
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Learn together over
time
Distributed Multi-frequency time series framework

IN5000: Masters Thesis
Arnob Chowdhury

Learn together over
time

Distributed Multi-frequency time series
framework

by

Arnob Chowdhury

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Tuesday August 26, 2025 at 12:30 PM.

Student number: 5977045
Project duration: August 1, 2024 – August 26, 2025
Thesis committee: Dr. Lydia Chen, Supervisor, Chair, TU Delft

Dr. Thiago Guzella, Company Supervisor, ASML
Aditya Shankar, Daily Supervisor, TU Delft
Dr. Cynthia Liem, Committee Member, TU Delft

Cover: AI Generated, DALLE, OpenAI

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

I would like to express my sincere gratitude to all those who supported me throughout this thesis. This
work would not have been possible without the guidance and encouragement of my supervisors, Dr.
Lydia Chen, Dr. Thiago Guzella, and Aditya Shankar. Their expertise, patience, and constructive
feedback were invaluable to the development of this research.

I am especially grateful to Dr. Lydia Chen for giving me the opportunity to collaborate with ASML, and
to Dr. Thiago Guzella for his guidance and constructive criticism during this collaboration. Working in
such a professional environment has been a transformative experience that greatly contributed to my
academic and personal growth.

Finally, I owe my deepest thanks to my family and friends for their constant support and encouragement.
Their belief in me gave me strength during challenging moments. This accomplishment is as much
theirs as it is mine.

Arnob Chowdhury
Delft, August 2025

i

Contents

Preface i

1 Abstract 1

2 Research Paper 2

3 Background 34
3.1 Time Series Forecasting . 34

3.1.1 Definition . 34
3.1.2 Types of Forecasting Problems . 34
3.1.3 Challenges in Time Series Forecasting . 35
3.1.4 Challenges in Time Series Forecasting . 35
3.1.5 Linear Models . 35
3.1.6 Deep Models . 37

3.2 Multi-Task Learning . 39
3.2.1 General technique for optimizing Multi-Task Learning 41

3.3 Multi-task optimization: Conflicting Gradients. 41
3.4 Federated Learning (FL) . 43

3.4.1 Knowledge Distillation (KD) . 44
3.5 Confidentiality . 44

4 Conclusion and Future Works 48
4.1 Conclusion . 48
4.2 Future Works. 49

References 50

ii

1
Abstract

Modern industrial systems, from wind-farm monitoring to economic indicators like GDP generate vast
amounts of time series data from diverse sources. These data streams are sampled at varying and often
inconsistent frequencies, presenting challenges for accurate forecasting. Furthermore, in many real-
world scenarios, data are distributed across nodes or tasks, introducing complications due to hetero-
geneity across tasks. Existing forecasting approaches typically address frequency misalignment and
decentralized learning as separate problems, limiting their ability to model real-world deployments ef-
fectively.We propose CrossFreqNet, a unified multi-task encoder–decoder architecture that addresses
both challenges: (i.) integrating multi-frequency data streams without the need of up or down sam-
pling to match frequency, preserving signal integrity and (ii.) introducing GradBal, a gradient-balancing
mechanism that mitigates learning conflicts caused by task heterogeneity and promoting stable con-
vergence across tasks in a distributed learning environment. Across four public benchmarks and one
industrial dataset, our model reduces forecasting errors by up to 72% over the best multi-task base-
line (UniTS) and up to 48% over PCGrad, a SOTA gradient conflict mitigation method. We do this by
answering following research questions:

• RQ1: How effective is it to leverage high-frequency time series data to forecast low-frequency
time series data compared to resampling them to have a single frequency?

• RQ2: Is collaborative learning(MTL) better than non collaborative learning
• RQ3: Does performing Gradient Attenuation by using GradBal as a conflict resolution method in
time series data from multiple sources help in getting a better model utility?

• RQ4: How effectively can we replicate Multi-Task baselines’ performance in a truly decentralized
setting, both without confidentiality and under confidentiality constraints, using federated algo-
rithms?

Code is made available at https://github.com/arc-arnob/TS-MTL/.

1

https://github.com/arc-arnob/TS-MTL/

2
Research Paper

2

Learn Together Over Time: Distributed Multi-frequency Time
Series Framework

Arnob Chowdhury
 TU Delft

Delft, Netherlands

Thiago Guzella
 ASML

Eindhoven, Netherlands

Aditya Shankar
 TU Delft

Delft, Netherlands

Lydia Chen
 TU Delft

Delft, Netherlands

Abstract
Modern industrial systems, from wind-farm monitoring to eco-

nomic indicators like GDP generate vast amounts of time series

data from diverse sources. These data streams are sampled at vary-

ing and often inconsistent frequencies, presenting challenges for ac-

curate forecasting. Furthermore, in many real-world scenarios, data

are distributed across nodes or tasks, introducing complications

due to heterogeneity across tasks. Existing forecasting approaches

typically address frequency misalignment and decentralized learn-

ing as separate problems, limiting their ability to model real-world

deployments effectively. We propose CrossFreqNet, a unified multi-

task encoder–decoder architecture that addresses both challenges:

(i.) integrating multi-frequency data streams without the need of up

or down sampling to match frequency, preserving signal integrity

and (ii.) introducing GradBal, a gradient-balancing mechanism that

mitigates learning conflicts caused by task heterogeneity and pro-

moting stable convergence across tasks in a distributed learning

environment. Across four public benchmarks and one industrial

dataset, our model reduces forecasting errors by up to 72% over

the best multi-task baseline (UniTS) and up to 48% over PCGrad, a

SOTA gradient conflict mitigation method. Code is made available

at https://github.com/arc-arnob/TS-MTL/.

1 Introduction
Time series forecasting plays a critical role in several domains, such

as industrial monitoring [36, 39], healthcare [15], energy systems

[47] and country GDP [24, 37]. However, real-world deployments

often have data that is distributed across multiple sites[27, 55]

with heterogeneous environments [52, 66], and may be collected at

irregular intervals [37, 40, 51, 56]. Consider the scenarios shown

in Figure 1 and Example 1.1, involving multiple sites. We treat

each site as a task that generates related time series data over

time 𝑡 . Each task consists of multi-variate high-frequency input

signals 𝑓1, 𝑓2, . . . , 𝑓𝑘 , and a low-frequency target signal 𝑔1. This

setup defines a multi-frequency, multi-task forecasting problem,

where the objective is to forecast low-frequency outcomes 𝑔1 using

historical observations and the high-frequency inputs 𝑓1, 𝑓2, . . . , 𝑓𝑘 ,

while sharing knowledge across tasks. The high-frequency signals

capture fine-grained patterns linked to the observed low-frequency

targets. Hence, incorporating the high-frequency inputs can help

refine the forecasts of the low-frequency signals, as demonstrated

in existing work [37]. However, developing such a multi-frequency

multi-task forecasting framework is not straightforward due to the

following challenges.

Example 1.1

Consider a forecasting scenario involving electricity load

management across multiple regions. Each region operates

identical monitoring systems equipped with sensors that

collect high-frequency data, such as hourly weather con-

ditions (e.g., temperature, wind speed) and real-time grid

metrics. Additionally, each region periodically reports a

low-frequency metric, such as the daily peak load demand,

reflecting the overall grid stability and depends on the

high-frequency inputs. The objective is to forecast the low-

frequency (daily) peak loads using historical observations,

and the high-frequency (hourly) sensor data. Since regions
experience diverse weather patterns and usage behaviors,

a multi-task learning approach enables knowledge sharing

across sites, improving prediction accuracy.

Challenges.
(i).The first challenge is to extend multi-frequency forecasting

from a single-task to a multi-task setting. While encoder-decoder ar-

chitectures have shown strong performance in handling mixed fre-

quencies, without requiring up- or down-sampling, they are limited

to the single-task setting [21, 37, 65]. However, real-world deploy-

ments often require handling multiple tasks simultaneously [18, 22].

Two straightforward approaches for multi-task extension are: data
pooling, by combining all tasks into one large dataset, and non-
collaborative learning (one model per task). However, each has

its flaws: pooling fails to capture task-specific patterns[57], while

non-collaborative learning avoids sharing knowledge across tasks.

(ii). The second challenge arises when we implement collabora-
tive learning through multi-task learning to overcome flaws with

data-pooling and non-collaborative learning. It introduces an opti-

mization hurdle which existing multi-task models like UniTS[23]

& FATHOM[14] overlook: negative transfer, where the model’s

performance on one task is degraded by the learning process of

another[57]. This phenomenon often stems from gradient conflicts,
where the parameter updates required for different tasks directly

oppose each other, leading to unstable convergence and poor gen-

eralization [45, 66]. These conflicts are particularly severe when

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

Figure 1: Mixed-frequency, multi-task forecasting setup with high-frequency inputs (𝑓1, 𝑓2, . . . , 𝑓𝑘), where 𝑘 is the number of
features and low-frequency targets (𝑔1) across multiple tasks over time 𝑡 .

tasks are heterogeneous or their data distributions are non-i.i.d.; a

common scenario in real-world time series applications [26].

Contributions. To tacklemulti-frequency,multi-task time series

forecasting, we extend the LSTM-based model from [37] with the

following key contributions:

Multi-FrequencyMulti-Task ForecastingModel.Wedevelop

a multi-task model that fuses high- and low-frequency time series

across related tasks by extending the single-task encoder–decoder

architectures [37] with task-specific heads, unlike simple founda-

tional models that train common shared parameters for all tasks.

Extending to multi-task learning, it jointly learns shared and task-

specific representations and sets a strong benchmark under full

data access. Hence, addressing the flaws with naive data pooling

and non-collaborative learning.

Gradient Balancing to Mitigate Task Conflicts. To mitigate

negative transfer from task conflict in multi-task training, we intro-

duce GradBal. This gradient balancing method scales task contribu-

tions using pairwise gradient cosine similarity and loss magnitudes,

while preserving gradient direction. Unlike methods that consider

conflicts detrimental [38, 66], our method considers conflicts in-

formative. This improves convergence and accuracy in non-i.i.d.

multi-task forecasting, outperforming strong baselines.

Evaluations. We conduct extensive experiments to validate

the effectiveness of our multi-task modeling strategy. First, our

results demonstrate the clear benefits of leveraging high-frequency

signals rather than scaling them to have the same frequency as

a low-frequency signal, preventing data fabrication or loss. Then

we highlight the advantages of collaborative multi-task learning

over non-collaborative learning, and confirm that gradient conflict

mitigation via our proposed GradBal method significantly improves

forecasting accuracy. Furthermore, we explore a truly confidential,

distributed approach and show that it maintains robust forecasting

performance compared to confidentiality-unconstrained multi-task

methods.

2 Background and Related Work
Time Series Forecasting. Classical forecasting methods, including

ARIMA, ARIMAX, and Vector AutoRegression (VAR), are widely

used for their interpretability and efficiency on linear and station-

ary data [31, 35]. However, they often struggle with asynchronous,

nonlinear, and non-stationary time series commonly observed in

real world applications [36, 39]. Recurrent Neural Networks (RNNs)

and Long Short-Term Memory networks (LSTMs) excel at cap-

turing sequential dependencies even with limited data[10, 20, 33].

Transformer-based models, such as PatchTST [50], iTransformer

[41], and foundational models like Chronos [7], are powerful in

modeling intricate temporal dynamics but typically require large

datasets to avoid overfitting [55].

Multi-Frequency Forecasting. Multi-frequency forecasting

addresses scenarios with data sampled at multiple intervals [37].

Multi-Time Attention Networks (mTAN) [56] use continuous-time

attention with interpolation to handle irregular sampling for clas-

sification tasks. Transformer-based methods, such as Scaleformer

[54] and Multirate-former [40], capture patterns at multiple tempo-

ral resolutions for forecasting. An LSTM-based encoder–decoder

framework[37] has been proposed for mixed-frequency prediction,

managing different sampling rates but limited to single-task settings.

These limitations motivate the need for frameworks integrating

multi-frequency capabilities into multi-task environments.

Multi-Task Learning. In Multi-task learning (MTL)[13] we are

given 𝑁 ≥ 2 tasks each with its own loss function 𝐿𝑖 (𝜃) where 𝜃 is

shared parameters and the aim is to find the 𝜃 such that:

˜𝜃 = arg min

𝜃 ∈R𝑚

{
𝐿𝑔𝑙𝑜𝑏𝑎𝑙 (𝜃) ≜

1

𝑁

𝑁∑︁
𝑖=1

𝐿𝑖 (𝜃)
}
.

Recent MTL frameworks, such as Shared-Private Attention Net-

works [17], FATHOM [14], and UniTS [23], employ explicit MTL by

using the concept of shared and task-specific representations with

LSTM and transformers. In contrast, implicit MTL pools data from

all tasks into a single model, jointly optimizing shared parameters

to capture multi-task relationships. These approaches effectively en-

hance learning outcomes by utilizing shared patterns across tasks,

yet they generally do not address multi-frequency data scenarios

or mitigate conflicting gradients.

Conflicting tasks. In MTL, a major optimization problem is

conflicting tasks caused by conflicting gradients during parameter

update. In multi-task learning the parameter update is typically

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

Table 1: Comparison of State-of-the-art models addressing
multi-task and federated settings.

Model/Paper Multi-task learning Mixed-Frequency Task Conflict Mitigation
FATHOM [14] ! × ×

Shared-Private Attention [17] ! × ×

Scaleformer[54] × ! ×

UniTS [23] ! × ×

TSDiff [30] × × ×

Encoder-Dual-Decoder [37] × ! ×

Proposed Model (This Thesis) ! ! !

Legend:!= Fully supported, ×= Not supported

driven by the mean gradient of 𝑁 tasks 𝑔0 = 𝑁 −1
∑𝑁
𝑖=1

𝑔𝑖 , where

𝑔𝑖 = ∇𝐿𝑖 (𝜃). When two tasks disagree, i.e. ⟨𝑔𝑖 , 𝑔0⟩ < 0, the step

can harm task 𝑖 and cause negative transfer. Several algorithms(see

Figure 3) adjust 𝑔0 before applying the update. GradNorm rescales

individual losses so that all tasks progress at comparable rates while

leaving gradient directions unchanged [16]. PCGrad resolves head-

on clashes by projecting every task gradient onto the subspace that

does not oppose the others, thereby removing direct conflict [66].

PCGrad’s complete removal of conflicts may erase shared temporal

information, disrupting the LSTM’s sequence learning. Finally, CA-

Grad frames the update as a constrained optimisation and selects

the shortest non-negative combination of task gradients that yields

descent for every objective [38]. CAGrad’s insistence on simulta-

neous improvement can constrain the model’s flexibility to handle

phased or lagged task relationships. While these techniques curb

strong conflict, they may also erase subtle lead-lag cues valuable

in time series forecasting, motivating softer balancing approaches.

Our contributions are summarized in Table 1.

Federated Learning & Confidentiality. In many real world

cases raw data cannot be shared hence federated learning (FL) setup

trains a global model 𝜃 while raw data remain local, making it suit-

able for confidentiality-sensitive, settings [63].During each round,

clients update 𝜃 on their data, send the model update to a central

server, and receive the aggregated model for the next round. Model

updates can be sent either as weight deltas i.e. the incremental dif-

ferences between the locally updated parameters and the previous

global parameters after local training (FedAvg) or as raw gradients

(FedSGD); although the two are mathematically equivalent, gra-

dient sharing is rarely used because it heightens privacy leakage

[68], increases communication bandwidth as gradients has to be

sent per batch, and also destabilizes training when those gradients

are averaged [44]. When updates may leak information, FL is com-

monly combined with differential privacy (DP). DP-SGD [6] clips

per-sample gradients and injects Gaussian noise, yielding an (𝜀, 𝛿)
guarantee that any single record has little influence on the released

update but degrades model utility. To maintain model utility, secure

aggregation (SecAgg) [11, 61] is used, which ensures the server

observes only the sum of client updates, not the individual contri-

butions. Each client masks its update 𝑤𝑖 with pair-wise random

pads 𝑟𝑖 𝑗 that cancel out when the server computes𝑊 =
∑𝑁
𝑖=1

𝑤𝑖 .

3 Methodology
We propose CrossFreqNet, a multi-task forecasting framework for,

multi-frequency time series data. Each task is distributed and in-

volves high-frequency inputs and low-frequency targets. Our model

extends an encoder-decoder architecture[37], which forms the back-

bone for all our strategies, with a gradient-balancing mechanism,

GradBal, to address inter-task conflicts
1
.

Problem Definition.We consider multi-frequency, multi-task
time series forecasting with 𝑁 tasks. For each task 𝑛 ∈ [𝑁] we have
high-frequency data 𝑋𝐻𝐹

𝑛 ∈ R𝐷𝐻𝐹 ×𝑊𝐻𝐹
and low-frequency (LF)

data 𝑋𝐿𝐹
𝑛 ∈ R𝐷𝐿𝐹 ×𝑊𝐿𝐹

, where 𝐷 represents feature dimensions

and𝑊 represents time window. The HF and LF data streams share

the same feature space across all tasks but differ in their sampling

frequencies, resulting in a fixed frequency ratio 𝑟 = 𝑊𝐻𝐹 /𝑊𝐿𝐹 .

Each task 𝑛 predicts future LF quality metrics 𝑌𝑛 ∈ R𝑃
using both

historical LF data 𝑋𝐿𝐹
𝑛 and the corresponding HF sensor readings

𝑋𝐻𝐹
𝑛 , where 𝑃 is the prediction horizon.

CrossFreqNet: A Multi-Task Multi-frequency
Encoder-Decoder Model with Gradient Balancing.
Our approach, multi-frequency, multi-task encoder-decoder with

Gradient Balancing architecture, illustrated in Figure 2, extends

the LSTM-based framework[37] to a multi-task setup to address

the issue with naive data pooling and collaborative learning and

incorporates a gradient balancing mechanism we call GradBal to
mitigate task conflicts. The model uses a hard parameter-sharing ar-

chitecture: a shared LSTM-based encoder-decoder is trained across

all tasks, while task-specific MLP output layers capture unique

task-specific characteristics.

The key innovation in our model is the gradient balancing com-

ponent(GradBal, Algorithm 2.). Inspired by the gradient surgery

technique used for images [16, 38, 66], we adapt the method to

the time series forecasting setting to address the gradient conflicts

inherent in multi-task learning. In hard parameter sharing architec-

tures, naively averaging gradients from diverse task distributions

can lead to destructive interference and hinder convergence. Our

proposed centralized approach with GradBal fills this gap by softly

attenuating gradient conflicts rather than eliminating them, thus

allowing mild negative interactions as implicit regularization. De-

signed explicitly for temporal scenarios, GradBal leverages periodic

conflicts inherent in time series data, treating them as informative

rather than detrimental. Algorithms 1 and 2 detail the forecasting

model structure, with 𝑓 [37] as backbone, and our gradient balanc-

ing procedure, respectively.

Our gradient balancing strategy scales each task’s gradient con-

tribution based on the pairwise cosine similarity of task gradients

and their corresponding loss magnitudes. This approach explic-

itly addresses the issue of gradient conflicts, which can lead to

negative transfer during multi-task optimization. Given a set of

gradients G = {𝑔1, . . . , 𝑔𝑛} and their corresponding task losses

L = {L1, . . . ,L𝑛}, the GradBal operates as follows:
First, initial task weights are computed proportionally to each

task’s loss magnitude:

𝑤𝑛 ∝ 𝐿𝑛 ∀𝑛 ∈ 1, . . . , 𝑁 (1)

Next, for every pair of distinct tasks 𝑖 , 𝑗 , the cosine similarity

between their gradients is calculated:

𝜌𝑖, 𝑗 = cos(𝑔𝑖 , 𝑔 𝑗) (2)

1
This architecture was the result of multiple modeling iterations, most prominent of

which are presented in the Appendix 8.1

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

Figure 2: Gradient Balancing in CrossFreqNet where
backbone(𝑓 in Algorithm 1) is a multi-frequency encoder-
decoder LSTM-based model by Lin et al. [37]

If two tasks have negatively aligned gradients, their respective

weights are scaled down to attenuate the negative impact on the

shared parameters, controlled by a hyperparameter :

𝑤𝑖 ← 𝑤𝑖 ·
(
1 − 𝛼 · |𝜌𝑖, 𝑗 |

)
(3)

After adjusting all conflicting task pairs, the weights are normal-

ized to ensure a proper convex combination:

𝑤𝑛 ←
𝑤𝑛∑𝑁
𝑗=1

𝑤 𝑗

(4)

Finally, the balanced gradient is computed as a weighted sum of

the adjusted task gradients:

𝑔balanced =

𝑁∑︁
𝑛=1

𝑤𝑛 · 𝑔𝑛 (5)

This procedure ensures mild gradient conflicts are preserved to

respect the lead-lag relationship[67] in time series and as implicit

regularization, promoting stable optimization and improved gener-

alization. Unlike approaches such as PCGrad, which entirely remove

conflicts by projecting gradients orthogonally, our method softly

attenuates conflicts, preserving valuable temporal interactions[58]

inherent in multi-task multi-frequency time series. Figure 3 illus-

trates the conceptual difference between gradient adjustments in

GradNorm[16], PCGrad[62], CAGrad[38] and our Gradient Balanc-

ing (GradBal) method. In summary, our gradient balancing strategy

Algorithm 1 CrossFreqNet: Multi-Task Forecasting Model with

Gradient Balancing

Require: Pooled dataset D =
⋃𝑁

𝑛=1
D𝑛 , modelM𝜃 , learning rate

𝜂, number of epochs 𝑇 and 𝑁 is number of tasks.

1: Initialize shared parameters 𝜃
shared

, task-specific output layers

{𝜃out𝑛 }𝑁𝑛=1

2: for epoch = 1 to 𝑇 do
3: Initialize gradient buffer G ← ∅, loss buffer L ← ∅
4: for each task 𝑛 ∈ {1, . . . , 𝑁 } do
5: Sample mini-batch B𝑛 from D𝑛

6: Compute loss L𝑛 = ℓ (𝑓 (B𝑛 ;𝜃
shared

, 𝜃out𝑛))
7: Backpropagate ∇𝜃sharedL𝑛 and store as 𝑔𝑛
8: Save 𝑔𝑛 in G and L𝑛 in L
9: end for
10: 𝑔balanced ← GradientBalance(G,L) // See Algorithm 2

11: Update shared parameters: 𝜃
shared

← 𝜃
shared

− 𝜂 · 𝑔balanced
12: for each task 𝑛 do
13: Backpropagate ∇𝜃out

𝑛
L𝑛

14: Update: 𝜃out𝑛 ← 𝜃out𝑛 − 𝜂 · ∇𝜃out

𝑐
L𝑛

15: end for
16: end for
17: return Trained modelM𝜃

Algorithm 2 GradientBalance(G,L) (GradBal)
Require: Gradients G = {𝑔1, . . . , 𝑔𝑛}, losses L = {L1, . . . ,L𝐶 }
1: Compute initial weights𝑤𝑐 ∝ L𝑛 for all tasks 𝑛

2: for each pair (𝑖, 𝑗) with 𝑖 ≠ 𝑗 do
3: Compute cosine similarity 𝜌𝑖, 𝑗 = cos(𝑔𝑖 , 𝑔 𝑗)
4: if 𝜌𝑖, 𝑗 < 0 then
5: Adjust𝑤𝑖 ← 𝑤𝑖 · (1 − 𝛼 · |𝜌𝑖, 𝑗 |)
6: end if
7: end for
8: Normalize weights:𝑤𝑛 ← 𝑤𝑛∑

𝑗 𝑤𝑗

9: Compute balanced gradient: 𝑔balanced =
∑𝐶
𝑐=1

𝑤𝑛 · 𝑔𝑛
10: return 𝑔balanced

dynamically scales each task’s gradient contribution based on pair-

wise cosine similarity and task loss magnitudes, mitigating negative

transfer and promoting stable optimization. It is parameterized by

a hyperparameter 𝛼 where a higher 𝛼 causes a stronger downscal-

ing of the task’s contribution, effectively reducing the impact of

conflicting tasks on the shared model.

GradBal stands out as an intuitive solution for achieving strong

performance in multi-task time series forecasting. Unlike PCGrad,

which relies on computationally expensive sequential gradient pro-

jections to eliminate pairwise conflicts, or CAGrad, which solves

constrained optimization problems to balance worst-case task per-

formance, GradBal employs a straightforward conflict-aware reweight-

ing approach. This eliminates the need for complex projection oper-

ations or iterative suboptimizations, making it significantly easier

to implement and integrate into existing frameworks. Moreover,

using direct similarity-based weighting instead of geometric pro-

jections, GradBal converges 2.1x faster than PCGrad(See Figure 5)

while providing interpretable insights into task conflicts.

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

Figure 3: Gradient–conflict strategies. (a) GradNorm, (b) PC-
Grad, (c) CAGrad, (d) GradBal.

4 Experiment
We do a comprehensive set of experiments to evaluate how well

our multi-task modeling strategy works to address the following

research questions.

• RQ1: How effective is it to leverage high-frequency time se-

ries data to forecast low-frequency time series data compared

to resampling them to have a single frequency?

• RQ2: Is collaborative learning(MTL) better than non collab-

orative learning

• RQ3: Does performing Gradient Attenuation by using Grad-

Bal as a conflict resolution method in time series data from

multiple sources help in getting a better model utility?

• RQ4: How effectively can we replicate Multi-Task baselines’

performance in a truly decentralized setting, both without

confidentiality and under confidentiality constraints, using

federated algorithms?

Baselines
In this section, we compare our multi-frequency multi-task model

with two types of baseline approaches: non-collaborative and collab-
orative. We also evaluate our model in a confidentiality-preserving

federated learning environment.

For non-collaborative and collaborative baselines, we selected

three representative models based on empirical experiments de-

tailed in Appendix 8.1. These models demonstrated the highest

accuracy compared to other strategies tested: ARIMAX [12], a tradi-

tional time series model; UniTS [23], a transformer-based multi-task

model; and TSDiff [30], a diffusion-based model. We excluded Scale-

former since other baselines perform better already. Additional

baseline experiments are detailed in the Appendix. These selected

baselines operate at a single frequency, assuming alignment be-

tween exogenous and endogenous variables.

Non-Collaborative baselines. Each task is trained separately

without any information shared between tasks.

Collaborative baselines. all task data are pooled in this setting

to enable shared learning. We distinguish two types: implicit col-

laboration or simple data pooling, where task relationships are not

modeled (e.g., ARIMAX and TSDiff trained on concatenated data

or random batches), and explicit collaboration, where architectures

or optimization explicitly encode task structure (e.g., UniTS with

task-specific heads, CrossFreqNet with gradient balancing). This

distinction also allows us to assess the benefit of naive data pooling

versus structured multi-task learning.

The above two baselines allow us to quantify two distinct con-

tributions: the benefit of cross-task knowledge-sharing, Figure ??,
and the advantage of explicitly modeling multiple data frequencies.

Subsequently, we also evaluate different task conflict resolution

techniques, including our proposed Gradient Balancing (GradBal)

as well to assess their effectiveness in stabilizing training and im-

proving generalization in multi-task, mixed-frequency forecasting

scenarios.. Further, this also allows us to set an empirical upper

bound on the performance of multi-task learning for when we

introduce confidentiality constraints on information sharing

Federated Baselines. Finally, we also experiment with three

federated setting and compare performance of the multi-frequency

encoder-decodermodel, the best performing one, in a confidentiality-

preserving and non-confidentiality -preserving setting. Data re-

mains on each site, and only model updates are exchanged with a

central server. We benchmark three widely used FL optimizers, us-

ing multi-frequency encoder-decoder(MF-ED[37]) as backbone, as

backbone as it performs the best in non federated setting: (i) FedAvg

[44], which averages local weight deltas; (ii) FedProx [34], which

adds a proximal term to stabilize training under client heterogene-

ity; and (iii) SCAFFOLD [28], which employs control variates to

reduce gradient drift. Details of howwe implement a confidentiality-

preserving federated learning environment are presented in the

Appendix 8.2 & 8.4, and a more detailed confidentiality analysis is

presented in Appendix 9.3.

Figure 4: A Schematic comparison of two approaches for time
series forecasting

Data.
We evaluate our framework on five environmental, energy, and

industrial datasets. The Air Quality Dataset[4] includes hourly pol-

lutant and weather readings from March 2013 to February 2017.

To simulate a mixed-frequency setting, we interpolate the target

variable-carbon monoxide (CO)-to 15-minute intervals while re-

taining hourly resolution for all input features. The Wind Fore-
cast Dataset[2] contains hourly wind power generation and hourly

pressure readings for seven wind farms. We use a 2-month subset

to mirror the data volume typical of industrial deployments. We

interpolate wind power generation to be 15 minutes. The Load
Forecast Dataset[1] includes hourly electricity load values along

with 15-minute temperature readings across 20 U.S. grid zones,

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

providing a naturally multi-rate input structure. The Spain Elec-
tricity Shortfall Dataset[5] comprises 3-hourly electricity shortfall

records and weather data from five Spanish cities over 2015–2017.

We interpolate the weather inputs to 6-hour intervals while keeping

the shortfall targets at their original resolution. The dataset rep-

resents a multi-source, single-target setting, as city-level weather

features correspond to a single national shortfall measurement. Fi-

nally, we include a proprietary real-world dataset from a leading

semiconductor manufacturing equipment manufacturer, contain-

ing device-level sensor and quality metrics collected at varying

sampling rates.

Training Approach.
We do sliding-window sampling where each raw time series is first

split once chronologically into an 80% training portion and a 20%

hold-out test portion.

Inside the training segment, we generate many encoder–decoder

pairs:

• a high-frequency window of length 𝐿HF (e.g., 64 points),

• a low-frequency window of length 𝐿LF (e.g., 32 points), and

• a target at horizon 𝐻 steps ahead.

Model Hyperparameter. All deep models use the Adam opti-

mizer. Below, we summarize the few key hyperparameters required

to reproduce our results.

ARIMAX. For each site, we run the Augmented Dickey–Fuller

test (significance level 0.05). If the series is non-stationary, we differ

once (𝑑 = 1); otherwise, we keep 𝑑 = 0. The autoregressive order is

33 (𝑝 = 32), with one moving-average term (𝑞 = 1).

UniTS.We use the default settings from the official repository,

modifying only a few values: three encoder layers, model dimension

𝑑
model

= 64, patch size of 1, and stride of 1. The learning rate is

1e-3 with weight decay 5e-6. We train for 30 epochs using a batch

size of 16 and gradient accumulation of 32 steps; gradient clipping

is set to 100.

TSDiff. Our diffusion baseline uses a hidden size of 64, sinusoidal

time embeddings of size 128, and 100 denoising steps with 𝛽 ∈
[10
−4, 0.1]. We use guidance scale 1.0, learning rate 1e-3, batch size

16, and train for 30 epochs.

Conflict-resolution variants. PCGrad requires no extra hyperpa-

rameters. CAGrad introduces a single hyper-parameter, the simplex

radius. We sweep over 0.1, 0.2, 0.3, 0.4 and report results with the

most stable value (0.4). GradBal (our proposal) uses one factor 𝛼 to

attenuate noisy gradients. We use 𝛼 = 0.5 throughout.

Our model. We use a two-layer LSTM encoder with 128 units

and dual decoders (one for HF and one for LF), each with 64 units.

Dropout is set to 0.2. We use batch size 32, learning rate 1e-3,

and train for 30 epochs. The input windows 𝐿HF, 𝐿LF are dataset

dependent, and forecasting horizon 𝐻 ∈ 1. HF: LF ratio is also

dataset-specific but fixed during training and should be an integer.

Federated Learning. In a federated setting, each task owns amodel

described in the previous paragraph, and training is done over 10

rounds and 30 epochs of local training. We assume 80% trusted tasks

for our hybrid differential confidentiality and secured aggregation

method. For Differential confidentiality, we use 𝜎𝑒 = 0.5 and 𝜎𝑔 =

0.2 for air quality, load, wind, and Spain datasets, and 𝜎𝑒 = 0.4 and

𝜎𝑔 = 0.5 for the industry dataset. They are calculated using the RDP

accountant library provided by Opacus[46]. It calculates the optimal

noise needed to the desired 𝜖 and 𝛿 parameters using parameters

like number of rounds, number of local epochs, dataset size, and

batch size. The above chosen values of 𝜎𝜖 = 3 and 𝛿 < 1/|𝑑 | where
𝑑 is the size of the dataset[6] for both encoder level noise and

DP-SGD, respectively.

Evaluation Metric.
We report the Mean Absolute Error (MAE) as our primary ac-

curacy metric, accompanied by the Standard Error of the Mean
(SEM). Formally, the SEM is computed as:

SEM =
𝑠
√
𝑛
=

√︃
1

𝑛−1

∑𝑛
𝑖=1
(𝑥𝑖 − 𝑥)2

√
𝑛

,

where 𝑠 is the sample standard deviation,𝑛 is the number of repeated

experiments or folds, 𝑥𝑖 denotes the MAE for the 𝑖𝑡ℎ experiment,

and 𝑥 is the mean MAE. SEM provides a measure of uncertainty and

indicates how precisely the reported MAE estimates the true popu-

lation error. Smaller SEM values indicate more consistent results

across repetitions and thus higher reliability of our evaluation.

Evaluation.
Table 2 benchmarks our approach against non-collaborative and col-

laborative baselines. Table 3 evaluates our multi-task optimization

against existing methods, while Table 4 assesses multi-frequency

model performance in a federated setting. Experiments span five

datasets with forecast horizon 𝐻 = 1 & 𝐻 = 2; longer horizons are

reported in Appendix 9.2.

Comparison for Single Frequency vs Multi Frequency Model-
ing(RQ1). In the non-collaborative learning strategy shown in Table
2, our model consistently outperforms all single-frequency base-

lines: ARIMAX, UniTS, and TSDiff, confirming the benefit of using

multi-frequency inputs. For Load dataset at𝐻 = 1 we see 64% reduc-

tion in MAE compared to the best performing baseline and 20% re-

duction inMAE for real-world industry dataset in non-collaborative

setting. Similar gains are observed for𝐻 = 2 as well. These improve-

ments primarily stem from directly leveraging high-frequency in-

puts without up- or down-sampling, thereby preserving short-term

patterns often lost in baselines due to temporal smoothing. While

ARIMAX and LSTM-based models capture temporal dependen-

cies via explicit sequential modeling, architectures such as UniTS’s

transformer encoder and TSDiff’s non-autoregressive diffusion

process employ parallel processing mechanisms. In data-limited,

high-frequency settings, these mechanisms may be less effective

at modeling fine-grained temporal patterns, contributing to the

observed performance gap. The Spain dataset’s poor performance

in non-collaborative training reflects the limitation of independent

task learning for multi-site scenarios. Without multi-task optimiza-

tion, our model cannot exploit the beneficial knowledge sharing

across related sites, which explains why the collaborative variant

shows dramatic improvement (60% MAE reduction)

Comparison for collaborative vs non-collaborative approach
(RQ2). Table 2 also shows that in the collaborative learning strat-
egy our method without any task conflict resolution(Ours−) does
not perform better consistently, hence the performance results

remain inconclusive. However, with GradBal(Ours+) our method

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

Strategy Model Air Quality Load Wind Spain Industry

H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

Non-Collaborative

ARIMAX 0.33±0.002 0.35±0.002 0.47±0.001 0.56±0.001 0.82±0.003 0.83±0.002 1.01±0.001 1.05±0.001 0.24±0.001 0.34±0.002
TSDiff 1.89±0.040 1.78±0.050 1.26±0.020 0.96±0.020 1.07±0.020 1.03±0.040 1.37±0.040 1.17±0.030 2.14±0.020 1.98±0.040
UniTS 0.30±0.030 0.35±0.020 0.47±0.030 0.55±0.020 0.70±0.015 0.75±0.010 0.23±0.018 0.28±0.020 0.51±0.020 0.52±0.040
Ours

− 0.20±0.004 0.29±0.004 0.17±0.003 0.19±0.003 0.53±0.004 0.54±0.004 0.27±0.005 0.43±0.006 0.19±0.002 0.30±0.004

Collaborative

ARIMAX 0.35±0.003 0.31±0.003 0.43±0.002 0.57±0.003 0.74±0.003 0.76±0.003 0.83±0.004 0.94±0.005 0.28±0.003 0.35±0.003
TSDiff [21] 1.05±0.040 0.95±0.050 1.26±0.020 0.96±0.020 0.96±0.020 0.94±0.040 1.18±0.040 1.05±0.030 1.75±0.040 1.31±0.040
UniTS [15] 0.29±0.030 0.39±0.040 0.40±0.040 0.50±0.040 0.77±0.020 0.79±0.050 0.21±0.040 0.25±0.050 0.30±0.020 0.37±0.040
Ours

−
0.20±0.003 0.33±0.003 0.12±0.001 0.14±0.002 0.82±0.002 0.94±0.004 0.42±0.003 0.40±0.003 0.17±0.003 0.36±0.003

Ours
+ 0.18±0.002 0.26±0.002 0.11±0.001 0.16±0.002 0.63±0.002 0.72±0.003 0.11±0.003 0.14±0.004 0.09±0.002 0.17±0.004

Table 2: Mean Absolute Error (↓) with standard errors (SEM). Bold indicates best performance per dataset-horizon; underlined
shows runner-up within each strategy group (Non-Collaborative vs Collaborative). "Ours+" is CrossFreqNet; "Ours−" is Cross-
FreqNet without conflict resolution.

performs best consistently. For example, on the Load dataset at

𝐻 = 1, we reduce the MAE by up to 71% compared to UniTS in

Ours− , which further improves with Ours+. The improvement is

more pronounced in the Industry dataset, where we see an im-

provement of 52% compared to the best-performing model in Ours+,
which is an improvement over Ours− by 69%. This shows that a

naive multi-task learning (MTL) approach, which does not consider

the heterogeneity of tasks, fails to yield optimal results. We achieve

consistently superior performance only by adding our novel task

conflict mitigation technique in Ours+. The results also demon-

strate that a multi-task learning framework can outperform both

non-collaborative (one model per task) and naive data pooling ap-

proaches.

Impact of Multitask Optimization(RQ3). Table 3 shows com-

Figure 5: Convergence time (inminutes) for PCGrad, CAGrad,
and GradBal across different numbers of tasks.

parison of different multi-task optimization techniques compared to

ours. We see that gradient balancing(Ours
+
) does improves perfor-

mance compared to no gradient balancing(Ours
−
). Our method also

beats PCGrad(second best). In multi-task learning for time series

forecasting with an LSTM model, attenuating conflicting gradients

rather than fully deconflicting them (as in PCGrad) leads to better

performance by preserving beneficial shared information across

tasks On the Spain dataset at horizon 𝐻 = 1, GradBal achieves

an MAE improvement of 48% compared to best performing Units-

PCGrad. GradBal is particularly effective for time series data, where

temporal dependencies create gradient interactions that are less

detrimental and potentially more informative than those in image-

based tasks. By reducing the effect of conflicts instead of eliminating

them, the model maintains a flexible balance between task-specific

and shared learning. Attenuation is also known to acts as a form of

regularization, similar to gradient noise, helping avoid overfitting

and improving generalization, especially with multiple tasks[49].

However, GradBal’s advantages diminish with transformer-based

models like UniTS and diffusion-based models like TSDiff. Unlike

LSTMs, which sequentially process data and explicitly preserve

temporal dependencies through their recurrent structure, trans-

formers rely on parallel processing and positional encodings, while

diffusion models employ a non-autoregressive denoising process.

These architectural differences alter gradient dynamics, reducing

the effectiveness of attenuation tailored to LSTM-based sequen-

tial learning. Consequently, GradBal excels primarily with LSTMs,

where its gradient balancing aligns closely with the temporal nature

of time series forecasting.

As shown in Figure 5, GradBal achieves convergence speeds

competitive with CAGrad, despite operating at O(𝑁 2) complex-

ity compared to CAGrad’s O(𝑁) implementation. While CAGrad

maintains a speed advantage through its constrained optimization

formulation, GradBal delivers an optimal balance of computational

efficiency, algorithmic simplicity and model utility, making it par-

ticularly well-suited for practical multi-task scenarios where ease

of implementation is important as well.

Ablation: Confidentiality Analysis(RQ4). We investigate the

impact of confidentiality-preserving federated learning (FL) meth-

ods on forecasting performance across heterogeneous, mixed-frequency

tasks, using FedAvg, FedProx, and SCAFFOLD under conditions

with and without differential privacy (DP). Table 4 provides com-

parative results.

Analyzing the results, we observe that introducing differential

privacy consistently increases MAE values compared to the multi-

task model across almost all scenarios due to the inherent trade-off

between confidentiality and model accuracy. Specifically, FedAvg

shows modest degradation when incorporating DP, with MAE in-

creasing on average by approximately 24%, which is indeed the cost

of confidentiality. Interestingly, on the real-world industry dataset

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

Model Technique Air Quality Load Wind Spain Industry

H=1 H=2 H=1 H=2 H=1 H=2 H=1 H=2 H=1 H=2

TSDiff

wo conflict res. 1.05±0.040 0.95±0.05 1.26±0.020 0.96±0.02 0.96±0.020 0.94±0.04 1.18±0.040 1.05±0.03 1.75±0.040 1.31±0.02
PCGrad 1.18±0.040 0.95±0.05 1.25±0.020 0.80±0.02 0.96±0.020 0.92±0.04 1.15±0.040 1.03±0.03 2.11±0.040 1.98±0.04
CAGrad 0.94±0.010 0.91±0.05 0.71±0.020 0.71±0.02 1.01±0.030 1.01±0.03 1.09±0.040 1.09±0.03 0.98±0.040 0.99±0.04
GradBal 1.03±0.030 0.94±0.04 1.26±0.030 0.92±0.03 0.96±0.040 0.92±0.04 0.22±0.040 0.26±0.05 1.95±0.030 1.98±0.03

UniTS

wo conflict res. 0.29±0.030 0.39±0.04 0.40±0.040 0.50±0.04 0.77±0.020 0.79±0.05 0.21±0.040 0.25±0.05 0.30±0.020 0.37±0.04
PCGrad 0.22±0.030 0.26±0.04 0.37±0.030 0.46±0.04 0.73±0.040 0.72±0.06 0.19±0.030 0.24±0.05 0.28±0.020 0.36±0.04
CAGrad 0.26±0.030 0.30±0.04 0.41±0.040 0.50±0.04 0.81±0.050 0.77±0.05 0.55±0.040 0.55±0.06 0.17±0.030 0.25±0.04
GradBal 0.23±0.030 0.25±0.04 0.40±0.040 0.48±0.04 0.71±0.050 0.74±0.06 0.22±0.040 0.26±0.05 0.25±0.030 0.32±0.04

Ours
+/−

wo conflict res(Ours
−
). 0.20±0.003 0.33±0.003 0.12±0.001 0.14±0.002 0.82±0.002 0.94±0.004 0.42±0.003 0.60±0.003 0.29±0.003 0.32±0.003

PCGrad 0.18±0.002 0.28±0.002 0.12±0.002 0.14±0.003 0.73±0.003 0.82±0.004 0.40±0.003 0.69±0.003 0.21±0.002 0.38±0.002
CAGrad 0.78±0.002 0.78±0.002 0.80±0.003 0.80±0.003 0.80±0.003 0.80±0.002 0.77±0.003 0.78±0.003 0.55±0.002 0.55±0.002
GradBal(Ours

+
) 0.18±0.002 0.25±0.002 0.11±0.001 0.16±0.002 0.63±0.002 0.72±0.003 0.11±0.003 0.14±0.004 0.09±0.002 0.17±0.004

Table 3: Mean Absolute Error (↓), standard error of mean (SEM), for horizons H=1 and H=2. Bold marks the lowest MAE and
underline the second-lowest within each column, where Ours+ is CrossFreqNet with GradBal and Ours− CrossFreqNet without
any conflict resolution technique.

Algorithm confidentiality Air Quality Load Wind Spain Industry

H=1 H=2 H=1 H=2 H=1 H=2 H=1 H=2 H=1 H=2

FedAvg

No Confidentiality 0.19±0.001 0.30±0.003 0.12±0.002 0.14±0.002 0.71±0.003 0.72±0.004 0.41±0.003 0.75±0.004 0.28±0.001 0.50±0.003
Confidentiality 0.20±0.001 0.32±0.003 0.17±0.002 0.28±0.003 0.74±0.003 0.75±0.002 0.45±0.002 0.62±0.002 0.16±0.001 0.33±0.003

FedProx

No Confidentiality 0.19±0.002 0.28±0.002 0.11±0.001 0.20±0.002 0.70±0.003 0.84±0.004 0.32±0.002 0.55±0.003 0.14±0.002 0.32±0.003
Confidentiality 0.19±0.002 0.31±0.005 0.16±0.002 0.21±0.004 0.72±0.003 0.88±0.005 0.44±0.002 0.61±0.005 0.18±0.003 0.34±0.004

SCAFFOLD

No Confidentiality 0.45±0.004 0.50±0.005 0.32±0.003 0.45±0.004 0.83±0.004 0.88±0.005 0.76±0.004 0.78±0.005 1.59±0.004 1.87±0.003
Confidentiality 0.50±0.004 0.54±0.005 0.35±0.003 0.49±0.004 0.88±0.004 0.91±0.005 0.78±0.004 0.80±0.005 2.27±0.003 4.21±0.004

Table 4: Federated learning on heterogeneous mixed-frequency tasks. We compare FedAvg, FedProx and SCAFFOLD with and
without differential-confidentiality noise (𝜖𝑒𝑛𝑐 = 3 and 𝜖𝑔𝑟𝑎𝑑 = 3) for horizon 1 (H = 1) and horizon 2 (H = 2)

at 𝐻 = 1 and 𝐻 = 2, MAE decreases by 42% and 34% respectively,

indicating that the calibrated noise added acts as a regularizer[49]

in FedAvg.

FedProx exhibits similar trends, with a slightly narrower gap

between confidentiality and non-confidentiality settings. For exam-

ple, on the Industry dataset at horizon 1, MAE worsens from 0.14

(confidentiality) to 0.18 (non-confidentiality), demonstrating a 28%

deterioration when confidentiality measures are applied. Interest-

ingly, FedProx maintains generally lower MAE values than FedAvg

in some cases. In contrast, it is the opposite in others, suggesting its

proximal optimization mechanism provides additional robustness

to the confidentiality-induced noise, but not so in others.

SCAFFOLD consistently shows the highest MAE values among

the evaluated methods, particularly when introducing DP. For in-

stance, on the Industry dataset, horizon 1, MAE deteriorates sig-

nificantly from 1.59 (no confidentiality) to 2.27 (confidentiality), a

42% increase, clearly highlighting its sensitivity to confidentiality-

preserving noise.

FedAvg and FedProx show comparable performance, though

FedAvg struggles with task drift in heterogeneous data. Its con-

vergence remains solid, and added noise can act as a regularizer,

boosting model performance in some cases, such as on the Industry

dataset. FedProx edges out FedAvg thanks to its proximal regu-

larization, which effectively reduces the impact of heterogeneity.

SCAFFOLD lags, hindered by unstable convergence on non-IID

data due to the added complexity of control variates [9], requiring

extensive fine-tuning for stability. Similar trends are noted in ex-

isting studies [9, 60], though these focus solely on image data like

CIFAR-10.

5 Conclusion and Future Work
We introduce CrossFreqNet, a multi-frequency multi-task frame-

work that extends encoder-decoder architectures to share knowl-

edge across tasks while learning task-specific patterns. Our key

contribution, GradBal, reduces gradient conflicts without changing
gradient directions, showing that preserving mild interactions reg-

ularizes temporal data effectively. CrossFreqNet achieves up to 72%

MAE reduction over the strongest multi-task baseline and 48% over

PCGrad across four public benchmarks and one industrial dataset.

We also evaluate federated learning for privacy-sensitive sce-

narios using differential privacy and secure aggregation. Despite

added noise and masking, our federated variant retains 50%–90% of

centralized accuracy while providing formal (𝜖 ,𝛿)-DP guarantees.

Among federated optimizers, FedProx handles heterogeneous task

distributions best, balancing privacy and performance effectively.

Future directions include: (1) conflict-aware gradient meth-

ods for temporal data with phase shifts and lead-lag relationships,

(2) federated learning approaches tailored for time series fore-

casting using FedAvg, FedProx, and SCAFFOLD to handle mixed-

frequency heterogeneous data, and (3) federated frameworks en-

abling gradient-level sharing with privacy preservation, allowing

methods like GradBal to operate in decentralized settings.

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

References
[1] 2012. Global Energy Forecasting Competition 2012 - Load Forecast-

ing. https://www.kaggle.com/c/global-energy-forecasting-competition-2012-

load-forecasting. Kaggle Dataset.

[2] 2012. Global Energy Forecasting Competition 2012 - Wind Forecasting. https:

//www.kaggle.com/competitions/GEF2012-wind-forecasting. Kaggle Dataset.

[3] 2015. Rossmann Store Sales. https://www.kaggle.com/competitions/rossmann-

store-sales. Kaggle Dataset.

[4] 2017. Beijing Multi Site Air Quality Data. https://archive.ics.uci.edu/dataset/501/

beijing+multi+site+air+quality+data. UCI Machine Learning Repository Dataset.

[5] 2023. Spain Electricity Shortfall Challenge 2023–2024. https://www.kaggle.

com/competitions/spain-electricity-shortfall-challenge-2023-2024/data. Kaggle

Dataset.

[6] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[7] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro

Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebas-

tian Pineda Arango, ShubhamKapoor, et al. 2024. Chronos: Learning the language

of time series. arXiv preprint arXiv:2403.07815 (2024).
[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[9] Gustav A Baumgart, Jaemin Shin, Ali Payani, Myungjin Lee, and Ramana Rao

Kompella. 2024. Not all federated learning algorithms are created equal: A

performance evaluation study. arXiv preprint arXiv:2403.17287 (2024).

[10] Paul Bilokon and Yitao Qiu. 2023. Transformers versus LSTMs for electronic

trading. arXiv preprint arXiv:2309.11400 (2023).
[11] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-

tical secure aggregation for privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175–1191.

[12] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015.

Time series analysis: forecasting and control. John Wiley & Sons.

[13] R. Caruana. 1997. Multitask Learning. Machine Learning 28, 1 (1997), 41–75.

doi:10.1023/a:1007379606734

[14] Yujing Chen, Yue Ning, Zheng Chai, and Huzefa Rangwala. 2020. Federated

Multi-task Learning with Hierarchical Attention for Sensor Data Analytics. In

2020 International Joint Conference on Neural Networks (IJCNN). 1–8. doi:10.1109/
IJCNN48605.2020.9207508

[15] Yujie Chen, Xuping Qin, Ji Wang, Chunyang Yu, andWei Gao. 2020. FedHealth: A

Federated Transfer Learning Framework forWearable Healthcare. IEEE Intelligent
Systems 35, 4 (2020), 83–93.

[16] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. 2018.

Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask

networks. In International Conference on Machine Learning. PMLR, 794–803.

[17] Z. Chen, E. Jiaze, X. Zhang, H. Sheng, and X. Cheng. 2020. Multi-task Time

Series Forecasting with Shared Attention. In Proceedings of the 2020 International
Conference on Data Mining Workshops (ICDMW). IEEE, 917–925. doi:10.1109/
ICDMW51353.2020.00128

[18] Jinliang Deng, Xiusi Chen, Renhe Jiang, Xuan Song, and Ivor W Tsang. 2022.

A multi-view multi-task learning framework for multi-variate time series fore-

casting. IEEE Transactions on Knowledge and Data Engineering 35, 8 (2022),

7665–7680.

[19] Cynthia Dwork. 2006. Differential privacy. In International colloquium on au-
tomata, languages, and programming. Springer, 1–12.

[20] Aysu Ezen-Can. 2020. A Comparison of LSTM and BERT for Small Corpus. arXiv
preprint arXiv:2009.05451 (2020).

[21] Claudia Foroni, Massimiliano Marcellino, and Christian Schumacher. 2015. Unre-

stricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag

polynomials. Journal of the Royal Statistical Society Series A: Statistics in Society
178, 1 (2015), 57–82.

[22] Dashan Gao, Xin Yao, and Qiang Yang. 2022. A survey on heterogeneous federated

learning. arXiv preprint arXiv:2210.04505 (2022).
[23] S. Gao, T. Koker, O. Queen, T. Hartvigsen, T. Tsiligkaridis, and M. Zitnik. 2024.

UniTS: A Unified Multi-Task Time Series Model. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), Vol. 37. 140589–140631.

[24] E. Ghysels, A. Sinko, and R. Valkanov. 2007. MIDAS Regressions: Further Results

and New Directions. Econometric Reviews 26, 1 (2007), 53–90. doi:10.1080/

07474930600972467

[25] Soma Hansel, Erich Kobler, and Alexander Effland. [n. d.]. FedPCE: Federated

Personalized Client Embeddings. ([n. d.]).

[26] Xiaoyu He, Suixiang Shi, Xiulin Geng, Jie Yu, and Lingyu Xu. 2023. Multi-

step forecasting of multivariate time series using multi-attention collaborative

network. Expert Systems with Applications 211 (2023), 118516.

[27] Mohammad Ameen Husnoo, Ahsan Anwar, Nima Hosseinzadeh, S. Nazrul Islam,

Abdun Naser Mahmood, and Rana Doss. 2023. A Secure Federated Learning

Framework for Residential Short-Term Load Forecasting. IEEE Transactions on
Smart Grid 15, 2 (2023), 2044–2055.

[28] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-

tian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled

averaging for federated learning. In International conference on machine learning.
PMLR, 5132–5143.

[29] Jien Kim, Gunryeong Park, Miseung Kim, and Soyoung Park. 2023. Cluster-based

secure aggregation for federated learning. Electronics 12, 4 (2023), 870.
[30] Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschieg-

ner, Hao Wang, and Yuyang Bernie Wang. 2023. Predict, refine, synthesize:

Self-guiding diffusion models for probabilistic time series forecasting. Advances
in Neural Information Processing Systems 36 (2023), 28341–28364.

[31] V. I. Kontopoulou, A. D. Panagopoulos, I. Kakkos, and G. K. Matsopoulos. 2023. A

Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting

in Data Driven Networks. Future Internet 15, 8 (2023), 255. doi:10.3390/fi15080255
[32] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl. 2017. Time-Series Extreme Event

Forecasting with Neural Networks at Uber. In International Conference on Machine
Learning (ICML), Vol. 34. SN, 1–5.

[33] Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song. 2021. Vision trans-

former for small-size datasets. arXiv preprint arXiv:2112.13492 (2021).
[34] T. Li, A. K. Sahu,M. Zaheer,M. Sanjabi, A. Talwalkar, and V. Smith. 2020. Federated

Optimization in Heterogeneous Networks. In Proceedings of Machine Learning
and Systems (MLSys), Vol. 2. 429–450.

[35] B. Lim and S. Zohren. 2021. Time-Series Forecasting with Deep Learning: A

Survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 379, 2194 (2021), 20200209. doi:10.1098/rsta.2020.0209

[36] Chin-Yi Lin, Yu-Ming Hsieh, Fan-Tien Cheng, Hsien-Cheng Huang, and Muham-

mad Adnan. 2019. Time Series Prediction Algorithm for Intelligent Predic-

tive Maintenance. IEEE Robotics and Automation Letters 4, 3 (2019), 2807–2814.
doi:10.1109/LRA.2019.2918684

[37] J. Lin and G. Michailidis. 2024. A Multi-Task Encoder-Dual-Decoder Framework

for Mixed Frequency Data Prediction. International Journal of Forecasting 40, 3

(2024), 942–957. doi:10.1016/j.ijforecast.2024.01.012

[38] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. 2021. Conflict-

averse gradient descent for multi-task learning. Advances in Neural Information
Processing Systems 34 (2021), 18878–18890.

[39] D. Liu, Y. Wang, C. Liu, K. Wang, X. Yuan, and C. Yang. 2024. Blackout Missing

Data Recovery in Industrial Time Series Based on Masked-Former Hierarchical

Imputation Framework. IEEE Transactions on Automation Science and Engineering
(2024), 1–13. doi:10.1109/tase.2023.3287895

[40] Diju Liu, Yalin Wang, Chenliang Liu, Xiaofeng Yuan, and Chunhua Yang. 2023.

Multirate-former: An efficient transformer-based hierarchical network for multi-

step prediction of multirate industrial processes. IEEE Transactions on Instrumen-
tation and Measurement 73 (2023), 1–13.

[41] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and

Mingsheng Long. 2023. itransformer: Inverted transformers are effective for time

series forecasting. arXiv preprint arXiv:2310.06625 (2023).
[42] Yuang Liu, Wei Zhang, and Jun Wang. 2020. Adaptive multi-teacher multi-level

knowledge distillation. Neurocomputing 415 (2020), 106–113.

[43] Lingjuan Lyu, Han Yu, and Qiang Yang. 2020. Threats to federated learning: A

survey. arXiv preprint arXiv:2003.02133 (2020).
[44] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In Artificial intelligence and statistics. PMLR,

1273–1282.

[45] Ze Meng, Xin Yao, and Lifeng Sun. 2021. Multi-task distillation: Towards mit-

igating the negative transfer in multi-task learning. In 2021 IEEE international
conference on image processing (ICIP). IEEE, 389–393.

[46] Meta AI. 2025. Opacus accounting utilities. https://opacus.ai/api/accounting/

utils.html. Accessed: 2025-06-24.

[47] Thomas Morstyn, Niall Farrell, Sarah J. Darby, and Malcolm D. McCulloch. 2018.

Using Peer-to-Peer Energy-Trading Platforms to Incentivize Prosumers to Form

Federated Power Plants. Nature Energy 3, 2 (2018), 94–101.

[48] National Renewable Energy Laboratory (NREL). 2006. Solar Power Generation.

https://www.nrel.gov/grid/solar-power-data.html. Dataset.

[49] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol

Kurach, and James Martens. 2015. Adding gradient noise improves learning for

very deep networks. arXiv preprint arXiv:1511.06807 (2015).

[50] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2022.

A time series is worth 64 words: Long-term forecasting with transformers. arXiv
preprint arXiv:2211.14730 (2022).

[51] Waqas Saeed. 2022. Frequency-Based Ensemble Forecasting Model for Time

Series Forecasting. Computational and Applied Mathematics 41, 2 (2022), 66.
[52] Ozan Sener and Vladlen Koltun. 2018. Multi-task Learning as Multi-objective

Optimization. In Advances in Neural Information Processing Systems, Vol. 31.

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

[53] Hyowoon Seo, Jihong Park, Seungeun Oh, Mehdi Bennis, and Seong-Lyun Kim.

2022. 16 federated knowledge distillation. Machine Learning and Wireless Com-
munications 457 (2022).

[54] A. Shabani, A. Abdi, L. Meng, and T. Sylvain. 2022. Scaleformer: Iterative Multi-

Scale Refining Transformers for Time Series Forecasting. arXiv preprint (2022).
arXiv:2206.04038 [cs.LG]

[55] A. Shankar, L. Y. Chen, J. Decouchant, D. Gkorou, and R. Hai. 2024. Share Your

Secrets for Privacy! Confidential Forecasting with Vertical Federated Learning.

arXiv preprint (2024). arXiv:2405.20761 [cs.LG]
[56] S. N. Shukla and B. M. Marlin. 2021. Multi-Time Attention Networks for Irregu-

larly Sampled Time Series. arXiv preprint (2021). arXiv:2101.10318 [cs.LG]
[57] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and

Silvio Savarese. 2020. Which tasks should be learned together in multi-task

learning?. In International conference on machine learning. PMLR, 9120–9132.

[58] Johannes Stübinger and Katharina Adler. 2020. How to identify varying lead–lag

effects in time series data: Implementation, validation, and application of the

generalized causality algorithm. Algorithms 13, 4 (2020), 95.
[59] J. et al. Sun. 2020. Crypto Dataset. https://kaggle.com/competitions/g-research-

crypto-forecasting. Dataset referenced in paper.

[60] Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xin He, Bo Han, and Xiaowen

Chu. 2022. Virtual homogeneity learning: Defending against data heterogeneity

in federated learning. In International Conference on Machine Learning. PMLR,

21111–21132.

[61] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui

Zhang, and Yi Zhou. 2019. A hybrid approach to privacy-preserving federated

learning. In Proceedings of the 12th ACM workshop on artificial intelligence and
security. 1–11.

[62] Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. 2020. Gradient vaccine:

Investigating and improving multi-task optimization in massively multilingual

models. arXiv preprint arXiv:2010.05874 (2020).
[63] KangWei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin,

Tony QS Quek, and H Vincent Poor. 2020. Federated learning with differential

privacy: Algorithms and performance analysis. IEEE transactions on information
forensics and security 15 (2020), 3454–3469.

[64] Y. Yaron, L. Reyzin, D. Zhang, and D. Papadopoulos. 2023. Verifiable Random

Functions (VRFs). Internet-Draft draft-irtf-cfrg-vrf-13, IETF. https://www.ietf.

org/archive/id/draft-irtf-cfrg-vrf-13.html Work in Progress.

[65] Liang Yu, Lai Tu, and Xiang Bai. 2025. MFRS: A Multi-Frequency Reference

Series Approach to Scalable and Accurate Time-Series Forecasting. arXiv preprint
arXiv:2503.08328 (2025).

[66] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman,

and Chelsea Finn. 2020. Gradient surgery for multi-task learning. In Advances in
Neural Information Processing Systems, Vol. 33. 5824–5836.

[67] Yichi Zhang, Mihai Cucuringu, Alexander Y Shestopaloff, and Stefan Zohren.

2023. Dynamic Time Warping for Lead-Lag Relationships in Lagged Multi-Factor

Models. arXiv preprint arXiv:2309.08800 (2023).
[68] L. Zhu, Z. Liu, and S. Han. 2019. Deep Leakage from Gradients. In Advances in

Neural Information Processing Systems (NeurIPS), Vol. 32.

6 Appendix
The appendix provides additional strategies and results from the

research.

7 Experimental Details.
7.1 Datasets
Table 5 provides detailed information about the public datasets

used in our experiments. For the main experiments, we primarily

evaluate our proposed model on the AirQuality, Load,Wind, and
Spain datasets. During the model prototyping stage and to refine

the final selected model configuration, we additionally utilized the

Sales, Crypto, and Solar datasets.
To properly evaluate our model in a multi-frequency setting,

we preprocess these datasets by explicitly differentiating sampling

frequencies: the target or endogenous variables are downsampled

(aggregated) to represent the lower-frequency signals, while the

exogenous variables are upsampled (via interpolation) to represent

higher-frequency signals. This approach ensures compatibility with

our model architecture designed for handlingmixed-frequency time

series inputs.

7.2 Evaluation Metrics
We report the Mean Absolute Error (MAE) as the primary ac-

curacy metric, accompanied by the Standard Error of the Mean
(SEM) to quantify the reliability of reported results.

Mean Absolute Error (MAE). MAE measures the average magni-

tude of prediction errors without considering their direction, pro-

viding an interpretable and scale-sensitive measure of forecasting

accuracy:

MAE =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |,

where 𝑦𝑖 is the model prediction, 𝑦𝑖 is the true value, and 𝑛 is the

number of observations. MAE is robust to outliers compared to

squared error metrics and directly reflects how far, on average,

predictions deviate from the ground truth.

Standard Error of the Mean (SEM).. While MAE summarizes

model accuracy, it does not convey how much this accuracy varies

across repeated experiments or folds. For that, we compute the

SEM:

SEM =
𝑠
√
𝑛
=

√︃
1

𝑛−1

∑𝑛
𝑖=1
(𝑥𝑖 − 𝑥)2

√
𝑛

,

where 𝑠 is the sample standard deviation, 𝑛 is the number of repeti-

tions, 𝑥𝑖 denotes the MAE for the 𝑖𝑡ℎ run, and 𝑥 is the mean MAE.

SEM quantifies the precision of the MAE estimate: a smaller SEM

implies greater consistency across runs, indicating that the reported

MAE is a stable and reliable indicator of true model performance.

Why SEM?. In our time series forecasting experiments, we vary

the random seed to alter model initialization and stochastic training

behavior, which leads to slight fluctuations in performance across

runs. Reporting the Standard Error of the Mean (SEM) captures this

variability and quantifies the precision of the reported MAE. SEM

indicates how closely the reported MAE would approximate the

true population MAE if the experiment were repeated infinitely

many times under different initializations.

Reporting Protocol. For all tables and figures, we report MAE

alongside SEM as “MAE ± SEM”. This conveys both the central per-

formance tendency and the uncertainty in a compact form, enabling

fairer comparison between models especially when performance

differences are small and could otherwise be within the range of

experimental noise.

7.3 Baselines.
ARIMAX. We include the Autoregressive Integrated Moving Aver-

age with Exogenous Variables (ARIMAX) model as a classical and

widely used baseline for time series forecasting. ARIMAX extends

the traditional ARIMA framework by incorporating external covari-

ates to improve predictions. It is parameterized by (𝑝, 𝑑, 𝑞) for the
autoregressive order, differencing order, and moving average order,

respectively, along with (𝑃, 𝐷,𝑄, 𝑠) for potential seasonal compo-

nents. ARIMAX assumes the underlying time series is (or can be

transformed to be) stationary and models temporal dependencies

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

Table 5: Details of datasets used in experiments.

Dataset Number of Rows Number of Features Target Variable Source

AirQuality 20,900 11 CO [4]

Load 157,000 5 Load [1]

Wind 4,300 5 wp [2]

Spain 8,700 7 load [5]

Sales 943 6 Sales [3]

Crypto 4,300 5 Closing Price [59]

Solar 105,121 10 Solar Output (kW) [48]

through a linear combination of past values, differenced terms, and

lagged forecast errors, while exogenous variables enter the model

linearly.

Although ARIMAX provides a strong statistical benchmark and

often performs well for univariate[32] or single-source forecasting

tasks, it is inherently limited in multi-source, multi-frequency con-

texts. In particular, its linear structure cannot effectively capture

nonlinear interactions or share information across multiple related

series, making it less suitable for complex multi-task forecasting

scenarios.

UniTS. UniTS is a versatile model designed to handle various

time series tasks, including forecasting, classification, imputation,

and anomaly detection, by transforming time series data and task

instructions into a shared "token" format. It employs a modified

transformer architecture that adapts to different time series lengths

and variable counts, using self-attention across time and variables,

a dynamic linear operator for dependency capture, and a gating

module for diverse data types. For forecasting UniTS uses a "GEN

tower" shared across generative tasks, trained simultaneously on

diverse datasets to learn broad patterns without requiring separate

models. Key hyperparameters include patch size and stride: the

patch size defines the length of non-overlapping segments into

which the time series is divided, while the stride, equal to the patch

size, ensures each segment follows the previous one directlywithout

overlap.

FATHOM. is a federated multi-task learning framework. It com-

bines task-specific attention to identify important local features of

each task with a global temporal attention layer that learns shared

patterns across devices. These attention layers feed into LSTMs, en-

abling the model to capture both feature-level and time-dependent

relationships. It is made of task specific layers and a shared layer

like a standard MTL model[13].

Private-Shared Attention. is a multi-task time series forecast-

ing framework that combines the Transformer’s self-attention with

a novel shared-private attention scheme. Instead of training each

task in isolation, MTL-Trans enables multiple related time series

tasks to learn jointly, improving performance when individual tasks

have limited data. The model uses private task-specific Transformer
encoders for local feature extraction and a shared multi-head atten-
tion layer that aggregates attention patterns across tasks, acting

like a global memory of temporal dependencies. Two variants are

proposed: (i) a global shared attention approach, where all tasks

feed into and draw from the same attention pool, and (ii) a hy-
brid local-global attention scheme, which allows tasks to retain

private representations while periodically updating and refining

the shared attention state. Experiments on real-world datasets show

that these architectures outperform single-task baselines and RNN-

based multi-task models by leveraging attention to capture long-

range dependencies and shared patterns across tasks.

TSDiff. TSDiff [30] is an unconditional diffusion model for time

series forecasting that learns a general data distribution through a

forward–reverse denoising process. Instead of training for a spe-

cific task, TSDiff applies Gaussian noise stepwise to time series

data (the forward diffusion) and trains a neural network to reverse

this process by predicting the noise (the reverse diffusion). During

inference, a self-guidance mechanism conditions the unconditional

model on observed time points to generate forecasts, imputations,

or synthetic series without retraining. We adapted TSDiff to our

multi-task mixed-frequency setting by combining high-frequency

(HF) and low-frequency (LF) features into a unified multivariate

representation and interpolating HF signals to align with LF targets.

Because no diffusion-based multi-task model exists, we extended

TSDiff’s architecture with client/task identifiers and multivariate

inputs, enabling simultaneous forecasting across tasks while pre-

serving the original diffusion objective.

8 Extended Experiments.
8.1 Modeling Strategies
In this section, we outline our approach to developing the most

optimal multi-task model. To start with our goal we start with the

assumption that there is no confidentiality constraint and hence try

to build a upper bound baseline. Later we introduce confidentiality

constraints with Federated setting. Our methodology consists of

three primary modeling strategies.

(1) Non-Collaborative Models: Each task is assigned a sep-

arate model, with no shared learning across tasks. This

approach ensures data isolation but fails to leverage inter-

customer similarities.

(2) Implicit Collaboration, Global Model: A single model

is trained on all available raw data without task-specific

adaptations. This approach benefits from large-scale data

aggregation but may not generalize well to task-specific

variations.

(3) Explicit Collaboration, Multi-Task Learning (MTL):We

employ MTL ([13], [17], [23]), incorporating task-specific

layers on top of a shared representation to allow both col-

laborative learning and customer-specific fine-tuning.

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

(a) (b) (c)

Figure 6: Different Model Training Setup to evaluate which gives the best accuracy where (a) Non-Collaborative Model setup,
(b) Implicit-Collaborative Model Setup, (c) Explicit-Collaborative: Multi Task Model Setup

Figure 7: source: FATHOM [14]

Figure 8: Source: Shared-Private Attention [17]

For each of these modeling strategies, we implement multiple

architectures, including ARIMAX, LSTM, and Transformer-based

models wherever applicable. Notably, vanilla ARIMAX cannot be

directly applied in MTL or Foundational Model setups due to its

lack of shared representation capabilities.

Each LSTM-based and Transformer-based model is evaluated

under two settings:

(1) Implicit Collaboration Setting: Standard architecture without

specialized multi-task adaptations where we train vanilla

LSTMs and Transformer based models.

(2) Explicit Collaboration Setting: Incorporates state-of-the-art

(SOTA) MTL setups, enhancing the model’s ability to capture

task-specific variations as shown in Figure 7 and Figure 8.

Given the asynchronous nature of time series data in our setup,

we extend our experimentation by incorporating variations of multi-

frequency time series model to make it Multi-Task model as dis-

cusses in sections below. We realized simplest models prefer to

work the best, Figure 10, keeping task specific heads as simple

multi layer perceptrons(MLP) rather than added complex decoders.

8.1.1 SharedHigh Frequency(HF) Encoder, LowFrequency(LF)
Decoder with private LF Decoder forecasting method. We

extended the state-of-the-art approach by [37] to a multi-task ar-

chitecture, as shown in Figure 9 and detailed in Algorithm 3. This

model follows the principle of hard parameter sharing, where data

from all clients is used to train a centralized shared encoder, fol-

lowed by task-specific decoders (heads) to fine-tune the model for

each client individually.

However, training this model was computationally slow, the

performance was not satisfactory. This was likely due to the added

complexity of the architecture, which made optimization more

difficult.

Algorithm 3 Shared Encoder-Decoder with Attention Mechanism

and Client-Specific Forecasting

1: Input: Mixed-frequency datasets D𝑐 for each client 𝑐 ∈ {1, . . . ,𝐶 }
2: Initialize: Shared parameters 𝜃𝑠 , attention parameters 𝜃𝑎 , client-specific parame-

ters 𝜃𝑐 for each 𝑐

3: for each epoch 𝑒 = 1 to 𝐸 do
4: for all batches (𝑋ℎ𝑓 , 𝑋𝑙 𝑓 , 𝑌 , 𝑐) in dataset do
5: Shared HF encoding: 𝐻ℎ𝑓 ← SharedHFEncoder(𝑋ℎ𝑓)
6: Attention mechanism:𝐴← Attention(𝐻ℎ𝑓) {Attention module [8]}

7: Shared LF decoding: 𝐻𝑙 𝑓 ← SharedLFDecoder(𝑋𝑙 𝑓 , 𝐴)
8: Group by clients: {𝐻 (1)

𝑙 𝑓
, 𝐻
(2)
𝑙 𝑓

, . . . , 𝐻
(𝐶)
𝑙 𝑓
} ← GroupByClientID(𝐻𝑙 𝑓 , 𝑐)

9: for all clients 𝑐 ∈ {1, . . . ,𝐶 } do
10: Client-specific LF decoding: 𝑍𝑐 ← ClientLFDecoder𝑐 (𝐻 (𝑐)𝑙 𝑓

)
11: Client forecasting: 𝑌𝑐 ← FC128 (FC64 (𝑍𝑐))
12: Compute loss: L𝑐 ← MSE(𝑌𝑐 , 𝑌𝑐)
13: end for
14: Total loss: L ← ∑𝐶

𝑐=1
L𝑐

15: Backpropagate L to update 𝜃𝑠 , 𝜃𝑎 , and {𝜃𝑐 }𝐶𝑐=1

16: end for
17: end for

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

Figure 9: Shared High Frequency(HF) Encoder, Low Frequency(LF) Decoder with private LF Decoder forecasting method

Figure 10: Shared High Frequency(HF) Encoder, Low Frequency(LF) Decoder with private MLP forecasting method

8.1.2 Shared HF-LF: Shared High Frequency(HF) Encoder,
Low Frequency(LF) Decoder with private MLP forecasting
method. Looking at the competitive results of ARIMAX, we de-

cided to simplify the previous architecture by replacing private

decoders with simple MLP layers as shown in Figure 10. This was

quicker to train and gave promising results was also sets a baseline

in out experiment section as (Ours w/o conflict resolution) and algo-

rithm for this remains exactly same as in Algorithm 1 but without

the GradBal.

8.1.3 Secured HF-LF: Task-specific High Frequency(HF) En-
coder and Low Frequency(LF) Decoder with Shared HF En-
coder. In the original formulation, task data is held by a central

layer, which raises significant confidentiality concerns. To address

this, we introduced a new iterationwhich is similar to FATHOM[14],

as shown in Figure 7, where each client retains its own high-

frequency (HF) encoder and low-frequency (LF) decoder, while

only sharing encoded features with the central shared parameters,

as illustrated in Figure 11. This setup follows from FATHOM as

shown in Figure 7 and tries to mitigates the risk to confidentiality

to some extent, as it becomes harder though not impossible[68] to

infer the raw data from aggregated representations.

8.2 Federated Learning: Enforcing
Confidentiality.

In Multi-Task Learning (MTL), methods like GradBal successfully

remove conflicts between task gradients and improve the model’s

overall performance. However, applying these methods in Feder-

ated Learning (FL) is quite difficult. In FL, the server must protect

each tasks’s data, so it cannot see the task-specific gradients that

GradBal needs to work. Because of this strict confidentiality rule,

we cannot directly use gradient-based techniques from MTL in

FL[68]. In the future, we might use secure technologies (for exam-

ple, noising, encryption or secret sharing) so that FL systems can

share gradients without breaking privacy. Then we could bring

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

Figure 11: Private High Frequency(HF) Encoder and Low Frequency(LF) Decoder with Shared HF Encoder

Algorithm 4 Task-specific High Frequency(HF) Encoder and Low

Frequency(LF) Decoder with Shared HF Encoder.

1: Input: Mixed-frequency datasets D𝑐 for each client 𝑐 ∈
{1, . . . ,𝐶}

2: Initialize: Shared parameters 𝜃𝑠 , client-specific parameters 𝜃𝑐
for each 𝑐

3: for each epoch 𝑒 = 1 to 𝐸 do
4: for all batches (𝑋ℎ𝑓 , 𝑋𝑙 𝑓 , 𝑌 , 𝑐) in dataset do
5: Client-specific encoding: 𝐻𝑐 ← ClientEncoder𝑐 (𝑋ℎ𝑓)
6: Shared representation: 𝑍𝑐 ← SharedEncoder(𝐻𝑐)
7: Client fusion: 𝑍 ′𝑐 ← Fuse(𝑍𝑐 , Embed(𝑐))
8: Client decoding: 𝑌𝑐 ← ClientDecoder𝑐 (𝑋𝑙 𝑓 , 𝑍 ′𝑐)
9: Compute loss: L𝑐 ← MSE(𝑌𝑐 , 𝑌)
10: Backpropagate L𝑐 to update 𝜃𝑠 and 𝜃𝑐
11: end for
12: end for

methods like GradBal into federated settings. For now, though, FL

must balance strong data confidentiality against the benefits of

advanced optimization methods.

For this study, our primary objective is to assess confidentiality.

Therefore, we move our multi-frequency encoder-decoder model

into an FL environment, employing established federated optimiza-

tion techniques like FedProx [34] and SCAFFOLD [28], which in-

herently handle task heterogeneity through proximal and control

variates terms, respectively. Our federated framework includes two

key components: (1) local training with differential confidentiality

and (2) secure aggregation of model updates an finally (3) Person-

alization. Figure 12 illustrates our federated setup, with further

methodological details provided in next section Appendix 8.2.1.

Local Training with Dual Differential confidentiality. The
first component of our federated framework involves local train-

ing at each task, corresponding to a HF-LF pair, using a modified

version of the LSTM-based encoder-decoder architecture proposed

by Lin et al. [37]. Each task trains on their local dataset D𝑐 , which

includes high-frequency data and low-frequency data, to forecast

task-specific outcomes. To ensure confidentiality, we implement a

dual differential confidentiality mechanism:

• Vertical confidentiality (Frequency-Level): Calibrated
gaussian noise 𝜎𝑒𝑛𝑐 is added to the clipped encoder out-

puts, protecting the intermediate representations of high-

frequency inputs ensuring (𝜖𝑒𝑛𝑐 , 𝛿𝑒𝑛𝑐)-DP(Alg. 7, line 6).

Thismitigates risks of inference attacks on frequency-specific

data, as intermediate states may leak sensitive patterns [68].

• Horizontal confidentiality (Task-Level): We apply Differ-

entially Private Stochastic Gradient Descent (DP-SGD) [6]

during local training. DP-SGD clips gradients to bound the

influence of individual data points and adds calibrated Gauss-

ian noise 𝜎𝑔𝑟𝑎𝑑 , ensuring (𝜖𝑔𝑟𝑎𝑑 , 𝛿𝑔𝑟𝑎𝑑)-DP for task-specific

model updates(Alg. 7, line 11).

Building on the dual differential confidentiality mechanisms,

since no downstream component directly accesses raw HF data,

the gradient mechanism acts solely as a post-processing step[19]

on already privatized encoder embeddings. Consequently, the two

confidentiality budgets protect disjoint subset of data(encoder out-

puts and gradients updates, respectively). Hence, we compose the

vertical and horizontal confidentiality guarantees to achieve system-

level (𝜖, 𝛿)-DP for both high-frequency and low-frequency datasets,

as formalized below,

System DP guarantee

{
(𝜖𝑒𝑛𝑐 , 𝛿𝑒𝑛𝑐)-DP for high-frequency data,

(𝜖𝑔𝑟𝑎𝑑 , 𝛿𝑔𝑟𝑎𝑑)-DP for task-level updates.

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

(a) Local training at task level with DP noise at encoder output. The
multi-frequency encoder-decoder(MF-ED) in this model is trained
jointly using DP-SGD

(b) Federated Setting with secured aggregation where MF-ED is multi-
frequency encoder-decoder[37].

Figure 12: Overview of the Federated framework, illustrating local training with dual DP and secure aggregation for multi-task
time series forecasting. Detailed in Appendix 8.2.1

Importantly, differential confidentiality serves as the final line of

defense when secure aggregation fails or is compromised and indi-

vidual model updates are exposed to adversaries. The local training

process is formalized in Appendix 8.2.1.

Secure Aggregation of Model Updates. The second compo-

nent of federated framework is Secure Aggregation, which ensures

that the central federator can only access aggregated model up-

dates, not individual task contributions. We implement secured

aggregation protocol[11], which uses Diffie-Hellman key exchange
and t-out-of-n secret sharing to securely mask individual updates as

shown in Algorithm 8. This scheme protects against a semi-honest
federator and colluding clients[43]., ensuring confidentiality as long

as at least 𝑡 > 1[29] tasks remain honest and active. Combined

SecAgg with DP-SGD reduces noise requirements while maintain-

ing formal confidentiality guarantees, as supported by Truex et

al.[61]. Hence,

𝜎
eff

=
𝜎𝑔𝑟𝑎𝑑√
𝑡 − 1

, where 𝜎𝑔𝑟𝑎𝑑 is the original standard deviation required for the

Gaussian mechanism under DP-SGD and 𝜎
eff

is the actual noise

applied. A concise implementation for federated setting is shown

in Appendix 8.2.1. The reason we chose to apply noise reduction

just on 𝜎𝑔𝑟𝑎𝑑 because we found out that this noise caused most

harm to the model utility and experiments on those are presented in

Appendix 9.3. The detailed working is presented in Appendix 8.2.1.

Algorithm 7 pinpoints where calibrated noise is injected, while

Algorithm 8 details the secure aggregation protocol that protects

the tasks’ model updates.

Personalization Phase. In our federated learning setup, we

first complete 10 rounds of standard federated training to produce

a final global model. To mimic the task-specific heads of our cen-

tralized model, each client then personalizes this global model by

fine-tuning it on their local data with a lower learning rate. This

personalized model is used for local inference, effectively tailoring

the shared global knowledge to each client’s specific task or data

distribution.

8.2.1 Confidentiality preserving federated Training Procedure.

(i.)The Local Pass. Our model trains locally on task-specific

high-frequency(HF), and low-frequency(LF), time series data, ex-

tracting essential forecasting information through a carefully de-

signed encoder-decoder neural network architecture. The architec-

ture, inspired by Lin (2024)[37], employs Long Short-Term Mem-

ory (LSTM) layers, but also crucially integrates privacy-preserving

mechanisms to ensure confidentiality at task level.

Each entity within the task 𝑐 ∈ 𝐶 , where 𝐶 is the total number

of tasks, owns two time series:

(1) High Frequency inputs: 𝑋𝐶 ∈ 𝑅𝑇×𝑑𝑋
(2) Low Frequency inputs: 𝑌𝐶 ∈ 𝑅𝑇

‘ × 𝑑𝑌
The forecasting task is to predict 𝑌𝑐,𝑡+ℎ using past ℎ𝐻𝐹 window

from 𝑋𝑐 and ℎ𝐿𝐹 window from 𝑌𝑐 , where 𝑇 >> 𝑇 ‘
and 𝑟 = 𝑇 /𝑇 ‘

is

the frequency ratio. Hence ℎ𝐻𝐹 = ℎ𝐿𝐹 × 𝑟 .
Concretely we define the model as follows:

(1) High Frequency Encoder E:

𝐻𝑐,𝑡 = E𝑐 (𝑋𝑐,𝑡−ℎ𝐻𝐹 :𝑡) ∈ Rℎ𝐻𝐹 ×𝑑
(6)

where 𝑑 is the hidden size of the encoder output and ℎ𝐻𝐹 is

the high-frequency window length and 𝜖𝑐 is realized via an

LSTM.

(2) Local Encoding of HF with Differential Privacy in the
latent representation: High Frequency encoder outputs

are independently encodes into latent representations through

a LSTM-based encoder, ensuring that raw data remains con-

fidential. Let 𝐻𝑐,𝑡 be the output of the LSTM based encoder-

decoder 𝜖𝑐 . We enforce element wise clipping[6]:

𝐻̃𝑐,𝑡 = min(1, 𝐵/∥𝐻𝑐,𝑡 ∥2) · 𝐻𝑐,𝑡 (7)

where 𝐵 is the clipping bound, i.e. maximum allowed norm

before scaling down.

Then we add calibrated Gaussian noise:

𝐻
𝑝𝑟𝑖𝑣
𝑐,𝑡 = 𝐻̃𝑐,𝑡 + N(0, ∥𝜎𝑒𝑛𝑐 ∥𝐵2𝐼) (8)

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

where 𝜎𝑒𝑛𝑐 is the noise scale or standard deviation of the

Gaussian noise and 𝐼 is the identity matrix. This mechanism

provides (𝜖𝑒𝑛𝑐 , 𝛿𝑒𝑛𝑐) - DP and deters honest but curious party
from making any inferences when latent is shared across

entities in the task.

(3) Context Attention A: The decoder uses additive atten-

tion[Bahdanau, 2014] to dynamically weigh the differentially

private encoder output states at each LF decoding step. At

decoder step 𝑖 , the context vector 𝑐 (𝑐, 𝑡, 𝑖) is computed as

weighted sum of the 𝑗 encoder output steps :

𝑐𝑐,𝑡,𝑖 =

ℎ𝐻𝐹∑︁
𝑗=1

𝛼𝑖, 𝑗 𝐻
priv,(𝑗)
𝑐,𝑡 (9)

The attention weights 𝛼𝑖, 𝑗 measure the alignment between

the previous decoder hidden state 𝑠𝑐,𝑡,𝑖−1 and the encoder

states 𝐻
priv,(𝑗)
𝑐,𝑡 . The weights are computed as:

𝛼𝑖, 𝑗 =

exp

(
𝜈⊤ tanh

(
𝑊𝑞 𝑠𝑐,𝑡,𝑖−1 +𝑊𝑘 𝐻

priv,(𝑗)
𝑐,𝑡

))
∑ℎ𝐻𝐹

𝑙=1
exp

(
𝜈⊤ tanh

(
𝑊𝑞 𝑠𝑐,𝑡,𝑖−1 +𝑊𝑘 𝐻

priv,(𝑗)
𝑐,𝑡

)) (10)

where learnable parameters are:

(a) Query Projection:𝑊𝑞 ∈ 𝑅𝑑𝛼×𝑑
(b) Key Projection:𝑊𝑘 ∈ 𝑅𝑑𝛼×𝑑
(c) Attention Vector: 𝑣 ∈ 𝑅𝑑𝛼 where 𝑑𝛼 denotes the dimen-

sionality of the attention mechanism.

(4) Decoder D𝑐 : The decoder predicts LF data using the pre-

viously observed LF data and the attention-derived context

vector. At decoding step 𝑖 , the decoder input 𝑧𝑐,𝑡,𝑖 concate-

nates the LF data from the previous time step and the context

vector:

𝑧𝑐,𝑡,𝑖 =
[
𝑌𝑐,𝑡−ℎ𝐿𝐹 +𝑖 ∥ 𝑐𝑐,𝑡,𝑖

]
∈ R𝑑𝑌 +𝑑 (11)

The decoder’s LSTM updates the hidden state 𝑠𝑐,𝑡,𝑖 as follows:

𝑠𝑐,𝑡,𝑖 , ℎ𝑐,𝑡,𝑖 = LSTM
dec
(𝑧𝑐,𝑡,𝑖 , 𝑠𝑐,𝑡,𝑖−1) (12)

ith initial hidden state 𝑠𝑐,𝑡,0, typically initialized as zeros or

as learned parameters.

(5) Output Layer: LF Prediction: The forecasted LF output at

horizon ℎ is generated from the final decoder hidden state:

𝑌𝐿𝐹
𝑐,𝑡+ℎ =𝑊𝑜 𝑠𝑐,𝑡,ℎ𝐿𝐹 + 𝑏𝑜 (13)

where:

• Output projection:𝑊𝑜 ∈ R𝑑𝑌 ×𝑑
• Bias term: 𝑏𝑜 ∈ R𝑑𝑌

(6) Differentially Private Stochastic Gradient Descent for
LF Decoder To protect sensitive information in both local

and global model updates, our framework incorporates a

differentially private stochastic gradient descent algorithm

(DP-SGD) [6] at the decoder.

At the task level, gradients are clipped to a fixed norm, and

calibrated noise is added during each local update to bound

the privacy loss. Following [6], we apply per-example gradi-

ent clipping:

𝑔𝑖 =
𝑔𝑖

max

(
1,
∥𝑔𝑖 ∥2
𝐵

) (14)

and add Gaussian noise:

𝑔 =
1

𝑁

∑︁
𝑖

(
𝑔𝑖 + N(0, 𝜎2

𝑔𝑟𝑎𝑑
𝐵2𝐼)

)
(15)

This enforces (𝜖𝑔𝑟𝑎𝑑 , 𝛿𝑔𝑟𝑎𝑑)-DP guarantees for the updates,

with noise scale 𝜎𝑔𝑟𝑎𝑑 .

Detailed Algorithm is presented in Algorithm 7.

(ii.)The Aggregator Pass. Complementing the task-level model,

our framework includes a Secure Federated Aggregation Pro-
tocol in addition to the Differential Privacy (DP) already applied

during the local pass. While DP protects individual updates, rely-

ing on it alone can reduce model accuracy, especially when the

number of tasks is large and each task has relatively little data. To

address this, our protocol securely aggregates masked model with-

out revealing raw contributions. Our approach is inspired by secure

multi-party computation methods from Bonawitz et al. (2017) and

Truex et al. (2019).

Each task 𝑐 ∈ 𝐶 computes a local model update:

Δ̂𝑐,𝑡 = 𝜃𝑐𝑡 − 𝜃
global

𝑡−1
(16)

then,

(1) MaskingMechanism for Confidentiality [11]: To ensure
confidentiality during aggregation, we adopt a secure aggre-

gation masking protocol adapted for both semi-decentralized

and peer-to-peer setups.

At the beginning of each round, each task establishes pair-

wise shared secrets with every other task usingDiffie-Hellman

(DH) key exchange. Each task generates a DH key pair (pub-

lic and private keys) and exchanges public keys.

Based on these public keys, every pair of tasks 𝑐 and 𝑐′

computes a shared secret 𝑠𝑐,𝑐′ using DH key agreement. To

ensure consistent pairing of perturbation masks, tasks are

ordered lexicographically by their public keys. This ordering

determines roles in their perturbation:

• The task with the smaller key (𝑐 < 𝑐′) adds the PRG-

generated mask.

• The task with the larger key (𝑐 > 𝑐′) subtracts the same

mask.

These pairwise perturbations are derived from 𝑠𝑐,𝑐′ using

a cryptographically secure pseudorandom generator (PRG).

In addition to pairwise masking, each task samples an inde-

pendent random vector (a self-mask) and distributes secret

shares of it using a (𝑡, 𝑛) threshold secret-sharing scheme.

Thus, the masked update sent by each task is:

Δ̃𝑐 = Δ𝑐 +𝑚𝑐 +
∑︁
𝑐>𝑐′

PRG(𝑠𝑐,𝑐′) −
∑︁
𝑐<𝑐′

PRG(𝑠𝑐,𝑐′) (17)

where𝑚𝑐 is the additional random mask shared via secret

sharing.

Upon receiving masked updates, federator aggregate them.

Due to the careful construction of masks, all perturbation

terms cancel, leaving:

𝑆 =
∑︁
𝑐∈𝐶

Δ̃𝑐 =
∑︁
𝑐∈𝐶

Δ𝑐 (18)

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

During aggregation, random masks𝑚𝑐 from alive tasks are

collected and canceled during unmasking, ensuring that only

the sum of true model updates is revealed.

The federator then applies the FedAvg algorithm:

Δ
global

=
∑︁
𝑐∈𝐶

𝑤𝑐Δ𝑐 (19)

𝜃
global

𝑡+1 = 𝜃
global

𝑡 + Δ
global

(20)

and redistributes the updated global model to all tasks for

further personalization.

This DH-based Secure Aggregation scheme provides strong

confidentiality even against honest-but-curious federators

while maintaining model utility.

(2) Reduced DP Noise and Privacy Guarantee [61]: Our
fedreated framework achieves robust confidentiality by com-

bining Differential Privacy and Secure Aggregation [61].

Truex et al. formally show that combining DP with Secure

Multi-Party Computation (SMC) reduces the required noise

for DP while maintaining privacy guarantees.

If each task adds Gaussian noise with standard deviation 𝜎

to ensure (𝜖, 𝛿)-DP locally, the total variance across 𝑁 tasks

scales as 𝑁𝜎2
. However, by securely aggregating obfuscated

responses using a trust threshold 𝑡 (the number of trusted

tasks), the required noise reduces to:

𝜎
eff

=
𝜎2

√
𝑡 − 1

(21)

resulting in noise magnitude reduction by

√
𝑡 − 1 on the

server side [61].

In a federated round, if at least 𝑡 out of 𝑁 parties are honest

and non-colluding, adding independent noise N(0, 𝐵2𝜎2

𝑡−1
)

still ensures (𝜖, 𝛿)-DP, even if the remaining 𝑁 − 𝑡 tasks

collude. This aligns with the theoretical results of Dwork

and Roth [19], showing that the coalition’s view is reduced

to a sum over 𝑡 honest responses, preserving privacy.

(3) Cumulative PrivacyAcrossRounds:Overmultiple rounds,

privacy loss accumulates according to the composition the-

orem: running a (𝜖, 𝛿)-DP mechanism 𝑇 times results in

approximately (𝑇𝜖,𝑇𝛿) privacy loss. This total noise can de-

grade utility. By employing Secure Aggregation, we reduce

the required per-round noise, ensuring both improved utility

and bounded cumulative privacy loss.

As shown in prior works [11, 61], Secure Aggregation relies

on a trusted parties threshold. In our framework, Secure

Aggregation breaks in the worst case when only one trusted

party remains, requiring more DP noise to compensate. How-

ever, in typical and average cases, Secure Aggregation pre-

serves confidentiality with reduced noise, maintaining both

privacy and utility.

Detailed Algorithm is presented in Algorithm 8 and illustrated in

Figure 13.

8.3 Other Federated Learning Techniques.
This appendix summarises every federated-learning variant we

evaluated before choosing FedAvg.

Figure 13: Secure Aggeragation Protocol.

Standard Federated Knowledge Distillation. Algorithm 5 imple-

ments the classical Federated Knowledge Distillation (FKD) work-

flow [53]. Each client trains a local model, converts its outputs to

a knowledge vector (typically the logits), and the server averages

these vectors to build a single global teacher that is distilled back

to every client.

FKD with ID Embedding and Similarity Fusion. Algorithm 6 ex-

tends FKD for heterogeneous data. Inspired by similarity-weighted

multi-teacher distillation [42] and client embeddings in federated

learning [25], it enriches the knowledge vector with a client-ID

embedding and fuses the vectors by similarity. This personalised

teacher is expected to improve performance when client distribu-

tions differ greatly.

8.4 Towards decentralized Federated setting.
What we presented in our methodology is called centralized fed-

erated learning setup and forms the foundation of confidentiality-

preserving machine learning systems but they inherently rely on a

trusted aggregator. In our real world industry use case this central-

ized trust assumption does not hold. Instead, we further aimed at

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

Algorithm 5 Federated Multi-Teacher Knowledge Distillation

1: Input: Local data D𝑖 for each client 𝑖 , total rounds 𝑅, loss

weights 𝛼, 𝛽

2: Initialize: Model parameters 𝜃𝑖 for each client 𝑖

3: for 𝑟 = 1 to 𝑅 do
4: for all clients 𝑖 = 1 to 𝑁 in parallel do
5: Train local model on D𝑖 using prediction loss L

pred

6: Extract knowledge vector 𝑘𝑖 from local encoder

7: end for
8: Compute average knowledge:

¯𝑘 ← 1

𝑁

∑𝑁
𝑖=1

𝑘𝑖

9: Fuse knowledge: 𝑘
fused

← 𝐹agg (¯𝑘)
10: for all clients 𝑖 = 1 to 𝑁 do
11: Adapt knowledge:

ˆ𝑘𝑖 ← 𝐴𝑖 (𝑘fused)
12: end for
13: for all clients 𝑖 = 1 to 𝑁 in parallel do
14: Receive

ˆ𝑘𝑖 from aggregator

15: Compute distillation loss: LKD ←

 𝑘𝑖
∥𝑘𝑖 ∥ −

ˆ𝑘𝑖

∥ ˆ𝑘𝑖 ∥

2

16: Update local model with combined loss: L𝑖 ← 𝛼 · L
pred
+

𝛽 · LKD

17: end for
18: end for

Algorithm 6 Federated Knowledge Distillation with ID Embedding

and Similarity-Based Fusion

1: Input: Local data D𝑖 , client ID 𝑐𝑖 , number of clients 𝑁 , rounds

𝑅, weights 𝛼 , 𝛽

2: Initialize: Model components 𝜃𝑖 =

{Encoder,Decoder, 𝑃𝑖 , 𝐴𝑖 , 𝐸 (𝑐𝑖)} for each client 𝑖

3: for 𝑟 = 1 to 𝑅 do
4: for all clients 𝑖 = 1 to 𝑁 in parallel do
5: Train local model on D𝑖 with prediction loss L

pred

6: Generate knowledge vector: 𝑘𝑖 = 𝑃𝑖 (ℎ𝑖 + 𝐸 (𝑐𝑖))
7: end for
8: Stack 𝑘𝑖 ∈ R𝐵×𝐻

for all clients→ K ∈ R𝑁×𝐵×𝐻

9: Compute average:
¯𝑘 = 1

𝑁

∑
𝑖 𝑘𝑖

10: for all clients 𝑖 do
11: Compute similarity weights𝑤𝑖 = softmax(cos(𝑘𝑖 , ¯𝑘))
12: end for
13: Fuse: 𝑘

fused
=
∑
𝑖 𝑤𝑖 · 𝑘𝑖

14: Pass through fusion MLP: 𝑘
global

= 𝐹agg (𝑘fused)
15: for all clients 𝑖 in parallel do
16: Adapt:

ˆ𝑘𝑖 = 𝐴𝑖 (𝑘global)
17: Distill loss: LKD = ∥norm(𝑘𝑖) − norm(ˆ𝑘𝑖)∥2
18: Total loss: L𝑖 = 𝛼 · L

pred
+ 𝛽 · LKD

19: Update model parameters with L𝑖
20: end for
21: end for

progressively decentralized the federation process to reflect a more

distributed nature of trust and data ownership in a real-world sce-

nario. Please note that we make an assumption that moving to these

distributed setting would not change the model utility in terms of

Algorithm 7 Local Training with Dual-Layer DP in Mixed-

Frequency Federated Learning

Require: Local HF dataD𝐻𝐹
𝑐 , LF dataD𝐿𝐹

𝑐 , initial model 𝜃𝑔 , learn-

ing rate 𝜂, epochs 𝐸, encoder noise scale 𝜎𝑒𝑛𝑐 , DP-SGD noise

scale 𝜎𝑔𝑟𝑎𝑑 , clipping bounds 𝐵, 𝐶

Ensure: Local model update Δ𝜃𝑐
1: Initialize local model: 𝜃𝑐 ← 𝜃𝑔
2: for epoch = 1 to 𝐸 do
3: for each mini-batch (𝑋𝐻𝐹

𝑐 , 𝑋𝐿𝐹
𝑐 , 𝑌𝐿𝐹

𝑐) do
4: Encode HF data: 𝐻𝑐 ← LSTMEncoder(𝑋𝐻𝐹

𝑐)
5: Clip encoder outputs: 𝐻̃𝑐 ← min(1, 𝐵/∥𝐻𝑐 ∥2) · 𝐻𝑐

6: Add Gaussian noise: 𝐻
𝑝𝑟𝑖𝑣
𝑐 ← 𝐻̃𝑐 + N(0, 𝜎2

𝑒𝑛𝑐𝐵
2𝐼)

7: LF predictions: 𝑌𝐿𝐹
𝑐 ← LFDecoder(𝑋𝐿𝐹

𝑐 , 𝐻
𝑝𝑟𝑖𝑣
𝑐)

8: Compute loss: L𝑐 ← MSELoss(𝑌𝐿𝐹
𝑐 , 𝑌𝐿𝐹

𝑐)
9: Compute gradients: 𝑔𝑐 ← ∇𝜃𝑐L𝑐
10: Clip gradients: 𝑔𝑐 ← 𝑔𝑐/max(1, ∥𝑔𝑐 ∥2/𝐶)
11: Add Gaussian noise: 𝑔

𝑝𝑟𝑖𝑣
𝑐 ← 𝑔𝑐 + N(0, 𝜎2

𝑔𝑟𝑎𝑑
𝐶2𝐼)

12: Update model: 𝜃𝑐 ← 𝜃𝑐 − 𝜂 · 𝑔𝑝𝑟𝑖𝑣𝑐

13: end for
14: end for
15: Compute update: Δ𝜃𝑐 ← 𝜃𝑐 − 𝜃𝑔
16: return Δ𝜃𝑐

Algorithm 8 Secure Aggregation Protocol

Require: Each client 𝑢 has local model update 𝑥𝑢 ∈ R𝑑
Require: Federator coordinates key sharing and aggregation

1: EACH client 𝑢 generates Diffie-Hellman keypair (𝑠𝑘𝑢 , 𝑝𝑘𝑢)
2: FEDERATOR collects and broadcasts all public keys

{𝑝𝑘𝑢 }𝑢∈[𝑁]
3: for EACH client 𝑢 do
4: COMPUTE pairwise shared keys 𝑠𝑢,𝑣 using Diffie-Hellman

with all 𝑣 ≠ 𝑢

5: GENERATE 𝑡-out-of-𝑛 secret shares for 𝑠𝑢,𝑣 and random

mask 𝑟𝑢
6: COMPUTE masked update:𝑚𝑢 = 𝑥𝑢 + 𝑟𝑢
7: SEND𝑚𝑢 and encrypted secret shares to federator

8: end for
9: FEDERATOR aggregates masked updates: 𝑥 =

∑
𝑢𝑚𝑢

10: if client dropout detected then
11: RECONSTRUCT missing masks via 𝑡-out-of-𝑛 scheme using

received shares

12: end if
13: FEDERATOR cancels masks to reveal 𝑥 , the aggregated model

update

14: return Aggregated model update 𝑥

accuracy but will only cause changes in terms of communication

time which is not looked at in this study.

8.4.1 Semi-decentralized Setting: Random-Rotating Federator. To
achieve semi-decentralization of federator as shown in Figure 14,

our architecture employs a leader election mechanism called Verifi-

able Leader Election Protocol(VRF)[64] where a Task is randomly

selected as the federator for each training round and every other

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

Figure 14: Confidentiality-preserving Semi Decentralize
Federated Forecasting Framework, where MF-ED is multi-
frequency encoder-decoder[37]

task can verify if election protocol was fair or not. When a task

is elected as federator, it assumes aggregation responsibilities i.e.

collecting masked model updates from all other tasks, securely ag-

gregating them using Bonawitz-style SecAgg[11], and redistribut-

ing the global model. The VRF mechanism ensures the selection

process is both random and publicly verifiable. Leadership rotates

each round to build fairness and prevent centralization.

Figure 15: Peer-to-Peer fully decentralized federated learn-
ing, where MF-ED is multi-frequency encoder-decoder[37]

8.4.2 Peer-to-Peer: Fully Decentralized Collaboration. While our

federated framework could adopt a semi-decentralized approach

with a rotating federator to balance coordination and fairness, the

architecture can be extended further into a fully decentralized, peer-

to-peer (P2P) design as shown in Figure 15. In such a setup, there is

no federator at all, not even temporarily. Instead, every task inde-

pendently participates in aggregation, and coordination is achieved

through cryptographic protocols similar to semi-decentralized but

without any role assignment. In a fully peer-to-peer setting:

• No single task is ever elected as a leader.

• Each participant locally trains its model, masks its update,

and engages in a collaborative aggregation protocol with

every other peer.

Our existing use of Bonawitz-style SecAgg remains compatible

with this topology, as long as participants cooperatively execute the

aggregation without a federator. Though communication overhead

increases with full decentralization, this mode maximizes autonomy

and fits environments where equal trust and governance symmetry

are essential.

In summary, while our semi-decentralized setup balances trust

and coordination of decentralized federator, and efficiency of cen-

tralized federator and this design allows for evolution toward a

peer-to-peer topology where aggregation becomes a collective com-

putation rather than a delegated tfask.

8.5 Threat Model.
To evaluate the confidentiality guarantees of our federated frame-

work, we analyze its behavior under some standard adversarial

models specifically honest-but-curious and protocol-conforming-

but-active participants across all critical entities: the HF party, the

Customer-side LF party, and the Federator. Since aggregation in fed-

erated learning can take different forms, we structure our analysis

around three federation schemas:

• Centralized Federator – a trusted third part that aggregates

all updates.

• Semi-Decentralized Federator – our proposed rotating-leader

design using verifiable election to assign aggregation tem-

porarily to a task.

• Fully Decentralized (Peer-to-Peer) – no federator; aggrega-

tion is jointly computed using symmetric protocol.

We begin with the centralized setting, which forms the strongest

adversarial baseline: since a permanent federator observes all ag-

gregate updates across time, any confidentiality guarantees proven

in this model serve as upper bounds on adversarial access in more

decentralized alternatives. All subsequent designs strictly reduce

the federator’s temporal visibility and concentration of trust. To

make the guarantees concrete, we analyze the framework’s behav-

ior under two widely accepted adversarial models.

• Honest-but-curious (semi-honest): Each party(HF, LF and

Federator) follows the protocol but passively inspects every

value it receives.

• Active-but-protocol-conforming: Parties may drop out or col-

lude with other independent data-holding entities (including

the Federator) to increase their knowledge, yet they do not

deviate from the prescribed message flow (no arbitrary mes-

sage injection or Byzantine behavior). Concrete colluding

threat scenarios are presented in Table 6.

9 Additional experiments results analysis.
9.1 Modeling Strategies
To evaluate best performing model explained in Appendix 8.1, we

use three different dataset SOLAR, Crypto, and Sales to test behavior

of models across different strategies.

The following tables 5-11 report mean absolute error (MAE)

with SEM. In almost every setting, MTL, i.e. explicit collaboration,

either matches or outperforms the non-collaborative and implicit-

collaborative baselines, highlighting the value of shared represen-

tations while maintaining task specific representation when task

distributions differ. Notably, Simple LSTM and Deep Transformer

performs the best withMTL on the new SOLAR and Crypto datasets,

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

Table 6: Collusion threat scenarios in a centralized federated learning setting and corresponding privacy defenses.

Colluding Entities Practical Goal Why the Design Still Protects
High-Frequency (HF) Party

+ Server

Reconstruct low-frequency (LF) tar-

gets or gradients

HF party does not observe LF data; the server receives

only masked and DP-noised aggregated updates, ensur-

ing individual contributions remain private.

Low-Frequency (LF) Party +

Server

Infer proprietary HF representa-

tions

HF encoder outputs are clipped and Gaussian-noised

before sharing; Secure Aggregation hides per-party up-

dates.

Multiple HF Parties (Cross-

task)

Triangulate a single party’s update

by subtracting their own

Requires breaking Secure Aggregation threshold; even

then, DP noise limits what can be inferred if masks are

exposed.

Multiple LF Parties (Cross-

task)

Infer internal HF signals Same protection as above; DP noise added on the HF

side ensures LF parties never observe unclipped latent

vectors.

HF Party and Paired LF

Party within the Same Task

Reveal hidden activations via gradi-

ent inspection

Gradients crossing between HF and LF parties are

clipped and perturbed with DP noise before leaving

HF, ensuring (𝜖, 𝛿)-DP and making single record con-

tributions indistinguishable.

whereas ARIMAX remains competitive only for very short horizons

(𝐻 = 1–2).

9.2 Non Collaborative and Collaborative
Strategies with Longer horizons.

Table 15 shows experiment results for longer horizons i.e. horizon

𝐻 = 1, 2, 4, 8, 16 which is the expanded version of Table 2, 3 and

4. For Collaborative setting we clearly see that our method consis-

tently outperforms existing baselines for longer horizons as well

which proves the stability of our model for such longer horizons

due to regularization effect of our method that does not let any

task dominate. Further longer horizons have higher uncertainty,

making gradient conflicts more severe and our GradBal method

alleviates it. This hypothesis is supported by Non-Collaborative set-
ting in Table 15 where we see our model performance degrades

considerably on longer horizons. We also see that UniTS performs

competitively with could mean a transformer based model could

possibly outperform our LSTM based model given we have more

data.

Further in Table 16 we show what happens when we add random

noise to the gradients during training. The comparison between our

primary method ("Ours
+
") and the random noise baseline ("Ours-

random noise") demonstrates that simply adding random noise

to gradients is not sufficient. Across all datasets and forecasting

horizons, the random noise approach performs significantly worse

than our sophisticated gradient balancing method. For example, on

the Spain dataset at H=16, our method achieves 0.21 while random

noise yields 0.46 - more than doubling the error. This substantial per-

formance gap proves that our improvements come from intelligent

gradient conflict resolution rather than simple noise regularization,

validating the importance of our principled approach to multi-client

learning in mixed-frequency time series forecasting. We further

see that without any conflict resolution techniques(Ours
−
), we

get inconclusive results when compared to Ours
+
, which clearly

shows that a strategic conflict mitigation method helps better model

heterogeneous tasks in a multi-task learning environment.

9.3 Confidentiality Analysis.
Here we perform confidentiality analysis for our federated setting.

In Figure 16-19 we observe how for all datasets having secured

aggregation improves the model utility due to reduced noise needed

for similar privacy guarantee. We also see in dual DP scenario

which noise effects the model performance the most and we find

that DP-SGD(𝜎𝑔𝑟𝑎𝑑) hurts the model utility the most which shows

using equation by truex makes most sense to reduce noise needed

for the DP-SGD. Figure 20-27 shows how changing encoder level

noise(𝜎𝑒𝑛𝑐) doesn’t havemuch effect onmodel utility. This is further

supported by the results shown from Figure 28-31 where we clearly

see changing encoder noise(𝜎𝑒𝑛𝑐) does not cause much change in

model utility except for the Wind dataset.

For Wind dataset we see encoder noise effects model perfor-

mance by a lot and Figure 29 even shows that a certain encoder

noise helps the model converge better. This could mean that model

struggles to fit on this particular dataset and a certain noise acts

as a regularizer and ends up improving model utility. For these

plots we also use privacy accountant to see when we run out of

privacy budget for each dataset given the parameters needed by

the privacy accountant opacus and we stop training as soon as we

run out of privacy budget. For public dataset we run out of privacy

budget for lower noise levels but not for Industry dataset. This

can be attributed to relatively larger amount of data that we have

specifically for Industry dataset.

9.4 Qualitative Results
This section presents a qualitative evaluation of model performance

on the Spain Load Forecasting dataset, comparing our method

against the best-performing baselines. Figure 32 provides a visual

comparison of the three top-performing approaches: our CrossFreqNet-

GradBalmodel, the CrossFreqNet baseline, and CrossFreqNet-PCGRAD.

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

Figure 16: FedAvg Training with 𝜖𝑒𝑛𝑐 = 1 & 𝜖𝑔𝑟𝑎𝑑 = 1 for Air Quality Dataset for 10 epochs per round

Figure 17: FedAvg Training with 𝜖𝑒𝑛𝑐 = 1 & 𝜖𝑔𝑟𝑎𝑑 = 1 for Load Dataset for 10 epochs per round

Figure 18: FedAvg Training with 𝜖𝑒𝑛𝑐 = 1 & 𝜖𝑔𝑟𝑎𝑑 = 1 for Wind Dataset for 10 epochs per round

Figure 19: FedAvg Training with 𝜖𝑒𝑛𝑐 = 1 & 𝜖𝑔𝑟𝑎𝑑 = 1 for Industry Dataset for 10 epochs per round

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

Table 7: MAE scores of Simple LSTM Across Learning Strategies and Horizons

Model Type Learning Strategy Dataset H=1 H=2 H=4 H=8 H=16

Simple LSTM

No Collaboration

Air Quality 0.716 0.77 0.77 0.87 0.92

Solar 0.227 0.30 0.30 0.40 0.47

Crypto 0.51 0.55 0.66 0.73 0.71

Sales 0.32 0.39 0.45 0.49 0.51

Industry 0.70 0.71 0.68 0.68 0.68

Implicit Collaboration

Air Quality 0.35 0.44 0.53 0.73 0.90

Solar 0.15 0.14 0.16 0.21 0.24

Crypto 0.19 0.20 0.22 0.26 0.29

Sales 0.32 0.35 0.36 0.38 0.44

Industry 0.60 0.77 0.67 0.66 0.65

Explicit Collaboration

Air Quality 0.14 0.15 0.21 0.32 0.44
Solar 0.11 0.13 0.15 0.21 0.30
Crypto 0.15 0.15 0.17 0.20 0.25
Sales 0.17 0.18 0.20 0.21 0.26

Industry 0.62 0.54 0.55 0.50 0.53

Table 8: MAE scores of Simple Transformer Encoder Across Learning Strategies and Horizons

Model Type Learning Strategy Dataset H=1 H=2 H=4 H=8 H=16

Simple Transformer Encoder

No Collaboration

Air Quality 0.51 0.55 0.61 0.70 0.81

Solar 0.22 0.23 0.24 0.25 0.28

Crypto 0.19 0.19 0.21 0.24 0.29

Sales 0.23 0.24 0.25 0.27 0.34

Industry 0.71 0.71 0.93 0.77 0.66

Implicit Collaboration

Air Quality 0.43 0.51 0.56 0.65 0.79

Solar 0.10 0.11 0.15 0.19 0.25
Crypto 0.17 0.19 0.23 0.26 0.34

Sales 0.21 0.22 0.27 0.30 0.37

Industry 0.55 0.60 0.51 0.46 0.48

Explicit Collaboration

Air Quality 0.12 0.14 0.20 0.29 0.39
Solar 0.18 0.19 0.21 0.22 0.26

Crypto 0.14 0.15 0.18 0.22 0.27
Sales 0.16 0.18 0.21 0.25 0.30

Industry 0.71 0.67 0.62 0.58 0.65

Table 9: MAE scores of Deep LSTM Across Learning Strategies and Horizons

Model Type Learning Strategy Dataset H=1 H=2 H=4 H=8 H=16

FATHOM[14]

No Collaboration

Air Quality 0.20 0.24 0.28 0.43 0.47

Solar 0.15 0.18 0.16 0.21 0.27

Crypto 0.11 0.13 0.16 0.19 0.29

Sales 0.15 0.17 0.21 0.24 0.32

Industry 0.71 0.87 1.06 0.95 0.79

Implicit Collaboration

Air Quality 0.35 0.44 0.54 0.73 0.90

Solar 0.14 0.13 0.16 0.20 0.23

Crypto 0.19 0.20 0.22 0.26 0.29

Sales 0.23 0.24 0.27 0.30 0.33

Industry 0.60 0.77 0.67 0.66 0.65

Explicit Collaboration

Air Quality 0.13 0.17 0.21 0.31 0.40
Solar 0.10 0.12 0.15 0.19 0.26
Crypto 0.11 0.10 0.15 0.16 0.25
Sales 0.14 0.13 0.18 0.20 0.27

Industry 0.80 1.01 1.00 0.80 0.61

The results demonstrate that our centralized model with gradient

balancing achieves superior prediction accuracy, particularly in the

highlighted regions where significant deviations occur between

ground truth and predictions. Our method consistently tracks the

actual values more closely than competing approaches, especially

during periods of high volatility. Additional qualitative comparisons

with extended baselines are presented in Figures 33 through 40,

further confirming the robustness of our approach across different

forecasting scenarios.

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

Table 10: MAE scores of Deep Transformer Across Learning Strategies and Horizons

Model Type Learning Strategy Dataset H=1 H=2 H=4 H=8 H=16

Shared-Private Attention[17]

No Collaboration

Air Quality 0.13 0.16 0.21 0.29 0.42

Solar 0.10 0.11 0.15 0.20 0.26

Crypto 0.14 0.15 0.18 0.20 0.28

Sales 0.17 0.18 0.21 0.23 0.31

Industry 0.71 1.01 1.18 0.97 0.89

Implicit Collaboration

Air Quality 0.43 0.51 0.56 0.65 0.79
Solar 0.18 0.19 0.21 0.22 0.26

Crypto 0.17 0.19 0.23 0.26 0.34

Sales 0.21 0.22 0.25 0.28 0.37

Industry 0.55 0.60 0.51 0.46 0.43

Explicit Collaboration

Air Quality 0.10 0.14 0.20 0.28 0.40

Solar 0.09 0.12 0.13 0.17 0.22
Crypto 0.12 0.14 0.18 0.20 0.24
Sales 0.15 0.17 0.21 0.23 0.27

Industry 1.07 0.90 1.08 1.18 1.03

Table 11: MAE scores of ARIMAX Across in Independent Setting and across Horizons

Model Type Learning Strategy Dataset H=1 H=2 H=4 H=8 H=16

ARIMAX No Collaboration

Air Quality 0.10 0.27 0.31 0.45 0.58

Solar 0.01 0.01 0.02 0.03 0.13

Crypto 0.05 0.10 0.03 0.33 0.36

Sales 0.83 0.44 0.75 0.99 0.51

Industry 0.24 0.34 0.37 0.48 0.54

Table 12: MAE scores of Shared-HF-LF Direct model Across Learning Strategies and Horizons

Model Type Learning Strategy Dataset H=1 H=2 H=4 H=8 H=16

Shared HF-LF

No Collaboration

Air Quality 0.20 0.29 0.37 0.46 0.45

Solar 0.18 0.21 0.25 0.28 0.41

Crypto 0.18 0.24 0.25 0.28 0.33

Sales 0.10 0.13 0.18 0.21 0.28

Industry 0.17 0.26 0.33 0.39 0.47

Implicit Collaboration

Air Quality 0.24 0.38 0.42 0.51 0.61

Solar 0.14 0.17 0.21 0.29 0.38

Crypto 0.17 0.21 0.29 0.34 0.41

Sales 0.14 0.20 0.23 0.31 0.36

Industry 0.25 0.38 0.50 0.59 0.69

Explicit Collaboration

Air Quality 0.20 0.33 0.57 0.77 0.97

Solar 0.12 0.15 0.19 0.23 0.29

Crypto 0.10 0.13 0.18 0.25 0.28

Sales 0.12 0.15 0.24 0.30 0.32

Industry 0.20 0.41 0.57 0.81 0.90

Table 13: MAE scores of Shared-HF-LF Direct model Across Learning Strategies and Horizons

Model Type Learning Strategy Dataset H=1 H=2 H=4 H=8 H=16

Secured HF-LF

No Collaboration

Air Quality 0.28 0.39 0.49 0.60 0.61

Solar 0.26 0.31 0.37 0.42 0.57

Crypto 0.26 0.34 0.37 0.42 0.49

Sales 0.18 0.23 0.30 0.35 0.44

Industry 0.30 0.43 0.58 0.80 1.45

Implicit Collaboration

Air Quality 0.34 0.50 0.56 0.67 0.79

Solar 0.24 0.29 0.35 0.45 0.56

Crypto 0.27 0.33 0.43 0.50 0.59

Sales 0.24 0.32 0.37 0.47 0.54

Industry 0.24 0.41 0.59 0.76 0.91

Explicit Collaboration

Air Quality 0.28 0.32 0.45 0.69 0.79

Solar 0.24 0.29 0.35 0.41 0.49

Crypto 0.22 0.27 0.34 0.43 0.48

Sales 0.24 0.29 0.40 0.48 0.52

Industry 0.22 0.38 0.55 0.75 1.13

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

Table 14: MAE scores Federated Strategies and Horizons

Model Type Learning Strategy Dataset H=1 H=2 H=4 H=8 H=16

Federated Learning

FedAvg

Air Quality 0.19 0.30 0.46 0.66 0.80

Solar 0.14 0.20 0.32 0.43 0.57

Crypto 0.24 0.28 0.42 0.43 0.49

Sales 0.20 0.31 0.37 0.38 0.50

Industry 0.12 0.26 0.50 0.65 0.85

FedKD

Air Quality 0.38 0.50 0.57 0.66 0.82

Solar 0.26 0.33 0.39 0.49 0.62

Crypto 0.27 0.33 0.43 0.50 0.59

Sales 0.28 0.36 0.41 0.51 0.58

Industry 0.22 0.39 0.59 0.76 0.90

FedDKP

Air Quality 0.34 0.43 0.52 0.66 0.81

Solar 0.22 0.28 0.34 0.44 0.58

Crypto 0.27 0.31 0.43 0.48 0.57

Sales 0.24 0.32 0.39 0.38 0.56

Industry 0.18 0.38 0.56 0.73 0.86

Learning Strategy Dataset H=1 H=2 H=4 H=8 H=16

Non-Collaborative(ARIMAX)

Air Quality 0.33±0.002 0.35±0.002 0.38±0.001 0.42±0.002 0.48±0.002
Load 0.47±0.001 0.56±0.001 0.69±0.003 0.87±0.003 0.95±0.005
Wind 0.82±0.003 0.83±0.002 0.83±0.006 0.84±0.004 0.85±0.004
Spain 1.01±0.001 1.05±0.001 1.06±0.001 1.13±0.002 1.20±0.002
Industry 0.24±0.001 0.34±0.002 0.38±0.002 0.50±0.002 0.60±0.003

Non-Collaborative(UniTS)

Air Quality 0.30±0.030 0.35±0.020 0.38±0.020 0.46±0.030 0.56±0.040
Load 0.47±0.030 0.55±0.025 0.63±0.027 0.76±0.030 0.88±0.033
Wind 0.70±0.015 0.75±0.018 0.84±0.022 0.88±0.024 0.91±0.026
Spain 0.23±0.018 0.28±0.020 0.32±0.022 0.36±0.025 0.44±0.028
Industry 0.51±0.020 0.52±0.040 0.54±0.040 0.54±0.060 0.56±0.080

Non-Collaborative(TSDiff)

Air Quality 1.89±0.040 1.78±0.050 1.50±0.050 1.28±0.060 1.10±0.080
Load 1.26±0.020 0.96±0.020 0.88±0.040 0.82±0.050 0.79±0.070
Wind 1.07±0.020 1.03±0.040 1.03±0.040 1.02±0.060 0.99±0.080
Spain 1.37±0.040 1.17±0.030 1.08±0.040 1.03±0.040 1.00±0.030
Industry 2.14±0.040 1.98±0.040 1.67±0.030 1.69±0.040 1.32±0.050

Non-Collaborative(Ours−)

Air Quality 0.20
−33%±0.004 0.29

−17%±0.004 0.37
−3%±0.004 0.46

+10%±0.005 0.45
−6%±0.006

Load 0.11−77%±0.003 0.19
−65%±0.003 0.19

−70%±0.003 0.20
−74%±0.004 0.30

−62%±0.005
Wind 0.53−24%±0.004 0.54−28%±0.004 0.58

−30%±0.005 0.65
−23%±0.006 0.70

−18%±0.007
Spain 0.27

+17%±0.005 0.43
+54%±0.006 0.45

+41%±0.006 0.60
+67%±0.007 0.52

+18%±0.008
Industry 0.19

−29%±0.002 0.30
−23%±0.004 0.74

−29%±0.003 0.81
−34%±0.006 1.11

−30%±0.005

Collaborative(ARIMAX)

Air Quality 0.35±0.003 0.31±0.003 0.38±0.003 0.41±0.003 0.46±0.004
Load 0.43±0.002 0.57±0.003 0.68±0.003 0.83±0.004 0.91±0.004
Wind 0.74±0.003 0.76±0.003 0.78±0.004 0.83±0.004 0.88±0.005
Spain 0.83±0.004 0.94±0.005 1.10±0.005 1.39±0.006 1.56±0.006
Industry 0.28±0.003 0.35±0.003 0.38±0.003 0.51±0.004 0.60±0.004

Collaborative(TSDiff) [30]

Air Quality 1.05±0.040 0.95±0.050 0.89±0.050 0.87±0.060 0.86±0.080
Load 1.26±0.020 0.96±0.020 0.88±0.040 0.82±0.050 0.79±0.070
Wind 0.96±0.020 0.94±0.040 0.92±0.040 0.91±0.060 0.90±0.080
Spain 1.18±0.040 1.05±0.030 1.02±0.040 1.99±0.040 0.97±0.030
Industry 1.75±0.040 1.31±0.040 1.13±0.030 1.06±0.040 1.04±0.050

Collaborative(UniTS) [23]

Air Quality 0.29±0.030 0.39±0.040 0.32±0.040 0.39±0.060 0.50±0.070
Load 0.40±0.040 0.50±0.040 0.60±0.050 0.72±0.060 0.85±0.080
Wind 0.77±0.020 0.79±0.050 0.80±0.080 0.83±0.080 0.86±0.090
Spain 0.21±0.040 0.25±0.050 0.29±0.050 0.33±0.070 0.40±0.080
Industry 0.30±0.020 0.37±0.040 0.42±0.040 0.50±0.060 0.51±0.080

Collaborative(Ours+)

Air Quality 0.18 -38%±0.002 0.26 -33%±0.002 0.37
+16%±0.003 0.38 -3%±0.003 0.40 -20%±0.005

Load 0.11 -73%±0.001 0.16 -68%±0.002 0.19 -68%±0.003 0.23 -68%±0.004 0.28 -67%±0.003
Wind 0.63

-18%±0.002 0.72 -9%±0.003 0.72 -10%±0.004 0.73 -12%±0.004 0.72 -16%±0.007
Spain 0.11 -48%±0.003 0.14 -44%±0.004 0.16 -45%±0.004 0.18 -46%±0.005 0.21 -48%±0.006
Industry 0.09 -67%±0.002 0.17 -51%±0.004 0.26 -36%±0.003 0.30 -42%±0.006 0.34 -22%±0.005

Table 15: Mean Absolute Error (↓) with standard errors (SEM). The best result for each dataset–horizon is shown in bold;
the runner-up is underlined. % improvements are shown against best performing Independent setting and best performing
centralized setting respectively.

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

Learning Strategy Dataset H=1 H=2 H=4 H=8 H=16

TSDiff-PCGrad

Air 1.18±0.04 0.95±0.05 0.92±0.05 0.89±0.06 0.87±0.08

Load 1.25±0.02 0.80±0.02 0.86±0.04 0.92±0.05 0.92±0.08

Wind 0.96±0.02 0.92±0.04 0.91±0.04 0.91±0.04 0.90±0.03

Spain 1.15±0.04 1.03±0.03 0.99±0.04 0.96±0.04 0.97±0.03

Industry 2.11±0.04 1.98±0.04 1.67±0.03 1.56±0.04 1.58±0.05

TSDiff-CAGrad

Air 0.94±0.04 0.91±0.05 0.90±0.05 0.90±0.06 0.90±0.05

Load 0.71±0.02 0.71±0.02 0.70±0.05 0.69±0.05 0.68±0.08

Wind 1.01±0.03 1.01±0.03 1.01±0.03 1.00±0.05 0.98±0.08

Spain 1.09±0.04 1.09±0.03 1.11±0.04 1.13±0.04 1.14±0.03

Industry 0.98±0.04 0.99±0.04 1.02±0.04 1.03±0.04 1.04±0.05

UniTS-PCGrad

Air 0.22±0.03 0.26±0.04 0.33±0.04 0.42±0.06 0.50±0.07
Load 0.37±0.04 0.46±0.04 0.55±0.05 0.66±0.06 0.82±0.08

Wind 0.73±0.04 0.72±0.06 0.74±0.08 0.80±0.08 0.84±0.09

Spain 0.19±0.04 0.24±0.05 0.26±0.05 0.30±0.07 0.38±0.08
Industry 0.28±0.02 0.36±0.04 0.38±0.04 0.48±0.06 0.50±0.08

UniTS-CAGrad

Air 0.26±0.03 0.30±0.04 0.37±0.05 0.44±0.06 0.54±0.07
Load 0.41±0.04 0.50±0.05 0.61±0.06 0.71±0.07 0.83±0.09
Wind 0.81±0.05 0.77±0.06 0.78±0.07 0.86±0.08 0.90±0.09
Spain 0.55±0.04 0.55±0.04 0.56±0.05 0.57±0.05 0.58±0.06
Industry 0.17±0.03 0.25±0.03 0.36±0.04 0.44±0.05 0.51±0.06

UniTS-GradBal

Air 0.23±0.03 0.25±0.04 0.35±0.04 0.40±0.06 0.51±0.07
Load 0.40±0.04 0.48±0.04 0.58±0.05 0.62±0.06 0.81±0.08
Wind 0.71±0.05 0.74±0.06 0.80±0.07 0.84±0.08 0.82±0.08
Spain 0.22±0.04 0.26±0.05 0.30±0.05 0.34±0.07 0.37±0.08
Industry 0.25±0.03 0.32±0.04 0.40±0.04 0.50±0.06 0.52±0.07

TSDiff-GradBal

Air 1.03±0.03 0.94±0.04 0.89±0.04 0.86±0.06 0.84±0.07
Load 1.26±0.03 0.92±0.03 0.89±0.04 0.82±0.05 0.79±0.07
Wind 0.96±0.04 0.92±0.04 0.91±0.04 0.90±0.06 0.90±0.08
Spain 0.22±0.04 0.26±0.05 0.30±0.05 0.34±0.07 0.37±0.08
Industry 1.95±0.03 1.98±0.03 1.50±0.03 1.40±0.04 1.80±0.05

Ours
−

Air Quality 0.20±0.003 0.33±0.003 0.57±0.002 0.77±0.007 0.97±0.008
Load 0.12±0.001 0.14±0.002 0.19±0.003 0.25±0.004 0.33±0.005
Wind 0.82±0.002 0.94±0.004 0.99±0.004 0.98±0.004 0.97±0.007
Spain 0.42±0.003 0.6±0.003 0.91±0.005 1.06±0.006 1.16±0.009
Industry 0.17±0.002 0.36±0.003 0.67±0.003 0.84±0.006 1.15±0.005

Ours-PCGrad

Air Quality 0.18±0.002 0.28±0.002 0.42±0.003 0.51±0.005 0.60±0.006
Load 0.12±0.002 0.14±0.003 0.17±0.003 0.24±0.003 0.32±0.004
Wind 0.73±0.003 0.82±0.004 0.86±0.004 0.85±0.005 0.88±0.007
Spain 0.40±0.003 0.69±0.003 0.86±0.004 1.04±0.005 1.13±0.007
Industry 0.21±0.002 0.38±0.002 0.65±0.004 0.83±0.006 1.11±0.008

Ours-CAGrad

Air Quality 0.78±0.002 0.78±0.002 0.79±0.003 0.79±0.005 0.80±0.006
Load 0.80±0.002 0.80±0.003 0.80±0.003 0.80±0.003 1.04±0.004
Wind 0.80±0.003 0.80±0.004 0.81±0.004 0.81±0.005 0.96±0.007
Spain 0.77±0.003 0.78±0.003 0.80±0.004 0.80±0.005 0.83±0.007
Industry 0.55±0.002 0.55±0.002 0.55±0.004 0.54±0.006 0.54±0.008

Ours+

Air Quality 0.18(0%)±0.002 0.26(-7.1%)±0.002 0.37(-11.9%)±0.003 0.38(-25.5%)±0.004 0.40(-33.3%)±0.005
Load 0.11(-8.3%)±0.001 0.16

(+14.3%)±0.002 0.19
(+11.8%)±0.003 0.23(-4.2%)±0.004 0.28(-12.5%)±0.003

Wind 0.63(-13.7%)±0.002 0.72(-12.2%)±0.003 0.72(-16.3%)±0.004 0.73(-14.1%)±0.004 0.72(-18.2%)±0.007
Spain 0.11(-48%)±0.003 0.14(-56%)±0.004 0.16(-59%)±0.004 0.18(-42%)±0.005 0.21(-58%)±0.006
Industry 0.09(-41.2%)±0.002 0.17(-40.0%)±0.004 0.26(-55.0%)±0.003 0.30(-59.2%)±0.006 0.34(-62.6%)±0.005

Ours-random noise

Air Quality 0.25±0.002 0.32±0.002 0.48±0.003 0.51±0.004 0.58±0.005
Load 0.38±0.001 0.16±0.002 0.41±0.003 0.48±0.004 0.53±0.003
Wind 0.83±0.002 0.94±0.003 0.92±0.004 0.97±0.004 0.97±0.007
Spain 0.23±0.003 0.25±0.004 0.30±0.004 0.34±0.005 0.46±0.006
Industry 0.29±0.002 0.32±0.004 0.55±0.003 0.59±0.006 0.61±0.005

Table 16: Mean Absolute Error (↓), standard error of mean (SEM), and % improvement over PCGrad for different conflict-
resolution strategies across multiple horizons (H). Bold indicates best, underline indicates second-best.

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

Learning Strategy Dataset H=1 H=2 H=4 H=8 H=16

FedAvg – No confidentiality

Air Quality 0.19±0.001 0.30±0.003 0.46±0.003 0.66±0.004 0.80±0.007
Load 0.12±0.002 0.14±0.002 0.25±0.003 0.30±0.005 0.32±0.008
Wind 0.71±0.003 0.72±0.004 0.72±0.003 0.86±0.007 0.87±0.008
Spain 0.41±0.003 0.75±0.004 1.05±0.004 1.01±0.006 1.04±0.008
Industry 0.28±0.001 0.50±0.003 0.64±0.004 0.69±0.005 1.01±0.008

FedAvg – Private

Air Quality 0.20±0.001 0.32±0.003 0.49±0.003 0.69±0.004 0.83±0.006
Load 0.17±0.002 0.28±0.002 0.43±0.004 0.41±0.006 0.36±0.007
Wind 0.74±0.003 0.75±0.003 0.75±0.004 0.89±0.004 0.90±0.006
Spain 0.45±0.002 0.62±0.002 0.74±0.003 0.92±0.005 0.95±0.008
Industry 0.16±0.001 0.33±0.003 0.50±0.003 0.74±0.003 0.97±0.007

FedProx – No confidentiality

Air Quality 0.19±0.002 0.28±0.002 0.44±0.003 0.65±0.004 0.82±0.006
Load 0.11±0.001 0.20±0.002 0.30±0.003 0.32±0.003 0.35±0.004
Wind 0.70±0.003 0.84±0.004 0.85±0.004 0.90±0.005 0.92±0.006
Spain 0.32±0.002 0.55±0.003 0.62±0.004 0.66±0.004 0.73±0.006
Industry 0.14±0.001 0.32±0.003 0.64±0.003 0.82±0.004 1.14±0.003

FedProx – Private

Air Quality 0.19±0.002 0.31±0.003 0.47±0.003 0.68±0.004 0.82±0.006
Load 0.16±0.002 0.21±0.002 0.42±0.004 0.38±0.005 0.33±0.006
Wind 0.72±0.003 0.88±0.004 0.88±0.004 0.90±0.005 0.91±0.006
Spain 0.44±0.002 0.61±0.003 0.73±0.004 0.91±0.005 0.96±0.007
Industry 0.18±0.002 0.34±0.003 0.53±0.004 0.72±0.004 0.89±0.006

SCAFFOLD – No confidentiality

Air Quality 0.45±0.004 0.50±0.005 0.63±0.006 0.70±0.007 0.81±0.008
Load 0.32±0.003 0.45±0.004 0.54±0.005 0.61±0.006 0.67±0.007
Wind 0.83±0.004 0.88±0.005 0.89±0.005 0.92±0.006 0.96±0.007
Spain 0.76±0.004 0.78±0.005 0.85±0.006 0.93±0.007 0.98±0.008
Industry 1.59±0.003 1.87±0.004 1.92±0.005 1.98±0.004 2.10±0.008

SCAFFOLD – Private

Air Quality 0.50±0.004 0.54±0.005 0.64±0.006 0.74±0.007 0.85±0.008
Load 0.35±0.003 0.49±0.004 0.59±0.005 0.72±0.007 0.78±0.008
Wind 0.88±0.004 0.91±0.005 0.92±0.005 0.98±0.006 1.07±0.008
Spain 0.78±0.004 0.80±0.005 0.90±0.006 1.07±0.008 1.14±0.009
Industry 2.27±0.003 4.21±0.005 2.52±0.006 1.97±0.008 2.96±0.008

Table 17: Federated learning on heterogeneous mixed-frequency tasks. We compare FedAvg, FedProx and SCAFFOLD with and
without differential-confidentiality noise (𝜖𝑒𝑛𝑐 = 3 and 𝜖𝑔𝑟𝑎𝑑 = 3). Values are MAE ± SEM (lower is better); bold = best, underline
= second best.

Figure 20: MAE(↓) for Air Quality dataset with fixed encoder output noise(𝜎𝑒𝑛𝑐) and varying gradient noise(𝜎𝑔𝑟𝑎𝑑) with 𝜖𝑔𝑟𝑎𝑑 = 3

and without secured aggregation

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

Figure 21: MAE(↓) for Air Quality dataset with fixed DP-SGD noise(𝜎𝑔𝑟𝑎𝑑) and varying encoder output noise(𝜎𝑒𝑛𝑐) with 𝜖𝑔𝑟𝑎𝑑 = 3

and without secured aggregation

Figure 22: MAE(↓) for Wind dataset with fixed encoder output noise(𝜎𝑒𝑛𝑐) and varying gradient noise(𝜎𝑔𝑟𝑎𝑑) with 𝜖𝑔𝑟𝑎𝑑 = 3 and
without secured aggregation

Figure 23: MAE(↓) for Wind dataset with fixed DP-SGD noise(𝜎𝑔𝑟𝑎𝑑) and varying encoder output noise(𝜎𝑒𝑛𝑐) with 𝜖𝑔𝑟𝑎𝑑 = 3 and
without secured aggregation

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

Figure 24: MAE(↓) for Load dataset with fixed encoder output noise(𝜎𝑒𝑛𝑐) and varying gradient noise(𝜎𝑔𝑟𝑎𝑑) with 𝜖𝑔𝑟𝑎𝑑 = 3 and
without secured aggregation

Figure 25: MAE(↓) for Load dataset with fixed DP-SGD noise(𝜎𝑔𝑟𝑎𝑑) and varying encoder output noise(𝜎𝑒𝑛𝑐) with 𝜖𝑔𝑟𝑎𝑑 = 3 and
without secured aggregation

Figure 26: MAE(↓) for Industry dataset with fixed encoder output noise(𝜎𝑒𝑛𝑐) and varying gradient noise(𝜎𝑔𝑟𝑎𝑑) with 𝜖𝑔𝑟𝑎𝑑 = 3

and without secured aggregation

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

Figure 27: MAE(↓) for Industry dataset with fixed DP-SGD noise(𝜎𝑔𝑟𝑎𝑑) and varying encoder output noise(𝜎𝑒𝑛𝑐) with 𝜖𝑔𝑟𝑎𝑑 = 3

and without secured aggregation

Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands Arnob Chowdhury, Aditya Shankar, Thiago Guzella, and Lydia Chen

Figure 28: MAE(↓) for Air Quality dataset with 𝜎𝑔𝑟𝑎𝑑 = 0

Figure 29: MAE(↓) for Wind dataset with 𝜎𝑔𝑟𝑎𝑑 = 0

Figure 30: MAE(↓) for Load dataset with 𝜎𝑔𝑟𝑎𝑑 = 0

Figure 31: MAE(↓) for Industry dataset with 𝜎𝑔𝑟𝑎𝑑 = 0

(a) CrossFreqNet-GradBal

(b) CrossFreqNet

(c) CrossFreqNet-PCGrad

Figure 32: Ground Truth vs Predictions comparison across
different methods

Learn Together Over Time: Distributed Multi-frequency Time Series Framework Conference acronym ’XX, June 03–05, 2018, Delft, Netherlands

Figure 33: One step ahead (Horizon=1) forecasting of time
series from Spain Load Forecasting dataset run with our cen-
tralized model with gradient balancing

Figure 34: One step ahead (Horizon=1) forecasting of time
series from Spain Load Forecasting dataset run without and
with multi-task optimization

Figure 35: One step ahead (Horizon=1) forecasting of time se-
ries from Spain Load Forecasting dataset run with supervised
ARIMAX

Figure 36: One step ahead (Horizon=1) forecasting of time
series from Spain Load Forecasting dataset run with no
confidentiality-preserving federated learning

Figure 37: One step ahead (Horizon=1) forecasting of
time series from Spain Load Forecasting dataset run with
confidentiality-preserving federated learning

Figure 38: One step ahead (Horizon=1) forecasting of time
series from Spain Load Forecasting dataset run with diffusion
TSDiff[30]

Figure 39: One step ahead (Horizon=1) forecasting of time se-
ries from Spain Load Forecasting dataset run with UniTS[23]
foundational model

Figure 40: One step ahead (Horizon=1) forecasting of time
series from Spain Load Forecasting dataset run with our cen-
tralized model with PCGrad[66]

3
Background

3.1. Time Series Forecasting
3.1.1. Definition
Time series forecasting refers to methods that predict future values based on historical data sequences
collected over regular or irregular time intervals [17]. Effective forecasting provides a critical advantage
across various fields including finance, supply chain management, healthcare, energy systems, and
industrial maintenance, as it enables informed decision-making and strategic planning by accurately
anticipating future trends, events, or demands.

Formally, a time series is defined as a chronological sequence of observations:

y = {y1, y2, . . . , yT }, (3.1)

where yt ∈ R represents the observed value at discrete or continuous time step t. Forecasting seeks
to estimate future values beyond the known sequence:

ŷT+1, ŷT+2, . . . , ŷT+H , (3.2)

where H is the forecasting horizon, reflecting how far into the future the model aims to predict.

Time series can exhibit various characteristics such as trends, seasonality, cyclicality, and irregular
fluctuations (noise). Identifying and modeling these characteristics are critical for achieving accurate
forecasts.

3.1.2. Types of Forecasting Problems
Time series forecasting problems are generally classified according to the dimensionality of inputs and
outputs:

Univariate Forecasting: In univariate forecasting, predictions depend exclusively on the historical
observations of a single target variable. It is represented mathematically as:

yt+1 = f(yt, yt−1, . . . , yt−p), (3.3)

where p denotes the lookback window or the number of past observations influencing the prediction.
Common applications include stock price prediction, electricity consumption forecasts, and weather
forecasting using historical temperature data. Popular models for univariate forecasting include tradi-
tional statistical approaches such as AutoRegressive Integrated Moving Average (ARIMA), andmodern
deep learning models like Long Short-Term Memory (LSTM) neural networks.

34

3.1. Time Series Forecasting 35

Multivariate Forecasting: Multivariate forecasting leverages not only the past observations of the pri-
mary variable but also incorporates other related variables known as exogenous predictors or features.
It is formally defined as:

yt+1 = f(yt, x
1
t , x

2
t , . . . , x

d
t , yt−1, x

1
t−1, . . . , x

d
t−1), (3.4)

where xi
t ∈ R denotes the value of the ith exogenous variable at time t, and d is the number of external

variables considered. Incorporating multiple variables often leads to increased accuracy as it captures
interdependencies among different time series. Practical examples of multivariate forecasting include
predicting sales based on historical sales and marketing expenditures, forecasting electricity demand
based on past load and weather conditions, and predicting industrial system failures using multiple
sensor measurements.

3.1.3. Challenges in Time Series Forecasting
Time series forecasting faces several inherent challenges due to the characteristics of the data. Com-
mon challenges include:

1. Non-stationarity: Real-world time series data frequently exhibit changing mean, variance, or
other statistical properties over time. This non-stationarity complicatesmodeling asmost methods
assume a stationary data distribution[9, 19].

2. Missing or irregular data: Many practical scenarios feature gaps, irregular intervals, or asyn-
chronousmulti-frequency sampling rates, creating challenges for standard forecastingmethods[6].

3. Long-term dependencies: Capturing complex, long-term temporal relationships is challenging,
particularly for traditional models, motivating the use of deep learning architectures capable of
modeling these dependencies effectively[12, 21].

Classical statistical forecasting methods, like AutoRegressive Integrated Moving Average (ARIMA), typ-
ically assume the time series is stationary. A stationary series has a constant mean and variance over
time. Non-stationary series often require transformations, such as differencing or log transformations,
to achieve stationarity before modeling.

In contrast, modern deep learning methods, including Long Short-Term Memory (LSTM) networks and
Transformer architectures, can model complex temporal dependencies and patterns directly from raw
data. These methods often reduce the need for extensive manual feature selection and engineering.

Despite differences in methodology, all forecasting approaches share a common goal: leveraging past
information and any relevant external factors to generate accurate and reliable predictions about future
values.

3.1.4. Challenges in Time Series Forecasting
Time series data often exhibit challenges such as:

1. Trend: A long-term increase or decrease in values.
2. Seasonality: Regular patterns repeating at fixed intervals.
3. Noise: Random fluctuations that obscure underlying patterns.

Classical statistical methods, such as ARIMA, often require the series to be stationary (constant mean
and variance), which may necessitate transformations like differencing. Modern deep learning ap-
proaches, such as LSTMs and Transformers, can capture complex temporal dependencies without
requiring explicit feature engineering.

Regardless of the approach, the fundamental objective remains the same: using historical patterns
and related factors to generate accurate future predictions.

3.1.5. Linear Models
Linear statistical models are widely adopted in time series forecasting due to their simplicity, inter-
pretability, and computational efficiency. Among these approaches, AutoRegressive Integrated Mov-
ing Average (ARIMA) models are especially popular and have been extensively used for decades [4].

3.1. Time Series Forecasting 36

ARIMA models predict future observations by combining historical values and past errors, explicitly ad-
dressing key challenges in time series data, such as trends, seasonal effects, and random fluctuations.
Furthermore, ARIMA models assume stationarity, meaning that data properties like mean and variance
are stable over time. For cases where external influences impact the series, ARIMA with eXogenous
inputs (ARIMAX) enhances forecasting capability by incorporating additional related variables into the
prediction, thereby capturing external effects that ARIMA alone may not adequately describe.

ARIMA and ARIMAX.
The AutoRegressive Integrated Moving Average (ARIMA) model is a widely used statistical approach
for time series forecasting. It combines three components: an autoregressive (AR) term, an integrated
(I) term for differencing, and a moving average (MA) term. The ARIMA(p, d, q) model is defined by:

• p: Number of autoregressive lags (past values used as predictors).
• d: Number of times the series is differenced to remove trends and achieve stationarity.
• q: Number of moving average terms, which model past forecast errors.

Autoregressive (AR) Component: The AR part models the relationship between the current obser-
vation and its past values:

yt = ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt, (3.5)

where ϕi are the autoregressive coefficients, and ϵt is a white noise error term.

Integrated (I) Component: To handle non-stationarity, the series is differenced d times:

y′t = yt − yt−1, (for first-order differencing, d = 1) (3.6)

Higher-order differencing applies the operation multiple times.

Moving Average (MA) Component: The MA component captures the effect of past forecast errors:

yt = ϵt + θ1ϵt−1 + θ2ϵt−2 + · · ·+ θqϵt−q, (3.7)

where θi are the moving average coefficients.

General ARIMA(p, d, q) Model: The complete ARIMA model is expressed as:

Φp(B)(1−B)dyt = Θq(B)ϵt, (3.8)

where:

• B is the backshift operator (Byt = yt−1),
• Φp(B) = 1− ϕ1B − ϕ2B

2 − · · · − ϕpB
p is the AR polynomial,

• Θq(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q is the MA polynomial.

ARIMAX: Incorporating Exogenous Variables.
While ARIMA relies solely on past values of the target variable, ARIMAX(AutoRegressive Integrated
Moving Average with Exogenous Variables) extends ARIMA by incorporating external (exogenous)
variables that can help improve forecasting accuracy. These exogenous variables are denoted as
xt = {x1

t , x
2
t , . . . , x

k
t }, where k is the number of external predictors.

The ARIMAX model introduces an additional regression component:

yt =

p∑
i=1

ϕiyt−i +

q∑
j=1

θjϵt−j +

k∑
m=1

βmxm
t + ϵt. (3.9)

Here:

3.1. Time Series Forecasting 37

• βm represents the influence of the exogenous variable xm
t on the target variable yt.

• The terms ϕiyt−i and θjϵt−j represent the autoregressive and moving average components, re-
spectively.

• ϵt is the white noise error term.

ARIMAX is useful when external factors have a significant impact on the target variable. Examples in-
clude Economic indicators (e.g., interest rates influencing stock prices) Weather conditions (e.g., tem-
perature affecting energy consumption) Marketing campaigns (e.g., advertisements affecting sales).
Hence ARIMA is purely time series-based and models dependencies only on past values of the tar-
get variable and ARIMAX incorporates external variables, which can improve forecast accuracy when
relevant external information is available.

In practice, ARIMAX can provide better predictive performance than ARIMA when meaningful exoge-
nous variables are included. However, selecting relevant external factors and ensuring their stationarity
is crucial for effective modeling.

3.1.6. Deep Models
In recent years, deep learning has emerged as a powerful alternative to classical linear techniques for
time–series forecasting. Neural networks excel at discovering non-linear, high-order relationships that
are difficult to specify in traditional statistical models. By stacking multiple layers of learnable trans-
formations, deep models can automatically extract relevant temporal features, handle large sets of
correlated variables, and adapt to complex patterns such as abrupt regime changes or multi-scale sea-
sonality. This capacity makes them well-suited for real-world data that often violate the stationarity and
linearity assumptions of approaches like ARIMA. In the following subsections, we review two prominent
families of deep architectures applied to sequential data: recurrent networks (including LSTM) and the
Transformer.

Recurrent Neural Networks (RNNs).
Recurrent Neural Networks (RNNs) are a class of neural networks specifically designed to handle
sequential data. Unlike traditional feedforward networks, RNNs maintain a hidden state that carries
information from previous time steps, allowing them to model temporal dependencies.

At each time step t, an RNN takes the current input xt and the previous hidden state ht−1 to compute
a new hidden state ht:

ht = F (Wxt + Uht−1 + b), (3.10)

where:

• W and U are learnable weight matrices,
• b is a bias term,
• F (·) is a nonlinear activation function (typically a hyperbolic tangent or ReLU).

The key advantage of RNNs is their ability to process sequences of arbitrary length while maintaining
context from past observations. However, in practice, standard RNNs struggle with learning long-term
dependencies due to the vanishing and exploding gradient problem. As new inputs arrive, old informa-
tion is gradually overwritten, making it difficult for the network to retain meaningful patterns from earlier
time steps. This limits the ability of RNNs to capture long-range dependencies.

Long Short-Term Memory (LSTM).
Long Short-Term Memory (LSTM) networks are a specialized form of RNNs designed to mitigate the
issue of vanishing gradients by introducing an internal cell state (Ct) and a set of gating mechanisms
that regulate information flow.

The LSTM architecture consists of three key gates:

1. Forget Gate: Decides how much past information to retain in the cell state.

ft = σ(Wfxt + Ufht−1 + bf) (3.11)

3.1. Time Series Forecasting 38

2. Input Gate: Determines how much of the new input to write to the cell state.

it = σ(Wixt + Uiht−1 + bi) (3.12)

3. Cell State Update: Updates the memory cell with new candidate information.

C̃t = tanh(Wcxt + Ucht−1 + bc) (3.13)

Ct = ftCt−1 + itC̃t (3.14)

4. Output Gate: Controls how much of the cell state should be exposed as the new hidden state.

ot = σ(Woxt + Uoht−1 + bo) (3.15)

ht = ot tanh(Ct) (3.16)

Here, σ(·) represents the sigmoid activation function, ensuring that the gates produce values between
0 and 1, allowing selective memory retention.

LSTMs improve upon traditional RNNs by maintaining memory over long sequences, making them
highly suitable for problems where past information is crucial for predicting future outcomes.

Transformers.
The Transformer is a neural network architecture that has revolutionized sequence modeling by relying
entirely on a mechanism called self-attention while omitting recurrence altogether [<empty citation>].
In traditional Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks, pro-
cessing sequential data is inherently step-by-step, which can be computationally inefficient for long
sequences. Transformers, introduced by Vaswani et al. (2017) [<empty citation>], overcome this lim-
itation by using self-attention, which allows each position in the sequence to directly attend to all other
positions.

KeyConcept: Self-Attention Unlike RNNs, where past information is propagated sequentially through
hidden states, the Transformer computes relationships between all elements in a sequence simultane-
ously. This is achieved through the self-attention mechanism, which assigns attention scores that
determine how much each time step should influence another.

For a given input sequence, self-attention operates on three learned representations:

• Query (Q): Represents the current time step’s feature vector.
• Key (K): Represents other time steps that may influence the query.
• Value (V): Contains the actual information to be aggregated.

The self-attention output is computed as:

Attention(Q,K, V) = softmax
(
QK⊤
√
d

)
V, (3.17)

where:

• Q,K, V ∈ RT×d are matrices of query, key, and value vectors (where T is the sequence length
and d is the embedding dimension).

• QK⊤
√
d

computes scaled dot-product attention, where division by
√
d stabilizes gradients.

• softmax(·) ensures that the attention weights sum to 1 across the sequence.

This mechanism allows the model to dynamically focus on relevant parts of the sequence, making it
highly effective for learning long-range dependencies.

3.2. Multi-Task Learning 39

Parallelization and Efficiency One major advantage of Transformers over RNNs is their ability to
process all time steps in parallel. Since self-attention does not rely on sequential computations like
RNNs, Transformers significantly reduce training time and improve scalability, especially for long se-
quences.

Multi-Head Attention and Stacking Layers To enhance learning, Transformers employmulti-head
attention, where multiple self-attention layers are run in parallel, each with different weight matrices:

MultiHead(Q,K, V) = Concat(head1, . . . , headh)WO. (3.18)

Each attention head learns different aspects of the relationships in the sequence, improving model
capacity.

The full Transformer model consists of multiple stacked attention layers, interleaved with feedforward
sub-layers and residual connections, forming a deep network capable of learning complex representa-
tions.

Application to Time Series Forecasting Although Transformers were originally developed for natu-
ral language processing, their ability to capture long-range dependencies has made them increasingly
popular for time series forecasting. Since time series data is inherently ordered, positional encodings
are added to the input embeddings to preserve temporal order:

PE(t, 2i) = sin

(
t

100002i/d

)
, PE(t, 2i+ 1) = cos

(
t

100002i/d

)
. (3.19)

These encodings help the Transformer recognize the sequence structure, compensating for the ab-
sence of recurrence.

Transformers offer several clear benefits for time-series forecasting. Because self-attention consid-
ers every position in a sequence at once, the model can capture long-range dependencies that often
cause recurrent networks to struggle. In addition, all time steps are processed in parallel, so training is
faster than the sequential updates used in RNNs and LSTMs. The attention weights are also learned
adaptively, allowing the model to focus on the most relevant parts of the input without hand-crafted
rules.

These strengths comewith important limitations. The computational cost of self-attention grows quadrat-
ically with sequence length, which can make very long time series expensive to handle. Successful
training usually requires large data sets; with limited data, Transformers may overfit or fail to learn sta-
ble patterns. Finally, unlike recurrent models, Transformers do not have an inherent notion of temporal
order. They rely on added positional encodings to represent time, so they may perform poorly if those
encodings do not match the true structure of the data.

3.2. Multi-Task Learning
Multi-Task Learning (MTL) trains a single model to tackle several related tasks simultaneously, rather
than fitting a separate model for each task [5]. By sharing parameters across tasks, the model can
exploit statistical regularities that recur in different data sources. As a result, the learned representations
are often more robust and general, which in turn improves predictive accuracy and reduces over-fitting
[26].

The usual architectural pattern combines two types of layers:

• Shared layers. These layers encode features that are expected to be useful for every task. Their
parameters are updated with gradient signals aggregated from all tasks, which encourages cross-
task information transfer.

• Task-specific layers. Placed on top of the shared backbone, these layers adapt the common
representation to the unique requirements of each individual task, allowing the model to capture
task-dependent nuances.

3.2. Multi-Task Learning 40

The interplay between shared and task-specific components provides an inductive bias that guides
learning toward solutions that explain multiple objectives at once, thereby making more efficient use of
limited data and accelerating convergence during training [22].

Multi-task learning (MTL) trains a single model to handle multiple tasks by sharing parameters, im-
proving efficiency and generalization [5]. The loss functions used in MTL frameworks are designed to
balance task-specific needs while leveraging shared information. Below, we outline key loss functions
from three MTL frameworks: FATHOM, MTL-Trans, and UniTS.

FATHOM, a federated MTL framework, supports classification and regression across devices, treating
each as a separate task [7]. Its objective minimizes the average loss over K tasks:

θ̃ = arg min
θ∈Rm

1

K

K∑
k=1

L
(
Ŷ (k), Y (k)

)
. (3.20)

For classification, FATHOM uses a regularized cross-entropy loss to prevent overconfidence on sparse
labels:

L(Ŷ , Y) = −(1− α)

M∑
m=1

N∑
t=1

ymt log(ŷmt)− α
1

M

M∑
m=1

N∑
t=1

ŷmt, (3.21)

where α = 0.3 balances fitting true labels and output diversity. For regression, it uses Mean Absolute
Error (MAE):

L(Ŷ , Y) =
1

M ×N

M∑
m=1

N∑
t=1

|ŷmt − ymt| . (3.22)

MTL-Trans, a Transformer-based framework for time series forecasting, uses a Mean Squared Error
(MSE) loss across tasks:

L =
1

N

N∑
n=1

(xn − yn)
2
, (3.23)

where xn and yn are predicted and true values in a batch. The total objective averages losses over K
tasks:

θ̃ = arg min
θ∈Rm

1

K

K∑
m=1

L(m)(θ). (3.24)

This MSE suits continuous outputs like traffic volume, with shared and private attention layers capturing
cross-task patterns.

UniTS supports both predictive and generative tasks like forecasting and classification [12]. Its objective
is a weighted sum of task-specific losses:

Ltotal =

I∑
i=1

λi · Li(Di). (3.25)

For generative tasks, UniTS uses MSE:

LMSE =
1

M ×N

M∑
m=1

N∑
t=1

(x̂mt − xmt)
2
, (3.26)

3.3. Multi-task optimization: Conflicting Gradients. 41

and for classification, it applies cross-entropy:

LCE = −
M∑

m=1

ym log(ŷm). (3.27)

UniTS also uses a pretraining loss for masked reconstruction:

Lpretrain = LMSE(HGEN(zp, zx), x) + LMSE(HGEN(HCLS(zPred), zx), x). (3.28)

3.2.1. General technique for optimizing Multi-Task Learning
Above thoery can be generalized as follows where multi-task learning (MTL) trains a single model to
solve several related tasks at once, sharing parameters [5]. Let θ∈Rm be the shared parameter vector
and let Li(θ) denote the loss associated with task i for i = 1, . . . , N . A common strategy is to form a
weighted sum of the task losses,

Ltotal(θ) =

N∑
i=1

αi Li(θ), (3.29)

where each non-negative weight αi reflects the relative importance of task i. The weights can be fixed
a priori or adapted during training, for example on the basis of task uncertainty or learning speed. The
optimisation problem is then

θ̃ = arg min
θ∈Rm

1

N

N∑
i=1

Li(θ), (3.30)

which reduces to (3.29) when the weights are uniform (αi = 1/N).

Benefits of Multi-Task Learning Compared with single-task learning (training an independent model
for each task), multi-task learning provides three principal advantages. First, shared parameters act
as an implicit regularizer, improving generalization and reducing over-fitting to any single dataset. Sec-
ond, parameter sharing makes more efficient use of data: tasks with limited observations can exploit
representations learned from data-rich tasks. Third, common structures are learned only once, so
optimisation often converges faster than training N separate models [5].

3.3. Multi-task optimization: Conflicting Gradients.
Multi-task learning (MTL) is when a single model learns to perform multiple tasks at the same time.
A common challenge in multi-task learning is that tasks can interfere with each other. This happens
because the gradient updates from different tasks might point in opposite directions. Such conflicting
gradients slow down training and worsen performance. This happens because in multi-task learning
the parameter update is typically driven by the mean gradient g0 = K−1

∑K
i=1 gi, where gi = ∇Li(θ).

When two tasks disagree, i.e. ⟨gi, g0⟩ < 0, the step can harm task i and cause negative transfer. A toy
example of such a scenario is shown in Figure 3.1.

Recent approaches like GradNorm [8], PCGrad [25], and CAGrad [18] address this problem in different
ways.

GradNorm tries to balance how quickly each task learns. Some tasks learn faster because their gradi-
ents or losses are larger, causing the model to prioritize those tasks. GradNorm fixes this by adjusting
the loss weights dynamically, making sure tasks learn at similar speeds.

Mathematically, if we have a total loss from all tasks:

L =
∑
i

wi(t) · Li(t)

3.3. Multi-task optimization: Conflicting Gradients. 42

Figure 3.1: Illustration of conflicting gradients in multi-task learning. The mean gradient g0 points in a direction that harms task
i due to ⟨gi, g0⟩ < 0.

Figure 3.2: Gradient–conflict strategies. (a) GradNorm: rescales each task’s gradient to equalise their lengths
(
wigi, wjgj

)
while leaving directions unchanged. (b) PCGrad: removes head-on conflict by projecting gj onto the sub-space orthogonal to
gi, deleting the opposing component. (c) CAGrad: selects a single update (black arrow) via a convex optimisation that blends
gi and gj just enough to make non-negative progress for both tasks. (d) GradBal: preserves directions but softly down-scales

a conflicting gradient by the factor 1− α |ρi,j |; aligned gradients are left untouched.

3.4. Federated Learning (FL) 43

GradNorm updates each task’s weight wi(t) by minimizing:

Lgrad(t) =
∑
i

|∥∇W [wi(t)Li(t)]∥2 −GW (t) · ri(t)α|

Here, GW (t) is the average gradient norm, and ri(t) measures how slowly or quickly task i is training
compared to the average rate.

PCGrad directly modifies conflicting gradients. If two tasks have gradients pointing in opposite direc-
tions, PCGrad adjusts one gradient by removing the conflicting component:

gi ← gi −
gi · gj
∥gj∥2

gj

CAGrad addresses the gradient conflict by finding an optimal weighted combination of gradients. It
solves an optimization problem to select the shortest gradient step that still improves all tasks:

g∗0 = arg min
g0∈conv(g1,...,gn)

∥g0∥2 − c

n∑
i=1

g⊤i g0

All the approaches are summarized in Figure 3.2.

3.4. Federated Learning (FL)
Federated Learning (FL) is a machine learning paradigm that enables multiple decentralized clients
to collaboratively train a shared global model while keeping their local data private [24]. Rather than
transmitting raw data, clients send model parameters or gradients to a central server, which aggregates
them to update the global model. This approach is particularly suited for privacy-sensitive applications.

At each communication round t, client k receives the global model parameters θt from the server,
performs local updates on its private data, and sends back the model update ∆θ

(k)
t for aggregation.

Federated Averaging (FedAvg)
Federated Averaging (FedAvg) [20] is the foundational aggregation method in FL. It updates the global
model as a weighted average of local client models:

θt+1 =

K∑
k=1

nk

n
· θ(k)t , (3.31)

where:

• K is the number of participating clients.
• nk is the number of local data points at client k.
• n =

∑K
k=1 nk is the total number of data points across all clients.

• θ
(k)
t is the locally updated model from client k.

FedAvg is effective when data distributions across clients are similar. However, it can face convergence
issues with non-identically distributed (non-IID) client data.

Multi-Task Optimization in FL
To address optimisation challenges with heterogeneous clients, advanced methods extend FedAvg:

• FedProx [15] introduces a proximal term in the local objective, defined as:

Lk(θ) = fk(θ) +
µ

2
∥θ − θt∥2, (3.32)

3.5. Confidentiality 44

where fk(θ) is the loss on client k’s data, and µ controls the strength of the proximal term that
tethers local models to the global model.

• SCAFFOLD [14] reduces client drift using control variates. Each client maintains a control vari-
able ck and updates its model as:

θ
(t+1)
k = θ

(t)
k − η

(
∇fk(θ(t)k) + c− ck

)
, (3.33)

where c is the server control variate and η is the learning rate. This correction aligns local gradients
with the global objective, improving convergence on heterogeneous data.

3.4.1. Knowledge Distillation (KD)
Knowledge Distillation (KD) [13] is a model compression and transfer learning technique where a
smaller model, referred to as the student, is trained to replicate the behavior of a larger, high-capacity
teacher model. Rather than using hard labels, KD relies on the soft probability distributions (soft targets)
generated by the teacher. These soft targets contain richer information about inter-class relationships,
improving the student’s ability to generalize.

Given a temperature parameter T , the softened probability distribution produced by the teacher for
class i is calculated as:

pi =
exp(zi/T)∑
j exp(zj/T)

, (3.34)

where zi is the teacher’s logit for class i. The student model minimizes the Kullback–Leibler (KL)
divergence between its output distribution ps and the teacher’s softened distribution pt:

LKD = KL(pt, ps). (3.35)

Beyond response-based KD using logits, feature-based KD extends this concept by matching interme-
diate layer activations between teacher and student. The corresponding loss is defined as:

LFea = ∥Φt(ft)− Φs(fs)∥22, (3.36)

where ft and fs represent feature maps from the teacher and student, respectively, and Φ denotes any
necessary transformation to align dimensions.

Additionally, relation-based KD focuses on preserving the structural relationships between data sam-
ples, using correlation functions such as:

LRel = ∥Ψt(ft)−Ψs(fs)∥22, (3.37)

where Ψ encodes pairwise similarities or other relational information from the feature maps.

Together, these approaches enable KD to serve as a flexible framework for model compression and
collaborative learning, including in multi-task and federated learning settings[16].

3.5. Confidentiality
In machine learning, ensuring the confidentiality of sensitive data is important, particularly when dealing
with personal or proprietary information. Traditional centralized machine learning approaches require
aggregating data from various sources, which poses significant privacy risks. As we saw in previous
section Federated learning (FL) addresses these concerns by enabling model training across decen-
tralized devices or servers without exchanging raw data [20] but when updates themselves may leak
information, FL is commonly combined with differential privacy (DP).

3.5. Confidentiality 45

Differential privacy[10] provides statistical guarantee that no single task’s or client’s data can be re-
versed engineered from the model by incorporating calibrated noise to the entity being protected. For-
mally, a learning algorithm is (ϵ, δ)-DP protected if its outputs are nearly indistinguishable when run
on two two neighboring datasets D and D′(differing by record) i.e. for any subset of outputs S, the
following holds:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ (3.38)

, where ϵ controls the privacy loss, and δ represents the probability of failure.

In deep learning, differential privacy can also be interpreted as comparing the shapes of two probability
distributions [2]. Formally, this is expressed as:

log
P (A(D) = O)

P (A(D−r) = O)
< ϵ with probability 1− δ, (3.39)

In literature smaller ϵ is preferred as it provides better guarantee and δ < 1∥N∥ where N is the size of
the dataset being protected[1].

In deep learning, differential privacy is most often enforced through DP-SGD[1]. It clips per-sample gra-
dients and injects Gaussian noise, yielding an (ε, δ) guarantee that any single record has little influence
on the released update but degrades model utility.

Hence, for each sample i with gradient gi, we apply per-example gradient clipping:

g̃i =
gi

max
(
1, ∥gi∥2

B

) (3.40)

Here:

• gi is the raw gradient for sample i.
• ∥gi∥2 is the ℓ2-norm (Euclidean norm) of gi.
• B is the clipping threshold. If ∥gi∥2 > B, the gradient is scaled down to have norm B; otherwise,
it remains unchanged.

• g̃i is the clipped gradient.

After clipping, Gaussian noise is added to the mean of the clipped gradients:

g̃ =
1

N

N∑
i=1

(
g̃i +N (0, σ2

gradB
2I)

)
(3.41)

Where:

• N is the number of samples in the batch.
• N (0, σ2

gradB
2I) denotes Gaussian noise with zero mean and covariance matrix σ2

gradB
2I.

• σgrad is the noise multiplier that controls the trade-off between privacy and utility.
• I is the identity matrix of appropriate dimension.

In deep learning settings, however, we typically apply differentially private mechanisms repeatedly (e.g.,
across many training iterations. This raises the question of how privacy losses accumulate. Fortunately,
there are several composition theorems that bound the overall privacy leakage when composing multi-
ple DP operations called composition theorms[10], as well as related work like amplification and post-
processing[10] that help manage the required noise for a desired privacy guarantee. Lets look at them
one by one:

Composition Theorems.

When multiple differentially private mechanisms are applied, composition theorems determine the over-
all privacy guarantee [10]. Key theorems include:

3.5. Confidentiality 46

• Basic Composition: For k mechanisms, each providing (ϵi, δi)-DP, the composition provides
(
∑k

i=1 ϵi,
∑k

i=1 δi)-DP.

• Advanced Composition: Offers tighter bounds, such as (ϵ′, δ′)-DP where ϵ′ =
√
2k ln(1/δ′′)ϵ +

kϵ(eϵ − 1), for some δ′′, and δ′ = kδ + δ′′.
• Moment Accountant: Tracks privacy loss using the moments of the privacy loss random vari-
able, providing tighter bounds for iterative algorithms like DP-SGD [1]. It is particularly useful in
federated learning for analyzing privacy over multiple training rounds.

These theorems are relevant where multiple DP mechanisms, such as dual DP, are applied to ensure
privacy across local training and aggregation phases.

Privacy Amplification by Subsampling.

Another important result is privacy amplification, which shows that running a DP mechanism on a ran-
dom subset of data(batches during training) can yield stronger privacy guarantees than running it on
the full dataset. Intuitively, if each individual’s data has a chance not to be included in a given oper-
ation, that uncertainty provides additional privacy protection. The most common scenario is Poisson
subsampling (or sampling without replacement) of records or clients. In other words wehn we apply a
differentially private (DP) mechanism not on the full dataset, but on a randomly selected subsample of
the dataset, the privacy guarantee (ε, δ) improves compared to applying the same mechanism on the
full dataset[11].

ε′ = log (1 + p · (eε − 1)) , δ′ = p · δ (3.42)

Where:

• ε′ and δ′ are the amplified (improved) privacy parameters,
• p is the probability that any single data point is included in the subsample,
• ε and δ are the original privacy parameters of the mechanismM.

We can also look at it as when p≪ 1, we observe that ε′ ≈ p · ε to first order. This means subsampling
effectively scales down the privacy cost proportional to the sampling rate, providing stronger privacy
guarantees without modifying the underlying mechanism.

This property is widely used in private machine learning, such as in DP-SGD, where random minibatch
sampling naturally results in privacy amplification.

Utility Implications of Noise in Federated Learning

In federated learning (FL), ensuring strong privacy (small ε) requires adding noise to each client’s up-
dates, as done in DP-SGD [11]. However, too much noise can harmmodel accuracy, slow convergence,
or even cause training to fail. This creates a known privacy-utility trade-off: lowering ε improves privacy
but reduces model performance.

The problem is more noticeable in FL because each client may have limited data, so noisy updates
carry less useful information. To balance privacy and utility, practitioners tune learning rates, increase
the number of training rounds, or involve more clients.

Privacy amplification by subsampling helps reduce the noise needed since only a batches of data is
processed during training and we get stronger privacy.

Secured Aggregation for federated setting

Secure Aggregation (SecAgg) is a cryptographic protocol that protects the confidentiality of individual
model updates in federated learning (FL) by ensuring that only the aggregate of all updates is revealed
to the server. This mechanism addresses a critical privacy concern not covered by Differential Privacy
(DP): exposure of raw client updates during the training process.

In a standard FL round, each client c ∈ C computes a local update∆c based on its private data. Without
protection, transmitting these updates would risk leaking sensitive information. Secure Aggregation
mitigates this risk using a combination of pairwise masking and threshold secret sharing [3, 23].

3.5. Confidentiality 47

Pairwise Masking Mechanism. At the beginning of each training round, clients establish pairwise
shared secrets through cryptographic key exchange protocols such as Diffie-Hellman (DH). Specifically,
each client c generates a DH key pair and exchanges public keys with every other client c′. From
the shared secrets sc,c′ derived from DH key agreement, clients generate perturbation masks using
cryptographically secure pseudorandom generators (PRGs).

The pairwise masking protocol operates as follows:

• For each client pair (c, c′), if c < c′, client c adds the mask PRG(sc,c′) to its update, while client c′
subtracts the same mask.

• Additionally, each client samples an independent self-mask mc and distributes secret shares of it
using a (t, n) threshold secret-sharing scheme.

The masked update transmitted by client c is given by:

∆̃c = ∆c +mc +
∑
c>c′

PRG(sc,c′)−
∑
c<c′

PRG(sc,c′). (3.43)

When the server aggregates all masked updates, all pairwise masks cancel out due to their structured
addition and subtraction, and the secret-shared self-masks mc are removed via reconstruction from
shares. The final aggregate is:

S =
∑
c∈C

∆̃c =
∑
c∈C

∆c. (3.44)

Trust Threshold and Hybrid Privacy Guarantee. Truex et al. [23] extend the Secure Aggregation
framework by formally analyzing the trust threshold concept. If at least t out ofN total clients are honest
and non-colluding, Secure Aggregation ensures confidentiality of individual updates. This threshold
assumption enables combining Secure Aggregation with Differential Privacy (DP) while reducing the
required noise level.

Specifically, if each client adds Gaussian noise with variance σ2 to its update to achieve local (ϵ, δ)-DP,
the total noise variance across all clients would naively scale asNσ2. However, under a trust threshold
t, the effective noise variance reduces to:

σ2
eff =

σ2

t− 1
, (3.45)

which results in a noise magnitude reduction by a factor of
√
t− 1.

This hybrid design ensures that even if up toN− t clients collude with the server, the privacy guarantee
holds as long as t honest clients remain. The combination of Secure Aggregation and DP thus enables
federated learning systems to scale while maintaining strong privacy guarantees and minimizing the
negative impact on model utility.

Cumulative Privacy Considerations. When federated learning operates over multiple rounds, pri-
vacy loss accumulates according to composition theorems [10]. Running a (ϵ, δ)-DP mechanism for
T rounds leads to an overall (Tϵ, Tδ) privacy budget. By reducing the per-round noise through Se-
cure Aggregation, the framework helps maintain an acceptable trade-off between privacy and model
performance across many training iterations.

System Implications. Protocols based on Bonawitz et al. [3] and Truex et al. [23] form the basis for
real-world FL deployments that require both communication security and statistical privacy guarantees.
While Secure Aggregation protects against exposure of raw updates, it relies on trust threshold as-
sumptions and is most effective when combined with formal DP mechanisms. This layered approach
is critical for building scalable, privacy-preserving FL systems used in sensitive application domains
such as healthcare and finance.

4
Conclusion and Future Works

4.1. Conclusion
In this work, we present CrossFreqNet, a novel multi-frequency multi-task framework designed to ad-
dress the challenges of forecasting in distributed industrial systems where data streams exhibit varying
sampling rates and task heterogeneity. By extending encoder-decoder architectures to incorporate
shared knowledge across tasks while preserving task-specific patterns through dedicated output lay-
ers, our model effectively integrates high- and low-frequency signals without resorting to up- or down-
sampling, which can introduce artifacts or information loss. This approach builds upon prior efforts in
mixed-frequency forecasting, such as the multi-task encoder-dual-decoder framework, but advances
the field by enabling collaborative learning in multi-task environments, where traditional single-task
models like mTAN or Scaleformer fall short.

A central innovation of our framework is GradBal, a gradient-balancing mechanism that mitigates inter-
task conflicts by scaling gradient contributions based on pairwise cosine similarities and loss magni-
tudes, without altering their directions. This strategy recognizes that mild gradient conflicts in tem-
poral data can serve as informative signals rather than mere noise, providing implicit regularization
that enhances model stability and generalization. Unlike aggressive conflict elimination methods such
as PCGrad, which project gradients to remove oppositions entirely and may discard valuable tempo-
ral cues, or CAGrad, which enforces simultaneous descent across tasks via constrained optimization,
GradBal’s softer attenuation preserves lead-lag relationships inherent in time series. Empirical results
demonstrate that this leads to superior performance, with CrossFreqNet achieving up to 72% reduction
in Mean Absolute Error (MAE) compared to the strongest multi-task baseline, UniTS, and up to 48%
over PCGrad across four public benchmarks (Air Quality, Wind Forecast, Load Forecast, and Spain
Electricity Shortfall) and one proprietary industrial dataset. These gains align with findings in multi-
task learning literature, where balanced gradient handling has been shown to improve convergence in
heterogeneous settings.

Furthermore, we extend our evaluation to privacy-sensitive scenarios through federated learning (FL),
incorporating differential privacy (DP) and secure aggregation to safeguard data confidentiality. In FL
setups, raw data remains decentralized, and only model updates are aggregated, addressing real-
world constraints in domains like healthcare and energy systems. Despite the noise injection and
masking required for (ϵ, δ)-DP guarantees, our federated variant of CrossFreqNet retains 50%–90%
of centralized accuracy, underscoring the robustness of our architecture. Among tested optimizers—
FedAvg, FedProx, and SCAFFOLD—FedProx emerges as particularly effective in handling non-i.i.d.
task distributions, as it introduces a proximal term to counteract client drift, consistent with prior studies
on heterogeneous FL for time series. This balance between privacy and utility highlights the potential
of FL in scaling multi-frequency forecasting to distributed environments, where centralized data pooling
is infeasible due to regulatory or proprietary concerns.

Our contributions not only advance the state-of-the-art in multi-frequency multi-task forecasting but also
provide practical insights for deploying such models in industrial contexts, where data heterogeneity

48

4.2. Future Works. 49

and privacy are paramount. By outperforming baselines in both centralized and federated regimes,
CrossFreqNet demonstrates the value of integrating frequency-aware encoding with conflict-aware op-
timization, paving the way for more accurate and efficient time series models.

4.2. Future Works.
Even though this work takes an important step towards a better Time Series Modeling, there are still a
lot of avenues through which it can be improved and extended. Some of them are as follows: (1) De-
veloping advanced conflict-aware gradient methods tailored for temporal data exhibiting phase shifts
and lead-lag relationships, potentially incorporating adaptive similarity thresholds or dynamic weight-
ing schemes inspired by recent works on proactive gradient mitigation and momentum-calibrated ap-
proaches; (2) Exploring federated learning paradigms specifically optimized for time series forecasting,
such as hybrid models combining FedAvg, FedProx, and SCAFFOLD with domain-specific adaptations
for mixed-frequency data, building on emerging frameworks like Time-FFM and prompt-based FL to bet-
ter handle seasonality and non-stationarity; and (3) Designing federated frameworks that enable secure
gradient-level sharing while preserving privacy, thereby allowing sophisticated methods like GradBal
to function in fully decentralized settings, possibly through homomorphic encryption or advanced se-
cure multi-party computation techniques. These avenues promise to further bridge the gap between
theoretical advancements and real-world applicability in distributed time series analysis.

References

[1] Martin Abadi et al. “Deep learning with differential privacy”. In: Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security. 2016, pp. 308–318.

[2] Adrien Banse, Jan Kreischer, et al. “Federated learning with differential privacy”. In: arXiv preprint
arXiv:2402.02230 (2024).

[3] Keith Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning”. In:
proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
2017, pp. 1175–1191.

[4] George EP Box et al. Time series analysis: forecasting and control. John Wiley & Sons, 2015.
[5] R. Caruana. “Multitask Learning”. In:Machine Learning 28.1 (1997), pp. 41–75. DOI: 10.1023/a:

1007379606734.
[6] Zhengping Che et al. “Recurrent neural networks for multivariate time series with missing values”.

In: Scientific reports 8.1 (2018), p. 6085.
[7] Yujing Chen et al. “Federated Multi-task Learning with Hierarchical Attention for Sensor Data

Analytics”. In: 2020 International Joint Conference on Neural Networks (IJCNN). 2020, pp. 1–8.
DOI: 10.1109/IJCNN48605.2020.9207508.

[8] Zhao Chen et al. “Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask
networks”. In: International Conference on Machine Learning. PMLR. 2018, pp. 794–803.

[9] Fatoumata Dama and Christine Sinoquet. “Time series analysis and modeling to forecast: A sur-
vey”. In: arXiv preprint arXiv:2104.00164 (2021).

[10] Cynthia Dwork. “Differential privacy”. In: International colloquium on automata, languages, and
programming. Springer. 2006, pp. 1–12.

[11] Juanru Fang and Ke Yi. “Privacy Amplification by Sampling under User-level Differential Privacy”.
In: Proceedings of the ACM on Management of Data 2.1 (2024), pp. 1–26.

[12] S. Gao et al. “UniTS: A Unified Multi-Task Time Series Model”. In: Advances in Neural Information
Processing Systems (NeurIPS). Vol. 37. 2024, pp. 140589–140631.

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural network”. In:
arXiv preprint arXiv:1503.02531 (2015).

[14] Sai Praneeth Karimireddy et al. “Scaffold: Stochastic controlled averaging for federated learning”.
In: International conference on machine learning. PMLR. 2020, pp. 5132–5143.

[15] T. Li et al. “Federated Optimization in Heterogeneous Networks”. In: Proceedings of Machine
Learning and Systems (MLSys). Vol. 2. 2020, pp. 429–450.

[16] W. H. Li and Hakan Bilen. “Knowledge Distillation for Multi-task Learning”. In: European Con-
ference on Computer Vision (ECCV). Cham: Springer International Publishing, 2020, pp. 163–
176.

[17] B. Lim and S. Zohren. “Time-Series Forecasting with Deep Learning: A Survey”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379.2194
(2021), p. 20200209. DOI: 10.1098/rsta.2020.0209.

[18] Bo Liu et al. “Conflict-averse gradient descent for multi-task learning”. In: Advances in Neural
Information Processing Systems 34 (2021), pp. 18878–18890.

[19] Yong Liu et al. “Non-stationary transformers: Exploring the stationarity in time series forecasting”.
In: Advances in neural information processing systems 35 (2022), pp. 9881–9893.

[20] Brendan McMahan et al. “Communication-efficient learning of deep networks from decentralized
data”. In: Artificial intelligence and statistics. PMLR. 2017, pp. 1273–1282.

50

https://doi.org/10.1023/a:1007379606734
https://doi.org/10.1023/a:1007379606734
https://doi.org/10.1109/IJCNN48605.2020.9207508
https://doi.org/10.1098/rsta.2020.0209

References 51

[21] Yuqi Nie et al. “A time series is worth 64 words: Long-term forecasting with transformers”. In:
arXiv preprint arXiv:2211.14730 (2022).

[22] S. Ruder. “AnOverview ofMulti-Task Learning in DeepNeural Networks”. In: arXiv preprint (2017).
arXiv: 1706.05098 [cs.LG].

[23] Stacey Truex et al. “A hybrid approach to privacy-preserving federated learning”. In: Proceedings
of the 12th ACM workshop on artificial intelligence and security. 2019, pp. 1–11.

[24] Kang Wei et al. “Federated learning with differential privacy: Algorithms and performance analy-
sis”. In: IEEE transactions on information forensics and security 15 (2020), pp. 3454–3469.

[25] Tianhe Yu et al. “Gradient surgery for multi-task learning”. In: Advances in Neural Information
Processing Systems. Vol. 33. 2020, pp. 5824–5836.

[26] Y. Zhang and Q. Yang. “A Survey on Multi-Task Learning”. In: IEEE Transactions on Knowledge
and Data Engineering 34.12 (2021), pp. 5586–5609. DOI: 10.1109/TKDE.2021.3070203.

https://arxiv.org/abs/1706.05098
https://doi.org/10.1109/TKDE.2021.3070203

	Preface
	Abstract
	Research Paper
	Background
	Time Series Forecasting
	Definition
	Types of Forecasting Problems
	Challenges in Time Series Forecasting
	Challenges in Time Series Forecasting
	Linear Models
	Deep Models

	Multi-Task Learning
	General technique for optimizing Multi-Task Learning

	Multi-task optimization: Conflicting Gradients.
	Federated Learning (FL)
	Knowledge Distillation (KD)

	Confidentiality

	Conclusion and Future Works
	Conclusion
	Future Works.

	References

