCS on September 22, 2016 in Amsterdam. The full manuscripted is attached for reference.
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Applying the Epidemic Spreading Model

to Explain Effective Connectivity in Brain Networks

J. Meier∗, X. Zhou†, A. Hillebrand‡, P. Tewarie§, C.J. Stam¶ and P. Van Mieghem‖

August 24, 2016

Abstract

Explaining how brain regions communicate with each other given the underlying anatomical connections

still remains an open research question. A recent study observed a dominant posterior-anterior pattern of

information flow in empirical data using the measure of transfer entropy. In this study, we apply a simple

SIS epidemic spreading model on the human connectome to analyze the structural topological properties

that drive this overall directionality using a continuous-time simulator. In order to analyze the influence of

one brain region on the other, we analyze the transfer entropy values for all node pairs under different time

delays. We find that just above the critical threshold direct structural connections induce higher transfer

entropy between two brain regions and that transfer entropy decreases with increasing distance between

nodes (in terms of hops in the structural network). Hubs seem to play a special role in the network dynamics

and we show that they send more information to the network than that they receive. Using the measure of

transfer entropy, we can confirm the previously empirically observed dominant back-to-front pattern with

our SIS model both with the help of analytic derivations and continuous-time simulations. We also show that

the posterior hubs seem to be responsible for this observed directionality spreading pattern emerging from an

underlying undirected structural network. To sum up, our analysis shows that the posterior-anterior pattern

of information flow seems to appear as a result of differences in the spatial distribution of the structural

degree.
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1 Introduction

Many interesting properties of the human brain have been discovered by analyzing the brain as a network (Stam,

2014, Stam and Van Straaten, 2012, Bullmore and Sporns, 2012). However, different measurement techniques

capture different aspects of brain networks. Methods such as diffusion tensor imaging (DTI) allow for the

reconstruction of the structural brain network, which consists of a map of anatomical connections between

brain regions. Functional imaging techniques, such as magnetoencephalograpy (MEG), electroencephalogra-

phy (EEG) and functional magnetic resonance imaging (fMRI), can measure the activity or communication

between brain regions, from which we can extract the functional brain networks. Two different types of con-

nectivities can be computed based on the brain regions’ activation series: functional connectivity refers to the

correlation of activities between brain regions; effective connectivity tries to capture the causal effect of one

region’s activity to the other regions’ activities (Aertsen et al., 1989, Friston, 1994). Whereas most of the

studies so far analyzed functional connectivity, recent approaches have been focusing on effective connectiv-

ity to gain knowledge about directionality in functional brain networks (Hillebrand et al., 2016, Moon et al.,

2015, Stam and van Straaten, 2012). Patients suffering from brain disorders can have altered anatomical brain

connections. In order to anticipate the different brain dynamics resulting from those changes in the structural

networks, we need to understand the properties of the underlying structural human connectome that facilitate

the communication processes in the functional networks.

To estimate the effective connectivity between two brain regions based on their activation time series, the

measure of transfer entropy (TE) is often used for MEG or EEG (Schreiber, 2000). TE from node A to node B

measures how much better a prediction of a next value of B gets when we not only include the previous value

of B but also the previous value of A. TE can be interpreted as a delayed correlation measure that is corrected

for auto-correlation (see Appendix C). In the sense of Wiener’s principle (Wiener, 1956), TE can be interpreted

as the causal influence from one brain region on the other. Recently, the measure of TE has been expanded to

a measure for phase-based connectivity, the so-called Phase Transfer Entropy (PTE) (Paluš and Stefanovska,

2003, Lobier et al., 2014). Using PTE, (Hillebrand et al., 2016) recently found a surprisingly consistent overall

spreading pattern from posterior to anterior brain regions in empirical data in higher frequency bands (alpha1,

alpha2, and beta band). (Hillebrand et al., 2016) hypothesized that this global direction of information flow

could be explained by strong hub connections in the posterior regions and the fact that hubs possess the highest

levels of neuronal activity in the network (de Haan et al., 2012, Moon et al., 2015).

Recent studies showed that simple models of activity spread contribute to our understanding of brain dy-

namics (Abdelnour et al., 2014, Deco et al., 2012). Using a simple deterministic cascade model (Mišić et al.,

2



2015) revealed that structural hubs and the shortest path structure have a high influence on the efficiency of

spreading dynamics of the brain network. Even though those simple models ignore microscopic details of the

spreading process, the scarcity of parameters allows for direct analysis of the global spreading patterns. Further,

there is evidence that the brain operates near a critical phase transition (Haimovici et al., 2013, Rubinov et al.,

2011, Yu et al., 2013). In addition, it is known from statistical physics that the details of the applied model

become irrelevant near such a phase transition which could be another explanation why simple models have

been successful in capturing more complicated model findings (Honey et al., 2007, Honey et al., 2009).

A dynamic spreading process on networks is often approximated by a simple epidemic process, which has

been used for various applications, e.g. information propagation and gossip spreading in networks (Pastor-

Satorras et al., 2015). The advantage of the epidemic spreading model is that the only a-priori chosen param-

eter is the effective spreading rate τ and that we can study the model also analytically. Here, we focus on a

Susceptible-Infected-Susceptible epidemic (SIS epidemic) as one of the simplest models of an epidemic. In the

case of the functional brain network, brain regions can be activated (infected) and spread this activation to their

anatomically neighboring regions. In an SIS epidemic process, a node can be in two states, either activated or

excitable (and can be activated by one of its neighbors). The SIS process can be described as a continuous-time

Markov chain with 2N states where N is the number of nodes in the network. The embedded Markov chain

can be used to transform the continuous-time SIS process into a discrete-time process. A previous study (Stam

et al., 2016) applied a discrete-time epidemic process on the structural brain network and identified the degree

product as a driving force for the effective connectivity between two nodes. Applying the well-developed theory

of epidemics may lead to a better understanding of the activity spreading in the brain and in particular reveal

the structural properties that drive the global spreading dynamics. However, the real underlying SIS process is

per definition a continuous-time process, thus any discrete-time process will always be an approximation. The

embedded discrete-time Markov chain then contains the transition probabilities but no longer the precise timing

of the events (Van Mieghem, 2014b). Thus, by simulating the SIS epidemic as a discrete-time process we miss

the smaller-scale dynamics in which we are especially interested in for this study (Van Mieghem, 2014b). In

this paper, we simulate an epidemic spreading process on the structural brain network in a continuous-time

framework which is closer to reality (see Figure 1). Since the activation time series of our SIS model are bi-

nary and thus a phase-based measure is not applicable, we will use the TE for our computations of pairwise

interactions.

The aim of this paper is to reveal the topological properties of the structural brain network that drive the

empirically observed effective connectivity in the brain network by applying a continuous-time SIS model.
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Structural brain 
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Figure 1: Visualization of the approach taken in this study: we run a dynamic SIS process on the underlying
structural network of the brain and then calculate the transfer entropy between the time series of the different
nodes to construct a network of the same nodes but with the link weights representing the function interactions
between node activities.

For that, we first analyze different effective spreading rates τ as the only model parameter and compare the

resulting pairwise dynamics to empirical data. Then, we relate different structural properties of the underlying

network like degree, eigenvector and betweenness centrality to the SIS spreading process and the pairwise

transfer entropies using simulations and analytic reasoning.

2 Methods

Structural Network

For the structural network, we used a literature-based DTI network from a previous study based on 80 healthy

subjects (for details see (Gong et al., 2009)). In short, for every individual two cortical regions from the 78

cortical automated anatomical labeling (AAL) brain areas were considered to be connected if the end points of

two white matter tracts were located in these regions(Gong et al., 2009). Via a non-parametric sign test only the

significant links were included in the group-averaged structural connectivity matrix. This processing resulted

in a binary connectivity matrix for the structural brain network (see Figure 6(a)), which we will further refer to

as the structural adjacency matrix A.
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Susceptible-Infected-Susceptible Process

The Susceptible-Infected-Susceptible (SIS) epidemic process is one of the simplest dynamic processes on a

network. In an SIS epidemic process, on an undirected and unweighted graph G with N nodes and L links, the

state of a node i at time t is specified by a Bernoulli random variable Xi (t) ∈ {0, 1}: Xi (t) = 0 for an excitable

node and Xi (t) = 1 for an activated node. A node i at time t can be in one of the two states: activated, with

probability wi(t) = Pr[Xi(t) = 1] or excitable, with probability 1 − wi(t). We replaced here the states healthy

and infected from classic epidemic theory with the names excitable and activated which fits better to the status

of a brain region as a node. Here, we consider a continuous time model which can formally be defined by the

following differential equation

dX j

dt
= −δX j + (1 − X j)β

N∑

k=1

ak jXk, (1)

where we assume that the deactivation process (which means the process of changing from an activated to an

excitable status) per node i is a Poisson process with rate δ (Van Mieghem, 2014b). Further, the activation rate

per link is a Poisson process with rate β, where
∑N

k=1 ak jXk counts the number of infected neighbors of node

j. The deactivation and activation process are identical with the curing and infection process from epidemic

theory (Van Mieghem, 2014b). Obviously, only when a node is activated, it can activate its direct neighbors,

that are still excitable. Both the deactivation and activation Poisson process are independent. The effective

infection rate is defined by τ =
β
δ . There is evidence that the brain operates with its dynamics near a critical

phase transition (Haimovici et al., 2013, Rubinov et al., 2011, Yu et al., 2013). Thus, we follow the previous

study and continue to choose our parameters such that the SIS dynamics are near the critical epidemic threshold

(Stam et al., 2016).

Details of the simulation

We used the continuous-time simulator SIS simulator (SISS) (van de Bovenkamp, 2015) to simulate an SIS-

epidemic on the structural network with β = 0.1 and δ = 0.5 similar to Stam et al.’s previous simulations(Stam

et al., 2016) in order to compare our results with his approach in discrete time, which results in an effective

spreading rate τ = β/δ = 0.2. This choice of parameters is slightly above the epidemic threshold τc (see Figure

2(a)). For every simulation run, we initially activated 15 random nodes, which is approximately 20% of the

whole network (Stam et al., 2016), and all our results are averaged over 100 simulation runs.

We ran a simulation of 4096 time units similar to Stam et al. (Stam et al., 2016). We took 0.1 time units
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as a sample interval resulting in 40960 time points for one simulation, forming for each node an activation

time series of zeros (node not activated at time instance t) and ones (node is activated at time instance t). An

example activation series is displayed in Figure 2b (red is the activated state and green means susceptible). To

focus on the metastable state, we disregarded the initial phase of the spreading process by calculating all our

results based on the second half of the simulation time from 2048 to 4096 time units.

(a) Average fraction of activated nodes versus τ.
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Figure 2: (a) Average fraction of activated nodes for different τ. (b) One example of an activation time series
for 300 time units of the simulation for all 78 nodes of the underlying structural network of an SIS epidemic,
where red means that the node is active and green that it is inactive/excitable (resulting in 3000 time steps,
β = 0.1, δ = 0.5).

Transfer Entropy

In order to capture the delayed influence, we calculate for every node pair i and j the transfer entropy defined

as

T Ei→ j(h) =
∑

k,l,m={0,1}
Pr[X j(t + h) = k, X j(t) = l, Xi(t) = m] · log

(
Pr[X j(t + h) = k|X j(t) = l, Xi(t) = m]

Pr[X j(t + h) = k|X j(t) = l]

)
(2)

for a certain time delay h.

Motivated by a recent paper of Hillebrand et al. (Hillebrand et al., 2016), we analyze the sending or

receiving property of a node. This property means the relation for a node i between T Ei→ j and T E j→i averaged

over all other nodes j, and investigates which flow direction outweighs. Similar to (Hillebrand et al., 2016) we
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define the directed TE (dTE) for node i and j as

dT Ei→ j(h) =
T Ei→ j(h)

T Ei→ j(h) + T E j→i(h)
. (3)

Since the TE can only take positive values, this definition of dTE is well-defined and its value ranges between

0 and 1. If the predominant flow of information is from node i to node j, then 0.5 < dT E < 1. In the other

case, when the information flow from j to i is outweighing the other flow direction, then 0 < dT E < 0.5.

For every node i, we calculate the average value of the directed delayed correlation with all other nodes of the

network. For an interpretation of this value, if this overall average of dTE for node i is larger than 0.5, we can

conclude that node i seems to be more sending information to the network (similar to the dPTE in (Hillebrand

et al., 2016)). If the averaged dTE is smaller than 0.5 for a node, it would mean that this node is more receiving

information from the network. In order to verify our modeling results, we will compare for different values

of the effective spreading rate τ our results with empirical MEG matrices. As mentioned earlier, TE can be

interpreted as a delayed correlation measure that is corrected for auto-correlation (see Appendix C). Since

the measure of TE is quite complicated, we will also use analytic reasoning to analyze its more elementary

’building blocks’, the (delayed) correlations and auto-correlations.

3 Results

We ran the SIS-epidemic simulations using a continuous-time simulator on the literature-based structural net-

work. In Appendix A, we verified all previous results obtained by discrete-time simulations. In the following,

we first analyze the influence of different time delays h from Eq. (2) on the transfer entropy and then relate

structural topological properties to the overall global spreading pattern. In previous studies, the degree as the

most straightforward centrality metric has been identified as a driver for effective connectivity (Stam et al.,

2016, Mišić et al., 2015). Inspired also by analytic reasoning (see Appendix I), we analyze not only for the

degree and but also for more advanced centrality metrics like the eigenvector and betweenness centrality their

relationship with the spreading dynamics.

We plotted the TE of all node pairs in the network for different time delays h in Figure 3. From Figure

3, we can conclude that a direct structural connection leads to the highest TE value between two nodes. In

addition, the further two nodes are away in terms of hopcount (i.e. the number of hops or links in the shortest

path connecting these two nodes), the lower is the TE between them.

We found that the degree is a predictor for the overall directed transfer entropy of a node (Figure 4a) as well
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Figure 3: TE of all node pairs for different time delays. The TE values for different time lags h are colored in
red for all the neighbors, in yellow for all nodes that are 2 hops away, in black for nodes with hopcount 3 and
so on. For small time lags it seems that the direct neighbors of a node have the highest TE and that the further
away another node is in terms of hopcount the lower is the TE between that node and the regarded node.

as for the overall activation of a node (Figure 5). These results confirm the intuitive assumption that the status

of a high degree node has a bigger overall influence on the rest of the network than a node with low degree.

Figure 4b shows that the posterior regions seem to possess more outgoing flow of information (darker

colors) whereas anterior regions have a more incoming flow (lighter colors). This finding is consistent with

(Hillebrand et al., 2016) where they found in empirical data of healthy controls a predominant information flow

in the posterior-anterior direction in most frequency bands. We compared the averaged directed phase transfer

entropy values of the empirical matrices with our dTE matrix and obtained a positive correlation (corr = 0.334

for the time delay h = 2.9 time units, see SI Figure 13). However, the pattern seems to be less clear here than

in the empirical global pattern since some rather large part of the frontal right hemisphere seems to be more

sending than receiving (see darker colors in Figure 4b).

In addition to computing the measure of transfer entropy popular in the neuroscience community, we also

performed similar analysis with the measure of delayed correlation (see Appendix D, E and I). We enlarged

our analysis to this ’building block’ of the transfer entropy (see Appendix C) since the delayed correlations

are a measure that is closer to the theoretical process of SIS epidemics and easier to directly derive analytical

results from (see Appendix I). Our analysis of delayed correlations in Appendix D and E using simulations and

analytical reasoning shows that the posterior-anterior pattern cannot only be observed when using the measure
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of transfer entropy but also when using the simple measure of delayed correlations.

(a) dTE versus degree.
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(b) dTE visualized on the template brain.

Figure 4: (a) dTE of a node (averaged over its influence on all other nodes) versus its degree. (b) Visualization
of the dTE for each brain region on the parcellated template brain, where darker colors represent strong sending
brain regions and lighter colors a more receiving property of a region. We show the brain here in clockwise
order from the left, top, right, right midline and left midline.

4 Discussion

Using a simple model of activity spread, we were able to reproduce the empirically observed posterior-anterior

pattern for effective connectivity. In addition, the structural degree of a node was shown to be a strong indicator

for the sending/receiving property of a brain region. Moreover, the further two brain regions are away in terms

of hopcount in the structural network, the lower is the TE between them.

It has been shown that hubs play a special role in both the healthy (Gong et al., 2009,Hagmann et al., 2008)

and diseased brain (Crossley et al., 2014). Previous studies have also shown that structural brain networks

have the strongest hubs in posterior regions (Buckner et al., 2008). These densely connected hubs in the back

of the structural brain network have been identified as part of the so-called ’rich-club’ of the brain (Senden

et al., 2014, van den Heuvel and Sporns, 2011, van den Heuvel et al., 2012, Harriger et al., 2012). A recent

study characterized the rich club as a control backbone of the structural brain network (Betzel et al., 2016).

Concerning network dynamics, the rich club of the brain has been found to influence the rest of the network in

a top-down manner (Harriger et al., 2012, Towlson et al., 2013, van den Heuvel and Sporns, 2013). Our study

shows that hubs have a more sending than receiving property. This finding is in line with multiple studies that

have shown that hubs seem to be driving the integration of information in the human brain (Sporns et al., 2007).

Thus, the global posterior-anterior directionality pattern probably emerges due to the spatial distribution of the
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hubs accumulating more in the posterior regions and their stronger outgoing property in terms of information

flow. More surprisingly, this directed flow direction seems to be emerging on an underlying undirected network

using a simple model of activity spread.

The applied model in our study is a simple SIS epidemic spreading model, which ignored microscopic

details of the real underlying spreading process in order to analyze global patterns. Even though our model

ignored heterogeneity except for the underlying structural network restrictions, we were able to generate the

empirically found global, directed spreading pattern (Hillebrand et al., 2016). Our approach is in line with

other recent studies about global spreading dynamic principles with the help of simple dynamic models. (Mišić

et al., 2015) found that the hubs and a backbone of core pathways facilitate the spreading process and shortest

paths accelerate this phenomenon by applying a deterministic cascade model. As another example of a simple

model, diffusion models identified the shortest path structure of the structural brain network as a driving force

behind the network dynamics (Goñi et al., 2014) and were able to help categorize functional modules of the

brain (Betzel et al., 2013,Delvenne et al., 2010). The novelty of our approach is that by using this simple model

of activity spread, we analyzed instead of the functional the effective connectivity trying to identify the causal

interactions between brain regions. These simple modeling approaches should be considered as complementary

to other more traditional modeling studies from computational neuroscience. Moreover, it is known from

statistical physics that near a critical phase transition the details of the model become irrelevant (Stam et al.,

2016). This observation is a possible explanation why simple models as in (Deco et al., 2012, Haimovici et al.,

2013) are able to capture complicated model findings (Honey et al., 2007,Honey et al., 2009). Most importantly,

these simpler models allow us to study the basic principles of dynamics on brain networks with a minimum

set of a-priori assumptions and parameters. Thus, the emergence of the directionality pattern from posterior to

anterior regions could for more complex models be ascribed to any of the complex underlying model properties.

In our case, because of the simplicity of the model and the underlying undirected network the emergence of

this posterior-anterior pattern can be traced back to the spatially unequal distribution of hubs.

Our study shows that the structural distance between two brain regions seems to have an influence on their

transfer entropy. From our simulation results, we can conclude that the further away two nodes are in terms

of hopcount in the underlying structural brain network, the lower is their transfer entropy. This result is in

line with one of our previous studies that identified the structural hopcount as a driving force for a functional

connection (Meier et al., 2016). Moreover, (Goñi et al., 2014) identified that shortest paths of the structural

network and detours along these paths are good predictors for the functional connectivity, which also leads to

a lower connectivity for node pairs with larger hopcount between them. These results confirm the common

10



assumption that longer paths in the structural brain network only have a small influence on the functional

connectivity between two brain regions (Sarkar et al., 2015, Zamora-López et al., 2016, Meier et al., 2016). In

our previous study (Stam et al., 2016) the direct structural connection was found to result in the highest effective

connectivity and (Honey et al., 2009) stated that indirect connections with the hopcount 2 have a high influence

on the functional connectivity strength between brain regions. Our results are in agreement with these earlier

studies by identifying the hopcount between two brain regions as an indicator for their functional connectivity

and show that these general principles also hold for the effective connectivity.

Methodological limitations

The used structural brain network with 78 nodes obtained from DTI measurements is quite small and newer

bigger networks have been published already. By using this rather small but often-used structural network, we

are able to compare our results directly to other studies in the field.

The interpretation of the TE from i to j as a causal influence should be taken carefully. Following the

definition of causality from the Granger causality, the interpretation is correct but in other fields the term

causality can have different meanings (Razak and Jensen, 2014, Pearl, 2010).

The previous study by (Hillebrand et al., 2016) showed that for the theta band the directionality pattern was

observed in the opposite direction, thus from anterior to posterior regions. The authors hypothesized that those

opposite directions of information flow indicate the presence of a loop between the two interacting subsystems

of the Default Mode Network, the temporal and the fronto-parietal system representing a mechanism of inte-

gration of brain function (Hillebrand et al., 2016). With our current SIS model, we were only able to reproduce

the more dominant posterior-anterior pattern from higher frequency bands. Future modelling studies should

attempt to solve this question of mirrored information flow for different frequency bands.

5 Conclusion

In this study, we analyzed local and global network dynamics of the brain network by applying an SIS epidemic

spreading model on the human connectome. We find that just above the critical threshold direct structural

connections induce higher transfer entropy between two brain regions and that transfer entropy decreases with

increasing distance between nodes (in terms of hops in the structural network). Hubs seem to play a special role

in the network dynamics and we show that they send more information to the network than that they receive.

Using the measure of transfer entropy, we can confirm the previously empirically observed dominant back-to-

front pattern with our SIS model both with the help of analytic derivations and continuous-time simulations.
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We also showed that the posterior hubs seem to be responsible for this observed directionality spreading pattern

emerging from an underlying undirected structural network. Future studies should not only investigate these

global spreading patterns by using other stochastic models but also analyze how the dynamics are disrupted and

what other patterns occur in patients with brain disorders.
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Appendix

A Verification of previous results in continuous time

In a previous study, (Stam et al., 2016) applied a discrete-time SIS epidemic model on the same literature-

based structural network from (Gong et al., 2009). We verify the achieved results with a continuous-time SIS

epidemic simulator (van de Bovenkamp, 2015).

First, we confirm the relationship between the degree of a node and its overall activation which is the

percentage of the total time that this node was activated. The conclusion that a higher degree is associated with

a higher overall activation is also valid in continuous time (see Figure 5(a)). This seems to be a general result

since the two measures have an even higher correlation in an ER graph with similar degree distribution (see

Figure 5(b), for details of the used ER graph see Appendix G).

(a) Structural brain network.
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(b) Erdös-Renyi.
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Figure 5: Scatterplot of a node’s degree versus its overall activation for the underlying structural brain network
(left panel) and an underlying ER graph (right panel).

To analyze the interactions of the nodes’ time series, (Stam, 2014) used two different measures, the func-

tional and the effective connectivity. The functional connectivity between two nodes i and j is defined as the

correlation of their activation series

ρ(Xi(t), X j(t)) =
E[Xi(t)X j(t)] − E[Xi(t)]E[X j(t)]√

Var[Xi(t)]
√

Var[X j(t)]
(4)

over the whole simulation time (Stam et al., 2016). The numerator is also referred to as the covariance between

node i and j. Recently, Cator and Van Mieghem (Cator and Van Mieghem, 2014) have proved that

E
[
Xi (t) X j (t)

]
≥ E [Xi (t)] E

[
X j (t)

]
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is correct for any graph and any time in Markovian SIS epidemics, however, it is false in general for non-

Markovian SIS processes on networks as in (Van Mieghem and Van de Bovenkamp, 2013, Cator et al., 2013).

Hence, for Markovian SIS epidemics, we know that ρ
(
Xi (t) , X j (t)

)
≥ 0 for any node pair (i, j) at time t. The

functional connectivity or correlation matrix based on continuous-time simulations is shown in Figure 6(b).

We binarized the weighted adjacency matrix here to display the same number of links as the structural network

only considering the strongest connections. As for discrete-time simulations, the functional connectivity matrix

resembles the underlying structural network (compare Figure 6(a) and (b)).

Stam et al. (Stam et al., 2016) calculated the effective connectivity between node i and node j as

Ce f f = Pr[X j(t + h) = 1|Xi(t) = 1] + Pr[Xi(t + h) = 1|X j(t) = 1]

where for discrete-time simulations Stam et al. considered the time lag or time delay h = 1s. We calculated

the effective connectivity similarly and divided it additionally by 2 to stay between 0 and 1. We plotted the

results for the effective connectivity matrix (with the same number of links as the matrix A in a binary form)

in Figure 6(c) for h = 0.1s, which equals one time step in our simulations, where we can also recognize the

pattern of four crosses in the matrix which is common to empirical matrices measured from e.g. MEG or fMRI.

To explore the structure of this effective connectivity in more detail, we can analyze different time delays h with

our continuous-time SIS simulations: with a larger time lag, the global pattern of four crosses becomes even

more apparent (see Appendix A for matrices under different time delays).

Inspired by Barrat et al. (Barrat et al., 2004), Stam et al. (Stam et al., 2016) have investigated the relation

between Ce f f and the degree product did j, where dk is the degree of node k. They found a similar kind of

relation as Barrat et al. (Barrat et al., 2004), namely,

Ce f f = γ
(
did j

)α
(5)

where γ is a proportionality constant and α is around 1
2 , but not such a clear relationship for the functional

connectivity ρ
(
Xi (t) , X j (t)

)
. The law (5) suggests that the degree product of two nodes in G is predictive for

the intensity of traffic flowing between them, irrespective of the underlying path structure. We computed the

same quantities with our continuous-time simulation and found also that the degree product seems to be a strong

predictor for the effective connectivity between two nodes (see Figure 7).

Overall, we obtained similar results as the discrete-time simulations and with the continuous-time simulator

we are now able to further analyze the influence of different time delays on the interactions between node
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(a) Structural brain network.
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(b) Functional Connectivity.
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(c) Effective Connectivity for h = 0.1s.

Figure 6: (a) Visualization of the structural brain network that we used as an underlying network for our
simulations (Gong et al., 2009). (b) Functional Connectivity based on the SIS epidemics time series with
β = 0.1 and δ = 0.5. (c) Effective Connectivity based on the SIS epidemics time series with β = 0.1 and δ = 0.5
and a delay of h = 0.1s, which is one time step in our simulations.

activations.

B Effective connectivity for different time lags

In Figure 8 we show the binarized adjacency matrix for different time lags h. In all of the panels of Figure 8 we

can recognize the overall pattern of the four crosses in the colored matrix. This pattern seems to be present for

all time lags h and becomes even more clear for increasing h.
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(a) Functional Connectivity.
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Figure 7: Functional and effective connectivity of all node pairs against their structural degree product with
β = 0.1 and δ = 0.5 in a log-log plot. Node pairs with a direct structural connection are marked in red and with
an indirect connection in blue.

C Correlation versus transfer entropy

The transfer entropy is equal to the conditional mutual information (MI)

T Ei→ j(h) = MI(X j(t + h); Xi(t)|X j(t))

=
∑

k,l,m={0,1}
Pr[X j(t + h) = k, X j(t) = l, Xi(t) = m] · log

(
Pr[X j(t + h) = k|X j(t) = l, Xi(t) = m]

Pr[X j(t + h) = k|X j(t) = l]

)

=
∑

k,l,m={0,1}
Pr[X j(t + h) = k, X j(t) = l, Xi(t) = m] · log

(
Pr[X j(t + h) = k, X j(t) = l, Xi(t) = m]Pr[X j(t)]
Pr[X j(t + h) = k, X j(t) = l]Pr[Xi(t), X j(t + h)]

)
,

where we applied the law of Bayes for the last equality.

The mutual information and the measure of correlation want to measure the same underlying property of

two random variables, their ’distance to independence’. The covariance is defined as

cov(i, j, h) = E[Xi(t)X j(t + h)] − E[Xi(t)]E[X j(t + h)]

and measures the distance in terms of expected values of the random variables itself whereas the mutual infor-

mation can be written as

MI(X j(t + h); Xi(t)) = E[log(Pr[Xi(t), X j(t + h)])] − E[log(Pr[Xi(t)]Pr[X j(t + h)])]

and measures the distance in terms of the expected value of the logarithm of their probabilities.
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For the transfer entropy, we can apply the chain rule of the mutual information and obtain

T Ei→ j(h) = MI(X j(t + h); Xi(t)|X j(t))

= MI(X j(t + h); Xi(t), X j(t)) − MI(X j(t + h), X j(t))

=
∑

k,l,m={0,1}
Pr[X j(t + h) = k, X j(t) = l, Xi(t) = m] · log

(
Pr[X j(t + h) = k, X j(t) = l, Xi(t) = m]
Pr[X j(t + h)]Pr[Xi(t) = k, X j(t) = l]

)

−
∑

k,l={0,1}
Pr[X j(t + h) = k, X j(t) = l] · log

(
Pr[X j(t + h) = k, X j(t) = l]
Pr[X j(t + h)]Pr[X j(t) = l]

)
(6)

For the second term we followed the derivations in (Li, 1990) and used that our activation series are binary

resulting in an approximative formula

MI(X j(t + h), X j(t)) ≈ 1
2

(
auto j

Pr[X j(t) = 1](1 − Pr[X j(t) = 1])

)2

,

where auto j denotes the auto-correlation of j. To reach this result, we did assume that Pr[X j(t) = 1] ≈
Pr[X j(t + h) = 1] which could be confirmed by our simulations for small values of the time lag h. Thus, the

second term of (6) can be interpreted as some correction for the auto-correlation that is included in the transfer

entropy.

If we apply the Kirkwood superposition approximation to the first term of (6) which involves all three

entities, we can approximate the joint probability of the three terms

MI(X j(t + h); Xi(t), X j(t)) =
∑

k,l,m={0,1}
Pr[X j(t + h) = k, X j(t) = l, Xi(t) = m]·

log
(
Pr[X j(t + h) = k, X j(t) = l]Pr[X j(t + h) = k, Xi(t) = l]

Pr[X j(t + h)]2Pr[Xi(t) = k]Pr[X j(t) = k]

)

where e.g. in the case of k = l = m we obtain the element of the sum in the logarithm as

log



(
auto j + Pr[X j(t) = k]2

)

Pr[X j(t) = k]2 ·
(
corrdel(i, j, h) + Pr[X j(t) = k]Pr[Xi(t) = k]

)

Pr[X j(t) = k]Pr[Xi(t) = k]



where corrdel(i, j, h) is the delayed correlation function between node i and node j which will be further studied

in the next section. For the other elements of the sum we can derive similar results in the logarithm reduc-

ing the expression to a combination of the auto-correlation of j and the delayed correlation between i and j.

For the three-way joint probability in front of the logarithm, we can again use the Kirkwood superposition
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approximation and obtain e.g. for the element k = l = m

Pr[X j(t + h) = 1, X j(t) = 1, Xi(t) = 1] ≈ Pr[X j(t + h) = 1, X j(t) = 1]Pr[X j(t + h) = 1, Xi(t) = 1]Pr[X j(t) = 1, Xi(t) = 1]
Pr[X j(t) = 1]Pr[Xi(t) = 1]Pr[X j(t) = 1]

=
(auto j + Pr[X j(t) = 1]2)(corrdel(i, j, h) + Pr[X j(t) = 1]Pr[Xi(t) = 1])(corr(i, j) + Pr[X j(t) = 1]Pr[Xi(t) = 1])

Pr[X j(t) = 1]Pr[Xi(t) = 1]Pr[X j(t) = 1]

where corr(i, j) is the correlation (or covariance) of the two nodes’ binary time series. For the other elements

of the sum, the derivation can be conducted similarly. To sum up, we have demonstrated that the transfer

entropy from node i to node j can be expressed as a combination of the (delayed) correlation between i and

j corrected for the auto-correlation of j. In the following section, we will further examine analytically the

(delayed) correlation and auto-correlation as ’building blocks’ of the transfer entropy.

D Delayed correlations

In order to better analyze the directionality of the delayed influence, we define the delayed correlation with

delay h ≥ 0 as

corrdel(i, j, h) = ρ(Xi(t), X j(t + h)) =
E[Xi(t)X j(t + h)] − E[Xi(t)]E[X j(t + h)]√

Var[Xi(t)]
√

Var[X j(t + h)]

(see also Figure9). The correlation or functional connectivity which we defined above is equal to the delayed

correlation with delay h = 0. The conditional probability Pr[X j(t + h) = 1|Xi(t) = 1] from the effective

connectivity is included in the delayed correlation

corrdel(i, j, h) = ρ(Xi(t), X j(t + h)) =
E[Xi(t)] ·

(
Pr[X j(t + h) = 1|Xi(t) = 1] − E[X j(t + h)]

)

√
Var[Xi(t)]

√
Var[X j(t + h)]

.

where we used Bayes formula and the property of Bernoulli random variables E[Xi(t)] = Pr[Xi(t) = 1]. The

conditional probability above is the only part which includes the node pair interaction, the other terms are only

depending on a single node. Therefore, the conditional probability and the delayed correlation should follow

similar behavior with respect to h. Because we are also interested in the direction of spreading, we will not

average over both directions (like the effective connectivity) but we will further use the delayed correlation as

our measure of influence from one node to the others.

Concerning the relationship between the delayed correlation and the correlation, we found the following
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relation
ρ
(
Xi (t) , X j (t + h)

)

ρ
(
Xi (t) , X j (t)

) ≈ 1 +
(
τd j − 1

)
δh + o (h)

(see Appendix I.3.1 for detailed derivations). Since τ > τc ≥ 1
λ1

, we have that τd j−1 > d j
λ1
−1. Since the spectral

radius is bounded (Van Mieghem, 2011) by max
(
dav,
√

dmax
)
≤ λ1 ≤ dmax, where the average degree dav = 2L

N ,

the factor τ∗d j−1 is positive for a node j with more than average degree, but possibly negative for a node j with

low degree. This result means that hubs have a higher delayed influence than direct influence (correlation) than

nodes with low degree which have possibly a higher direct influence than delayed influence. Another property

of the delayed correlation based on analytical derivations is that it increases stronger for nodes with high degree

with regard to increasing h (see Appendix I.1 for analytical derivations).

We plotted the delayed correlation of all node pairs in the network for different time delays h in Figure

10. Whereas (Cator and Van Mieghem, 2014) proved that the correlation is non-negative, the non-negativity of

the delayed correlation for h > 0 can so far only be shown from the simulations (see Figure 10): if we either

simulated long enough (> 5 · 105 time units) or averaged over a large number of runs (> 200 runs) the delayed

correlations were non-negative. From Figure 10, we can conclude that a direct structural connection leads for

small h to the highest delayed correlation between two nodes. In addition, the further two nodes are away in

terms of hopcount (i.e. the number of hops or links in the shortest path connecting these 2 nodes), the lower is

the delayed correlation between them (see Figure 10).

E Global spreading pattern with delayed correlations

Motivated by a recent paper of Hillebrand et al. (Hillebrand et al., 2016), we analyze the sending or receiving

property of a node. This property means the relation for a node i between ρ(Xi(t), X j(t+h)) and ρ(X j(t), Xi(t+h))

averaged over all other nodes j, and investigates which flow direction outweighs. Similar to (Hillebrand et al.,

2016) we define the directed delayed correlation for node i and j as

dcorrdel(i, j, h) =
corrdel(i, j, h)

corrdel(i, j, h) + corrdel( j, i, h)
. (7)

If we assume that all delayed correlation values are positive (which can be supported by our simulation results),

this definition of dcorrdel is well-defined and its value ranges between 0 and 1. If the predominant flow of

information is from node i to node j, then 0.5 < dcorrdel < 1. In the other case, when the information flow

from j to i is outweighing the other flow direction, then 0 < dcorrdel < 0.5. For every node i, we calculate the
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average value of the directed delayed correlation with all other nodes of the network. For an interpretation of

this value, if this overall average of dcorrdel for node i is larger than 0.5, we can conclude that node i seems to

be more sending information to the network (similar to the dPT E in (Hillebrand et al., 2016)). If the averaged

dcorrdel is smaller than 0.5 for a node, it would mean that this node is more receiving information from the

network.

Furthermore, we find that the degree is not only a predictor for the overall activation (see Figure 5) but also

for the overall delayed correlation of a node (see Figure 11). This result confirms the intuitive assumption that

a the status of a high degree node has a bigger overall influence on the rest of the network than a node with low

degree. Taking into account the derivations from Appendix I.1.1, we find also analytically that the information

flow is more likely to go from a hub node to a lower degree node.

For our data, we plotted for all brain regions this sending/receiving property in Figure 12, where darker

colors represent strong sending brain regions and lighter colors a more receiving property of a region. Figure

12 shows that the posterior regions seem to possess more outgoing flow of information whereas anterior regions

have a more incoming flow (lighter colors). This finding is consistent with (Hillebrand et al., 2016) where they

found in empirical data of healthy controls a predominant information flow in the posterior-anterior direction

in most frequency bands.

To compare the results of (Hillebrand et al., 2016) more quantitatively with ours, we plotted their empirical

directed Phase Transfer Entropy results in a scatterplot with our averaged dTE values (see Figure 13) and

obtained a positive correlation coefficient of 0.334 for the time delay of h = 2.9 time units.

F Auto-correlations

We define the auto-correlation as

autodel(i, h) = ρ(Xi(t), Xi(t + h)) =
E[Xi(t)Xi(t + h)] − E[Xi(t)]E[Xi(t + h)]√

Var[Xi(t)]
√

Var[Xi(t + h)]
,

which becomes trivial for h = 0

autodel(i, 0) = ρ(Xi(t), Xi(t)) =
E[Xi(t)] − E[Xi(t)]2
√

Var[Xi(t)]
√

Var[Xi(t)]

=
Var[Xi(t)]
Var[Xi(t)]

= 1.
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We show in Appendix I.1 analytically that the auto-correlation function is decreasing for small time delays

h. Simulations were able to verify this decreasing behavior for a larger range of h values (see Figure 14).

Furthermore, we found from the simulations that for very small time lags h, the auto-correlation function even

seems to be exponentially decaying (see Figure 15).

In addition, we find from the simulations that for small time lags h a node with a higher degree has a

lower auto-correlation (see Figure 16). This relation could be due to the fact that a node with more neighbors

has more external influence on his activation status, changes therefore often its state and thus obtains a lower

auto-correlation. Analytically, we were able to show that a higher eigenvector centrality leads to a lower auto-

correlation (see Appendix I.3.2).

G Random networks as benchmark

To compare our results to a benchmark, we performed the same analysis on an Erdös Renyi random graph with

a similar degree distribution (see Figure 17). The patterns in the obtained matrices for the functional as well

as for the effective connectivity seem to be more randomly distributed, not showing any specific recognizable

forms (see Figure 18). In addition, the results of the delayed correlation confirm our generally formulated

principles (see Figure 19) We also plotted from the structural brain network and from the ER graph only the

delayed correlation between the nodes with the highest degree and the rest of the network (see Figures 20 and

21). Furthermore, we were also able to find a distinction in hopcounts for the delayed correlation with a bigger

ER graph with 500 nodes (see Figure 22).

H Network Model

So far, the structural network data that we have access to only consists of a network of 78 nodes, where each

node represents a region of interest (ROI) in the brain. This network is too small to obtain stable simulation

results from the epidemic spreading process. Therefore, we decided to build a bigger structural network using

a generative network model. This generative network model should resemble the anatomical connections in the

human brain as precisely as possible, but it should be simple at the same time. In consultation with neurophysi-

ologists, we developed a generative network model as an approximation for the structural brain network. In the

following, we will present the three steps of the generative model.

• Step 1: We randomly place N nodes on a semicircle, which represents the left hemisphere of the human

brain. Then, we mirror the node locations to the right semicircle, which represents the right hemisphere
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of the brain.

• Step 2: Within each hemisphere, we connect each node pair with a connection probability Pi j = exp(−ηdi j)

that exponentially decays with distance (Vértes et al., 2012), where di j is the Euclidean distance between

node i and j, and η is a parameter that needs to be chosen. This distance penalty for connections is based

on the probable aim of the brain to minimize metabolic cost (Vértes et al., 2012). We call the created

links the local connections, since they only occur within one hemisphere.

• Step 3: The strong long-range connections between the left and the right hemisphere and between the

front and the back of the brain are crucial for the dynamics of the human brain. Thus, we first divide

the randomly placed nodes into regions by placing 39 equally sized circles onto both semicircles. These

circles will later correspond to the 78 brain regions of interest that are measured in our MEG experiments.

Then, we pick randomly L circles and connect all nodes in this circle to all nodes in the corresponding

circle on the opposite side of the brain. We carry out this procedure once for the connections between the

two hemispheres. Then, we divide the circle into a front and a back part by bisecting horizontally and

apply the same procedure for generating long-range connections as for the cross-hemisphere connections.

I Analytical Derivations on delayed SIS correlations

I.1 The covariance ρ̃
(
Xi (t) , X j (t + h)

)
for a small time lag h

We compute the expectation E
[
Xi (t) X j (t + h)

]
for a very small time h > 0. Although the derivative of a

Bernoulli random variable does not exist, we follow the framework in (Van Mieghem, 2014a) and we agree to

formally define the derivative by the random variable equation

dX j (t)
dt

= −δX j (t) +
(
1 − X j (t)

)
β

N∑

k=1

ak jXk (t) (8)

For small h, the first order expansion of the Taylor series yields

X j (t + h) = X j (t) + h
dX j (t)

dt
+ o (h) (9)
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Then,

E
[
Xi (t) X j (t + h)

]
= E

[
Xi (t) X j (t) + h

dX j (t)
dt

Xi (t) + o (h)
]

= E
[
Xi (t) X j (t)

]
+ hE

[
dX j (t)

dt
Xi (t)

]
+ o (h)

and, after invoking (8), we obtain

E
[
Xi (t) X j (t + h)

]
= E

[
Xi (t) X j (t)

]
+ hE

−δX j (t) Xi (t) +
(
1 − X j (t)

)
Xi (t) β

N∑

k=1

ak jXk (t)

 + o (h)

= (1 − δh) E
[
Xi (t) X j (t)

]
+ βhE

Xi (t)
N∑

k=1

ak jXk (t) − X j (t) Xi (t)
N∑

k=1

ak jXk (t)

 + o (h)

After some rearrangements, we arrive at

E
[
Xi (t) X j (t + h)

]
= (1 − δh) E

[
Xi (t) X j (t)

]
+ βh

N∑

k=1

ak jE [Xi (t) Xk (t)]

− βh
N∑

k=1

ak jE
[
Xi (t) X j (t) Xk (t)

]
+ o (h) (10)

Similarly,

E
[
X j (t + h)

]
= E

[
X j (t)

]
+ hE

[
dX j (t)

dt

]
+ o (h)

= (1 − δh)E
[
X j (t)

]
+ βh

N∑

k=1

ak jE [Xk (t)] − βh
N∑

k=1

ak jE
[
X j (t) Xk (t)

]
+ o (h) (11)

which shows that the probability of infection for node j at time (t + h) depends for small h on three elements:

(1) on the state of node j at time t, (2) on the state of the neighbors of node j at time t and (3) on the joint

probability with its neighbors.

Thus, the covariance r = E
[
(Xi (t) − E [Xi (t)])

(
X j (t + h) − E

[
X j (t + h)

])]
for small h is

r = E
[
Xi (t) X j (t + h)

]
− E [Xi (t)] E

[
X j (t + h)

]

= (1 − δh) E
[
Xi (t) X j (t)

]
+ βh

N∑

k=1

ak jE [Xi (t) Xk (t)] − βh
N∑

k=1

ak jE
[
Xi (t) X j (t) Xk (t)

]
+ o (h)

− (1 − δh) E
[
X j (t)

]
E [Xi (t)] − βh

N∑

k=1

ak jE [Xi (t)] E [Xk (t)] + βh
N∑

k=1

ak jE [Xi (t)] E
[
X j (t) Xk (t)

]
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With the definition (4) of the covariance, we find for i , j that the j-delayed covariance satisfies

ρ̃
(
Xi (t) , X j (t + h)

)
= (1 − δh) ρ̃

(
Xi (t) , X j (t)

)
+ βh

N∑

k=1

ak jρ̃ (Xi (t) , Xk (t))

− βh
N∑

k=1

ak j
{
E

[
Xi (t) X j (t) Xk (t)

]
− E [Xi (t)] E

[
X j (t) Xk (t)

]}
+ o (h) (12)

The derivative of the j-delayed covariance ρ̃
(
Xi (t) , X j (q)

)
with respect to the time q and evaluated at time

q = t follows as

dρ̃
(
Xi (t) , X j (q)

)

dq

∣∣∣∣∣∣∣∣
q=t

=
(
βai j − δ

)
ρ̃
(
Xi (t) , X j (t)

)
+ β

N∑

k=1;k,i

ak jρ̃ (Xi (t) , Xk (t))

− β
N∑

k=1

ak j
{
E

[
Xi (t) X j (t) Xk (t)

]
− E [Xi (t)] E

[
X j (t) Xk (t)

]}

where

lim
h→0

ρ̃
(
Xi (t) , X j (t + h)

)
− ρ̃

(
Xi (t) , X j (t)

)

h
=

dρ̃
(
Xi (t) , X j (t + h)

)

dh

∣∣∣∣∣∣∣∣
h=0

=
dρ̃

(
Xi (t) , X j (q)

)

dq

∣∣∣∣∣∣∣∣
q=t

We observe that the j-delayed covariance ρ̃
(
Xi (t) , X j (t)

)
increases stronger when node j has more neighbors.

On the other hand for i = j, the autocovariance function for h > 0

ri (t, h) = E [Xi (t) Xi (t + h)] − E [Xi (t)] E [Xi (t + h)]

and, for h = 0,

ri (t, 0) = Var [Xi (t)] = E [Xi (t)] {1 − E [Xi (t)]}

becomes for a small time lag h

ri (t, h) = (1 − δh) Var [Xi (t)] − βhE [Xi (t)]
N∑

k=1

aki {E [Xk (t)] − E [Xi (t) Xk (t)]} + o (h) (13)

In the heavy infection regime (τ → ∞), we know that Xi → 1 and Var[Xi (t)] → 0 and the autocovariance

function (13) tends to zero, ri (t, h) → 0. Since E [Xi (t) Xk (t)] ≤ E [Xk (t)] for any pair of Bernoulli random

variables Xi ∈ {0, 1} and Xk ∈ {0, 1}, we observe that the second term is always non-positive so that the

autocovariance function ri (t, h) ≤ Var[Xi (t)] = ri (t, 0). In other words, the autocovariance function ri (t, h) and
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thus also its normalized version, the auto-correlation function, decreases with small time lag h for any time t.

I.1.1 Deductions

In general, the j-delayed covariance ρ̃
(
Xi (t) , X j (t + h)

)
is different from the i-delayed covariance ρ̃

(
X j (t) , Xi (t + h)

)
.

Indeed, (12) demonstrates that

ρ̃
(
Xi (t) , X j (t + h)

)
− ρ̃

(
X j (t) , Xi (t + h)

)
= βh

N∑

k=1

(
ak jρ̃(Xi(t), Xk(t)) − akiρ̃(X j(t), Xk(t))

)

−βh
N∑

k=1

(ak j − aki)E[Xi(t)X j(t)Xk(t)] − βh
N∑

k=1

(
ak jE[Xi(t)]E[X j(t)Xk(t)] − akiE[X j(t)]E[Xi(t)Xk(t)]

)

Starting from the original definition of ρ̃
(
Xi (t) , X j (t + h)

)
, we can deduce the parts as

E
[
Xi (t) X j (t + h)

]
= E

[
Xi (t) X j (t)

]
+ hE

−δX j (t) Xi (t) +
(
1 − X j (t)

)
Xi (t) β

N∑

k=1

ak jXk (t)

 + o (h)

E
[
X j (t) Xi (t + h)

]
= E

[
X j (t) Xi (t)

]
+ hE

−δXi (t) X j (t) + (1 − Xi (t)) X j (t) β
N∑

k=1

akiXk (t)

 + o (h)

Subtraction yields

T = E
[
Xi (t) X j (t + h)

]
− E

[
X j (t) Xi (t + h)

]

= βhE

Xi (t)
(
1 − X j (t)

) N∑

k=1

ak jXk (t) − X j (t) (1 − Xi (t))
N∑

k=1

akiXk (t)



= βhE

Xi (t)
N∑

k=1

ak jXk (t) − X j (t)
N∑

k=1

akiXk (t) + Xi (t) X j (t)
N∑

k=1

(
aki − ak j

)
Xk (t)



where
∑N

k=1 ak jXk (t) are the infected neighbors of node j. The first equation tells that T is the balance of two

cases: either an infection at node i and all infected neighbors of node j try to infect node j or an infection at

node j and all infected neighbors of node i try to infect node i.

The other parts of the difference of covariances can be written as
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E[X j(t)]E[Xi(t + h)] − E[Xi(t)]E[X j(t + h)] = βhE[X j(t)]
N∑

k=1

akiE[Xk(t)] − βhE[Xi(t)]
N∑

k=1

ak jE[Xk(t)]

−βh
N∑

k=1

akiE[Xi(t)Xk(t)]E[X j(t)] + βh
N∑

k=1

ak jE[X j(t)Xk(t)]E[Xi(t)]

Together we get for the probability flux

ρ̃
(
Xi (t) , X j (t + h)

)
− ρ̃

(
X j (t) , Xi (t + h)

)
= βh

N∑

k=1

ak j
(
E[Xi(t)]E[X j(t)Xk(t)] − E[Xi(t)X j(t)Xk(t)]

)

−βh
N∑

k=1

aki
(
E[X j(t)]E[Xi(t)Xk(t)] − E[Xi(t)X j(t)Xk(t)]

)

The term E[Xi(t)]E[X j(t)Xk(t)]−E[Xi(t)X j(t)Xk(t)] is probably negative for any node triple i, k and j, where

k and j are neighbors, thus E[Xi(t)]E[X j(t)Xk(t)] ≤ E[Xi(t)X j(t)Xk(t)] where it is definitely true for k = j (and

i and j neighbors). Then, if di >> d j the flux is likely to be positive and the flow is from node i to node

j. This information flow has also been researched by (Hillebrand et al., 2016), where instead of the delayed

correlation, (Hillebrand et al., 2016) used the Phase Transfer Entropy as a measure of causality. This difference

in coavariances is positive if and only if the fraction from (Hillebrand et al., 2016) is larger than 0.5. They

found an overall direction flow from the posterior to anterior brain regions (Hillebrand et al., 2016). Since most

of the hubs of the structural brain network are known to be located in the back, our analytical derivations can

confirm that the information flow is then mostly from the hubs towards the low degree nodes. Thus, overall a

posterior-to-anterior flow should emerge, also with our measure of delayed correlations.

Further, we consider the autocovariance function, normalized at h = 0,

ri (t, h)
ri (t, 0)

= 1 − δh − βh
N∑

k=1

aki

{
E [Xk (t)] − E [Xi (t) Xk (t)]

1 − E [Xi (t)]

}
+ o (h)

Since E [Xi (t) Xk (t)] ≥ E [Xi (t)] E [Xk (t)] is equivalent to

Pr [Xi (t) = 1|Xk (t) = 1] ≥ Pr [Xi (t) = 1]
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we bound

E [Xk (t)] − E [Xi (t) Xk (t)]
1 − E [Xi (t)]

= Pr [Xk (t) = 1]
1 − Pr [Xi (t) = 1|Xk (t) = 1]

1 − Pr [Xi (t) = 1]

≤ Pr [Xk (t) = 1]

and we obtain that
ri (t, h)
ri (t, 0)

≥ 1 − δh − βh
N∑

k=1

akiE [Xk (t)] + o (h)

We define the vector W(t) and R (t, h) with i-th component wi(t) = E [Xi (t)] and ri (t, h), respectively. Fur-

ther, we define, only for vectors, the function f (R) = ( f (r1) , f (r2) , . . . , f (rN)), then we arrive at the vector

inequality
R (t, h)
R (t, 0)

≥ u − h (δu + βAW(t)) + o (h)

Just above the epidemic threshold (Van Mieghem et al., 2009), the probability of infection is E [Xi (t)] = ε (x1)i,

where ε > 0 is small and where x1 is the principal eigenvector of the adjacency matrix A belonging to the largest

eigenvalue λ1. With Ax1 = λ1x1, the autocorrelation function just above the epidemic threshold τc satisfies

R (t, h)
R (t, 0)

≥ u − δh (u + ετλ1x1) + o (h)

and for the i-th component
ri (t, h)
ri (t, 0)

≥ 1 − δh − βλ1 (x1)i hε + o (h)

I.2 The variance Var
[
X j (t + h)

]

Next, we concentrate on

Var
[
X j (t + h)

]
= E

[
X2

j (t + h)
]
−

(
E

[
X j (t + h)

])2
= E

[
X j (t + h)

]
−

(
E

[
X j (t + h)

])2
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where the nature of a Bernoulli variable, Xm
j = X j for any positive real number m, has been used. Invoking a

Taylor series approach with (9),

(
E

[
X j (t + h)

])2
=

(
E

[
X j (t)

])2
+ 2hE

[
X j (t)

]
E

[
dX j (t)

dt

]
+ o (h)

= (1 − 2δh)
(
E

[
X j (t)

])2
+ 2βh

N∑

k=1

ak jE
[
X j (t)

]
E [Xk (t)]

− 2βh
N∑

k=1

ak jE
[
X j (t)

]
E

[
Xk (t) X j (t)

]
+ o (h)

and (11), we obtain

Var
[
X j (t + h)

]
= Var

[
X j (t)

]
+ hδ

τ
N∑

k=1

ak jE [Xk (t)] − E
[
X j (t)

]

− hδ

τ
N∑

k=1

ak j
{
E

[
X j (t) Xk (t)

]
+ 2E

[
X j (t)

]
E [Xk (t)]

}
− 2

(
E

[
X j (t)

])2


+ 2βh
N∑

k=1

ak jE
[
X j (t)

]
E

[
Xk (t) X j (t)

]
+ o (h) (14)

Thus, for small values of h, the variance Var[X j(t + h)] seems to be approximately equal to Var[X j(t)].

I.3 Just above the epidemic threshold

Just above the epidemic threshold (Van Mieghem et al., 2009), the probability of infection is E [Xi (t)] = ε (x1)i,

where ε > 0 is small and where x1 is the principal eigenvector of the adjacency matrix A belonging to the

largest eigenvalue λ1.

I.3.1 The covariance ρ̃
(
Xi (t) , X j (t + h)

)

Assuming that the effective infection rate τ =
β
δ = τc + ε, then we may discard the last sum with triple

expectations (of order O
(
ε2

)
) in (12) so that

ρ̃
(
Xi (t) , X j (t + h)

)
≈ (1 − δh) ρ̃

(
Xi (t) , X j (t)

)
+ βh

N∑

k=1

ak jρ̃ (Xi (t) , Xk (t)) + o (h)

Since ρ̃
(
Xi (t) , X j (t)

)
≥ 0 and assuming that ρ̃ (Xi (t) , Xk (t)) is of about the same magnitude as ρ̃

(
Xi (t) , X j (t)

)

for any node k that is a neighbor of j (this is possible because node k as a neighbor of j can only be one hop

further away from or nearer to i than j. If i and j are directly connected and k is a common neighbor, then this
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approximation is even more accurate), then

ρ̃
(
Xi (t) , X j (t + h)

)
≈

(
1 +

(
τd j − 1

)
δh

)
ρ̃
(
Xi (t) , X j (t)

)
+ o (h)

and
ρ
(
Xi (t) , X j (t + h)

)

ρ
(
Xi (t) , X j (t)

) ≈
(
1 +

(
τd j − 1

)
δh

)
√

Var
[
X j (t)

]

√
Var

[
X j (t + h)

] + o (h)

Assuming Var
[
X j (t + h)

]
≈ Var

[
X j (t)

]
(which is reasonable for small h) the fraction on the right hand side can

be approximated by 1 and we obtain

ρ
(
Xi (t) , X j (t + h)

)

ρ
(
Xi (t) , X j (t)

) ≈ 1 + δh
(
τd j − 1

)
+ o (h)

Finally, since τ > τc ≥ 1
λ1

, we have that τd j − 1 > d j
λ1
− 1. Since the spectral radius is bounded (Van Mieghem,

2011) by max
(
dav,
√

dmax
)
≤ λ1 ≤ dmax, where the average degree dav = 2L

N , the factor τ∗d j − 1 is positive for

a node j with more than average degree, but possibly negative for a node j with low degree.

I.3.2 The autocorrelation function ri (t, h)

Introducing E [Xi (t)] = ε (x1)i and using the eigenvalue equation
∑N

k=1 aki (x1)k = λ1 (x1)i, the autocorrelation

function in (13) for small time lags h simplifies to

ri (t, h) = (1 − δh)
(
ε (x1)i − ε2 (x1)2

i

)
− βhε2 (x1)i

N∑

k=1

aki (x1)k + O
(
ε3

)
+ o (h)

= (1 − δh)
(
ε (x1)i − ε2 (x1)2

i

)
− βhε2λ1 (x1)2

i + O
(
ε3

)
+ o (h)

The normalized autocorrelation function

ri (t, h)
ri (t, 0)

= 1 − δh − βh
E [Xi (t)]

Var [Xi (t)]

N∑

k=1

aki {E [Xk (t)] − E [Xi (t) Xk (t)]} + o (h)

31



is simplified to

ri (t, h)
ri (t, 0)

= 1 − δh − βh
(x1)i


ελ1 (x1)2

i + O
(
ε2

)
+ o (h)

1 − ε (x1)i



= 1 − δh − βh
(x1)i

((
ελ1 (x1)2

i + O
(
ε2

)
+ o (h)

) (
1 + ε (x1)i + O

(
ε2

)))

= 1 − δh − βh
(x1)i

(
ελ1 (x1)2

i + O
(
ε2

)
+ o (h)

)

and, in terms of the effective infection rate τ =
β
δ ,

ri (t, h)
ri (t, 0)

= 1 − δh (1 + τλ1ε (x1)i) + O
(
ε2

)
+ o (h)

= 1 − δh + o (h)

because, just above the epidemic threshold, τλ1 ≈ 1. Hence, just above the epidemic threshold, there is

essentially only curing as the infectious power is too weak. In addition, the normalized autocovariance can be

regarded as an approximation for the auto-correlation function. Then, we have shown that the auto-correlation

seems to be smaller for nodes with a higher eigenvector-centrality.

Let us regard the joint delayed probability (10) for one node i and use the property of Bernoulli random

variables E[Xi(t)Xi(t)] = E[Xi(t)]

E [Xi (t) Xi (t + h)] = (1 − δh) E [Xi (t)] + o (h)

such that just above the epidemic threshold the derivative of E [Xi (t) Xi (t + h)] is −δε(x1)i.
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(a) Effective connectivity for h = 0.1s. (b) Effective connectivity for h = 1s.

(c) Effective connectivity for h = 2s. (d) Effective connectivity for h = 4s.

(e) Effective Connectivity for h = 8s. (f) Effective Connectivity for h = 10s.

Figure 8: Effective connectivity for different time lags h.
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Figure 9: Schematic explanation of how the delayed correlation is calculated in our analysis.
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Figure 10: Delayed correlation of all node pairs. The delayed correlations for different time lags h are colored
in red for all the neighbors, in yellow for all nodes that are 2 hops away, in black for nodes with hopcount 3 and
green for hopcount 4. For small time lags it seems that the direct neighbors of a node have the highest delayed
correlation and that the further away another node is in terms of hopcount the lower is the delayed correlation
between that node and the regarded node.
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Figure 11: Delayed correlation of a node (averaged over its influence on all other nodes) versus its degree and
normalized as in Equation (7).
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Figure 12: Plot of the averaged normalized delayed correlation (see Equation (7)) for all nodes of the underlying
structural network. Visualization of the directed delayed correlation for each brain region on the parcellated
template brain, where darker colors represent strong sending brain regions and lighter colors a more receiving
property of a region. We show the brain here in clockwise order from the left, top, right, right midline and left
midline.
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Figure 13: Scatterplot of the empirically observed directed Phase Transfer Entropy results from Hillebrand et
al. (2016) and our averaged dTE values. We obtain a positive correlation coefficient of 0.334 for the time delay
of h = 2.9 time units.
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Figure 14: Delayed auto-correlation of all nodes.
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Figure 15: Delayed auto-correlation of all nodes for very small time lags h on a log-linear scale (zoomed-in
plot of Figure 14). For small time lags, the auto-correlation seems to decay exponentially fast with h.
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Figure 16: Scatterplots for different delays h of the delayed auto-correlation of all nodes. The delayed auto-
correlation for all time lags h seems to be negatively correlated with the degree (more visible for small time
lags h, left panel), meaning that hubs have a lower auto-correlation than low-degree nodes.
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Figure 17: Degree distribution of the structural brain network and an ER random graph with similar properties.
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(a) Functional Connectivity.
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(b) Effective Connectivity.
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Figure 18: (a) Functional Connectivity based on the SIS epidemics time series with β = 0.1 and δ = 1 on an
ER graph. (b) Effective Connectivity based on the SIS epidemics time series with β = 0.1 and δ = 1 on an ER
graph with delay h = 0.1s, which is one time step in our simulations.
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Figure 19: Delayed correlation of all node pairs for an ER graph. The delayed correlations for different time
lags h are colored in red for all the neighbors, in yellow for all nodes that are 2 hops away, in black for nodes
with hopcount 3 and green for hopcount 4. For small time lags it seems that the direct neighbors of a node have
the highest delayed correlation and that the further away another node is in terms of hopcount the lower is the
delayed correlation between that node and the regarded node.
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Figure 20: Delayed correlation of the 3 nodes with the highest degrees with the rest of the network. The delayed
correlations for different time lags h are colored in red for all the neighbors, in yellow for all nodes that are 2
hops away, in black for nodes with hopcount 3 and green for hopcount 4. For small time lags it seems that the
direct neighbors of a hub have a much higher delayed correlation with that node than the nodes that are further
away.
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Figure 21: Delayed correlation of the 2 nodes with the highest degrees with the rest of the network for an ER
graph. The delayed correlations for different time lags h are colored in red for all the neighbors, in yellow for
all nodes that are 2 hops away and in black for nodes with hopcount 3. For small time lags it seems that the
direct neighbors of a hub have a much higher delayed correlation with that node than the nodes that are further
away.
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Figure 22: Cross-correlation versus the degree product for different hopcounts for an ER graph with 500 nodes.
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Figure 23: Generated structural brain network from model described earlier.
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