

Delft University of Technology

MeetSafe
enhancing robustness against white-box adversarial examples
Stenhuis, Ruben; Liu, Dazhuang; Qiao, Yanqi; Conti, Mauro; Panaousis, Manos; Liang, Kaitai

DOI
10.3389/fcomp.2025.1631561
Publication date
2025
Document Version
Final published version
Published in
Frontiers in Computer Science

Citation (APA)
Stenhuis, R., Liu, D., Qiao, Y., Conti, M., Panaousis, M., & Liang, K. (2025). MeetSafe: enhancing
robustness against white-box adversarial examples. Frontiers in Computer Science, 7, Article 1631561.
https://doi.org/10.3389/fcomp.2025.1631561

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3389/fcomp.2025.1631561
https://doi.org/10.3389/fcomp.2025.1631561

TYPE Methods

PUBLISHED 13 August 2025

DOI 10.3389/fcomp.2025.1631561

OPEN ACCESS

EDITED BY

Christos Xenakis,

University of Piraeus, Greece

REVIEWED BY

Christoforos Ntantogian,

Ionian University, Greece

Vaios Bolgouras,

Unisystems, Luxembourg

*CORRESPONDENCE

Dazhuang Liu

d.liu-8@tudelft.nl

RECEIVED 19 May 2025

ACCEPTED 16 July 2025

PUBLISHED 13 August 2025

CITATION

Stenhuis R, Liu D, Qiao Y, Conti M,

Panaousis M and Liang K (2025) MeetSafe:

enhancing robustness against white-box

adversarial examples.

Front. Comput. Sci. 7:1631561.

doi: 10.3389/fcomp.2025.1631561

COPYRIGHT

© 2025 Stenhuis, Liu, Qiao, Conti, Panaousis

and Liang. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

MeetSafe: enhancing robustness
against white-box adversarial
examples

Ruben Stenhuis1, Dazhuang Liu1*, Yanqi Qiao1, Mauro Conti2,

Manos Panaousis3 and Kaitai Liang1

1Cybersecurity Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft

University of Technology, Delft, Netherlands, 2Department of Mathematics, SPRITZ Security and

Privacy Research Group, University of Padua, Padua, Italy, 3Faculty of Engineering and Science, School

of Computing and Mathematical Sciences, Center for Sustainable Cyber Security, University of

Greenwich, London, United Kingdom

Convolutional neural networks (CNNs) are vulnerable to adversarial attacks in

computer vision tasks. Current adversarial detections are ine�ective against

white-box attacks and ine�cient when deep CNNs generate high-dimensional

hidden features. This study proposes MeetSafe, an e�ective and scalable

adversarial example (AE) detection against white-box attacks. MeetSafe identifies

AEs using critical hidden features rather than the entire feature space.We observe

a non-uniform distribution of Z-scores between clean samples and adversarial

examples (AEs) among hidden features and propose two utility functions to

select those most relevant to AEs. We process critical hidden features using

feature engineering methods: local outlier factor (LOF), feature squeezing, and

whitening, which estimate feature density relative to its k-neighbors, reduce

redundancy, and normalize features. To deal with the curse of dimensionality

and smooth statistical fluctuations in high-dimensional features, we propose

local reachability density (LRD). Our LRD iteratively selects a bag of engineered

features with random cardinality and quantifies their average density by its k-

nearest neighbors. Finally, MeetSafe constructs a Gaussian Mixture Model (GMM)

with the processed features and detects AEs if it is seen as a local outlier,

shown by a low density from GMM. Experimental results show that MeetSafe

achieves 74%, 96%, and 79% of detection accuracy against adaptive, classic,

and white-box attacks, respectively, and at least 2.3× faster than comparison

methods.

KEYWORDS

adversarial attack, convolutional neural network, Gaussian Mixture Model, adversarial

example, local reachability density

1 Introduction

Deep neural networks (DNNs) have emerged as highly effective models in machine

learning (ML) tasks. Among DNNs, convolutional neural networks (CNNs) revolutionized

various computer vision applications, such as medical image recognition (Litjens et al.,

2017) and facial recognition (Zhao et al., 2003). However, the robustness of CNNs remains

a significant concern, as even a slight and imperceptible perturbations deliberately designed

to manipulate images can result in high misclassification rates (Szegedy et al., 2014).

Therefore, adversarial detections are in urgent demand to guarantee the integrity of CNN

models.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1631561
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1631561&domain=pdf&date_stamp=2025-08-13
mailto:d.liu-8@tudelft.nl
https://doi.org/10.3389/fcomp.2025.1631561
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1631561/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

A plethora of adversarial detections (Feinman et al., 2017;

Hu et al., 2019; Hendrycks and Gimpel, 2017; Raghuram et al.,

2021; Ma et al., 2018; Aldahdooh et al., 2022) have been proposed

to identify adversarial examples (AEs). However, these methods

remain vulnerable to white-box adversarial attacks (Carlini and

Wagner, 2017a; Athalye et al., 2018; Athalye and Carlini, 2018;

Tramer et al., 2020), which assume full access to the model and

training process. Several defenses (Raghuram et al., 2021; Hu et al.,

2019) have been developed against white-box AEs. They obscure

the detector’s gradients, leading to: (1) diminished security, as

gradient obfuscation is proven to be an ineffective strategy for

enhancing robustness (Athalye et al., 2018); and (2) inefficient for

large CNNs, as computing exact gradients becomes prohibitively

expensive.

It has been reported (Hendrycks and Gimpel, 2017; Aldahdooh

et al., 2022) that the integration of multiple detections to limit

adversary capabilities, a strategy termed “meet the defense”, is

promising in countering adversarial attacks. However, these studies

did not include any implementation or experimental results.

Indeed, exploiting synergistic effects of multiple detections is

challenging due to their ineffectiveness. For example, certified

methods (Weng et al., 2018; Raghunathan et al., 2018), a widely

studied adversarial defense that employs minimum distance

decoding (Tramer, 2022) for AEs detection, are generally effective

only for AEs with small ℓp distances from clean samples.

This limitation renders them ineffective against semantically

stealthy adversarial examples (Ghiasi et al., 2020), which achieve

substantially large but visually imperceptible perturbations by

manipulating image factors such as color or shadows. As such,

Ghiasi et al. (2020) show that any perturbation on semantic

attributes such as shadows is as effective as contrived noise.

However, the vast number of semantics in images renders

supervised detection inadequate for adversarial attacks (Zheng and

Hong, 2018) due to its limited generalization and dependence on

patterns specific to the existing dataset.

Meanwhile, many effective adversarial defenses (Zheng and

Hong, 2018; Feinman et al., 2017) fail to scale efficiently as CNNs

deepen and their number of parameters increases. For instance,

the full covariance matrix 6 in I-Defender (Zheng and Hong,

2018) scales as O(d2) w.r.t. the input dimension d of the hidden

features extracted by CNN. Similarly, an increase in the number of

features exponentially reduces the efficiency of Euclidean distance

computations, as noted by Feinman et al. (2017), due to the curse of

dimensionality. The complexity of distance calculation also impacts

density-based outlier detection methods, such as local outlier factor

(LOF) (Breunig et al., 2000), which require repeated distance

evaluations between data points and their neighbors in the feature

space.

This study proposes MeetSafe, a scalable and effective detection

for strong white-box adversarial attacks. MeetSafe selects critical

hidden features obtained by convolutional layers, applies feature

engineering techniques, and utilizes a Gaussian Mixture Model

(GMM) to estimate their distribution. AEs are then identified by

the GMM as outliers as they deviate from the distribution of benign

hidden features.

In detail, we first observe that the Z-scores of hidden

features from selected neurons are non-uniformly distributed

(see Figure 1b) in each CNN layer, with not all layers actively

extracting features from AEs (see Figure 3a–d). We propose

two utility functions to identify the layers most sensitive to

adversarial perturbations and the neurons with the largest Z-

score differences between benign and adversarial features. By

leveraging only the hidden features from the selected neurons,

we significantly reduce the feature dimension. Then, our GMM

estimates the distribution of selected features processed by three

feature engineering techniques: feature squeezing (Xu et al.,

2018), which compares the model’s predictions on the original

and feature-squeezed inputs;whitening (Hendrycks and Gimpel,

2017), captures the principal component of the covariance of

inputs; and LOF, which estimates the sparsity of images based on

their neighbors in the processed feature space. LOF is ineffective

and inefficient in high-dimensional spaces as increased sample

distances reduce critical feature impact and raise computational

costs for density estimation. To enhance LOF’s scalability in high-

dimensional feature spaces and reduce statistical fluctuations for

improved precision, we propose reachability density (LRD) for

local outlier detection. LRD iteratively selects feature subsets with

random cardinality and estimate the density of images based on

their k-nearest neighbors in the feature space. Finally, an AE is

identified if its sparsity, as estimated by the GMM, exceeds the

90th percentile. Experimental results on real-world datasets show

that MeetSafe attains a 74%+ detection accuracy against adaptive

adversaries, 96%+ against classic adversarial attacks, 79%+ accuracy

under white-box attacks, and at least 2.3× faster speed.

2 Related work

2.1 Notation

A deep neural network can be expressed as the mapping

function f (l)(X) :Rm → R
L, where the hidden units at layer l are

f
(l)
X ∈ R

L for the input X ∈ {D | D ⊆ R
m} in dataset D. For

simplicity, we define units of the last layer of this network (i.e.,

logits) to be zi ∈ Z(X) and the predictions to be yi ∈ Y(X).

Neural networks often minimize the empirical risk with a loss

function Lf (X) with a batch of RB×m as input. Our method also

utilizes GMMs for detection, which is a linear superposition of

Gaussians with the form N(X|µi,6i) where 6 and µ denote its

covariance matrix and mean, respectively. Each Gaussian has a

mixing coefficient πi that equals the probability p(ξi) of a latent

variable ξi.

2.2 Adversarial attacks

One can define at least three threat models for adversarial

attacks: the white-, gray-, and black-box scenario. The white-box

setting indicates that the adversary has perfect information about

the system. The detector should thus be deterministic for the

adversary (Athalye et al., 2018). A weaker assumption is a gray-box

model in which the attacker has no knowledge about the defenses.

Black-box attacks only assume knowledge of the output and input

space, possibly with access to a querying oracle. The empirical risk

of an actual threat is often measured with the ℓp-norm required by

adversarial attacks like the ones below.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

2.2.1 Fast gradient sign method (FGSM)
(Goodfellow et al., 2015)

FGSM is a one-step ℓ∞ perturbation toward the gradient of the

loss function ∇XLf . FGSMs perturbation is ǫ · sign(∇XLf), where ǫ

is the ℓ∞ norm of the perturbation. The method assumes linearity

in the proximate region of sample X.

2.2.2 Carlini & Wagner (C&W) (Carlini and
Wagner, 2017b)

C&W is a first-order constrained optimization that closely

resembles Szegedy et al. (2014) method for adversarial example

generation. Both define the objective to be ||X||p + c · f̂ (X). This

objective function includes the ℓp distance with a custom criterion

f̂ (X), modulated by the sensitivity parameter c and confidence

parameter κ . C&W uses f̂ (X) = (maxi6=t(zi) − zt + κ)+ where t

is the targeted class.

2.2.3 DeepFool (Moosavi-Dezfooli et al., 2016)
DeepFool fits a hyperplane on the target model. The hyperplane

is an aggregate of binary classifiers, which encloses the true class k.

The algorithm applies Newton’s method on the probits to move to

the closest non-maximal class t. To misclassify the sample, a small

overshoot η is added as scalar.

We describe the perturbations generated by the three methods

as near-optimal as they are optimized within the constraints of

the ℓp-ball. However, recent studies on semantic perturbations

have identified approaches that produce adversarial examples more

closely aligned with human perception (Luo et al., 2022; Duan et al.,

2021; Zhao et al., 2020; Ghiasi et al., 2020). For instance, PerC uses

color differences, which considerably increases the ℓp distance of

adversarial examples. The primary focus in this study is on adaptive

near-optimal perturbations on state-of-the-art defenses that do not

rely on obfuscated gradients.

2.3 Adversarial detection

2.3.1 Adversarial pockets
A common intuition of adversarial perturbation is that it

pushes examples off the manifold of training data. Szegedy et al.

(2014) were the first to conjecture the idea with the Lipschitz

constant. A high constant enables the manifold to be dense,

with low-probability pockets containing adversarial examples.

Therefore, generative classifiers may detect these adversarial

pockets (Lee et al., 2018; Raghuram et al., 2021; Yin et al.,

2019; Feinman et al., 2017; Zheng and Hong, 2018; Li et al.,

2019). An example of this is Deep Bayes (Li et al., 2019), which

uses a deep latent variable model on the logits to estimate a

joint distribution. JTLA (Raghuram et al., 2021) aggregates class-

conditional probabilities from each layer by computing kNN class

counts. Others trained a more simple GMM (Zheng and Hong,

2018) and utilized Kernel Density Estimation (KDE) (Feinman

et al., 2017) on deep layers. Lee et al. (2018) performed a density

estimation with the Mahalanobis distance.

2.3.2 Boundary tilting
A geometric analysis renders a different perspective on

adversarial examples. When the decision boundary tilts too much

toward a submanifold of one class, then the distance of another

classification is relatively close. Tanay and Griffin (2016) therefore

measured adversarial strength as the deviation angle with a

bisecting boundary that maximizes the inter-class distance. This

angle can, without major performance hits, be higher along

directions of low variance. Near-optimal perturbations may thus

be detected by manipulating such components with semantic-

preserving image filters (Xu et al., 2018; Tian et al., 2021; Liang

et al., 2018). In particular, feature squeezing (Xu et al., 2018) uses

median smoothing and bit-depth reduction. Tian et al. (2021) train

a dual model on the sample’s wavelet transform. Others (Song

et al., 2018; Hu et al., 2019) propose denoisers which perturb

samples with optimizers. Scene statistics may also detect the

perturbation, like whitening (Hendrycks and Gimpel, 2017) that

measures the variance of low-rank eigenvectors. Li and Li (2017)

also use low-rank eigenvectors with their extremal value to detect

extreme deviations, both (Kherchouche et al., 2020; Akhtar et al.,

2018) train simple classifiers on BRISQUE’s (Mittal et al., 2012)

features, and Local Intrinsic Dimensionality (LID) (Ma et al., 2018)

directly calculates the dimensionality. However, current adversarial

detection methods are ineffective at identifying hidden anomalies

in high-dimensional spaces and are not efficient for large dataset.

Contributions of this study are as follows: (i) We propose

MeetSafe, a scalable detection algorithm for adaptive adversarial

examples. (ii) Two utility functions that allow LRD and other

detectors to scale based on a unit’s Z-scores or rate of change under

perturbation. (iii) Extensive empirical evaluations on 4 datasets and

14 models that show effectiveness of whitening andMeetSafe under

adaptive white-box attacks.

3 Method

The main idea of MeetSafe is to combine discrepant detectors

in an ensemble. In particular, we use the scores of whitening

(Hendrycks and Gimpel, 2017), feature squeezing (Xu et al., 2018),

and a density estimation, called LRD, within a GMM. LRD makes

two novel improvements on existing density estimates. First, we

noticed that the activation’s Z-score of hidden features is not

uniform under perturbation (see Figure 1b); we therefore use two

utility functions to select the 10 units that were most anomalous

under perturbations. Second, kernel density estimation does not

adjust for local densities, which carries the risk of over-smoothing

as illustrated by Ma et al. (2018). Like Ma et al., LRD uses an

extension of the k-distance.

We now turn to LRD and its relation to non-parametric

methods. Then, we explain the used features and feature selection

of LRD. Finally, this section introduces MeetSafe.

3.1 Density estimation with k-distances

Non-parametric methods model the distribution p(X) with

limited assumptions for the true distribution. This makes the

models flexible. Distribution p(X) can, for instance, be generalized

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

FIGURE 1

LRD for a MNIST model learned with RCE, utilizing the 10 hidden units with the largest, absolute Z-scores. (a) LRD metric, which uses the averaged

maximum of the ℓ2- (d) and k-distance (d′) among k nearest neighbors. (b) The distribution for test- and FGSM samples with ℓ2 ≈ 5 and k = 8.

with its volume V and cardinality K of X’s proximite region, given

enough observations. In contrast to KDE, the kNNmethod fixes the

cardinality and finds the appropriate volume from the data. For a

sample X, one can then estimate p(X) using the frequentist notion:

p̂(X) = K/(|D| · V) (1)

where the dataset D is sampled from p(X). The volume is defined

by a sphere with the k-distance as radius, which makes the k-

distance of a test sample X sufficient to approximate p(X). The

estimate would only be shallow with limited information from its

neighbors. Recursive calls on neighbors may improve the estimate

due to greater depth.

Notice that BRISQUE hidden features may be affected by

unequal standard deviations as these are not normalized. Some

have thus more influence on the k-distance than others. This is not

favorable, especially because we stated earlier that the low variance

componentsmay be an important characteristic of some adversarial

examples. Our method will therefore use the scaled Euclidean

distance. This normalizes the k-distance with respect to a diagonal

covariancematrix6. In addition, we will lower thememory burden

of the kNN algorithm in Section 3.2, after we discuss the details and

idea of LRD.

3.1.1 Local reachability density (LRD)
The intuition behind LRD comes from Breunig et al. (2000),

in which they propose LOF, a heuristic for finding local outliers.

LRD extends the k-distance as it smooths out statistical fluctuations

in at least two ways. First, the actual distance, called reachability,

used to estimate the volume V is capped by the k-distance of

the neighbor. Second, the average is taken among the k nearest

neighbors. The reachability measure reach(X1,X2) of two nodes (A

& D) is demonstrated in Figure 1, and the value depends on the

volume of nodeD and its Euclidean distance to A. Whichever value

is bigger equals the reachability from D to A:

max
{

d′
X2 ,k

,
√

(X1 − X2)T6−1(X1 − X2)
}

(2)

where d′ is the k-distance. Substituting the reachability fromA to its

neighborsNA in Equation 1 yields its reachability density (Equation

3). Using reachability as a measure to assess the density in the

proximate region of node A has the advantage that only a fixed

amount of neighbors needs to be considered.

LRD(X) = |NX|/(
∑

ni∈NX
reach(X, ni)) (3)

We add one novel improvement called feature bagging (Lazarevic

and Kumar, 2005). This enables LRD to capture higher dimensions.

The generalizability of kNN degrades under these circumstances, as

the distance between all data points becomes larger and individual

features have less of an impact. Bagging is a popular approach to

limit this issue. It takes a subset (with random cardinality) of the

features for multiple iterations and returns a combined LRD score.

3.2 Feature engineering for LRD

We now consider two possible Points Of Interests (POI) for

LRD: the layer after convolution and the pixel values, where we

refer to the former as Learned Feature Analysis (LFA). Specifically,

we explain how we select its features for both options as without

limiting its feature space, LRD would be space inefficient and suffer

from sparse data.

On raw pixel values, we advise the use of BRISQUE. BRISQUE

fits a Gaussian-like distribution on the raw image whilemaintaining

structural information, which can evaluate the naturalness of

an image. Moreover, BRISQUE is 149 times faster than wavelet

methods such as DIIVINE and performs almost similar on white

noise (Mittal et al., 2012).

On hidden layers, we extract a random set of hidden features.

Depending on the chosen POI, the Z-scores of FGSM examples X′

will be used to select the best 10 features of BRISQUE or the best 10

hidden features. We will further explain this feature selection more

formally.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

3.2.1 Selecting hidden features
For the hidden features f (l), a pool P ⊆R f (l) is defined, so that

its members are chosen randomly at initialization and preserved

during execution. The detector then follows a watching scheme

uponP and its utilities (Equation 4, 5). The first equation calculates

the difference in Z-scores of all features in the pool. It estimates the

units that were relevant under perturbation. The second estimates

the rate of change of one layer. The first utility is calculated with

FGSM after every epoch, and this is the fastest evasion method we

know, limiting the constraints on scalability or parameter updates.

The second utility showedmost potential in the final layers, making

that our preferred choice (Section 5.1). Because of this, we believe

the second utility is optional.

UP =
1

|D|

∑

X∈D

|PX − PX′ |

σP
(4)

Uf (l) =
||EX∼D[f

(l)
X′]− EX∼D[f

(l)
X]||2

||EX∼D[f
(l)
X]||2

(5)

3.3 MeetSafe

Our MeetSafe combines LRD, using hidden features as POI,

with variance-based anomaly detection—whitening (Hendrycks

and Gimpel, 2017)—and feature squeezing (Xu et al., 2018) in a

GMM, for which an ablation study is given in Section 4.3. The

scores of the three heuristics are learned through Expectation-

Maximization (EM).

− log p̂(X) = − log
{

∑K
πi ·N(HX|µi,6i)

}

(6)

Concretely, to detect a sample, we first select the best features

based on UP for LRD and the eigenvectors of the training data

(Algorithm 1). Then, we evaluate the three heuristics (denoted as

HX). Assuming normality, a three-dimensional GMM fitted on

benign data can classify the sample as malicious when it exceeds

the 90th percentile of the Equation 6. The workflow of MeetSafe is

shown in Algorithm 2.

4 Experiments

We evaluate MeetSafe and LRD against several adversarial

attacks including FGSM, DeepFool, and C&W. The experiments

will demonstrate white- and/or gray-box performance for

four datasets: Tiny-ImageNet (Le and Yang, 2015), CIFAR-10

(Krizhevsky and Hinton, 2009), MNIST (LeCun, 1998), and

STL-10 (Coates et al., 2011). Only for Tiny-ImageNet, we resized

the samples to be in R
3×64×64. The attacks are restricted to an ℓ2

distance to ensure a fair comparison across datasets and ℓ∞-based

methods. For instance, an ℓ∞ distance permits more noise for

higher resolution images. Consequently, we use the ǫ parameter

given by Equation 7, so that the maximum allowed perturbation

of FGSM equals that of ℓ2 methods (δmax); where the image X is

given by a Rm flattened matrix.

ǫ =

√

||δmax||
2
2/m (7)

Require: D: Dataset of benign samples; P: Set of

basis functions that maximizes UP; Pmax: Maximum

amount of features; X: A benign or adversarial

sample.

Ensure: HXX’s Features

1: if kNN or SVD is not initialized then ⊲ Prepare

heuristics

2: kNN← Prepare_kNN(f
(l)

D
) where {f(l)} ∈ P

3: Ut,St,VT

t
← SVD(D) ⊲ Truncated to Pmax

4: for X ∈ D do

5: X′ ← X + ǫ · sign(∇XLf)

6: P∗X ← XVt

7: P∗X′ ← X′Vt

8: end for

9: UP
∗ ← 1

|D|

∑

X∈D
|P
∗
X−P

∗
X′ |

σ
P
∗

⊲ Equation 4

10: Vt ← top_n(Pmax,P∗) ⊲ Pick the best

eigenvectors

11: end if

12: NX ← kNN(f
(l)
X) where {f(l)} ∈ P

13: 6← Diag(σP)

14: H0 ←
1

LRD(f
(l)
X

,NX,6)
where {f(l)} ∈ P ⊲ Equation 2, 3,

with feature bagging

15: Xbd,Xbl ← Reduce_Bit_Depth(X), Blur(X)

16: H1 ← max
{

||Y(X)− Y(Xbd)||1, ||Y(X)− Y(Xbl)||1

}

17: H2 ← Var(XVt) ⊲ Whitening Hendrycks and Gimpel

(2017)

18: return {H0,H1,H2} ⊲ H1 is Feature Squeezing Xu

et al. (2018)

Algorithm 1. MeetSafe’s feature extraction.

Each attack, defense, and target model is re-implemented in

PyTorch. Herewith, we evaluated 14 models based on ResNet-50

(He et al., 2016) and VGG-13 (Simonyan and Zisserman, 2015).

Ten of them are trained with robust optimization techniques,

utilizing gradient smoothing (RCE) (Pang et al., 2018) or

adversarial training with FGSM (ℓ2-radii of 5) (AL) (Goodfellow

et al., 2015).

The experiments also include some related methods that will

be compared to MeetSafe and LRD. The baseline for MeetSafe

(MS) is KDE with predictive uncertainty (KDE+BU) (Feinman

et al., 2017), I-Defender (I-Def) (Zheng and Hong, 2018), and

the Mahalanobis measure (MAH) (Lee et al., 2018). Additional

work that we tested are LID (Ma et al., 2018), Whitening (PCA)

(Hendrycks and Gimpel, 2017), Feature Squeezing (FSQ) (Xu et al.,

2018), extremal value (EXM) (Li and Li, 2017), and Kherchouche

et al. (2020)’s third model for BRISQUE (SVM).

4.1 Experimental setup

We trained the models for 150 epochs on predetermined

training sets. During training, a batch size was used of 256,

learning rate of 0.01 with momentum 0.9 under a cosine annealing

schedule, and 1e−4 weight decay. The model is also adapted to

exhibit required invariances. All training samples are normalized

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

Require: D: dataset of benign samples; Pmax: maximum

amount of features; K, τ90: Gaussian components

and threshold; f(l): basis function of the neural

network; X′: suspicious samples.

Ensure: MX′: MeetSafe classifications.

1: Uf(l) ← 0

2: for X ∈ D and basic block l do ⊲ Get the utility

of each layer (optional)

3: X′ ← X + ǫ · sign(∇XLf)

4: Uf(l) ← Sequential_Avg(Uf(l),f
(l)
X′ ,f

(l)
X) ⊲

Equation 5

5: end for

6: Let {l} have the largest Uf(l) value and let

{P} ⊆R f
(l).

7: for X ∈ D do ⊲ Get the utility of each hidden

unit in P

8: X′ ← X + ǫ · sign(∇XLf)

9: PX ← f
(l)
X where {f(l)} ∈ P

10: PX′ ← f
(l)
X′ where {f(l)} ∈ P

11: end for

12: UP ←
1
|D|

∑

X∈D
|PX−PX′ |

σ
P

⊲ Equation 4

13: P← top_n(Pmax,P) ⊲ Pick the best hidden units

14: for X ∈ D do ⊲ Initialize the GMM

15: Initialize {µi} ∈ R via the K-means algorithm

and

{πi,6i} ∈ R,R3×3 uniformly at random.

16: HX ← Extract_Features(D,P,Pmax,X) ⊲

Algorithm 1

17: end for

18: µi,6i,πi ← EM(µi,6i,πi,HX) i ∈ [0..K), ∀ X ∈ D

19: for X′ ∈ X′ do ⊲ Classify samples

20: HX′ ← Extract_Features(D,P,Pmax,X′)

21: end for

22: return −log
{

∑K
πi ·N(HX′ |µi,6i)

}

> τ90 ∀ X′ ∈ X′ ⊲

Equation 6

Algorithm 2. MeetSafe.

on each channel, randomly flipped horizontally, and randomly

cropped within a padding of 4. Adversarially learned models were

additionally trained half-on-half on benign and perturbed data.

We evaluated the detectors on unseen test images and their

perturbed variants as follows. First, we evaluate the defense and

model on non-adaptive gray-box perturbations. That includes the

one-step FGSM perturbation as well as the DeepFool and C&W-ℓ2.

Second, for each defense, we evaluate its best-performing technique

(RCE or AL) on DeepFool against adaptive white-box attacks.

White-box attacks can be generated by adding the detector’s

likelihood function (Equation 6) to C&W’s objective (Carlini

and Wagner, 2017a). In essence, this optimizes a multi-objective

gradient with Adam that considers both the gradient of the

detector’s internals and the confidence of the target model:

||X||p + c · f̂ (X)+ c∗ · (−τ−1 log p̂(X)− 1+ κ)+ (8)

where τ is a given threshold and c∗ a constant that controls the

sensitivity toward the detector’s gradient, optimized with binary

search. The sample is updated with perturbation δ when its

aggregate X + δ fools successfully. For our experiments, we limit

the perturbation to a ℓ2 distance of 5.

Our white-box attack follows an all-or-nothing criterion: the

batch with adversarial examples is either clean or fully successful.

For this reason, we assume that the detector is successful if either

the white-box perturbation is detected or classified by the target

model. Its true positives are thus in the set {X | argmax Y(X) 6=

k ∨ − log p̂(X) ≤ τ } for true class k and threshold τ .

The performance of the defenses is measured using its overall

detection accuracy of one test run in both adversarial and benign

situations, where the detector classifies at a TNR of 90%+. The

adversarial setting may include samples without perturbation

when the target model already misclassifies the clean sample. We

therefore have an optimal detection accuracy of 1 −
Rf

2 with

standard empirical riskRf of the target model.

During test runs, we reduced the batch size to 128 (64 for white-

box); other hyperparameters, used for the attacks and defenses,

were as follows. The magnitude ǫ of FGSM is deduced from

Equation 7, DeepFool had an overshoot of 0.02, and C&W executed

5 steps with 500 iterations (10 and 1000 for white-box) under a

0.05 confidence κ . For all defenses, we applied the same feature

selection. That took the best 10 in a pool of at most 500 features,

given UP. We choose the k of kNN to be 8 for LRD and LOF based

on the ablation study in Sec. 5.3. See Section 5.3 for details. The

experiments were conducted on AMD Ryzen 7 7700X and Nvidia

RTX 4070 Ti.

4.2 Model performance

The accuracy of the models is shown in Table 1. The CIFAR-

10 ResNet-50 model is able to reach an average cross-entropy of

0.0249 and a test accuracy of 93.2%. The cross-entropy for robust

optimization techniques is notably higher, and this increased to 0.47

for adversarial training and 431.1 for RCE. A higher value for RCE

was expected as almost each class now adds to the error instead of

only the true class. We also observe that the fit and convergence

changes dramatically when the amount of classes is increased. Take

Tiny-ImageNet which has 200 classes, where the others have 10, a

RCEmodel trained on ImageNet does only reach an accuracy of 3%.

When we test the STL-10 subset, RCE does not show this behavior.

Robust optimization shows a descent mitigation of FGSM for

all models and no meaningful mitigation of C&W attacks. The

results of DeepFool show that the optimized models are often

more robust than the plain ones under smaller perturbations. Still,

the high adversarial accuracy of the plain model is somewhat

unexpected. However, this may have a clear reason. Namely,

the confidence of this model is higher, which causes vanishing

gradients.

4.2.1 Vanishing gradients
The confidence score of the plain ResNet-50 is near a unit

vector toward the correct class for some images (Table 1), which

makes that gradient zero due to rounding errors. Such images sit

on a stationary point for the current parameters. This is a major

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

TABLE 1 Accuracies and proportion of stationary points for FGSM of the trained target models on the CIFAR-10, Tiny-ImageNet, STL-10, and MNIST

testing set, respectively.

Model Learn. Robust Evasions (ℓ2 ≤ 5)→ Model’s top-1 accuracy ⇑

rate optim. Stat. Points (%) ↓ Benign FGSM C&W DeepFool

Equation 7 κ = 0.05 η = 0.02

ResNet-50 0.01 ✗ 50.5, 0.0 0.932, 0.581 0.619, 0.013 0.000, 0.000 0.061, 0.188

13.7, 12.8 0.711, 0.992 0.111, 0.307 0.008, 0.000 0.214, 0.130

ResNet-50 0.01 AL 37.9, 0.0 0.916, 0.559 0.640, 0.176 0.000, 0.003 0.086, 0.149

2.6, 8.1 0.612, 0.991 0.229, 0.2704 0.200, 0.000 0.221, 0.385

ResNet-50 0.01 RCE 0.0, 0.0 0.885, 0.030 0.485, 0.003 0.000, 0.000 0.106, 0.015

0.0, 0.0 0.614, 0.990 0.081, 0.085 0.000, 0.000 0.147, 0.228

VGG-13 0.01 ✗ 22.4 0.928 0.294 0.000 0.096

VGG-13 0.01 AL 2.9 0.885 0.578 0.000 0.158

VGG-13 0.01 RCE 0.0 0.883 0.329 0.000 0.060

VGG-13 is only trained on CIFAR-10. More details in-text.

drawback of FGSM, but not present for DeepFool and C&Wwhich

use gradients of different loss function. Vanishing gradients do give

a sense of robustness for the plain model, while it is probably not.

4.2.2 Utility of hidden layers
The utilities discussed in Section 3.2 grow more or less each

layer for the CIFAR-10 ResNet. The RCE and plain model exhibit

the largest normalized ℓ2 distance at the fourth bottleneck and the

smallest distance at the raw input. The utility Uf (l) at the first and

last bottleneck differs significantly with RCE; as for 5 samples, the

95% t-confidence interval (CI) is 0.29 ± 0.003 and 0.51 ± 0.01,

respectively. This supports the unfolding intuition of Bengio et al.

(Bengio et al., 2013). Although, we find the behavior of adversarial

learned models to be different. There, the first layers seem to be the

most sensitive, with the first bottleneck (0.66±0.14) having a higher

utility than the fourth (0.48 ± 0.13). Detection methods may thus

be fine-tuned by utilizing different layers.

4.3 Detection results

The following section will primarily discuss the performance on

near-optimal perturbations. We showcase more results in Section

4.1 regarding the accuracies under semantic adversarial attacks

such as shadow attack (Ghiasi et al., 2020) and PerC (Zhao et al.,

2020).

4.3.1 Against gray-box attacks
We start by examining gray-box attacks on CIFAR-10. This

provides a more comprehensive understanding of our method’s

performance. Table 2 shows LRD in addition to various other

works. Instance-based methods similar to ours are KDE+BU, LID,

and MAH. We see that LID does not lead to practical results. On

the other hand, LRD reaches an accuracy above 85% for FGSM

perturbations, and this outperforms similar methods.

We also consider Robust optimization beneficial. The detection

accuracy is frequently higher with one of these methods.

Particularly for PCA, its accuracy against DeepFool and FGSM

shows a respective difference of 15% and 26%. Moreover, PCA

shows strong and similar results as the supervised method SVM on

FGSM; the extremal measure, that also uses PCA, is less effective.

Finally, we consider feature squeezing’s performance limited for

FGSM perturbations. It achieves the lowest accuracy of 76% after

LID.

These results largely change for smaller perturbations. SVM

drops from 90%+ accuracy to a random classifier. In fact, almost all

methods suffer from smaller perturbations, except for purification

measures such as feature squeezing. Its situation is reverse for

smaller perturbations and does improve in this setting, which

suggests that most methods do not have a sufficient scope to cover

all adversarial attacks.

4.3.2 Against adaptive attacks
We test MeetSafe against adaptive adversaries, a challenging

AEs detection scenario, and also show in Table 3. We find that

an adaptive attacker can break most methods. In particular, the

results for KDE+BU, LID, EXM, and MAH showed a true positive

rate close to 0% on the CIFAR-10 and STL-10 datasets, which is

consistent with prior works (Carlini and Wagner, 2017a; Athalye

et al., 2018).

Regarding the other methods, we see that especially PCA excels

with accuracies of approximately 80% for CIFAR-10. Surprisingly,

PCA was proven as not robust earlier (Carlini andWagner, 2017a).

LRD is, in addition to PCA, also somewhat resilient against adaptive

attacks, although it should be noted that BRISQUE does utilize local

non-linear operations to estimate generalized gamma functions

(Mittal et al., 2012), which are not smooth functions. We can

therefore only consider LRD robust on the hidden features. Some

results are worse than in the gray-box setting, that is possible due

to the positive confidence value. Hence, the adversarial example

is stimulated to be 5% below the detector’s threshold, which

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

TABLE 2 Accuracies of several detection algorithms against gray- and white-box (GB/WB) adversaries with a ℓ2-radii of 5.

Evasion
attack

Robust
optim.

POI→
Stat.
points
(%) ↓

Detection accuracy ⇑

Units of the fourth bottleneck max Uf (l) Scene statistics Logits

LRD KDE+BU LID EXM LRD SVM PCA FSQ MAH

C
IFA

R
-10

FGSM ✗ ✗ 0.680 0.545 0.508 0.584 0.698 0.725 0.722 0.570 0.596

FGSM AL ✗ 0.852 0.663 0.586 0.863 0.815 0.884 0.878 0.757 0.792

FGSM RCE ✗ 0.644 0.818 0.545 0.726 0.875 0.987 0.990 0.636 0.639

DeepFool AL ✗ 0.516 0.596 0.511 0.499 0.500 0.502 0.663 0.890 0.676

DeepFool RCE ✗ 0.775 0.785 0.513 0.564 0.498 0.501 0.533 0.759 0.756

C&W AL ✗ 0.520 0.561 0.501 0.500 0.502 0.500 0.758 0.744 0.635

C&W RCE ✗ 0.621 0.707 0.513 0.558 0.497 0.500 0.582 0.780 0.647

C&W Best Perf. X 0.516 0.489 0.453 0.450 0.660 0.619 0.792 0.484 0.474

M
N
IST

FGSM AL ✗ 0.928 0.957 0.856 0.901 0.930 0.927 0.614 0.828 0.915

FGSM RCE ✗ 0.955 0.975 0.936 0.952 0.955 0.974 0.678 0.915 0.659

DeepFool AL ✗ 0.744 0.829 0.592 0.684 0.745 0.820 0.645 0.915 0.927

DeepFool RCE ✗ 0.925 0.960 0.468 0.498 0.770 0.533 0.505 0.947 0.945

C&W Best Perf. ✗ 0.894 0.866 0.522 0.538 0.655 0.505 0.609 0.949 0.947

C&W Best Perf. X 0.940 0.912 0.457 0.558 0.983 0.990 0.599 0.986 0.988

ST
L
-10

FGSM AL ✗ 0.517 0.498 0.505 0.503 0.502 0.524 0.506 0.497 0.505

FGSM RCE ✗ 0.528 0.571 0.511 0.498 0.511 0.540 0.531 0.667 0.635

DeepFool AL ✗ 0.509 0.503 0.504 0.502 0.495 0.498 0.500 0.588 0.510

DeepFool RCE ✗ 0.647 0.611 0.515 0.506 0.505 0.493 0.500 0.634 0.524

C&W Best Perf. ✗ 0.512 0.524 0.507 0.505 0.513 0.499 0.500 0.586 0.522

C&W Best Perf. X 0.507 0.498 0.450 0.470 0.806 0.498 0.456 0.547 0.479

White-box attacks are evaluated on the detector’s best performing robust optimization under DeepFool. DeepFool’s and C&W’s results are dependent on the error rateRf of ResNet-50 (more

details in-text). Top-3 results are bolded, and the worst-case of a detection algorithm is underlined. Top-1 results are highlighted in blue.

improves its transferability on models with feature bags or other

uncertainties.

We show the performance of LRD, PCA, and FSQ and

their MeetSafe ensemble across datasets in Table 2. The p-

values of the methods’ confidence are computed and compared

against a threshold. Specifically, we evaluate the p-values for

10 random FGSM samples using a reversed ResNet-50 model

trained on a benign dataset. A low p-value is beneficial

for the GMM’s generalization as this assumes normality. On

MNIST, an opposing utility between LRD and whitening

techniques becomes clear. Here, LRD has a p-value of near

zero (≤ 10−99), while whitening has a value of 6e-6. On

the other hand, whitening performs relatively better on CIFAR-

10 with a p-value smaller than 1e-80 against 5e-17 for LRD.

Whitening and LRD might therefore offset each other’s effects

against FGSM.

The added value of feature squeezing is apparent for small

CIFAR-10 perturbations. Figure 2a shows the performance of the

three detectors for DeepFool and FGSM. It shows a noticeably

higher AUROC for feature squeezing on DeepFool. Furthermore,

feature squeezing has the smallest p-value of 0.01, followed

by LRD with 0.25. Feature squeezing could thus be helpful

in the case when the adversarial sample is near the benign

input. Section 5.2 discusses the importance of each components

of MeetSafe.

4.3.3 GMM-based detection
Our MeetSafe constructs a GMM-based detection with PCA,

feature squeezing, and LRD.We test MeetSafe’s performance under

certain number of Gaussian components: 4, 8, and 16 (Table 4).

For gray-box perturbations, we see that only 4 components may

be useful for FGSM, but this increases for small perturbations. To

balance these accuracies, we think that 8 components are desirable.

Comparing the performance of MS-8 to that of I-Defender shows

similar results on FGSM, but lower accuracies on stronger attacks.

Meanwhile, the accuracy for RCE and MeetSafe does not scale well.

This is most notable when we compare the efficacy for datasets of

higher resolution. Tiny-ImageNet shows accuracies on C&W of at

most 0.553 for MeetSafe and 0.511 for I-Defender. STL-10 shows

similar results (Table 4). However, the effect of dimensionality is

not a limitation specific to our method but rather a general issue

of defenses against AEs (Goodfellow et al., 2015). MS-8 achieves

an improvement of at least 8.1% on adaptive attacks and 10.2%

on the worst-case results for each evaluated method by averaging

across STL-10, MNIST, and CIFAR-10. MeetSafe may therefore be

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

TABLE 3 Accuracy of comparison detections evaluated against gray- and white-box (GB/WB) adversaries on STL10, MNIST, and CIFAR10; with a ℓ2-radii

of 5.

Evasion
attack

Robust
optim.

Dataset WB Detection accuracy ⇑

MS-8 I-Def LRD (LFA) PCA KDE+BU FSQ MAH

FGSM ✗ STL-10 ✗ 0.520 0.549 0.511 0.521 0.542 0.494 0.546

MNIST 0.823 0.814 0.829 0.612 0.809 0.667 0.797

VGG-13: CIFAR-10 0.808 0.569 0.690 0.843 0.748 0.594 0.682

FGSM AL STL-10 ✗ 0.485 0.508 0.517 0.506 0.498 0.497 0.505

MNIST 0.897 0.894 0.928 0.614 0.957 0.828 0.915

VGG-13: CIFAR-10 0.942 0.508 0.489 0.941 0.538 0.676 0.571

FGSM RCE STL-10 ✗ 0.737 0.567 0.528 0.531 0.571 0.667 0.635

MNIST 0.953 0.935 0.955 0.678 0.975 0.915 0.659

VGG-13: CIFAR-10 0.956 0.606 0.570 0.949 0.602 0.593 0.592

DeepFool ✗ STL-10 ✗ 0.540 0.495 0.507 0.500 0.542 0.481 0.556

MNIST 0.951 0.877 0.726 0.522 0.840 0.942 0.938

VGG-13: CIFAR-10 0.640 0.568 0.519 0.502 0.601 0.894 0.756

ResNet-50: CIFAR-10 0.729 0.700 0.546 0.506 0.630 0.900 0.801

DeepFool AL STL-10 ✗ 0.665 0.502 0.509 0.500 0.503 0.588 0.510

MNIST 0.941 0.880 0.744 0.645 0.829 0.915 0.927

VGG-13: CIFAR-10 0.686 0.552 0.501 0.560 0.579 0.857 0.650

DeepFool RCE STL-10 ✗ 0.612 0.531 0.647 0.500 0.611 0.634 0.524

MNIST 0.953 0.934 0.925 0.505 0.960 0.947 0.945

VGG-13: CIFAR-10 0.657 0.633 0.546 0.567 0.850 0.759 0.698

C&W Best perf. STL-10 ✗ 0.517 0.518 0.512 0.500 0.524 0.586 0.522

MNIST 0.958 0.924 0.894 0.609 0.866 0.949 0.947

VGG-13: CIFAR-10 0.803 0.574 0.542 0.564 0.652 0.870 0.638

C&W Best perf. STL-10 X 0.619 0.475 0.507 0.456 0.498 0.547 0.479

MNIST 0.989 0.953 0.940 0.599 0.912 0.986 0.988

VGG-13: CIFAR-10 0.896 0.492 0.536 0.581 0.521 0.606 0.485

PerC-AL RCE STL-10 ✗ 0.523 0.503 0.503 0.526 0.516 0.533 0.505

MNIST N/A N/A N/A N/A N/A N/A N/A

VGG-13: CIFAR-10 0.815 0.745 0.771 0.795 0.782 0.514 0.766

ResNet-50: CIFAR-10 0.553 0.529 0.560 0.612 0.525 0.548 0.667

Shadow

attack

RCE STL-10 ✗ 0.587 0.479 0.624 0.450 0.683 0.597 0.464

MNIST 0.927 0.937 0.887 0.453 0.963 0.449 0.833

VGG-13: CIFAR-10 0.665 0.477 0.511 0.698 0.529 0.504 0.663

ResNet-50: CIFAR-10 0.653 0.561 0.596 0.716 0.485 0.513 0.619

Note that PerC-AL requires color datasets so we do not include results for MNIST, a dataset contains gray scale images. The top-3 results are bolded. Top-1 results are highlighted in blue.

employed universally while maintaining a considerable detection

accuracy.

4.3.4 Inference time
Figure 2b shows the inference time of MeetSafe and a

ResNet-50 target model on four datasets: MNIST, CIFAR-10,

Tiny-ImageNet, and STL-10. Plotted according to the input size

of one sample: 784, 3, 072, 12, 288, and 27, 648, respectively. From

the figure, we can observe that the discrepancy of ResNet-50 and

MeetSafe converges to a factor of approximately 2.3 when the input

size gets larger. We increased the feature size from 10 to 17 and

the pool size from 500 to 850. We anticipated that this would

lead to increased computation, especially for LRD. The results on

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

TABLE 4 Accuracies of GMM-based detectors against gray- and white-box (GB/WB) adversaries with a ℓ2-radii of 5 like in Table 2.

Evasion
attack

Robust
optim.

Dataset
model

Detection accuracy ± [t-CI 95%] ⇑

→ CIFAR-10 STL-10 MNIST VGG-13

WB ↓ MS-4 MS-8 MS-16 I-Def MS-8 I-Def MS-8 I-Def MS-8 I-Def

FGSM ✗ ✗ 0.680 0.671 0.672 0.627 0.520 0.549 0.823 0.814 0.808 0.569

FGSM AL ✗ 0.876 0.829 0.853 0.925 0.485 0.508 0.897 0.894 0.942 0.508

FGSM RCE ✗ 0.965 0.926 0.895 0.717 0.737 0.567 0.953 0.935 0.956 0.606

DeepFool AL ✗ 0.691 0.752 0.762 0.520 0.665 0.502 0.941 0.880 0.686 0.552

DeepFool RCE ✗ 0.738 0.785 0.745 0.571 0.612 0.531 0.953 0.934 0.657 0.633

C&W AL ✗ 0.746 0.804 0.815 0.518 0.517 0.498 0.958 0.696 0.803 0.509

C&W RCE ✗ 0.810 0.818 0.814 0.557 0.574 0.518 0.958 0.924 0.689 0.574

C&W RCE X 0.762 0.745± 0.04 0.689 0.469 0.544 0.475 0.989 0.953 0.896 0.492

We show experimental results on additional datasets and model architectures in Table 5. The t-CI is based on 5 runs. Top-3 results are bolded, and the worst-case of a detection algorithm is

underlined. Top-1 results are highlighted in blue.

FIGURE 2

(a) ROC curves of MeetSafe’s features on CIFAR-10 and a reverse ResNet-50 as target model. The curves show the performance against DeepFool

and FGSM. (b) Graph that shows the inference times of MS-8 and a reversed ResNet-50 on MNIST, CIFAR-10, Tiny-ImageNet, and STL-10. The error

bar denotes the t-CI across 5 runs.

CIFAR-10 demonstrate that this increase led to a slower processing

rate, with the model running 0.28 batches per second slower than

before. We consider this change to be limited, indicating that the

computational overhead is also manageable given the increased

feature and pool sizes.

5 Ablation study

5.1 Sensitivity and utility of the hidden
layers

Figure 3 explores theUf (l) utility in the study. The barplots show

the utility at the outputs of that layer, which tends to increase when

the perturbed sample traverses deeper layers, but this may come

with fluctuations. For instance, the values for the STL-10 models

seem to decrease in the last layers. The adversarial learned CIFAR-

10 model also decreases in utility after the first bottleneck. Still,

the final bottleneck remains in the Top-3, suggesting its pivotal

role in model performance and feature extraction. Conversely, the

initial convolution, denoted as “conv1”, frequently exhibits the least

utility.

We also see a major difference in the CI’s critical region of

the CIFAR-10 models. Specifically, the adversarial learned model

displays notable variability on each layer, especially when compared

to the RCE model. That is in line with the narrow activations

in the scatterplots of Figure 4. The RCE models exhibit greater

utilities in its deeper layers. Consequently, we anticipate enhanced

performance when these hidden units are utilized for detection

purposes. Otherwise, adversarial learning would become more

intriguing due to the improved model accuracy (see Table 1).

5.2 On the impact of MeetSafe
components

We check the detection performance by removing each

component of MeetSafe (MS-8) to establish its importance within

the ensemble. For the ablation, we trained 3 GMMs all with

two components (LRD, PCA, FSQ) on a reversed ResNet-50 and

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

FIGURE 3

Average of normalized Euclidean distance between FGSM AEs (ℓ2 of 5) and benign samples under Uf(l) at each ResNet-50 layer. The error bars denote

the 95% t-CI across 5 runs. (a) CIFAR-10 dataset, (b) MNIST dataset, and (c) STL-10 dataset.

FIGURE 4

Activations’ Z-Score of three hidden features before and after an FGSM perturbation, with a ℓ2-radii of 5. The activations are sampled from a random

pool of 500 hidden features, directly after convolution. We show the activation of hidden features with the highest and lowest Z-score in (a, b) for an

adversarially trained ResNet50 on CIFAR10 and non-adversarially trained results in (c, d).

FIGURE 5

Performance of LOF and LRD under di�erent k with the amount of feature bags t=30 under CIFAR-10 and adversarial learned ResNet-50.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

TABLE 5 Accuracies of GMM-based detectors against gray-box adversaries on Tiny-ImageNet, STL-10, and CIFAR-10, with a ℓ2-radii of 5.

Evasion
attack

Model Dataset Detection accuracy ⇑

Robust optim.→ Plain model AL model RCE model

WB ↓ MS-8 I-Def MS-8 I-Def MS-8 I-Def

FGSM ResNet-50 Tiny-ImageNet ✗ 0.954 0.532 0.939 0.533 0.976 0.503

C&W VGG-13 CIFAR-10 ✗ 0.790 0.593 0.803 0.509 0.689 0.574

C&W ResNet-50 STL-10 ✗ 0.531 0.499 0.517 0.498 0.574 0.518

C&W ResNet-50 Tiny-ImageNet ✗ 0.553 0.494 0.523 0.497 0.502 0.511

Demonstrating the efficacy of small-scale models in comparison with datasets containing images of higher resolution. DeepFool’s and C&W’s results are dependent on the error rate Rf of the

models, like in Table 2. Best results are bolded. Top-1 results are highlighted in blue.

CIFAR-10. First, when we remove LRD the accuracy decreases by

0.054 for C&W, −0.027 for FGSM, and 0.117 for DeepFool. For

FGSM perturbations, the results do show that LRD does not add

much for on CIFAR-10, as its ablation leads to equivalent accuracies

of the GMM. Overall, LRD increases the effectiveness of MeetSafe

across various scenarios, aligning with the findings presented in

Section 4.3. Second, when we remove PCA, the accuracy decreases

by 0.191 for C&W, 0.234 for FGSM, and 0.145 for DeepFool.

Whitening is thus an important component on CIFAR-10. Third,

when we remove FSQ, the accuracy decreases by 0.197 for C&W,

−0.048 for FGSM, and 0.137 for DeepFool, which is also in line

with the results in Section 4.3.

5.3 On the impact of k for kNNs

To determine the optimal k, we evaluated the accuracy of LOF

and LRD using features from a random pool of 500 hidden features,

as shown in Figure 5. The left axis represents LRD accuracy,

while the right axis denotes LOF accuracy. The results are plotted

separately to highlight their distinct trends, each spanning an

accuracy range of 0.06. The elbow points indicate an optimal k = 8

for both methods, which we adopt for all k-NN-based approaches.

Notably, LRD achieves significantly higher accuracy than LOF, and

k impacts LOF more than LRD.

6 Conclusion and limitation

This study present MeetSafe, a scalable and effective framework

to detect white-box AEs. By leveraging insights from feature

distribution irregularities, MeetSafe integrates utility-based feature

selection with feature squeezing, whitening, and feature squeezing

to achieve high defense effectiveness and scalability against

model size with the increase of high-dimensional feature spaces.

Experimental results demonstrate an high detection accuracy of

MeetSafe across adaptive and classic adversarial attacks, as well as

robust whitening under white-box scenarios.

6.1 Limitations

Due to resource constraints, we considered I-Defender and

Feinman et al. (2017) KDE not practical in certain situations.

For models like ResNet-50, it would cost at least 372.53 GiB to

evaluate I-Defender. On the other hand, KDE+BU required a large

computational graph in Pytorch during white box testing. That was

because of the tens of forwards for dropout. For the same reason,

we could only utilize Uf (l) for the extremal value. Other methods

(LRD, LID, and KDE+BU) require instance-based learning and

more memory.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: https://docs.pytorch.org/vision/stable/index.

html.

Author contributions

RS: Conceptualization, Data curation, Investigation,

Methodology, Software, Validation, Visualization, Writing –

original draft, Writing – review & editing. DL: Conceptualization,

Investigation, Methodology, Supervision, Writing – original

draft, Writing – review & editing. YQ: Methodology, Validation,

Writing – review & editing. MC: Validation, Writing – review &

editing. MP: Validation, Writing – review & editing. KL: Funding

acquisition, Project administration, Resources, Validation, Writing

– review & editing.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. This work was

supported by the EU Horizon Europe Research and Innovation

Program under grant agreements 101073920 (TENSOR),

101070052 (TANGO), 101070627 (REWIRE) and 101092912

(MLSysOps).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://docs.pytorch.org/vision/stable/index.html
https://docs.pytorch.org/vision/stable/index.html
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

Generative AI statement

The author(s) declare that Gen AI was used in the creation of

this manuscript. Gen AI was used for: (1) Generate LaTeX code for

tables and figures to ensure a good layout. Note that all figures are

drawn by the author(s) and all data is obtained by the author(s)

by running experiments in human. (2) Refine the language. (3)

Address LaTeX compilation issues when errors are encountered in

Overleaf.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may

be evaluated in this article, or claim that may be made

by its manufacturer, is not guaranteed or endorsed by

the publisher.

References

Akhtar, Z., Monteiro, J., and Falk, T. H. (2018). “Adversarial examples detection
using no-reference image quality features,” in International Carnahan Conference on
Security Technology (Montreal, QC: IEEE), 1–5.

Aldahdooh, A., Hamidouche, W., Fezza, S. A., and Déforges, O. (2022). Adversarial
example detection for dnn models: a review and experimental comparison. Artif.
Intellig. Rev. 55, 4403–4462. doi: 10.1007/s10462-021-10125-w

Athalye, A., and Carlini, N. (2018). On the robustness of the cvpr 2018
white-box adversarial example defenses. arXiv preprint arXiv:1804.03286.
doi: 10.48550/arXiv.1804.03286

Athalye, A., Carlini, N., andWagner, D. A. (2018). “Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples,” in International
Conference on Machine Learning (Stockholm: ICML.cc), 274–283.

Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. (2013). “Better mixing via deep
representations,” in International Conference on Machine Learning (Atlanta: ICML.cc),
552–560.

Breunig, M. M., Kriegel, H., Ng, R. T., and Sander, J. (2000). “LOF: identifying
density-based local outliers,” in ACM International Conference on Management of Data
(New York: ACM), 93–104.

Carlini, N., and Wagner, D. A. (2017a). “Adversarial examples are not easily
detected: bypassing ten detection methods,” inACMWorkshop on Artificial Intelligence
and Security (New York: ACM) 3–14. doi: 10.1145/3128572.3140444

Carlini, N., and Wagner, D. A. (2017b). “Towards evaluating the robustness of
neural networks,” in IEEE Symposium on Security and Privacy (SAN JOSE, CA: IEEE),
39–57.

Coates, A., Ng, A. Y., and Lee, H. (2011). “An analysis of single-layer networks
in unsupervised feature learning,” in International Conference on Artificial Intelligence
and Statistics (JMLR), 215–223.

Duan, R., Chen, Y., Niu, D., Yang, Y., Qin, A. K., and He, Y. (2021). Advdrop:
Adversarial attack to dnns by dropping information. In IEEE/CVF International
Conference on Computer Vision (Montreal, BC: IEEE), 7506–7515

Feinman, R., Curtin, R. R., Shintre, S., and Gardner, A. B. (2017).
Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410.
doi: 10.48550/arXiv.1703.00410

Ghiasi, A., Shafahi, A., and Goldstein, T. (2020). “Breaking certified defenses:
Semantic adversarial examples with spoofed robustness certificates,” in International
Conference on Learning Representations (ICLR.cc).

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). “Explaining and harnessing
adversarial examples,” in International Conference on Learning Representations (San
Diego, CA: ICLR.cc).

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (Las
Vegas, NV: IEEE), 770–778.

Hendrycks, D., and Gimpel, K. (2017). “Early methods for detecting adversarial
images,” in International Conference on Learning Representations (Toulon: ICLR.cc).

Hu, S., Yu, T., Guo, C., Chao, W.-L., and Weinberger, K. Q. (2019).
A new defense against adversarial images: Turning a weakness into a
strength. arXiv [preprint] arXiv:1910.07629. doi: 10.48550/arXiv.1910.
07629

Kherchouche, A., Fezza, S. A., Hamidouche, W., and Déforges, O. (2020).
“Detection of adversarial examples in deep neural networks with natural scene
statistics,” in International Joint Conference on Neural Networks (Glasgow: IEEE), 1–7.

Krizhevsky, A., and Hinton, G. (2009). Learning Multiple Layers of Features from
Tiny Images (Master’s thesis). University of Toronto, Toronto, ON, Canada.

Lazarevic, A., and Kumar, V. (2005). “Feature bagging for outlier detection,” inACM
SIGKDD International Conference on Knowledge Discovery in Data Mining (New York:
ACM), 157–166.

Le, Y., and Yang, X. (2015). Tiny Imagenet Visual Recognition Challenge.

LeCun, Y. (1998). The MNIST Database of Handwritten Digits.

Lee, K., Lee, K., Lee, H., and Shin, J. (2018). “A simple unified framework for
detecting out-of-distribution samples and adversarial attacks,” in Advances in Neural
Information Processing Systems (Montreal, QC: neurips.cc), 31.

Li, X., and Li, F. (2017). “Adversarial examples detection in deep networks with
convolutional filter statistics,” in International Conference on Computer Vision (Venice:
IEEE), 5775–5783.

Li, Y., Bradshaw, J., and Sharma, Y. (2019). “Are generative classifiers more robust
to adversarial attacks?,” in International Conference on Machine Learning (Long Beach,
CA: icml.cc), 3804–3814.

Liang, B., Li, H., Su, M., Li, X., Shi, W., and Wang, X. (2018). Detecting adversarial
image examples in deep neural networks with adaptive noise reduction. IEEE Trans.
Depend. Secure Comp. 18, 72–85. doi: 10.1109/TDSC.2018.2874243

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian,
M., et al. (2017). A survey on deep learning in medical image analysis. Med. Image
Analy.42:60–88. doi: 10.1016/j.media.2017.07.005

Luo, C., Lin, Q., Xie, W., Wu, B., Xie, J., and Shen, L. (2022). “Frequency-driven
imperceptible adversarial attack on semantic similarity,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (New Orleans, LA: IEEE) 15315–15324.

Ma, X., Li, B.,Wang, Y., Erfani, S. M.,Wijewickrema, S. N. R., Schoenebeck, G., et al.
(2018). “Characterizing adversarial subspaces using local intrinsic dimensionality,” in
International Conference on Learning Representations (Vancouver, BC: iclr.cc).

Mittal, A., Moorthy, A. K., and Bovik, A. C. (2012). No-reference image
quality assessment in the spatial domain. IEEE Trans. Image Proc. 21, 4695–4708.
doi: 10.1109/TIP.2012.2214050

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2016). “Deepfool: a simple
and accurate method to fool deep neural networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (Las Vegas, NV: IEEE), 2574–2582.

Pang, T., Du, C., Dong, Y., and Zhu, J. (2018). T“owards robust detection of
adversarial examples,” inAdvances in Neural Information Processing Systems (Montreal,
QC: nips.cc), 31, 4579–4589.

Raghunathan, A., Steinhardt, J., and Liang, P. (2018). “Certified defenses against
adversarial examples,” in International Conference on Learning Representations
(ICLR.cc).

Raghuram, J., Chandrasekaran, V., Jha, S., and Banerjee, S. (2021). “A general
framework for detecting anomalous inputs to dnn classifiers,” in International
Conference on Machine Learning (PMLR), 8764–8775.

Simonyan, K., and Zisserman, A. (2015). “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning Representations
(San Diego, CA: iclr.cc).

Song, Y., Kim, T., Nowozin, S., Ermon, S., and Kushman, N. (2018). “Pixeldefend:
Leveraging generative models to understand and defend against adversarial examples,”
in International Conference on Learning Representations.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J.,
and Fergus, R. (2014). “Intriguing properties of neural networks,” in International
Conference on Learning Representations (iclr.cc).

Tanay, T., and Griffin, L. (2016). A boundary tilting persepective on the
phenomenon of adversarial examples. arXiv [preprint] arXiv:1608.07690.
doi: 10.48550/arXiv.1608.07690

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://doi.org/10.1007/s10462-021-10125-w
https://doi.org/10.48550/arXiv.1804.03286
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.48550/arXiv.1703.00410
https://doi.org/10.48550/arXiv.1910.07629
https://doi.org/10.1109/TDSC.2018.2874243
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1109/TIP.2012.2214050
https://doi.org/10.48550/arXiv.1608.07690
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stenhuis et al. 10.3389/fcomp.2025.1631561

Tian, J., Zhou, J., Li, Y., and Duan, J. (2021). Detecting adversarial examples from
sensitivity inconsistency of spatial-transform domain. AAAI Conf. Artif. Intellig. 35,
9877–9885. doi: 10.1609/aaai.v35i11.17187

Tramer, F. (2022). “Detecting adversarial examples is (nearly) as hard as classifying
them,” in International Conference on Machine Learning (Baltimore, MD: PMLR),
21692–21702.

Tramer, F., Carlini, N., Brendel, W., and Madry, A. (2020). “On adaptive attacks to
adversarial example defenses,” in Advances in Neural Information Processing Systems
(NeurIPS) (neurips.cc), 1633–1645.

Weng, T., Zhang, H., Chen, P., Yi, J., Su, D., Gao, Y., Hsieh, C., andDaniel, L. (2018).
“Evaluating the robustness of neural networks: An extreme value theory approach,” in
International Conference on Learning Representations (Vancouver, BC: iclr.cc).

Xu, W., Evans, D., and Qi, Y. (2018). “Feature squeezing: Detecting adversarial
examples in deep neural networks,” in Network and Distributed System Security
Symposium (San Diego, CA: NDSS-Symposium.org).

Yin, X., Kolouri, S., and Rohde, G. K. (2019). GAT: Generative
adversarial training for adversarial example detection and robust
classification. arXiv [preprint] arXiv:1905.11475. doi: 10.48550/arXiv.1905.
11475

Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A. (2003). “Face
recognition: a literature survey,” in ACM Computing Surveys (New York: ACM),
399–458.

Zhao, Z., Liu, Z., and Larson, M. (2020). “Towards large yet imperceptible
adversarial image perturbations with perceptual color distance,” in IEEE/CVF
conference on Computer Vision and Pattern Recognition (Seattle, WA: IEEE),
1039–1048.

Zheng, Z., and Hong, P. (2018). “Robust detection of adversarial
attacks by modeling the intrinsic properties of deep neural networks,”
in Advances in Neural Information Processing Systems (Montreal, CA:
neurips.cc), 31.

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1631561
https://doi.org/10.1609/aaai.v35i11.17187
https://doi.org/10.48550/arXiv.1905.11475
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	MeetSafe: enhancing robustness against white-box adversarial examples
	1 Introduction
	2 Related work
	2.1 Notation
	2.2 Adversarial attacks
	2.2.1 Fast gradient sign method (FGSM) goodfellow2014explaining
	2.2.2 Carlini & Wagner (C&W) carlini2017towards
	2.2.3 DeepFool moosavi2016deepfool

	2.3 Adversarial detection
	2.3.1 Adversarial pockets
	2.3.2 Boundary tilting

	3 Method
	3.1 Density estimation with k-distances
	3.1.1 Local reachability density (LRD)

	3.2 Feature engineering for LRD
	3.2.1 Selecting hidden features

	3.3 MeetSafe

	4 Experiments
	4.1 Experimental setup
	4.2 Model performance
	4.2.1 Vanishing gradients
	4.2.2 Utility of hidden layers

	4.3 Detection results
	4.3.1 Against gray-box attacks
	4.3.2 Against adaptive attacks
	4.3.3 GMM-based detection
	4.3.4 Inference time

	5 Ablation study
	5.1 Sensitivity and utility of the hidden layers
	5.2 On the impact of MeetSafe components
	5.3 On the impact of k for kNNs

	6 Conclusion and limitation
	6.1 Limitations

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Figure3:
	Figure5:

