
Using neural networks to model

the behavior in vessel trajectories

Pim Klaassen

October 2019

MSc thesis in Geomatics for the Built Environment

U S I N G N E U R A L N E T W O R K S TO M O D E L T H E B E H AV I O R I N V E S S E L
T R A J E C TO R I E S

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Pim Klaassen

September 2019

Pim Klaassen: Using neural networks to model the behavior in vessel trajectories (2019)
cb This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

Supervisors: Martijn Meijers
Edward Verbree

Co-reader: Ihor Smal

http://creativecommons.org/licenses/by/4.0/

A B S T R A C T

The contemporary trend shows a shift from rule-based algorithms to deep learning.
In the last few years, this field has been developing rapidly and its popularity has
increased to a large extent. This happened for a good reason, since deep learning
was able to solve some of the hardest problems in fields like image recognition, nat-
ural language processing and speech recognition. A large proportion of its success
has to be credited to the explosion of big data in the past two decades. Structured
data sets are essential to deep learning systems.

The rising amount of automatic identification system data is a key example in the
current big data boom. The automatic identification system produces spatiotem-
poral movement data of vessels. It was designed as a collision avoidance system,
but researchers have been looking into ways to leverage its data for other tasks.
Analyzing behavior in the movement data of vessels can help policymakers and
monitoring operators with decision making processes. Improving these processes
lead to safer and more resilient marine environments.

Unfortunately, the possibility of applying deep learning on vessel movement data
is an underexposed topic. This project attempts to explore the research gap in this
topic. The objective is therefore to give an overview of the possibilities, complica-
tions and opportunities given the current state of the art. Ultimately, this project
may serve as a rough guide for those who wish to explore the crossings where deep
learning and vessel movement data meet.

v

A C K N O W L E D G E M E N T S

This thesis is the result of almost a year of hard work and the final product of my
time as a Geomatics student. Although graduating is an individual process, I could
not have finished it without the help and support of my supervisors, family and
friends.

First of all I would like to express special thanks to my supervisors, Martijn
Meijers and Edward Verbree. During our biweekly meetings, we had long and pro-
found discussions which were very fruitful to the course of this project. Martijn has
an unparalleled commitment. I do not recall a moment when he was not available
to help me out with a problem, were it the fixing of a bug or discussing about the
project itself. Edward often sparked my imagination by delivering accurate input
during our sessions. This helped me to focus on the common thread of my thesis
and to formulate my conclusions in a more determined fashion.

Then I would like to thank Ihor Smal for co-reading my thesis. His expertise in
deep learning was of great value for making decisions throughout the process. We
brainstormed with enthusiasm about the possibilities of deep learning and move-
ment data, which was very encouraging.

Parts of this graduation project would not have been as accurate without the
assistance of Niels Hintzen. I would like to thank him for informing me about the
current state of fisheries research in the Netherlands. His contribution to the data
preparation was essential to the progress of this project.

My parents and brother helped me with certain parts of the project, providing
feedback and new ideas to try out. But most of all, they offered warm company
during the periods I visited them.

Finally, I would like to thank Lize for her mental support in the past few months.
Not only did she contribute to the graphical appearance of this thesis, but she also
assisted me in the process of formulating my ideas.

vii

C O N T E N T S

1 introduction 1

1.1 General background . 1

1.2 Relevance . 1

1.3 Aim . 2

1.4 Research question . 2

1.5 Research scope . 3

2 theoretical background and related work 5

2.1 Deep learning and neural networks . 5

2.1.1 Concepts and terminology . 5

2.1.2 Mathematical concepts . 6

2.1.3 Training a neural network . 7

2.1.4 hyperparameters . 9

2.1.5 Recurrent neural networks . 9

2.1.6 Long short-term memory . 10

2.1.7 Encoder-decoder networks . 10

2.1.8 Validation and performance metrics 11

2.2 Automatic Identification System . 12

2.3 Related work . 13

2.3.1 Analysis of movement data with traditional machine learning
methods . 14

2.3.2 Analysis of movement data using neural networks 14

3 methodology 17

3.1 Introduction . 17

3.2 Data ingestion phase . 17

3.2.1 Database . 17

3.2.2 Data preprocessing . 19

3.3 Design & train phase . 19

3.3.1 Sub-trajectory classification . 20

3.3.2 Within-trajectory classification 21

3.4 Test & deploy phase . 22

4 data, software and hardware 23

4.1 Data . 23

4.1.1 AIS data set . 23

4.1.2 Synthetic data . 23

4.2 Software . 24

4.3 Hardware . 24

5 experiments and discussion 25

5.1 Data representation . 25

5.2 Modeling fishing activity . 26

5.2.1 Data ingestion of real world data 26

5.2.2 Data prepocessing . 28

5.2.3 detecting fishing activity . 30

5.3 supervised sub-trajectory classification 32

5.3.1 Data ingestion of synthetic data 32

5.3.2 Training and results . 33

5.4 modeling vessel types . 34

5.4.1 Data ingestion of real world data 34

5.4.2 Data preprocessing . 35

5.4.3 Training and results . 36

5.5 unsupervised sub-trajectory classification 36

5.5.1 Standard encoder-decoder model 37

ix

x contents

5.5.2 Variational encoder-decoder model 39

6 conclusion and recommendations 43

6.1 Trajectories . 43

6.2 Segmentation . 44

6.3 Neural networks . 45

6.4 Performance . 45

6.5 In general . 46

6.6 Epilogue . 47

a example code 51

L I S T O F F I G U R E S

Figure 2.1 “How neural networks build up their understanding of im-
ages.” [Olah et al., 2017] . 5

Figure 2.2 A diagrammatic representation of a multilayer perceptron.
[Kröse and van der Smagt, 1991] 6

Figure 2.3 Common activation functions. [Kröse and van der Smagt, 1991] 7

Figure 2.4 Diagrammatic representation of a recurrent neural network.
[Goodfellow et al., 2016] . 10

Figure 3.1 Flowchart of methodology. 18

Figure 3.2 A blueprint for a sub-trajectory supervised learning problem. 20

Figure 3.3 A blueprint for a sub-trajectory unsupervised learning prob-
lem, using a regular encoder-decoder model. 21

Figure 3.4 A blueprint for a sub-trajectory unsupervised learning prob-
lem, using a variational encoder-decoder model. 21

Figure 3.5 A blueprint for a within-trajectory supervised learning prob-
lem. 22

Figure 4.1 AIS data of Dutch fishing vessels. 23

Figure 4.2 Some examples of generated synthetic trajectories. 24

Figure 5.1 Trajectory segmentation for raster conversion in QGIS. 25

Figure 5.2 A sequence of rasterized trajectory segments. 26

Figure 5.3 Network configuration for supervised within-trajectory clas-
sification of fishing activity. 30

Figure 5.4 Training and validation loss, and accuracy after 10 epochs,
batch size 8. 31

Figure 5.5 3 trajectories generated in 3 different classes. From left to
right, class A, class B and class C. 33

Figure 5.6 Network configuration for supervised sub-trajectory classifi-
cation. 33

Figure 5.7 Training and validation loss, and accuracy after 400 epochs,
batch size 64. 34

Figure 5.8 Training and validation metrics for 300 epochs, vessel type
classification network. 35

Figure 5.9 Confusion matrix of test data, vessel type classification net-
work. X-axis shows the predicted class, Y-axis shows the true
class. 37

Figure 5.10 Network configuration for standard encoder-decoder model. 37

Figure 5.11 Training and validation loss for 500 epochs of standard encoder-
decoder model. 38

Figure 5.12 The latent representations of trajectories from the testing set,
using t-SNE. 39

Figure 5.13 Training and validation loss for encoder-decoder model of
real world data. 40

Figure 5.14 Latent space of training data with trajectories of different
fishing gears. The blue, orange, green and red data points
correspond respectively to mechanical dredges, beam trawlers
225 kW+, beam trawlers and otter trawlers. 41

Figure 5.15 Network configuration for variational encoder-decoder model. 41

Figure 5.16 Training and validation loss for 750 epochs and batch size of
32. 41

Figure 5.17 The variational latent representations of trajectories from the
testing set, using t-SNE. 42

xi

xii list of figures

Figure 5.18 Some variations of input trajectories, were the yellow trajec-
tory is a generated vector from the latent distribution of the
blue trajectory. 42

A C R O N Y M S

GNSS global navigation satellite systems . 13

GIS geographical information system . 17

AIS Automatic Identification System . 1

DL deep learning . 1

NN neural network. .1

LSTM long short-term memory . 10

GPU graphics processing units . 1

IMO International Maritime Organization . 12

ML Machine Learning .1

AI artificial intelligence .1

NLP natural language processing . 1

IUU illegal, unreported and unregulated . 2

MLP multilayer perceptron . 6

MSE mean squared error . 8

SGD stochastic gradient descent . 8

ReLU rectified linear unit . 7

tanh hyperbolic tangent . 7

RNN recurrent neural network. .9

ADADELTA adaptive delta. .9

MMSI maritime mobile service identity . 12

t-SNE t-distributed stochastic neighbor embedding . 21

DBMS database management system . 17

VMS vessel monitoring system . 29

ROT rate of turn . 12

Adam adaptive moment estimation . 9

COG course over ground . 12

SVM support vector machines . 14

NNS nearest neighbor search . 14

DBSCAN density based spatial clustering of applications with noise 14

seq2seq sequence to sequence . 15

xiii

1 I N T R O D U C T I O N

In the past decades, a rising amount of Automatic Identification System (AIS) data
has become available. Originally serving as a collision avoidance system, the data
that is being produced by AIS is arousing an increasing interest in the fields of
surveillance, security and planning [Mascaro et al., 2014]. As the data is high in
volume and complex by nature, deep learning (DL) algorithms present themselves
as useful tools for analysis, such as different variants of the neural network (NN).
These tools have become available recently due to the increasing performance of
graphics processing units (GPU) and progress in algorithmic theories. The highly
developing field of DL opens new doors in the area of vessel behavior analysis. This
project will explore to what extent NN’s can contribute to modeling behavior in ves-
sel movement data, by conducting some experiments with real data (e.g. detecting
fishing behavior). In the upcoming sections a general overview of the topic and its
relevance will be laid out, followed by the formulation of a research question.

1.1 general background

This project intersects at three major topics: AIS, DL—more specifically NN’s— and
the analysis of movement data. AIS is a standardized procedure, intended for the
automatic exchange of nautical information between vessels and between vessels
and shore-based facilities [IMO, 2013a]. The objectives of AIS comprise of enhancing
safety and protection of the marine environment as well as safety and efficiency
of navigation. The system produces movement data—spatiotemporal information
about moving vessels—which can be recorded. Analyzing this data can support
decision- and policymakers by giving insight about what vessels did in the past, or
what they are up to in the future. In other words, the vessels’ behavior.

DL is a means of analyzing data (not in particular movement data). It is a type
of Machine Learning (ML) and an approach to artificial intelligence (AI). ML is the
capability in computer systems to obtain knowledge by looking for patterns in raw
data. Roughly put, DL is capable of finding more complex patterns than ML. DL has
become more popular for a number of reasons; the increasing amount of available
data, improvement in computer infrastructure and the fact that DL has solved com-
plex problems with increasing accuracy over time [Goodfellow et al., 2016]. One of
the main algorithms in DL is the NN, which will be central in this project. DL is being
used in a vast amount of applications, among others: image recognition, natural
language processing (NLP), medical image analysis, toxicology, recommendation
systems and speech recognition. However, movement data analysis is currently not
one of the common applications which makes use of DL. [Graser, 2019]

1.2 relevance

Analyzing recorded AIS data (i.e. the analysis of movement data) serves multiple
purposes in the field of surveillance, security and planning. Ever since the volume
of AIS data increased, there has been a growing interest in analyzing this data to
reveal threats to security, illegal trafficking and other risks [Mascaro et al., 2014].

1

2 introduction

In the realm of planning, mapping the spatial distribution of fishing effort is a key
challenge in marine conservation [de Souza et al., 2016]. The world’s oceans are the
least observed regions on Earth [NOAA, 2018], yet they are of vital importance for
humanity. As pointed out by Kroodsma and Sullivan [2016], about 3 billion people
get at least one-fifth of their animal protein from seafood. The lack of observation
and the need of marine resources expose the oceans to the risk of over fishing
[Kroodsma and Sullivan, 2016]. Based on observations by monitoring systems of
fishing effort, this risk can be mitigated by applying marine conservation.

Anomaly detection is a task in marine security and surveillance. It concerns the
detection of deviations from patterns in moving vessels. This can be done by a
signature-based approach or by creating a model that represents normal behavior
and comparing a vessel’s behavior to that model [Mascaro et al., 2014].

One of the more recently researched activities in illegal, unreported and unreg-
ulated (IUU) fishing are transshipments. It concerns the activity of fishing vessels
transferring catch to refrigerated cargo vessels. Transshipments contribute to IUU

fishing for multiple reasons. First of all, the fishing vessels can stay in their fishing
region to save fuel costs and sell their catch more easily. Secondly, transshipments
allow fishermen to mix illegal catch into the legal market, reducing transparency
and traceability in fisheries. About 15% of the annual global catch is IUU. A third
reason is the linkage to human trafficking, allowing captains to transfer crew mem-
bers or keeping them on their vessels for months or even years [Miller et al., 2018].
The main challenge is to be able to detect this kind of behavior, to engage in legal
action.

In the most general sense, it is useful to detect any type of behavior the surveil-
lance operator, security monitor or marine planner is interested in. In all of these
applications, recorded AIS data can be analyzed to serve this goal. The analysis of
recorded AIS data is now being considered as a valuable tool [Robards et al., 2016],
as opposed to other more expensive techniques like the use of tracking drones,
satellite radar or high resolution imagery [Kroodsma and Sullivan, 2016].

1.3 aim

As described in the previous sections, there is an increase in the application of DL al-
gorithms. The contemporary trends show a shift from rule-based algorithms and ML

to DL. It is commonly believed that DL will have many more successes in the future
LeCun et al. [2015]. While it is not completely new to the field of geoinformatics
it is also not generally applied. As Graser [2019] puts it: ‘geoinformatics is largely
playing catch-up with the quick development in machine learning (including deep
learning) that promise new and previously unseen possibilities’.

Given these observations, there is a research gap in the application of DL in
geoinformatics—more specifically, movement data analysis. This project attempts
to explore that gap. There is not yet an apparent way of how to deal with move-
ment data in DL. This problem ranges from data representation to what kind of
algorithms have to be used. Therefore the ultimate aim of this research is to stipu-
late guidelines on how to apply DL on vessel movement data.

1.4 research question

To reach the objectives of some of the applications that were mentioned above, math-
ematical models need to be derived. In technical terms, part of the movement
data—that contains consecutive points—which was produced by a vessel is called a
trajectory. Along the lines of this terminology, the research question central to this

1.5 research scope 3

project states:

To what extent can neural networks (NN) contribute to modeling the behavior in vessel
trajectories?

To answer this question, a research methodology will be proposed in Chapter 3.
Following this methodology, multiple experiments will be conducted. Trajectories
have a certain length and can be represented in different ways. Not only the geo-
graphical component, but also other attributes can be part of a trajectory. Different
types of NN’s exist, and they can be configured in many ways. In the sign of these
observations, the following sub questions attempt to partition the main research
question:

• What is a good way to represent a trajectory for a NN and what features should be
included?

• How should the trajectories be segmented and how should the modeling be segmented?

• Which type of NN is fit to model the behavior in vessel trajectories?

• How well do NN’s perform at modeling the behavior in vessel trajectories?

1.5 research scope
The topic of this project is new and has not yet been thoroughly researched. This
project will therefore be exploratory. Meaning that a broad range of experiments
will be conducted. The methodology that is proposed in Chapter 3 is in part already
the product of trial and error. Some of the experiments that were conducted before
this methodology was proposed will still be commented on in Chapter 6

This project will primarily focus on data representation and the configuration of
NN’s. The main objective is to explore ways of how NN’ can be applied on vessel
movement data. All the experiment that will be conducted are dedicated to this
objective. However, this project is not a complete overview of what types of NN’s can
be applied to vessel trajectories and how they perform compared to each other. This
would rather be a continuation of this research. There is simply not enough time
and too much uncertainty in this field to accomplish this. Because of this, some
decisions had to be made early on in the project, which will be elaborated on in
Chapter 5.

2 T H E O R E T I C A L B A C KG R O U N D A N D
R E L AT E D W O R K

In Chapter 1, a general background of the topic was laid out, and the central re-
search question was formulated. In this chapter, a theoretical basis of more detail
will be elaborated on. In order to understand the methodology presented in this
research, it is essential to know the mathematical basics of NN’s. Additionally, a
more technical overview of AIS will be provided.

2.1 deep learning and neural networks

2.1.1 Concepts and terminology

As pointed out in Section 1.1 DL is a type of ML, which is the capability in computer
systems to obtain knowledge by looking for patterns in raw data. This capability
is reached when algorithms can learn from experience. The algorithms do so by
correlating input information with possible output information. Every bit of input
information is called a feature. Features can be designed manually—as is often the
case in ML—or automatically. DL enables automatic feature design, this is useful
because manual feature design can be time consuming and complex [Goodfellow
et al., 2016].

To demonstrate this with an example, consider a system that has to predict
whether a tumor is malignant or benign. A manual approach to feature design
would involve a doctor inserting various pieces of relevant information into the sys-
tem, e.g. the size of the tumor. In DL a whole PET scan image would be the input
of the system, which then extracts relevant features from it. The reason why it is
called deep learning is because the input data is used to construct a nested hierarchy
of concepts with different levels of complexity and abstraction. Figure 2.1 illustrates
this stacked hierarchy of concepts. The images are visualized features from 5 of the
22 layers of GoogLeNet, an algorithm which can classify images into 1,000 distinct
classes [Szegedy et al., 2015]. The hierarchy of concepts is clearly visible, ranging
along edges, textures, patterns, parts and objects.

Multiple types of NN’s exist, however the central building block of a NN is the per-
ceptron. It was invented by psychologist Frank Rosenblatt in 1958 and was defined
as ‘[...] a set of signal generating units (or “neurons”) connected together to form a network.

Figure 2.1: “How neural networks build up their understanding of images.” [Olah et al.,
2017]

5

6 theoretical background and related work

Figure 2.2: A diagrammatic representation of a multilayer perceptron. [Kröse and van der
Smagt, 1991]

Rosenblatt then continues: Each of these units, upon receiving a suitable input signal [...]
responds by generating an output signal [...]. Each perceptron includes a sensory input [...]
and one or more output units [...].’ [Rosenblatt, 1963]

The modern approach of a perceptron is the multilayer perceptron (MLP). As the
name suggests, it consists out of multiple layers: input layer, output layer and one or
more hidden layers in between. The number of hidden layers defines the depth of the
MLP. Each layer consists of an arbitrary amount of units. Throughout this paper,
the units will be called neurons.

2.1.2 Mathematical concepts

Providing a complete mathematical description of NN’s would be both impossible
and out of scope for this research project. However, some of the basic mathematical
concepts are essential to the understanding of the rest of this document.

A MLP is a feedforward network. This means that the information flows from the
input layer to the hidden layers and finally to the output layer. The output is not
reused as a new input, as would be the case in a network with feedback connections.
The objective of a NN is to find a function f ∗. The NN defines a mapping y = f (x; Θ)
for input x to output y and approximates the optimal parameters Θ. A NN is
actually a composite function, with each layer representing a function. The first
layer would be f (1), which maps the input of the network to the output of the first
layer. In a network consisting of n layers, the function that maps the output of
f (n−1) to the final output is f (n) or simply the output layer, subsequently also the
last layer. In this fashion, a network which has four layers could be written as a
chain of functions:

f (x) = f (4)(f (3)(f (2)(f (1)(x)))) (2.1)

The primary objective of training a NN is to let f (x) approximate f ∗(x). To accom-
plish this, training data is used, which exists out of noisy observations of f ∗(x). The
observations are called samples and constitute input-output examples. Consider the
task of finding a function that predicts the location of a satellite at any given time in
the future. The training data would consist out of historical samples taken from the
satellite trajectory. The samples would be input-output examples; in this case a time

2.1 deep learning and neural networks 7

Figure 2.3: Common activation functions. [Kröse and van der Smagt, 1991]

x as input and a 3-dimensional coordinate y as output where y ≈ f ∗(x). The NN

uses these training samples to learn the parameters Θ. When the network is trained,
it can predict outputs of previously unseen inputs. [Goodfellow et al., 2016]

It is now clear how the different layers in a network are stacked, but how do they
look like internally? Figure 2.2 shows a diagrammatic representation of a MLP. The
black dots are inputs and the white dots are neurons. Consider x to be a vector
with values x1, x2 and x3. The parameters Θ typically consist of two different
types: weights w and biases b. In Figure 2.2, the weights are represented by the
arrows. Individual neurons are calculated by taking the weighted sum of inputs
and passing it through a function σ:

n(1)
1 = σ(w(1)

1 x1 + w(1)
2 x2 + w(1)

3 x3 + b(1)1) (2.2)

In Equation 2.2 the superscripts indicate the layer of the network and the subscript
indicates the index of the input/weight/bias. To simplify things, matrix notation
can be used to indicate the calculation of an entire layer:

f (1)(x) = σ(w(1) · x + b(1)) (2.3)

In the case of Figure 2.2 w(1) is a 4× 3 matrix and x a column vector with three
features.

Function σ is known as an activation function. It can be any kind of function—
depending on the application—but is usually non-linear. A very simple, non-linear
activation function is the sign function:

sgn(x) =
d

dx
|x|, x 6= 0 (2.4)

Figure 2.3 displays some common activation functions. In image recognition,
semi-linear functions are widely used, e.g. the rectified linear unit (ReLU):

ReLU(x) = max(0, x) (2.5)

The sigmoid function—together with some other non-linear functions, like the
hyperbolic tangent (tanh)—are widely used in NLP:

S(x) =
ex

ex + 1
(2.6)

Each layer of a network can have different activation functions, this is part of the
network architecture. The activation function decides whether the neuron activates or
not. A neuron that results in 0 through its activation function does not propagate
any signal to the rest of the network.

2.1.3 Training a neural network

After having seen that a NN uses training data to learn the parameters Θ, the ques-
tion that still arises is how it can learn from training data. The main engine behind

8 theoretical background and related work

training a NN is backpropagation. But before elaborating on the concept of back-
propagation, an analogy might simplify the section that follows. In its essence, a
computer system that learns from training data is not very different from a human
that learns from sensory information. Consider a 12- to 19-month-old that learns
to walk. During this learning period the infant averages 2368 steps and falls 17

times per hour [Adolph et al., 2012]. Infants undergo a tremendous amount of
loco motor experience within this period, resulting in more steps and less falling.
The child’s learning trajectory is subject to a bonus-malus system, in which walk-
ing is rewarded and falling is punished. Whether the child walks successfully or
falls, gives a direction to the way connections have to be updated in the brain. The
learning process in the infant’s brain as well as in the computer system answer the
question how to adjust the internal state so that undesirable consequences minimize? 1

A NN initially starts with a random set of parameters Θ, which obviously results
in wrong outputs. It then compares those outputs to the correct outputs of the train-
ing data, which is called ground truth. The comparison is done using a loss function L.
The loss function gives an indication of how wrong the network is, given the current
state of Θ. In a regression problem—like the satellite example in Section 2.1.2—the
loss function is typically the mean squared error (MSE) or something similar:

L =
1
n

n

∑
i=1

(yi − ŷi)
2, where ŷ is predicted and y is ground truth. (2.7)

NN’s can also solve categorical problems—like the tumor classification example in
Section 2.1.1. In this case, the output is a vector that represents the class probability
distribution. Therefore, cross-entropy is often used as a loss function in those types
of problems:

L = − 1
n

n

∑
i=1

yi · ln(ŷi) + (1− yi) · ln(1− ŷi) (2.8)

In both of these typical loss functions, deviations from ground truth are penal-
ized. If the network predicts many wrong outputs, the loss is high. Therefore an
optimization algorithm is needed to minimize the loss, this can be done through
backpropagation. Backpropagation is simply computing the gradients of the loss in
the NN with respect to Θ:

5L = (
δL
δθ1

,
δL
δθ2

, . . . ,
δL
δθn

), where n is the number o f parameters. (2.9)

The computed gradients are used in an optimization algorithm of choice to up-
date Θ. A typical optimizer is stochastic gradient descent (SGD). SGD is a solution
to calculating the gradients for every sample in the training data set, which would
be very slow and wasteful. Instead, a random batch of samples is selected and the
gradient is computed at once. This way the network can generalize over data and
learn faster through parallel computation using GPU’s. Θ is updated through SGD:

θnew
i = θi − k · δL

δθi
, where k is the learning rate. (2.10)

As previously discussed, the network is a large composite function f with non-
linearity. The optimization problem is therefore highly non-convex. Because of this,
convergence is reached at a local minimum after many iterations. One iteration
constitutes one forward-backward pass of the network. One epoch is done when
the whole training data set was processed through random batches. The number of
epochs has to be decided prior to running the network.

1 This is purely a conceptual comparison. Artificial neural networks are by no means comparable to the
unrivaled complexity of the human brain.

2.1 deep learning and neural networks 9

2.1.4 hyperparameters

The parameters that need to be set before running the network are known as hy-
perparameters. Different hyperparameters lead to different results in training. Some
of the relevant hyperparameters have already been discussed before. This section
provides a brief summary of hyperparameters:

• Learning rate: the learning rate is the constant in Equation 2.10, usually ini-
tially set to 0.01. It is used in SGD and other optimizers, but some optimizers—
like adaptive delta (ADADELTA) [Zeiler D., 2012] and adaptive moment estima-
tion (Adam)—autonomously regulate the learning rate. This parameter has a
big influence of the learning process. If the learning rate is too large, the opti-
mizer may never converge. If the learning rate is too small, the network may
not learn at all.

• Epochs: the number of epochs indicates how many times the complete train-
ing data set has to be processed. Too many epochs can result in overfitting,
which means the network will adapt to the training data only and does not
generalize. The number of epochs very much depends on the batch size and
how many data there are.

• Batch size: the batch size is usually set in the range of 8, 16, 32, 64, 128 and
256—to exploit parallel processing abilities in GPU’s—but can be any positive
integer. A small batch size results in more iterations per epoch and vice versa.
Larger batch sizes are computationally more efficient if GPU is available, al-
though it depends on the type of NN that is being used.

• Layer architecture: the layer architecture constitutes the number of hidden
layers and the number of neurons per layer. But also the types of activation
functions inside the neurons. More units in a NN will result in increased com-
putation time and do not guarantee better performance. There is no rational
rule of thumb in designing the layer architecture; it tilts more towards trial
and error. Often it is recommended to start with a minimalistic design and
expand afterwards. The activation functions very much depend on the type
of NN, which was discussed in Section 2.1.2 and will be further discussed in
Section 2.1.6.

2.1.5 Recurrent neural networks

In the precious section, the MLP was used to demonstrate the components and train-
ing of a NN. However, different types of NN’s exist, among which the recurrent neu-
ral network (RNN). RNN’s are designed to process sequential data X = {x(1), . . . , x(τ)},
with timestep t ranging from 1 to τ. The key characteristics that were discussed in
Section 2.1.2 and Section 2.1.3 remain broadly the same for RNN’s, only the network
architecture is different. [Goodfellow et al., 2016]

Instead of vectors, the input samples now become sequences of vectors which may
have variable lengths. A RNN can be best understood as a MLP that consecutively
processes each timestep of the sequence. After the MLP processes a timestep, output
h(t)—or the hidden state, a fixed-size vector—is used as an additional input together
with the next timestep. It recurrently continues this process, until final state t(τ)

is reached. This way, RNN’s have the ability to access relevant information from
previous timesteps, i.e. it has memory. Figure 2.4 illustrates this concept, where f
is equivalent to the mapping function in Section 2.1.2. It is also possible to create a
sequence as output, known as seq2seq. In that case, instead of the last hidden state,
the intermediate hidden states would together form the output. The dimensions of
input and output sequence may vary.

An interesting property of RNN’s is that they can be bidirectional. Sometimes,
the thing that has to be predicted depends not only on the passed states, but on

10 theoretical background and related work

Figure 2.4: Diagrammatic representation of a recurrent neural network. [Goodfellow et al.,
2016]

the whole sequence. To facilitate this, RNN’s can be designed bidirectionally; they
process hidden states from the past and the future.

2.1.6 Long short-term memory

To train a RNN, backpropagation (Equation 2.9) can be applied in exactly the same
way as it would be applied to a MLP. After this, any optimizer could be used, e.g.
SGD or ADADELTA. However, one of the problems that can occur is that as the se-
quences become longer, the gradients can vanish or explode over time [Goodfellow
et al., 2016]. This phenomenon can hinder learning. A solution is provided in
the long short-term memory (LSTM) network. LSTM networks have gates built into
their architecture. The gates are used to ‘forget’ information if it is irrelevant or
let it freely flow to the next time steps if it is relevant. This way, the network can
‘regulate’ its memory in both long- and short-term.

by design, LSTM networks use sigmoid (Equation 2.5) and tanh activation functions.
However, most DL software packages allow to change the activation function. Dif-
ferent activation functions influence to what extent the gradients vanish or explode.

2.1.7 Encoder-decoder networks

Recall from Section 2.1.2 that a NN learns from input-output pairs. This type of
learning is known as supervised learning. Sometimes the outputs or labels are not
available. If this is the case, a domain expert could be asked to label data. But
sometimes this is very hard to do, as will be seen in Chapter 5.

Encoder-decoder networks (also autoencoders) are unsupervised ways of training
data. Instead of showing the network what is correct, the network has to figure
it out itself. It can do this by making representations of the data samples. The
representation is just a vector z of arbitrary length. Representations that are close to
each other, should share some characteristics in the real world. In this fashion, the
space where the samples are represented can be used to perform a simple clustering
algorithm. This space is abstract and hidden, and is therefore often referred to as the
latent space. The representations are often called latent vectors (or the bottleneck).

The latent vectors can be obtained by applying an encoder-decoder network.
Which—as the name implies—contains and encoder network and a decoder net-
work. The encoder network encodes a sample into a latent vector and the decoder
network decodes the latent vector back into the input sample. The input-output pair
is therefore actually an input-input pair. This type of network is useful to reduce
complex objects (e.g. trajectories of variable length or images) to simple vectors,
while preserving their characteristics.

The loss function of encoder-decoder networks is called the reconstruction loss,
because the network attempts to reconstruct the input sample. Only when this re-
construction is good, the latent vectors will be good representations of the samples.
The reconstruction loss is usually an MSE.

2.1 deep learning and neural networks 11

There exists a more elaborate version of the regular encoder-decoder network:
the variational encoder-decoder network. This network approaches the same prob-
lem from a probabilistic perspective. Explaining the mathematics of variational
encoder-decoder networks would be beyond the scope of this project. Therefore, an
intuitive explanation is presented. The latent space in the regular network might
not be continuous, variational encoder-decoder models try to solve this by impos-
ing a probability distribution over the latent vectors. In other words, the bottleneck
approximates a multivariate Gaussian distribution. From this distribution, z is sam-
pled and decoded back into x. The distribution is represented by mean vector µ
and variance vector σ.

To train this network, not only the reconstruction loss can be used. The prob-
ability distribution has to be forced into a unit Gaussian. This part of the loss is
simply added as a term to the reconstruction loss. The KL-divergence of the distri-
bution with a unit Gaussian used to do this. KL-divergence is a degree of similarity
between probability distributions.

2.1.8 Validation and performance metrics

There are some general performance metrics that will be used throughout this
project. The metric can be applied to classification results, both binary and multi-
class problems. When an algorithm applies classification, there are four possible
outcomes:

• true positive: the algorithm correctly classified an object that belongs to class
X as belonging to class X.

• true negative: the algorithm correctly classified an object that belongs to class
Y as not belonging to class X.

• false positive: the algorithm wrongfully classified an object that belongs to
class Y as belonging to class X.

• false negative: the algorithm wrongfully classified an object that belongs to
class Y as not belonging to class Y

Below is a brief overview of these metrics:

• accuracy is the most straightforward metric. It is simply the ratio of classes
that were predicted correctly and the whole population:

accuracy =
TP + TN

TP + TN + FP + FN
(2.11)

• precision takes gives some extra information about the performance. If an
algorithm randomly assigns classes in a skewed distribution, the accuracy
can still be high. But the performance is bad, because the algorithm did not
learn anything. This is where precision can help to assess the algorithms
performance:

precision =
TP

TP + FP
(2.12)

In words, the precision says what fraction of the objects that are classified
positively are actually correct.

12 theoretical background and related work

• recall is the counterpart of precision:

precision =
TP

TP + FN
(2.13)

In words, recall says what fraction of the objects that belong to a certain class,
were actually classified correctly.

• f1-score is the harmonic mean of precision and recall:

f 1 score = 2 · precision · recall
precision + recall

(2.14)

2.2 automatic identification system
In Section 1.1 was already pointed out that AIS is a system for the exchange of
nautical information between vessels and between vessels and shore-based facili-
ties. The AIS information which is sent by vessels consists of three different types:
static information, voyage-related information and dynamic information. Static in-
formation is entered on installation and contains fields like maritime mobile service
identity (MMSI) number, call sign and name, ship type, International Maritime Or-
ganization (IMO) number and ship dimensions. Unless the ship undergoes changes
in these values - like change of name or change of type - this information stays the
same.

Voyage-related information is about specific variables of a voyage the vessel is
currently engaged in, such as draught (this changes because of the load), hazardous
cargo, destination and estimated time of arrival. These fields are to be manually
entered at the beginning of a journey. Dynamic information contains a positional
report with accuracy, course over ground (COG), speed, rate of turn (ROT), true
heading and navigational status [IMO, 2013b].

These types of information are distributed over several message types. There are
27 types in total [Raymond, 2016], but for this project only a few are relevant. Types
1, 2 and 3, or Position report class A contain dynamic information and are trans-
mitted every 2 to 180 seconds, depending on the vessel’s activity [ESA, 2019]. AIS
Messages of type 5 contain static and voyage-related information and are transmit-
ted every 6 minutes. These messages are less reliable as they have to be entered
manually and sometimes contain a wrong bit length [Raymond, 2016].

The messages are AIVDM data packets, which typically look something like this:

!AIVDM,1,1„B,13btcb0vi<0CMW:Me0WTeCjj28=m,0*17

The messages are comma separated strings with seven fields. When the above
message is parsed it results in the following information:

1. !AIVDM means that this is an AIVDM packet, which is a specific protocol.
AIVDO packets do also exist, the difference is that AIVDM packets are from
other vessels and AIVDO packets are from your own vessel.

2. 1 indicates that this message is the first in a possible sequence of messages.
There are a limited amount of bits available per packet and therefore some-
times the payload (see below) needs to be distributed over multiple packets.

3. 1 indicates over how many packets the payload will be distributed. This is a
single line message.

4. This field is empty in this case, because it would contain a sequence ID. This
ID is used concatenate multi line messages.

2.3 related work 13

Bits Description Units

0-5 Message Type Constant: 1-3
6-7 Repeat Indicator Message repeat count
8-37 MMSI 9 decimal digits
38-41 Navigation Status

42-49 Rate of Turn (ROT)
decoded 0 to 708 degrees/min
128 = not available

50-59 Speed Over Ground (SOG)
0 to 102 knots
1023 = not available

60-60 Position Accuracy
61-88 Longitude Minutes/10000

89-115 Latitude Minutes/10000

116-127 Course Over Ground (COG) Relative to true north, degrees

128-136 True Heading (HDG)
0 to 359 degrees,
511 = not available

137-142 Time Stamp Second of UTC timestamp
143-144 Maneuver Indicator
145-147 Spare Not used
148-148 RAIM flag
149-167 Radio status

Table 2.1: Payload fields of dynamic messages, or position report class A (types 1, 2 and 3).
Raymond [2016]

5. B is the radio channel code, this message was sent at a radio frequency of
162.025 Mhz.

6. 13btcb0vi<0CMW:Me0WTeCjj28=m is the payload. This part of the packet
needs to be decoded to retrieve the dynamic or static information.

7. 0 is the number of bits that is required to pad the payload to a 6 bit boundary

The suffix *17 is a data integrity checksum, to validate the authenticity of the
message. Table 2.1 contains the fields of information in the message payload of
position report class A. The payload is embedded in the messages as an encoded
string. Each consecutive sequence of bits is assigned to a field of information and
is decoded in its own way. For this project, only a few of the fields will be used.

2.3 related work

Since AIS, movement data in general and DL methods are quite new, the related
work in this area is as well. This means that most research until now was ex-
ploratory by nature. This research focuses on the analysis of historical AIS data in
particular, because the data structure of AIS and the behavior of vessels are things
in its own. However, there has been research into analyzing movement data in
other categories and trajectories in general which could be useful to look into. For
example, the analysis of global navigation satellite systems (GNSS) trajectories of
pedestrians, taxi-drivers and animals or frameworks for analyzing geographical tra-
jectories. [Andrienko et al., 2008]

Also, this research will focus on NN’s as a tool for analysis. Nonetheless—in the
same style as argued above—other tools exist and have been explored to perform
this task. As those tools are often referred to as traditional methods in comparison
to NN’s, this terminology will be held on here as well.

14 theoretical background and related work

2.3.1 Analysis of movement data with traditional machine learning methods

To carry out the applications that were described above, models have to be derived
from the specific movement data at hand. This can be done using traditional meth-
ods, like Gaussian mixture models, support vector machines (SVM) and random forests.
These are all clustering algorithms with the objective of grouping trajectories in a
space. Where distances in this space represent similarities between trajectories.

Li et al. [2006a] developed a method that extracts movement features from the
trajectories of objects. Similar movements are clustered and generalized based on
these movement features, the objects can than be put into a multi-level feature space
to classify them (resembling the latent space of Section 2.1.7). This method is used
to detect anomalies, as being trajectories in the feature space which do not fit in a
particular cluster.

In past research, nearest neighbor search (NNS) algorithms have been used to
query trajectories from a database. NNS search can be used to cluster the trajectories
in a feature space and query trajectories that are alike in absolute space. R-trees or
TPR-trees (time parametrized tree) are often used as data structures to query from
Frentzos et al. [2007].

Gaffney and Smyth [1999] explored probabilistic mixture regression models and
the expectation maximization algorithm to cluster trajectories. In this research, tra-
jectories referred to all data with response variables over time, such as moving
objects in video frames or response curves in drug therapy monitoring.

A common algorithm for clustering movement behavior of entities is density
based spatial clustering of applications with noise (DBSCAN). Tang et al. [2016] used
a variant of DBSCAN to model travel behavior for public transit, to provide decision
support for urban construction. DBSCAN is also used to model traffic behavior in
busy harbors [Li et al., 2017].

Mascaro et al. [2014] argues that many methods to create models are not trans-
parent enough for a human argent, such as a surveillance monitor, to interact with.
Therefore they used Bayesian networks for analyzing vessel behavior and the detec-
tion of anomalies.

de Souza et al. [2016] proposed a framework to detect fishing activity by using
different approaches for different types of fishing vessels (trawlers, long liners and
purse seiners). The approaches comprised of hidden Markov models based on ves-
sel speed, a data mining approach which is inspired by studies on animal movement
and a multi-layered filtering strategy de Souza et al. [2016].

A more general framework was proposed by Zheng and Yu [2015], coining this
topic trajectory data mining, as a response to its increasingly important role in a
wide range of fields. The framework is an elaborate collection of pattern mining
techniques which can be used for trajectory data, like trajectory classification and
outlier detection. It also contains a taxonomy of different types of movement data
and a description of multiple data representations for trajectories.

2.3.2 Analysis of movement data using neural networks

As discussed in previous sections, the neural network is a fairly new player in
contemporary (practical) research. Since large amounts of GNSS/movement data be-
coming available is also a recent development, research on the analysis of movement
data using NN’s is limited.

Jiang et al. [2016] explored the performance of various traditional data mining
methods compared to neural networks to classify parts of a trajectory as fishing
or non-fishing. The research looked into the interpretation of AIS points prior to
applying the algorithms. A sliding window method was used and a distinction was
made between treating the window as raw points, linearly interpolated points or
a grid form. Manually labeled data were used to train encoder-decoder networks,
SVM’s and random forests.

2.3 related work 15

A more static approach was researched by Russo et al. [2011], attempting to pre-
dict gear types of harbor to harbor trajectories of fishermen. They use a fully con-
nected NN that takes as 35 variables as input, which are derived from a full trip, like
speed profile, change of heading profile and sea depth profile.

Yao et al. [2017] addresses the problem that many of the techniques described
above create models that use spatiotemporal similarity measures which are not
space- and time-invariant. As a solution, they propose the use representation learn-
ing to generalize clusters of behavior which are similar but occurred on different
locations and times. Just like Li et al. [2006b], they extract movement features
from the trajectory to create sequences which are better representations of the en-
tity’s behavior. After this, they apply sequence to sequence (seq2seq) LSTM encoder-
decoder networks—which are widely used in speech recognition—to transform the
sequences into fixed-size vector representations. These representations robustly en-
code movement behavior in latent space and can be clustered into separate groups.
Experiments with this method show accurate results in classifying vessel types with
historical AIS data as well as classifying movement behavior in synthetic movement
data.

It is also possible to model multi-entity behavior using neural networks. For
example, Wang et al. [2018] explore the use of representation learning with auto-
encoders to cluster similar driving encounters of GNSS-equipped vehicles. This
method can be used to classify traffic situations in autonomous driving or detect
anomalous situations in traffic encounters.

3 M E T H O D O LO GY

3.1 introduction

This chapter will elaborate on a methodology to model behavior in vessel trajec-
tories. Figure 3.1 represents a flowchart of this methodology. The whole process
consists of roughly 3 phases: the data ingestion phase, the training phase and the
testing phase. The data ingestion phase takes place from retrieving data from the
data source until the storage of samples. The samples are bits of information which
can be directly used for training. This means that they are normalized, clipped or
transformed in an appropriate way for the task at hand. Also, if needed, a subset
of the original data is taken.

The flowchart in Figure 3.1 also contains an important taxonomy of problems
which introduces the training phase. Behavior can be modeled within a trajectory
or between different trajectories. At first sight, these two ways of approaching the
problem seem to be the same; one trajectory can be split into multiple trajecto-
ries, also making it a sub-trajectory modeling problem. However, there are some
practical difficulties which complicate this idea. This will be further discussed in
Section 3.3.2. As discussed in Section 2.1.7, DL problems can be supervised or unsu-
pervised. Problems have to be solved in an unsupervised way if there is no labeled
data available. In this case the trajectories need to be processed by an encoder-
decoder model. When labeled data is available, the trajectories can be processed
by a standard NN with categorical loss functions. The choice of network types and
architectures will be elaborated on in Section 3.3. The different types of networks
in Figure 3.1 require different input-output examples for training.

A trained network has to be tested with previously unseen test data. In the
testing phase, the results form a continuous feedback loop for adjustments in the
hyperparameters and network architecture. Once the results are satisfactory, the
model can be deployed.

3.2 data ingestion phase

3.2.1 Database

The data ingestion of AIS data can origin directly from the source or from a historical
data dump. In both cases, the data needs to be stored in such a way that it can
be restructured efficiently. Therefore, a database management system (DBMS) is
essential. The DBMS allows to query subsets of data and apply complex filters. It
processes data both reliably and fast, and can be accessed remotely. AIS produces a
sufficiently structured data format to integrate it into relational tables.

Only two tables are needed: a table for the dynamic AIS messages and one for
the static messages. The tables are related through the MMSI number. Table 3.1
demonstrates some of the relevant field names in the dynamic and static tables.

When enabling spatial objects in the DBMS is possible, a connection to geographical
information system (GIS) software can be established. In this project, PostGIS and
QGIS were used for this end. This ability supports visual inspection of data, which
at some point could be useful when, for instance, mapping results.

17

18 methodology

Data ingestion

Subset selection

Data input
preprocessing

Train NN

Within-trajectory
classification

Sub-trajectory
classification

Saved
samples

Supervised Unsupervised Supervised

Train NN
encoder-decoder

Trajectory

Trajectory class

Train NN

Dump

Real time
data

Trajectory

Trajectory

Latent vector

Trajectory

Point classes

Data output
preprocessing

input

inter

output

Testing

Deployment

Design NN Design NNDesign NN
encoder-decoder

DBMS

External
data

D
at

a
in

ge
st

io
n

ph
as

e

D
es

ig
n

&
 tr

ai
n

ph
as

e
D

ep
lo

y
&

 te
st

 p
ha

se

Figure 3.1: Flowchart of methodology.

DBMS table fields

dynamic mmsi timestamp longitude latitude turn speed
static mmsi timestamp shipname shiptype destination ...

Table 3.1: Field names of the dynamic and static tables.

3.3 design & train phase 19

3.2.2 Data preprocessing

In order for a NN to be trained on data, that data has to be in the correct format.
As well the input as the output data (in the case of supervised learning). When
the training data is synthetic, it can be created in a way that is already meets the
requirements of a format. However, for real AIS data, samples have to be extracted
and transformed. The extractions and transformations are morphological and nu-
merical.

Morphological operations concern the shape of the data. The most important
factor in this step is to determine the length of a trajectory. This is a tedious decision
to make because of multiple reasons. First of all, trajectories in an AIS database do
not have a beginning or an end. Vessels have a tremendous range of different
activity and it is simply not possible to assign rules to the beginning and ending of
individual samples in an automatic way. Furthermore, the trajectories are frequently
subject to irregular data gaps, making them discontinuous. In the attempt to choose
beginning and end points based on regular time intervals, we may find samples
with no points at all. Then there is the problem that NN’s usually process a fixed
amount of data points across one data set (although solutions to this problem exist).
In short, there is a trade off between morphological and temporal continuity.

The numerical operations are straightforward as they comprise of simple normal-
ization operations. However, many different ways of normalizing data exist and
its absence can obstruct learning. One of the most common ways of preprocessing
data before DL is to subtract the mean and divide by the standard deviation. But
before being able to do this, outliers have to be removed. Outliers primarily exist
because of GNSS errors and damaged sensors. Custom smoothing filters can be used
to correct for outliers.

During data preprocessing is it possible to merge the the AIS data with other
external spatial data sources. These data sources might correlate to the behavior
that needs to be modeled and altogether increase the NNs predictive performance.

The input samples are stored in separate, binary files. As data sets can become
very big, it is desirable that they are partitioned. DL consumes a lot of memory
and therefore it is common to load samples per batch. It could be possible to let
the samples flow from the DBMS directly. However, the transformation operations
that were discussed above should then be integral to that process. This would
require a carefully thought out infrastructure, parametrized according to the needs
of different tasks.

The data output samples can only be created when some crucial decisions about
the network type were made. Note that in a deployed environment the data in-
gestion phase is not a single event, but rather a continuous cycle. Real rime data
would constantly flow into the database, which can subsequently be used to make
predictions or update the networks.

3.3 design & train phase

When all data is ingested and preprocessed, a NN can be designed and trained.
Figure 3.1 demonstrates a proposed taxonomy of problems: sub-trajectory classi-
fication and within-trajectory classification. These two concepts then branch into
supervised and unsupervised problems. All the NN’s that are proposed in this
methodology contain LSTM networks. This decision stems from the sequential na-
ture of AIS data. Trajectories essentially are time series, and because LSTM networks
are good at processing time series (see Section 2.1.6) it seems appropriate to apply
them in this situation. Furthermore, the networks are hybrid, as they switch be-
tween LSTM and regular layers. The following sections will discuss general design of
the proposed networks. Specific design parameters will be discussed in Chapter 5.

20 methodology

Trajectory LSTM layer(s)
sequence to vector Dense layer(s)

Trajectory class
probability
distribution

Figure 3.2: A blueprint for a sub-trajectory supervised learning problem.

3.3.1 Sub-trajectory classification

In a sub-trajectory classification problem, behavior is modeled between samples. In
other words, each sample is subject to one kind of behavior. We wish to classify
the separate samples into behavioral classes. If this problem is supervised, the
classes are predefined and the data is labeled. For instance, AIS includes a field with
the ship type (see Section 2.2). This information can be used as a label to classify
vessel trajectories into different ship types (the ship type is actually a high-level
behavior). If there is no such information available, the problem is unsupervised
and predetermining classes is not possible.

Supervised method

Supervised learning in a sub-trajectory classification problem is the most simple
case in the proposed methodology. As illustrated in Figure 3.1 this problem re-
quires a trained NN which takes a trajectory as input and transforms it into a class
probability. Prior to this, the network has to be designed and trained. Figure 3.2
proposes a blueprint for the network design in this particular case. The first series
of layers are LSTM layers that at some point transform the sequences into vectors.
The signals are then propagated through regular layers (called dense layers in Keras
terminology) into a class probability distribution. This distribution contains the
probabilities of the trajectory belonging to a certain class. During training, the prob-
ability distributions are used to calculate the categorical cross entropy, in the loss
function. After training, the arguments of the maxima are the classes that will be
assigned to the trajectories.

Figure 3.2 does not make any suggestion about the number of layers, but only
determines the main infrastructure. The layer architecture can be designed as deep
as needed for the specific task at hand. Technically, the dense layer(s) can be skipped
if the LSTM layer directly outputs a class probability distribution. But this would rule
out the use of any other dense layer in the rest of the network.

Unsupervised method

Classifying trajectories without labeled data is a challenging task. There are no
input-output examples to train on and the derived classes may not resonate with
the classes one was initially looking for. In this methodology, representation learn-
ing is proposed as a method to cluster trajectories into classes. The output is not
directly a class probability distribution, but rather an embedding of trajectories
into a multidimensional space. The trajectories are represented in this latent space,
and their inter-relational distances represent the degree of difference in behavior in
the real world. This concept can be implemented by both regular- as variational
encoder-decoder models (see Section 2.1.7 for more details). Although the more
complex variational variant has more interesting properties, both are included in
the methodology. Figure 3.3 and Figure 3.4 illustrate blueprints for both cases.

Regular encoder-decoder model

The first part of this model has the same infrastructure as the supervised model
discussed in Section 3.3.1. It encodes a trajectory into a vector, but this time it is not
a class probability distribution but the latent representation z. The network contin-
ues in reverse order, to decode z back into the original trajectory. The loss function

3.3 design & train phase 21

Trajectory LSTM layer(s)
sequence to vector Dense layer(s) Z

Dense layer(s)LSTM layer(s)
vector to sequence

Figure 3.3: A blueprint for a sub-trajectory unsupervised learning problem, using a regular
encoder-decoder model.

Trajectory LSTM layer(s)
sequence to vector Dense layer(s) Z

Dense layer(s)LSTM layer(s)
vector to sequence

Mean

Variance

Figure 3.4: A blueprint for a sub-trajectory unsupervised learning problem, using a varia-
tional encoder-decoder model.

in this network is the reconstruction error of x and x′. A trained encoder-decoder
model preserves the class difference between trajectories into the latent space. The
latent space can have as many dimensions as is desirable. Less dimensions take
a toll on the reconstructions loss and too many will cause overfitting. The trajec-
tories can be classified by applying a clustering algorithm on the latent vectors. t-
distributed stochastic neighbor embedding (t-SNE) can be applied to visually inspect
the latent vectors.

Variational encoder-decoder model

The variational variant is the most complex model proposed in the methodology. It
is an expansion of the model in Figure 3.3.1 and is demonstrated in Figure 3.4. As
discussed in Section 2.1.7, a variational encoder-decoder model constrains the latent
vector to be normally distributed. This constraint introduces a generative property,
as vectors can be sampled and decoded into synthetic trajectories. The decoded
vectors look like the trajectories from which hidden distributions they were sampled
from.

The mean and variance layers are simple dense layers. z Is created by sampling
from the values in those layers. The loss function has two terms: the reconstruc-
tion error of x and x′ and the KL-divergence of hidden distributions with a unit
Gaussian.

Just like in the regular encoder-decoder model, the latent vectors can be clustered
into behavioral classes. The classes will take up distinct area’s in the latent space.
The size of this network has to be bigger, as information could be lost on the way.
Because the network is bigger, it will take much longer to train it, depending of the
size of the input samples.

3.3.2 Within-trajectory classification

Within-trajectory classification is treated as a separate problem because of segmen-
tation. The main issue is that the break points of different classes of behavior in
a trajectory are unknown. Therefore, segmenting the trajectory prior to prediction
its class becomes difficult. A solution could be found in the use of a rolling time

22 methodology

Trajectory
LSTM layer(s)
sequence to

sequence

Pointwise class
probability
distribution

Figure 3.5: A blueprint for a within-trajectory supervised learning problem.

window. However, still the length of the segmented parts would be unknown. Ad-
ditionally, this solution would result in an explosion of data.

The alternative that is proposed in this methodology is a pointwise classification
method. Subsequently—in a supervised problem—the labels should be assigned to
the individual points. Note that within-trajectory classification has no unsupervised
alternative (see Figure 3.1). The reason for this is that pointwise clustering would
have to deal with the same segmentation problems as were discussed above.

Figure 3.5 demonstrates that there are no dense layers in the blueprint. The
network has a seq2seq architecture, as it transforms a sequence into a sequence. The
output sequence contains time steps with class probability distributions. In this
fashion, it is possible to interpolate class transitions.

3.4 test & deploy phase
When the data samples are ready, a blueprint has been selected and all the initial
hyperparameters have been set, the network can be tested. This is a continuous
process in which the testing results are feedback for adjustments in the network
parameters that were discussed in Section 2.1.4.

To test the results, various metrics are used. The training- and validation loss
show whether the network is learning sufficiently. They also show when the net-
work is under- or overfitting. During training, the loss can be monitored in order to
potentially adjust parameters which influence these factors.

After a batch of test samples is passed through a trained network, assessment
metrics can be applied to the output. The test samples have to samples that the
network has never seen. The reason for this is that only then can be assessed if the
network is generalizing properly. Therefore, test samples in this project are always
sampled from other ships than the samples in the training set. This eliminates any
bias from the testing process. These metrics can indicate the degree of performance
of a network. When performance is bad it can be hard to tell exactly why that is the
case. There are many factors that can cause bad performance. However, it is sensible
to prioritize different solutions. Chances are there was a mistake in the input data
rather than the network has to be expanded to increase learning. Therefore it is
wise to start out with a small network and overfit on one sample. This rules out
possible error sources. From here on, the network can be expanded.

4 DATA , S O F T W A R E A N D H A R D W A R E

4.1 data
The data that was used in the experiments consists of real world and synthetic
data. The real world data is a historical, global recording of AIS from 2016 to 2017.
The synthetic data was constructed using simple rules to demonstrate some of the
methods in this project.

Figure 4.1: AIS data of Dutch fishing vessels.

4.1.1 AIS data set

The AIS data set was retrieved from TU Delft. It contains AIS messages of type 1, 2,
3, 5 and 17 (see Section 2.2 for more information about the message types). In total,
there are 1 billion dynamic- and 65 million static messages. In database format,
the data set covers approximately 300 gigabytes in volume.

Only a distinct part of this data set was used in the experiments; limited to a
selection of Dutch fishing vessels. Dutch ships were selected using a filter on the
MMSI numbers, given Dutch MMSI numbers start with 244, 245 or 246. This subset
was further filtered to fishing vessels using the ship type field in the type 5 messages
(see Figure 4.1).

4.1.2 Synthetic data

Synthetic data was created created to conduct some of the experiments in a more
simplistic manner. By using synthetic data, the problem of missing or erroneous
data can be avoided. Also, it gives some freedom in creating different classes of

23

24 data, software and hardware

Figure 4.2: Some examples of generated synthetic trajectories.

trajectories. The algorithm that was used to create the synthetic data is straight-
forward. A randomized process chooses how much coordinates belong to the next
segment and how curved this segment will be. Mean and standard deviation of
the random process are the parameters of the algorithm. The distances between all
coordinates are constant. The problems of this algorithm are discussed in Chapter 6.
Some of the generated trajectories are demonstrated Figure 4.2.

4.2 software
The main operations for all experiments are written in Python, including the follow-
ing libraries for specific tasks:

• NumPy and Pandas for numerical operations and pickling of data points.

• Matplotlib and Seaborn as plotting engines. Seaborn is a wrapper for Mat-
plotlib to enhance graphics.

• Tensorflow and Keras as deep learning frameworks. Keras is a high-level
interface for Tensorflow, which makes creating NN’s modular.

• Scikit-learn for the application of t-SNE on multidimensional latent vectors.

4.3 hardware
Two machines were used for different ends during this project. A personal computer
was used to conduct all the experiments. A remote machine was used to store the
data in a database. This machine could be used to query data from. Running
neural networks on the stronger remote machine did not make a lot of difference
in efficiency. This is because it had no GPU which could be exploited. However, for
data volumes reasons it was still used for storage.

Personal computer

• CPU Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz, 2808 Mhz, 4 Core(s), 8

Logical Processor(s)

• Memory 8 GB

• Operating system Microsoft Windows 10 Home

Remote server

• CPU Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz, 8 Core(s), 32 Logical Proces-
sor(s)

• Memory 128 GB

• Operating system Red Hat Enterprise Linux 7.6 (Maipo)

5 E X P E R I M E N T S A N D D I S C U S S I O N

Chapter 3 and Chapter 4 elaborated on the methodology and the data that was
used to test it. The coming sections will follow along these lines and describe
the experiments that were conducted in this project. After the description of each
experiment, an overview of results are discussed. Finally, some of the problems
that were encountered will be elaborated on in each section. The structure of this
section will follow the same workflow and taxonomy as presented in Figure 3.1.

Conducting experiments was a time consuming part of this project. The main
issue was that NN’s can take very long to train and they have a lot of hyperparam-
eters. Additionally, the numerical and morphological choices that are made for the
input data also influence training results. Before the experiments with NN’s will be
discussed, a short section of the data representation is included. This section will
give a justification of why the trajectories were treated as sequences.

5.1 data representation
Before the methodology was created, multiple ways of representing the trajecto-
ries were explored. For example, there was some related work that represents the
trajectories as raster images. Also, when the trajectories are segmented into fixed
parts they could even be used as vectors instead of sequences. Both these ideas
were rejected from the beginning for multiple reasons. The former idea was a more
convincing candidate than the latter and was briefly experimented with. Figure 5.1
demonstrates how an AIS trajectory is segmented with raster tiles. The tile size is
the leading parameter in this process. In each tile, the coordinates are interpolated
and rasterized. The consecutive sequences of raster images could then be used by
a NN. This method would very mainly leverage the geometrical component of the
trajectories. However, multiple bands could be added to include other attributes as
well. Figure 5.2 demonstrates some of the rasterized segments of an AIS trajectory.

Figure 5.1: Trajectory segmentation for raster conversion in QGIS.

This way of representing the trajectories was abandoned after having experi-
mented with it. The largest issue was the waste of memory in the raster images
for the surrounding space. This made method very inefficient. Another problem
was the segmentation, in relation to coordinate systems. For example, vessels that
travel from Tokyo to Rotterdam will have to be treated differently than local jour-
neys. Also, there were implications regarding how to include the other attributes—
like speed and ROT—into the images. Because the different attributes would be
included into multiple channels in the image, resulting in even more wasted space.
Also, the channels would need separate normalization operations.

25

26 experiments and discussion

Figure 5.2: A sequence of rasterized trajectory segments.

Treating fixed sized segments as vector inputs was abandoned because of the fact
that trajectories can get very long. Long sequences can be processed successively,
but vectors are treated as a whole. Long trajectories can therefore occupy a lot of
memory. A major problem that this representation shares with the raster image
representation is that there is no indication of time direction in the data structure.
A time feature could be added, but can not directly be exploited by the types of
NN’s that would fit these representations. Additionally, there is no obvious way of
dealing with temporal gaps. In this sense, the problem of trajectory representation
is very much related to Section 6.3, because it is reciprocal to the type of network
that is being used.

None of the above methods are however refuted to be working alternatives to
the one that was eventually used. They may work, but for the logical reasons that
were presented, another path was taken. Unfortunately, testing all the methods was
simply not possible within the time provided for the project. Because each method
would need its own infrastructure and has its particular implications. Therefore,
the trajectories are to be treated as sequences.

5.2 modeling fishing activity
One of the experiments conducted in this project is the modeling of fishing activity.
As discussed in Chapter 1, this is one of the key challenges in marine conservation
and a very relevant problem. Therefore, it seems like an interesting opportunity to
apply the proposed methodology to this problem. The objectives of this experiment
are straightforward; given a historical trajectory of a fishing vessel, where did the
vessel fish? By creating a universal model, any trajectory can be analyzed for fishing
activity. As well historical data sets can be processed for statistical modeling, as near
real-time data to leverage detection systems.

5.2.1 Data ingestion of real world data

The AIS data set was supplied as a raw ASCII file. Typically, each line of characters
is an encoded AIS message. However, multi-line messages also occur. As discussed
in Section 2.2, the payloads of the messages have to be decoded using specific trans-
lation rules. Python was used to decode all the raw messages—including multi-line
messages—and import them into a PostreSQL database. The Python script prints
COPY statements which are redirected to psql.

Static- and dynamic message tables had to be loaded separately because of differ-
ent table structures. However, the same algorithm to load the data could be applied.
The raw AIS messages are comma-separated and contain the information whether
they are multi-line or single-line. Errors in payloads reportedly occur at a frequency

5.2 modeling fishing activity 27

DBMS table # tuples data volume

global dynamic 1 077 164 571 77 GB
global static 65 860 880 8 546 MB
dutch fishing dynamic 18 918 602 1 381 MB
dutch fishing static 1 651 620 211 MB

Table 5.1: Statistics of various AIS tables.

of about 0.3% [Raymond, 2016]. Because of this, try/catch statements were used in
the decoding methods. The final frequency of errors resonated with the literature.

Algorithm 5.1 shows how multi-line messages were included in the decoding
process. The algorithm uses a queue to keep track of multi-line messages. The mes-
sages that are distributed over different lines carry the same message ID. According
to their number and total amount of messages, the payloads are concatenated and
decoded after the final message of a sequence was found.

Algorithm 5.1: Decode raw AIS
Input: A raw ASCII file S
Output: Tuples with decoded attributes for the database

1 begin
2 Q← {};
3 for line ∈ S do
4 ID, number, total, payload← parse(line);
5 if total < 2 then
6 yield decode(payload);
7 else
8 if ID in Q then
9 if number = Q[ID][total] then
10 payload← Q[ID][payload] + payload;
11 yield decode(payload);
12 else
13 Q[ID]← Q[ID][payload] + payload, total;
14 continue;

15 else
16 Q[ID]← payload, total;
17 continue;

The data was loaded locally on a remote server (see Chapter 4 for details on the
hardware). First, all the dynamic and static messages were loaded into the database.
This drastically decreases the data volume. From then on, sub selections could be
made using those tables. For example, for one of the experiments, only data of
Dutch fishing vessels were used. This sub set was filtered from the main tables.
Table 5.1 shows some statistics about the sizes of the data sets.

When the messages were decoded and inspected in QGIS it became clear that
there is a significant gap between data and reality. First of all, not all ships carry
AIS transponders. Even if they are obliged to carry one, they can still turn it
off. Secondly, the data has to be collected by a party which owns or hires radio-
communication antenna’s and satellites. The antenna’s are distributed over coastal
area’s and thus have a limited reception radius. Also, the party might not own
antenna’s in a region that one is interested in. When a NN is trained, it has to ap-
proximate reality. Therefore, the data also has to approximate reality. For the means
of this project, a higher and more stable sampling rate would

28 experiments and discussion

While engaging into the experiments, this was a big problem. One could say
that all the data gaps and errors are part of the system, and including them in the
samples is more logical than ignoring them. However, attempts to train with raw
data including all the gaps and errors was very fruitless. Only spatiotemporally
continuous trajectories showed promising results.

Initially, it would have been interesting to experiment more with the static mes-
sages. For example, one of the ideas to experiment with is including the destination
of vessels as input data. It seems that this could increase the predictive performance
in a vessel type classification problem. By looking further in to this it became clear
that this was a difficult implementation. One problem is that boatmen enter the
static information into the system themselves. This results in different occurrences
of the same object in the system. Table 5.2 demonstrates different string representa-
tions of the same destination that were entered into the system.

IJMUIDEN
_IJMUIDEN___________
IJMUIDEN__
IJMUIDEN____________
IJMUIDEN___________B
IJMUIDEN,_HOLLAND___
IJMUIDEN_NL_______
IJMUIDEN-NL_______
IJMUIDEN(NL)________

Table 5.2: Different occurrences of destination ‘IJmuiden’, where _ denotes a space character.

Of course, this problem could be solved by using regular expressions to filter
strings. But additionally there are some problems that can not be solved by this
solution. Most of the destination fields were not entered at all. It could also be the
case that the destination that was entered is not correct or was not updated after
arrival. Many of the entered destinations are random characters or nonsensical
information (see Table 5.3).

Not only the static table contains these kind of errors, but also the dynamic table.
Some of the vessels that were selected for training samples had defect speedometers
and most of the vessels did not include the ROT. Fortunately, these features could
be extracted from the coordinates. This complicated the creation of samples even
more, because one speed or ROT had to be extracted from two or three consecutive
coordinates. It also involved dividing by time, which resulted in the necessary zero
division errors.

5.2.2 Data prepocessing

The data preprocessing of real data is a challenging task. The main reason for this
is that the data is subject to damage or errors in equipment and modification by
boatmen. AIS can be deliberately turned off, leaving large spatiotemporal gaps in
the sequences. Some of the vessels may not have been active in the time interval
in which data is available. Others might have been used for other purposes then
fishing. For example, some of the vessels that were labeled as fishing vessels in

&ISHING GREUNDS_____
LBH[E4H/ZZ/$X
OKTOBERFEST
/_1DJE_VAN_DE_ZAAK__

Table 5.3: Some random or erroneous destinations entered by fishermen, where _ denotes a
space character.

5.2 modeling fishing activity 29

Fishing gear # training samples # test samples speed profile

Mechanical dredge 96 16 0.2-1.5 knots
Bream trawler 96 16 2.5-5 knots
Bream trawler 225 kW+ 96 16 2.5-7.5 knots
Otter trawler 96 16 2-4 knots
Total 384 64

Table 5.4: Data set composition.

AIS were stationed in harbor for 3 months. Others were only active in large rivers
like the river Rhine, were a fishing activity like beam trawling is not particularly
prevalent. These difficulties do cause problems for training. When certain behavior
has to be modeled, the NN has to see input examples that actually contain this
behavior.

An additional problem is that filtering out these bad examples is hard to auto-
mate. The volume of the data is large and the degree of activity in AIS equipment
can change over time. Designing rule-based algorithms which segment or select spa-
tiotemporally continuous trajectories can get complex quickly and is out of scope
for this project. Therefore, some simple steps were taken to create a selection of
samples.

First of all, the data was ordered by MMSI and time, creating continuous trajecto-
ries per vessel. Then, the trajectories were simply ordered by the number of points
they contain. The trajectories which were dense enough were inspected in QGIS. It
then became apparent that the vessels can show highly different behavior. Unfortu-
nately, sub classes of fishing vessels are not included as a field in AIS. Differentiating
in types of fishing vessels is important for training, because the behavior that vessels
show are specific to their vessel type.

To accomplish this goal, Niels Hintzen from Wageningen Marine Research was
consulted. The list of current MMSI numbers was joined with vessel monitoring
system (VMS) data to add the specific fishing gear and engine power of the vessels.
This information was used to group the vessels create samples. The trajectories
of vessels with different gear types were inspected in QGIS and a sub selection
was made, to exclude sparse trajectories. A number of fixed length trajectories was
randomly sampled from the vessels, resulting in the data set which is demonstrated
in Table 5.4. (the speed profiles will be discussed in the following paragraphs)

Fishing vessels with different gear types have different modi operandi. For exam-
ple, mechanical dredge fishing is conducted at a lower speed than beam trawling.
225 kW+ indicates that these type of vessels have larger engines, and thus have a
larger operational radius. The samples in the test set were taken from other vessels
than the samples in the training set, to eliminate any biases in the training process.

One of the assumptions that was made for this experiment is that including ex-
ternal data which correlates with behavior can increase the predictive performance
of a NN. Following the methodology in Figure 3.1, that data was merged with the
training data in this step. Bathymetry data was chosen to test with, based on the
hypothesis that vessels can only fish on tracks with constant ocean depth. The data
format was delivered in a raster file and was joined with the samples in QGIS.

To apply supervised within-trajectory classification to this data, the samples have
to be labeled. The problem is, that these labels do not exist. And as it turns out, they
are hard to create. The current research uses simple rule-based algorithms based
on speed ranges of vessels. If the vessel is cruising within a certain range of speed,
it is presumably fishing. Speed is the only dimension that is currently being used.
However, fisheries researchers are also looking into other factors, like rate of turn
and soil morphology. The samples were therefore labeled with the defined speed
ranges per fishing gear. This information was gained from Wageningen Marine
Research. The speed profiles are included in Table 5.4.

30 experiments and discussion

X
(8, 2048, None)

LSTM
Sigmoid

(8, 2048, 1)
Y predicted
(8, 2048, 1)

Y true
(8, 2048, 1) Binary cross-entropy loss

Bidirectional LSTM
(8, 2048, 64)

seq2seq

Figure 5.3: Network configuration for supervised within-trajectory classification of fishing
activity.

The last step in the data preprocessing was to transform, normalize, clip and
remove any outliers if necessary. The absolute coordinates were transformed into
relative movement vectors dx and dy to remove the bias of absolute space. The ab-
solute location should not have an influence on the prediction whether the vessel
is fishing or not. All the attributes were normalized to a 0-1 scale. A time attribute
was added, to give the network a handle on temporal gaps in the data. Time data of
the 24-hour scale was transformed into two coordinates, to add cyclical continuity.
Because of GNSS errors, a smoothing filter had to be applied to the relative move-
ment vectors. To accomplish this, the outliers were replaced with the values of a
simple averaging kernel. Finally, the samples were stored as binary files, ready to
be used as input for the NN.

5.2.3 detecting fishing activity

To design a network to detect fishing activity, the blueprint of Figure 3.5 from the
methodology was used. The desired output of this experiment is a sequence of class
probability distributions, i.e. a pointwise classification. Figure 5.3 demonstrates the
final configuration of the NN that was created. Each rectangle represents a layer
(including input- and output layer) and includes the shape of the output of that
layer. The shape is simply a tuple containing the number of elements per dimension.
When a shape contains the keyword None, it means the number of elements in that
dimension is not defined. The dimensions represent (samples, time steps, f eatures),
thus the first number is the batch size. Sometimes, additional relevant information
is included in the diagram, like the activation function. Also, the loss function is
added.

A sequence length of 2048 time steps was used because on average this time
interval spans enough variability in fishing activity. Making the sequence length
longer cuts the computational efficiency and can give the NN a hard time to learn.
The feature dimension is undefined, because multiple subsets of attributes were
used train different networks. A batch size of 8 is quite small, but the largest that
was computationally possible. A larger batch size can be very memory hungry—
especially with larger sequence length—as a batch has to be computed in a single
pass.

The rest of the network in Figure 5.3 shows that the first layer is a bidirectional
LSTM, that converts the input sequence into another sequence with 64 abstract fea-
tures. The last hidden layer converts this intermediate output into a binary se-
quence, using an LSTM layer. All the LSTM layers in this project use the default tanh

activation function, with exception of the last layer in this network. A sigmoid
function was applied to yield numbers between 0 and 1. This is not exactly a class
probability distribution as formulated in Figure 3.5, but because there are only two
classes of behavior (i.e. fishing and not fishing) this is possible. This also simplifies
the labeling process. The output y predicted can be compared to the ground truth
y true. This is done with binary cross-entropy loss. Also, all the networks in this
project were optimized using Adam, because its learning rate is self adaptive.

5.2 modeling fishing activity 31

Figure 5.4: Training and validation loss, and accuracy after 10 epochs, batch size 8.

Subset Loss Accuracy Precision Recall F1

dx, dy 0.22 0.93 0.86 0.95 0.90

Speed, ROT, time, bath 0.13 0.95 0.92 0.96 0.94

Speed 0.14 0.95 0.91 0.98 0.94

ROT 0.21 0.91 0.83 0.97 0.89

bath 0.66 0.62 0 0 NaN
Speed, ROT, bath 0.15 0.96 0.91 0.98 0.95

Speed, ROT, time 0.12 0.96 0.92 0.98 0.95

Table 5.5: Evaluation of test data for various networks. ROT indicates the rate of turn and
bath indicates bathymetry.

Overall, this network is quite simple and not very deep (the deepness of a network
expresses how many layers it contains). However, training time took about 1 hour
for 10 epochs. The learning process is depicted in Figure 5.4 (using only dx and
dy features, other successful subsets look equivalent). Because the batch size was
small, the number of epochs could be reduced. The graph looks healthy, because the
loss decreases and the accuracy increases. Training and validation metrics do not
differ too much, which means the network is generalizing correctly. The validation
metrics are a bit higher than the training metrics. This could result from underfitting
(increasing the amount of neurons can solve this), however this phenomenon seems
to disappear near epoch 9.

After training, the test data was evaluated for all the different networks. Each
network was trained with the same parameters as reported above, but with different
subsets of features. Table 5.5 shows an overview of evaluation metrics for these
various subsets. The first thing that comes to mind while looking at the evaluation is
that bathymetry scores low on all metrics. This can not directly reject the hypothesis
of external data and does not mean bathymetry has no predictive power. Obviously,
using only speed works well, because the network was labeled using this feature.
Furthermore, the rate of turn does a surprisingly well job at distinguishing between
fishing and not fishing. Overall, apart from bathymetry, all networks all score well

32 experiments and discussion

at the metrics. There is a structural imbalance between precision and recall, where
the precision scores lower. This means the network is better when it classifies no
fishing activity than when it does classify fishing activity.

The low added value of bathymetry data was probably caused by the lack of
data in harbors. The harbors of fishing vessels are located just out range for the
bathymetry area. As there were many samples distributed over multiple harbors it
was hard to automatically set interpolated bathymetry values for the data points in
harbors. Therefore NULL values were used for those points. It was assumed that
bathymetry data was not needed in harbor area’s anyway. Because the ship is not
moving in the harbor and this should be enough information for the NN to classify
behavior. In any case, this method is either flawed or bathymetry is just not a good
predictor for fishing activity.

As discussed before, the task of labeling the trajectories for fishing activity was
an obstacle in the research. A couple of shortsighted assumptions were made prior
to diving into this effort. One assumption was that fishing activity is visible geo-
metrically and therefore can be labeled by looking at it. This assumption is wrong.
Because it turned out that it is primarily vessel speed and to a certain amount the
rate of turn which are predictors for fishing activity. The second assumption was
that no domain knowledge is needed to label the data. This statement was very
quickly refuted by trial. Another faulty assumption was that the samples could
be labeled by segment instead of by point. This is wrong, because the transitions
between fishing and other activity is not regular. Implementing this method would
therefore cause loss of resolution.

In hindsight, it is a pity that there is no correct labeled data available for this. The
experiment right now just learns the simple speed profiles and adjusts those to new
trajectories. One might argue that using a NN for this simple task is an overkill and
not worth the effort. On the other hand, the network can process many trajectories
of different fishing gears without the need of any prior knowledge. It can also use
only one dimension like ROT and still do a reasonable job.

5.3 supervised sub-trajectory classification

The previous sections described an experiment for supervised within-trajectory clas-
sification. A simpler task is to conduct classification between trajectories. A problem
that fits this part of the methodology—like detecting fishing activity—is the mod-
eling of vessel types, based on their trajectory. The objective is to to distinguish
different types of fishing vessels (or other types of vessels, for that matter). To test
this method, synthetic data was used.

5.3.1 Data ingestion of synthetic data

The synthetic data was created directly, without storing it in a database. However,
the trajectories were still preprocessed and stored as separate files. While creat-
ing the data it was attempted to mimic some of the typical patterns in real world
vessel trajectories. The trajectories contain only a spatial component and no fur-
ther attributes. One parametric algorithm was made, which can generate unique
trajectories of different classes.

Figure 5.5 shows 3 trajectories generated with different parameters in the algo-
rithm. Each trajectory contains 50 data points with equal distances (although this
could be changed, see Chapter 6). By looking at the trajectories it is clear that they
show different geometrical behavior. It is now the objective of a NN to model this
behavior.

The trajectories were transformed into sequences of dx and dy vectors and nor-
malized, to remove the absolute space component. This was done because there is

5.3 supervised sub-trajectory classification 33

Figure 5.5: 3 trajectories generated in 3 different classes. From left to right, class A, class B
and class C.

no correlation between location and behavior (of course, this is not the case with
real data, where some vessel behavior might correlate to absolute space). Normal-
ization is a somewhat ambiguous term, which in this case refers to standardization.
Standardization is transforming the data so that it has a zero-mean and a unit stan-
dard deviation. For training, 1000 trajectories per class were generated, with a total
of 3 classes. Another 200 trajectories per class were generated for testing purposes.

The process of creating synthetic data faced less technical complications. This is
mainly because the whole data cleaning part could be skipped. Besides, a connec-
tion to a database was not necessary. The big question concerning the synthetic
data is whether it is complex enough to prove the functioning of various networks.
To avoid complicating things any further, a simple data generation algorithm was
chosen to start with.

The trajectories in Figure 5.5 mimic geographical trajectories, but are very limited.
They only contain spatial information as coordinates, and no additional information
which AIS offers. In this sense, the trajectories only look like real vessel trajectories
from a geometrical perspective. However, there is another problem still. The eu-
clidean distances between all coordinates are constant, which means the trajectory
is actually 1-dimensional. The current synthetic trajectories could be reduced to
sequences of changes in angle and still contain the same information.

5.3.2 Training and results

Figure 5.6 shows the final configuration of a network to classify synthetic trajecto-
ries. The whole setup was created according to the blueprint of Figure 3.2. Because
the sequence length of the synthetic trajectories is much smaller, a large batch size
of 256 could be chosen. This allows to speed up the training and lets the network
generalize.

This time, the first LSTM layer is a sequence to vector layer. From there on, the
network continues as a dense network, with a softmax activation on the output.
The softmax function transforms the output of the previous layer in a probability
density distribution. Because there are three classes, categorical cross-entropy was
applied.

X
(256, 50, 2)

LSTM
(256, 32)

sequence to vector

Softmax
Dense
(256, 3)

Y predicted
(256, 3)

Y true
(256, 3) Categorical cross-entropy loss

Figure 5.6: Network configuration for supervised sub-trajectory classification.

34 experiments and discussion

Figure 5.7: Training and validation loss, and accuracy after 400 epochs, batch size 64.

Figure 5.7 illustrates the training process. The network was ran for 400 epochs,
which was more than enough to let the loss converge. It seems like there is some
overfitting, however the accuracy for the validation data still look good. Table 5.6
shows the evaluation of the test data. A simple network was sufficient to classify
almost all test samples correctly.

Loss Accuracy Precision Recall F1

0.12 0.98 0.97 1 0.99

Table 5.6: Evaluation of test data for supervised sub-trajectory classification of synthetic data.

5.4 modeling vessel types

An excellent experiment to test the ability of NN’s to model behavior in vessel trajec-
tories is modeling vessel types. In this supervised experiment, individual trajecto-
ries were classified into a fixed amount of possible vessel types. The types that were
used for this experiment are cargo, tanker, fishing, tug and passenger vessels. After
training the network, it should ideally be able to transform an arbitrary trajectory
of a fixed size into a probability density vector, which represents the vessel type it
belongs to.

5.4.1 Data ingestion of real world data

The data ingestion phase of this experiment overlapped for a great part with the
process described in Section 5.2.1. The only particularity is that the trajectories of
different classes had to be compiled in a balanced data set. The labels of the vessel
types which were described above are already present in the AIS data.

5.4 modeling vessel types 35

First, an equal amount of distinct ships per vessel type was selected. In this
process, the number of coordinates per vessel in the data base was counted and
classified in bins per 10,000, up to over 100,000 points. Ships containing less than
10,000 coordinates were discarded, as they did not contain enough points to sample
from. In general, vessels with more points tend to show less activity than vessels
with less points. This is because they leave on AIS all the time, even when sitting
still in harbor. To rule out any bias during training, not only where the samples
distributed equally over vessel types, but also over the number of points. That is,
the distribution of samples from vessels of different bins is uniform.

The complete trajectory per vessel was extracted from the database. Each time a
number of non-overlapping samples of size 2000 was taken from random locations
in the trajectory. Because of this, vessels in higher bins yielded more samples. This
caused problems for creating a partition for train, validation and test data (split as
70/15/15). The partitions could not contain overlapping ships, as this causes the
network to train in a biased setting. After shuffling with the amounts of vessels per
type, bin and partition, a compromise was reached while containing balance in all
three factors. In the end, each vessel type contained 8,000 samples in the training
set. This should be more than enough to train a network and let it generalize
properly.

5.4.2 Data preprocessing

The data preprocessing in this experiment was largely conform Section 5.2.2. An
addition was that a median filter of size 3 was applied to the raw coordinates. As
this data set is much larger than the fishing data set of Section 5.2.3, this was a good
solution to automatically remove outliers. After this, the relative movement vectors
were extracted and standardized.

As many of the samples showed inactivity for the greatest part of the trajectory,
some had to be removed. This is because the network might see inactivity as a
feature of a certain vessel type. Although this is not completely wrong—some
vessel types are more active than others—this habit obstructs learning. Therefore,
all samples which had less than 10% activity were removed from the data set. This
threshold is somewhat arbitrary, but left enough samples in the data set to work
with. Higher thresholds will remove a substantial proportion of the data set. A
simple stay-point detection algorithm was used to remove these points.

Figure 5.8: Training and validation metrics for 300 epochs, vessel type classification network.

36 experiments and discussion

5.4.3 Training and results

The partitions of the data were stored in a dictionary, containing the filenames of the
stored samples. From this dictionary, the program could generate random batches
of 64 samples for each iteration. Generating batches like this was necessary, because
it is simply not possible to initially load the full data set into memory. A batch size
of 64 showed the best results.

For the network, different methods were tried out incrementally. It would be
cumbersome to list all those results here, however some deserve attention. First of
all, it was found that using multiple stacked LSTM layers did not work at all. That is,
a sequence of LSTM layers. This particular network type took very long to run, and
did not learn. However, applying a single convolutional layer prior to LSTM layers
improved learning. A convolutional layer uses a sliding window similar to kernels
in image processing. The parameters of this layer sit in this sliding window.

After testing some more with this configuration it became clear that increasing
the size of the sliding window to up to 200 increased learning. Setting the step
size between 2 and 6 resulted in better learning. Stacking recurrent layers increased
training time but did not significantly improve results. It was also found that the
best results were produced by networks that had an equal amount of parameters in
the convolutional and recurrent layer.

The configuration that learned best had a sliding window size of 150 and step
size of 5, using 128 filters. The convolutional layer was followed by a recurrent
layer with 64 units. Only the convolutional layer applies a ReLU activation function.
A dropout rate of 0.2 was used in both layers. The training process with all metrics
is demonstrated in Figure 5.8. 300 epochs took approximately 14 hours to run.
Table 5.7 shows the final results of the test data. Figure 5.9 illustrated the confusion
matrix of the network. A confusion matrix is a nice way of visualizing how the
model confuses classifications in relation to each other.

Loss Accuracy Precision Recall F1

1.11 0.57 0.56 0.2 0.3

Table 5.7: Evaluation of test data for vessel type classification network.

It is visible in the confusion matrix that for example cargo and tanker vessels are
more often confused than other types. This makes sense, because these two types
are more similar than others. Also, it shows that the network quite confidently
predicts fishing vessels. Most of the fishing predictions are correct. On the other
hand, many samples that were actually fishing vessel were overlooked as something
else. It comes to notice that there is an overall tilt towards tug and passenger
predictions. This is presumable the case because these vessels are more inactivate,
and inactivity is a trend in the complete data set. All of the observations made
above explain the imbalance between precision and recall. In general, the reached
accuracy of 0.57 shows that the network can learn meaningful representations of
vessel trajectories.

5.5 unsupervised sub-trajectory classification

To the test methodology on unsupervised sub-trajectory classification, encoder-decoder
models were designed. One standard encoder-decoder model was designed and
tested and then expanded into its variational variant. The mathematical concepts of
these models are explained in Section 2.1.7. The same synthetic data as described
above was used in these experiments.

5.5 unsupervised sub-trajectory classification 37

Figure 5.9: Confusion matrix of test data, vessel type classification network. X-axis shows
the predicted class, Y-axis shows the true class.

X
(64, 50, 2)

Bidirectional LSTM
(64, 256)

sequence to vector

Bidirectional LSTM
(64, 256)

sequence to vector

Sum
(64, 256)

Dense
output: z
(64, 64)

Repeatvector
(64, 50, 64)

Bidirectional LSTM
(64, 50, 128)

vector to sequence

Bidirectional LSTM
(64, 50, 128)

vector to sequence
Sum

(64, 50, 128)
TimeDistributed

Dense
(64, 50, 2)

MSE loss

Figure 5.10: Network configuration for standard encoder-decoder model.

5.5.1 Standard encoder-decoder model

To design this network, the methodological blueprint of Figure 3.3 was used as
a guideline. A bidirectional LSTM network was chosen (see Section 2.1.5), to use
as many information of the trajectory as possible. All the activation functions in
the network are tanh functions. Different amounts of neurons per layer, epochs
and batch sizes were tested. This network has to reconstruct the input after it
was compressed into a single vector (the bottleneck). Therefore, it needs more
parameters than the previous networks. The final configuration is illustrated in
Figure 5.10.

It is clear that this network is more elaborate. The first layer is a dual bidirectional
LSTM layer which converts the input into a vector. The outputs of these layers are
summed. The network continues to propagate the signals through dense layers.
After this, the vector is converted back into a sequence and is processed by two
more bidirectional LSTM layers. In this fashion, the original input is reconstructed.
The loss function can be a simple MSE loss.

38 experiments and discussion

Figure 5.11: Training and validation loss for 500 epochs of standard encoder-decoder model.

Finding the best configuration for this network was harder, because it took longer
to train. Therefore, it was first attempted to overfit on one sample, gradually adding
different classes. The reconstructions were inspected in matplotlib, to check if the
network was able to make proper reconstructions. When this worked, the network
was expanded. Dropout with 10% was applied to the recurrent layers. This is a
setting which stochastically ‘drops out’ a percentage of the inputs at each iteration.
Dropout can reduce overfitting.

Figure 5.11 shows the training and validation loss over 500 epochs. Training took
approximately 4 hours. The loss is still not completely converged at epoch 500, so
training it for more epochs could improve it. Instead of evaluating with the usual
metrics, the latent vectors had to be inspected. However, the latent space is 64-
dimensional. Therefore, a dimensionality reduction algorithm has to be used to be
able to plot the vectors in 2 dimensions. To do this, t-SNE was applied. Figure 5.12

demonstrates the latent space in 2 dimensions. Each data point in the plot is a
latent representation of a trajectory. The points are color-coded with their classes,
respective to Figure 5.5.

Figure 5.12 clearly shows clusters of trajectories of the same class. In particular,
class A and C seem to differentiate well, while B kind of sits in between. This makes
sense when looking at Figure 5.5. These latent representations can be clustered in
completely unsupervised settings, to look for patterns in the data.

Some attempts were made to process AIS data in an unsupervised setting for a
fishing gear classification task. The hypothesis was that a regular encoder-decoder
model of the likes of Figure 5.10 could be altered for the use of real data. The latent
space would then demonstrate the same clusters as in Figure 5.12, but the clusters
would represent fishing gears. Training this network took very long (around 8 hours)
and the trajectory lengths could not be preserved to 2048. Because of computational
burden they had to be reduced to 64. This is a problem because the temporal span
is too small. The trajectories will display behavior like ‘cruising straight’, ‘turning’
or ‘loitering’ instead of encompassing the behavior of different fishing gears.

Figure 5.13 and Figure 5.14 demonstrate the results of this experiment. While
training, the network systematically underfits the training data. The loss is still

5.5 unsupervised sub-trajectory classification 39

Figure 5.12: The latent representations of trajectories from the testing set, using t-SNE.

decreasing at epoch 100, but due to time limitations and computational resources
training for more epochs was not conducted.

The data points in latent space are much more mixed than the structured clusters
of the experiments with synthetic data. However, there are some clusters visible.
There is a clear accumulation of blue points, which are the mechanical dredges.
Also, some of the red points (otter trawlers) accumulate around the blob in the
lower left. Why this is the case is still unknown and should be further researched.

5.5.2 Variational encoder-decoder model

To create the variational version of an encoder-decoder the previous model was
expanded. Almost all layers of the network are the same, only the bottleneck looks
different. Also, the loss function had to be adjusted. In this case, latent output z
is not a regular layer. It is sampled from dense layers µ and σ, which represent
the means and variances for each dimension in latent space. The objective is find
out the latent distribution. During training, µ and σ are forced into a Gaussian
distribution. This is done by calculating the KL-divergence with a unit-Gaussian (0
mean, 1 standard deviation) and adding this to the regular reconstruction loss (see
Figure 5.15).

Figure 5.16 shows that after 700 epochs the loss is still not converging. This
network took approximately 8 hours to train and was very memory hungry. A batch
size of 32 was the highest possible batch size without triggering out of memory
errors. The loss is much higher, because the reconstruction term was weighted
relative to the KL-divergence loss. This is necessary to prioritize reconstruction. A
factor of the number of original dimensions of the input is the rule of thumb. This
model had a harder time reconstructing trajectories than the previous one. This is
simply because of the extra sampling layer and added loss term. This is also why
the network needed much more iterations to train properly.

Figure 5.17 demonstrates the trajectories of the test data in latent space. It is
directly visible that the data points are spread out normally. Along the same lines

40 experiments and discussion

Figure 5.13: Training and validation loss for encoder-decoder model of real world data.

of Figure 5.12, class A and C are very isolated. Class B floats in between the other
classes. But all categories occupy distinct area’s. The latent space is now continuous
and can be explored for variations of the input data. Figure 5.18 shows some of
these variations. The blue trajectories were passed through the network to retrieve
the parameters of their latent distributions. From these parameters, a new vector
z was sampled, which could be decoded by the decoder part of the network. The
result is the yellow trajectory. As opposed to the previous networks, this network
has a generative aspect. It can generate new trajectories that categorically looks like
an input trajectory.

Some of the code that was used in this project is included in appendix A. It
contains code snippets of the vessel type classification problem and an example of
the variational model discussed above.

5.5 unsupervised sub-trajectory classification 41

Figure 5.14: Latent space of training data with trajectories of different fishing gears. The
blue, orange, green and red data points correspond respectively to mechanical
dredges, beam trawlers 225 kW+, beam trawlers and otter trawlers.

X
(32, 50, 2)

Bidirectional LSTM
(32, 256)

sequence to vector

Bidirectional LSTM
(32, 256)

sequence to vector

Sum
(32, 256)

Sampled
output: z
(32, 64)

Repeatvector
(32, 50, 64)

Bidirectional LSTM
(32, 50, 128)

vector to sequence

Bidirectional LSTM
(32, 50, 128)

vector to sequence
Sum

(32, 50, 128)
TimeDistributed

Dense
(32, 50, 2)

MSE loss

σ

μ

KL loss

Figure 5.15: Network configuration for variational encoder-decoder model.

Figure 5.16: Training and validation loss for 750 epochs and batch size of 32.

42 experiments and discussion

Figure 5.17: The variational latent representations of trajectories from the testing set, using
t-SNE.

Figure 5.18: Some variations of input trajectories, were the yellow trajectory is a generated
vector from the latent distribution of the blue trajectory.

6 C O N C L U S I O N A N D
R E C O M M E N DAT I O N S

The main objective of this project was to explore the use of NN’s to model the behav-
ior in vessel trajectories. The main research question states to what extent can neural
networks contribute to modeling the behavior in vessel trajectories? This question could
be partitioned in different topics, such as the representation and segmentation of
trajectories, different types of neural networks and their performance. The research
proposed an elaborate methodology which was tested on the basis of experiments.
Both AIS- and synthetic data were used to conduct these experiments. The results
and an overview of the implications were provided in Chapter 5. This last chapter
will first go over some of the conclusions that can be made. The main and sub
questions will be used as a guideline.

Each of the following sections will discuss a single sub question. After each
section, some recommendations regarding the conclusions will be made. The sub
questions were formulated prior to the design of the proposed methodology. There-
fore, some of the questions may be more relevant than others. Besides this—due
to gained knowledge over the course of the project—some questions can not really
be answered but rather guessed by logical inference. This resulted in some of the
choices that were made in creating a methodology. All in all, the research questions
can not be answered with the same simplicity as they were posed. Here follows a
quick overview of the sub questions:

• What is a good way to represent a trajectory for a NN and what features should be
included?

• How should the trajectories be segmented and how should the modeling be segmented?

• Which type of NN is fit to model the behavior in vessel trajectories?

• How well do NN’s perform at modeling the behavior in vessel trajectories?

6.1 trajectories
The data ingestion phase of this project was a really intensive and complex task to
accomplish. The data was in many ways a leading factor in how the experiments
were performed. Both the real world data as the synthetic data brought about their
own particular difficulties and limitations.

As there is very little research on the application of NN’s on trajectories, the prob-
lem of how to represent the trajectories had to be explored. NN’s can be designed
in a way that they are compatible to a certain data structure, but vice versa is also
the case. Therefore the following research question was stated: What is a good way
to represent a trajectory for a NN and what features should be included?.

Regarding the question of what features should be used, there is little gained
from the experiments. This is because it is highly dependent on what problem is
trying to be solved. The sequences can be expanded to as many dimensions that are
available. Whether which ones are successful or not, is determined by the degree of
correlation to the phenomenon that has to be modeled. For example, the inclusion
of bathymetry data was not successful. But the reason for this is either; that it was
implemented in a wrong way; that there is no correlation between bathymetry and
fishing activity; or both.

43

44 conclusion and recommendations

The representation of spatial features is a more complex problem than the inclu-
sion of external data. Throughout the project, the only way the networks learned
properly, was by providing dx, dy vectors rather than x, y coordinates. Therefore, in
combination with the logical argument that absolute space does not influence pre-
dictions, was chosen to use relative movement vectors throughout the methodology.
This is counter intuitive to the concept of automatic feature design (see Section 2.1.1),
because it states that DL should be able to extract features from raw data [Goodfel-
low et al., 2016]. The same applies to features like speed and ROT, which were
all manually designed from the coordinates or already included through AIS. In
this aspect, the sub question remains theoretically unanswered. Nonetheless, it can
be ascertained that providing the spatial information as relative movement vectors
works well from a practical stance.

As the handling of AIS data can get very complex it is desirable to propose a fully
automated interface for data representation. For the experiments, the data was
extracted from the database and than preprocessed for multiple times. It involved
switching between frameworks like QGIS, numpy and excel. This is very undesirable
in such a complicated problem. Ideally, there should be a central application which
lets data flow from the database to the NN. This application should offer various
options for how to represent the data. Including outlier removal, feature selection,
rolling window statistics, spatial filters, normalization, etc. This interface should
talk directly to the database. It can also save memory if it makes use of the data
generator class that keras offers. This would simplify things by a lot and saves time
for conducting the experiments.

Some problems regarding the synthetic data were already pointed out in this
paper. The main recommendation is to include a distance in the relative move-
ment vectors. Now, the synthetic data can be reduced to one dimension. It is also
preferable to make the trajectories more complex and longer. Adding complexity
to the trajectories could also result in more classes. Of course, this recommenda-
tion only holds when training with synthetic data is the only option. Training with
real data—either unsupervised or supervised with proper labels—is the best way
to further test this methodology.

6.2 segmentation
In some respects, the segmentation problem closely coheres with the data repre-
sentation. As seen before, some ways of representing the data put a constraint on
how segmentation should happen. Right from the start, decisions had to be made
about the length of the trajectories. This task brought about the almost philosophi-
cal question of what a trajectory actually is. From a practical point of view, this was
formulated as the following sub question: How should the trajectories be segmented
and how should the modeling be segmented?

The first term of the sub question focuses on how a trajectory is defined and used
as an input for a NN. The last term focuses on how the output should be related
to the input. For example, it could be desirable to give the network multiple small
trajectories of one vessel and get back one classification per trajectory. It could also
be desirable to give the network one continuous trajectory of one vessel and get
back a pointwise classification. Both methods sort of solve the same problem. What
was found in this project is that there is not one ‘best’ way of segmenting. Again,
it depends on the type of problem that needs to solved. Therefore, the proposed
taxonomy in Figure 3.1 was made.

Instead of choosing between sub-trajectory and within-trajectory classification,
both were implemented. Within-trajectory classification solves the problem of seg-
mentation, because segmentation is inherent to the training process. It however
lacks the ability of unsupervised learning (to the best of my knowledge). Sub-
trajectory classification solves this, because individual trajectories of predefined

6.3 neural networks 45

length can be projected onto latent space. The supervised variant of sub-trajectory
classification has the same holistic approach, the only difference is that labeled data
is available.

To summarize, there is no correct way to deal with the segmentation. If the
problem allows it and labeled data is available, let the NN do the segmentation
through within-trajectory classification. If this is not possible, domain knowledge
has to be taken into account. The behavior that needs to be modeled should be
present in the whole trajectory. Otherwise, the model will look for lower-level
behavior.

6.3 neural networks
In Chapter 2 was already stated that different NN’s exist for different types of infor-
mation. Different possibilities were therefore to be explored for the methodology.
One of the sub research questions therefore stated: which type of NN is fit to model the
behavior in vessel trajectories?

This question can only be answered in combination with the research question
from Section 6.1. Specifically, the data representation strongly suggests what type of
network should be used. If the data representation is a raster image, the most logical
decision would be to use a convolutional NN. If the inputs are simple vectors, a MLP

is the best choice. Consequently, because the trajectories were treated as sequences
the chosen networks were all RNN’s.

It can not be ruled out that other types of NN’s are also fit to model behavior in
vessel trajectories. However, the RNN most certainly seems like the most obvious
candidate for further research. Some promising results were presented in Chap-
ter 5, acknowledging the potential of this type of network. Nonetheless, only LSTM

networks were used. There also exist other types of RNN’s, like gated recurrent
units and even convolutional LSTM networks. These networks may be interesting to
explore in the future.

An idea is to remove arbitrary amounts of coordinates from the trajectories to let
networks train with data gaps. This experiment could tell something about the sig-
nificance of spatiotemporal discontinuous trajectories. By adding more dimensions
that resemble the real world data, better conclusions can be made.

6.4 performance
One of the most important sub questions states: how well do NN’s perform at modeling
the behavior in vessel trajectories? To answer this question, the experiments are treated
individually first.

The first experiment that was conducted was the detection of fishing activity.
Because of issues with the labeling of the data this experiment is a bit suspicious.
Almost all metrics score well above 0.85, which is a good performance for this
problem. But this is most probably the case because the labeling process was very
simplistic. This experiment would most certainly get more interesting with real
labeled data (e.g. from sensors on fishing gear). On the other hand, it is notable
that training this network with only ROT works well. But this is rather an insight
for fisheries studies than for this project.

The supervised sub-trajectory experiment with synthetic data scored very high
in performance. Although there were some problems with the synthetic data, this
performance shows that simple networks can model spatial behavior. In the same
way, the unsupervised experiments showed clear clusters of behavior.

Certainly the experiment with a variational encoder-decoder model was interest-
ing. Figure 5.18 shows convincing imitations of class trajectories. It is not yet clear

46 conclusion and recommendations

what this generative aspect could contribute to modeling behavior in vessel trajec-
tories. It is recommended to further look into what could be possible applications
for this tool. One suggestion is that it can be used to create realistic simulations,
generating variations of real vessel journeys. It might be of use in the military, for
spoofing convincing signals of moving objects in general. Generative adversarial
networks could also be explored for these kinds of applications.

Besides these well performances, the regular unsupervised experiment with real
data that was discussed in Section 5.5.1 did not get very good results. But the
network could still be ran for more epochs to check for improvement. Therefore,
all things considered, it can be carefully concluded that NN’s perform reasonable at
modeling behavior in vessel trajectories.

Finally, the experiments with real data were more complex that the ones with
synthetic data. Because there was more uncertainty in the real data. Numerous
times networks were trained to no avail, because of mistakes in the input data. But
the evaluation does not grant this information. The validation and test metrics are
the only handles in adjusting the network or input data to reach better results. If a
network does not learn, many things can be wrong with it. During the experiments
it was always firstly assumed that there is something wrong with the input data,
rather than with the network parameters.

Regarding some of the experiments with real data, better hardware with larger
networks could be tried. Figure 5.14 already shows some clustering. Increasing the
trajectory lengths and expanding the network could lead to a better result. Instead
of regular processors, GPU could be exploited for future experiments. This could
be useful because the tests can be conducted faster this way. If you have to wait
for 10 hours each time a network has to run, it can be tedious to rationalize the
effects of the hyperparameters. Also, it just limits the amount of tests that can
be run. Furthermore, it is highly advisable to keep a structured logbook of all
hyperparameters in combination with their results.

6.5 in general
Because the topic is new and not yet thoroughly researched, there are still many
directions to head. In general, the contribution of NN’s to modeling the behavior in
vessel trajectories has been found to be positive. In this fashion, it is advisable to
push forward some of the experiments that were done in this project.

While formulating the methodology it has been found that behavior can be mod-
eled within a trajectory or between different trajectories. These are two different
problems which can be solved by using DL. While doing this, it is best to treat the
trajectories as sequences. At this time, the best NN to process sequences is a recur-
rent NN. Therefore it can be concluded that LSTM networks are excellent candidates
for the job. In fact, by looking at some of the results, it can even be concluded that
LSTM networks certainly have potential for modeling the behavior in vessel trajecto-
ries.

With respect to segmentation, various conclusions can be made. First of all, NN’s
can be leveraged to deal with segmentation in within-trajectory classification. Sec-
ond, while dealing with sub-trajectory classification, the segmentation needs to be
done in a way that the segments encompass the targeted behavior. If the periodicity
of the behavior is one day, it is recommended to create segments of at least one day.
The longer the segments are, the more they will encompass high-level behavior. The
shorter they are, the more they will encompass low-level behavior. As of now, this
is the only rational justification to choose a length for the trajectories.

It is recommendable to further test the supervised methods of the methodology
using data with reliable labels. If these labels are not available, it is not realistic to
proceed training in a supervised setting. It could be interesting to treat this prob-
lem as a specific side-project. Hereby the main question should be how it would be

6.6 epilogue 47

possible to compile structured, reliable and labeled data sets for the purposes of ap-
plying DL to vessel trajectory data. This task should always involve domain experts,
to monitor the compilation process and if necessary label the data themselves.

In the famous review ‘Deep learning’, LeCun et al. [2015] states: ‘Unsupervised
learning had a catalytic effect in reviving interest in deep learning, but has since
been overshadowed by the successes of purely supervised learning. [...] we expect
unsupervised learning to become far more important in the longer term. Human
and animal learning is largely unsupervised: we discover the structure of the world
by observing it, not by being told the name of every object’. If this expectation is
true, it would be desirable to continue this research in two branches, a supervised
and an unsupervised branch. This way, the focus can be directly pointed at each
branch, without interference of its counterpart.

6.6 epilogue
This section is included to reflect on the graduation phase. It is a brief looking back
upon the way how was dealt with the project, in relation to the Master of Geomatics,
the field of geomatics in practice and society. This is a separate section because I
would like to express myself informally.

I started demarcating the problem of this thesis well in advance, about half a year
prior to the official start. The reason for this is that demarcation is not one of my
strong abilities. I thought that establishing the main problem and pinning it down
would avoid later complications with conceptual rumble. A large proportion of my
justification for the problem was societal relevance. The idea that research actually
contributes to a contemporary problem is very attractive.

There was however a logical error in my motives. I formulated the problem, but
had already predetermined how I was going to solve it: by the use of DL. This is
wrong, because when a problem is formulated you should look at many different
ways to solve it and then choose the best solution. During the process, I gradually
came to see that my reasoning was flawed. Eventually, I found out that the problem
was actually DL itself, or at least the lack of integration of it with movement data.
From then on, my focus was shifted to that direction. The fishing problem was not
completely abandoned as it could be used as a case study.

DL is becoming more and more an established field. This clears to air to explore
its potential merits in other disciplines. I think geomatics should be one of those
disciplines. Large amounts of geographical data, in great need of being analyzed is
indeed fertile ground for DL. The only question that remains is how to do it? I think
DL should be seen as a tool—like k-D trees, interpolation or spatial operations—
which has well proven itself being very effective at solving some hard problems in
other fields. On the other hand, DL as a hype presents itself as the solution to all of
our problems. Just like all other algorithms in geomatics, DL has only a limited set
of problems assigned to it which it can solve.

Many concepts in DL are actually borrowed from regular statistics and labeled
with jargon. Some of these concepts were treated during the first year of the master
of Geomatics. However, I think that it would be better if DL had a bigger seat at
the table. Not particularly in combination with movement data, as the topic is in
its infancy still. But the strength of DL could easily be demonstrated in an image
classification task like landslide detection. This is clearly a problem where DL could
have potential superiority over traditional methods.

All in all, this project was a nice opportunity to explore uncharted waters. As a
person who loves to learn new things and work practically, this graduation process
was very energizing at points in time. But as a person who finds it difficult to
highlight the common thread and shape an ongoing story, this project was much of
a learning experience. I think of it as the ultimate exercise, of which the output will
be of great benefit for further shaping my career.

B I B L I O G R A P H Y

Adolph, K. E., Cole, W. G., Komati, M., Garciaguirre, J. S., Badaly, D., Lingeman,
J. M., Chan, G. L. Y., and Sotsky, R. B. (2012). How do you learn to walk?
thousands of steps and dozens of falls per day. Psychological Science, 23(11):1387–
1394. PMID: 23085640.

Andrienko, N., Andrienko, G., Pelekis, N., and Spaccapietra, S. (2008). Basic Con-
cepts of Movement Data. In Mobility, Data Mining and Privacy, pages 15–38.
Springer Berlin Heidelberg, Berlin, Heidelberg.

de Souza, E. N., Boerder, K., Matwin, S., and Worm, B. (2016). Improving Fishing
Pattern Detection from Satellite AIS Using Data Mining and Machine Learning.
PLOS ONE, 11(7):e0158248.

ESA (2019). Satellite – Automatic Identification System.

Frentzos, E., Gratsias, K., Pelekis, N., and Theodoridis, Y. (2007). Algorithms
for Nearest Neighbor Search on Moving Object Trajectories. GeoInformatica,
11(2):159–193.

Gaffney, S. and Smyth, P. (1999). Trajectory clustering with mixtures of regression
models. In Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’99, pages 63–72, New York, NY,
USA. ACM.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Graser, A. (2019).

IMO (2013a). Regulations for carriage of AIS.

IMO (2013b). Solas Chapter V - Annex 17 - Automatic Identification Systems (AIS).

Jiang, X., Silver, D. L., Hu, B., de Souza, E. N., and Matwin, S. (2016). Fishing
Activity Detection from AIS Data Using Autoencoders. pages 33–39. Springer,
Cham.

Kroodsma, D. A. and Sullivan, B. (2016). Protecting marine World Heritage from
space. In UNESCO, THe Future of the World Heritage Convention for Marine Con-
servation, pages 35–47. Paris.

Kröse, B. J. A. and van der Smagt, P. P. (1991). An Introduction to Neural Networks.
The University of Amsterdam, Amsterdam, The Netherlands, fourth edition.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521:436–44.

Li, H., Liu, J., Liu, R., Xiong, N., Wu, K., and Kim, T.-h. (2017). A Dimensionality
Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory
Analysis. Sensors, 17(8):1792.

Li, X., Han, J., and Kim, S. (2006a). Motion-Alert: Automatic Anomaly Detection in
Massive Moving Objects. pages 166–177. Springer, Berlin, Heidelberg.

Li, X., Han, J., and Kim, S. (2006b). Motion-Alert: Automatic Anomaly Detection in
Massive Moving Objects. pages 166–177. Springer, Berlin, Heidelberg.

Mascaro, S., Nicholso, A. E., and Korb, K. B. (2014). Anomaly detection in vessel
tracks using Bayesian networks. International Journal of Approximate Reasoning,
55(1):84–98.

49

50 BIBLIOGRAPHY

Miller, N. A., Roan, A., Hochberg, T., Amos, J., and Kroodsma, D. A. (2018). Iden-
tifying Global Patterns of Transshipment Behavior. Frontiers in Marine Science,
5:240.

NOAA (2018).

Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature visualization. Distill.

Raymond, E. S. (2016). AIVDM/AIVDO protocol decoding.

Robards, M., Silber, G., Adams, J., Arroyo, J., Lorenzini, D., Schwehr, K., and Amos,
J. (2016). Conservation science and policy applications of the marine vessel
Automatic Identification System (AIS)—a review. Bulletin of Marine Science,
92(1):75–103.

Rosenblatt, F. F. (1963). Principles of neurodynamics. perceptrons and the theory of
brain mechanisms.

Russo, T., Parisi, A., Prorgi, M., Boccoli, F., Cignini, I., Tordoni, M., and Cataudella,
S. (2011). When behaviour reveals activity: Assigning fishing effort to métiers
based on VMS data using artificial neural networks. Fisheries Research, 111(1-
2):53–64.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In
Computer Vision and Pattern Recognition (CVPR).

Tang, W., Pi, D., and He, Y. (2016). A Density-Based Clustering Algorithm with Sam-
pling for Travel Behavior Analysis, pages 231–239.

Wang, W., Ramesh, A., and Zhao, D. (2018). Clustering of Driving Encounter Sce-
narios Using Connected Vehicle Trajectories.

Yao, D., Zhang, C., Zhu, Z., Huang, J., and Bi, J. (2017). Trajectory clustering via
deep representation learning. In 2017 International Joint Conference on Neural
Networks (IJCNN), pages 3880–3887. IEEE.

Zeiler D., M. (2012). Adadelta: An adaptive learning rate method. 1212.

Zheng, Y. and Yu (2015). Trajectory Data Mining. ACM Transactions on Intelligent
Systems and Technology, 6(3):1–41.

A E X A M P L E C O D E

This appendix demonstrates some of the code that was used during the project.
The code snippets are presented in order of execution. To start, these are all of the
imports used for data preprocessing:

from psycopg2 import connect # connection to database

from random import sample # for sampling from trajectory

from scipy.signal import medfilt # for median filter

import numpy as np # numerical operations

import matplotlib.pyplot as plt # for plotting

import seaborn as sns # for enhancement of plots

import json # to store dictionaries as JSON objects

import csv # to open csv files

import math # mathematical operations

import os # to walk directories

The first step was to query the occurrences of vessels per type in the static table:

query = """SELECT shiptype, COUNT(DISTINCT mmsi) cnt FROM ais_logs_static GROUP

BY shiptype ORDER BY cnt DESC;"""

From this query, the desired vessel types can be chosen. Then, all MMSI numbers
per type are exported to a JSON file in the following format:

mmsis = {

’cargo’: [477195700, 244730047, ...],

’tanker’: [477904500, 244620978, ...],

’...’: [...]

}

This file is used in the following step to store the amount of coordinates per MMSI

number as another JSON file, here to_disk. This time:

with open(’mmsis.json’, ’r’) as fh:

mmsis = json.loads(fh.read())

to_disk = {}

for key in mmsis:

query_format = """SELECT COUNT(mmsi) FROM ais_logs_dynamic WHERE mmsi = """

for mmsi in mmsis[key]:

query = query_format + str(mmsi)

with conn.cursor() as cur:

cur.execute(query)

contents = list(cur)

if contents:

count = contents[0][0]

else:

51

52 example code

continue

to_disk[mmsi] = count

I used the two produced JSON files—respectively mmsis and count—to plot the
distribution of coordinate occurrences per vessel type. To do this, I used this simple
script:

def view_histo(_type):

data = [count[str(_)] for _ in mmsis[_type]]

sns.distplot(data, bins=20, kde=False, hist_kws={’cumulative’: True})

plt.title(’Trajectory length cum. distribution {} vessels’.format(_type))

plt.xlabel(’Trajectory length’)

plt.ylabel(’Occurences’)

plt.show()

def view_plot(_type):

data = [count[str(_)] for _ in mmsis[_type]]

data.sort()

data = np.array(data)

points = []

for i in range(0, 120000, 2000):

length = len(np.where(data > i)[0])

points.append(length)

plt.ylabel(’Trajectory length’)

plt.xlabel(’Number of trajectories larger than y’)

sns.scatterplot(x=points, y=list(range(0, 120000, 2000)), label=_type)

for _type in [’cargo’, ’tanker’, ’fishing’, ’tug’, ’passenger’]:

view_plot(_type) # or

view_histo(_type)

plt.legend()

plt.show()

The information on the plots were used to look at the cumulative distributions,
the lower bound decides how many samples can be taken. At least N trajectories in
each class which contain more than 40000 coordinates were selected. Another JSON
file had to be created to subdivide the data into bins of the numbers of coordinates:

final_selection = {

"40000": { # coordinate bin (from 40000 to 50000 coordinates)

"0": [# vessel type

[

244660210, # mmsi

52994 # number of coordinates

],

[

244700712,

51120

],

... # other mmsi’s

]

"...": [...] # other vessel types

}

"...": {...: ...} # other coordinate bins

}

example code 53

Statistics on this file were used to create a partition for training, validation and
testing whilst preserving an even distribution along the bins and the vessel types.
Also, those 3 partitions contain distinct MMSI numbers. But first, the samples had to
be extracted from the database and saved as binary files. To do this, a lookup table
for data types per table column was created:

dtype_lookup = {’longitude’: float,

’latitude’: float,

’ts’: np.datetime64,

’speed’: float,

’turn’: float}

This table was used in the following function, which is a generator function that
yields a number of samples of a certain length from a specific MMSI number:

def extract_samples(mmsi,

length,

n_samples,

l_samples,

features=[’longitude’, ’latitude’]):

create query to retrieve data

query = """SELECT {0}

FROM ais_logs_dynamic

WHERE mmsi = {1}

ORDER BY ts ASC""".format(’, ’.join(features), mmsi)

create indices for sampling

indices = range(length - (l_samples - 1) * n_samples)

offset = 0

dim = (length,)

dtype = [(f, dtype_lookup[f]) for f in features]

create cursor

with conn.cursor() as cur:

cur.execute(query)

array = np.recarray(dim, dtype=dtype)

create array

for i, _tuple in enumerate(cur):

array[i] = _tuple

sample from array

for i in sorted(sample(indices, n_samples)):

i += offset

yield i, i + l_samples, array[i:i + l_samples]

offset += l_samples - 1

Another simple function was created to save a sample in binary format. While
doing so, the name of the file contains all the necessary information to plot the
sample on a map if desired:

def save_bin(trajectory, path, mmsi, n, start, end, _class, _range):

fname = path + ’_’.join(str(_) for _ in [int(mmsi), n, start, end, _class,
_range]) + ’.npy’

np.save(fname, trajectory)

print(’saved: ’ + fname) # if logging is desired

54 example code

The two previous function are used in the proceeding code snippet, to extract all
the samples from the database and store them as binary. The number of samples
extracted vary together with the bin size, these numbers were determined after
some calculations (there are Ellipsis in this example for demonstrative purposes,
don’t copy them. Parts of these code snippets are hardcoded):

open the final selection JSON file

with open(’final_selection.json’, ’r’) as f:

mmsis = eval(f.read())

root to store samples

ROOT = ’data/’

N_SAMPLES = {40000: 18,

60000: 28,

80000: 38,

100000: 48,

...: ...} # don’t use this code, this shows more bins are possible

l_samples = 2000 + 1 # because later will be diffed

for monitoring

ct = 1

total = 39770 # I hardcoded this ...

loop through all ranges

for _range in mmsis:

loop through all classes

for _class in mmsis[_range]:

loop through all mmsi’s and lengths

for mmsi, length in mmsis[_range][_class]:

mmsi = int(mmsi)

n_samples = N_SAMPLES[int(_range)]

loop through all generated samples

for n, (start, end, trajectory) in enumerate(extract_samples(mmsi,

length, n_samples, l_samples)):

print(ct, end=’/{}: ’.format(total))

save_bin(trajectory, ROOT, mmsi, n, start, end, _class, _range)

ct += 1

After the raw trajectories are saved as binary files, they were preprocessed. The
preprocessing consists of applying a median filter, extracting relative movement
vectors and standardizing. This code was used to apply the filter and extract the
relative movement vectors:

root = ’data/’

newdir = ’data_diffed/’

stds = [[’filename’, ’lon_std’, ’lat_std’]]

for i, fname in enumerate(os.listdir(root)):

array = np.load(root + fname)

array[’longitude’] = medfilt(array[’longitude’], kernel_size=5)

array[’latitude’] = medfilt(array[’latitude’], kernel_size=5)

lon = np.diff(array[’longitude’])

example code 55

lat = np.diff(array[’latitude’])

stds.append([fname, np.std(lon), np.std(lat)])

tbr = np.hstack((lon[:, None], lat[:, None]))

np.save(newdir + fname, tbr)

Standardization was done in the following script:

root = ’data_diffed/’

newdir = ’data_standardized/’

means = np.array([0., 0.])

div = 0

for fname in os.listdir(root):

traj = np.load(root + fname)

div += len(traj)

means += np.sum(traj, axis=0)

means /= div

stds = np.array([0., 0.])

for fname in os.listdir(root):

traj = np.load(root + fname)

stds += np.sum((traj - means)**2, axis=0)

stds /= div

stds = np.sqrt(stds)

for i, fname in enumerate(os.listdir(root)):

traj = np.load(root + fname)

traj = (traj - means) / stds

np.save(newdir + fname, traj)

Now, the last JSON file containing the partitions is created in the following for-
mat:

partition = {

"train": ["sample_name_containing_mmsi_etc.npy", ...],

"validate": [...],

"train": [...]

}

This file partition.json can be used to create a custom keras data generator, which
lets the samples flow from a directory (in this case for classification. If the model is
an autoencoder, (x, x) has to be returned):

ROOT = ’data_standardized/’

class DataGenerator(keras.utils.Sequence):

def __init__(self, list_IDs, batch_size, dim, n_classes, shuffle=True):

self.list_IDs = list_IDs

self.batch_size = batch_size

self.dim = dim

self.n_classes = n_classes

self.shuffle = shuffle

self.on_epoch_end()

def __len__(self):

return int(np.floor(len(self.list_IDs) / self.batch_size))

56 example code

def __getitem__(self, index):

indexes = self.indexes[index * self.batch_size:(index + 1) *
self.batch_size]

list_IDs_temp = [self.list_IDs[k] for k in indexes]

x, y = self.__data_generation(list_IDs_temp)

return x, y

def on_epoch_end(self):

self.indexes = np.arange(len(self.list_IDs))

if self.shuffle:

np.random.shuffle(self.indexes)

def __data_generation(self, list_IDs_temp):

x = np.empty((self.batch_size, *self.dim))

y = np.empty((self.batch_size), dtype=int)

for i, ID in enumerate(list_IDs_temp):

data = np.load(ROOT + ID)

x[i,] = data

y[i] = int(ID.split(’.’)[0].split(’_’)[4])

return x, keras.utils.to_categorical(y, num_classes=self.n_classes)

This class can then be used as such:

from my_datagen import DataGenerator

with open(’partition.json’, ’r’) as f:

list_IDs = eval(f.read())

params = {

’batch_size’: 64,

’dim’: (2000, 2),

’n_classes’: 5,

’shuffle’: True

}

training_generator = DataGenerator(list_IDs[’train’], **params)

Finally, a model can be created and used within the keras library. Here is an
example of the code that was used for the vessel type classification problem:

import os

import json

import random

import numpy as np

import sys

import keras_metrics as km

from keras.models import Model, load_model, Sequential

from keras.layers import Dropout, GRU, Activation, BatchNormalization, LSTM,

Input, Bidirectional, Dense, Conv1D, MaxPooling1D, Flatten

from my_classes import DataGenerator

from sklearn.metrics import confusion_matrix

with open(’partition.json’, ’r’) as f:

list_IDs = eval(f.read())

example code 57

params = {

’batch_size’: 64,

’dim’: (2000, 2),

’n_classes’: 5,

’shuffle’: True

}

training_generator = DataGenerator(list_IDs[’train’], **params)

validation_generator = DataGenerator(list_IDs[’validate’], **params)

test_generator = DataGenerator(list_IDs[’test’], **params)

test has to be ordered

test_generator.shuffle = False

test_generator.batch_size = 45 # has to be a factor of the total amount

important information

features = 2

timestep = 2000

simple model

model = Sequential()

model.add(Conv1D(filters=128, kernel_size=150, strides=5,

input_shape=(timestep, features)))

model.add(BatchNormalization())

model.add(Activation(’relu’))

model.add(Dropout(0.2))

model.add(GRU(64, recurrent_dropout=0.2)) # as faster alternative to LSTM

model.add(Dense(5, activation=’softmax’))

compile the model

model.compile(optimizer=’adam’, loss=’categorical_crossentropy’,

metrics=[’acc’, km.categorical_precision(), km.categorical_recall(),

km.categorical_f1_score()])

this prints a graphic representation of the model layers

print(model.summary())

generators are used to fit the model

history = model.fit_generator(generator=training_generator,

validation_data=validation_generator,

epochs=300,

use_multiprocessing=True,

workers=6,

verbose=2)

score = model.evaluate_generator(generator=test_generator,

use_multiprocessing=True,

workers=6,

verbose=0)

get the predicted and true labels

y_pred = model.predict_generator(generator=test_generator,

verbose=0).argmax(axis=1)

y_true = np.fromiter(test_generator.get_labels(), dtype=int)

show confusion matrix

print(confusion_matrix(y_true, y_pred))

print(score)

save model

model.save(’model.h5’)

58 example code

dump training history in file to plot if necessary

with open(’history.json’, ’w’, encoding=’utf-8’) as f:

json.dump(history.history, f, ensure_ascii=False, indent=4)

Creating a variational encoder-decoder model was slightly more complex. Below
is an example of how it could look like, using the synthetic data. This time, a
custom generator was not necessary because the data was small enough to fit into
memory. Also, instead of the Sequential model of Keras, the functional model was
used. This allows more flexibility in the architecture of networks:

import os

import numpy as np

from keras.models import Model

from keras.layers import LSTM, Input, Bidirectional, Dense, RepeatVector,

TimeDistributed, Add, Lambda

from keras import objectives

from keras import backend as K

set up placeholders

x_train = np.zeros((3000, 50, 2)) # hardcoded dimensions

x_test = np.zeros((600, 50, 2))

load training filenames

train_filenames = []

retrieve all the file names from directories, this time partition is in the

directory

root = ’data/train/’

for filename in os.listdir(root):

train_filenames.append(root + filename)

load test filenames

test_filenames = []

root = ’data/test/’

for filename in os.listdir(root):

test_filenames.append(root + filename)

load the data for training

for n, filename in enumerate(train_filenames):

x_train[n] = np.load(filename)

load the data for testing

for n, filename in enumerate(test_filenames):

x_test[n] = np.load(filename)

normalize data (hardcoded values)

x_train *= (1 / 0.7071)

x_test *= (1 / 0.7071)

network parameters

features = 2

sequence_length = 50

originial_dim = features * sequence_length

input_shape = (sequence_length, features)

intermediate_dim = 128

latent_dim = 64

example code 59

input layer

inputs = Input(shape=input_shape)

LSTM layers (note bidirectional wrappers)

x_1 = Bidirectional(LSTM(intermediate_dim, activation=’tanh’, dropout=0.1,

recurrent_dropout=0.1))(inputs)

x_2 = Bidirectional(LSTM(intermediate_dim, activation=’tanh’, dropout=0.1,

recurrent_dropout=0.1))(inputs)

summed layers

x_3 = Add()([x_1, x_2])

parameter layers

mean_vector = Dense(latent_dim, activation=’relu’)(x_3)

variance_vector = Dense(latent_dim, activation=’relu’)(x_3)

sampling trick

def sampling(args):

mean_vector, variance_vector = args

batch = K.shape(mean_vector)[0]

dim = K.int_shape(mean_vector)[1]

epsilon = K.random_normal(shape=(batch, dim),

mean=0., stddev=1.)

return mean_vector + K.exp(0.5 * variance_vector) * epsilon

latent vector

h = Lambda(sampling, output_shape=(latent_dim,))([mean_vector, variance_vector])

input shape for decoder

latent_inputs = Input(shape=(latent_dim,))

decoder

x_4 = RepeatVector(sequence_length)(latent_inputs)

LSTM layers

x_5 = Bidirectional(LSTM(latent_dim, activation=’tanh’, dropout=0.1,

recurrent_dropout=0.1, return_sequences=True))(x_4)

x_6 = Bidirectional(LSTM(latent_dim, activation=’tanh’, dropout=0.1,

recurrent_dropout=0.1, return_sequences=True))(x_4)

summed layers

x_7 = Add()([x_5, x_6])

timedistributed

outputs = TimeDistributed(Dense(features, activation=’tanh’))(x_7)

create models

encoder = Model(inputs, [mean_vector, variance_vector, h])

decoder = Model(latent_inputs, outputs)

outputs = decoder(encoder(inputs)[2])

autoenc = Model(inputs, outputs)

reconstruction loss

reconstruction_loss = K.mean(objectives.mse(inputs, outputs))

kl_loss = 1 + variance_vector - K.square(mean_vector) - K.exp(variance_vector)

kl_loss = K.sum(kl_loss, axis=-1)

kl_loss *= -0.5

60 example code

loss

loss = K.mean(kl_loss + (reconstruction_loss * 100))

compile model

autoenc.add_loss(loss)

autoenc.compile(optimizer=’adam’)

train network

history = autoenc.fit(x=x_train, batch_size=32, validation_split=0.2,

epochs=750, verbose=1, shuffle=True)

save model

encoder.save(’v_encoder.h5’)

autoenc.save(’v_autoenc.h5’)

decoder.save(’v_decoder.h5’)

After the network is trained correctly, the latent vectors can be retrieved and
plotted in 2 dimensions. This can be done with the following script:

from sklearn.manifold import TSNE

import matplotlib.pyplot as plt

import seaborn as sns

latent = encoder.predict(x_test)[2]

X = TSNE(n_components=2).fit_transform(latent)

A, B, C = X[0:200], X[200:400], X[400:] # hardcoded

plt.title(’Latent space’)

plt.axis(’equal’)

plt.scatter(A[:, 0], A[:, 1], color=’blue’, alpha=0.9)

plt.scatter(B[:, 0], B[:, 1], color=’orange’, alpha=0.9)

plt.scatter(C[:, 0], C[:, 1], color=’green’, alpha=0.9)

plt.show()

colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.

	1 Introduction
	1.1 General background
	1.2 Relevance
	1.3 Aim
	1.4 Research question
	1.5 Research scope

	2 Theoretical background and related work
	2.1 Deep learning and neural networks
	2.1.1 Concepts and terminology
	2.1.2 Mathematical concepts
	2.1.3 Training a neural network
	2.1.4 hyperparameters
	2.1.5 Recurrent neural networks
	2.1.6 Long short-term memory
	2.1.7 Encoder-decoder networks
	2.1.8 Validation and performance metrics

	2.2 Automatic Identification System
	2.3 Related work
	2.3.1 Analysis of movement data with traditional machine learning methods
	2.3.2 Analysis of movement data using neural networks

	3 Methodology
	3.1 Introduction
	3.2 Data ingestion phase
	3.2.1 Database
	3.2.2 Data preprocessing

	3.3 Design & train phase
	3.3.1 Sub-trajectory classification
	3.3.2 Within-trajectory classification

	3.4 Test & deploy phase

	4 Data, software and hardware
	4.1 Data
	4.1.1 AIS data set
	4.1.2 Synthetic data

	4.2 Software
	4.3 Hardware

	5 Experiments and discussion
	5.1 Data representation
	5.2 Modeling fishing activity
	5.2.1 Data ingestion of real world data
	5.2.2 Data prepocessing
	5.2.3 detecting fishing activity

	5.3 supervised sub-trajectory classification
	5.3.1 Data ingestion of synthetic data
	5.3.2 Training and results

	5.4 modeling vessel types
	5.4.1 Data ingestion of real world data
	5.4.2 Data preprocessing
	5.4.3 Training and results

	5.5 unsupervised sub-trajectory classification
	5.5.1 Standard encoder-decoder model
	5.5.2 Variational encoder-decoder model

	6 Conclusion and recommendations
	6.1 Trajectories
	6.2 Segmentation
	6.3 Neural networks
	6.4 Performance
	6.5 In general
	6.6 Epilogue

	A Example code

