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Abstract. Motivated by the question whether higher-order nonlinear model
equations, which go beyond the Camassa-Holm regime of moderate amplitude

waves, could point us to new types of waves profiles, we study the traveling

wave solutions of a quasilinear evolution equation which models the propagation
of shallow water waves of large amplitude. The aim of this paper is a complete

classification of its traveling wave solutions. Apart from symmetric smooth,
peaked and cusped solitary and periodic traveling waves, whose existence is
well-known for moderate amplitude equations like Camassa-Holm, we obtain

entirely new types of singular traveling waves: periodic waves which exhibit
singularities on both crests and troughs simultaneously, waves with asymmetric
peaks, as well as multi-crested smooth and multi-peaked waves with decay.

Our approach uses qualitative tools for dynamical systems and methods for
integrable planar systems.

1. Introduction. Recent research literature shows strong interest in the study of
singular traveling waves for model equations in hydrodynamics. On the one hand, the
governing equations for water waves admit the celebrated Stokes waves of greatest
height, see the discussions in [5, 34, 39, 38]. Moreover, cusped traveling waves are
also known to occur as solutions to the governing equations for water waves [6, 7, 23].
These types of solutions are real-analytic except at their peaked or cusped crests,
which are points of stagnation. We note that traveling waves in irrotational flows
without stagnation points are real-analytic everywhere, in the periodic as well as in
the solitary case, see the discussion in the papers [9, 25]. On the other hand, singular
traveling wave solutions involving peaks and cusps are encountered in the study of
shallow water approximations. While weakly nonlinear model equations for small
amplitude waves, like the Korteweg-de-Vries equation (KdV), do not capture these
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1568 ANNA GEYER AND RONALD QUIRCHMAYR

phenomena, peaked or cusped solutions do arise from model equations for waves of
moderate amplitude, like the Camassa-Holm equation (CH) and Degasperis-Procesi
equation (DP) [4, 31, 32]. This raises the question whether higher-order nonlinear
model equations, which go beyond the regime of moderate amplitude waves, could
point us to other, new types of singular traveling waves. In this paper we give an
affirmative answer to this question. A natural candidate for such a new type of
wave is one which exhibits singularities on both the crest and the trough of the wave
simultaneously. Model equations for moderate amplitude waves do not possess this
type of singular solutions, since their nonlinearities in the higher order terms are at
most quadratic. In this paper we study the traveling wave solutions of the following
new model equation, which encompasses stronger nonlinearities to allow for new
types of singular solutions:

ut+ux+
3

2
uux−

4

18
uxxx−

7

18
uxxt =

1

12
(u2x+2uuxx)x−

1

96
(45u2uxx+154uu2x)x. (1)

Here, the dependent variable u = u(x, t) is a function of one spatial variable x ∈ R
and the time variable t > 0. The solutions of this equation describe the evolution of
the horizontal velocity component of a flow field at a certain fixed depth beneath
the free surface of a water wave propagating unidirectionally over a flat bed. This
equation was derived in [35] in the spirit of [26] from the incompressible Euler
equations for gravity water waves using double asymptotic expansions in the two
fundamental water wave parameters: δ, the shallowness parameter, and ε, the
amplitude parameter. In this terminology, equation (1) is a model for gravity

water waves in the regime characterized by δ � 1, ε = O(
√
δ) which we call the

shallow water regime for large amplitude waves, see [35]. This regime allows for the
description of large amplitude waves whose strong nonlinear effects are captured
by the cubic terms on the right hand side. For convenience we have scaled out the
parameters δ and ε to write the equation in the form (1).

It is well-known that weakly nonlinear models for shallow water waves of small
amplitude, i.e. ε = O(δ2), such as the KdV [27], admit smooth solitary and periodic
traveling waves. Shallow water models for waves of moderate amplitude, i.e. ε = O(δ),
such as the CH [4], the corresponding equation for free surface waves [8, 10, 26] as
well as the DP [15], capture stronger nonlinear effects and admit also non-smooth
solutions containing so-called peaks and cusps, see for instance [21, 31, 32]. For the
present equation we discover entirely new kinds of traveling wave solutions, which
are not governed by equations for moderate amplitude waves. In Fig. 1 we sketch
the shapes of some of these waves in order to give the reader a first impression
of the tremendously rich collection of traveling wave solutions of (1). Novel types
of solutions include periodic waves with peaks both at the crests and the troughs,
as well as multi-crested smooth and peaked solitary waves. Another interesting
feature of equation (1) is that it allows for peaked solutions with different slopes on
either side of the crest and trough, that is, we obtain non-symmetric peakons. In
comparison, peaks are always symmetric in CH type equations, cf. [31]. Moreover,
equation (1) admits peaked and cusped solutions with compact support, which was
shown to be impossible for CH type equations in [21]. As we will see, the existence
of such solutions requires the presence of third order terms exhibiting nonlinearities
of at least cubic order in the evolution equation.

The aim of this paper is to give a complete classification of all traveling wave
solutions of (1) in H1

loc, where a suitable weak formulation of the evolution equation
is available. Our approach relies on methods from the qualitative theory of dynamical
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Figure 1. A selection of some traveling wave solutions of (1). The
waves on the left side from top to bottom are of the following types:
smooth periodic, peaked periodic, cusped periodic, periodic with
peaked crests and cusped troughs, periodic with peaked crests and
troughs, composite, composite with plateaus. Right side top to
bottom: smooth solitary, peaked solitary, cusped solitary, wavefront,
compactly supported anticusp, multi-crest with decay, multi-peak
with decay.

systems, in particular on tools for integrable planar systems. In contrast to prominent
moderate amplitude shallow water models like CH and DP, the traveling wave
equation corresponding to (1) does not give rise to a Hamiltonian planar system.
Instead our analysis is based on the existence of a non-explicit first integral with a
singular integrating factor, cf. (13). Working with a suitable weak formulation we
will describe precisely in which sense such non-smooth traveling waves are solutions
of equation (1).

The paper is structured as follows. In Section 2 we provide the definition of
traveling wave solutions based on a weak formulation of (1). Section 3 discusses
the integrable structure of the planar dynamical system associated to (1). In
Section 4 we prove a proposition, which characterizes the traveling wave solutions as
certain piecewise smooth H1

loc-functions solving the aforementioned system almost
everywhere in the classical sense. This opens the way to a full classification of all
traveling wave solutions of (1) by means of a systematic phase plane analysis of
a bi-parametric family of underlying dynamical systems. The construction of all
possible traveling waves is finally realized in Section 5. We provide a summary of
the results of our analysis in Theorems 6.1, 6.2 and 6.3 in Section 6 and conclude
with a short discussion and outlook in Section 7.
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2. Weak formulation for traveling wave solutions. In the current section, we
give the definition of a traveling wave solution of (1), which is based on a weak
formulation. Let us therefore assume that a function u solves (1) pointwise and
satisfies the relation

u(t, x) = u(x− ct) (2)

for a fixed c ∈ R being referred to as the wave speed. We denote by s := x− ct the
corresponding independent moving frame variable. In a first step, we rewrite (1)
in the moving frame variables (2) and integrate with respect to the moving frame
variable s to obtain

u′′(Ac +Bu+ Cu2) = K + (c− 1)u+ Eu2 + (u′)2(Gu− 1/2B), (3)

where the prime symbol denotes differentiation with respect to s and

Ac =
7c− 4

18
, B = −1

6
, C =

45

96
, E = −3

4
, G = −154

96
,

and K ∈ R is a constant of integration. To facilitate the mathematical treatment of
this equation, let us introduce the real polynomials

g(u) := (Ac +Bu+ Cu2),

f(u, v) := K + (c− 1)u+ Eu2 + v2(Gu− 1/2B)
(4)

and write equation (3) as

u′′g(u) = f(u, u′) (5)

in a more compact form. An equivalent formulation which turns out to be convenient
when working with H1

loc-functions is

f(u, u′) + (u′)2g′(u) = [g(u)u′]′, (6)

where g′(u) = dg
du (u), see Remark 2.2. The weak formulation of (1) suitable for

functions u of the form (2) is then obtained by multiplying (6) with a smooth and
compactly supported test function φ satisfying φ(t, x) = φ(x− ct) = φ(s) and by a
subsequent integration over R with respect to the moving frame variable s.

Definition 2.1. Fix c ∈ R. A bounded function u : R → R is called a traveling
wave solution, or shorter, a traveling wave of (1) with wave speed c, if u = u(s) lies
in H1

loc(R) and satisfies equation (6) in the sense of distributions, i.e. it satisfies∫
R
g(u)u′φ′ + [f(u, u′) + (u′)2g′(u)]φ ds = 0 (7)

for all test functions φ in D(R) = C∞c (R), the space of compactly supported smooth
real-valued functions on R.

Remark 2.2. We point out that, by abuse of notation, we write g′(u) to mean
dg
du (u). Moreover, when speaking of an element u ∈ H1

loc(R), we always refer to the
absolutely continuous representative of this class of functions. Hence a traveling
wave of (1) is absolutely continuous and bounded with a locally square integrable
derivative. Definition 2.1 excludes unbounded waves, which would not be relevant
from a physical point of view.

Remark 2.3. Note that the weak formulation of (1) as given in Definition 2.1
applies exclusively to functions of the form (2), since the test functions φ that we
consider are also of that form, and hence this weak formulation is not suitable for a
general formulation of the Cauchy problem that corresponds to (1).
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3. The associated integrable planar system. Our aim is to completely charac-
terize all traveling wave solutions of (1). To this end, we study the phase portrait of
the related planar differential system

u′ = v

v′ =
f(u, v)

g(u)

(8)

for all parameter pairs (c,K) ∈ R2. In Section 4 we will prove that this is suffi-
cient since every traveling wave of (1) is a composition of solution curves of (8),
cf. Proposition 4.1.

Let us first introduce some useful notation. We denote by Ng the set of real zeros
of the polynomial g(u), that is,

Ng := {u ∈ R : g(u) = 0}, (9)

and we denote by U the domain of system (8), i.e.

U := R2 \ (Ng × R). (10)

Our analysis relies heavily on the fact, that (8) is integrable, i.e. there exists a
function H : U → R, called first integral, which is constant along solution curves of
(8) within the open subset U ⊆ R2. In order to find a first integral, we reparametrize
system (8) by introducing the new independent variable τ via ds

dτ = g(u) to obtain{
u̇ = v g(u)

v̇ = f(u, v).
(11)

Note that (11) is defined on all of R2. The dots in (11) refer to differentiation
with respect to τ . System (11) is topologically equivalent to system (8) on U :
the solution curves coincide, but the orientation is reversed within the region
{(u, v) ∈ U : g(u) < 0} and preserved in {(u, v) ∈ U : g(u) > 0}, cf. [16, 22]. The
set Ng × R ⊆ R2 is either empty, or consists of up to two vertical invariant lines.

System (11) has an integrating factor ϕ : R \Ng → R, i.e.

div (vg(u)ϕ(u), f(u, v)ϕ(u)) = 0 in U.

It is not difficult to see that if ϕ satisfies the differential equation

ϕ′(u) = −2(C +G)
u

g(u)
ϕ(u), (12)

then ϕ is an integrating factor on R \Ng. Equation (12) can be solved explicitly
and the form of the solution ϕ depends on the number of roots of the polynomial g;
see Section 5.2 for the details. Hence (11) is integrable on U and the first integral
H associated to the integrating factor ϕ is given by

H(u, v) :=
v2

2
ϕ(u)g(u) + ψ(u), (13)

where

ψ(u) = −
∫
f0(u)ϕ(u) du, (14)

with f0(u) := f(u, 0). Note that u̇ = Hv

ϕ(u) , v̇ = − Hu

ϕ(u) in U . The solution curves, or

orbits, of system (11) correspond to the level sets of H, which we denote by

Lh(H) := {(u, v) ∈ U : H(u, v) = h}. (15)
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In view of the symmetry of H about the u-axis, these curves are composed of the
two symmetric branches (u, v±h (u)), where

v±h (u) = ±

√
2
h− ψ(u)

g(u)ϕ(u)
. (16)

Let us finally note that

du

ds
= v±h along solution curves of (8) in U ∩ (R× R±). (17)

4. A characterization of traveling wave solutions. We will construct traveling
wave solutions of (1) by associating the solutions of (5) with orbits of the planar
systems (8) and (11). These orbits correspond to level sets of the first integral
(13). The following proposition ensures that we can indeed obtain all traveling wave
solutions of (1) with this approach.

Recall that Ng denotes the zero set of the quadratic polynomial g defined in (4).
Moreover, let λ(X) denote the Lebesgue measure of a measurable set X ⊆ R.

Proposition 4.1. Fix c ∈ R. A bounded continuous function u : R → R is a
traveling wave of (1) with wave speed c if and only if the following holds:

(TW1) The open set R\u−1(Ng) is a countable disjoint union
⋃
j Ij of open intervals

Ij. It holds that u|Ij ∈ C∞(Ij) for all j and u(s) /∈ Ng for s ∈
⋃
j Ij.

(TW2) There is a K ∈ R such that
(a) for each j there exists some hj ∈ R so that u satisfies

(u′)2 = 2
hj − ψ(u)

ϕ(u)g(u)
on Ij

u→ αi at finite endpoints of Ij ,with αi ∈ Ng.

(18)

(b) If λ(u−1(Ng)) > 0, then Ng ∩Nf0 6= ∅, i.e. K = Kαi
(c), i ∈ {1, 2}.1

(TW3) u′ exists a.e. and u′ ∈ L2
loc(R).

Remark 4.2. In particular, Proposition 4.1 implies that all traveling wave solutions
of (1) can be obtained via a systematic phase plane analysis of (8) for all parameter
pairings (c,K).

We give the proof of Proposition 4.1 at the end of this section after stating some
auxiliary results.

Lemma 4.3. Let u be a traveling wave solution of (1) and let I ⊆ R be an open
interval. If the restriction of u on I is C2, then u solves (5) pointwise on I.

Proof. The restriction u|I satisfies (5) in D′(I), i.e.∫
I

[u′′g(u)− f(u, u′)]φ ds = 0 for all φ ∈ D(I). (19)

Now ρ := u′′g(u) − f(u, u′) is continuous in I by assumption. It follows that ρ is
identically zero in I, proving that (5) is satisfied pointwise in I. Indeed, otherwise
there would be some s0 ∈ I with ρ(s0) 6= 0, say ρ(s0) > 0. By continuity, ρ > 0
on a small subinterval Iε containing s0. Choosing a nonnegative bump-function
φ0 ∈ D(I) with supp(φ0) ⊆ Iε would imply a strictly positive integral in (19) – a
contradiction.

1See (29) for the definition of Kαi .
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Remark 4.4. Lemma 4.3 tells us in particular that our definition of traveling wave
solutions, which is based on a weak formulation of (5) is a consistent generalization
of the concept of classical solutions.

Lemma 4.5. Let u be a traveling wave solution of (1). Then gk(u) := (g(u))k ∈
C2(R) for k ≥ 5.

Proof. Throughout this proof we consider derivatives (·)′, (·)′′, etc. as distributional
derivatives, and terms which contain such derivatives as elements in D′. Once we
realize that such distributions actually lie in better spaces, e.g. W 1,1

loc , the symbol
(·)′ may be interpreted as a classical (pointwise or pointwise a.e.) derivative.

Note first, that u′′g(u) ∈ L1
loc because u′′g(u) = f(u, u′) in D′ by (5) and f(u, u′)

is a regular distribution (i.e. an element of L1
loc) since u ∈ H1

loc by assumption.

Therefore, we obtain that u′g(u) ∈W 1,1
loc since u′g(u) ∈ L1

loc and

[u′g(u)]′ = u′′g(u) + (u′)2g′(u) ∈ L1
loc. (20)

Similarly, we get that (u′g(u))2 ∈W 1,1
loc , since (u′)2g2(u) ∈ L1

loc and

[(u′g(u))2]′ = 2u′g(u)[u′′g(u) + (u′)2g′(u)] ∈ L1
loc.

As a consequence we also have that u′′g3(u) ∈W 1,1
loc , since

u′′g3(u) = f(u, u′)g2(u) = f(u, 0)g2(u) + (u′)2g2(u)(Gu−B/2),

and (u′)2g2(u) ∈W 1,1
loc . For k ≥ 4 we calculate

[gk(u)]′ = kgk−1(u)g′(u)u′ = kgk−4(u)g′(u)u′g3(u).

Hence, we may write [gk(u)]′′ for k ≥ 5 as

k(k − 4)gk−5(u)g(u)2(u′)2g3(u)

+kgk−4(u)
[
g′′(u)(u′)2g3(u) + g′(u)

(
u′′g3(u) + 3(u′)2g2(u)g(u)

)]
,

which lies in W 1,1
loc by our previous considerations. Thus [gk(u)]′′ is absolutely

continuous and therefore gk(u) ∈ C2(R) for k ≥ 5.

Let us denote by ∂X the set of all boundary points of a subset X ⊆ R, and recall
that Ng = g−1(0) defined in (9) is the preimage of 0 under g.

Lemma 4.6. Let u be a traveling wave solution of (1). Then u ∈ C∞ (R \
∂(u−1(Ng))).

Proof. The set Ng is either empty, a singleton, or it contains two elements. Assuming
that s0 is an interior point of u−1(Ng), there exists an open interval Iε = (s0−ε, s0 +
ε) ⊆ u−1(Ng). Since u is continuous, u(Iε) is a singleton by the mean value theorem.
Therefore, the restriction u|Iε is a constant function, in other words u|Iε ∈ C∞(Iε).

For the remaining part of the proof let O := R \ u−1(Ng). The preimage of the
closed set Ng under u is a closed set since u is continuous, and hence O is an open
subset. Assuming that s0 ∈ O, we will find a small open interval I containing s0,
such that the restriction u|I : I → R lies in C∞(I), which establishes the claim. For
this purpose, let us first denote by Iε := (s0−ε, s0+ε) ⊆ O a suitable ε-neighborhood
of s0. The key observation is that u|Iε ∈ C2(Iε). Indeed, by Lemma 4.5 we find
that (g(u))k is C2(R) for any k ≥ 5, and hence g(u) is C2(R \ u−1(Ng)). Therefore
the restriction of u on Iε is twice continuously differentiable, since u(Iε) ∩Ng = ∅
by construction. In particular, u has a classical derivative in s0, say u′(s0) =: v0;
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furthermore we set u0 := u(s0). Let us consider the following initial value problem
on Iε: 

u′ = v

v′ =
f(u, v)

g(u)
,

(u(s0), v(s0)) = (u0, v0). (21)

The classical Picard-Lindelöf theory provides a unique smooth solution (ū, v̄) of (21),
at least on a small open subinterval I ⊆ Iε with s0 ∈ I, since the right hand side
of (21) is smooth on Iε. Since ū = u|I we conclude that u|I ∈ C∞(I), due to our
construction and Lemma 4.3.

Remark 4.7. Lemma 4.6 implies in particular that a traveling wave of (1) with
wave speed c > c̄ is smooth. An alternative straight forward (but tedious) way to
prove Lemma 4.6 is to show that for any given k ∈ N one can find some n ∈ N such
that gn(u) ∈ Ck(R), similarly as in [31].

Lemma 4.8. Let w : R→ R be an absolutely continuous function and let A ⊆ R be
a finite subset. Then the classical derivative w′ exists a.e. on R and w′ = 0 a.e. on
the preimage w−1(A).

Proof. Let us first prove the special case where A contains only one element, say
A = {α}, for α ∈ R. Since w is absolutely continuous, w′ exists almost everywhere
in R. By continuity, R := w−1(α) is a closed subset of R. As a closed set, R is the
disjoint union of a perfect set P (i.e. closed without isolated points) and a countable
set S, due to the Cantor-Bendixson theorem (see for example [24]). Let p ∈ P be
a point, such that w′(p) exists. We choose a sequence (pi)i of points pi ∈ P with
pi → p for i→∞ in order to see that

w′(p) = lim
i→∞

w(p)− w(pi)

p− pi
= lim
i→∞

α− α
p− pi

= 0. (22)

Since S is countable, its Lebesgue measure is zero and hence w′ = 0 a.e. on R.
For the case of a general finite subset A, we apply the same line of arguments as

before. We see that the sequence (w(pi))i might not be constant but take different
values of the finite set A. By the continuity of w however, we infer that w(pi)→ w(p)
as pi → p. Therefore, the sequence (w(pi))i takes the constant value w(p) for almost
all n ∈ N, which shows that the limit in (22) is zero also in the general case.

Proof of Proposition 4.1. Let us first assume that u is a traveling wave of (1). Thus,
u ∈ H1

loc, hence (TW3) is satisfied. Property (TW1) follows from Lemma 4.6 and
its proof, and the fact that every open subset of R can be represented as a countable
union of open intervals. Property (TW2) follows from the fact that u is smooth on
Ij and solves the planar differential system (8) on Ij . In Section 3 we proved that
this system is integrable and (16) implies the first relation in (18) for some hj ∈ R.
The continuity of u and (TW1) yield the second assertion in (18). Suppose that
λ(u−1(Ng)) > 0. Since both u and u′g(u) are absolutely continuous in view of the
proof of Lemma 4.5, we deduce from Lemma 4.8 that both

u′ = 0 and [u′g(u)]′ = 0 a.e. on u−1(Ng), (23)

since u−1(Ng) ⊆ [u′g(u)]−1({0}). Thus in particular, u′′g(u) = 0 a.e. on u−1(Ng). In
summary this implies, using (5), that f(u, 0) = 0 on u−1(Ng). Therefore, K = Kαi

with αi ∈ Ng as defined in (29).
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Let us now assume that a bounded continuous function u : R→ R satisfies (TW1)–
(TW3). If λ(u−1(Ng)) = 0, then u satisfies (5) pointwise a.e. in R by (TW1) and
(TW2). To see this, one has to differentiate the equation in (18) with respect to s,
and use the formula (12) for the integrating factor and the fact that u′ is nonzero
a.e. Due to (TW3) and the boundedness of u, we obtain that f(u, u′) is locally
integrable. Therefore u′′g(u) lies in L1

loc(R) as well, and since they agree almost
everywhere, we obtain:∫

R
u′′g(u)φds =

∫
R
f(u, u′)φds for all φ ∈ D(R),

which means that u is a traveling wave of (1), since we can rewrite this equation in

the form (7). For the case λ(u−1(Ng)) > 0, let us first observe, that u′g(u) ∈W 1,1
loc (R)

and is therefore absolutely continuous. To see this, note that similar to the proof of
Lemma 4.5 we obtain

u′g(u) ∈ L1
loc(R \ u−1(Ng))

and

[u′g(u)]′ = u′′g(u) + g′(u)(u′)2 ∈ L1
loc(R \ u−1(Ng)),

since u is bounded, and both (u′)2 and u′′g(u) are locally integrable. Therefore (23)
holds true and hence u′′g(u) = 0 a.e. on u−1(Ng). Since K = Kαi

with αi ∈ Ng and
in view of (23), we find that f(u, u′) = 0 a.e. on u−1(Ng), and therefore equation (5)
holds a.e. on u−1(Ng). Since we already know that the equation holds on R\u−1(Ng)
in view of (TW1) and (TW2), we conclude that (5) holds a.e. on R. By (TW3) we
obtain that f(u, u′) ∈ L1

loc(R) and therefore u is a traveling wave solution of (1) in
the sense of Definition 2.1.

5. Construction of traveling wave solutions. In the current section we con-
struct traveling waves of (1) by combining solution curves of (8) in a suitable way.
According to Proposition 4.1 we can obtain all traveling waves of (1) by following this
approach. For the study of these solution curves we exploit the fact that (8), and the
topologically equivalent system (11), are integrable on U and the respective solution
curves are the level sets Lh(H) of the first integral H, which can be expressed in the
form (16). In particular, we observe that the functions f0, g and ϕ fully determine
the phase portrait of the systems (8) and (11) for a given pair (c,K) ∈ R2.

Before studying the qualitative behavior of the solution curves in detail, we give
a rough overview of the phase portraits of (11) by discussing the fixed points for
all parameter combinations (c,K). After that, we provide explicit formulae for the
integrating factors ϕ for all wave speeds c and summarize their basic properties.

5.1. Fixed points of system (11). The fixed points of system (11) are of the form
(u, 0) and (αi, v), where αi ∈ Ng, i ∈ {1, 2}, denote the real zeros of g, cf. (9). The
number and type of fixed points are determined by the zeros of the polynomials g
and f0, which vary with the parameters c and K.

Fixed points of the form (u, 0) on the horizontal axis are determined by the roots
of f0(u) = f(u, 0). For any wave speed c ∈ R, we denote by K0 = K0(c) the zero of
the discriminant ∆f0 := (c− 1)2 − 4EK of the quadratic polynomial f0, that is,

K0 :=
(c− 1)2

4E
. (24)
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Then f0 has a double root ū when K = K0, it has two zeros u1 < ū < u2 whenever
K > K0, where

ui =
1− c±

√
∆f0

2E
, i = 1, 2,

and f0 < 0 if K < K0. Provided that Ng is nonempty, there exist invariant vertical
lines {u = αi}, where αi ∈ Ng, i = 1, 2. These invariant sets exist for wave speeds
c ≤ c̄, where

c̄ :=
64

105
(25)

is the zero of the discriminant ∆g = B2−4AcC of the quadratic polynomial g. Then
g is strictly positive if and only if c > c̄ and g(u) = C(u− α1)(u− α2) if c ≤ c̄, with

αi =
−B ±

√
∆g

2Ac
, i = 1, 2. (26)

Note that the two zeros of g coincide precisely when c = c̄ in which case we denote
the double root of g(u) by α. Observe that ū(c) < α1(c) < α2(c) for all c ∈ (−∞, c̄)
and ū(c̄) < α as displayed in Fig. 2a. The second component of the fixed point
(αi, v) is determined by the relation f(αi, v) = 0, which we will analyze below.

c

(a)

c

(b)

Figure 2. (a) the graphs of the functions α2 [bold], α1 [plain]
and ū [dashed]; (b) the graphs of Kα2

[bold], Kα1
[plain] and K0

[dashed], cf. (24) and (29).

Next we determine the type of fixed points (u, 0). The Jacobian of a point
(u, v) ∈ R2 of (11) is given by

J(u, v) =

(
vg′(u) g(u)
∂uf(u, v) ∂vf(u, v)

)
. (27)

We recall that system (11) is integrable on U = R2 \ (Ng × R). Therefore, the type
of any fixed point in U is determined by the sign of the determinant of the Jacobian
at the fixed point: a negative determinant implies a saddle, a positive determinant
implies a center and a vanishing determinant implies a cusp. The determinant of J
at the fixed points (ui, 0) ∈ U is given by

det[J(ui, 0)] = ∓
√

∆f0 g(ui), i = 1, 2. (28)

Therefore, its sign depends on the positions of the fixed points (ui, 0) relative to
each other and the invariant lines {u = αi}, i = 1, 2. Whenever these invariant lines
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exist, that is, for c ≤ c̄, we define the values Kαi(c) as follows:

Kαi
(c) denotes the unique zero of u2(c,K)− αi(c), i = 1, 2. (29)

That is, for each c ≤ c̄ the root αi of g(u) coincides with the root u2 of f0(u) precisely
when K = Kαi(c). The relative positions of u1(c,K), u2(c,K), α1(c) and α2(c),
and hence the sign of (28), are determined by the relative position of K with respect
to K0(c), Kα1

(c) and Kα2
(c), cf. Fig. 2b. Since K0(c) < Kα1

(c) < Kα2
(c) for all

c ∈ (−∞, c̄), and K0(c̄) < Kα, there are precisely seven different scenarios which
classify the types of fixed points lying on the u-axis. We summarize them in Table 1.

scenario parameter order relation fixed points and type

I K < K0(c) - -
II K = K0(c) ū < α1 < α2 (ū, 0) n
III K0(c) < K < Kα1

(c) u1 < u2 < α1 < α2 (u1, 0) s, (u2, 0) c
IV K = Kα1(c) u1 < u2 = α1 < α2 (u1, 0) s, (α1, 0) n
V Kα1

(c) < K < Kα2
(c) u1 < α1 < u2 < α2 (u1, 0) s, (u2, 0) s

VI K = Kα2
(c) u1 < α1 < u2 = α2 (u1, 0) s, (α2, 0) n

VII K > Kα2(c) u1 < α1 < α2 < u2 (u1, 0) s, (u2, 0) c

Table 1. A list of all possible scenarios for the ordering of fixed
points on the horizontal axis. Here s stands for saddle, c for center
and n means that the Jacobi matrix at the fixed point is nilpotent.

The local behavior near the nilpotent fixed points will be determined in the phase
plane analysis in Section 5.4. Let us point out, that in the situation c = c̄, i.e. when
g(u) has the double root α, we distinguish between the five scenarios I–IV and VII
in Table 1, since Kα(c̄) = Kα1(c̄) = Kα2(c̄). In case that c > c̄, i.e. when Ng is
empty, we distinguish only between the first three scenarios, where K has no upper
bound in scenario III.

To determine the type of the fixed points (αi, v), i ∈ {1, 2}, on the invariant lines,
recall that their second component is determined by the relation f(αi, v) = 0, which
holds if and only if v = ±vαi , where

vαi
:=

√
−f0(αi)

− 1
2B +Gαi

whenever this expression is real and finite. We observe that

− 1

2
B +Gα2(c) < 0 for all c ∈ (−∞, c̄), (30)

thus the fixed points (α2,±vα2) exist whenever f0(α2) > 0, that is, for K > Kα2(c)
defined in (29). These fixed points are saddles, since the local linearization of (11),
which is a lower triangular matrix in view of (27), has two nonzero eigenvalues of
opposite sign. The existence of the fixed points (α1,±vα1

) does not depend solely
on K, but also on the parameter c, since − 1

2B + Gα1(c) changes its sign at the
particular wave speed

c1 :=
24505

41503
< c̄. (31)

We find that ±vα1 are real numbers – and hence the points (α1,±vα1) are fixed
points of (11) – provided that either c < c1 and K < Kα1(c) or c ∈ (c1, c̄) and
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K > Kα1(c). In the first case, (α1,±vα1) are saddles since the Jacobian J is a lower
triangular matrix with eigenvalues of opposite sign. In the second case, these fixed
points are stable or unstable nodes, i.e. both eigenvalues of their lower triangular
matrix J are nonzero real numbers of the same sign. In the case that K = Kα1

(c)
and c ∈ (−∞, c̄) \ {c1}, we have vα1

= 0, hence the corresponding fixed point lies
on the horizontal axis and the situation is as described in scenario IV in Table 1.
Similarly, the case K = Kα2(c), where vα2 = 0 for all c ∈ (−∞, c̄), corresponds to
scenario VI. It remains to discuss the case c = c1 and K = Kα1(c1) for which the
function f can be written as

f(u, v) = E(u− u1)(u− α1(c1))−G(u− α1(c1))v2.

This implies that every point on the invariant line {u = α1(c1)} is a fixed point of
system (11).

If c = c̄, the function g has a unique double root at u = α and for K > Kα we
have that the fixed points (α,±vα) are non-hyperbolic.

5.2. Integrating factor. In this subsection, we give explicit formulas for the
integrating factor ϕ of system (11) for various wave speeds. Recall that ϕ solves the
differential equation (12). Obviously, its explicit form depends on the number of
real roots of the polynomial g, and thus on the wave speed c. Therefore, we treat
the three cases c > c̄, c = c̄ and c < c̄ separately.

5.2.1. Case c > c̄. We have that g > 0, hence we may define γ :=
√
−∆g ∈ R+. We

find that the positive real analytic function

ϕ(u) = (g(u))ρ exp

(
−2ρB

γ
arctan

(
g′(u)

γ

))
(32)

solves (12) in R, where we have set ρ := −
(
1 + G

C

)
> 0, cf. Fig. 3a. The first integral

H associated to ϕ is analytic in R2.

(a)

Α

(b)

Figure 3. The graph of ϕ for (a) c > c̄ and (b) c = c̄.

5.2.2. Case c = c̄. In this situation, the polynomial g has a double root in α, cf. (26),
so that g(u) = C(u− α)2, and

ϕ(u) =
(g(u)

C

)ρ
exp

(
−2ρ

α

u− α

)
> 0 (33)

solves (12) in R \ {α}, where again ρ = −
(
1 + G

C

)
> 0. We note that ϕ is real

analytic and strictly positive in its domain R \ {α}, cf. Fig. 3b. Therefore, the first
integral H associated to ϕ is analytic in U = R \ {α}.
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Α1 Α2

(a)

Α1 Α2

(b)

Α1 Α2

(c)

(a)-(c): c ∈ (−∞, 4/7) and ϕ is continuous with two zeros at α1,2.

Α1 Α2

(d) c = 4/7: ϕ−1(0) = {α2}.

Α1

(e) c ∈ (4/7, c1): ϕ ∈ H1
loc.

Α1

(f) c ∈ [c1, c̄): ϕ /∈ H1
loc.

Figure 4. The graph of ϕ for increasing values of c ∈ (−∞, c̄).

5.2.3. Case c < c̄. We have that g(u) = C(u− α2)(u− α1) and

ϕ(u) =
(
|u− α2|α2 |u− α1|−α1

)θc
(34)

solves (12) in R \ {α1, α2}, where

θc := −
2
(
1 + G

C

)
α2(c)− α1(c)

> 0.

Note that ϕ is real analytic and positive in U = R \ {α1, α2} and ϕ ∈ C(R) as long
as α1 ≤ 0, cf. Fig. 4. For all c < c̄ we have that lim|u|→∞ ϕ(u) =∞ and that ϕ is
continuous in α2 with ϕ(α2) = 0, while

lim
u→α1

ϕ(u) =

 0 if α1 < 0
(α2 − α1)θcα2 if α1 = 0
∞ if α1 > 0.

Formula (34) tells us that ϕ has a certain regularity in α2, and also in α1 provided
that α1 is small enough. Furthermore we deduce from (34) that ϕ ∈ L1

loc(R) if and
only if α1(c)θc < 1, which holds true if and only if c < c1. Recall that c1, defined in
(31), is the bifurcation value for the existence of fixed points of the form (α1,±vα1).
Moreover, we see that the function ψ = −

∫
f0ϕdu is continuous at α1 if c < c1.

Observe that ψ is continuous even for wave speeds slightly larger then c1 if α1 is
a root of f0. More precisely, for c ∈ (−∞, c̄) we consider f0 = f0(c,K) and set
K = Kα1(c) so that f0 vanishes at u2(c,Kα1

) = α1(c), cf. (29). We define

c2 := sup{c ∈ (−∞, c̄) : f0ϕ ∈ L1
loc(R)}, (35)

and find that c2 = sup{c ∈ (−∞, c̄) : α1(c) θc < 2} = 165796
277207 . Then ψ ∈ C(R) if and

only if c < c2. We clearly have that

c1 < c2 < c̄.
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This concludes our discussion of the fixed points and integrating factor of system
(11). The remainder of this section deals with the systematic construction of traveling
wave solutions of (1).

5.3. Traveling waves – the “smooth” case. We claim that for any c > c̄ and
K > K0(c) there exist smooth solitary and smooth periodic traveling waves. Indeed,
recall that when c > c̄ we have g(u) > 0, and the first integral is of the form (32).
Therefore H is analytic on R2 with ∇H(u, v) = 0 if and only if v = 0 and ψ′(u) = 0.

In view of the fact that v2

2 ϕ(u)g(u) ≥ 0, we find that (u2, 0) is a local minimum of
H whereas (u1, 0) is a saddle point since

ψ′′(u) = −(ϕ(u)f0(u))′ = ϕ(u)

(
f0(u)

2(C +G)u

g(u)
− f ′0(u)

)
, (36)

implying that

ψ′′(u1) = −ϕ(u1)f ′0(u1) = −ϕ(u1)
√

∆f0 < 0, ψ′′(u2) = ϕ(u2)
√

∆f0 > 0,

where ∆f0 is the discriminant of f0 defined in Section 5.1. Note that H(u, 0) = ψ(u)
with limu→±∞ ψ(u) = ±∞, and lim|v|→∞H(u, v) =∞, for any fixed u ∈ R. Since
ψ decreases strictly in the interval (u1, u2) and increases strictly in (u2,∞), there
exists precisely one ur ∈ (u2,∞) with ψ(u1) = ψ(ur). Thus, the level-set Lh1

(H)
contains the two branches {(u, v±h1

(u)) : u ∈ [u1, ur]} for h1 := ψ(u1) and v±h1
(u)

given in (16), which form a homoclinic orbit of system (8) representing a smooth
solitary traveling wave of (1). This solution is symmetric with respect to its unique
maximum in view of the symmetry of H in the second variable, cf. (13). Moreover,
the solitary wave decays exponentially to the constant value u1 on either side of the
maximum at infinity, since the vector field is locally C1-conjugate to its linearization
at the hyperbolic saddle (u1, 0) by the Hartman-Grobman Theorem, cf. [37].

The level-sets Lh(H) with h ∈ (ψ(u2), ψ(u1)) correspond to periodic orbits around
the center (u1, 0) of system (8), that is, closed loops contained in the region bounded
by the homoclinic orbit corresponding to h = h1. These periodic orbits represent
smooth periodic traveling wave solutions of (1) which are symmetric with respect to
their local extrema and have a unique maximum and minimum per period.

These are all non-constant solutions of (8) for K > K0 which are bounded in the
u-component. In Fig. 5 we indicate the unbounded solutions by grey lines. There
are no non-trivial bounded solutions for K ≤ K0, cf. Table 1. Indeed, for K < K0

the system has no critical points, while for K = K0 it has a nilpotent fixed point (a
cusp), hence there are no non-constant orbits in the phase plane, which are bounded
in the u-component.

5.4. Traveling waves – the “singular” case. We recall that the zero set Ng of
the quadratic polynomial g is nonempty for wave speeds c ≤ c̄. This yields the
existence of one invariant vertical line {u = α} in the phase plane of (11) if c = c̄
and Ng = {α}, or two such lines {u = α1} and {u = α2} if c < c̄ and Ng = {α1, α2}.
These lines form the complement of the domain U ⊆ R2 of system (8). However, it
turns out that for certain parameter combinations (c,K) ∈ (−∞, c̄]× R solutions of
(8) can have a continuous extension to a fixed point of (11) of the form (αi,±vαi

),
i ∈ {1, 2}, on Ng × R, and possible even beyond that point. It may also happen
that a solution of (8) becomes unbounded in its v-component as its u-component
approaches an element of Ng. In view of Proposition 4.1 we will combine such
solutions of system (8), which are defined not globally, but on subintervals of R, in
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u2u1

(a)

u1

u2

u1

u2

(b)

Figure 5. In (5a) we sketch a phase portrait representing scenario
III in Table 1, which yields a smooth solitary and smooth periodic
traveling waves as illustrated in (5b).

a suitable way to construct non-smooth traveling waves of (1). In Example 5.3 we
explain a prototypical construction in full detail.

We discuss the cases c < c̄ in Section 5.4.1 and the case c = c̄ in Section 5.4.2.
For each scenario we provide sketches of the corresponding phase portraits. Let
us point out that the orientation of the orbits – indicated by arrows – reflects the
parametrization of system (8). For convenience, also fixed points of the form (αi, v),
i = 1, 2, of the reparametrized system (11) are included in the sketches, even though
they are not contained in the domain U of (8).

5.4.1. Case −∞ < c < c̄. For this parameter range our qualitative analysis distin-
guishes between the scenarios I–VII of Table 1. Moreover, we divide each scenario
into the subcases c < c1, c = c1 and c1 < c < c̄, where c1 defined in (31) is the
bifurcation value for fixed points on the invariant line {u = α1}. It is convenient to
consider the following c-dependent subregions of the (u, v)-plane

L := {(u, v) ∈ R2 : −∞ < u < α1}
M := {(u, v) ∈ R2 : α1 < u < α2}
R := {(u, v) ∈ R2 : α2 < u <∞}.

Furthermore we denote by L+, M+, and R+ the intersection of L, M and R
respectively with the upper half-plane R×R+. We define the lower half-regions L−,
M− and R− accordingly. In the following we will refer to the restrictions of level
sets Lh(H) to these regions as segments. We will often analyze the regions L, M
and R separately. Let us emphasize, however, that orbits may cross the invariant
lines through fixed points.

In the constructions below we will frequently discover solution curves of (8) that
give rise to global piecewise defined continuous functions û : R → R satisfying
properties (TW1) and (TW2) of Proposition 4.1. If all involved orbits are not only
bounded in the u-component but also in the v-component, then property (TW3)
of Proposition 4.1, which ensures that û ∈ H1

loc(R), is trivially satisfied as well and
hence û turns out to be a traveling wave solution of (1). The following result clarifies
under which conditions property (TW3) is still satisfied in the case that certain
involved orbits become unbounded in the v-component.



1582 ANNA GEYER AND RONALD QUIRCHMAYR

Lemma 5.1. Let (c,K) ∈ (−∞, c̄) × R, let h ∈ R and suppose that αi, i ∈
{1, 2}, is an adherent point of the u-component of the level set Lh(H) ⊆ U . Let
ω = (ω1, ω2) : I → U be a maximal solution of (8), whose orbit is contained in
Lh(H) = {(u, v±h (u))}.

(i) If limu→α2 v
+
h (u) =∞, then ω is not suitable for the construction of a traveling

wave solution of (1).
(ii) Suppose that assumption (i) is not satisfied. If limu→α1 v

+
h (u) =∞, then ω is

suitable for the construction of a traveling wave solution of (1), if and only if
ω1 is bounded and c ∈ (c0, c1], where

c0 := 511/1024. (37)

Proof. First we observe the following. If v+h blows up as u → αi, i ∈ {1, 2}, then
the blow up of ω2 happens on a finite subinterval of I. To this end, we assume
without loss of generality that ω runs through the set {(u, v+(u)) : αi− ε ≤ u < αi},
i ∈ {1, 2}, where ε > 0 is sufficiently small, and limu↗αi

v+h (u) =∞. In view of (17)
we see that ω passes this set within a finite interval of length

δ(ε) =

∫ αi

αi−ε

du

v+h (u)
<∞. (38)

More precisely we have that δ(ε) = |s1 − sε|, where sε is defined via ω(sε) =
(αi − ε, v+h (αi − ε)), and s1 ∈ R is the boundary point of the interval I where the
blow up of ω occurs, that is,

lim
s→s1

ω1(s) = αi and lim
s→s1

ω2(s) =∞.

Ad (i). We show that ω2 /∈ L2
loc(I). Let us assume that {(u, v+h (u)) : α2−ε ≤ u <

α2} = ω([sε, s1)) for some ε > 0 sufficiently small with limu↗α2
v+h (u) = ∞ such

that ω(sε) = (α2 − ε, v+h (α2 − ε)) with lims→s1 ω1(s) = α2 and lims→s1 ω2(s) =∞.
Observe that h 6= ψ(α2), since otherwise this limit would be zero in the case K = Kα2

and equal to vα2
in case that K > Kα2

, as an application of de l’Hôpital’s rule
shows:

lim
u→α2

(v+h (u))2 = lim
u→α2

2
h− ψ(u)

ϕ(u)g(u)
= lim
u→α2

−2ψ′(u)

g′(u)ϕ(u) + g(u)ϕ′(u)

= lim
u→α2

2f0(u)ϕ(u)

ϕ(u)[g′(u)− 2(G+ C)u]
=

f0(α2)
1
2B −Gα2

,

where 1
2B −Gα2 > 0 for all c ∈ (−∞, c̄), as discussed in (30). Since ψ is continuous

on (α1,∞), we infer that h− ψ is bounded on [α2 − ε, α2] and for sufficiently small
ε > 0 we may assume that |h− ψ| > δ on [α2 − ε, α2] for some δ > 0. Therefore we
obtain that

v+h (u) =

√
2
h− ψ(u)

g(u)ϕ(u)
∈ Θ(|u− α2|−(1+θcα2)/2) for u↗ α2,

where
1 + θcα2

2
≥ 1 for all c ∈ (−∞, c̄). (39)

From (17) we obtain that∫ s1

sε

[ω2(s)]2 ds =

∫ α2

α2−ε
v+h (u) du, (40)
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hence ω2 is not locally square integrable by (39).

Ad (ii). For c < c1 we use the analogous notation and simplifying assumptions as
in the proof of part (i). In this case we obtain by similar arguments as in the proof
of part (i) that

v+h (u) ∈ Θ(|u− α1|−(1−θcα1)/2) for u↗ α1. (41)

Therefore, the corresponding integral in (40) is convergent, and hence ω2 ∈ L2
loc(I),

if and only if
1− θcα1

2
< 1, (42)

which is equivalent to requiring that c > c0. For the case c = c1, we recall that
ψ develops a singularity in α1, provided that K 6= Kα1

(c1) (if K = Kα1
(c1), we

use the same reasoning as above). However, since gϕ ∈ Θ(1) for u ↗ α1 and√
|h− ψ| ∈ L1

loc(R), we infer that the corresponding integral (40) is finite also in
this case.

Remark 5.2. We point out that Lemma 5.1 does not tell us whether there exist
solutions as stated in the assumptions. We will see that there exist no solutions of
(11) which become unbounded in the second component at α1 if c > c1. Note that
c0 < c1.

In order to get a first impression of the construction of non-smooth traveling waves
of (1), we provide a very detailed description of the construction of one particular
wave in the following example.

Example 5.3 (A cusped solitary wave). Let K ∈ (Kα1
(c),Kα2

(c)), i.e. we find
ourselves in scenario V of Table 1, and let c ∈ (−∞, c1). The corresponding phase
portrait is sketched in Fig. 12a. The function ψ : R → R is continuous, and it is
smooth on R \ {α1, α2}. We restrict our attention to the region L and observe that
ψ increases strictly on (−∞, u1), takes a local maximum in u1 – recall that (u1, 0)
is a saddle – and decreases strictly on (u1, α1). Let h := ψ(u1) and consider the
two branches {(u, v±h (u)) : u1 < u < α1}. The corresponding orbits are indicated

by red lines emerging from the saddle point in Fig. 12a: v+h increases strictly on
(u1, α1) and becomes unbounded as u↗ α1, as an application of de L’Hôpital shows.
We use these two branches to construct a solitary cusped traveling wave. To this
end, recall that s is the moving frame variable corresponding to the wave speed c,
that is, s is the independent variable of system (8). We choose s0 ∈ (−∞, 0), let
(u0, v0) ∈ {(u, v+h (u)) : u1 < u < α1} be a point on the upper branch, and consider
the Cauchy problem of (8) with initial condition (u(s0), v(s0) = (u0, v0). The
solution, denoted by ω− = (ω−1 , ω

−
2 ), runs through the upper branch by construction.

It is clear that the maximal interval of existence I− is of the form (−∞, s∗) with
s∗ ∈ (s0,∞). Indeed, ω−(s) approaches the saddle (u1, 0) for s → −∞, and the
upper bound is obtained from (17), since

s1 − s0 =

∫ α1

u0

du

v+h (u)
<∞,

for a unique finite s1 ∈ R. Let us for simplicity assume that s∗ = 0, i.e. I− = (−∞, 0),
then

lim
s→−∞

(ω−1 (s), ω−2 (s)) = (u1, 0), lim
s↗0

ω−1 (s) = α1, lim
s↗0

ω−2 (s) =∞.
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Similarly we obtain a solution ω+ of (8) satisfying (ω+
1 (s0), ω+

2 (s0)) = (u0,−v0),
which is defined on I+ = (0,∞) and runs through the lower branch with

lim
s→∞

(ω+
1 (s), ω+

2 (s)) = (u1, 0), lim
s↘0

ω+
1 (s) = α1, lim

s↘0
ω+
2 (s) = −∞.

We are now ready to construct a composition of these wave segments by defining
the bounded continuous function û : R→ R as

û(s) :=


ω−1 for s ∈ I−

α1 for s = 0

ω+
1 for s ∈ I+,

which is smooth on R \ {0} and decreases exponentially to u1 for |s| → ∞, cf. the
upper sketch in Fig. 9b. Due to our construction, û clearly satisfies properties (TW1)
and (TW2) of Proposition 4.1, independent of the value c ∈ (−∞, c1). It remains to
confirm (TW3), i.e. to show that the weak derivative û′ lies in L2

loc(R), in order to
infer that û is indeed a traveling wave of (1). In view of Lemma (5.1) we find that
û′ ∈ L2

loc(R) if and only if c > c0, with c0 defined in (37).
A similar construction yields cusped periodic traveling waves, cf. the lower sketch

in Fig. 9b. Indeed, for c ∈ (c0, c1) and K ∈ (Kα1
(c),Kα1

(c)), each h ∈ (ψ(α1), ψ(u1))
corresponds to an orbit similar to the one indicated by the wine red line in Fig. 12a.
We identify such an orbit with a smooth solution of (8) on some bounded open
interval, which may be continued periodically and continuously on the whole real
line. Since c > c0, the weak derivative of this function is locally square integrable,
and hence this periodic extension clearly satisfies all properties of Proposition 4.1.

In the sequel we will omit the details of such “gluing-processes” in our constructions
and just identify suitable combinations of orbits in the phase plane of (8) with
traveling waves of (1).

Remark 5.4. In the sketches of the phase portraits for scenarios I–IIV we display
orbits which are bounded in the u-component and satisfy Lemma 4.1 (i) with dashed
lines to indicate that they are not suitable to construct traveling waves of (1).

Α1 Α2

(a) c < c1

Α1 Α1

(b) c ∈ [c1, c̄)

Figure 6. Sketches of phase portraits for scenario I, i.e. K < K0(c).

Scenario I [Fig. 6]. We begin with the case c < c1, cf. Fig. 6a, where system
(11) has two saddles (α1,±vα1) and no other fixed points. The continuous function
ψ : R→ R is strictly increasing.
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The orbits in L+ can be grouped into the following three categories: orbits
corresponding to the segment {(u, v+h (u)) : −∞ < u < α1} for the level h = ψ(α1),
which reach the fixed point (α1, vα1

) and separate L+ into an upper region with
orbits of the form {(u, v+h (u)) : −∞ < u < α1} for the levels h > ψ(α1), and a lower

region with orbits corresponding to the level sets {(u, v+h (u)) : −∞ < u < r} for

h < ψ(α1), r < α1, with limu→−∞ v+h = ∞ in each case. By the symmetry of the
system we obtain the analogous picture for L−. We sketch these orbits with gray
lines in Fig. 6a since they are unbounded in the first component and therefore do
not give rise to traveling wave solutions.

The level sets of the first integral in M can be divided into three groups as well:
h < ψ(α1), h = ψ(α1) and ψ(α1) < h < ψ(α2), cf. the green, red and dark blue
dashed lines in Fig. 6a. The corresponding (maximal) solutions of (8), whose first
component runs from α1 to α2, are defined on bounded intervals of length∫ α2

α1

du

|v±h (u)|
=

∫ α2

α1

√
ϕ(u)g(u)

2(h− ψ(u))
du <∞,

for corresponding h ∈ R. However these solutions do not yield traveling waves due
to Lemma 5.1, since limu↗α2

v+h (u) =∞ for all h.

All orbits in R have a similar shape and correspond to a level set segment of
Lh(H) with h > ψ(α2), cf. the light blue dashed line in Fig. 6a. Once again, Lemma
5.1 implies that they are not suitable to construct traveling waves.

If c ≥ c1, cf. Fig, 6a, the phase portrait of (8) changes qualitatively in L and in
M due to the absence of the fixed points (α1,±vα1

). All orbits in L correspond
to segments of Lh(H) with h ∈ R and are unbounded in the first component. The
orbits in M correspond to segments of Lh(H) with h < ψ(α2). They are all of the
same type and are not suitable for the construction of traveling waves due to Lemma
5.1, cf. Fig. 6b.

Scenario II [Fig. 7]. In comparison with scenario I, the phase portraits (for both
cases c < c1 and c1 < c < c̄) change only within L, where one fixed point (ū, 0),
a cusp, is present, cf. Fig. 7. However, we see that all (non-constant) orbits in L
are unbounded in the first component, so none of them can be used to construct a
traveling wave. The trivial solution u ≡ ū of (5) is the only traveling wave solution
of (1).

(a) c ∈ (−∞, c1) (b) c ∈ [c1, c̄)

Figure 7. Sketches of phase portraits for scenario II, i.e. K = K0(c)
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Scenario III [Fig. 8]. The picture in M and R is unchanged, but we will see that
the orbits in L give rise to both smooth and non-smooth traveling waves.

We begin with the case c < c1, cf. Fig. 8a–8c. Note that ψ has the following
monotonicity properties: ψ increases strictly on (−∞, u1) and attains a local maxi-
mum at u1, decreases strictly on (u1, u2), takes a local minimum at u2 and increases
strictly on (u2,∞). Recall that ψ is continuous at α1 since ϕ ∈ L1

loc if c < c1. The
sign of ψ(u1)− ψ(α1), which depends on the choice of the parameter K, determines
the qualitative behavior of the phase portrait of Fig. 8a-8c. Let us suppose for the
moment that c is fixed such that α1 ≤ 0, that is, c ≤ 4/7. We define the differentiable
function

F (K) := ψ(u1)− ψ(α1) =

∫ α1

u1(K)

f0(K,u)ϕ(u) du, F : [K0,Kα1
]→ R,

where we write f0(K,u) to emphasize the K-dependence of f0. By Leibniz’ integral
rule, the derivative of F with respect to K is given by

F ′(K) =

∫ α1

u1(K)

f ′0(K,u)ϕ(u) du− u′1(K) f0(K,u1(K))ϕ(u1(K)) > 0. (43)

The positive sign follows from the fact that u1 is by definition a zero of f0, and
moreover we have that f ′0(K,u) = ∂Kf0(K,u) = 1 for all K,u ∈ R. Thus F
is strictly increasing. Furthermore, F (K0) < 0 and F (Kα1

) > 0, therefore F
has a unique zero which we denote by K1 ∈ (K0,Kα1

), and F < 0 in [K0,K1),
F > 0 in (K1,Kα1

]. If 4/7 < c < c1 then α1(c) > 0, and we can not apply
Leibniz’ rule on F since ϕ is not continuous at α1. Note however, that F is still
differentiable on [K0,Kα1) and continuous at α1, with F (K0) < 0 and F (Kα1) > 0.
Let Fε(K) := ψ(u1)−ψ(α1− ε) for some sufficiently small ε > 0, which is defined on
a subinterval [K0,Kε] ⊆ [K0,Kα1

]. By continuity we can choose ε small enough such
that Fε(Kε) > 0. Then F ′ε > 0, which in turn shows that F is strictly increasing on
[K0,Kα1

] for all c ∈ (−∞, c1), since ε can be chosen arbitrarily small.

If K ∈ (K0,K1), cf. Fig. 8a, we find periodic orbits around the center (u2, 0)
which are surrounded by a homoclinic orbit starting at the saddle (u1, 0). The
periodic orbits, which correspond to energies ψ(u2) < h < ψ(u1), yield smooth
periodic traveling waves and the energy h = ψ(u1) corresponds to a homoclinic orbit,
which gives rise to a smooth solitary wave, cf. Fig. 5b.

If K = K1, cf. Fig. 8b, then F (K) = 0, which implies the existence of a heteroclinic
orbit in L± connecting (u1, 0) with (α1,±vα1); the corresponding energy is given by
h = ψ(u1) = ψ(α1). The region in L inside these heteroclinic orbits and the invariant
line at α1 is filled with periodic orbits encircling (u2, 0), which correspond to level
set segments of Lh(H) with ψ(u2) < h < ψ(u1). The two heteroclinic branches form
a peaked solitary wave, cf. Fig. 9a. The periodic orbits yield smooth periodic waves
cf. Fig. 5b.

If K1 < K < Kα1 , cf. Fig. 8c, there exists a heteroclinic orbit linking (α1, vα1)
with (α1,−vα1) corresponding to the energy h = ψ(α1) < ψ(u1). This heteroclinic
orbit bounds a region in L, which is filled with periodic orbits encircling (u2, 0) with
energies ψ(u2) < h < ψ(α1). The heteroclinic orbit yields peaked periodic waves, the
periodic orbits yield smooth periodic waves. The energy h = ψ(u1) corresponds to
an orbit in L+ which arises from (u1, 0) and becomes unbounded in the v-component
as u↗ α1. This orbit combined with its counterpart in L− yields a cusped solitary
wave, cf. Fig. 9b, provided that the additional condition c ∈ (c0, c1) is satisfied in
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view of Lemma 5.1. For energies ψ(α1) < h < ψ(u1) we obtain periodic cusped
traveling wave solutions if c ∈ (c0, c1), again due to Lemma 5.1.

If c1 ≤ c < c̄, cf. Fig. 8d, ψ has a pole at α1 and we obtain a homoclinic
orbit for energy h = ψ(u1) and periodic orbits for energies ψ(u2) < h < ψ(u1).
Hence we obtain a smooth solitary wave and smooth periodic traveling waves,
cf. Fig. 5b. Energies other than these correspond to orbits which are unbounded in
the u-component.

(a) c ∈ (−∞, c1), K ∈ (K0(c),K1(c)) (b) c ∈ (−∞, c1), K = K1(c)

(c) c ∈ (−∞, c1), K ∈ (K1(c),Kα1(c)) (d) c ∈ [c1, c̄), K ∈ (K0(c),Kα1(c))

Figure 8. Sketches of the phase portraits of scenario III: (8a)-(8d)
yield smooth periodic waves, (8a) and (8d) yield smooth solitary
waves, (8b) yields peaked solitary waves, (8c) yields peaked periodic
and – provided that c ∈ (c0, c1) – both periodic and solitary cusped
traveling waves.

Remark 5.5. So far we have constructed non-smooth waves by combining orbits
that correspond to one particular energy level h, see for instance Fig. 5 and Fig. 9.
More precisely, these waves satisfy the following special version of property (TW2)
in Proposition 18.

It holds that λ(u−1(Ng)) = 0 and there exist K,h ∈ R such that
(u′)2 = 2

h− ψ(u)

ϕ(u)g(u)
on all intervals Ij

u→ αi at finite endpoints of Ij ,with αi ∈ Ng.

(TW2’)
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u1

Α1

u1

Α1

(a)

u1

Α1

u1

Α1

(b)

Figure 9. Sketches of peaked (9a) and cusped (9b) traveling waves.

In particular all smooth traveling waves satisfy this property. Note however, that
Proposition 4.1 also permits the combination of orbits which correspond to different
energy levels. Scenarios IV and VII for instance yield rich collections of such
combinations of solutions of system (8), see Fig. 11 and Fig 17c. To distinguish
between these two types of traveling waves, we make the following definition:

Definition 5.6. A traveling wave solution of (1) is called an elementary wave, if
(TW2’) is satisfied. Otherwise we speak of a composite wave.

(a) c ∈ (−∞, c1) (b) c = c1

(c) c ∈ (c1, c2) (d) c ∈ [c2, c̄)

Figure 10. Sketches of phase portraits in scenario IV, i.e. K = Kα1
(c).
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Scenario IV [Fig. 10]. We refer to the previous scenarios for the discussion of
solution curves within the region R. Note that ψ ∈ C(R) if and only if c < c2, cf.
(35), due to the fact that f0 vanishes in α1.

Let us consider the region M first. For wave speeds c ∈ (−∞, c2)\{c1}, cf. Fig. 10a
and Fig. 10c, we distinguish between three different types of level sets Lh(H), similar
as in the previous scenarios. The only qualitative difference is, that the upper branch
of the M -segment of Lh(H) for energy h = ψ(α1) connects to a point on the u-axis,
namely (α1, 0). Indeed, if c 6= c1 we find that

lim
u↘α1

(v±h (u))2 = lim
u↘α1

2
ψ(α1)− ψ(u)

ϕ(u)g(u)
= lim
u↘α1

f0(u)

B − 2Gu
= 0,

where we have used L’Hôpital’s rule in the second equality. Furthermore we have
that

lim
u↗α2

(v±h (u))2 = lim
u↗α2

2
ψ(α1)− ψ(u)

ϕ(u)g(u)
=∞.

For c ∈ [c2, c̄), cf. Fig. 10d, each orbit in M corresponds to the M -segment of
a level set Lh(H) with h < ψ(α2). These segments cross the u-axis and satisfy
limu↗α2 v

±
h (u) = ±∞. None of the orbits we considered so far are suitable for the

construction of traveling waves by Lemma 5.1. We will analyse the case c = c1
separately below.

Next we analyze the phase portraits within L. For the wave speeds c < c1,
cf. Fig. 10a, the function ψ is continuous on R, increases strictly in the interval
(−∞, u1), takes a local maximum at u = u1, decreases strictly on (u1, α1), has a
local minimum at α1 and increases on (α1,∞) with ψ′(α1) = 0. This yields, for the
energy h = ψ(u1), a solution branch {(u, v+h (u)) : u1 < u < α2} which connects to

the saddle (u1, 0) with limu↗α1
v+h (u) =∞, cf. the upper red orbit in Fig. 10a. We

can identify this orbit together with its counterpart in L− with a cusped solitary
wave, provided that c ∈ (c0, c1), cf. Lemma 5.1. Energies ψ(α1) < h < ψ(u1) yield
smooth orbits in L as indicated by the wine red line in Fig. 10a. The elementary
traveling waves that correspond to theses orbits are periodic ones with cusps. There
are no other solution curves possessing a bounded first component.

For c ∈ (c1, c̄), cf. Fig. 10c and Fig. 10d, the level h = ψ(u1) yields a heteroclinic
orbit connecting (u1, 0) with (α1, 0). This is obvious for c ∈ (c1, c2), since in this
case (gϕ)(u)→∞ as u↗ α1, whereas ψ(u1)− ψ(u) stays bounded. For c ∈ [c2, c̄)
we have that ψ(u1)− ψ(u)→∞ as u↗ α1 and by applying de l’Hôpital’s rule we
obtain

lim
u↗α1

2
ψ(u1)− ψ(u)

ϕ(u)g(u)
=

f0(α1)
1
B −Gα1

= 0.

The point (α1, 0) is reached by a solution of (8) at some finite value of the moving
frame variable s. Again this is obvious for c ∈ (c1, c2) where ψ is continuous at α1,
because then ϕg has a finite improper integral and in particular∫ α1

α1−ε

du

|v±h (u)|
=

∫ α1

α1−ε

√
ϕ(u)g(u)

2(h− ψ(u))
du <∞

for sufficiently small ε > 0 such that u1 < α1 − ε. If c ∈ (c2, c̄), we use that

lim
u↗α1

ϕ(u)g(u)(α1 − u)

2(h− ψ(u))
=

1
2B −Gα1 − C(α2 − α1)α1

E(u1 − α1)
∈ (0,∞), (44)
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which implies that the improper integral in (5.4.1) is again finite. Energies h ∈
(ψ(α1), ψ(u1)) in case that c ∈ (c1, c2), and energies h ∈ (−∞, ψ(u1)) in case that
c ∈ [c2, c̄), yield homoclinic orbits of (8), cf. the wine red loop in Fig. 10c and
Fig 10d. The corresponding solutions of (8) are defined on intervals of finite length.

u1

Α1

(a)

u1

Α1

(b)

u1

Α1

(c)

u1

Α1

(d)

u1

Α1

(e)

u1

Α1

(f)

Figure 11. Some examples of composite waves constructed from
orbits corresponding to scenario IV: smooth (11a) and peaked (11b)
traveling wave solutions with plateaus at height α1, smooth (11c)
and peaked (11d) multi-crested solutions with decay, and smooth
(11e) and non-smooth (11f) compactons.

Finally we analyze the case c = c1, cf. Fig. 10b. We have that every point on the
invariant line {u = α1} of system (11) is a fixed point. Recall that the function f
can be written as

f(u, v) = E(u− u1)(u− α1)−G(u− α1)v2

in this case, and that ψ is continuous on R in view of (35). It satisfies the same
monotonicity properties as in the case c < c1, but its graph is not smooth at the
local minimum in α1: the corresponding one-sided derivatives exist, but do not
coincide. The function ϕg has a (finite) jump at α1, since 1− θα1 = 0 if c = c1 and
therefore

(ϕg)(u) = −C sgn(u− α1) |u− α2|θα2+1, u ∈ R \ {α1},
for some constant C. Note, however, that the limit v±h (α−1 ) := limu↗α1

v±h (u) is
still defined. For h = ψ(u1) we obtain a heteroclinic orbit connecting (u1, 0) with
the fixed point (α1, v

+
h (α−1 )). We obtain a peaked solitary wave by combining this

orbit with its counterpart in L−. Energies h ∈ (ψ(α1), ψ(u1)) yield heteroclinic
orbits in L which connect the fixed points (α1, v

−
h (α−1 )) with (α1, v

+
h (α−1 )) and cross

the u-axis in some point (uh, 0). Due to the strict monotonicity of ψ and ϕg on
(u1, α1) it is obvious, that 0 < v+h1

(α−1 ) < v+h2
(α−1 ) for ψ(α1) < h2 < h1 ≤ ψ(u1).
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Each one of these solution curves gives rise to a peaked periodic traveling wave
of elementary type. By combining orbits of different energies, we obtain a rich
collection of (not necessarily periodic) peaked waves. The orbits that correspond to
energies h > ψ(u1) and h < ψ(α2) are unbounded in u. The orbits in M correspond
to energy levels h < ψ(α2). All these orbits become unbounded in the second
coordinate as u approaches α2 from the left side. Therefore they are not useful
for the construction of traveling waves in view of Lemma 5.1. For the sake of
completeness we analyze their behavior as u ↘ α1. For h = ψ(α1) we have that
limu↘α1 v

+
h (u) = 0 – this orbit (and its reflection about the u-axis) is indicated by

the light blue dashed line in Fig. 10b. Energies h < ψ(α1) imply limu↘α1
v+h (u) > 0,

and energies ψ(α1) < h < ψ(α2) yield orbits indicated by a dark blue dashed line in
Fig. 10b.

To conclude the discussion of scenario IV we observe that for any wave speed
−∞ < c < c̄ the constant solution u ≡ α1 is a classical solution of (5), since in
this case u′ ≡ u′′ ≡ 0, g(α1) = 0, and f0(α1(c),Kα1(c)) = 0. This enables the
construction of composite waves, which are piecewise constant equal to α1. We
thereby obtain smooth and peaked traveling waves with plateaus and so-called
compactons, cf. Fig. 11. Compactons are solitary waves with compact support in
the sense that they take a constant value outside an interval of finite length; in other
words a solitary wave of finite length.

(a) c ∈ (−∞, c1] (b) c ∈ (c1, c̄)

Figure 12. Sketches of phase portraits in scenario V, i.e. K ∈
(Kα1

(c),Kα2
(c)).

Scenario V [Fig. 12]. We refer to the previous scenarios for the phase portraits
within R. Recall that the set of fixed points of (11) consists of the two saddles
(u1, 0) ∈ L and (u2, 0) ∈M if c ≤ c1. For larger wave speeds, i.e. c ∈ (c1, c̄), system
(11) has the additional fixed points (α1,±vα1

).

First we consider the case c ≤ c1, cf. Fig. 12a. We begin with the description
of the orbits in L. If c 6= c1, the function ψ ∈ C(R) decreases strictly on (u1, α1).
We obtain a phase portrait similar as in scenario IV with c ∈ (−∞, c1), cf. Fig. 10a.
There are two kinds of relevant orbits: the two orbits with corresponding energy
h = ψ(α1), indicated by the red lines in Fig. 12a, and the orbits corresponding
to energies h ∈ (ψ(α1), ψ(u1)), which are indicated by wine red lines in Fig. 12a.
These orbits are suitable for the construction of traveling waves if c ∈ (c0, c1). The
situation is similar in the case c = c1. The only difference is, that the orbits of the
latter type (wine red) correspond to energies h < ψ(u1).



1592 ANNA GEYER AND RONALD QUIRCHMAYR

Next we describe the orbits in M . Let us again first assume that c 6= c1. Observe
that ψ ∈ C(R) decreases strictly on (α1, u2), takes a local minimum in u2 and
increases strictly on (u2, α2). There are two kinds of relevant orbits in M , whose
second components become unbounded at α1: the two orbits corresponding to
h = ψ(u2), indicated by the dark blue lines in Fig. 12a, and the orbits corresponding
to ψ(u2) < h < ψ(α1), indicated by the light blue line. The corresponding elementary
traveling waves are solitary and periodic anti-cusps, cf. Fig 14a. The situation is
similar in the case c = c1. The only difference is, that the orbits of the latter type
(light blue) correspond to energies h > ψ(u2). We may combine orbits in L and M
to obtain composite waves, such as steep wavefronts, see Fig. 13b.

u2

Α1

u2

Α1

(a)

u2

Α1

u1

u2

Α1

u1

(b)

Figure 13. Traveling waves constructed from orbits corresponding
to the phase portrait in Scenario V, Fig. 12a: Fig. 13a shows solitary
and periodic anti-cusped waves. Fig. 13b shows composite waves: a
steep wave front and a periodic composition.

u2

Α1

u2

Α1

(a)

u2

Α1

u1

u2

Α1

u1

(b)

Figure 14. Traveling waves constructed from orbits corresponding
to the phase portrait in Scenario V, Fig. 12b: Fig. 14a shows solitary
and periodic anti-peaked waves. Fig. 14b shows composite waves:
a wave front and a periodic composition.

If c1 < c < c̄, cf. Fig. 12b, then (11) has the additional fixed points (α1,±vα1)
which are stable and unstable nodes. The suitable M+-segments of the level-sets
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Lh(H) with h ≥ ψ(u2) in M and the L+-segments of Lh(H) with h ≤ ψ(u1) in L
reach the point (α1, vα1) as u → α1 and the corresponding solutions of (8) reach
this point as the moving frame variable approaches some finite value s0. Therefore
we obtain elementary waves with peaks, cf. Fig. 14a. Moreover, we can construct a
large variety of composite waves, e.g. wave fronts, see Fig. 14b.

Scenario VI [Fig. 15]. We refer to the previous scenario for the description of the
regions L and R, and proceed with the discussion for the region M .

Let c ≤ c1, cf. Fig. 15a, and assume for the moment that c 6= c1. Observe that
ψ ∈ C(R) decreases strictly on (α1, α2). There are two types of suitable orbits in M .
The two orbits corresponding to h = ψ(α2) reaching the nilpotent fixed point (α2, 0)
of (11), which are indicated by the dark blue lines, and the orbits corresponding to
h ∈ (ψ(α2), ψ(α1)); one of them is indicated by a light blue line. All these orbits
are suitable for the construction of traveling waves, provided that c > c0 is satisfied
in view of Lemma 5.1. We observe that (maximal) solutions of (8) in M , which
correspond to the energy h = ψ(α2), are defined on a bounded interval I of length δ.
Similar as in (44) it holds that

lim
u↗α2

ϕ(u)g(u)(α2 − u)

2(h− ψ(u))
=

1
2B −Gα2

E(u1 − α2)
∈ (0,∞),

hence δ is given by

δ =

∫ α2

α1

du

|v±h (u)|
=

∫ α2

α1

√
ϕ(u)g(u)

2(h− ψ(u))
du <∞.

The situation is similar in the case c = c1, the difference being that the orbits of the
light blue type correspond to energies h > ψ(α1). Let now c ∈ (c1, c̄), cf. Fig. 15b.
Similar as in the previous case we obtain that all orbits in M+ are connected to
(α1, vα1

).
We observe that the constant function u ≡ α2 is a classical solution of (5) for all

wave speeds c < c̄. We may therefore construct traveling waves of (1), which are
piecewise constant. For instance, there exist anti-cuspcompactons for c0 < c ≤ c1,
and anti-peakompactons for c1 < c < c̄. These solitary waves have the finite length
2δ with a cusp or peak respectively at their trough, see Fig. 17a.

(a) c ∈ (−∞, c1] (b) c ∈ (c1, c̄)

Figure 15. Sketches of phase portraits in scenario VI, i.e. K = Kα2
(c).

Scenario VII [Fig. 16]. We refer to the previous scenario for the discussion of L.
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(a) c ∈ (−∞, c1] (b) c ∈ (c1, c̄)

Figure 16. Sketches of phase portraits in scenario VII, i.e. K > Kα2
(c).

The restriction of the phase portrait to M is similar as in the previous scenario for
all −∞ < c < c̄. The main difference is that the orbits corresponding to h = ψ(α2)
reach the points (α2,±vα2

), which are saddles of (11). We may use these orbits
for the construction of periodic traveling waves with peaked crests and cusped
troughs, if c0 < c ≤ c1, or waves where both crests and troughs are peaked, if c1 < c̄,
cf. Fig 17b.

The situation in R is differs from all the other scenarios. Energy h = ψ(α2) yields
a heteroclinic orbit connecting (α2, vα2

) with (α2,−vα2
). It crosses the u-axis at

some point to the right of the center (u2, 0). The region bounded by this orbit and
the vertical line {u = α2} is filled with periodic orbits corresponding to energies
ψ(u2) < h < ψ(α2) encircling the center (u2, 0). Energies h > ψ(α) yield orbits,
which are not suitable for the construction of traveling waves.

Scenario VII enables the construction of composite waves, where orbits from all
three regions L, M and R with different energy levels are combined. We sketch an
example of such a composite wave in Fig. 17c.

5.4.2. Case c = c̄. The quadratic polynomial g has one double root α and ϕ given
by (32) is an integrating factor for (11), which satisfies

lim
u↗α

ϕ(u) = lim
u→−∞

ϕ(u) = lim
u→∞

ϕ(u) =∞, lim
u↘α

ϕ(u) = 0.

The corresponding first integral H is defined on R2 \ ({α} × R). The vertical line
{u = α} is an invariant set of system (11), which separates the (u, v)-plane into the
two regions

L := {(u, v) : −∞ < u < α} and R := {(u, v) : α < u <∞}.

We observe that ϕ vanishes faster then any polynomial as u↘ α. This implies that
orbits in R, which become unbounded in the v-component as u↘ α are not suitable
for the construction of traveling waves. Indeed, similarly as in Lemma 5.1, we see
that the existence interval of these orbits is finite, but∫ α+ε

α

v+h (u) du =∞,

for any ε > 0 and all h > 0. Therefore the second component of the corresponding
solution curves in R are not locally square integrable in view of (17).
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Α1

Α2

Α1

Α2

(a)

Α1

Α2

Α1

Α2

(b)

Α1

Α2

u2

u1

(c)

Figure 17. In Fig. 17a we see sketches of an anti-cusped and an
anti-peaked solitary wave taking the constant value α2 outside a
bounded interval - they correspond to the dark blue lines in Fig. 15a
and 15b, respectively. The first image in Fig. 17b shows a periodic
wave with peaked crests and cusped troughs. In the second sketch
in Fig. 17b we see a periodic wave with peaked crests and troughs.
These waves correspond to the dark blue lines in Fig. 16a and 16b,
respectively. In Fig. 17c we see an example of a composite wave
constructed from orbits of different energy levels in Fig. 16b .

In the following we study the solutions of (8) for increasing values of K. We
distinguish between five scenarios , cf. I-V in Table 1.

Scenarios I and II [Fig. 18]. These scenarios do not yield traveling waves apart
from the trivial constant wave u ≡ ū in scenario II. The L-segment of any (nonempty)
level-set Lh(H) is unbounded in u. The orbits in R, which correspond to R-segments
of Lh(H) for h > 0, are bounded in u but the second components of these solution
curves are not locally square integrable and therefore not suitable for the construction
of traveling waves.

Scenario III [Fig. 19a]. We refer to scenarios I and II for the phase portrait in R.
The phase portrait in L looks similar as in scenario III in Section 5.4 for wave speeds
c ∈ [c1, c̄). We find a homoclinic orbit of (8) corresponding to the Lh(H)-segment
with h = ψ(u1), which yields a smooth solitary wave. Energies h ∈ (ψ(u2), ψ(u1))
yield periodic orbits encircling the center u2, which correspond to smooth periodic
waves, cf. Fig. 5b.

Scenario IV [Fig. 19b]. The situation in R is similar as in the previous scenarios.
The restriction of phase portrait to L as well as the corresponding traveling wave
solutions are similar as in scenario IV in Section 5.4 with c ∈ [c2, c̄), cf. Fig. 10d and
Fig. 11b. The heteroclinic orbits indicated by red lines correspond to the energy
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Α

(a) K < K0

Α

(b) K = K0

Figure 18. Sketches of phase portraits in scenarios I and II.

h = ψ(u1), whereas the homoclinic orbits of system (11), indicated by a wine-red
line, correspond to energies h < ψ(u1).

(a) K0 < K < Kα (b) K = Kα

Figure 19. Sketches of phase portraits in scenarios III and IV.

Figure 20. Sketches of the phase portrait corresponding to sce-
nario V, i.e. K > Kα.

Scenario V [Fig. 20]. For this choice of the parameter K, systems (8) and (11)
have a saddle in (u1, 0) and a center in (u2, 0). Additionally, system (11) the two
non-hyperbolic fixed points (α,±vα).
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We describe the phase portrait in L. Only the energies h ≤ ψ(u1) yield orbits that
are bounded in the first coordinate. Let h = ψ(u1). The branches {(u, v±h (u)) : u1 <
u < α} link (u1, 0) with (α,±vα). The corresponding orbits of (11) are indicated by
the red lines in the left half-plane in Fig. 20. The energies h < ψ(u1) correspond
to heteroclinic orbits from (α,−vα) to (α, vα), cf. the wine red orbit in the left
half-plane in Fig. 20. The following types of elementary waves can be obtained:
peaked solitary and peaked periodic traveling waves.

Next we discuss the phase portrait in R. The energy h = 0 yields a heteroclinic
orbit from (α,−vα) to (α, vα), which is indicated by the red line in the right half-
plane in Fig. 20. Energies h ∈ (ψ(u2), 0) correspond to periodic orbits around
the center in (u2, 0). Thus we obtain smooth periodic waves and an anti-peaked
periodic wave. The orbits that correspond to energies h > 0 are not suitable for the
construction of traveling waves.

Remark 5.7 (Cantor waves). Let us point out that it is possible to obtain composite
waves of fractal type, for instance Cantor waves as indicated in Fig. 21, using
constructions based on iterative schemes. Such fractal functions appear also as
traveling wave solutions of the CH equation, cf. [31]. In order to construct the
aforementioned Cantor wave, we use a suitable collection of either cusp or peak
elements with the property that for each value δ ∈ (0, δ0], with δ0 > 0, there exists
an element such that the corresponding solutions of (8) passing through this element
are defined on a maximal interval of existence of length δ. In the following we
demonstrate that such collections do indeed exist e.g. in scenarios V – VII of Table
1. For c ∈ (c0, c1) and K > Kα1

(c) we can construct cusped as well as anti-cusped
Cantor waves; for every c ∈ (c1, c̄) and K > Kα1(c) we obtain peaked as well as
anti-peaked Cantor waves. We carry out the details only for cusped waves, the other
cases being similar.

Fix h0 ∈ (ψ(α1), ψ(u1)) and consider the cusp component in L of the level set
Lh0

(H), e.g. the orbit indicated by the wine red line in Fig. 16a. We have already
shown that solutions of (8) passing through this curve are defined on an interval of
finite length 2δ0 > 0 with

δ0 =

∫ α1

u0(h0)

du

v+h0
(u)

,

where u0(h0) denotes the unique point in (u1, α1), at which ψ takes the value h0.
The collection of cusp components corresponding to energies ψ(α1) < h < h0 fills
the entire region between the h0-curve and the vertical line {u = α1}. Let

δ : (ψ(α1), h0]→ R, δ(h) :=

∫ α1

u0(h)

du

v+h (u)
,

where u0(h) denotes the unique point in [u0(h0), α1), at which ψ takes the value h.
Then δ(h0) = δ0 and it is clear that δ is positive. We will show that

δ(h)→ 0 as h→ ψ(α1), (45)

that is, the maximal existence interval of a cusp element can be arbitrarily small.
It follows from the continuity of the functions g, ϕ and ψ on [u0(h0), α1), that
δ : (ψ(α1), h0]→ (0, δ0] is onto. This guarantees that the collection of cusp elements
with energies h ∈ (ψ(α1), h0] is suitable for the construction of a composite wave as
illustrated in Fig. 21b, where the preimage of {α1} under this wave is a Cantor set.
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In order to show (45), we fix h ∈ (ψ(α1), h0] and split the integral δ(h) into two
parts:

δ(h) = δ1(h) + δ2(h) =

∫ u∗(h)

u0(h)

du

v+h (u)
+

∫ α1

u∗(h)

du

v+h (u)
,

where u∗(h) := u0(h) + (α1 − u0(h))/2. Then

δ2(h) ≤ α1 − u∗(h)

v+h (u∗(h))
≤ α1 − u∗(h)

v+h0
(u∗(h0))

→ 0 as h→ ψ(α1),

since clearly u∗(h) → α1 for h → ψ(α1). In order to see that also δ1(h) → 0 as

h→ ψ(α1), we observe that 1/v+h (u) ∈ Θ(1/
√
u− u0(h)) for u↘ u0(h). Therefore,

there exists a constant C > 0 such that

δ1(h) ≤ C

∫ u∗(h)

u0(h)

du√
u− u0(h)

= 2C
√
u∗(h)− u0(h)→ 0 as h→ ψ(α1),

since u0(h) → α1 in this limit. Thus we have shown that the maximal existence
intervals of cusp elements (and similarly for peak elements) can be arbitrarily small.
More precisely, the length of such intervals can take any value in (0, 2δ0]. Note
that this implies in particular that equation (1) admits peaked and cusped periodic
traveling waves of arbitrarily small wave length.

u1

Α1

(a)

u1

Α1

(b)

Figure 21. Sketches of Cantor waves with peak elements (a) and
cusp elements (b).

6. Main results. In this section we summarize our main results, based on the
comprehensive phase plane analysis of the integrable system (8) in Section 5. To
this end, let us briefly recall that solution curves of (8) correspond to the level sets
Lh(H) of the first integral H. We denote the energy level of each solution curve by
h ∈ R. Note that H(u, 0) = ψ(u) is defined in (14), while u1,2 and α1,2 denote the
real zeros of the quadratic polynomials g and f0, see Section 5.1. We review the
following “critical” values of the parameters c and K: c̄ is the bifurcation point of
the double root α of g(u), cf. (25); for every c, the value K0(c) is the bifurcation
point of the double root ū of f0(u), cf. (24); for c ≤ c̄, the value K1(c) is defined in
Section 5.4.1, Scenario III, and the values K = Kαi

(c), i ∈ {1, 2}, are the ones at
which the root αi(c) of g coincides with the root u2(c,K) of f0, cf. (29); c1 denotes
the wave speed at which fixed points on the invariant line {u = α1} of system (11)
bifurcate, cf. (31), it is the supremum over all c ≤ c̄ with K 6= Kα1

such that ψ is
still continuous; c2 is the supremum over all c ≤ c̄ such that ψ is still continuous in
the case that K = Kα1

, cf. (35); c0 is the infimum over all c ≤ c̄ such that solution
candidates, which satisfy (TW1), (TW2) and contain cusped-type singularities at
the value u = α1, do also satisfy (TW3), cf. (37); it holds that c0 < c1 < c2 < c̄,
and for fixed c < c̄ we have that K0 < K1 < Kα1 < Kα2 .
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Our first theorem classifies all elementary traveling waves of (1), that is, traveling
waves constructed from orbits corresponding to a single energy level h, cf. Definition
5.6.

Theorem 6.1 (Elementary waves). Every elementary traveling wave u of (1) belongs
to one of the following types:

(i) Smooth periodic. They appear if and only if the parameters c,K and h satisfy
one of the following relations.
(a) c > c̄, and K > K0(c), ψ(u2) < h < ψ(u1) [Fig. 5]
(b) c = c̄, and K0(c) < K < Kα(c), ψ(u2) < h < ψ(u1) [Fig. 19a]
(c) c = c̄, and K > Kα(c), ψ(u2) < h < 0 [Fig. 20]
(d) c < c̄, and K0(c) < K < Kα1(c), ψ(u2) < h < ψ(u1) [Fig. 8]
(e) c < c̄, and K > Kα2

(c), ψ(u2) < h < ψ(α2) [Fig. 16]
(f) c1 < c ≤ c̄, and K = Kα1

(c), ψ(α1) < h < ψ(u1) if c1 < c < c2 and
h < ψ(u1) if c2 < c ≤ c̄ [Fig. 10c,10d]; the solutions are C1(R)

(ii) Smooth solitary. They appear if and only if the parameters c,K and h satisfy
one of the following relations.
(a) c > c̄, and K > K0(c), h = ψ(u1) [Fig. 5]
(b) c1 ≤ c ≤ c̄, and K0(c) < K < Kα1

(c), h = ψ(u1) [Fig. 8d, 19a]
(c) c < c1, and K0(c) < K < K1(c), h = ψ(u1) [Fig. 8a]
(d) c1 < c ≤ c̄, and K = Kα1

(c), for h = ψ(α1) [Fig. 10c,10d]
(iii) Peaked solitary. They appear if and only if the parameters c,K and h satisfy

one of the following relations.
(a) c = c̄, and K > Kα, h = ψ(u1) [Fig. 20]
(b) c1 < c < c̄, and K > Kα1

(c), h = ψ(u1) [Fig. 12b, 15b, 16b]
(c) c = c1, K = Kα1

(c) and h = ψ(u1) [Fig. 10b]
(d) c < c1, and K = K1(c), h = ψ(u1) [Fig. 8b]

(iv) Anti-peaked solitary. They appear if and only if the parameters c,K and h
satisfy c1 < c < c̄, and Kα1(c) < K < Kα2(c), h = ψ(u2) [Fig. 12b].

(v) Peaked periodic. They appear if and only if the parameters c,K and h satisfy
one of the following relations.
(a) c = c̄, and K > Kα, h < ψ(u1) [Fig. 20]
(b) c1 < c < c̄, and K > Kα1

(c), h < ψ(u1) [Fig. 12b, 15b, 16b]
(c) c = c1, and K = Kα1(c), ψ(α1) < h < ψ(u1) [Fig. 10b]
(d) c < c1, and K1(c) < K < Kα1(c), h = ψ(α1) [Fig. 8c]

(vi) Anti-peaked periodic. They appear if and only if the parameters c,K and h
satisfy one of the following relations.
(a) c1 < c < c̄, and Kα1

(c) < K < Kα2
(c), h > ψ(u2) [Fig. 12b]

(b) c1 < c < c̄, and K ≥ Kα2
(c), h > ψ(α2) [Fig. 15b, 16b]

(c) c < c̄, and K > Kα2(c), h = ψ(α2) [Fig. 16b]
(vii) Cusped solitary. They appear if and only if the parameters c,K and h satisfy

one of the following relations.
(a) c0 < c < c1, and K1(c) < K ≤ Kα1

(c), h = ψ(u1)
(b) c0 < c ≤ c1, and K > Kα1

(c), h = ψ(u1)
(viii) Cusped periodic. They appear if and only if the parameters c,K and h satisfy

one of the following relations.
(a) c0 < c < c1, and K1(c) < K ≤ Kα1(c), ψ(α1) < h < ψ(u1) [Fig. 8c, 10a]
(b) c0 < c < c1, and K > Kα1

(c), ψ(α1) < h < ψ(u1) [Fig. 12a, 15a, 16a]
(c) c = c1, and K > Kα1

(c), h < ψ(u1)
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(ix) Anti-cusped periodic. They appear if and only if the parameters c,K and h
satisfy one of the following relations.
(a) c0 < c < c1, and Kα1

(c) < K < Kα2
(c), ψ(u2) < h < ψ(α1) [Fig. 12a]

(b) c0 < c < c1, and K ≥ Kα2
(c), ψ(α2) < h < ψ(α1) [Fig. 15a, 16a]

(c) c = c1, and Kα1
(c) < K < Kα2

(c), h > ψ(u2)
(d) c = c1, and K ≥ Kα2(c), h > ψ(α2)

(x) Anti-cusped solitary. They appear if and only if the parameters c,K and h
satisfy c0 < c ≤ c1, and Kα1(c) < K < Kα2(c), h = ψ(u2) [Fig. 12a, 15a]

(xi) Periodic waves with peaked crests and cusped troughs. They appear if and only
if the parameters c,K and h satisfy c0 < c ≤ c1, and K > Kα2

(c), h = ψ(α2).
[Fig. 16a]

(xii) Periodic waves with peaked crests and troughs. They appear if and only if
the parameters c,K and h satisfy c1 < c < c̄, and K > Kα2(c), h = ψ(α2).
[Fig. 16b]

The wave profiles of periodic elementary waves have exactly one maximum and one
minimum per period, while the wave profiles of solitary elementary waves have a
unique maximum or minimum. The smooth, peaked and cusped solitary waves decay
exponentially to the constant u = u1 at infinity, while the anti-peaked and anti-cusped
solitary waves tend exponentially to the constant u = u2. The cusps always have the
value u = α1, while the peaks have the value u = α1 except for situations (xi) and
(xii) where the peaks take the value u = α2. Anti-peaks take either the value α1 or
α2.

We now emphasize certain types of composite waves of special interest. The
next theorem deals with wavefronts, which are composite waves consisting of two
components: one half of a solitary peak and one half of a solitary anti-peak, or
vice versa. Steep wavefronts consist of a solitary cusp component and a solitary
anti-cusp component, cf. Fig. 12–14. Moreover, we consider “fast” wavefronts, which
attain their maximum at a finite value of the moving frame variable, by combining
a solitary cusp or peak component with a solitary anti-cusp or anti-peak component,
cf. Fig. 15, 17a.

Theorem 6.2 (Wavefronts). The appearance of wavefronts is characterized as
follows:

(i) Wavefronts occur if and only if c1 < c < c̄ and Kα1(c) < K < Kα2(c) for
hi = ψ(ui), i = 1, 2. [Fig. 12b].

(ii) Steep wavefronts occur if and only if c0 < c ≤ c1 and Kα1
(c) < K < Kα2

(c)
for hi = ψ(ui), i = 1, 2. [Fig. 12a].

(iii) Fast wavefronts occur if and only if c1 < c < c̄ and K = Kα2
(c) for hi = ψ(ui),

i = 1, 2. [Fig. 15b].
(iv) Fast steep wavefronts occur if and only if c0 < c ≤ c1 and K = Kα2(c) for

hi = ψ(ui), i = 1, 2. [Fig. 15a].

The profile of wavefronts (i) and (ii) tends to its maximal value u = u2 and to its
minimal value u = u1 as s→ ±∞, while fast wavefronts attain their maximal value
u = α2 at a finite value of the moving frame variable s. The slope of steep wavefronts
becomes infinite precisely at the value u = α1, while the slope of a wavefront remains
bounded everywhere.

Our last theorem classifies composite waves with constant components of finite
or infinite length. In particular, there exist waves with plateaus and so-called
compactons, which are solitary waves with compact support.
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Theorem 6.3 (Compactons, plateau waves, multicrests, multipeaks). Traveling
waves of (1) involving constant components can occur if c0 < c ≤ c̄ and either
K = Kα1

(c) or K = Kα2
(c).

If K = Kα1
(c), Scenario IV, Fig. 10, the following composite waves are possible.

(i) Combinations of cusp-components and plateaus at height u = α1 for c0 < c <
c1.

(ii) Combinations of peak-components and plateaus at height u = α1 for c = c1.
(iii) Waves u with plateaus at height u = α1 and vanishing classical derivative on

the preimage u−1({α1}) for c1 < c ≤ c̄.
In particular, there exist smooth and peaked multi-crested solutions with decay,
cf. Fig. 11c and 11d, and waves with plateaus at height α1, cf. Fig. 11a and 11b.
Moreover, there exist smooth and non-smooth anti-compactons, i.e. solitary waves
of depression with compact support in the sense that they are constant equal to α1

outside a finite interval, cf. Fig. 11e.
If K = Kα2(c), Scenario VI, Fig. 15, the following composite waves are possible:

(i) Combinations of anti-cusp-components and plateaus at height u = α2 for
c0 < c ≤ c1.

(ii) Combinations of anti-peak-components and plateaus at height u = α2 for
c1 < c < c̄.

In particular, there exist anti-cuspcompactons and anti-peakompactons, i.e. solitary
cusped and peaked waves of depression with compact support, cf. Fig. 17a.

Note that the classification of elementary traveling waves in Theorem 6.1 is
exhaustive, while Theorems 6.2 and 6.3 merely highlight certain composite waves of
special interest.

7. Discussion and outlook. In this paper we have studied traveling wave solutions
of a highly nonlinear model equation for shallow water waves of large amplitude.
Driven by the quest for new kinds of traveling waves which are not described by
present day shallow water models, we resort to equation (1) which is a natural
extension to moderate amplitude models such as the CH or the corresponding
equation for the free surface [10]. The structure of the equation’s higher order
nonlinearities is responsible for the fact that the corresponding ordinary differential
equation (5), which governs the traveling wave solutions of (1), becomes singular
in potentially two points. This loss of uniqueness allows one to construct singular
traveling wave solutions in H1

loc(R) by combining various components of solution
curves of the associated integrable planar system (8) corresponding to different level
sets of the first integral. These components are smooth solutions of (8) defined
on a (possibly bounded) subinterval of the real line. By gluing them together one
finds traveling wave solutions, which are bounded and globally absolutely continuous
with singularities at points where values αi, i ∈ {1, 2} – the roots of the quadratic
polynomial g(u) in (5) – are taken. The degree of this polynomial is two as a
consequence of the presence of the third order cubic term in (1). This gives rise to
entirely new types of traveling waves, whose wave profiles may exhibit singularities
at two different heights. In particular, one obtains traveling waves where peaks
and cusps form at both the wave crest and trough. These novel traveling wave
solutions can not be described using CH type equations [19, 31, 32] since they lack a
second singularity due to the absence of higher nonlinearities in higher order terms.
Another novelty is that we can construct traveling waves involving non-symmetric
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peaks whose slope differs from on either side of the crest or trough to the other.
Moreover, recall that the CH solitary waves are monotone from crest to trough with
a unique maximum. In contrast, here we have solitary waves whose profiles are
non-monotonic as well as multi-crested peaked or smooth. Furthermore, we obtain
negative smooth as well as anti-peaked and anti-cusped solitary waves with compact
support, that is, the wave profile attains a constant value outside a finite interval.
For comparison notice that it was shown to be impossible for moderate amplitude
models to have peaks with compact support in [21]. Finally let us assert that we
also recover all known smooth and singular traveling wave solutions of CH type
equations.

It is known that the traveling wave solutions of models for moderate amplitude
waves are symmetric with respect to their crest or trough as long as the solution
conserves the energy of the corresponding planar system, see the discussions in
[3, 18, 20]. This is true for equation (1) as well. Whether all symmetric solutions of
(1) are necessarily traveling waves will be studied in a subsequent paper.

Regarding stability, we remark that smooth solitary as well as periodic traveling
wave solutions of several shallow water equations have been shown to be orbitally
stable, i.e. they are stable under small perturbations, which makes them physically
detectable, see for example [2, 12, 14, 17, 30]. Moreover, singular traveling waves
involving peaks, for instance the CH and DP peakons, are also known to be orbitally
stable, cf. [11, 28, 29, 33]. This naturally raises the question whether traveling waves
of (1) with peaked crests and troughs are stable in that sense as well. We expect
the investigation of these issues to be quite involved since we are not aware of a
Hamiltonian formulation for (1), and therefore the methods put forth to prove the
aforementioned stability results in the moderate amplitude regime are not applicable
here, cf. Remark 2.3. In this context it is worth pointing out that the stability
of the traveling waves for these model equations is a shallow-water effect: while
water waves are inherently unstable, the governing equations for water waves possess
some vestige of these stability properties in the long-wave regime (see the discussion
in the paper [13]). On the other hand, while a uniform train of plane waves of
moderate amplitude in deep water is unstable to a small perturbation of other
waves traveling in the same direction with nearly the same frequency (this is the
Benjamin-Feir instability phenomenon, cf. [1]), many observed patterns of waves of
moderate amplitude in deep water show no apparent instability; see the discussion
in the paper [36].

Finally, we observe that it is possible to construct bounded continuous functions
satisfying the properties (TW1) and (TW2) but not (TW3) of the characterization
of traveling wave solutions given in Proposition 4.1. This can be achieved by using
orbits indicated by dashed lines in the sketches of the phase portraits in Section
5. Such functions can not be interpreted as traveling wave solutions of (1) in the
sense of Definition 2.1. In a forthcoming paper, we will investigate in which sense
these functions can still be regarded as traveling solutions of (1) in Sobolev spaces
Hr

loc(R) for certain suitable indices r < 1.
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