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A B S T R A C T

Peer-to-peer (P2P) energy trading and energy communities have garnered much attention over in recent years
due to increasing investments in local energy generation and storage assets. Much research has been performed
on the mechanisms and methodologies behind their implementation and realisation. However, the efficiency
to be gained from P2P trading, and the structure of local energy markets raise many important challenges. To
analyse the efficiency of P2P energy markets, in this work, we consider two different popular approaches to
peer-to-peer trading: centralised (through a central market maker/clearing entity) vs. fully decentralised (P2P),
and explore the comparative economic benefits of these models. We focus on the metric of Gains from Trade
(GT), given optimal P2P trading schedule computed by a schedule optimiser. In both local market models,
benefits from trading are realised mainly due to the diversity in consumption behaviour and renewable energy
generation between prosumers in an energy community. Both market models will lead to the most promising
P2P contracts (the ones with the highest Gains from Trade) to be established first. Yet, we find diversity
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decreases quickly as more peer-to-peer energy contracts are established and more prosumers join the market,
leading to significantly diminishing returns. In this work, we aim to quantify this effect using real-world data
from two large-scale smart energy trials in the UK, i.e. the Low Carbon London project and the Thames Valley
Vision project. Our experimental study shows that, for both market models, only a small number of P2P
contracts i.e. less than 10% of the possible P2P contracts are required to achieve the majority of the maximal
potential Gains from Trade. Similarly, only a fraction of prosumers are required to participate in energy trading
to realise significant GT; namely we found that 60% of the maximal GT can be realised with only 30% of
prosumers’ participation, with the percentage of maximal GT reaching 80% when participation increases to
50% of prosumers. Finally, we study the effect that diversity in consumption profiles has on overall trading
potential and dynamics in an energy community. We show that in a community with a DF(load diversity
factor) = 1, 80% of potential maximal GT can be achieved by 10% of prosumers engaging in P2P trading,
while in a community with DF = 1.5, it is beneficial for 40% of the prosumers to trade.
1. Introduction

Energy systems around the world are experiencing rapid changes.
Until recently, energy systems were primarily centralised networks
managed by large utility companies. However, currently a paradigm
shift is taking place in energy systems across the world [1–5]. Recent
years have seen many initiatives for creating local energy communities,
typically low voltage networks consisting of 50–200 households [6].
Some notable examples of these initiatives include: the Brooklyn Mi-
crogrid project,1 the REflex smart energy demonstrator on the Orkney
Islands,2 the many local projects managed by Community Energy Scot-
land,3 the SchoonSchip Community in the north of Amsterdam (loca-
tion of the GridFriends Project),4 the Thames Valley Vision project,5
the Low Carbon London demonstration project6 etc. However, there
are many open challenges and knowledge gaps in setting up such local
markets, starting with the best choices for market organisation and
establishing contracts. There are currently two main approaches to this
problem [4,7].

The first approach involves centralised market clearing, in which
a coordinator entity/market maker selects the most promising pairs
of prosumers in the community to trade, and establishes contracts in
order of decreasing gains from trade. The second approach involves
purely decentralised peer-to-peer (P2P) systems where prosumers trade
energy directly with one another — the selection of who to trade
with is up to individual prosumers, and may be influenced by personal
preferences, not just efficiency (e.g. trading energy with a neighbour
may be preferable to trading with someone else in the community, who
is not a close acquaintance).

The centralised approach of establishing contracts benefits from
performing coordinated optimisation and aggregation, leading to effi-
cient use of resources and optimal social allocation for the community.
However, centralised approaches may experience scalability issues es-
pecially when the number of participating prosumers increases. On the
other hand, peer-to-peer systems benefit from their decentralised na-
ture. They can often be privacy preserving and secure, and benefit from
the development of new supporting technologies such as decentralised
energy contracts and blockchain systems. Furthermore, they allow for
a more individual choice and strategy, where prosumers are allowed
complete freedom of choice who to trade with, in order to optimise
their own benefits.

While decentralisation provides many tangible benefits, it raises
many open questions. While with enough trades peer-to-peer systems
may approach similar community benefits from a social welfare per-
spective as the centralised market approach, each trade has some

1 https://www.brooklyn.energy/
2 https://www.reflexorkney.co.uk/
3 https://communityenergyscotland.org.uk/
4 https://amsterdamsmartcity.com/updates/project/grid-friends
5 https://eatechnology.com/resources/projects/new-thames-valley-vision-

vv/
6
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https://innovation.ukpowernetworks.co.uk/projects/low-carbon-london/
associated cost, which may vary depending on various factors, e.g. the
establishment and deployment of the decentralised platform, develop-
ment, IT, security and administrative costs to name a few. This cost can
make some trades with marginal benefits inefficient and not rational
to set up. Hence, an important question is: How many P2P trading
contracts are required to realise most of the potential benefits from
trade? Another important question is that of prosumer participation.
Recall that a community may be composed of up to several hundred
prosumers. But are all of them required, and would they actually
benefit from participation in P2P energy trading?

This issue is often unaddressed in the literature, leaving the reader
to think that every member in a community will benefit from being
involved in peer-to-peer trading [4,7,8]. However, the picture is more
nuanced, after considering the different energy consumption profiles,
physical constraints and the availability of home energy storage. In
some cases, even if there are some marginal gains to be had, the
potential costs of participating in a P2P trading scheme may outweigh
the benefits. For example, consider 2 prosumers, each with their own
micro-generation (e.g. solar panels on the roof) and battery. In theory,
peer-to-peer trading should definitely provide benefits for these con-
sumers, and this is certainly true at least some of the time. However,
consider a setting in which their energy demand profiles are very
closely aligned, e.g. both households have similar work patterns, that
involve not much consumption during the morning/day, and a con-
sumption peak in the evening. In such a case, P2P energy trading might
deliver rather insignificant benefits for the two prosumers, because they
will likely have excess energy to trade and residual demand at (mostly)
the same time periods throughout each day.

Then, a question would be whether it would be possible to achieve
a high percentage of the possible benefits (in our case, measured as
fraction of maximal potential Gains from Trade) with only the most
promising fraction of prosumers participating in peer-to-peer trading?
Can we determine which prosumers would benefit the most, and which
other prosumers should they trade with?

Finally, the value of bilateral energy contracts is dependent on
the prosumers that establish them. Prosumers value energy quantities
differently depending on their own consumption and generation profile
with respect to others. The diversity of a community might affect the
potential gains achieved from peer-to-peer trading. Thus, the effect of
diversity factors in demand profiles across the community needs to
be studied. While other authors have discussed these issues, to our
knowledge, this paper is the first to examine these questions using
a actual real data, from two large-scale UK trials, i.e. Thames Valley
Vision and Low Carbon London.

To answer these questions, we consider two popular approaches
to P2P markets. The first is a centralised approach to P2P that uses
a central matching and clearing mechanism. The second is a decen-
tralised approach using automated negotiation to establish P2P trading
contracts. In both models, once a P2P trading contract is established,
prosumers form a coalition, which produces a Gains from Trade for
both parties (i.e. a financial benefit, in this case a reduction in bill
from trading and operating assets jointly, compared to the bill when
each agent uses only its own individual assets), and the agents split this

https://www.brooklyn.energy/
https://www.reflexorkney.co.uk/
https://communityenergyscotland.org.uk/
https://amsterdamsmartcity.com/updates/project/grid-friends
https://eatechnology.com/resources/projects/new-thames-valley-vision-tvv/
https://eatechnology.com/resources/projects/new-thames-valley-vision-tvv/
https://innovation.ukpowernetworks.co.uk/projects/low-carbon-london/
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Nomenclature

Subscripts and Sets

𝐾 [Sub]set of agents in the coalition (𝐾 ⊆ 𝑁)
𝑁 set of all agents in the community consid-

ered in the model
𝑖 for agents
𝑗 for agents

Parameters

𝐸𝑏𝑎𝑡𝑖 Battery capacity installed at agent 𝑖
premises

𝑃𝑃𝑉𝑖 Solar PV Power installed at agent 𝑖 premises
𝑇 Time horizon
𝜆 Lifetime of the generator
𝜏𝑏(𝑡) Buying price (i.e. import tariff) at 𝑡

[pence/kWh]
𝜏𝑠(𝑡) Selling price (i.e. export tariff) at 𝑡

[pence/kWh]
𝑐𝑔𝑘𝑊 Cost of the generator [pence/kW]
𝑐𝑏𝑎𝑡𝑘𝑊 ℎ Cost of the battery [pence/kWh]
𝑑𝑙 The deadline of negotiation
𝑘 number of peers in the negotiation frame-

work

Variables

𝛺𝑎
𝑖 Energy contracts accepted by agent 𝑖

𝛺𝑖 Set of all possible energy contracts for agent
𝑖

𝛺 Set of all possible energy contracts
𝛩 Peer-to-peer oracle
𝜔 Energy contract tuple (𝑖, 𝑗, 𝜃)
𝜃(𝑡) Energy amount traded at time 𝑡 decided by

𝛩
𝜃 Energy amounts traded decided by 𝛩
𝑏𝑖(𝑇 ) Accumulated bill for agent 𝑖 at time 𝑇 after

trading
𝑒𝑏𝑖 (𝑡) Energy bought by agent 𝑖 after peer-to-peer

trading
𝑒𝑠𝑖 (𝑡) Energy sold by agent 𝑖 after peer-to-peer

trading
𝑒𝑖(𝑡) Net demand for agent 𝑖 after peer-to-peer

trading
𝑏𝑖(𝑇 ) Accumulated bill for agent 𝑖 at time 𝑇
𝑏𝑁 (𝑇 ) Accumulated bill for community 𝑁 at time

𝑇
𝑏𝐾 (𝑇 ) Accumulated bill for P2P coalition 𝐾 at

time 𝑇
𝑏𝐾 (𝑇 ) Accumulated bill for coalition 𝐾 at time 𝑇
𝑐𝑔𝑖 (𝑇 ) Generator costs for agent 𝑖 over 𝑇
𝑐𝑔𝐾 (𝑇 ) Generator costs for 𝐾 over 𝑇
𝑐𝑏𝑎𝑡𝑖 (𝑇 ) Battery degradation cost for agent 𝑖 over 𝑇
𝑐𝑏𝑎𝑡𝐾 (𝑇 ) Battery degradation cost for 𝐾 over 𝑇
3

𝑑𝑖(𝑡) Demand for agent 𝑖
𝑑𝐾 (𝑡) Aggregated demand for 𝐾
𝑒𝑏𝑖 (𝑡) Energy imported by agent 𝑖
𝑒𝑏𝐾 (𝑡) Energy imported by 𝐾
𝑒𝑠𝑖 (𝑡) Energy exported by agent 𝑖
𝑒𝑠𝐾 (𝑡) Energy exported by 𝐾
𝑒𝑝2𝑝𝑖 (𝑡) Energy traded by agent 𝑖
𝑒𝑖(𝑡) Net demand for agent 𝑖
𝑔𝑖(𝑡) Generation for agent 𝑖
𝑔𝐾 (𝑡) Aggregated generation for 𝐾
𝑜𝑖(𝑟) The offer that agent 𝑖 proposes in round 𝑟
𝑝𝑏𝑎𝑡(𝑡) Battery power at time 𝑡
𝑟𝑣𝑖 The reservation value of agent 𝑖, i.e. the

minimum utility the agent will accept.
𝑟 The round number of negotiation
𝑡 time step
𝑢𝑚𝑎𝑥𝑖 The maximum utility that can be gained by

agent 𝑖 from trading
𝑣𝑖(𝜔) Value of the contract 𝜔 gained by agent 𝑖

Acronyms

𝐷𝐹 Depreciation Factor
𝐺𝑇 Gains from Trade
𝑃2𝑃 Peer-to-peer
𝑅𝐸𝑆 Renewable Energy Source
𝑆𝑜𝐶 State of Charge of a battery in kWh

benefit. The exact way energy is exchanged for each clearing period (in
our case, we use half hourly clearing periods) throughout the day will
be determined by a joint schedule optimiser, that takes into account
the demand, generation and assets of both parties.

Our methodology allows modelling realistic peer-to-peer trading
using large-scale data sets. Due to computational complexity, prior
works often consider small communities with a few prosumers over
short time windows, and without the use of large-scale, real world
datasets. We argue a more detailed and data-driven approach is needed
to provide insights in the effectiveness of peer-to-peer trading in real-
world settings. Thus, in our framework, the benefit of energy exchanges
are computed using a joint schedule optimiser. This optimiser computes
the trading schedule with the maximal Gains from Trade for both
parties. The prosumer agents themselves then decide whether to trade,
and the redistribution of these benefits. In summary, our paper makes
a number of the key new contributions:

• It performs a systematic comparison of two market models: cen-
tralised clearing (double auction-type format) vs. decentralised
negotiations, in terms of dynamics and trading coalitions that
form over time. In order to enable this comparison, we introduce
a new negotiation framework, that incorporates a joint optimiser
that computes the most profitable energy exchanges between
any set (coalition) of prosumers in terms of the notion of Gains
from Trade (i.e. joins that can be obtained by reaching a P2P
contract and forming a coalition, compared to trading alone).
This framework can be used in both types of markets, allowing
us to model separately the market organisation layer (centralised
clearing vs. negotiation) from the asset control and optimisation
layer.

• In most energy community and micro-grid energy schemes, not
all consumers are required to participate in peer–peer trading to
reach market efficiency (in terms of potential Gains from Trade).
In order to quantify this effect, the paper investigates whether the

majority of the benefits can be achieved when only a subset of
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the most promising prosumers participate in peer-to-peer trading.
Moreover, it includes a study of how many peer-to-peer contracts
are needed to realise the benefits of energy trading in a real P2P
market. Our analysis also includes an evaluation of diversity in
demand profiles affects the potential benefits and the marginal
value of the contracts.

• Finally, the developed simulation framework can use large-scale
real data, and allows for a more realistic negotiation simulation
with large communities over longer time periods, with high time
granularity than possible in other prior works. Our results and
conclusions are based on real demand and generation data sets
from two large-scale energy trials in the UK.

The remainder of the paper is organised as follows: In Section 2,
elevant literature is presented. Section 3 outlines the models used for
he prosumers, energy communities and 𝑃 2𝑃 trading. Two approaches

to peer-to-peer trading are outlined in the following two sections, with
Section 4 describing the central market clearing mechanism, and Sec-
tion 5 discussing the negotiation framework. In Section 6, we perform
an empirical analysis of the two methods compared to the community
setting using realistic energy communities. Finally, Section 7 concludes
the paper and highlights some topics for future work.

2. Related work

Energy communities form an increasingly important area of re-
search, with many earlier works studying different aspects and chal-
lenges. In recent years a number of projects and initiatives have pub-
lished systematic reviews of the field. Tushar et al. [1] review the
state of the art in connected energy communities, provide extensive
background on different aspects of P2P sharing, and describe a number
of relevant pilot projects across the globe. Capper et al. [4] provide
a systematic review and classification of market design and energy
trading models based on 139 recent peer-reviewed journal articles, in
research sponsored by the global observatory on peer-to-peer, commu-
nity self-consumption and transactive energy models.7 Sousa et al. [7]
provide a classification of P2P energy trading markets based on the
degree of decentralisation and P2P topology into: full P2P markets,
community-based markets and hybrid markets (combination of the
two designs, each operating at different layers). Schwidtal et al. [5]
discuss the feasibility of different business models for profitable energy
community and transactive energy projects.

In this paper, following prior literature, we consider two prominent
market models. First, we model markets that use centralised clearing,
through a market maker or other centralised entity, that selects the
contracts with the optimal Gains from Trade. Double auction is a
common mechanism used within this approach, widely used in many
applications ranging from wholesale energy markets to the stock mar-
ket. Being widely understood, it is also the most studied mechanism
for local energy markets and has seen many practical applications.
Sioshansi [9] discusses double auction mechanisms and their use in
electricity markets, while Wang et al. [10] and Capper et al. [4]
provide examples of double auction use in P2P energy markets and
energy communities. In double auctions, buyers and sellers relay their
preferences and utility to a central entity or broker. Then, this central
entity will decide the matching of parties, price and will clear the
market, which guarantees market efficiency. Wang et al. [10] show that
such an auction mechanism can provide these benefits while preserving
privacy using a two-level transactional model. Our centralised mecha-
nism matches, essentially, a double auction, where contracts are sorted
and cleared in order of decreasing Gains from Trade (GT).

The second model of market organisation we consider is a de-
centralised peer-to-peer energy market, that allows direct trading and

7 https://userstcp.org/task/peer-to-peer-energy-trading/
4

establishing of contract between prosumers, forgoing the need for an in-
termediary. As opposed to markets relying on a clearing entity/market
maker, peer-to-peer markets allow prosumers to select who they trade
with — for example they could make or request offers with several
other prosumers of their own choice (e.g. neighbours, friends in the
community etc.), and select the most favourable one.

The most widely used mechanism to automate decentralised P2P
markets is automated negotiation. Pinto et al. [11] proposed a multi-
agent simulation platform to support negotiations of small players
in transactive electricity markets, including local energy markets, bi-
lateral contracts and participation in wholesale energy markets. An-
other example of automated negotiations is provided by Saxena and
Abhyankar [12] focusing in electricity markets for distribution grid
management. In automated negotiations, prosumers are represented
by autonomous agents that negotiate over several topics, e.g. price
per unit, energy quantities, etc. Often, the main topic negotiation is
concerned about is the price per unit, such as in the works by Guo
et al. [13] and Imran et al. [14]. Etukudor et al. [15] discuss a
framework where prosumers negotiate the prices for a single day ahead
together with the energy quantities traded for multiple periods within
the day. Another approach is discussed by Chakraborty et al. [16], who
explore an energy lending scheme, where prosumers negotiate over
energy quantities that they lend and the time the borrowed energy is
returned.

Since peer-to-peer negotiation only considers bilateral agreements,
as opposed to an auction mechanism where a market-wide price is set,
an important process is also peer selection, i.e. how a prosumer decides
with whom to negotiate. Concurrent negotiation approaches have been
explored, where sellers negotiate with multiple sellers concurrently and
vice versa [17]. However, due to computational complexity, systems
favour a selection of peers before the negotiation process. A popular
approach is the facilitation of peer selection by a central institution
(often the platform provider) [18]. Khorasany et al. [19] propose a
single peer selection approach, where prosumers select peers greed-
ily based on maximum expected profit. Other recent works focus on
optimising economic objectives when taking physical constraints and
storage into account [20], and the fair redistribution of benefits in
energy coalitions. Long et al. [21] provide a P2P trading scheme for
a community microgrid that focused on the optimality and fairness
between participating prosumers. Norbu et al. [22] provide a model
for the fair redistribution of benefits achieved by community-owned
assets to individual prosumers. Robu et al. [23] look at the fair allo-
cation of gains achieved by virtual power plant formation, while Kota
et al. [24] study this issue for demand-side management cooperatives.
The concept of Shapley value has been used to ensure fairness, such as
in the works of Cremers et al. [25] and Robu et al. [26]. Finally, other
works take a social science perspective, and examine the perception of
consumers to P2P energy trading schemes [27].

However, although great progress has been made by related works,
there are still key remaining questions. Firstly, many peer-to-peer
approaches, especially negotiation, suffer from high complexity, and
generalising them to large communities has been difficult [28]. Thus,
the main contribution of earlier works often lies in their methodolo-
gies, since their experiments consider only a small simulation-based
setup, and often do not rely on real prosumer demand data. Further
research into how these models generalise to larger settings is required.
Secondly, while peer-to-peer markets will approach the efficiency of a
central market when enough contracts have been established, each con-
tract has some associated costs. Hence, how many P2P energy trading
contracts need to be established to achieve the majority of the maximal
potential Gains from Trade is still an open question. Thirdly, these
works focus on the total economic or technical benefits for either the
community or an individual prosumer. However, within communities,
especially those based on locality, some prosumers benefit to different
degrees (i.e. asymmetrically) from peer-to-peer trading. Efforts have

been made to ensure Pareto optimality, i.e. that no prosumer is worse

https://userstcp.org/task/peer-to-peer-energy-trading/
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off in favour of another prosumer. But the benefits earned by each
prosumer are not equal, since they depend on their size, and crucially
on the energy consumption and generation behaviour of the prosumer
compared to those of the community, e.g. a prosumer that consumes
with a different pattern is likely will benefit more. Thus, there is a need
to investigate the effects of prosumer participation and diversity on the
benefits of trading. This paper aims to model these settings – and thus
address these challenges – using a large-scale real-world data set.

3. Modelling prosumers in an energy community

In this section, we first introduce a formal model of a prosumer, by
modelling their respective demand and generation profile. Prosumers
are also assumed to have a source of energy storage (i.e. a battery).

3.1. Single prosumer model

A prosumer 𝑖 ∈ 𝑁 , where 𝑁 are the prosumers connected to the
local energy grid, has access to the battery and some renewable energy
resource (𝑅𝐸𝑆) (e.g. wind turbine). The generation profile of this
prosumer 𝑖 is represented as 𝑔𝑖(𝑡),∀𝑡 ∈ [1, 𝑇 ] for the power generated at
time step 𝑡, where 𝑇 corresponds to the time horizon for the operation
window. Similarly, the demand profile is represented as 𝑑𝑖(𝑡),∀𝑡 ∈
[0, 𝑇 ]. Furthermore, for each prosumer, we compute the optimal battery
usage 𝑝𝑏𝑎𝑡(𝑡), where a positive value indicates charging and a negative
value discharging. Finally, a prosumer also has access to the power grid
and is able to export and import energy, represented as 𝑒𝑖(𝑡), where
it is positive when importing from the grid and it is negative when
exporting to the grid.

The energy demand of the prosumer should always be satisfied,
either due to self-consumption or by buying power from the grid.
Furthermore, excess energy should be either sold or stored. So, the
following constraint should always hold:

𝑒𝑖(𝑡) = 𝑑𝑖(𝑡) − 𝑔𝑖(𝑡) + 𝑝𝑏𝑎𝑡(𝑡) (1)

3.2. Battery control algorithm

Battery usage at each time step was controlled using a heuristic-
based algorithm adapted from Norbu et al. [22]. Battery charging and
discharging follow directly from the energy generation and consump-
tion. If at some time, the generation exceeds the consumption the
remaining energy is used for charging the battery. However, if the
battery has reached its maximum capacity, excess energy is instead sold
to the grid.

Instead, if consumption exceeds the generation, we instead dis-
charge the battery. If at any time the battery cannot provide sufficient
energy, energy is bought from the central power grid.

This battery control algorithm provides a tractable method to ap-
proximate an optimal control strategy. Our heuristic-based strategy
performs well (essentially close to optimal) under the assumption that
flat import and export tariffs are used and that using energy storage
is more cost-effective than importing and exporting (see [29] for a
discussion). In the current energy market, these assumptions are realis-
tic, since import tariffs are high, while export tariffs are being phased
out [30]. Given this aspect is technically complex, and not the main
focus of this paper, we provide the full details of the battery control
algorithm we use in our experiments in Appendix A.

3.3. Cost computation

The costs for a single prosumer can be calculated as the sum of the
costs of importing energy from the grid, the revenue from selling excess
5

energy to the grid, and the depreciation costs of the private energy
assets, i.e. the battery and the generator. It can be computed as follows:

𝑏𝑖(𝑇 ) =
𝑇
∑

𝑡=1
𝑒𝑏𝑖 (𝑡)𝜏

𝑏(𝑡) −
𝑇
∑

𝑡=1
𝑒𝑠𝑖 (𝑡)𝜏

𝑠(𝑡) + 𝑐𝑏𝑎𝑡𝑖 (𝑇 ) + 𝑐𝑔𝑖 (𝑇 ) (2)

here the 𝑒𝑏𝑖 (𝑡) and 𝑒𝑠𝑖 (𝑡) are the energy bought from and sold to the grid
t time 𝑡 respectively. 𝜏𝑏(𝑡) and 𝜏𝑠(𝑡) are the import and export tariffs,
nd 𝑐𝑏𝑎𝑡𝑖 (𝑇 ) and 𝑐𝑔𝑖 (𝑇 ) are the depreciation costs for the battery and
𝐸𝑆 respectively. Note that, in our model, both individual prosumers
nd communities are modelled as price-takers w.r.t. the central grid
r power distribution company, i.e. they are too small to influence the
holesale market prices. Hence, the import/export tariffs from the grid
re inputs for our pricing model.

The depreciation cost of the 𝑅𝐸𝑆 is expressed as follows:

𝑔
𝑖 (𝑇 ) =

𝑃𝑃𝑉𝑖 ⋅ 𝑐
𝑔
𝑘𝑊 ⋅ 𝑇

𝜆
(3)

where 𝑐𝑔𝑘𝑊 is the cost per rated kW and 𝜆 is the lifetime of the
enerator.

The depreciation cost of the battery can be computed as follows:

𝑏𝑎𝑡
𝑖 (𝑇 ) =

𝐸𝑏𝑎𝑡𝑖 ⋅ 𝑐
𝑏𝑎𝑡
𝑘𝑊 ℎ ⋅ 𝑇

max
(

1
𝐷𝐹 , 𝜆

) (4)

where 𝑆𝑜𝐶𝑚𝑎𝑥
𝑖 is the battery capacity, 𝑐𝑏𝑎𝑡𝑘𝑊 ℎ is the price per kWh of

apacity, and 𝐷𝐹 is the depreciation factor of the battery based on the
sage, calculated using ‘‘rain-flow’’ cycle counting [22,31]. We include
he depreciation factor in this calculation since the battery’s lifetime
an be influenced by the number of cycles and depth of discharge.
ee for full details on the computation of 𝐷𝐹 .

The cost computation in this section refers primarily to the use
f energy assets and the resulting energy bill. In practical imple-
entations, prosumers engaging in trading with peers in an energy

ommunity also face other costs, such as the development and main-
enance of the energy trading platform, costs of control systems of
nergy assets, IT and administrative costs for contract deployment,
tc. Furthermore, these costs depend on several factors, such as the
echnological solution selected for the trading platform, the complexity
f contracts deployed, the security level and general market conditions.
ue to this complexity, in this work we focus on the costs that are
irectly related to the energy bill and use of energy assets deployed.

.4. Coalition model

The above energy community model corresponds to a coalitional
odel where 𝑁 prosumers are players that can share their energy

ssets, resulting in a joint cost reduction. The joint cost function of
his coalition is defined by the joint bill that prosumers that form the
oalition will have to pay. Formally, we consider a coalition 𝐾 ⊆ 𝑁
here each prosumer 𝑖 has their own energy assets. However, once

wo agents agree to trade (enter a P2P trading contract), they form a
oalition, where each prosumer can use the other members’ assets if
xcess generation/storage capacity exists, and they are not being used
y the party owning them. Thus, in this model, we can aggregate the
eneration, demand and storage to form the community’s generation,
emand and storage, i.e.

𝐾 (𝑡) =
∑

𝑖∈𝐾
𝑑𝑖(𝑡) ∀𝑡 ∈ [0, 𝑇 ] (5)

𝐾 (𝑡) =
∑

𝑖∈𝐾
𝑔𝑖(𝑡) ∀𝑡 ∈ [0, 𝑇 ] (6)

𝑜𝐶𝑚𝑎𝑥
𝐾 =

∑

𝑖∈𝐾
𝑆𝑜𝐶𝑚𝑎𝑥

𝑖 (7)

Similarly, we can compute the bill for the energy community given
hese aggregate profiles as follows:

𝐾 (𝑇 ) =
𝑇
∑

𝑒𝑏𝐾 (𝑡)𝜏
𝑏(𝑡) −

𝑇
∑

𝑒𝑠𝐾 (𝑡)𝜏
𝑠(𝑡) + 𝑐𝑏𝑎𝑡𝐾 (𝑇 ) + 𝑐𝑔𝐾 (𝑇 ) (8)
𝑡=1 𝑡=1
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Hence the term ‘‘coalition’’ in this paper denotes a set of agents that
agree to exchange energy according to a schedule that optimises the
use of their joint energy assets (battery, generation) and joint demand.
The term is borrowed by cooperative or coalitional game theory, where
coalitions are cooperative groups formed by agents, in order to increase
the joint benefits achieved (or in this case, reduce the joint costs or bill).
The combined battery and generation assets are then controlled jointly
in an optimal way to satisfy their joint demand. This minimises their
imports from the grid (or utility company) resulting in a mutual saving,
we call the Gains from Trade (c.f. Section 3.6).

3.5. The peer-to-peer trading model

We consider a peer-to-peer model where a prosumer 𝑖 trades energy
with another prosumer 𝑗 using a joint profile optimiser 𝛩, which
omputes the optimal energy exchange at each time step. The contents
f the computation of these trades are dependent on the net demand of
he prosumers. So we record all trades in energy contracts 𝜔 = (𝑖, 𝑗, 𝜃),
here 𝑖 is the energy-receiving prosumer and 𝑗 is the energy-providing
rosumer participating in the trade, and 𝜃 are the energy trades found
y the profile optimiser 𝛩 for each time step 0..𝑇 . We denote the set
f trades by prosumer 𝑖 as 𝛺𝑎

𝑖 . Note that a coalition can be formed
hrough multiple contracts, as agents iteratively join and trade with
xisting prosumers inside the coalition.

The total energy exchanged at time 𝑡 by a prosumer 𝑖 is given by
𝑝2𝑝
𝑖 (𝑡) =

∑

(𝑖,𝑗,𝜃)∈𝛺𝑎
𝑖

𝜃(𝑡) −
∑

(𝑗,𝑖,𝜃)∈𝛺𝑎
𝑖

𝜃(𝑡), ∀𝑗 ∈ 𝐾 (9)

The exchanged energy 𝑒𝑝2𝑝𝑖 (𝑡) may be positive or negative, in which
ase a positive value indicates prosumer 𝑖 received more energy than
ent to other prosumers at time 𝑡, while a negative value depicts 𝑖 giving

more energy than receiving.
The net demand of the prosumer after trading is given by

𝑒𝑖(𝑡) = 𝑒𝑖(𝑡) − 𝑒𝑝2𝑝𝑖 (𝑡) (10)

Similarly to Eq. (1), we can identify two regimes where 𝑒𝑏𝑖 (𝑡) =
𝑒𝑖(𝑡) > 0, i.e. residual demand and where 𝑒𝑠𝑖 (𝑡) = 𝑒𝑖(𝑡) < 0, i.e. excess
eneration.

The bill after trading can be computed as follows:

�̃�(𝑇 ) =
𝑇
∑

𝑡=1
𝑒𝑏𝑖 (𝑡)𝜏

𝑏(𝑡) −
𝑇
∑

𝑡=1
𝑒𝑠𝑖 (𝑡)𝜏

𝑠(𝑡) + 𝑐𝑏𝑎𝑡𝑖 (𝑇 ) + 𝑐𝑔𝑖 (𝑇 ) −
∑

𝜔∈𝛺𝑎
𝑖

𝑣𝑖(𝜔) (11)

here 𝑣𝑖 is the function that gives the financial value gained by
rosumer 𝑖 from contract 𝜔. This value is decided based on the con-
ract mechanism. In this paper, we investigate two mechanisms, i.e. a
entralised market, and bilateral, concurrent negotiations.

.6. Gains from trade in energy trading

Due to the diversity of demand and energy profiles, aggregation of
rofiles and assets leads to each coalition requiring less energy import
nd exports from the central power grid. Furthermore, considering all
he distributed residential batteries as a combined battery capacity that
ould be centrally controlled to optimise the gains of the community
eads to more flexibility, further decreasing reliance on the grid, and
educing the joint bill of the community for the residual demand over
ome time period 𝑏𝑁 (𝑇 ). Considering all distributed storage assets
f the community as a single combined battery capacity controlled
entrally in both the centralised community model and the peer-to-
eer model leads to a cost reduction for the prosumers (as compared
o the case where each prosumer uses and controls its own individual
ssets such as individual battery independently, and thus pays all the
mported electricity to his/her main electricity supplier). Using termi-
ology from market design/economics, we call this reduction in costs
6

he ‘Gains from Trade’ (gains from trading energy between prosumers s
n the community), as opposed to using only one’s own individual
ssets). Formally, the Gains from Trade (also abbreviated GT) for a
ommunity of 𝑁 prosumers over a time horizon 𝑇 is defined as:

𝐺𝑇𝑁 (𝑇 ) =
∑

𝑖∈𝑁
𝑏𝑖(𝑇 ) − 𝑏𝑁 (𝑇 ) (12)

here, for all agents 𝑖 ∈ 𝑁 , 𝑏𝑖(𝑇 ) denotes the bill of each agent, when
ontrolling its assets individually, and 𝑏𝑖(𝑇 ) denotes its bill after trading
ased on the schedule recommended by the joint profile optimiser.
ntuitively, 𝐺𝑇 is the difference between the sum of the prosumers’
ills to the utility company (for residual demand not covered by their
wn renewable generation) that agents would have to pay jointly,
inus the bill for the whole community if they share and control their

nergy assets together (i.e. appearing a single prosumer to the utility
ompany). Note that here 𝑏𝑁 (𝑇 ) =

∑

𝑖∈𝑁 𝑏𝑖(𝑇 ), i.e. the sum of the bills of
he 𝑁 prosumers trading inside the community is necessarily the total
ill of the community. It is always the case that 𝑏𝑁 (𝑇 ) ≤

∑

𝑖∈𝑁 𝑏𝑖(𝑇 ),
ence the 𝐺𝑇 ≥ 0 value is greater than zero, since in the worst case, the
est control is for everyone to exclusively use their individual assets.
owever, in most realistic cases, there will be times (clearing periods)
hen pooling of assets is better.

The above definition is provided for a community of 𝑁 agents.
ut actually, in peer-to-peer trading, we can apply this concept the
ame way for any subset (or coalition) of prosumers 𝐾 ⊆ 𝑁 in this
ommunity trading over period 𝑇 (i.e. any subset greater than |𝐾| ≥ 2
gents). The 𝐺𝑇 for any coalition 𝐾 is

𝑇𝐾 (𝑇 ) =
∑

𝑖∈𝐾
𝑏𝑖(𝑇 ) − 𝑏𝐾 (𝑇 ) (13)

Note that unlike conventional game-theoretic approaches, the Gains
rom Trades that underpin the coalition formation are derived by
he results of the optimisation process and energy assets utilisation,
ather than a clearly mathematically defined characteristic function.
his allows for a more realistic representation and pragmatic approach
f the model developed. Furthermore, note that 𝐺𝑇𝐾 (𝑇 ) ≥ 0, because
o P2P contract would be established, and no trading would occur if
he agents are worse off by pooling their assets together in a coalition.
imilarly, here 𝑏𝐾 (𝑇 ) =

∑

𝑖∈𝐾 𝑏𝑖(𝑇 ), i.e. the sum of the bills of the 𝐾
rosumers inside the coalition is the total bill of the coalition. Also
mportant to note that the Gains from Trade for a subset (sub-coalition)
f agents in the community will always be less or equal to that of the
hole community, i.e. 𝐺𝑇𝐾 (𝑇 ) ≤ 𝐺𝑇𝑁 (𝑇 ),∀𝐾 ⊆ 𝑁). However, the
rowth of 𝐺𝑇 is definitely not linear or proportional to the number of
rosumers joining the coalition 𝐾, in fact quite the opposite: for some
rosumers/contracts, their effect on the gains from trade growth is
igh, while for some it is very marginal (for example, small consumers
r with a non-diverse diverse demand profile, who have little scope to
rade), In most of the experiments in this paper, it is a more general
ethodology to report the relative ratio:

𝐺𝑇𝐾 (𝑇 )
𝐺𝑇𝑁 (𝑇 )

for possible coalitions 𝐾 ⊆ 𝑁

n percentage terms, rather than the raw 𝐺𝑇 numbers, that is often
pecific to the trial, location in the UK, or energy tariff levels in time
eriod when the trial data was collected.

.6.1. Joint profile optimiser
The goal of peer-to-peer trading is to maximise the Gain from Trade.

owever, since every prosumer has different demand and generation
rofiles, it is not trivial to find the best exchange that minimises the
oint total cost. Furthermore, even if we find the optimal (maximal)
ains from Trade, we need to distribute these gains over the prosumers

n the contract.
To address the optimisation of the energy exchange, we propose a

ethod using a joint profile optimiser that can compute the energy
hat should be exchanged between two prosumers. Recall that in the

etting considered in this paper, once consumers decide to trade, either
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Fig. 1. Example of trading profiles between 2 prosumers: Prosumer A and Prosumer B, who decide to trade and form a coalition, over one example day (48 half-hourly time
slots). Note that the imports (green sections) of one prosumer correspond to the orange sections (exports) of the other prosumer. In this case, it appears Prosumer A is a ‘‘night
owl’’ type prosumer (i.e. a prosumer who is working and using energy during the night) - we note this is the real [anonymised] profile of a consumer from the Low Carbon
London trial data. Important to note that, in the case of these two specific profiles substantial trading occurs, but for most profile pairs in the dataset there can be much less (or
even no) P2P trading occurring, depending on the fit between the specific demand profiles.
through centralised or automated negotiation approach, they agree to
share their assets, i.e. their flexible assets will be controlled by the Joint
Profile Optimiser. Therefore, in both scenarios, consumers allow the
Joint Profile Optimiser to use their excess energy generation/storage
by other prosumers, at times they do not need it themselves. Hence,
we can find the optimal energy contract, minimising the combined bill
of prosumers in a coalition, using the aggregated demand, generation
and battery of the prosumers in that coalition.

However, we still need to calculate the demand, generation and bat-
tery usage of the individual prosumers in the coalition, that would guar-
antee them the maximum Gains from Trade. This calculation requires
satisfying a number of constraints.

First, the net demand at each time step given by

𝑒(𝑡) = 𝑑(𝑡) − 𝑔(𝑡) + 𝑝𝑏𝑎𝑡(𝑡) (14)

for the coalition of two agents is equal to the sum of net demands of
the individual agents after trading, i.e.

𝑒𝑖𝑗 (𝑡) = 𝑒𝑖(𝑡) + 𝑒𝑗 (𝑡) (15)

Since this would mean that the total energy between the two consumers
individually is the same as the expected energy in the coalition.

Second, the state of charge (𝑆𝑜𝐶) of the battery should be equal for
the coalition and the sum of individuals, i.e.

𝑆𝑜𝐶 𝑖𝑗 (𝑡) = 𝑆𝑜𝐶 𝑖(𝑡) + 𝑆𝑜𝐶𝑗 (𝑡) (16)

These constraints combined ensure that the system of two individu-
als behave as a coalition, while preserving their individual profiles. To
ensure that these constraints are satisfied we can use our battery control
algorithm that balances the demand and generation of each prosumer
at each time step.

The basic intuition of the profile optimiser is that, when two pro-
sumer agents decide to trade, their optimal joint generation and de-
mand (load) profile is the same as if they were a larger agent, control-
ling the assets of both parties. Then, this joint agent would perform op-
timal control w.r.t. the joint assets, and the aggregated load/generation
of both prosumers. In Fig. 1 we provide an example illustration of
trade that optimises the joint Gains from Trade between two prosumer
agents, labelled Prosumer A and Prosumer B (note these are two real,
anonymised prosumers, picked from the Low Carbon London dataset
used in this paper). While the joint profile optimiser can operate on two
individual prosumer agents (as in this example), it can also operate on
the coalition of the two prosumers, which is the case considered in this
7

work when 2 agents agree to trade, either through centralised matching
or through negotiation. In this case, the generation/demand profile
used for the coalition is the aggregate of the generations/demands of all
prosumers in that coalition. Thus, the profile optimiser can be applied
to iteratively build larger coalitions, scalable to any number of agents.

4. Centralised matching and clearing

The centralised market mechanism tries to clear the market by
accepting the contracts in order of most Gains from Trade that can
be achieved by the agents trading (as computed by the joint schedule
optimiser). For a visual overview of the process, see Fig. 2.

To find out which contracts are available, we compute all contracts
in the contract space by computing all pairs of prosumers and the result-
ing trades 𝜃 produced by the joint profile optimiser 𝛩. The contract with
the highest gains from trade is accepted and the involved prosumers
trade their energy if the power flow resulting from the energy quantities
in the contract do not violate any local grid constraint. This verification
is done either directly by the DSO or by the Joint Schedule Optimiser.
The gains of the accepted contract are split equally between the two
prosumers. However, this results in the net demand profiles of these
prosumers changing, i.e. the contract space changes. This requires a
re-computation of the contract space before a new contract is accepted.

Hence, we can define a single round of accepting a contract as
follows:

1. Compute the contract space given the prosumers net demands
profiles 𝑒𝑖(𝑡) (𝑒𝑖(𝑡) for the initial round)

2. Sort the contracts space in descending order by potential Gains
from Trade (GT)

3. Run a powerflow on the local network with the quantities from
the trade with the highest potential GT

4. If the local grid constraints are met, accept the contract with the
highest GT, otherwise, go the next contract

5. Split the gains equally between the two prosumers

This process continues until no more trades can be made, or the
gains of trade drop below a specified threshold. Section 6 provides
an overview of the gains of trades evolution for different numbers of
rounds. Agents who establish trades with their peers form a coalition.

The proposed method attempts to minimise the number of trades
(contracts) between individual prosumers. However, it can be extended
to instead minimise the number of prosumers participating in trading.
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Fig. 2. Centralised matching and clearing; note that contracts are matched in order of decreasing Gains from Trade, i.e. 𝐺𝑇1 ≥ 𝐺𝑇2 ≥ 𝐺𝑇3 ≥ ⋯.
Fig. 3. Decentralised P2P negotiation between several prosumers, note that interaction between the joint profile optimiser and prosumers happen for each bilateral negotiation
thread. In the figure, one example is shown.
We can model the trading coalitions that form around the agents
that trade with each other. Note that, within these trading coalitions,
not every member trades with each other, but only those who have
established a trade contract. We can look at the gains those coalitions
could realistically produce on their own and model them as a single
prosumer for future contracts. This process will minimise the number
of agents participating in trade since gains are maximised for groups
first.

5. Peer-to-peer negotiation framework

Modelling automated P2P energy negotiations among multiple
agents has proven complex [15,16,19], with earlier works often lim-
iting the negotiation domain to a very small number of time steps and
quantities. Our framework consists of two main steps, i.e. peer selection
and negotiation. During the peer selection step, we select a number of
prosumers based on the highest possible savings (Gains from Trade).
Finally, during negotiation, the distribution of the gains is decided.
These steps are then iterated over until no more new contracts can
be established or a specified deadline has been reached. While earlier
works have considered multi-issue negotiation over the amount of
energy to be exchanged at every time point — resulting in an extremely
large negotiation space, we instead consider a negotiation mechanism
where agents can use the joint profile optimiser, that computes their
8

joint optimal energy exchange schedule. Prosumers, therefore, do not
need to negotiate over how much energy needs to be exchanged at
each time step, as in the proposed setting, the community embraces the
best strategy proposed by the profile optimiser considering all batteries
aggregated. A visual overview of the process is provided in Fig. 3).

The profile optimiser returns an exchange schedule and its expected
joint Gains from Trade (compared to the sum of individual optimi-
sations), but will not specify how the financial gains will be divided
for each prosumer. Thus, prosumers will need to negotiate only over
the redistribution of the expected gains from trade inside the coalition
being formed. The introduction of a joint profile optimiser enables a
reduction of complexity, and modelling larger domains. It allows us
to consider trades over very long periods, with many time steps —
and hence be able to build large data-driven simulations. While agents
have to share their generation/consumption with the optimiser, they do
not need to share their full generation/demand information with other
agents directly, which preserves privacy.

5.1. Negotiation

The negotiation protocol is based on the concurrent alternating
offers protocol. It consists of two phases: An offer phase and a commit
phase. In the offer phase, agents keep exchanging offers until at least
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one is accepted. While in the commit phase, a single most promising
offer is accepted in the market.

5.1.1. Offer phase
The bidding phase is described in Algorithm 1. This phase consists of

multiple rounds. During each round, every agent provides a price offer
to multiple different agents along with the energy quantities defined
by the joint profile optimiser. Note that the price offered by an agent
to its partners is the same for all in a single negotiation round. The
receiving agent then can accept or reject the offer. In case the offer is
accepted, this is made public to other market participants, and a new
coalition is formed by the agents reaching the deal. Otherwise, each
bidding agent will create another offer during the next round. Note
that, if a deal is accepted, the newly formed coalition can continue to
trade in the market as a single player, to reach P2P deals with other
prosumer agents and/or other coalitions, and the schedule optimiser
will compute the Gains from Trade of the new coalition compared to
the one already formed.

Algorithm 1 Offer exchange phase
Input: Contract space 𝛺, sets of potential trading partners 𝑃𝑖 for each

agent 𝑖 ∈ 𝑁 , agent strategy 𝑠𝑖 for each agent 𝑖
Output: Set of accepted offers and contracts (can be more than one)

𝑟 ← 0
𝛺𝑎 ← ∅
𝑂𝑎 ← ∅
while 𝑟 < 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 AND 𝛺𝑎 = ∅ do

for all 𝑖 ∈ 𝑁 do
for all 𝑗 ∈ 𝑃𝑖 do

select 𝜔 = (𝑖, 𝑗, 𝜃) ∈ 𝛺 ⊳ Precomputed by the profile
optimiser

make-offer𝑖→𝑗(𝑟, 𝑣𝑖(𝜔), 𝑠𝑖)
end for

end for
for all 𝑜 ∈ receive-offers𝑖(𝑟) do

if accept-offer𝑖(𝑟, 𝑜, 𝑠𝑖) then
select 𝜔 = (𝑖, 𝑗, 𝜃) ∈ 𝛺 ⊳ Find the contract belonging to

the offer
𝛺𝑎 ← 𝛺𝑎 ∪ {𝜔}
𝑂𝑎 ← 𝑂𝑎 ∪ {𝑜}

end if
end for
𝑟 ← 𝑟 + 1

end while
return 𝛺𝑎, 𝑂𝑎

5.1.2. Commit phase
In the commit phase, shown in Algorithm 2, the market looks at

all accepted offers and approves the one with the highest Gains of
Trade after validation through a power flow analysis that the local grid
constraints are not exceeded (voltage and lines thermal limits). If the
offer with the highest gains results in the violation of grid constraints,
the next highest gains’ offer is selected and assessed through power
flow study, until an offer is compatible with the grid state or until no
offer remains. All other offers in that specific round are then rejected,
to prevent large regret, as some players in the market have changed.
Specifically, as a new coalition has been formed (by the agents with the
highest GT exchange having reached a contract, and now participating
as a coalition), this new coalition may offer a better deal to some
other agent. Hence the acceptance process is iterative, with exactly one
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coalition being formed in each round. After acceptance, the payments
are settled and energy is exchanged. After the energy exchange the
contract space is updated.

Algorithm 2 Commit phase
Input: Contract space 𝛺, all prosumers 𝑖 ∈ 𝑁 , set of all accepted

contracts 𝛺𝑎 and offers 𝑂𝑎 in the offer phase
utput: Accepted contract 𝜔𝑎 and new contract space 𝛺′

Sort (𝜔, 𝑜) ∈ 𝛺𝑎 × 𝑂𝑎 on 𝑣𝑖(𝜔) in descending order
for 𝑖 ∈ 𝑁 do

𝜔𝑎,𝑖, 𝑜𝑎,𝑖 ← 𝛺𝑎 × 𝑂𝑎.pop() ⊳ The 𝑖𝑡ℎ contract with the most value
if 𝜔𝑎,𝑖meets local grid constraints then

(𝑖, 𝑗, 𝜃) = 𝜔𝑎,𝑖

�̂� ← update-profiles(𝑖, 𝜃)
�̂� ← update-profiles(𝑗, 𝜃)
exchange-payment𝑖→𝑗(𝑜𝑎,𝑖)
𝛺′ ← 𝛺 break

end if
end for
for all 𝜔 = (𝑖, 𝑘, 𝜃) ∈ 𝛺 do ⊳ Contracts including agents in 𝜔𝑎

should be updated
Compute 𝜔′ using the profile optimiser
𝛺′ ← 𝛺′ ⧵ {𝜔} ∪ {𝜔′}

end for
return 𝜔𝑎 , 𝛺′

5.2. Peer selection

During the peer selection process, the mechanism selects for each
prosumer a subset of prosumers to trade with. This procedure is shown
in Algorithm 3.

In this model, we assume that each prosumer sends offers to a
limited number of 𝑘 promising prosumers it negotiates with (in most
simulations in this paper 𝑘 = 5, which basically means that each
prosumer negotiates simultaneously with 5 prosumers that are most
promising in terms of potential Gains from Trade). The negotiation
partners of a prosumer are sorted based on the potential gains as
computed by Eq. (12), and the 𝑘 peers with the highest potential gain
are selected as partners to send offers to. The prosumer is able to
negotiate with each partner concurrently. Note the negotiating power
of different prosumers may be asymmetric: considering some prosumer,
it is not guaranteed that for each partner in its top 𝑘 preferred partners,
the considered prosumer is also in those partners’ top 𝑘. This is natural,
as some prosumers have more power to trade, more flexibility to offer,
or a more attractive profile than others. On the other hand, if there
are a lot of prosumers with similar generation/demand profiles, their
negotiating power is limited, as there are a lot of alternative choices.

Algorithm 3 Peer selection algorithm for agent 𝑖
Input: Set of all possible energy contracts 𝛺𝑖, number of desired

trading partners 𝑘
utput: List of the top-𝑘 trading partners
Sort 𝜔 ∈ 𝛺𝑖 on 𝑣𝑖(𝜔) in descending order
return 𝛺𝑖[1..𝑘]

5.3. Agent strategies

The negotiation strategy dictates the offer and acceptance behaviour
of an agent. Different negotiation strategies affect how the Gains from
Trade inside a trading coalition is redistributed. But, it would not
significantly affect the overall benefits of peer-to-peer trading. For
this work, we model agents as having a linear concession strategy for
dividing the expected gains during negotiations, but other strategies

could also be employed.
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Fig. 4. Convergence of the Gains from Trade (as a percentage of the maximum possible Gains from Trade).
In more detail, in the first round the agent proposes an offer that
is equal to the maximum utility 𝑢𝑚𝑎𝑥𝑖 that can be gained from trading
with all partners combined. This represents the market power of the
agent. The agent also defines a reservation value 𝑟𝑣𝑖, which is the
minimum utility the agent will accept. The bid in consequent rounds
is determined as a linear function of the round number 𝑟 that decays
to the minimum utility when the deadline 𝑑 is reached. Formally, this
function is defined as

𝑜𝑖(𝑟) = 𝑟𝑣𝑖 + (𝑢𝑚𝑎𝑥𝑖 − 𝑟𝑣𝑖) ⋅ (1 −
𝑟
𝑑𝑙

) (17)

The agent will accept a bid, if a received bid has a value higher or
equal to its last bid.

It is important to observe this decentralised P2P trading process
is much more computationally intensive than the approach managed
by a central market maker. Essentially, at each time step, each agent
sends and accepts/rejects offers from 𝑘 peers or negotiation partners
(for example, in our simulations 𝑘 = 5), after which the accepted offer
with the highest GT in the market is cleared, a coalition forms and the
process repeats. In the centralised clearing process, also one coalition is
formed per time step, but the market maker selects and clears the deal
with the highest GT, leading to much less offers being exchanged. Of
course, we mostly look at market efficiency, but decentralised negoti-
ation is computationally more expensive, especially if implemented in
a decentralised system, such as a blockchain.

6. Experimental comparisons using real world datasets

To compare the effectiveness of peer-to-peer trading in a realistic
community, we consider two scenarios, using data from real pro-
sumers of two energy trials in the United Kingdom. The first scenario
uses anonymised data from the Thames Valley Vision trial, where we
compare the methods in an average-size community of 200 house-
holds [32]. The second scenario makes use of a much larger set of
prosumers, using anonymised data from the Low Carbon London trial,
providing data from several thousand households. Thus we can check
whether the results hold up in larger settings as well as the effect
that different compositions of a smaller community may have on the
effectiveness of trading. In both scenarios, we model the energy assets
of a prosumer as follows

• Each prosumer has access to a lithium-ion battery. The price of
the battery was fixed to £150/kWh and its lifetime to 20 years.
The battery life cycle data was obtained from [33]. For each
prosumer, the battery capacity was computed as the battery
capacity that minimises the prosumer’s bill when used for self-
consumption only.
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• Each prosumer has access to a share of a wind turbine, where
the share was computed by minimising the yearly bill given no
access to any storage. The price of the wind turbine was set to
£1072 /kW and its lifetime to 20 years. The wind speed to power
curve has been interpolated using data for a typical community
wind turbine (i.e. Enercon E-33).

Furthermore, both scenarios consider a flat import tariff of 16
p/kWh (i.e. 16 pence or 0.16 British pounds per kWh) and an export
tariff of 0 p/kWh. We consider the simulation of these energy commu-
nities for a 1 year period with 30-min granularity, resulting in 365 ∗
48 = 17520 time steps. Finally, we note that during the simulations
conducted with real load profiles (from the two communities described
above) and the European low voltage test feeder network provided by
IEEE [34], we found no grid constraints were violated. As a result, the
trades or contracts with the highest gains were always accepted by the
grid operator.

6.1. Scenario 1: Thames Valley Vision

The first scenario considers a simulation of 200 households. The de-
mand data has been retrieved from the Thames Valley Vision trial [32].

Fig. 4(a) shows the Gains from Trade achieved by the community
as more and more contracts (and thus P2P trading coalitions) are
established. This figure displays the convergence of the GT towards the
theoretical limit of maximal GT possible in that community (this limit
is reached when every single prosumer in the community participates
in trading). As expected, this graph shows that it eventually does
converge to this theoretical limit as the number of P2P energy contracts
increases.

However, we find that only a small number of P2P energy contracts
are actually required, for both the centralised matching and clearing
models and the decentralised negotiation model. Both models achieve
close to the maximum possible Gains from Trade after about 1000
established contracts, while with a community of 200 prosumers there
would be a theoretical total of 2002

2 − 200 = 19900 different pairings.
This might suggest that peer-to-peer models achieve maximal efficiency
relatively quickly and that only a small number of bilateral contracts
need to be established. Between centralised matching and clearing, the
difference between convergence is insignificant. This supports that the
converging behaviour is generally applicable to different peer-to-peer
trading models.

Fig. 4(b) shows the convergence of the Gains from Trade in terms
of prosumer participation. Notably, also here we do need all prosumers
to participate in peer-to-peer trading to achieve maximum efficiency. A
noticeable portion of the gains can be achieved with less participation,
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Fig. 5. Gains per energy trading coalition as a function of the number of P2P contracts between prosumers. Different colours represent coalitions formed by P2P contracts.
Fig. 6. Merging of different energy trading coalitions based on the number of P2P contracts established. The area of the disks represents the total gains from trade the trading
coalition achieves. While a new coalition merge happens in each step, only time steps where coalitions that contribute at least 3% of the Gains from Trade are merged are shown
in the illustration, and only the coalitions that contribute at least 2% to the maximal GT are shown.
as 60% of the gains are reached with 30% of prosumers’ participa-
tion. Furthermore, the marginal contribution provided by increased
prosumer participation diminishes quickly for both models, which can
mostly be explained by the fact that the set up proposed in this work
first selects the trades with the highest gains for the community, leaving
trades with lower gains for later rounds. Both models have similar
behaviour as they both use optimal schedules computed by the joint
profile optimiser.

To investigate further why the marginal contribution of a contract
diminishes so quickly and why both models show similar behaviours,
we take a closer look at the dynamics of the peer-to-peer trading
mechanism, by looking at the trading coalitions that form between
prosumers in each negotiation/matching round. A trading coalition can
be formed when prosumers have agreed on a contract with each other
either directly, but it is also formed when a prosumer is indirectly
connected by another prosumer, e.g. prosumer 𝑖 has a contract with
prosumer 𝑗 and prosumer 𝑖 has a contract with prosumer 𝑘, then the
trading coalition would be {𝑖, 𝑗, 𝑘}, and the profile optimiser will jointly
optimise the assets of the 3 prosumers.

Fig. 5 shows the Gains of Trade for each trading coalition, where
the 𝑥-axis represents the number of contracts accepted and the 𝑦-axis
11
represents the total GT achieved. Different colours represent a different
disjoint trading coalition. Merging of coalitions can be seen in the figure
when one coalition of a certain colour that has accepted the contract is
taken over by the colour of the coalition that has offered the contract.
Initially, we see that there are many small coalitions, but eventually,
every prosumer is included within the same trading coalition, i.e. form-
ing the grand coalition. Here we can see clear differences between
the dynamics experienced, by the centralised matching and clearing
approach as opposed to the decentralised negotiation approach. The
centralised matching approach creates a larger trading coalition before
merging them together into the grand coalition, while for decentralised
negotiation trading coalitions stay relatively small.

In Fig. 6, we show the merging process of the trading coalitions
for both centralised matching and decentralised negotiation. The 𝑥-axis
represents the time steps in which merging happened in terms of how
many P2P contracts were established. The area of the disk represents
the size of the coalition, and the colours correspond to the different
coalitions in Fig. 5. Only coalitions with significant size (contributing
to at least 2% of Gains from Trade) and their merges are presented
in the figure. Here we can see that the centralised matching approach
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Fig. 7. Gains per trading coalition as a function of prosumers that participate in trading. Different colours represent coalitions formed by P2P contracts.
Fig. 8. Merging of different energy trading coalitions based on the percentage of prosumers that participate in trade. The size (area) of the disks represents the total Gains from
Trade that specific trading coalition achieves. Only timesteps where coalitions that contribute at least 5% of the GT are included in the visualisation, and only the coalitions that
contribute at least 1% to the gains from trades are shown.
creates larger and more trading coalitions. This seems to suggest that
centralised matching prefers contracts between prosumers that are
already part of a trading coalition, before merging them into the larger
trading coalition. Furthermore, when the trading coalitions are merging
into the largest coalition, the majority of the potential Gains from
Trade has already been achieved. This might suggest that the gains
primarily come from matching the prosumers that have very different
demand profiles since those contracts are established first. After those
gains have been realised, the trading coalitions have compounded
enough minor differences in demand profiles for them to lead to a
significant gain. For decentralised negotiation, while this effect can also
be observed, since lots of small trading coalitions form, they tend to not
grow larger. This is likely due to these small trading coalitions being
quite diverse as opposed to the larger coalitions, giving them more
market power and therefore laying claim to a larger fraction of the
benefits. Larger coalitions have less market power and are therefore
more likely to accept a contract proposed by a small coalition, leading
to small trading coalitions merging into the largest.

Fig. 7 shows the Gains from Trade of trading coalitions related
to prosumer participation. The 𝑥-axis represents the percentage of
prosumer participation in the P2P model which continues to increase
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as more contracts are established, and the 𝑦-axis represents the total GT
achieved, as percentage of the maximal. The colours represent trading
coalitions, similarly to Fig. 5. Here we observe that for the centralised
matching and clearing there are fewer trading coalitions, while for
decentralised negotiation we observe a lot more trading coalitions.

In Fig. 8, we show the trading coalitions of significant size (con-
tributing to at least 5% of the maximal GT) and their merging processes,
where the size of the disk represents coalition size and the colour
corresponds to the coalitions from Fig. 7. Here we can also see for cen-
tralised matching that there are a small number of significantly sized
trading coalitions and that they tend to merge into the largest coalition.
Yet, the merging process for decentralised negotiation involves a lot
more groups. These effects seem quite different from those observed
when looking at the dynamics when looking at the accepted contracts,
However, they can be explained by the fact that the most diverse
consumers first form a trading coalition, leading to prosumers that
join at a later stage either joining the diverse consumers in the larger
coalition, or having to form themselves a smaller trading coalition. We
see that some of these smaller coalitions do form, however, the majority
do join this larger coalition since no other single consumer is diverse
enough. For decentralised negotiation, this plays a smaller role, since
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Fig. 9. Average daily demands for different consumer profile clusters. Error bars represent the standard deviation of the demand profiles within the cluster.
these diverse consumers are more likely to not join together initially
due to them having a higher market power and being more likely to
form smaller trading coalitions.

6.2. Scenario 2: Low Carbon London

In the second scenario, we consider a larger dataset with over 5000
households. The demand data has been retrieved from the Low Carbon
London trial [35]. This dataset provides a larger and more represen-
tative set of households for the London region. However, since real-
istically sized communities behind an LV substation often are smaller
sized, e.g. around 50–200 [6], instead of considering the whole dataset
at once, we create experimental scenarios with realistic diversity and
sizes closely fitting the distributions in the large data set.

To ensure that these scenarios reflect the whole community cor-
rectly, we apply stratified sampling of consumer profiles from the larger
pool. A widely used method for identifying these strata in energy de-
mand modelling is clustering on energy demand profiles [36,37]. In this
study, we use K-means clustering on daily averaged consumption in the
winter months of the prosumers. The full methodology for performing
the clustering is described in Appendix B. From our clustering analysis,
we identify and select 5 distinct demand profiles from the resulting
clusters. These are shown in Fig. 9.

Analogous to earlier works, we find that the majority of profiles
follow an evening peak pattern, where a noticeable peak in consump-
tion can be observed during the early evening, often as a result of
prosumers coming home from work. Fig. 9(b) shows another much
occurring pattern, where energy demands stay consistent throughout
the day while still being low during the night. Since this is likely an
effect of prosumers working from home and therefore using energy
throughout the day, we call this group ‘work from home’. The final
large group consists of prosumers that consume large quantities of
energy during the morning and evening, likely pertaining to users that
have a similar lifestyle to the ‘Evening peak’ group, but also use a lot
of energy in the mornings. The remaining two clusters do not have this
peak consumption during the evening but at different moments during
the day. The ‘morning peak’ group consumes the majority of energy
during the early mornings, while the ‘night owl’ group consumes the
majority of their energy overnight.
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Fig. 10. Influence of diversity factor of the energy community on total Gains from
Trade.

Experiments for convergence of the Gains from Trade and the
trading dynamics show results very similar to those found for the
Thames Valley Vision data set, which is not surprising, given that both
trials study consumers from roughly the same area of the UK (southern
England/London area).

However, we also explore scenarios where change the composition
of the community (in terms of demand profiles or patterns), and here
we find slightly different results. To quantify how the composition
changes, we evaluate the efficiency with regard to the diversity of the
community. The diversity of a community can be expressed using the
diversity factor.

Fig. 10 shows the Gains from Trade as a percentage of the total bill
compared to the diversity factor. Multiple (i.e. 15) different communi-
ties have been generated for several (i.e. 100) diversity values. We find
that the gains from trade increase with diversity. Diverse communities
contain prosumers that have many different demand profiles, making
it more likely that another prosumer can cover residual demands.
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Fig. 11. Influence of diversity factor of the energy community on the prosumer participation required for achieving the majority of the gains from trade.
However, this effect is less noticeable the more diverse a community
is.

Fig. 11 shows the prosumer participation required for different
fractions of the Gains from Trade. Interestingly, these thresholds grow
quickly for non-diverse communities. The difference effect of increasing
diversity for an already decently diverse community seems to have
negligible effects.

6.3. Discussion

Results from both the Thames Valley Vision and Low Carbon Lon-
don datasets suggest that only a small number of contracts need to
be established to realise the bulk of the potential Gains from Trade
from establishing a P2P or community energy trading scheme. Since
generation profiles between prosumers are very similar due to the
locality of the community, only requiring a small number of contracts
can be attributed due to the majority of the benefits being achieved
by prosumers that have significantly different demand profiles from
the other agents. After these prosumers establish contracts, they likely
still have some excess generation and residual demand, however, these
values are closer to the mean and, therefore, less of a factor for
future contracts. Similarly, we can see that for the majority of the
Gains from Trade, not all prosumers need to participate, with those
prosumers that exhibit common consumption behaviour having less
marginal contribution. This points to the benefits of considering the
exact demand profiles in promoting participation of prosumers in P2P
trading schemes.

The convergence of the maximal Gains from Trade happens at a fast
initial rate and then levels off, for both forms of market organisation
(centralised vs. peer-to-peer models). However, trade dynamics do re-
veal that there is a difference in how both models achieve similar gains.
Both of these models prioritise different contracts in the beginning,
when most contracts are likely to be formed, with the peer-to-peer
model resulting initially in a larger number of small coalitions.

These results are further confirmed by the scenarios generated using
the large-scale Low Carbon London data set. Furthermore, the Low
Carbon London data set provides some insights on how this effect
generalises to other compositions of communities. Experiments show
that while the Gains from Trade increase based on the diversity of the
community, prosumer participation required for realising the majority
of the benefit stays fairly consistent, with around 50% of the prosumers
being required for 80% of the maximal potential GT. However, a lack
of diversity within a community suggests that the majority of the gains
can be achieved by a very small number of contracts. This makes
sense, as only those that differ significantly from the majority benefit
14

significantly from participating in peer-to-peer trading.
In addition to these quantitative results, it is important to discuss
the replicability of these energy communities in real implementations.
In [38], the acceptability of such schemes of energy communities
was assessed through a survey filled by 617 citizens from Finland,
and showed that only 20% of the respondents were not interested in
participating in an energy community, whereas the incentive of citizens
interested where mostly the potential economic gains through buying
and selling electricity, but also the reduction of their environmental
impact, and the reduction of their dependence to big energy companies.
However, it was shown that energy communities should not require
any change in end-users’ consumption nor any technical challenge. This
feedback is similar to the one that was collected within the ReFLEX
(Responsive FLEXibility) project in the Orkney Islands, one of the
largest Smart Grid demonstrator in the UK [39], that highlighted the
fact that social acceptability is a critical driver for energy communities
adoption, and that energy trades should be transparent for the end-
users. This can be achieved by enabling a post-delivery local energy
market clearing (centralised or decentralised) that would result in
validated trades that will be deducted from the energy supplier bills
of the prosumers and consumers. This enables a seamless integration of
energy communities within the current energy system and only requires
an energy community manager to operate the local energy market and
send the resulting trades to the DSO or the energy suppliers, as is the
case in several countries in Europe [40]. However, further work on
social acceptability and end-users’ preferences for a centralised or fully
decentralised approach should be conducted through surveys and focus
groups.

7. Conclusions & future work

Peer-to-peer trading has a lot of potential in local energy markets.
However, there is no consensus on the best organisation of a local
energy market. Centralised market clearing models (such as double
auction-type models) seem to be more efficient for extracting the
total social benefit, while decentralised peer-to-peer models provide
more flexibility and individual choice. In this paper, we examine the
efficiency of peer-to-peer markets vs. centralised markets, in terms of
contracts established and market participation using large-scale data
from several trials in the UK. We study this by using 2 models grounded
in earlier research, each respectively representing centralised and de-
centralised markets. Furthermore, to ensure that the results are rep-
resentative, we develop a new framework that uses a joint profile
optimiser to allow for simulating large-scale peer-to-peer processes.

Results suggest that irrespective of the model used peer-to-peer
markets can achieve maximum benefits using a very small number of
contracts, i.e. less than 10% of the possible P2P contracts are required.

Furthermore, a majority of the benefits can be extracted even when
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only a fraction of the community participates in trade, e.g. only about
50% needs to trade for about 80% of the benefits. This effect is more
noticeable given a less diverse community, requiring only a small
fraction of the community to trade. However, less diverse communities
also have less potential for trading, as the overall benefits increase
when diversity of prosumer demand profiles increases.

Results in this work are based on two large-scale public datasets
from the UK. However, future work may consider replicating these
results for other regions around the world, as consumption habits
and generation profiles are likely to differ by location. Furthermore,
we include only prosumers that have access to a wind turbine, but
the effect of solar panels, heat pumps and other forms of renewable
generation could be considered in future work. Further investigation
could be made for a more complex community, consisting of individuals
that exclusively consume energy and prosumers that use different kinds
of renewable energy sources such as photovoltaic.

As a result of our experiments, we find that the marginal Gains from
Trade from established contracts is high in the beginning (for the most
promising prosumers in the community), but then tapers of drastically
as more prosumers are added. While costs of establishing contracts
and P2P coalition are not explicitly modelled here (e.g. administrative,
IT or convenience costs), it may be that the costs associated with
establishing such a contract outweighing the benefits it can provide,
for many prosumers. In future work, these costs could be explicitly
modelled and used to derive an equilibrium point, where establishing
more contracts would be counterproductive. Furthermore, this point
may be used to determine a practical limit for a fraction of benefits
that can be extracted from peer-to-peer energy trading.

Another promising extension – especially important for practical
application – is extending the community energy model to consider
physical network constraints, such as voltage and power limits (an
aspect considered only in a limited number of prior works, such as [41–
43]. Physical constraints may make specific energy contracts more or
less valuable depending on the logistics and network used costs of
transporting the energy, and thus influence the participation in the
peer-to-peer trading scheme for prosumers at specific times.

Finally, another technology that is increasingly used for peer–
peer and transactive energy systems are blockchain-enabled smart
contracts [44–47]. Implementing our energy exchange and coalition
formation protocols on a blockchain (e.g. through a smart contract)
could also be a relevant avenue for further work.
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ppendix A. Battery usage

dditional symbols

𝑆𝑜𝐶%(𝑡) SoC level of the battery at time 𝑡 [%]
𝑆𝑜𝐶𝑚𝑎𝑥

% Maximum SoC of the battery [%]
𝑆𝑜𝐶𝑚𝑖𝑛

% Minimum SoC of the battery [%]
𝑝bat,max Maximum (dis)charging power of the battery [%kW]
𝛥𝑡 Duration of time period 𝑡 [hour]
𝜂𝑐 Charging efficiency of battery
𝜂𝑑 Discharging efficiency of battery
DoD Depth of discharge of battery [%]
DFregular Depreciation factor by regular cycles
DFirregular Depreciation factor by irregular cycles
𝐿 Set of irregular cycles
𝑙 for irregular cycles
𝑆𝑜𝐶 𝑙,𝑆𝑡𝑎𝑟𝑡∕𝐸𝑛𝑑

% Starting/ending SoC of cycle 𝑙 [%]
𝑁DoD,max

𝑐𝑦𝑐𝑙𝑒𝑠 Maximum number of cycles allowed at specific DoD,
rovided in manufacturer specification
𝑛DoD,regular
𝑐𝑦𝑐𝑙𝑒𝑠 Number of regular cycles with the specific DoD

attery control algorithm

In this appendix, we provide the details of the heuristic-based bat-
ery control algorithm. Overall, our battery control algorithm follows
he method first described in [22] (and also used in [25,29], and
nterested readers can also consult that paper for the full details.

The charging of the battery is constrained by the maximum state of
harge (SoC) level of the battery, 𝑆𝑜𝐶𝑚𝑎𝑥

% , and the maximum
dis)charging power of the battery, 𝑝bat,max. Note that the SoC level in
his section indicates the battery’s level of charge relative to its capacity
n percentage, whereas in the main paper SoC level refers to how much
f the battery is charged in kW. Therefore, the SoC level in percentage is
enoted as 𝑆𝑜𝐶% in the remaining of section for clarity. The constraints
f the battery for any time 𝑡 while charging are defined as follows.

𝑜𝐶%(𝑡) ≤ 𝑆𝑜𝐶max
% (A.1)

𝑝bat(𝑡)||
|

≤ 𝑝bat, max (A.2)

Similar constraints apply while discharging the battery. The battery

ay only be discharged while the SoC level has not reached the
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minimum SoC level, 𝑆𝑜𝐶𝑚𝑖𝑛
% . Furthermore, the discharging power may

not exceed the maximum discharging power. These constraints are
expressed as the following.

𝑆𝑜𝐶%(𝑡) ≥ 𝑆𝑜𝐶min
% (A.3)

|

|

|

𝑝bat(𝑡)||
|

≤ 𝑝bat, max (A.4)

Given the battery constraints above, the heuristic algorithm oper-
ates the battery according to certain rules. When the locally generated
power exceeds the power demand, this excess power charges the bat-
tery with the charging efficiency 𝜂𝑐 , while the SoC level has not reached
its maximum capacity. When the excess power cannot be used to charge
the battery due to the capacity limit or the charging power of the
battery, the remaining power is sold to the grid (note that his algorithm
does not consider uncertainty in future demand and supply, unlike
e.g. [48]). The updated power and SoC level of the battery and exported
energy to the grid 𝑒𝑠(𝑡) at time 𝑡 with excess power are calculated as the
following.

𝑝bat(𝑡) = −min(min((𝑔(𝑡) − 𝑑(𝑡)), 𝑝bat, max),
𝑆𝑜𝐶max

% − 𝑆𝑜𝐶%(𝑡 − 1)
𝜂𝑐𝛥𝑡

) (A.5)

𝑆𝑜𝐶%(𝑡) = 𝑆𝑜𝐶%(𝑡 − 1) − 𝜂𝑐𝑝bat(𝑡)𝛥𝑡 (A.6)

𝑒𝑠(𝑡) = (𝑔(𝑡) − 𝑑(𝑡) + 𝑝bat(𝑡))𝛥𝑡 (A.7)

Where 𝛥𝑡 is the length of one time step in hours. In this study, 1∕2
hour time steps were used. The exported energy is sold to the grid with
export tariff 𝜏𝑠(𝑡), generating a profit for the prosumer(s).

When the generated power falls short of the demand, on the hand,
the discharged power from the battery with discharging efficiency 𝜂𝑑

is first used to cover the deficit. If the discharged battery is not enough
to meet the demand, additional power 𝑒𝑏(𝑡) is imported from the grid
with the import tariff 𝜏𝑏(𝑡). During the power deficit, the battery state
and imported energy are determined as follows.

𝑝bat(𝑡) = min(min((𝑑(𝑡) − 𝑔(𝑡)), 𝑝bat, max),
𝜂𝑑

𝛥𝑡
(𝑆𝑜𝐶%(𝑡 − 1) − 𝑆𝑜𝐶min

% ))

(A.8)

𝑆𝑜𝐶%(𝑡) = 𝑆𝑜𝐶%(𝑡 − 1) −
𝑝bat(𝑡)
𝜂𝑑

𝛥𝑡 (A.9)

𝑒𝑏(𝑡) = (𝑑(𝑡) − 𝑔(𝑡) − 𝑝bat(𝑡))𝛥𝑡 (A.10)

Battery degradation

In this section, we describe the computation of the battery’s de-
preciation factor (DF) in Eq. (4), as adapted from the work of Norbu
et al. [22]. Frequent charging and discharging of the battery, especially
when the depth of discharge is deep, can accelerate degradation signifi-
cantly. Manufacturers of batteries often specify a battery cycle life on a
provided datasheet. In this study, we use the lithium-ion battery cycle
life data specified by Xu et al. [33] and Roman et al. [49]. This cycle life
specifies the expected number of charge/discharge cycles per depth of
discharge (DoD) that can undergo before the performance drops below
operable levels. A shortened lifetime of the battery can have an impact
on the depreciation cost, hence the inclusion of the depreciation factor
provides a more realistic estimate of the community cost.

The total depreciation factor of the battery can be found by comput-
ing the depreciation factors of regular and irregular cycles. A regular
cycle starts its discharging phase from an SoC level of 100%, and
charged back to 100% SoC level. The depreciation factor of regular
cycles is then computed as follows:

DFregular =
100%
∑

𝑛DoD,regular
𝑐𝑦𝑐𝑙𝑒𝑠

DoD,max (A.11)
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𝐷𝑜𝐷=0% 𝑁𝑐𝑦𝑐𝑙𝑒𝑠
Fig. B.12. Elbow plot of K-means clustering on daily average demand profiles.

where 𝑛DoD,regular
𝑐𝑦𝑐𝑙𝑒𝑠 is the number of regular cycles (starting from 100%

SoC) with the DoD value, and 𝑁DoD,max
𝑐𝑦𝑐𝑙𝑒𝑠 is the lifetime of the battery

provided by the battery manufacturer in terms of the number of regular
cycles the battery can go through with the DoD value.

However, not all cycles can start from 100% SoC level. Cycles that
have a starting point other than 100% SoC are called irregular cycles.
Regular and irregular cycles can have the same DoD, e.g., a regular
cycle that starts discharging at 100% SoC level until it reaches 60%
then charged back to 100% and an irregular cycle with 80% starting
SoC discharging until 40% SoC level and charged back to 80% SoC,
both cycles have the same DoD of 40%. Yet, regular and irregular cycles
have different impacts on the depreciation factor, and hence they are
computed separately. Furthermore, an irregular cycle can either be a
full or half cycle. A full cycle consists of both discharging and charging
phases, whereas a half cycle is only one of the charging/discharging
phases. The rain-flow cycle counting algorithm [22,31] is used to
classify and count the cycles as regular or irregular, as well as full or
half.

For all the irregular cycles 𝐿 during the evaluation period, we
compute the deprecation factor as follows:

DFirregular =
∑

𝑙∈𝐿
n𝑙 ×

|

|

|

|

|

|

|

|

1

𝑁
DoD𝑒𝑞 (𝑆𝑜𝐶 𝑙,𝑆𝑡𝑎𝑟𝑡

% ),𝑚𝑎𝑥
𝑐𝑦𝑐𝑙𝑒𝑠

− 1

𝑁
DoD𝑒𝑞 (𝑆𝑜𝐶 𝑙,𝐸𝑛𝑑

% ),𝑚𝑎𝑥
𝑐𝑦𝑐𝑙𝑒𝑠

|

|

|

|

|

|

|

|

(A.12)

where 𝑆𝑜𝐶 𝑙,𝑆𝑡𝑎𝑟𝑡
% and 𝑆𝑜𝐶 𝑙,𝐸𝑛𝑑

% are the starting and ending state of
charges, respectively, for the irregular cycle 𝑙, and n𝑙 represents the
type of the cycle (1 for full cycle, and 1

2 for half cycle). Then,

𝑁
DoD𝑒𝑞 (𝑆𝑜𝐶 𝑙,𝑆𝑡𝑎𝑟𝑡

% ),𝑚𝑎𝑥
𝑐𝑦𝑐𝑙𝑒𝑠 corresponds to the maximum number of cycles the

battery can perform for DoD𝑒𝑞(𝑆𝑜𝐶 𝑙,𝑆𝑡𝑎𝑟𝑡
% ), i.e. a depth of discharge

equivalent to a cycle starting at 100% 𝑆𝑜𝐶% and ending at 𝑆𝑜𝐶 𝑙,𝑆𝑡𝑎𝑟𝑡
% .

This is computed as the following:

DoD𝑒𝑞(𝑆𝑜𝐶 𝑙,𝑆𝑡𝑎𝑟𝑡
% ) = 100 −

(

𝑆𝑜𝐶 𝑙,𝑆𝑡𝑎𝑟𝑡
%

𝑆𝑜𝐶max
%

× 100

)

(A.13)

We compute 𝑁
DoD𝑒𝑞 (𝑆𝑜𝐶 𝑙,𝐸𝑛𝑑

% ),𝑚𝑎𝑥
𝑐𝑦𝑐𝑙𝑒𝑠 using a similar notion.

Finally, Given the depreciation factors of regular and irregular
cycles, the total deprecation factor of the battery is the sum of the two
components:

DF = DFregular + DFirregular (A.14)
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Fig. B.13. Average daily demands for different consumer profile clusters. Error bars represent the standard deviation of the demand profiles within the cluster.
Appendix B. Clustering & consumer profiles

In this section, the method and steps used for clustering consumer
profiles used in Section 6 are detailed. The data to be clustered orig-
inally consists of 48 half hours for 365 days, creating a demand
profile with 365 ⋅ 48 = 17520 points and is generated from the Low
Carbon London trial [35]. However, due to the high dimensionality
of the data, clustering directly on the profiles suffers from the curse
of dimensionality [50]. Instead, we reduce the number of points to
consider by reducing the demand profile to a recognisable consump-
tion pattern. Categorising consumption patterns is often done using
daily average data from the winter months by utility companies and
other studies [51–53]. We apply a similar approach by considering
the demands on the prosumers from December to March. Furthermore,
demand data from the weekends (Friday to Sunday) and holidays are
filtered out, as prosumers may display different consumption patterns.
Then, the remaining data from December to March is averaged over the
days. Each prosumer is then represented by a 48-dimensional vector
representing the average 48 half hours of their typical daily energy
demand. As the interest mainly lies in grouping the daily consumption
pattern of the prosumers, the demand vectors are normalised using the
L1-norm. These vectors are then clustered using K-means clustering. To
determine the suitable number of clusters, the elbow method and the
silhouette method [54] were used.

First, the elbow method identifies a range of reasonable cluster
numbers. Fig. B.12 shows the result of the method. In this plot, the
𝑥-axis presents the number of clusters, and the 𝑦-axis is the average
17
inertia of the clusters representing the sum of the squared distance to
the centroid of the belonging cluster.

Based on this analysis, we first identify a range of k values, i.e. 8–12,
in which the inflexion point could be situated. This is further refined
using the silhouette method, from which we find that the best fit value
to be 𝑘 = 9 demand profile classes. These are shown in Fig. B.13.

For our P2P market simulation, we aimed to further restrict the
number of clusters to a smaller number of more distinctive clusters,
such as to be able to illustrate the effects of demand diversity. Looking
in more depth at the mean demands of the 9 identified clusters in
Fig. B.13, it can be seen that multiple clusters show the evening peak
consumption pattern (i.e. profiles (a), (c) and (d) are rather similar),
although there are some variations in which time the evening peak is
located or the amplitude of the peak.

To reduce computation in the market simulation, all of these
evening peak clusters are combined to create one large ‘evening peak’
cluster. This finally results in the 5 clusters shown in Fig. 9 in Section 6,
which are used for the market simulation experiments.

Analogous to earlier works, we find that the majority of these
profiles follow an evening peak pattern, where a noticeable peak in
consumption can be observed during the early evening, often as a
result of prosumers coming home from work. Fig. 9(b) shows another
frequent pattern, where energy demands stay consistent throughout
the day while still being low during the night. Since this is likely an
effect of prosumers working from home and therefore using energy
throughout the day, we call this group ‘work from home’. The final
large group consists of prosumers that consume large quantities of
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energy during the morning and evening, likely pertaining to users that
have a similar lifestyle to the ‘Evening peak’ group, but also use a lot
of energy in the mornings. The remaining two clusters do not have this
peak consumption during the evening but at different moments during
the day. The ‘morning peak’ group consumes the majority of energy
during the early mornings, while the ‘night owl’ group consumes the
majority of their energy overnight.
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