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Chapter 1

Introduction

Grid computing has emerged as an important new field in coengystems, distinguished
from conventional distributed computing by its focus om&ascale, multi-organizational
resource sharing and innovative applications. At the hafagrid computing is a com-
puting infrastructure that provides ubiquitous and inegiee access to large amounts
of computational capabilities [65]. Over the past 15 yeans,have seen a substantial
growth of the grid hardware and software infrastructuree frdware growth is mainly
due to the increase in the performance of commodity comguaiad networks, which has
been accompanied by a drop in their prices. On the other lggiadsoftware for building
single-cluster and multicluster systems and grid middtewtachnologies have become
more sophisticated and robust. Multicluster systems aradd by joining multiple, ge-
ographically distributed clusters interconnected by Fegked wide-area networks. An
example of a multicluster system is the Distributed ASCIl&apmputer (DAS), which
will be discussed in detail in Section 2.1.1. Grid middlesvaits between grid applica-
tions and the grid hardware infrastructure and therefoiggshthe underlying physical
infrastructure from the users and from the vast majority migpammers. In doing so,
grid middleware offers transparent access to a wide vagéwistributed resources to
users and simplifies the collaboration between organiastid\s a result of the growth
of the grid infrastructure and what it promises to offer, regplications and application
technologies have emerged that are attempting to take tay@nof the grid. These ap-
plications have widely different characteristics thatgagique resource requirements to
the grid.

Resource management is an important subject in multickiated grids, and the soft-
ware implementing the mechanisms and policies for resama@agement constitutes a
large fraction of the grid middleware. Although grids usyiabnsist of many subsystems
such as clusters and multiprocessors, and jobs submittgad® might benefit from us-
ing resources in multiple such subsystems, most jobs irsgrég the resources of only
one such subsystem. However, some types of jobs, e.g., habsun parallel applica-
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tions that can efficiently use many processors, may takerdigga from using resources
in multiple subsystems of a grid. Therefore, in multiclustgstems, and more gener-
ally, in grids, jobs may requireo-allocation i.e., the simultaneous or coordinated access
of single applications to resources of possibly multipleety in multiple locations man-
aged by different autonomous resource management sysgdntsl| 78]. Co-allocation
presents new challenges to resource management in grahsaswcoordinating the times
of access of a job to resources in different clusters. ThieaBenges, which we address
in this thesis, are presented in Section 1.1. The fact thdtagplications have unique
resource needs and have unique ways of being deployed inithdarms another chal-
lenge that we also address in this thesis. This challengessritbed in Section 1.2. In
Section 1.3 we give an overview of our approach of meetingfalhese challenges by
means of the design and the implementation ofkbaLA Grid Resource Management
System. In Sections 1.4 and 1.5, we state the contributibimssathesis to the research in
grid resource management, and we present an overview ofttblevthesis.

1.1 Challenges in Resource Management in Grids

Grids need high-level schedulers that can be used to maeagarces across multiple
organizations. Such schedulers have variably been callbdi{ with somewhat different
meanings) resource brokers, meta-schedulers, highelrdehedulers, superschedulers,
grid schedulers, grid resource management systems (GRMS)In this thesis we will
stick to the latter term. GRMSs have important characiesghat make them much
more complicated to design and implement than Local ResoMi@nagement Systems
(LRMS) for single clusters. These characteristics, wheddl to challenges in resource
management in grids, are:

1. GRMSs do not own resources themselves, and thereforetdwame control over
them; they have to interface to information services abeswurce availability, and
to LRMSs to schedule jobs. Grids are usually collectionslo$ters (or of other
types of computer systems such as multiprocessors andcaupguters) that have
different owners, that have their own user community, arad ttave their own,
autonomous local scheduler. These owners are often nohgvilb give up the
autonomy of their clusters, but will only allow access toitliesources through a
GRMS that interfaces to their local schedulers accordirgpzific usage rules.

2. GRMSs do not have a full control over the entire set of joba grid; local jobs
and jobs submitted by multiple GRMSs have to co-exist in d.gfhe jobs that are
executed in a single cluster in a grid may be submitted thrdhg local scheduler
or through any of a number of GRMSs. This means that a GRMSdake into



account jobs from multiple sources when deciding on wherartaqular job should
run.

3. GRMSs have to interface to different LRMSs with differprndperties and capabil-
ities. At the time of writing of this thesis, the ongoing siandization effort of the
interface between GRMSs and LRMSs by the OGF [19] was far romplete.

An important possible requirement to a GRMS is to suppordléocation. The prob-
lem of co-allocation and of adding support for it to a GRMStishe core of this thesis.
In Section 1.1.1 we elaborate on the co-allocation probleahwe address. Co-allocation
relies on the simultaneous availability of resources, Whscsimplified by the presence
of mechanisms for advance resource reservations, in pkmtifor processors, in LRMSs.
In Section 1.1.2 we discuss issues regarding advance garaeservations in LRMSs.

1.1.1 The co-allocation problem

In grids, it is common for the resource needs of grid apgheet to go beyond what
is available in any of the sites making up a grid. For examal@arallel application
may require more processors than are present at any site singulation may require
processors for computation in one site and visualizatianpggent in another site. To
run such applications, co-allocation, defined as the samalbus or coordinated access to
resources of possibly multiple types in multiple locatiomsnaged by different resource
management systems, is required. When co-allocation idogexb for a job, we call
the parts of the job that run at different sijeb componentsCo-allocation presents the
following challenges in resource management in grids:

1. Allocating resources in multiple sites, which may be hegeneous in terms of hard-
ware, software, and access and usage policies, to singlécapipns. When co-
allocating resources, the primary goal of a co-allocati@th@anism is to minimize
the waiting time as well as the response time of jobs. In ordlelo so, the hard-
ware type and speed (e.g., processor speed, network bahgvilte presence of
the required software (e.g., the operating system, libsariand the usage policies
need to be taken into account when co-allocating resouogebs.

2. Guaranteeing the simultaneous availability of the co-edited resources at the
start of the execution of an applicatiorA co-allocation mechanism is only ef-
fective if after co-allocating resources, those resouoagsactually be used. The
facts that GRMSs do not own resources, that grid resoureegegty dynamic, and
that there is contention for resources between local anuhyjtyrid jobs make guar-
anteeing resource availability to jobs a real problem. Phidblem is elaborated on
more in Section 1.1.2.
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3. Managing sets of highly dynamic grid resources belongingtdtiple sites of a
grid, which may come and go at any time, either by being diseoted or by failing.
Grids harness the power of many networked clusters, deskimputers, and even
scientific instruments from different organizations. Téedls of resource availabil-
ity between organizations differ; some claim 5-nines aality while others have
high failure rates. When co-allocating resources, it isongnt to consider their re-
liability, and in case of failures, good error recovery maalsms should be present
in GRMSs.

1.1.2 Processor reservations

The challenge with simultaneous access of an applicatiorgources at multiple sites
of a grid lies in guaranteeing their availability at the apglion’s start time. The most
straightforward strategy to do so is to reserve procesdoesach of the selected sites.
If the LMRSs do support reservations, this strategy can b@ldmented by having a
GRMS obtain a list of available time slots from each LRMS,erge a common time
slot for all job components, and notify the LRMSs of this meagion. Unfortunately,
a reservation-based strategy in grids is currently limideé to the fact that only few
LRMSs support reservations (for instance, PBS-pro [23] lsladii [15] do). Even for
those resource managers, only privileged users or spedadlignated user groups are
allowed to perform processor reservations, in order to gmewusers from abusing the
reservation mechanism. In the absence of, or in the presd#rmdy limited processor-
reservation mechanisms, good alternatives are requirediar to achieve co-allocation.

1.2 The Challenge of Deploying Grid Applications

While grid infrastructures have become almost commonepldne automation of grid re-
source management is far from complete because of the critypdd the applications
that occur in practice [55]. These applications bear différcharacteristics and pose
unique requirements to GRMSs. In addition to the applicativaracteristics, the charac-
teristics of the grid infrastructure itself complicate theployment of jobs by grid resource
management tools. In Sections 1.2.1 and 1.2.2 we discusaatbastics of grid applica-
tions and of grid infrastructures that make the deployméjals in grids a challenge.

1.2.1 Application characteristics

Over the last decade the number of grid applications hasaserd considerably, causing
a new challenge in automating their deployment on gridss Thallenge stems from the
special characteristics of the applications that poseugiigquirements to job deployment



mechanisms. The following application characteristianplicate the automation of the
deployment of jobs on grids:

1. The application structure in terms of the number of job congrts and their re-
source requirementsThe application structure determines the number of compo-
nents and the resource requirements of each of the comori@mtexampleryigid
jobsrequire fixed numbers of components and of processors, vdactot change
during the execution of the application. On the other hamdaleable jolrequires
a flexible numbers of components and of processors, whichamaryge during the
execution of the application. Moreover, a parallel appicog whether it is rigid or
malleable, may require more processors than are availableyssite, and a simu-
lation may require processors for computation in one site\asualization equip-
ment in another site. To run such applications, a deployme&thanism has to be
co-allocation-enabled, and in case of malleable jobs,sib &las to be malleable-
enabled.

2. The communication structure within and between job compisnéerhe commu-
nication structure within and between the components obagaital to the suc-
cessful execution of grid applications. It requires a jolpldgment mechanism
to assist in the setup of the communication between the jotpooents, and to
link the application to the correct communication librafor example, the com-
munication structure of an application may require a céiméd server to set up
communication between its components and coordinateésugion. For instance,
Ibis applications need a nameserver as described in Settich The deployment
mechanism for Ibis jobs is required to start this centralizerver before launching
jobs for execution, and to make jobs belonging to the sameoatation aware of
the same centralized server.

3. The need for a particular runtime systefaach grid application type has its own
runtime system that has to be present during the executitredapplication, pos-
sibly in multiple sites. A deployment mechanism is requitecensure that the
correct runtime system is present at the sites in questitordo&unching jobs for
execution.

1.2.2 Grid infrastructure characteristics

The grid infrastructure forms the foundation for the susé@sdeployment of applica-
tions on grids. This infrastructure, which spans multipigamizations, consists of differ-
ent hardware and software providing capabilities and nessufor the specific problems
being addressed by each organization. The following gfich&tructure characteristics,
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some of which in fact were also at the basis of the challenges-allocation as stated in
Section 1.1.1, complicate the automation of the deployragjatbs on grids:

1. The grid infrastructure is highly heterogeneous in termthefgrid software in use
in different sites.The grid software includes grid middleware software sucthas
Globus Toolkit [22, 63], UNICORE [92], DIET [4] and gLite [12and LRMSs
such as openPBS [24] and PBSPro [23], SGE [26], and Conddr [Bbferent
grid software have different properties and capabilitieg tomplicate the deploy-
ment of jobs. For example, not all LRMSs support automaticaade processor
reservations [78]. Therefore, jobs that are spawned aonodtsple domains often
require users to coordinate resource availability by h#@nghb deployment mech-
anism is required to cope with the heterogeneity of the gniita simplify the job
submission procedure for users.

2. Grid resources are highly dynami@& deployment mechanism is required to have
good fault tolerance mechanisms to ensure that jobs areiekesuccessfully de-
spite the dynamicity of the grid.

3. Grid resources have to be configured for each applicatiopairticular with respect
to the network and securityFirewalls, hidden/private IP addresses and Network
Address Translation (NAT) hamper connectivity, while aarttication and encryp-
tion mechanisms in different grid domains are usually diffito integrate. Again,
a deployment mechanism is required to hide the configurasismes of the grid
from the users without tampering with the authenticatiociha@isms and network
configurations.

1.3 An Approach to Resource Management and Job De-
ployment on Grids

In order to address the challenges of co-allocation and idf application deployment,
we have designed, implemented, and deployed in the DASmy&ee Section 2.1.1)
a GRMS calleckoALA, which features co-allocation of processors and files; e
KOALA was solely chosen for its similarity in sound with the wordatlmcation. In
addition, in order to assess the operation and some penfmenaspects cfOALA, we
have performed experiments wloALA in the DAS.

To meet the challenge of allocating resources in multiglesskOALA has built-in
so-called placement policies for allocating processomitiple clusters to single jobs.
Currently, there are two such policies: the Close-to-Hi@B) policy and the Worst Fit
(WF) policy. New placement policies can be added withowdaihg the overall operation



of KOALA. CF addresses the problem of long delays when starting agoéuse of long
input file transfers by selecting the execution sites of s ponents close to sites where
their input files are located. On the other hand, the WF pdioyly places job compo-
nents on the sites with the largest numbers of idle proces$odoing so, WF balances
the numbers of idle processors across the grid. The pladepodinies extensively use
theKOALA Information Service to locate and monitor resource avditgbUsers have a
choice of which placement policy to use for every job theyrsillseparately.

Due to potentially long input file transfer times, the actsi@rt of a job’s execution
(its job start time) may be much later than the time when theyas allocated processors
(its job placement time). This means that when the allocaredessors are claimed
immediately at the job placement time, much processor timasted. In order to prevent
this and meet the challenge of guaranteeing the simultaeailability of processors at
the job start time in the absence of support for advance psoceeservation by LRMSs,
KOALA implements the Incremental Claiming Policy (ICP). If negtbecause some of the
allocated processors have been taken by other jobs, in am eéft to delay the job start
time, ICP tries to make processors available for job compt:by finding processors
at other sites or, if permitted, by forcing processor avmliy through preemption of
running jobs.

To address the challenge of grid application deploymeniLA introduces the con-
cept ofrunners which are job submission and monitoring tools. Differamimers can
be written to support the unique characteristics of diffier@pplication types by using
the KOALA runners framework. The runners framework witioALA is modular and
allows new runners for new application types to be addedaowitlaffecting the current
operation of the existing runners. For example, new runhave been written specifi-
cally for Higher-Order Component applications [55] and rimalleable applications [42]
by novices tokOALA with minimal effort. The runners framework has fault toleca
mechanisms that deal with the reliability issues of the gmfdastructure. The part of
KOALA that performs scheduling of jobs and the runners framewarkkwogether to
meet the challenge of managing sets of highly dynamic gadueces.

An important aspect of any component of grid middleware, eneh more so of a
scheduler, is its performance. Therefore, in order to asbeseliable operation and some
of the performance properties RbDALA, we have performed experiments in which we
submit workloads consisting of parallel jobs that requirecessor and data co-allocation
to the DAS throughkoALA. For instance, we submit workloads imposing different uti-
lizations on the DAS to assess to what utilization we canedtine DAS when employ-
ing co-allocation, to assess the response times of coaadldgobs distinguished by their
numbers of job components and job-component sizes, andéssthe overhead incurred
when starting jobs throughkOALA . KOALA has a number of parameters that can be tuned
in a particular installation. This thesis does not includiila parameter study of the
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operation ofKkOALA, nor does it present a full performance analysis of co-atioa in
multicluster systems.

1.4 Contributions of this Thesis

The major contributions of this thesis are the following:

1. The design, the implementation, and the deployment dfabte co-allocating grid
scheduler calledoALA, and the demonstration of its correct operation in the DAS
testbed.

2. The design and the analysis of two co-allocation poljdies Close-to-Files policy,
which takes into account the locations of input files in addito the availability of
processors in the clusters, and the Worst-Fit policy, whialances jobs across the
clusters.

3. The design and the analysis of a processor claiming poétigd the Incremental
Claiming Policy as an alternative to advance processorvatsen when such a
mechanism is absent in the LRMSs for achieving the simuttasevailability of
allocated processors.

4. The design, the implementation, and the deployment afutheers framework and
of three runners for deploying different grid applicatigpés, and the demonstra-
tion of their correct operation in the DAS testbed.

1.5 Thesis Outline

The material in this thesis is structured as follows:

¢ In Chapter 2 we give an overview of resource managementdis ¢nat is necessary
for reading this thesis. We present our model for resouragagement in grids, and
we discuss grid applications. In addition, we review relaterk.

¢ In Chapter 3 we present the design of @@raLA grid resource management sys-
tem. The architecture afOALA can be divided into two major layers, namely, the
KOALA scheduler and the runners, which are job submission andtonimg tools.

¢ In Chapter 4 thecOALA job policies that are used to schedule jobs and to claim
processors are presented.



¢ In Chapter 5 we present the evaluation of #mLA scheduler, which includes an
evaluation of the job policies and of the scheduler in gdnbrh on a stable and
an unstable testbed.

e In Chapter 6 we evaluate th@ALA runners. The experiments presented in this
chapter evaluate both the functionality as well as the perémce of the runners.

e Chapter 7 presents our conclusions and some open resea&stiongs.
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Chapter 2

Resource Management in Grids

Grids have a goal of offering transparent access to lardeatmns of resources for ap-
plications demanding many processors and access to hugyeatat To realize this goal,
resource management in grids is crucial. We begin this ehapiSection 2.1 by giving
the background on grids required to read our work. In Se@i@nwe present the model
for resource management in grids that is used in this thé&igl applications, includ-
ing the sample grid applications that are used in our experimin later chapters, are
introduced in Section 2.3. Finally, in Section 2.4 we revievated work.

2.1 Background

This section presents the background that is required tbtheathesis. This background
includes the detailed description of a multicluster systei@ection 2.1.1 called the Dis-
tributed ASCI Supercomputer (DAS), which was an importaotivation for our work.
We then describe the software infrastructure of the grichelg, local resource manage-
ment systems, grid middleware, grid resource managemstgrag, and grid program-
ming models in Sections 2.1.2-2.1.8.

2.1.1 The DAS system

The Distributed ASCI Supercomputer (DAS) [21] is an expental computer testbed
in the Netherlands that is exclusively used for researchavallel, distributed, and grid
computing. This research includes work on the efficient etien of parallel applica-
tions in wide-area systems [103, 104], on communicatioratiBs optimized for wide-
area use [17, 98], on programming environments [98, 99],aancksource management
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Figure 2.1: The five clusters of the Distributed ASCI Superpater 3.

and scheduling [34, 39, 40]. The system was built for the Adea School for Comput-
ing and Imaging (ASCI), a Dutch research school in which sdwmiversities participate.
The DAS is now entering its third generation, after the fired aecond generations have
proven to be successes.

The first generation DAS system (DAS-1) [35, 61] consistefbof clusters of identi-
cal Pentium Pro processors, one cluster with 128 proceasdrthree with 24 processors.
The clusters were interconnected by ATM links for wide-azeenmunications, while for
local-area communications within the clusters, MyrinetNs\were used. On single DAS
clusters a local scheduler callpdunwas used that allowed users to request a number of
processors bounded by the clusters’ sizes.

The first generation was replaced by the second generatitie &@IAS system (DAS-
2) at the end of 2001. The DAS-2 consisted of 200 nodes, argdrinto five dual-
CPU clusters as shown in Table 2.1 of identical 1GHZ Inteltiemlll processors. For
local communication within the single clusters, low-latgiMyrinet-2000 LAN was used.
The clusters were interconnected by SURFnet5, the Dutctedidi and research gigabit
backbone. Until mid 2005, all the DAS-2 clusters used opeh 2] as the local resource
manager. However, due to reliability problems after thedatipgrade of openPBS, the
decision was made to change the local resource manager ofuters to the Sun N1
Grid Engine (SGE) [26].

The DAS system is now in its third generation (DAS-3), whichsninstalled late
2006 (see Figure 2.1). In some of the universities where th8 Dlusters are hosted,
the decision was made to still maintain the DAS-2 clusténss imaking the DAS system
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Table 2.1: The distribution of the nodes over the DAS-2 drsst

Cluster Location Number of Nodes
Vrije University 72
Leiden University 32
University of Amsterdam 32
Delft University 32
Utrecht University 32

more heterogeneous. The DAS-3 consists of 272 nodes oeghmio five dual-CPU

clusters as shown in Table 2.2 with a mixture of single-caoe: dual-core AMD Opteron

processors. All the DAS-3 clusters have 1 Gb/s and 10 Gb/erith, as well as high
speed Myri-10G [18] interconnect, except the cluster infD&thich has only Ethernet
interconnects. For wide-area communications, initialBbls connectivity provided by
SURFnet6 was used, but at the time of writing this thesisgettssan ongoing collaborative
effort between the StarPlane project [25] and SURFnet tbler@AS-3 to use dedicated
10Gb/s lightpaths between clusters.

Table 2.2: The distribution of the nodes over the DAS-3 drsst

Cluster Location Number of Nodes
Vrije University 85
Leiden University 32
University of Amsterdam 41
Delft University 68
The MultimediaN Consortium 46

In the DAS systems, each of the DAS cluster is an autonomaisrsywith its own file
system. Therefore, in principle files (including execuealhave to be moved explicitly
between users’ working spaces in different clusters. Simghge rules are enforced in
the DAS. The most important of these are that any applicatammot run for more than
15 minutes from 08:00 to 20:00, and that application exeoutiust be performed on the
compute nodes. The DAS systems can be seen as a fast progptgnputational grid
environment, with its structure and usage policies desigoenake grid research easier.

Other systems such as Grid’5000 [7] and the Open Science(G86) [62] are sim-
ilar to the DAS. The Grid’5000 project aims at building a Higreconfigurable, control-
lable and monitorable experimental grid platform disttézlacross nine geographically
distributed sites in France and is intended to feature 4a6%&000 CPUs [7,44]. There
is an ongoing effort of joining the DAS-3 and Grid’5000 [43].

OSG, previously known as Grid3 [62], is a multi-virtual ongation environment that
sustains production level services required by variousigyexperiments. The infras-
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tructure comprises more than 50 sites and 4500 CPUs, aneksarer 1300 simultaneous
jobs and more than 2 TB/day aggregate data traffic [56].

2.1.2 Local resource management systems

Single clusters, whether they are part of a grid or not, areaged by Local Resource
Management Systems (LRMSs), which provide an interfaceu$ar-submitted jobs to
be allocated resources and to be executed on the cluster.SsRMpport the following
four main functionalities: resource management, job qungygob scheduling, and job
execution [107]. Jobs submitted to a cluster are initialgcpd into queues until there
are available resources to execute the jobs. After thatLRMS dispatches the jobs
to the assigned nodes and manages the job execution befioneimg the results to the
users [107]. Most LRMSs such as Condor [3, 95], the PortalateB System (PBS)
[24], and the Sun Grid Engine (SGE) [26] focus on maximizinggessor throughput and
utilization, and minimizing the average wait time and resgmtime of the jobs.

The LRMSs are typically designed for single administratteenains, and therefore,
employ a limited set of policies that tend to favor local jolbfis means that LRMSs do
not provide a complete solution to grid resource manageprebiems, although their re-
source management solutions are an important part of algijadaesource management
architecture.

2.1.3 Grid middleware

The grid middleware sits between grid applications and thesigal resources and there-
fore, it hides the underlying infrastructure from the usang from the vast majority of
programmers. In doing so, the middleware offers transpaesess to a wide variety of
distributed resources to users and allows the developnfientlaborative efforts between
organizations.

Grid middleware such as the Globus Toolkit [22, 63], Legi6i][ UNICORE [92],
DIET [4,46] and gLite [12] have contributed a lot to the gravaf grids. Of these grid
middlewares, the Globus Toolkit, which is also used in theIDA the best known. Sec-
tion 2.1.4 presents key features of the Globus Toolkit arfékiction 2.1.5 we discuss Grid
Resource Management Systems (GRMSs), which are built cof tbp grid middlewares.

2.1.4 The Globus Toolkit

The Globus Toolkit comprises a set of modules, each of whefinds an interface that
higher-level services use to invoke that module’s mechmasisThe Globus Toolkit uses
appropriate low-level operations to implement these meishas in different environ-
ments [63]. The modules provided with the Globus Toolkitfareresource location and
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allocation, communications, unified resource informasiervice, authentication, process
creation, and data access. We will discuss two of these rasgdillose for resource loca-
tion and allocation and for authentication, which are int@otto our work.

The resource location and allocation module provides a ar@sm for expressing
application resource requirements in the Globus Resoyeeiffcation Language (RSL)
[22], and for scheduling resources once they have beeneld¢htough the Globus Re-
source Allocation Manager (GRAM) [22]. We should point oliatt the most common
usage of GRAM is not scheduling resources by itself, buterathapping the resource
specification onto a request of some LRMS such as PBS, SGHJdforRork, or LSF,
which in turn does the scheduling on a remote site. This &l®RAM to inter-operate
with autonomous heterogenous sites that use different LRMS a result of interfac-
ing with different LRMSs, GRAM provides an ideal interfacetlveen GRMSs and au-
tonomous remote sites (see Figure 2.2). It should be notedingt the process of locating
resources is left to GRMSs to accomplish, which is the sulgEthe next section.

The authentication provided by the Globus Security Infragtire (GSI) [22] is the
core module of the Globus Toolkit, which provides basic aatltation mechanisms that
can be used to validate the identity of both users and ressufccentral concept in GSI
authentication is the certificate by which every user oriseren grids is identified. The
grid certificate contains vital information necessary ftertifying and authenticating the
user or service. The GSI supports delegation of crederitintsomputations that involve
multiple resources and/or sites. This allows a user to emgnly once (single sign-on)
to use grid resources in multiple sites.

Grid Resource Management System w

RSL

v v v
GRAM GRAM

PBS SGE Condor

Site 1 Site 2 Site n

Figure 2.2: The GRAM providing an interface to differentabcesource management
systems.
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2.1.5 Grid resource management systems

Grids need high-level resource management systems budipoof grid middlewares that
can schedule (and co-allocate) jobs across multiple Sites.grid resource management
system provides an interface to users for submitting giid jéor scheduling jobs across
the grid, for launching jobs for execution, for error handliand for recovery during the
execution of the job. In addition to scheduling jobs, a vaekigned GRMS can provide
an environment to perform application level scheduling.

To schedule jobs across the grid, good scheduling algositma required to identify
sufficient sites for the jobs based on the information olat@iinom the grid resource man-
ager’s information provider. The information provider dedo be reliable and must have
dynamic and static information about the availability dfigesources. With some grid re-
source managers, the estimated execution time of a conguéat specified by a user, and
cost constraints in addition to the information providedhosir information providers, are
used when scheduling jobs [27]. For grid resource managarseging resources span-
ning multiple organizations, managing usage service legetements [50,56,57] may be
required as well.

A GRMS built on top of different grid middlewares can be thbtgf as defining a
metacomputing virtual machine. The virtual machine sifiggiapplication development
and enhances portability by allowing programmers to thingemgraphically distributed,
heterogeneous collections of resources as unified entities

2.1.6 Grid programming models

Grid programming models hide the heterogeneity of the gntl@f the resources to grid
application programmers. Additionally, an applicationtten with a grid programming
model is essentially shielded from future, potentiallyrdigive changes in the grid mid-
dleware. In this thesis, the term “programming model” isdus®include both program-
ming languages and libraries with APIs that encode abstrescbf commonly used grid
operations [71]. Such grid operations include wide-argaraanication, error handling,
adaptivity to resource availability, checkpointing, jolgnation, distributed event models
for interactive applications, and collaborative integfac Grid programming models are
relevant to grid resource management, as GRMSs have to &écaedthedule, launch and
monitor applications written using these models. We cadl gpplications that are written
from scratch with execution on a grid in mind using a certaid grogramming model
native grid applications Examples of grid programming models incluliés [97, 98],
MPICH-G2 [17], the Grid Application Toolkit (GAT) [1], andrgiRPC [89].

Grid programming models can also be used to grid-enableyegaplications. Grid-
enabling these applications is achieved by interfacingmication codes with a suitable
grid programming model, which can be thought of as being giattte grid middleware.
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We call grid-enabled legacy applicatiolegacy grid applications

The presence of grid programming models has resulted inrdegion of different
grid applications, posing the new challenge of automativegy tdeployment on different
sites by grid resource management tools. This is becaugedgeamming model dictates
how these applications should be deployed, first to be ahientehem successfully, and
secondly, to optimally utilize grid resources and therefdoo improve their performance.

2.1.7 The grid-enabled Message Passing Interface

The Message Passing Interface (MPI) is a widely known staitiat defines a two-sided
message passing (matched sends and receives) librarg tisd for parallel applications
and is well suited for grids. Many implementations of MPIstxamongst which MPICH-

G2 [17] is the most prominent for grid computing. It allows toupling of multiple sites

to run a single MPI application by automatically handlingtboter-site and intra-site

messaging. MPICH-G2 requires Globus services to be avaitaball participating sites,

and therefore, the co-allocation of MPICH-G2 jobs is lirdite clusters with the Globus
middleware installed.

2.1.8 The Ibis grid programming system

Ibis has been developed at the Vrije University in Amsterdawhhas as its goal the design
and implemention of an efficient and flexible Java-basednaragiing environment and
runtime systems for grid computing [97,98]. Currentlyslbifers four grid programming
models: Remote Method Invocation (RMI) [74], which is Javabject-oriented equiva-
lent of RPC, Group Method Invocation (GMI) [74, 75], whichtemds RMI with group
communication, Replicated Method Invocation (RepMl) [A4hich extends Java with
efficient replicated objects, and Satin [96], which progidiee divide-and-conquer and
replicated-worker programming models. Key to the desigibisfis to achieve a system
that obtains high communication performance while stihethg to Java’s "write once,
run anywhere” model. Ibis is designed to use any standard ii¢Mding standard com-
munication protocols, e.g., TCP/IP or UDP, as provided leyJ¥IM. However, if a native
optimizing compiler (e.g., Manta [97]) for a target machared/or optimized low-level
protocols for a high-speed interconnect, like GM or MPlaiie/available, then Ibis can
use them instead. To run an lbis job, a central componergd#tlle Ibis nameserver is
required to coordinate the setup of communication ports&en the components of a job
running in multiple sites. The presence of the nameseri@rallbis to support malleable
jobs in which nodes participating in a parallel computatian join and leave the run at
any time. Also, the nameserver can be used to route messeiyesen clusters if a direct
connection is not possible. A single instance of the Ibis @server can be instantiated
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for each job or can be shared among several Ibis jobs. Wiitérgy the nameserver for
each job is expensive in terms of resource usage, sharirgathe Ibis nameserver can be
a bottleneck.

2.2 A Model for Resource Management in Grids

This section presents the model for resource managemenmtids that is used in this
thesis. Section 2.2.1 discusses the system model, whicispiréd by the DAS system.
The job model, including the structure of the job requestsjah priorities are described
in Sections 2.2.2 and 2.2.3. This section also presentsléheistribution model that we
use in Section 2.2.2.

2.2.1 The system model

In the system model, we assume a multicluster environmieatiie DAS with sites that
each contain computational resources (processors), ars and a local resource
manager. In our model, head nodes are normally used as fiersemnd have huge disk
space. The storage system providing the disk space candwmtlgiattached to the local
head nodes or to a remote storage system, and accessed Wieath@odes through a
global/network file system. The sites may combine theiruesss to be scheduled by a
grid schedulerfor executing jobs in a grid. The sites where the componesais Section
2.2.2) of ajob run are called iexecution sitesand the site(s) where its input file(s) reside
are itsfile sites We assume a grid scheduler through which all grid job susions are
made. The sites where the submissions are made from ard tadisubmission sitesA
submission site can be any site in a grid, or a desktop compittie grid scheduler allows
us to perform resource brokering and scheduling acrossitt®eazeddomainin the grid
about which it has global knowledge of the state of the noddsn@twork.

2.2.2 The job model

In this thesis, a job consists of one or more job componentshwdollectively perform
a useful task for a user. The job components contain infaomauch as their numbers
and speeds of processors, the sizes and locations of tipeit fies, their memory re-
quirements, and the required runtime libraries necessaurgcheduling and executing an
application across different sites in a grid. Due to the reatf our research, only num-
bers of processors, locations and sizes of input files, ahslonke bandwidth are used
when scheduling job components.
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Figure 2.3: TheKOALA job request types.

Users need to construct job requests containing a detagiectigtion of the job com-
ponents as described above. A job request may or may nofgfis@xecution sites and
the numbers and sizes (in terms of the number of procesdots)ab components. Based
on this, we consider four cases for the structure of the jghests, which are depicted in
Figure 2.3 and discussed below:

1. Fixed request The job request specifies the numbers of processors it meedls
clusters from which processors must be allocated for itspmmants. With fixed
requests, the user decides where the components of theljohmwiFixed requests
are useful for jobs that require resources only presentetisp sites, such as vi-
sualization equipment and software licenses. In generald fiequests give users

the ability to run jobs in more familiar clusters where theyow beforehand their
performance.

2. Non-fixed request The job request only specifies the numbers of processors re-
quired by its components, allowing the scheduler to chdosexecution sites. The
scheduler can either place the job components on the same different sites
depending on the availability of processors. Any applaratiype that can run in
any cluster should be amenable for submission with a now-ide request. For
example, the presence of the nameserver in Ibis allows dbis jo run anywhere.
MPICH-G2 jobs can also run in any Globus-middleware clisstéther applica-
tion types that are computation-intensive like Bags of $g§8loTs) and Parameter
Sweep Applications (PSAs) are also very well suited to berstibd with non-fixed
requests. BoTs and PSAs are discussed in Section 2.3.1.
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3. Semi-fixed request The job request is a combination of a fixed and a non-fixed
request in that the execution sites for some job componeatsgecified and for
others they are not. An example of the use of semi-fixed regugsonstituted
by applications types that perform simulations in grids aisdalization in desktop
computers. These application types may require the chittat interface with the
desktop machines to be fixed and the rest that do the computatbe non-fixed.

4. Flexible request The job request only specifies the total number of processor
requires. ltis left to the scheduler to split up the job anddoide on the number of
components, the number of processors of each componenthamstecution sites
for the components. With flexible job requests a restrictivay be imposed on
the number and sizes of the components. For instance, a lmwerd or an upper
bound may be imposed on the number of components and theg. dttexible job
requests are not supported by all applications, because gppilications such as the
Poisson application (see Section 2.3.2) dictate specifienpa of being split up into
components. In general, flexible requests are useful foicgtipns that require a
large number of processors but do not require a specificrpatfesplitting, e.g.,
BoTs and PSAs.

In the above mentioned job request types, the number of gsoce required by the
job is set by the user and cannot change during the job’s éreciie., we assume rigid
jobs. In all cases, the scheduler has the task of moving theutables as well as the
input files to the execution sites before the job starts, anstdrt the job components
simultaneously if required. This is because no matter winatapplication, it generally
requires input data and will produce output data. One ofhiregs we need to consider
here is the management of the input data and the gatherihg @iutput data.

In our model, we deal with two models of data distributiontte job components. In
the first model, the job components work on different churfkb® same data file, which
has been partitioned as requested by the components. Tussfisl when the data file is
large and the job components have been placed on geogriplistributed sites. Note
this model includes the model in which all job componentsehdifferent input files that
are all stored on the same file sites. In the second modeljvidigseful for small input
files, the input to each of the job components is the whole filataln both models, data
need to be transferred to the execution sites before thexptuéon starts such that the
job can access the data locally. We assume that the datarBlesaa-only, and therefore,
that they can be shared by other jobs. This is a reasonahlenpsien as discussed in
several Data Grid scenarios [80].

The input data files have unique logical names and are stoik@assibly replicated
at different file sites. A logical name of a file is a unique itiger for the file. We assume
that there is a replica manager that maps the logical file s@mecified by jobs onto their
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physical file names on a storage system. Figure 2.4 showssampde of a user requesting
a physical name of a file. The replica manager replies withrtapping of the file to the
physical location(s) on the storage systems.

Replica Manager

Logical Name: Physical Names:
/home/hashim/filel fs0.das3.cs.uva.nl:/home/hashim/filel
fsl.das3.liacs.nl:/home/hashim/filel

User

Figure 2.4: Example of the mappings of a logical file nameditysical locations.

2.2.3 Job priorities

In real systems, the need may arise to give some jobs prétdreeatment over others.
For instance, some jobs may have (soft) deadlines assoc@atenay need interaction
from the user. Therefore, we have introduced the prioritg gdb, which is used to de-
termine its importance relative to other jobs in the syst€urrently, we distinguish four
priority levels, which aresuper-high high, low andsuper-low and which are assigned to
the jobs by our scheduler. Of course, we can have any numherarity levels of jobs,
but we have limited the number to only four based on the typg¢shs discussed below,
which are common in grids:

1. Interactive jobs. These are jobs that run interactivaly @equire quick responses.
To avoid delaying these jobs, the super-high priority léselssigned to them.

2. Occasional jobs. These are batch jobs that are submjiesdfisally for special
occasions, such as demos, tight deadlines, etc. We give jbbs a high prior-
ity level, and leave the decision of which jobs belong to tigup to the system
administrator.

3. Batch jobs. These are normal batch jobs that run withopspacial requirements.
We assign these jobs the low priority level.
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4. Cycle-scavenging jobs. These jobs scavenge machines/éilable CPU cycle.
Cycle-scavenging jobs can be submitted to both desktop imextand cluster
nodes. These jobs are started when CPUs are idle and immlgdiadpped if the
CPUs are needed again by jobs of higher priority levels. meadel, we assign to
cycle-scavenging jobs the super-low priority level.

The four priority levels might also be assigned based on tesygolicy. Examples
of these policies include assigning priority levels to jdd@sed on their estimated job
runtimes, with longer jobs having lower priorities. Theskg of different groups of
users from different domains or projects can also be asdignerities based on their
importance.

The priority level plays a part during the placement of a jab, when finding suitable
pairs of execution sites and file sites for the job componisats Section 4.2.1), and when
claiming processors for a job’s components (see Section Ddring placement, jobs
are placed according to their priority levels. Moreovering claiming processors for
jobs, in the absence of processor reservation, it is passiat not enough processors
are available anymore. In this scenario, a job of a higharipyiis allowed to preempt
lower-priority jobs until enough idle processors for it taeeute are freed.

2.3 Grid Applications

The presence of grid programming models has resulted in@amdance of different grid
application types with different and unique charactessstiln Section 2.3.1 we give an
overview of different application types that exist, and iecon 2.3.2 we present the
sample grid applications that we use in our experimentsigthiesis.

2.3.1 Grid application types

In computational grids, different application types witiffetent characteristics may ex-
ist. Important grid application types include parallel bggttions, sequential applications,
Bags-of-Tasks (BoTs) [72,102,105], Parameter Sweep Aaiptins (PSASs) [47,48, 85],
workflows [54, 70, 108], data-intensive applications, apgligation types written with
special grid programming models like Ibis. BoTs, PSAs andkflows are formed by
coupling together multiple grid applications based on soutes. A BoT application
is composed of independent tasks which can be scheduledxaadted in any order
without needing inter-task communication. There are mamyortant BoT applications
such as datamining, massive searches, Monte Carlo siongafractal calculations (such
as Mandelbrot), and image processing applications (sudmrasgraphic reconstruc-
tion) [105]. PSAs are specialized BoTs with tasks that eaelo@e the same program but
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with different parameters. Workflows are concerned withahtomation of procedures
whereby files and data are passed between participating &askording to a set of rules
to achieve an overall goal [108].

2.3.2 Sample grid applications

In this thesis, we have selected the following grid-enalaleplications to be used when
assessing the mechanisms and policies ofk@maLA grid scheduler. Below, we present
three MPI applications followed by Ibis applications. Manéormation about these ap-
plications including their runtimes will be presented ircen 6.2.1.

The Poisson application

This application implements a parallel iterative algaritko find a discrete approxima-
tion to the solution of the two-dimensional Poisson equefi@® second-order differen-
tial equation governing steady-state heat flow in a two-disie@nal domain) on the unit
square. For discretization, a uniform grid of points in tiné square with a constant step
in both directions is considered. The application uses &tack Gauss-Seidel scheme,
for which the grid is split up into “black” and “red” points,ith every red point having
only black neighbours and vice versa. In every iteratiorthegrid point has its value
updated as a function of its previous value and the values okighbours and all points
of one colour are visited first followed by the ones of the ott@our. The application is
implemented in MPI where the domain of the problem is splitnip a two-dimensional
pattern of rectangles of equal size among the participgimgessors. When executing
this application on multiple clusters, this pattern istspfi into adjacent vertical strips of
equal width, with each cluster using an equal number of FSmes.

The Fiber Tracking application

The Fiber Tracking (FT) application uses the anisotropiftigion of water molecules in
the human brain to visualize the white-matter tracts anddmaecting pathways between
brain structures. Combined with functional MRI, the infation about white-matter
tracts reveals important information about neuro-cogeitietworks and may improve
the understanding of the brain function. The FT works bytstgrat various points, and
tracks the white-matter fibers in the entire data domain. Aumaber of detected fibers
(and therefore the accuracy of the algorithm) grows withrtheber of starting points
considered. The execution time of this application depemdshe number of starting
points, the algorithm, and the size of the data set, and cam@ainto many hours. There-
fore, in order to increase the throughput without decrepsie accuracy of the result, the
parallel version of this application is used [41], which lhagn written with MPI. In our
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experiments, we use the version of this application cordpileéh MPICH-g2. The FT ap-

plication is a proprietary application, which is availabbeus only in a binary format. As
a result, an analysis of its characteristics such as its aamuation pattern is impossible
to us.

The Lagrangian Particle Model application

The Lagrangian Particle Model (LPM) application has beevetigped and extensively
used by the Department of Applied Mathematical Analysis elftJniversity of Tech-
nology. This application performs simulation of sedimaansport in shallow waters
using a particle decomposition approach [14]. The modelatan be used to predict
through simulations the dispersion of pollutants in shalaaters. In the simulations, the
computation cost becomes high because a large number afl@siis required. Fortu-
nately, particles behave independently from one anothes, @llowing the application to
use parallel processing to reduce the runtime.

The simulation of sediment transport is done by numericgiratgon of a set of
stochastic differential equations (SDEs). The displaceméthe position of the parti-
cles is done by a deterministic part and the random term oSEs. This technique
of following the track of the sediment particles along thgaths in time is known as the
Lagrangian particle approach. In our experiments with aipiglication, realistic data of
the Dutch coastal waters, notably in the Wadden Sea, wedsfasthe prediction of both
sediment transport and pollutant dispersion.

The LPM application is an MPI application, which has been pited with MPICH-
G2 and which can therefore use co-allocation. Compared thighother applications
presented in this section, the LPM application is commuioaintensive with many
“many-to-many” communication patterns.

The Ibis applications

We select three Ibis applications that use either the SatimecRMI programming model;
these programming models have already been described fiwi$@cl.8. The Satin ap-
plications that we use are N-Queens, which solves the catdnally hard problem of
placing N queens on a chess board such that no queen attamkem’rand Raytracer,
which computes a picture using an abstract description oéaes N-Queens uses recur-
sive search to find a solution. On the other hand, Raytraas parallel processing to
recursively divide the picture up to the pixel level. Nexie tcorrect color of that pixel is
calculated and the image is reassembled. The RMI applicatiat we use is red/black
Successive Over Relaxation (SOR), which is an iterativehotefor solving discretized
Laplace equations. This application distributes a matw-wise among the processors.
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Each processor exchanges one row of the matrix with eack néighbours at the begin-
ning of each iteration.

2.4 Related Work

In this section we review the research on resource manadgeanehjob deployment

frameworks in grids that is related to our work. In Sectiofh.2we consider papers that
have studied co-allocation with simulations and co-alfierawith advance reservations.
Since we deal also with data in our scheduling policies, \8e abmmarize some of the
work on data scheduling in Section 2.4.2. Finally, somet@gsgrid resource manage-
ment systems and grid job deployment frameworks are diedugsSection 2.4.3 and in

Section 2.4.4, respectively.

2.4.1 Study of co-allocation with simulations

Recent research in computational grids has studied thdlammtion problem in grids
with a focus on processor co-allocation only (without cdesing data). The focus of
research has also been on studied different approachesrErgaeing the simultaneous
availability of resources in multiple sites at job startéisn In this section we review these
works that address the co-allocation problem by means aflaiion. These simulation
studies are compared to our experiments in Section 5.3 veétbave presented the results
of our experiments.

Bucur et al. [34,38,40] study processor co-allocation irtitlusters with space shar-
ing of rigid jobs for a wide range of such parameters as thebmimnand sizes of the
job components, the number of clusters, the service-tirgiblition, and the number
of queues in the system. The main results are that co-albocet beneficial as long as
the number and sizes of job components, and the slowdownpicapons due to the
wide-area communication, are limited.

The impact of wide-area communication on the efficiency ofatocation is also
studied with simulations by Ernemann et al. [59, 60]. Thewbs only specify a total
number of processors, and are split up across the clustersll@ation is compared to
keeping jobs local and to only sharing load among the clas@&ssuming that all jobs
fit in a single cluster. One of the most important findings &t ttwhen the application
slowdown does not exceed 1.25, it pays to use co-allocation.

An Availability Check Technique (ACT), which is designedlie a complementary
technique to most resource co-allocation protocols, rethiced by Azougagh et al. [32].
In this technique, each job gets informed of the state chanfthe requested resources
until they become available. Once the resources are alailatjob applies the selected
resource co-allocation protocol to acquire the resoulloabis paper, two such protocols,
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All-or-Nothing (AONP) and Order-based Deadlock Prevem{ioDP), are used with the
ACT. In AONP, a resource co-allocator releases all the nessualready allocated if the
allocation of at least one of the required resources fail@P which is proposed to
prevent deadlock and to reduce the degree of starvatiorsofirees, requires each job
to secure its resources one by one according to a given giothet. This means that the
distinct resources need to be globally ordered. The resiiltise simulations show the
benefit when ACT is used with the two protocols.

RoDblitz et al. [86,87] present an algorithm for reserviogpute resources that allows
users to define an optimization policy if multiple candidateatch the specified require-
ments. An optimization policy based on a list of selectiatecia, such as end time and
cost, ordered by decreasing importance. For the resenvatsers can specify the earli-
est start time, the latest end time, the duration, and thebeumwf processors. To allow
elasticity in the processor type, a duration is defined fopecsic number of reference
processors. The algorithm adjusts the requested duratibie actual processor types and
numbers by scaling it according to the speedup, which is e@firsing speedup models or
using a database containing reference values. This digogtpports so-called fuzziness
in the duration, the start time, the number of processoislaa site to be chosen, which
leads to a larger solution space. This work is presented asdarig block for future work
that is to provide co-reservations, i.e., the reservatodmsultiple independent resources.

Smith et al. [90] study a reservation mechanism for redtéetand non-restartable ap-
plications through simulations. In their work, reservatfor an application is made by a
scheduler which first simulates the scheduling of applicetiin the system and produces
a timeline of when the processors will be used in the futuras Timeline is then used to
decide when a reservation can be made. The runtime infawmedquired for this mecha-
nism when scheduling applications can be obtained diréctig the users, from historical
information of the runs of the application, or by running adlemark application. This
mechanism is simple and straightforward, but it depend$iercorrect predictions of the
runtimes of the applications; obtaining these may resu#t mgh scheduling overhead,
and they may still be inaccurate.

Azzedin et al. [33] propose the scheme Synchronous Que8iQy for co-allocation
that does not require advance reservations. This schemeesribat the subtasks of a job
remain synchronized by minimizing the co-allocation ske#vich is the time difference
between the fastest running and the slowest running slss(gd components) of an
application. Despite a similar aim witkoALA of achieving co-allocation without ad-
vance reservations, some differences can be observetly,Rings work is only aimed at
multimedia applications with long execution times and withsub-task communication.
Secondly, synchronization is maintained throughout thecetion of the application. In
KOALA, only the component (subtask) start times are synchronaedifurther synchro-
nization during the execution, if required, is left to thehgation.
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2.4.2 Data-aware scheduling

Data intensive applications are common in many disciplofescience and engineering.
Such applications can benefit from a grid environment pedithat good data-aware
scheduling policies that schedule both processors anchdatavailable. Thain et al. [94]
propose a system that links jobs and data by binding execatid storage sites into 1/0
communities that reflect the physical reality. A job requesfparticular data may be
moved to a community where the data are already staged, amua be staged to the
community in which a job has already been placed. Other relsean data access has
focused on the mechanisms for automating the transfer oftendccess to data in grids,
e.g., in Globus [22] and in Kangaroo [93], although thers lemphasis is placed on the
importance of the timely arrival of data.

Ranganathan et al. [84] discuss the scheduling of sequgotigthat need a single
input file in grid environments with simulations of syntleetvorkloads. Every site has
a Local Scheduler, an External Scheduler (ES) that detesnivhere to send locally
submitted jobs, and a Data Scheduler (DS) that asynchrbnaes, independently of the
jobs being scheduled, replicates the most popular fileedtocally. All combinations of
four ES and three DS algorithms are studied, and it turnshattstending jobs to the sites
where their input files are already present, and activellyja@mng popular files, performs
best.

Venugopal et al. [100] present a scheduling strategy whah lleen implemented
within the Gridbus broker [6]. For each job, their algoritfinst selects the file site that
contains the file required for the job, and then selects a ctengesource that has the
highest available bandwidth to that file site.

The works discussed in this section focus on ensuring thgireg of the large input
files does not delay the start of the data-intensive apphicathat require thenkoALA
shares this focus but differs by its requirement of simutars staging files in multiple
locations when scheduling data-intensive applications.

2.4.3 Grid scheduling systems

Despite the existence of a number of grid schedulers, togkeds our knowledge, none
of them combine processor and data co-allocation in gritlsoui relying on the support
of advance processor reservation in LRMSs. Czajkowski g6dl] propose a layered co-
allocation architecture which addresses the challengga@environments by providing
basic co-allocation mechanisms for the dynamic manageoiessparately administered
and controlled resources. These mechanisms are implethenge co-allocator called
the Dynamically Updated Resource Online Co-allocator (DR, which is part of the
Globus project [22]. DUROC implements co-allocation sfeally for the grid-enabled
implementation of MPI applications. However, DUROC, whishmplemented as a set
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of libraries to be linked with application codes and job sigsion tools, does not provide
resource brokering or fault tolerance, and requires jobsprify exactly where their
components should run. As a consequence, DUROC only sugfpatl job requests. In
our work, we use DUROC as a building block of the componemta@{LA that enables

the co-allocation of MPI applications.

The Globus Architecture for Reservation and Allocation ) [64] enables the
construction of application-level co-reservation andatloeation libraries that are used
to dynamically assemble a collection of resources for atiegtpon. In GARA, the prob-
lem of co-allocation is simplified by the use of advance nestgons. Support for co-
allocation through the use of advance reservations is aldaded in the grid resource
broker presented by Elmroth et al. [58]. The limited supmdradvance reservations
by LRMSs hinders the wide deployment of co-allocation meddras that do depend on
such reservations. WitkOALA, we address this limitation and we have implemented a
work-around mechanism for advance processor reservations

Nimrod-G [27] is an economy-driven grid resource broket upports soft-deadline
and budget-based scheduling of applications on the grike KDALA, Nimrod-G per-
forms resource discovery, scheduling, dispatching jolenmote grid nodes, starting and
managing job execution, and gathering results back to thenssion site. However,
Nimrod-G uses user-defined deadline and budget constriamintsake and optimize its
scheduling decisions, and focuses only on parameter svpgipations.

The GridWay framework [68], which allows the execution obgoin dynamic grid
environments, incorporates similar job scheduling stepsoaLA does, such as resource
discovery and selection, job submission, job monitoring sarmination, but then at the
application level (Application Level Scheduling). An impant drawback of GridWay
is that the number of applications that can be run with Grig\tgalimited because ap-
plication source code first needs to be instrumented to gnthk framework. Another
drawback of this system is that its scheduling process iawate of other jobs currently
being scheduled, rescheduled, or submitted, which has easequence, a degradation
of the throughput of the grid. WitROALA, scheduling is performed at the system level
by a scheduler, that has knowledge of the entire system,hwhatps to maximize the
throughput of the system. TheALA job submitters (runners) can perform application
level scheduling of the resources allocated to them byt A scheduler.

The Grid Application Development Software (GrADS) [52] bles co-allocation of
grid resources for parallel applications that may haveigamt inter-process commu-
nication. For a given application, during resource sebatGrADS first tries to reduce
the number of workstations to be considered according tio &vailabilities, computa-
tional and memory capacities, network bandwidth, and tatenformation. Then, the
scheduling solution that gives the minimum estimated eti@auime is chosen for the
application. Like GridWay, GrADS performs only applicatitevel scheduling and there-
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fore, shares the same limitations with respectdaLA .

Condor with its DAG-manager is a system that is able to parfaiocation of re-
sources in different administrative domains to a single[fif)) 95]. Condor's DAGMan
takes as input job descriptions in the form of Directed Amy@raphs (DAGs), and sched-
ules atask in such a graph when it is enabled (i.e., whersgltécedence constraints have
been resolved). However, no simultaneous resource possesspart of a co-allocation
mechanism is implemented. Raman et al. [83] have extenée@ahdor class-ad match-
making mechanism for matching single jobs with single maesito “gangmatching” for
matching single jobs with sets of resources, which amownts4allocation. The running
example in their work is the inclusion of a software licenseaimatch of a job and a
machine, and it was promised that the gangmatching mechamiis be extended to the
co-allocation of processors and data.

The Community Scheduler Framework (CSF) is an open-sounpéementation of
a number of grid services, which together perform the fumstiof a grid metasched-
uler [49,106]. CSF is built on top of the Globus Toolkit 4.@aherefore, it is limited to
grids that use the Globus middleware. CSF consists of a nuafilveeb services such as,
a Job Service, a Reservation Service, a Queuing Servic&eswlirce Manager Services.
The Job Service provides the interface for end users to éahtrol their jobs, while the
Reservation Service allows the end users to reserve resotoc their jobs in advance.
Since CSF relies on Globus for middleware services and atirtiee of writing of this
thesis GRAM did not support resource reservation, the vasen requests are simply
forwarded to the LRMS. Again, this reservation mechanisimséted to only clusters
with LRMSs that support advance processor reservations.Qureuing Service of CSF
represents a set of scheduling policies and associateéguiests. Queues start to sched-
ule jobs periodically only in a FCFS manner. It should be dat&tkOALA is not tied to
one grid middleware, and that our modular design alle@sLA to operate on top of any
grid middleware as will be discussed in Chapter 3.

2.4.4 Grid job deployment frameworks

In computational grids, different application types witlffetent characteristics forming
complex workloads exist. The automation of submission raeigms for these work-
loads to the grid infrastructure is far from complete, an geployment still requires
specialized operation skills. Attempts have been madelt@ $bis problem for different
application types. Euryale [101] is a system designed tgalsover large grids. Euryale
uses Condor-G [66] to submit and monitor jobs, and it takeste binding approach in
assigning jobs to sites. It also implements a simple faldrémce mechanism by means
of job re-planning when a failure is discovered. Euryale banintegrated in different
grid schedulers like oukOALA, and be used as a job submission tool for running jobs
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with Condor-G. Condor-G’s DAGMan executes Euryale’s prigss and postscripts. The
prescript of a job calls the external site collector suchhasoALA scheduler to identify

the site on which the job should run. The postscript trassbeitput files to the collection
area and inform the monitoring tools.

The grid programming environment called ASSIST [53] aimsffer grid program-
mers a component-oriented programming model, in orderfarem the reuse of already
developed code. In the same work a grid execution agenténfrms resource discovery,
resource selection and mapping, file staging, and laundhegpplication for execution
is presented. Clearly, this execution agent combines thetifunality of the scheduler
and the submission tool into one monolithic structure winekes its extension to more
application types difficult.

In the AppLeS project [48], each grid application is scheduhccording to its own
performance model, which is provided by the user. The gémsénrategy of AppLeS is
to take into account resource performance estimates taaens plan for assigning file
transfers to network links and tasks (sequential jobs) &ishorhis functionality can be
achieved in theckoALA framework proposed in this thesis by means of a runner. An
example of this is a new runner called the MDrunner, which weagen specifically for
Higher-Order Component (HOC) applications [55]. This renfirst requests a number
of execution sites from theoALA scheduler and then organizes the execution of a job’s
components on these sites based on resource performance.
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Chapter 3

The KOALA Grid Resource
Management System

In this chapter we describe the design of K@ALA grid resource management system
and our experiences with it. WitkOALA, we try to meet the challenges of resource
management and jobs deployment in grids presented in GtlapteALA is designed for
multicluster systems like the DAS that have in each clustezad node and a number of
compute nodesKOALA started as a prototype named the Processor and Data Caatlioc
(PDCA) [77-79], and has been in operation in the DAS-2 sysiEte September 2005.
In May 2007 ,KOALA was also ported to the DAS-3 [11].

KOALA has a layered architecture that allows us to develop dist@yers indepen-
dently, which can then work together. TReALA layered architecture consists of four
layers: thescheduley therunners frameworktherunners and thesubmission engines
as shown in Figure 3.1. ThedoALA scheduler, which is the subject of Section 3.1, is re-
sponsible for scheduling jobs received from the runnerg Sdheduler is equipped with
placement policies that are used to place jobs on suitaleleution sites, and a claiming
policy that is used to claim for jobs their assigned procesab their scheduled times.
The choice of which placement policy to use is initiated by thnners and therefore, it
can be selected by the users for every submitted job separ@tee runners framework
presented in Section 3.2 hides the heterogeneity of thebgrroviding to the runners a
runtime system and its corresponding set of APIs for comgnoséd job submission op-
erations. The runners are specializemthLA components for submitting and monitoring
different applications types; they will be discussed inti®ec3.3. The implementation
details of the runners framework and the runners are pregentSection 3.4. The last
layer consists of the submission engines, which are thamtlyools that use the runners
to submit jobs t&kOALA . These tools include workflow engines and workload geramati
and submission tools. This layer is explained in Section 3.5ayered approach bene-
fits from the advantages of modularity and flexibility. Al$itois common practice to use
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a layered architecture to separate the scheduler and trsaifphitters; however, our job
submitters (runners) need to satisfy the challenge of gapiayrid applications presented
in Section 1.2, hence the introduction of the runners fraarkw

Jobs are guided through the layerskafaLA according to thexoALA job flow pro-
tocol, which is the subject of Section 3.6. In our experisneéh deployingk OALA on
the DAS, users care much more about their jobs correctlyhiimgsthan about the perfor-
mance of the their jobs. In Section 3.7, we discuss the riétiabf KOALA. The DAS
testbed uses the Globus Toolkit as its grid middleware; &peeences of using Globus
on the DAS are the subject of Section 3.8. Finally, in SecBdhwe discuss the wide
range of usage ofOALA in the past two years by different users of the DAS.

KOALA Scheduler

v

Runners Framework

;

KOALA Runners

f

[ Submission Engines )
&%ﬁ i

Users

Figure 3.1: The KOALA layered architecture.

3.1 The KOALA Scheduler

The KOALA scheduler is responsible for scheduling jobs received fitoeOALA run-
ners or any third-party job submission tools. By scheduitrggnean deciding where and
when the components of a job should be sent for execution.s€heduler uses one of
its placement policies to select file sites and executi@sdar the job components. By
placement we mean finding execution sites for job componsittssufficient number
of processors. A new job arriving to the scheduler is appéndehe tail of one of the
placement queues depending on its priority, and its planerseetried for a fixed number
of times. The scheduler also decides when the job composbkatdd start executing. If
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processor reservation is supported by the local resourcageas, the&KcOALA scheduler
reserves processors for the components, otherwisedhea claiming policy is used for
claiming processors for the job components at their desgghtimes possibly in multi-
ple sites. If the claiming procedure of processors for thegomponents fails, the job
is added to the claiming queue and the claiming is retriedSdation 3.1.1 we describe
the scheduler components, and in Section 3.1.2 we discoss details of the implemen-
tation of the scheduler. The placement queues and the dgiqueue are presented in
Sections 4.2.1 and 4.2.2, respectively, and the placenodintgs and the claiming policy
in Sections 4.3 and 4.4, respectively.

3.1.1 The scheduler components

ThekoALA scheduler consists of the following three componentsCitrv@llocator(CO),
thelnformation ServicélS), and théProcessor Claime(PC). The structure of theoALA
scheduler is depicted in Figure 3.2. We will now discussdlasmponents in turn.

The CO isresponsible for placing jobs, i.e., for finding tReaition sites with enough
idle processors for their components. The CO chooses jopate based on their pri-
orities from one of th&KOALA placement queues. If the components require input files,
the CO also selects the file sites for the components suchhbastimated file transfer
times to the execution sites are minimal. To decide on thetdian sites and file sites for
the job components, the CO uses one of the placement palicesssed in Section 4.3.
Finding execution sites for the job components is only den@bn-fixed, semi-fixed, and
flexible job requests.

The IS is comprised of the Replica Information Provider (RtRe Network Informa-
tion Provider (NIP), and the Processor Information Provi@P). The RIP provides to
KOALA acommon interface for mapping the logical file names to thieysical locations.
The RIP can use the Globus Toolkit’s Replica Location Ser¢iRLS) [22] to provide this
mapping if present. In the absence of the RLS, RIP maintagisiple database that can
be used to provide the mapping. The NIP provides@aLA a common interface to ob-
tain network bandwidth and latency measurements from-gbady tools. Atthe moment,
in the DAS Iperf [10] is used for this purpose. A repository containing thadwidths
measured with NIP is maintained and updated periodically.

The PIP, like the NIP, provides t0ALA a common interface to access grid informa-
tion providers like the Globus Toolkit's Metacomputing Batory Service (MDS) [22] to
obtain status information of nodes per cluster like the narslof busy nodes and erro-
neous nodes, and the total number of available nodes. The$tiRas native mechanisms
to query the status information of nodes straight from loeaburce managers (currently,
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Figure 3.2: The components of the KOALA scheduler.

only PBS and SGE are supported). The native mechanisms efi@ uwsere the MDS
is missing, or when MDS shortcomings are observed. The @mihgs are felt in busy
systems where Globus MDS-2 suffers from a number of prohlemkiding the fact that
updated information does not propagate very quickly antddatralized servers may be-
come bottlenecks or points of failure [82]. It should be widteat requests for node status
and requests to the bandwidth repository impose delays awingl jobs, especially on
busy systems. Therefore, to minimize the delay, the IS cartiermation obtained from
the PIP and the NIP with a fixed cache expiry time (a paraméteoaLA). Furthermore,
to deal with the fact that updated information may not alwpsspagate quickly when
requested, the IS can be configured to do periodic cache epffaim frequently used
clusters before their cache expiry time.

After a job has been placed, it is the task of the PC to ensatepitocessors will
still be available when the job starts to run. If processeereation is supported by local
resource managers, the PC can reserve processors imrhedftge the job placement.
Otherwise, the PC use®ALA’s claiming policy to postpone claiming of processors to a
time close to the estimated job start time; this policy i€dssed in detail in Section 4.4.

3.1.2 The implementation of the scheduler

The KOALA scheduler is implemented using Java 5.0. The Java languagehwosen
because it solves many software portability issues presené heterogeneous grid envi-
ronment. Also, the choice to use Java was a result of theriedearnt with the PDCA, the
precursor o0KOALA , which was written entirely in C. The development and maiatee
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cost of the PDCA was very high compared to the value gainedsinguhe language C,
which was the speed with which the scheduler was running. édew most current Java
VM implementations come with good state-of-the-art Juskime (JIT) technology that

makes its interpreted code run at compiled code speedsharefdre, fast enough.

We have ensured that the scheduler is not tied to any patioplerating system or
grid middleware by using the plugin technology for the IS pament. In this component,
plugins for the RIP, the PIP, and the NIP specific for a gridated/are or an operating
system can be added and then registered to be used ypthen scheduler. The same
technology is used for the placement and claiming policidgre new policies can be
added and then registered to the CO without affecting itsadjws. Examples of policies
that have been added in this manner are the Cluster Minimiz@CM) and the Flexible
Cluster Minimization (FCM) policies [91], which are moreigation oriented. The
choice of which policy to use is initiated by the runners dmetrefore, it can be selected
by the users for every submitted job separately.

3.2 The KOALA Runners Framework

Different types of grid applications have different chaeaistics that pose varying diffi-
culties when attempting to deploy them on grids. The chghsrposed by grid applica-
tions and the rate at which grid technology is changing mékiegpossible to have one
universal submission tool,ranner, for all current and future grid applications. Therefore,
we introduce our runners framework, which not only hideshberogeneity of the grid,
but also allows easy addition of new runners for new appboaechnologies or modify-
ing existing ones with minimal effort [76]. Frameworks areedfective tool to deal with
the complexity of grid applications and heterogeneity afent computing environments,
and are an important insurance policy against disruptiaagas in future technologies.
Our runners framework provides a set of APIs to the runnersdomonly used grid job
submission operations such as interfacing withkbaLA scheduler for job scheduling,
the transfer of input files, deploying jobs on grids, monitgrand responding to failures,
and the transfer of output files back to the submission siteo,Ahe runners framework
enforces thecOALA job flow protocol that needs to be followed by all jobs subedtt
throughkoALA, and that is described in Section 3.6. In Section 3.2.1 weeprtethe
components of the runners framework and in Section 3.2.2eseribe the fault tolerance
mechanisms of this framework.
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Figure 3.3: The runners framework of KOALA.

3.2.1 The framework components

The runners framework provides a set of APIs to the runnargdonmonly used grid
job submission operations such as interfacing withkbeLA scheduler for job schedul-
ing and interfacing with a grid middleware for deploying $obn grids, monitoring job
submission failures, and transferring input and outpus filBased on these operations,
the runners framework consists of the following three congmas: theRunners Listener
(RL), theRun Monitor(RM), and theData Manager(DM). The framework is depicted in
Figure 3.3.

The RL acts as the interface between the runners and thersuftamework. It pro-
vides to the runners a set of APIs for job scheduling with kkaaLA scheduler, and
for application level operations such as input and outpetfdnsfers, deploying jobs on
grids, and monitoring and responding to failures. The ramhave complete freedom to
implement their own mechanisms for the application levaragions, or alternatively, to
use the default implementations that are provided by theetsmframework. The imple-
mentation of the application level operations depends emtld middleware in use, and
currently, only the Globus middleware is supported.

TheKoALA job flow protocol guides a job from the moment it is receivemhira user
until its completion time. When a new job request is receiveth a user by a runner, of
which a separate instantiation is created for every jobRihen behalf of the runner asks
the scheduler to schedule the job. If the job requires inpeg find after instructed to do
so by the scheduler, the RL invokes the file transfer mechasipplied by the runner or
the DM by default to transfer the input files to the executibess At the time of claiming
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the processors for the job components, the scheduler seadmponents back to the
RL for submission to their respective execution sites. Byithe execution of the job, the
RL may receive instructions from a runner to abort and/asaieedule job components.
ThekoALA job flow protocol will be described in more detail in Sectia6.3

The RM implements the mechanisms to launch the job compsifi@néxecution, and
to monitor and respond to errors that may interrupt the ed@cwf any of the job com-
ponents. The implementation of the RM depends on the gridlieicare in use. The cur-
rent implementation of the RM uses the Globus Resource Allon Manager (GRAM)
to launch the job components to their respective execuites.s The mechanisms for
responding to errors are discussed in Section 3.2.2.

The DM is used to manage file transfers for which the currepiementation uses
both Globus GridFTP [28] and Globus Global Access to Seagrsitorage (GASS) [22].
The DM is responsible for ensuring that input files arrivehadit destinations before the
job starts to run.

The runners provide to the user an interface for submittieg job requests and for
monitoring the progress of the job execution. Kw\LA runners are discussed in Section
3.3.

3.2.2 Fault tolerance

The RM monitors the execution of the components of a job fasrerthat may interrupt

their execution. These errors, which are hardware, opgratystem, grid-middleware, or
application related, are divided into three groups dependn whether they are system
errors occurring at (the head node of) the submission siteefob, whether they are
system errors at one of the execution sites of a job, or whetley are related to the

application itself.

The first group of errors we distinguish in the context of tikecaition of a job are
irrecoverablehard errors which are caused by operating-system and network failfres
the submission site of the job, i.e., at the head node of teengiere the runner of the
job has been launched, of which are grid middleware errogs, middleware software
bugs. The RM responds to errors of this group by informingésponsible runner that it
is going to abort the job, and also as a consequence, therritselé, before performing
this action.

The second group of errors consistssoft errors which are execution-site specific
errors caused by hardware or software faults of the exatgites of a job. These are
errors of nodes executing a job component at an executienwsftich are reported by
the grid middleware. The RM responds to soft errors in theaeodrof the execution of a
job by allowing the runner of the job to deal with the job compot(s) that have reported
such errors, and at the same time, by informing the schedbtart the erroneous clusters.
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KOALA Scheduler ' Head node of the cluster running the
' KOALA scheduler

IWide Area Network

RM RL DM

\
runner specific mechanisms

| Head node of the submission site running
runner instance ' the runner instance of a job

Figure 3.4: An instance of a KOALA runner.

ThekoALA scheduler counts the number of consecutive errors of easkecland if this
number reaches a certain threshold, the cluster is markeshbfe. A message containing
the details of the error is then sent to the administratohefdystem for further action.
If a runner does not have mechanisms to deal with soft ertbesgdefault operation in
the RM is to abort the job, to inform the scheduler to use otlvailable execution sites
for the aborted job components, and then to restart the jobhduld be noted that the
RM focuses only on ensuring that the job is restarted. Itfisfée the runner to employ
application-specific fault tolerance mechanisms like &pemting to ensure that a job
continues its execution from where it left off and does netad from the beginning.

The third group of errors we distinguish in the context of &xecution of a job are
application-specific errorswhich can be anything caused by faults in the application,
and which are simply passed back through the RL to the runingregob. The default
operation for these errors is to simply abort both the jobtaedunner, if no mechanisms
to deal with these errors are present in the runner.

3.3 The KOALA Runners

ThekoALA runners implement specific mechanisms for launching jolbisesf respective
application types on grids and for monitoring job execusi@nd responding to failures
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through the use of APIs in the RL and the RM. Each job submiitekloALA has its
own instance of the runner corresponding to its applicatyge. A runner consists of
runner-specific mechanisms, and of instances of the RM, theR the DM. A runner
can be used to submit jobs from any site in a multiclusteresysir a desktop machine
and is able to interface to the centralizedALA scheduler over the wide-area network.
Figure 3.4 shows a configuration with an instance of a runner.

In Section 3.3.1 we first present the requirements the renmeed to satisfy. Sections
3.3.2-3.3.4 present the runners that are fully operationahe DAS system. All these
runners support co-allocation.

3.3.1 Requirements to the runners

Job requests of different application types when submttiedbALA may pose different
requirements that need to be satisfied by the runners. Balewist the major require-
ments that should be addressed by the runners. It shouldtee that these requirements
are not exhaustive and can be extended when the need to deses ar

1. The placement procedure The success of the placement of a job in KmaLA
scheduler is specific to the application type. For exampild, parallel applications,
job placement succeeds only if all of the job components eapléiced, i.e., these
applications require atomic placement. For applicatiggesylike PSAs and BoTs
with components executing independently of each othemiatplacement is not
necessary. With these application types, placement isessfid if at least a pre-
determined number of components (e.g., at least one) haregiaced.

2. Deploying order of the components Different application types require differ-
ent orders of deploying the job components to their respeetkecution sites. For
instance, parallel applications require deploying of thie gomponents to be syn-
chronized. The need for a specific order of deploying the @bhmonents is evident
in jobs with inter-component dependencies like workflowstiM?SAs the order is
not relevant.

3. Application level scheduling The runners provide the environment for users to
develop per-application schedulers that are speciallgread to match the needs of
applications such as PSAs, BoTs and workflows. The runnettsese application
types ask th&oALA scheduler for execution sites and then map the job compsnent
to these execution sites. The mapping of the componentsabad execution sites
is guided by application level scheduling policies, whigk aormally aimed at
minimizing the response times of the applications.
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4. Wide-area communication between componentsWide-area communication is
vital to the successful execution of some application tyiges parallel applica-
tions, Ibis applications, and workflows. For parallel and lapplications, wide-
area communication allows processors on different silesated to the same job
to exchange messages. Runners of these application typdsmé&now how to
link up with the communication libraries for wide-area coomtation provided
by the applications’ programming models; for some applcatypes like BoTs,
inter-component communication is not required.

5. Fault tolerance. Runners need to deal with soft errors and applicationipec
errors since these are unique to different applicationgyger some application
types like PSAs, failures of components can be toleratedmaesdegree. Failed
components can even be restarted on different sites witftedting the execution
of the job. On the other hand, for some application typespiallel applications
and workflows, the failure of a single component can causeratbmponents or
even the whole application to fail.

3.3.2 The KRunner

The KRunner KOALA default runner) isKOALA’s bare-bone runner capable of running
application types that do not have any special requiremedtds submitted with the
KRunner to the scheduler are placed atomically, i.e., thegrhent procedure only suc-
ceeds if all the job components can be placed. When runningjtecomponent job with
the KRunner, each component is executed independentlyldftifor the application it-
self to handle any inter-component communication neededgel as the synchronization
of the execution of its components. The KRunner does suppaut file and executable
staging to the execution site(s) before the job executekretrieval of output files when
the job completes. The KRunner is also used as the basisHer ninners. It gives the
basic implementation a runner needs to be able to interfabethe KOALA scheduler.

3.3.3 The DRunner

The DRunner (DUROC Runner), which is based on the KRunnéhngispecialized run-
ner for Message Passing Interface (MPI) jobs. While the DGRDynamically-Update
Request Online Co-Allocator) library [22] from the Globusadlkit implements the al-
location operation across multiple sites (co-allocatigingloes not provide any form of
resource-brokering or fault tolerance. The DRunner togrethith the KOALA sched-
uler adds these functionalities to DUROC. The DRunner use®UROC library to de-
ploy and synchronize the execution of a co-allocated jobmmonents across the sites
specified by the scheduler. At the same time, the DRunner tadiie Globus DUROC
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framework thekOALA functionalities of non-fixed, semi-fixed, and flexible jolguests
(DUROC only supports fixed requests), the ability to schedab requests using the
KOALA placement and claiming policies, and fault tolerance. Tl jdbs to be submit-
ted with the DRunner need to be compiled with the grid-erchiteplementation of MPI
called MPICH-G2 [17]. MPICH-G2 allows us to couple multigiées to run a single MPI
application by automatically handling both inter-site antla-site messaging. Like the
KRunner, jobs submitted with the DRunner are placed atdiyica

3.3.4 The IRunner

The IRunner is designed to run Ibis applications, which gieations that use the spe-
cialized Ibis Java communication library [98]. To run anslipb, a central component
called the Ibis nameserver is required to coordinate thegpsgtcommunication ports be-
tween job components. A single instance of the Ibis namesaan be shared among
several Ibis jobs. The IRunner can start up several namasgine per cluster, and bal-
ance their usage among jobs of different users. Alternigtitiee IRunner can also start a
nameserver for every job.

3.4 The Implementation of the Runners Framework and
the Runners

Like thekoALA scheduler, the runners and the runners framework are wirttéava 5.0.
The RL is a Java class that is extended by a runner, and soriherrbas the freedom
to have its own implementation of the APIs of the RL. ThesesAiRtlude methods for
submitting a job component, for stopping a running job congr, for transferring files,
etc. The default implementations of these APIs are foundénRM and the DM; the
runner is free to choose an implementation that is suitatrléhfe grid middleware it
wants to run with.

Figure 3.3.4 shows the implementation of a runner that isl @sea basis for other
runners. The runner starts by parsing the arguments dasgbjob passed to it by a
user and registers the instances of the RM and the DM, wheckgacific to the grid mid-
dleware; in our current implementation, the RM and the DMsgrecific for the Globus
middleware. The runner then starts the main thread in thewRich is responsible for
guiding the operation of the runner and for enforcingkleaLA job flow protocol. This
thread first calls the prePhase method in the runner befasngathe job request on to
the scheduler for scheduling. This method prepares theeruion launching the job by
performing such operatins as creating a sandbox for theemagtuting a script to bypass
a firewall, and, for a runner like the IRunner, for startingaameserver if required. The
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public class Runner extends RL {

publ i ¢ bool ean prePhase()

/1 this is the optional method that is called with the RL
/| before the job is submitted for scheduling.

the job is submtted to KOALA

}

public void preConmponent Subm ssion() {

/I this is the optional method that is called with the RL before
/' | the component is submitted for execution by the RL.

}

public voi d post Phase(bool ean j obRunWasSuccessful ) {

/| this is the optional method that is called with the
/1 RL after the job has finished its execution successfully.

}

public static void main(String[] args) {
par sePar anmet er s(ar gs) ;

registerRMrm;

regi sterDM dn ;

startRL();

Figure 3.5: The structure of the source code of the runners

main thread then listens for commands from the schedulehn, as commands to transfer
files and to submit job components for execution. The regidténstances of the RM
and DM are called when such commands are received. Befanalcsubmitting a job
component for execution, the preComponentSubmissionadeaghcalled. This method,
which is runner specific, gives the runner the ability to pirethe component just before
its submission. For example, with the IRunner, the preCameptSubmission is used for
adding Ibis runtime class libraries. This method can alsodssl to synchronize the start
of a job’s components. For runners that implement appbcakevel scheduling, the pre-
ComponentSubmission method is used to collect the proreem all execution sites as
allocated by the scheduler and to reschedule them. FitladlypostPhase method is called
when a job has just finished; one of the tasks that can be ingritad in this method is
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cleaning up.

3.5 The Submission Engines

Submission engines are third-party tools that can be usgdltmit jobs taKOALA . Sub-
mission engines such as workflow engines, workload gewoeratid submission engines,
and user scripts, use the runners to do the actual job sulbmissthe grid resources. We
have testeéOALA with Karajan [70], which is an abstract workflow engine désog a
workflow in an abstract form without referring to specificdyresources for component
execution (non-fixed requests). In this way, an abstractehprbvides a flexible way
for users to define workflows without being concerned abowtlivel implementation
details. In an abstract model, components can be mappedaagtgrid sites with our
KOALA scheduler. We have not testedALA with other types of workflow engines such
as concrete and dynamic workflow engines.

Grenchmark [5,69] is a framework for synthetic workloadgerion that usesoALA
for job submission. The workload generator of Grenchmatkased on the concepts of
so-called unit generators and of Job Description File (J@jters. The unit generators
produce detailed descriptions for running a set of appboat(workload unit), according
to the workload description provided by the user [69]. Impiple, there is one unit
generator for each supported application type. This makesddmark extensible as new
unit generators for new application types can be added \a$le.eThe JDF printers take
the generated workload units and create\LA job description files for every job in the
units, which are to be submitted kALA with the runners.

3.6 The KOALA Job Flow Protocol

TheKOALA job flow protocol guides jobs through the four phases thataimgubmitted
to KOALA goes through. These phases, which are shown in Figure 8.6&raned by the
four operations that are performed to a job during its lifeleyn KOALA . In Section 3.6.1
we give an overview of the four phases and in Section 3.6.2egeribe them in detail in
terms of the interaction of the componentxafaLA in these phases.

3.6.1 The KOALA operational phases

Four operations are performed to any job submitteddaLA , which are placing its com-
ponents, transferring its input files, claiming proces$orgs components, and launching
it and monitoring its execution. These operations, whicinféour phases that the job un-
dergoes, are shown in Figure 3.6. In phase 1, a new job sidaht@dkOALA is appended
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Figure 3.6: The four phases of the job flow protocokmaLA .

to the tail of one of the placement queues depending on itsifyti When it is its turn,
the job is retrieved from its placement queue and the planéonfets components on the
system is attempted. If the placement procedure fails,dhag simply returned to its
respective placement queue. The placement of the job @ again at later times for a
fixed number of times. Phase 2 is composed of starting andgiranthe file transfers for
the job if it has been placed successfully in phase 1. It ibi;ighase that the estimation
of the start time of the job is made to ensure that the inputfédesfers are completed
before the job execution starts. As soon as the file tranafergitiated, the job is added
to the claiming queue. Jobs are moved immediately to phaseasie no file transfers are
required. In phase 3, while the job is in the claiming quetienapts to claim processors
for the job components are made at designated times. The jobphase 4 if all of its
components have been launched on their respective exeaités after the success of
claiming in phase 3.

3.6.2 KOALA components interaction

A number of interactions between tR®ALA components occur in each of the phases
presented in Section 3.6.1. Figure 3.7 shows these intenacis a job moves from one
phase to another. The arrows in this figure correspond todkeriphtion given below of
the interactions happening in each phase.

In phase 1, a new job request arrives at one of the runne@n(drrin Figure 3.7)
in the form of a Job Description File (JDF). We use the GlobasdrRirce Specification
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Figure 3.7: The interaction between tkeALA components. The arrows correspond to
the description in Section 3.6.2.

Language (RSL) [22] for IDFs, with the RSE-" construct to aggregate the components’
requests into a single multi-request. After authenticatire user, the runner submits the
JDF to the CO (arrow 2), which in turn will append the job to thiéof one of thekoALA
placement queues. The CO then retrieves the job from thisegaed tries to place the job
components based on information (number of idle processmisbandwidth) obtained
from the IS (arrow 3). If the job placement fails, the job isuraed to its respective
placement queue. The placement procedure will be triedhi®rdbs in the placement
gueues at fixed intervals for a fixed number of times. The pherd queues are discussed
further in Section 4.2.1.

Phase 2 starts by the CO forwarding the successfully pladetbjthe PC (arrow 4).
On receipt of the job, the PC estimates the Job Start Time laewl instructs the DM
(arrow 5.1) to initiate the third-party file transfers (am5.2) from the file sites to the
execution sites of the job components (arrows 5.3). A dadalescription of the timeline
of a job defining its Job Start Time and its Job Claiming Time loa found in Section 4.1

In phase 3 the PC estimates the appropriate time that thegsors allocated to a job
can be claimed, which is called its Job Claiming Time (sedi®&ed.1). At this time and
if processor reservation is not supported by the local nesomanagers, the PC uses a
claiming policy to determine the components that can beéestdrased on the information
from the IS (arrow 6.1). It is possible at the Job Claiming &ifar processors not to be
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Figure 3.8: The reliability of KOALA.

available anymore, e.g., they can then be in use by local jbbss occurs, the claiming
procedure fails, the job is put into the claiming queue, deddaiming is tried again at a
later time.

In phase 4, the runner used to submit the job for schedulimhase 1 receives the
list of components that can be started (arrow 6.2) and fatsvlrose components to their
respective execution sites (arrows 6.3). At the execuiites,ghe job components are re-
ceived by a grid middleware component such as the GlobusiResé\llocation Manager
(GRAM), which is responsible for locally authenticatingtbwner of the job and sending
the job component to the local resource manager for exetutio

3.7 The Reliability of KOALA

In grid research, performance usually takes a prominerteplaut in our experiences
with deployingkOALA on the DAS, it is reliability that is the first consideratiomsers
care much more about their jobs correctly completing thauabqueezing the next 10%
reduction in response times from the system. Prior to théoglegent ofKOALA on the
DAS, we have spent a large effort in makiRgALA reliable. Much of this effort went
into testing and debugging, but there are also some desiggid@rations that went into
makingKoALA reliable enough to be released for general use on the DAS€eliability
of KOALA can be discussed from two angles: the reliability of the daler, and the
reliability of the runners. Figure 3.8 illustrates the ablility issues ofkOALA when
running on a multicluster system.

When designingtOALA , we opted for a centralized scheduler despite the potartial
liability issue of a centralized solution being a singlergaif failure. The reason for this
choice was that the size of the DAS with only five clusters wassimall to really warrant
a decentralized solution. This is about to change with thgoong effort to connect the
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DAS-3 with Grid’5000, which has already resulted in dis¢oss about having multiple
KOALA schedulers running in a decentralized fashion [43]. It fthbe noted however,
that even in the DAS, nothing prohibits the installation a®gphloyment of multiple in-
stances oKOALA. The only thing is that they may reduce each other’s perfogeavhen
they try to allocate and claim the same processors. On ther btind, the centralized
approach on the DAS has proven to be very reliable, and inastetivo years, that is,
since the initial deployment ofOALA, the only restarts of the scheduler were due to the
reboots of the DAS cluster where it runs. Even if the schedutauld fail, this would
only have consequences for the jobs in the placement andiniqueues which would
be lost, but not for the jobs submitted througbaLA that are already running. Of course,
we can make theoALA scheduler more reliable by periodically writing the corseof

its queues to disk and by reading these contents after rgcoVais is a feature worth
considering whemoOALA runs in a more unreliable heterogeneous environment and not
(only) on the DAS system.

The reliability of the runners depends on their implemeotest. For example, the
DRunner is less reliable than the KRunner and the IRunneausec of bugs in the
MPICH-G2 and the DUROC libraries. The DUROC library has ne¢b updated since
Globus Toolkit version 2.4, and the last update of MPICH-G&wnade at the end of
2005. The DRunner copes with these unreliability issuesroply restarting failed jobs.
Itis possible from time to time for a runner instance to crasdk should point out that due
to our modular design, a crash of any instance of a runner aesffect the operation
of the scheduler, nor does it affect any other job than thegathich the runner belongs.
When a runner crashes, we want all the processors it was tesimgjimmediately made
available for other jobs. To do so, the runners framewonsial the interrupts signaled
by the operating system and performs cleanup accordingfparé exiting. The sched-
uler also monitors all the runners by periodically sendimgnm are-you-alive messages.
A runner that does not respond to such a message is assumadetarashed, and the
processors allocated to the corresponding job are immedgistade available again.

3.8 Experiences with Globus

The DAS testbed uses the Globus Toolkit as its grid middleywahich means thatoALA
on the DAS relies on Globus for grid middleware serviceALA has used Globus
Toolkit version 2.4 and version 3.02 on DAS-2, and at the toheriting this thesis on
DAS-3, KOALA uses version 4.04 of Globus. Globus has existed in two flasioce its
version 3, pre-Web Services (pre-WS) and Web Services (Wifl),the pre-WS flavor
used bykOALA . Studying web services and portikgQALA to web services is beyond the
scope of this thesis.

Initially, the KOALA scheduler used the Metacomputing Directory Service (MD8) a
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the Replica Location Service (RLS) of the Globus Toolkittslnformation Service com-
ponent. However, the MDS delayed greatly the operationestdineduler by delaying the
dynamic information about node status, and sometimes, datagd information about
node status was received at all. Puppin et al. [82] and Adasil. [29] discuss in great
detail the shortcomings of the Globus MDS. As mentioned ictiSe 3.1.1,KOALA on
the DAS uses native mechanisms to obtain status informafiolmdes, and no plans to
test the MDS that comes with Globus Toolkit 4 have been madhe shortcomings we
encountered with the Globus RLS were due to its use of thetiwgight Directory Access
Protocol (LDAP); on the DAS, the permissions to add or modifgords on the centrally
managed LDAP server were granted only to privileged usdngs dontradicted with our
design goal of allowing any user the ability to add or modifgit records, hence the rea-
son to maintain our own database to provide the mappingsdbdtical names of files to
their physical locations.

The KOALA runners framework and the runners are the active users @uGion the
DAS. The authentication provided by the Globus Securityadstiucture (GSI) and the
Globus Specification Language (RSL) are used extensivelhéyunners, and so far,
no problem have been reported with these two Globus compen€&he current runners
also use the Globus Resource Allocation Manager (GRAM) artlal Globus gridFTP and
Global Access to Secondary Storage (GASS), to launch jolextcution on remote sites
and to transfer files, respectively. The limitations of tme-@WS GRAM are discussed
clearly by Dumitrescu et al. [56]. During our tests and ekpents, the performance
degradation of GRAM discussed in [56] were felt when the nerdf concurrent jobs
submitted to the same cluster reaches a certain thresho&ddi$®uss more about the
overhead of the GRAM in the experiments in Chapter 6. Thetdititins of gridFTP that
were observed during our tests were all due to the well-kniesmes and limitations of
the gridFTP server. The most prominent issue was the ran@mmiig of transfers after
they have finished, which occurred when the number of comntitransfers was high and
when running a striped transfer with a parallelism of moemntth.

In general, our experience with using pre-WS Globus withrtimmers framework and
the runners has been positive; however, a comparativesaseas of Globus can only be
made when more experience with runnkgALA on other middleware has been gained,
which is beyond the scope of this thesis.

3.9 Experiences with KOALA

KOALA has been operational in the DAS testbed since September 30G&r, more than
500,000 jobs have been submitted successfully withLA , both for testing<oALA and
for doing useful work with it. In this section we describe faxamples from the wide
range of usage ofOALA in the past two years.
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Philips Research in Eindhoven in the Netherlands [20] hasgded a Grid Ar-
chitecture for Medical Applications (GAMA) that enablesverl relevant compute-
intensive medical applications to use grid technologies,irhproved performance and
cost-effective access to large numbers of various ress(4idg. In the GAMA architec-
ture, there is a dedicated Grid Access Point (GAP), whicliseaquests from client(s)
through a Windows-based interface in hospitals to the grératurns results. During the
research for and development of their medical applicatib#sS-2 was used to provide
compute resources as provisioneddmaLA . In the setup, the DRunner was installed in
the GAP and was used to execute non-fixed jobs on the DAS-fectuselected by the
KOALA scheduler. This setup proved to be successful and it alloasshrchers in Philips
to only concentrate on grid application development.

The SURFnet Gigaport project investigated the feasibdftthe grid for running net-
work tests with GridFTP. One of the objectives of this projeas to see if the results of
the network tests can be used to inform users and maintadhéne grid about possible
network problems and to influence their choice of grid resesir To realize this objec-
tive, a periodic performance monitor was run, first betweemnodes at a single cluster
with a special 1 Gbit/s test network, then between any twesad any DAS-2 clusters.
The selection of these nodes and the submission of the peafare monitor was done
by KOALA. KOALA was used because of its ability to select non-faulty idleesodue
to its mechanisms for fault tolerance, remote submissiod jab monitoring, and due to
its ease of use. The performance monitor was run periogibatiwveen November 2005
and May 2007, when the DAS-2 cluster of the University of Aendam was decommis-
sioned. During this period, this performance monitor heélps to unearth some of the
“hidden” bugs and makingOALA reliable. By the way, not onlxOALA bugs were un-
earthed by this run but also some DAS-2 specific node specificse(soft errors), which
by solving them we managed to make the DAS multicluster systere reliable. The
results of these network performance tests have been patllsn the website of [8].

In peer-to-peer (p2p) file sharing networks such as BitTdr[2], peers that are in
the process of downloading the same file have to be discoveoetkething that is called
swarm discovery [88], before content can be shared withetpegrs. Roozenburg [88]
proposes a decentralized swarm discovery protocol callfedLE BIRD supported by
Tribler [81], a social community application that facitiés file sharing through a p2p net-
work. For the evaluation afiTTLE BIRD, an experimental environment calledOWDED,
which enabled large-scale trace-based emulations of ssvamthe DAS-2, was created.
To emulate a large swarms in the DAS-2, tROWDED environment used the KRunner
to request nodes on different DAS-2 clusters from kloaLA scheduler, and to submit
for execution the actual Tribler application to the all@hhodes. The performance of
KOALA and the DAS during experiments wittROWDED were very good, as a result,
KOALA will be used more extensively for the research in the Tripteject.
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The possibilities of connecting a grid application to a ai&ation component have
been investigated by van Ameijden [30]. In this study, a roall@ dynamics simulation
package called Gromacs [9] is used as the grid applicatidnttzen MoIDRIVE visual-
ization package [16] as the visualization component. Batbnécs and MolDRIVE are
adapted to enable running molecular dynamics simulatiore distributed fashion on
the DAS-2, with the simulations being manipulated from ameirtresults being visual-
ized on a Virtual Workbench. In this study, tkeaLA DRunner was used to submit job
components to see how the performance of the applicatiarflieenced by running the
simulations on multiple sites, and whether the commurocatielays between the simu-
lation and the visualization components of the applicatidier much across clusters.
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Chapter 4

The KOALA Job Policies

In KOALA, there are two types of job policigglacement policiefor placing the compo-
nents of a job andlaiming policiesfor claiming the processors previously allocated to
the components. The placement policies are used to decieee\itie jobs should be sent
for execution and the claiming policies have the task of gnguhat jobs are launched
for execution at their planned time. It should be noted tlest policies can be added, and
that existing policies can be modified at any time withouéetiihg the operation of the
scheduler. In particular, two new placement policies calduster Minimization (CM)
and Flexible Cluster Minimization (FCM) [91], which are camnication-aware place-
ment policies for non-fixed and flexible jobs, respectivélgye been added during the
writing of this thesis. The&tOALA job policies can both be used with jobs that require
co-allocation and those which do not require co-allocation

We begin this chapter by presenting the job submission timaéh Section 4.1. This
section also defines some parameters that are used in thegsebs sections. Jobs
waiting to be placed or claimed by any of tke@ALA policies are held in one of the
KOALA placement queuesr in theclaiming queugerespectively. Section 4.2 presents
theseKOALA queues. In Section 4.3 we discuss two placement policiesCtbse-to-
Files (CF) placement policy and the Worst-Fit (WF) placetraolicy. The CF policy
has the goal of reducing the waiting times of jobs by minimggiheir file transfer times.
On the other hand, the WF policy simply tries to optimize thecpment procedure by
balancing the use of the grid resources (processors). Aiigipolicy called the Incre-
mental Claiming Policy (ICP) that is used in the absence aégssor reservation by local
resource managers, is discussed in Section 4.4.

4.1 Job Submission Timeline

In Section 3.6, we have seen that a job moves from one phasethes inKOALA at
stipulated times or after the success of some operationsritirc times. For example,
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Figure 4.1: The timeline of a job submission.

after a successful placement of a job at a certain time, thésjonoved to the claiming
phase where the claiming for processors for its componeiiithegin at a designated
claiming time. These times together form the job submissimeline shown in Figure
4.1 that we present in this section.

A new job request is received by a runner at a time called theSidomission Time,
which is point A in Figure 4.1. This is the time that a user leasiched a specific runner
for his/her job. The time when the placement of the job sudseee., the successful
placement of its last component, is called the Job Placeitiar (JPT), which is point
B in Figure 4.1. After the job has been forwarded for claimitige time when claiming
processors for the job components starts is called the Jam®ig Time (JCT), point C
in Figure 4.1. Point D is the time when the job should be laedghvhich is the so-called
Job Start Time (JST). The JST is estimated as the sum of jBI’'sahd its File Transfer
Time (FTT), which is calculated as the maximum of the estewaff the file transfer times
of all of its components. The time from the submission of @i yntil its actual launch
time is called the Total Waiting Time (TWT) of the job. Thefdifence between JCT and
JPT, and JST and JCT, which are referred to as the ProcessmdGame (PGT) and the
Processor Wasted Time (PWT), are discussed in Section Z.ReZob finishes execution
at point E, which is called the Job Finish Time.

It is possible for a job to fail after its initial successfuapement and be restarted. If a
job is restarted a number of times, the values for JPT, JGIJ&T will be the last values
recorded, which corresponds to the placement that leatie uiccessful execution of the
job. The value for Job Submission Time does not change, hexwev

4.2 The KOALA Queues

KOALA maintains placement queues and a claiming queue td jodis that currently
cannot be placed or for which processors for their companeuntrently cannot be
claimed, respectively. The placement and/or the claimiraggdure for a job may fail
due to the unavailability of enough idle processors as retgdeby a job at its execu-
tion sites. The placement and claiming procedures for jolibe queues are retried for
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a fixed number of times and if then still unsuccessful, thefgls and is deleted from
the queues. Sections 4.2.1 and 4.2.2 discusgtheA placement queues and claiming
gueue, respectively.

4.2.1 The placement queues

A new job arriving tokOALA is appended to the tail of theoALA placement queue
corresponding to its prioritykOALA maintains four placement queues, one for each of
the priorities. These queues are: the super-low placemenieyfor super-low priority
jobs, the low placement queue for low priority jobs, the hpicement queue for high
priority jobs, and the super-high placement queue for shjggr priority jobs. These
gueues hold all jobs that have not yet been plagedLA regularly scans the placement
gueues according to their priorities from head to tail towbether any job in them can
be placed. This means that jobs in same placement queueraieeaed for placement in
their arriving order (FCFS) during each scan. If the firstgalnnot be placed, in effect a
backfilling approach [73] is attempted whereby jobs furtthewn the queue are possibly
placed without taking into account any placement delay editist job.

KOALA selects a queue to scan based on its priority in a round roAmmaer. To give
jobs of higher priorities more chance to be placed we assiggight to each queue, which
determines the number of times that queue will be scannextdotie next queue. Below
we present our technique for queue selection.

When performing queue selectistQALA first groups the super-high and high place-
ment queues to form th@gher placement queugeand the low and super-low placement
gueues to form théower placement queuess shown in Figure 4.2. The higher place-
ment queues are scanned firgt times before scanning the lower placement quelies
times, with/V,, > N; > 1. In each scan of the higher placement queues, the super-high
placement queue is scannedtimes before scanning the high placement queuimes,
wheren; > n, > 1. This means that afteV,(n; + n,) scans we begin scanning the
lower placement queues. Likewise, in each scan of the loleeement queues, the low
placement queue is scannegltimes before scanning the super-low placement qugue
times, wherew; > ny > 1. This also means we scan again the higher placement queues
after N;(n3 +n4) scans of the lower placement queues. As an examphg,,ifV;, and the
n;, i = 1,...,4 are all setto 1, then the queues are selected in a traditionat robin
manner where all queues are of equal priority. On the othed h& Vv, is set 2 and the
rest of the weights are set to 1, this means we scan the hidgi@rpent queues twice
before we scan the lower placement queues once.

This queue selection technique shares the same idea ashmeqgige called Group
Ratio Round-Robin presented by Caprita et al. [45] whereigsaf clients are selected
in a round robin manner based on the ratio of their group wsigh
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N, times N, times
Higher Placement Queues Lower Placement Queues
n; times no times na times ng4 times
Super-high High Low Super-low

Figure 4.2: Grouping of priority levels and the number ofésiKOALA scans the corre-
sponding placement queues.

The time between successive scans of the placement queadixésl interval (this
time, V,, N;, and then;, i = 1,...,4, are parameters afOALA); the placement queues
which are empty, are simply skipped. The time when the placgrof a job succeeds is
called its JPT, depicted in Figure 4.1, which shows the timesbf a job submission. The
figure also shows thplacement timewhich is the difference between JPT and the time
the job enters the placement queue.

For each job in a placement queue we maintain its numbefaaement triesi.e.,
the number of scans of the queue while it contains the job. Whis number exceeds a
threshold, the job submission fails. This threshold candveémsx, i.e., no job placement
fails.

With our current setup, starvation is possible for any jolthe KOALA placement
gueues due to a high load of higher-priority jobs or locakjobo minimize starvation as
much as possible iROALA, jobs in the low placement queue or in the high placement
gueue move one priority level up after evétyplacement tries until they reach the super-
high placement queud?’ is anothelKOALA parameter, which can be setdoto prevent
jobs from changing their priorities. Jobs in the super-lé&pment queue are not allowed
to change their priority level.

TheKOALA parameters presented in section need to be determineclvaforing the
KOALA scheduler. Currently, we have assigned default valuesetsetparameters based
on the observations made after a number of test runs. Ofepilsse values can be fine
tuned depending on the multicluster system where the stdredins and the types of
jobs submitted takoALA . Of all the parameter&OALA is most sensitive to the interval
between successive scans of the placement queues. Thef{/Hiissparameter is a trade-
off between too much CPU load due to excessive scans andrigaaiting times of jobs
in the placement queues.
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4.2.2 The claiming queue

After the successful placement of a job, its File Transfendi(FTT) and its Job Start
Time (JST) are estimated before the job is added to the algiouieue. This queue holds
jobs that have been placed and currently are waiting to be#tga for execution. The
job’s FTT is calculated as the maximum of all of its composéastimated file transfer
times (see Section 4.3.1 for how we compute these), and thas)8stimated as the
sum of its JPT and its FTT as shown in Figure 4.1. Our challdrege is to guarantee
processor availability at the JST. In the absence of processervation in the LRMSs,
theKOALA scheduler can immediately claim processors for a job aPitsahd allow the
job to hold the processors until its JST. However, this istefas of processor time. It
is also possible fokOALA to claim processors only at JST but then there is the risk of
processors not being available anymore. Therefore, tomnmei the Processor Wasted
Time (PWT), which is the time the processors are held but setldor useful work, and
at the same time increase the chance of claiming succestgeanpato claim processors
for a job is done at the job’s so-called Job Claiming Time (Y@@bint C in Figure 4.1).
A job’s JCT is initially set to the sum of its JPT and the prodoicZ. and FTT:

JCTy=JPT +L-FTT,

whereL, which is a real number between 0 and 1, is a parameter agsigreach job by
KOALA. The initial value ofL assigned to jobs byoALA is decided by an administrator,
e.g., 0.75, and this value is updated dynamically duringkaiening attempts. It should be
noted that if O is assigned t then the claiming procedure will be attempted at JPT, and
if 1 is assigned td. then the claiming procedure will be attempted at JST. More@m

L is updated is described below. In the claiming queue, jobsaaranged in increasing
order of their JCT.

KOALA tries to claim for a job ¢laiming try) at the current JCT by using our Incre-
mental Claiming Policy, which is described in Section 4.4aifing for a component at
the current job claiming try succeeds if all processors # texjuested can be claimed,
otherwise claiming fails. The success of claiming for alinpmonents of the job results
in the success of the claiming try. The job is removed fromdlagming queue if the
claiming try is successful. Otherwise, we perform suceessiaiming tries. For each
such try we recalculate a new JCT by adding to the current BE€Pprtoduct of., and the
time remaining until the JST (time between points C and D guFe 4.1):

JCTyi1 = JCT, + L-(JST — JCT,).

If the job’'s JCT,,,, reaches its JST and still claiming for some components, féiésjob
is returned to the placement queue. Before doing so, itaypetea L is decreased by a
fixed fraction, e.g., 0.25, and its components that wereessfally started in the previous
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claiming tries are aborted. The parameieis decreased each time the JST is reached
until it hits its lower bound, e.g., 0, so as to increase trenclk of success of claiming. If
the number of claiming tries for a job exceeds some thresfwahich can be set teo),

the job submission fails.

For a job, a new JST is estimated each time the job is returmebet placement
gueue and re-placed with a placement policy. We definstén delayof a job to be the
difference between the final JST where the job executionemascand the original JST. It
should be noted that the re-placements result in multigegrhent times (the placement
time has been defined in Section 4.2.1). Therefore, we ddfetetal placement timef
a job as the sum of all its placement times.

As we saw in Section 4.1, we call the time between the JPT olb ajal the time of
successfully claiming processors for it, the Processon&@hiime (PGT) of the job. The
PGT is depicted in Figure 4.1. During the PGT, jobs submittedugh other schedulers
than our grid scheduler can use the processors.

4.3 The Job Placement Policies

The KOALA scheduler uses job placement policies to select the execsttes with
enough idle processors for the components of non-fixed,-fired, and flexible jobs.
If the job components require input files, the scheduler atses the placement policies
to select the file sites such that the time to transfer thetifiles to the selected execution
sites is minimal. The placement policies presented in thisien support co-allocation
by employingatomic placementi.e., the placement of a co-allocated job is only success-
ful if all of its components can be placed at one time. The gulaent policies have no
restrictions on how to distribute the components of a coealled job across the sites of a
grid, and there is a chance that more than one or even all coemp®of a job are placed
on a single execution site. In the absence of the use of ooaibn, the Close-to-Files
policy defined below can be used to place single-componéstgtose to a file site of its
input file, and the Worst-Fit placement policy defined bel@m e used to balance the
load across the grid.

In this section we present two of the placement policies afpmral in theKoALA
scheduler. These policies are the Close-to-Files placepwdity discussed in Section
4.3.1, and the Worst-Fit placement policy discussed iniGedt3.2.

4.3.1 The Close-to-Files placement policy

Placing a non-fixed job in a multicluster means finding a flitaet of execution sites for
all of its components and suitable file sites for the input fiRifferent components may
get the input file from different locations.) The most im@mt consideration here is of
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course finding execution sites with enough processors. Menverhen there is a choice
among execution sites for a job component, we choose thewgitethat the (estimated)
delay of transferring the input file to that site is minimale\8all the placement algorithm
doing just this the Close-to-Files (CF) policy [78]. It ughe following parameters in its
decisions:

e The numbers of idle processors in the sites of a gridA job component can only
be placed on an execution site which will have enough idlegssors at the job
start time.

e The file size: The size of the input file, which enters in the estimates offillee
transfer times.

e The network bandwidths: The bandwidth between a file site and an execution site
gives the opportunity to estimate the transfer time of a iNegits size.

Algorithm 1 Pseudo-code of the Close-to-Files job-placement algarith
1: order job components according to decreasing size
2: for all job componeng do
3: S, < setof potential execution sites

4: if S; # 0 then
5: selectant € S,
6: else
7. P; «< set of potential pairs of execution site, file site
8: if P; # 0 then
o: forall (E,F) e P;do
10: estimate the file transfer timgz r)
11: select the pai(£, F) € P; with minimal Tz r)
12: for all file site F’ of the jobdo
13: insert(E, F’) into the history tablé?
14: else
15: job placement fails

When given a job to place, CF operates as follows (the linebmrsnmentioned below
refer to Algorithm 1). CF first orders the components of a jobaading to decreasing
size (line 1), and then tries to place the job componentsahdtder (loop starting on line
2). The decreasing order is used to increase the chanceadssufor large components.

For a single job componepit CF first determines the sgf of potential execution sites
(line 3); these are the file sites of the job that have enougtpidcessors to accommodate
the job component. I5; is not empty, CF picks an element from it as the execution site
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of the component (line 5). (We currently have a function tiearns the names of the file
sites in alphabetical order, and CF picks the first.)

If the setS; of potential execution sites is empty (line 6), we might edesall pairs
of execution sites with sufficient idle processors and filessf the job, and try to find
the pair with the minimal file transfer time. This is not eféiot in large grids with many
sites; therefore, CF maintainshistory table /' with a subset of pairs of execution sites
and file sites to consider. Frofi, CF selects alpotential pairs(F, F') of execution site,
file site, with £ having a sufficient number of idle processors for the job congmt and
F being a file site of the job (line 7). If no such pair existsHn the job component, and
in case of co-allocation the whole job, currently cannot lzeed (line 15). Otherwise,
CF estimates for each selected pair the file transfer tinma fhe file site to the execution
site (line 10), and picks the pair with the lowest estimaitee(lL1). If (£, F') is the pair
selected, CF inserts intd all pairs (£, F’) with F’ a file site of the job (lines 12, 13).
Note that if the history table is initially empty, it will reain empty. Therefore, it has to
be initialized with some set of suitable pairs of executind &le sites.

4.3.2 The Worst-Fit placement policy

Built into KOALA is also the Worst Fit (WF) placement policy. WF places thegoimpo-
nents in decreasing order of their sizes on the executiea siith the largest (remaining)
numbers of idle processors. The decreasing order is usedteaise the chance of suc-
cess for large components. In case the files are replicatedalécts for each component
the replica with the minimum estimated file transfer timehattcomponent’s execution
site. Like with CF, placement of a job fails if the placemehanoy of its components fails
when co-allocation is used with WF. As mentioned in the iditrction of this section, both
CF and WF make perfect sense in the absence of co-allocattwere WF in particular
balances the load well across the multicluster system.

4.4 The Incremental Processor Claiming Policy

Jobs submitted witl,kOALA share processors with jobs of local cluster users. When
claiming processors bOALA, it is possible for processors previously allocated by a
placement policy to be used by local jobs due to the absenmsefvation mechanisms

in LRMSs. It is also possible that at the time of claiming @ssors, they are marked
unusable by an LRMS due to errors. HDALA, claiming processors for a job starts at a
job’s initial JCT, and if not successful, is repeated at egloent claiming tries. For com-
ponents for which claiming has failed, it is possible to @ase their chance of claiming
success in subsequent claiming tries by finding other sittssemough idle processors to
execute them, or by preempting jobs of lower priorities tkenprocessors available.
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We call the policy doing exactly this the Incremental ClaigiPolicy (ICP), which
operates as follows (the line numbers mentioned below tefétgorithm 2). For a job,
ICP first determines the sets,,.,, Cy.0w, andC,,, of components that have been previ-
ously started, of components that can be started now bast@ @arrent numbers of idle
processors, and of components that cannot be started bagbése numbers, respec-
tively. It further calculated”, which is the sum of the fractions of the job components
that have previously been started and of the componentsdhate started in the current
claiming try (line 1). We defin€ as the required lower bound &, the job is returned to
the claiming queue if itg" is lower thanl” (line 2).

Algorithm 2 Pseudo-code of the Incremental Claiming Policy
Require: setC,,., of previously started components &f(initially C,.., = 0)
Require: setC,,, of components off that can be started now
Require: setC,,,; of components off that cannot be started now
L F <= (|Cpreo| + [Croul)/]]
2: if F > T then
3: if Chot # () then

4: forall j € C,, do
5: (E;, Fj, ftt;) < Place(j)
6: if JCT + ftt; < JST then
7: Crow < Crow U{j}
8: else ifpriority(j) # super-lowthen
9: Pj <~ count(processors) /+ used by jobs of lower priorities than j and
idle at E; x/
10: if P; > size ofj then
11: repeat
12: Preempt lower priority jobs af;
13: until count(idle processors) > size ofj /« at E; «/
14: Crow <= Chow U {J}

15:  start components i@V,

For each componentthat cannot be started on the cluster selected when pldwéng t
job, ICP first tries to find a new pair of execution site-fileesitith the placement policy
originally used to place the job (line 5). On success, the exsgcution sitef;, file site
F;, and the new estimated transfer time between th&m, are returned. If it is possible
to transfer the file between these sites before JST (linbé);dmponent is moved from
the setC,,; to the set’,,,,, (line 7).

For a job of priority other than super-low, if the re-placernef the component fails
or the file cannot be transferred before JST (line 8), ICPgoer$ the following. At
the execution sité; of component;, it checks whether the sum of the number of idle
processors and the numbers of processors currently beguaygobs of lower priorities
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is at least equal to the number of processors the comporerests (lines 9 and 10). If so,
the policy preempts lower priority jobs in descending omfdgheir JST (newest-job-first)
until a sufficient number of processors have been freedqlliel3). The preempted jobs
are then returned to the placement queues.

Finally, those components for which processors can be eldiat this claiming try
are started (line 15). Synchronization of the start of themponents at the JST depends
on the application type and therefore, it is specific to eacimer. For example, with the
DRunner, synchronization is achieved by making each compomait on the job barrier
until it hears from all the other components.

WhenT is set to 1, the claiming process becoratsmic i.e., claiming only succeeds
if for all the job components processors can be claimed.
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Chapter 5

Evaluation of the KOALA Scheduler

The KOALA scheduler comprises the placement and claiming queuegharjdb poli-
cies, which are used to manage the jobs in the queues. Thelickep, which have been
presented in Chapter 4, have been designed to addressssstifs of the grid infras-
tructure. The Close-to-Files (CF) placement policy adsiteghe problem of long delays
when starting a job because of long input file transfers, hadorst-Fit (WF) placement
policy balances the number of idle processors among theectushile trying to minimize
file transfer times, too. The Incremental Claiming PolidgR) on the other hand, tries to
make processors available for job components, if necesydigding processors at other
sites than selected by a placement policy or, if permittgdolring processor availability
through the preemption of running jobs. All these policiesdnbeen designed to enable
co-allocation whenever possible. The performance evialuaf thekOALA job policies
is the subject of Section 5.1.

ThekoOALA scheduler needs to deal with the dynamicity of the grid resesiand with
reliability problems of grid components to ensure that goios are completed success-
fully. In November 2004, a major upgrade of the operatindesys(from RedHat version
7.2 to RedHat Enterprise Linux version 3) was done in all DASusters. In addition to
the operating system upgrade, the clusters’ local resauargager, openPBS, was also
upgraded. Upgrading the operating system prompted someedhtportant system li-
braries like the Myrinet binaries, which are crucial for goomication within a single
cluster, to be rebuilt. Right after this major upgrade, t#&Destbed was very unreliable
and running meaningful experiments was difficult. Howetleg,unreliability of the DAS
during this period provided us with a chance of tesiiag\LA in a grid-like environment
where the job failure rate is high. In Section 5.2 we predaeatésults of the experiments
with KOALA performed while the DAS testbed was unreliable. All expemts reported
in this chapter were done in the DAS-2 testbed.

Extensive simulation studies of processor co-allocattomulticluster systems have
been presented in a number of publications. In Section 5.8isaiss as to what extent
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the results of these simulations and of our experiments earompared.

5.1 Evaluation of the KOALA Job Policies

In this section we present the experiments we have condtetassess the performance
of our placement and claiming policies. In the experimengsassess the performance
of these policies on a stable DAS system and when the systensatarated with many
jobs. One of the important things we assess is the level @llogation actually used
by the policies when placing jobs. During the experimentsdid not have control over
jobs from local users, which form the so-calledckground load In these experiments
we also try to assess the impact of a high background loakloanA. Sections 5.1.1—
5.1.3 present the setup of the experiments, while Sectidng-5.1.8 discuss the results
of these experiments.

5.1.1 KOALA setup

In the experiments in this sectioRPALA is setup as follows. No limits are imposed
on the number of job placement and claiming tries to avoidddrjob failures when the
limits are reached. All jobs have the same priority level tretefore, only one placement
queue is used. The interval between successive scans ofattenent queue is fixed at
1 minute, which as observed KDALA logs, is a trade-off between too much CPU load
due to excessive scans and too long waiting times of jobsampliacement queue. From
theKOALA logs, it is also observed that for most jobs, claiming is sgstul at a value of
parametel. determining when to start claiming between 0.5 and 0.75.celgthe initial
value of theL is set at 0.75. As there are only five clusters in our testbednitialize the
history tableH to contain all possible pairs of execution sites and filessitdne parameter
T of our claiming algorithm, described in Section 4.4, is set tso claiming is atomic.
The KRunner was used to submit jobs in these experimentsibedavas the only runner
available. Using the KRunner makes perfect sense since wetavassess the job policies
only at the scheduler level.

5.1.2 The workload

We put two workloads of jobs to be co-allocated on the DAS# #il run the Poisson
application, which has been described in Section 2.3.2]dlitian to the regular workload
of the ordinary users. In the workloads, a high priority isigsed to all jobs to give them
equal placement opportunities. Both workloads have 2086, jalith the first workload
W3 utilizing on average 30% of the whole system and the secbing, utilizing on
average 50% of the DAS-2. In the workloads, jobs have 1, 2,camponents requesting
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the same number of processors, which can be 8 or 16. So thesiz#af the jobs ranges
from 8 to 64. All possibilities for combining the number ofraponents and the number
of processors have equal probability. Each job componepiires the same single file of
either 2, 4, or 6 GByte. Again, all possibilities for comlrigithe size of a job and the
file size have equal probability. For the input files we coestwvo cases, one without file
replication and another with each file randomly replicatethree different sites. Since
the jobs in our workloads were submitted with the KRunneg, \tbrsion of the Poisson
application which is not grid-enabled is used, which medrad the components of a
single job are executed independently of each other. Thenggeexecution time of this
application with components of size 8 and 16 is 192.0 and 88d®nds, respectively.
At the start of the experiments, the numbers of processotiseDAS clusters were as
shown in Table 5.1. We assume the arrival process of our jotieeasubmission site to
be Poisson, where the arrival rate has been calculated ti@rapove parameters so that
30% or 50% of the system is utilized. Based on the arrivalaftbe jobs, with workload
W3 the last job arrived at around 6500 seconds after the awivéle first job, and with
the W5, the last job arrived after 3900 seconds.

Table 5.1: The numbers of processors in the DAS-2 clusteneatart of the experiments
reported in Section 5.1.

Cluster Location Number of Processors
Vrije University 144
Leiden University 56
University of Amsterdam 56
Delft University 64
Utrecht University 64

5.1.3 Background load

One of the problems we have to deal with is that we do not ham&@oover the back-
ground load imposed on the DAS by other users. These usemsitstiieir (non-grid)
jobs straight to the local resource managers, bypassimgA . During the experiments,
we monitor this background load and we try to maintain it &30 each cluster. Since
maintaining the background load exactly at 30% is imprattitie to the dynamicity of
jobs of local users, we allow this value to increase up to 40%aen this utilization falls
below 30% in some cluster, we inject dummy jobs just to keepptiocessors busy. When
this utilization rises above 40% with some of this utilipaticontributed by our dummy
jobs, we kill the dummy jobs to lower the utilization to theyuéred range. Our experi-
mental conditions are no longer satisfied if during the eixpents, the background load
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in a cluster rises above 40% and stays there for more than @eniim such a case, the
experiment were aborted and repeated.

5.1.4 Presentation of the results

We will present the results of each experiment in this saatiith several graphs. The first
of these shows the different utilizations in the system.eH#re background load is the
utilization due to the jobs of the regular DAS-2 users. KoaLA load is the utilization
due to the co-allocation workload described in Section2wlithout the load incurred
between the Job Claiming Time (JCT) and the Job Start Tim€)(J8e also show the
Processor Wasted Time (PWT) utilization, which is the fi@ctof the system capacity
wasted becauseoALA starts jobs earlier than the JST, and the Processor Gaineel Ti
(PGT) utilization, which is the fraction of the system capagained becausgOALA
does not claim processors immediately when job placemesiigsessful. ASKOALA
keeps track of the processors on which it has placed jobs @@slrtbt also allocate these
processors to other jobs, the PGT utilization can only bel uselocal jobs (or jobs
submitted by other grid schedulers), but not by other jolsrstied throughKOALA .

The second graph shows the average Job Placement Time (@PHeaFile Transfer
Time (FTT) (the sum of these two is the Total Waiting Time (T)Y}Only for workload
W3, do we also present more detailed statistics than simplyweege of the placement
times. The final graph presents the average numbers of péadesnd claiming tries.
In these two and in later graphs, we use the notafiom S to indicate jobs withC'
components of siz8. It should be noted here that the results for the differerkioads
are presented with different scales to make them betteblgisi

5.1.5 Results for the workload of 30%

Figure 5.1 shows the different utilizations in the systemtfe CF and WF policies for
workload W3,. During these experiments, the total utilization is abodfs7 Because
the experiments finished shortly after the submission oflabejob and the actual co-
allocation load KOALA load) is about 30% for both CF and WF with and without repli-
cation, we conclude that the system is stable with worklidagl It is also shown in this
figure that the utilization wasted while jobs wait for filerisders to complete (PWT) is
about 2%. This percentage is very low compared to the utitimegained by postpon-
ing claiming (PGT), which ranges between 6% and 9%. This shinvat our claiming
mechanism, which is described in Section 4.2.2, works wedl $table system.

Figure 5.2 shows that the average job FTT with the CF poligynaller than with the
WF policy, both with and without replication. Furthermovéth replication, CF is more
successful in finding execution sites “closer” to the fil@sjtwhich results in a smaller
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average job FTT. As a result, the average TWT of the jobs tsralduced. The decrease in
the average job FTT when the files are replicated for CF is@&rpebecause the number
of potential execution sites as defined in Section 4.3.esses.

We also find in Figure 5.2 that for both placement policieg, &rerage placement
time increases as the number or the size of the job compomenézases, both with and
without replication. The explanation for this is that mared is likely to be spent waiting
for clusters to have enough processors available simuteshg Also, as the number of
components increases, the job FTT goes up because moreadilidssty to be moved.

In order to give more detail, In Figure 5.3 we show more diaisthan only the
average of the distribution of the placement times for eathsize. In this figure we
observe that the 25th percentile and the median of the pkcttimes of the jobs are
(very close to) zero. On the other hand, the 90th percergtiligh for most job sizes.
This means that the average placement times reported ingFg2i are heavily influenced
by few jobs with very high placement times.

Figure 5.4 shows the average number of placement and ofiolgitmes for different
job sizes. In the figure, the number of placement tries irs@eas the number or the size
of the job components increases. The increase in the nurhpcement tries is caused
by the waiting for clusters to have enough processors dlaiimultaneously. This also
contributes to the rise in the average placement time siaege A waits for an interval
of 1 minute between successive scans of the placement qlibeeaverage numbers of
claiming tries for different job sizes with this workloadeaguite low (around 1). Note
that an average number of claiming tries equal or close to dns¢hat we succeed in
claiming an amount of time equal to 0.35FTT after successful placement according
to the description of Section 4.2.2, and that the PGT utibzais three times the PWT
utilization.

Overall, based on Figures 5.1, 5.2, and 5.4, we concludeathkatombination of CF
and replication performs best.

5.1.6 Results for the workload of 50%

Figure 5.5 shows the utilizations of our experiments withrkkmad W5, for CF and WF
with and without replication. Our main purpose with this Wload is to see to what
utilization we can drive the system. From the figure we find tha total utilization
during our experiments is between 70% and 80%. However diuakco-allocation load
is well below 40%, the experiments are only finished longrdfte last job arrival, and the
length of the placement queue goes up to 30, which showdthalstem is saturated. So
we conclude that we can drive the total utilization not higihan what we achieve here.
With this workload and with the CF policy, clusters “close’ftles will often be oc-
cupied, forcing more long file transfers. As a result, theage FTT for CF and WF are
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relatively close to each other both with and without reglama as shown in Figure 5.6
(note the different scale from Figure 5.2). Since the systegaturated with this work-
load, very much time is spent waiting for clusters to haveugioprocessors available
simultaneously. This explains the increase in the avertggement times in Figure 5.6
and in the number of placement tries in Figure 5.7 as the nuortséze of the job compo-
nents increases. However, similarly as with workldtg), the numbers of claiming tries,
which are between 1 and 3 as shown in Figure 5.7, are stikdowt. For this workload
we do no show the distribution of the placement times as witkieadlV;, because the
system was saturated and therefore unstable, during tRpsgmaents.
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Figure 5.7: The average number of placement and claimiag tvith workload//,.

5.1.7 Assessing the level of co-allocation used

Our placement policies use co-allocation to achieve thaingry goals: to minimize the
file transfer times (CF), and to balance the numbers of idbegssors (WF). Recall that
both CF and WF are allowed to place different componentsettdme job on the same
cluster. In order to assess the level of co-allocation digtuaed by a policy, we introduce
a metric called thgob spread which for a job is defined as the ratio of the number of its
execution sites and the number of its components (we willesgit as a percentage). So
if for a job of four components, all of its components are pthon different clusters, its
job spread is 100%. On the other hand, if all of its componargsplaced on the same
cluster, then its job spread is 25%.

We have done a separate set of experiments to study the ajetagpread and also
the percentage of jobs that actually use co-allocation. tiese experiments, we have
created a new workload that utilizes 30% of the system antctirasists of jobs with 2
or 4 components of equal sizes (number of processors), vdaictbe 4, 8, 16 or 24. In
this workload, each job component requires the same sirgleffsize 2 GByte. Again,
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we do two experiments, one without file replication and theeotvith files replicated in
three different sites. The results of these experimentstaoen in Figure 5.8.

CF ommm CF ommm
100 PWF = IWF ——

Trnn e Tl

CF mmmm CF mmmm

TP I

Co-allocated jobs (%) Avg Spread (%)
Co-allocated jobs (%) Avg Spread (%)

i

2X4 4X4 2X8 4X8 2X16 4X16 2X24 4X24 2X4 4X4 2X8 4X8 2X16 4X16 2X24 4X24
Job Size (number of components X component size) Job Size (number of components X component size)

a. Without replication b. With replication

Figure 5.8: The average job spread (upper graphs) and tieemiages of jobs that use
co-allocation (lower graphs).

We first observe that with replication, CF places at least dfathe components of
the jobs on separate clusters, which is expected with CRUsedfie number of potential
execution sites increases with replication. Without iegilon, the average job spread of
CF is slightly less compared to CF with replication becadtsbedecrease in the number
of potential execution sites. Second, the average job dpre&VF is not affected by
file replication, which can be explained by the fact that imgdéxecution sites with WF
depends on the numbers of available processors, and thargizéhe distribution of the
background load across the sites. As a result of these twenadigons and with our
background load, CF with replication uses co-allocatiorrenmbompared to WF, while
without replication, it is the opposite. Lastly, for the satotal job size, the percentage
of jobs using co-allocation increases as the number of jofjppoments increases.

5.1.8 The Close-to-Files policy with high background loads

It may be expected that the success of our workaround methrodrécessor reserva-
tion by postponing the claiming of processors depends orsitteeand variation of the

background load. In our previous experiments we observatitiie average number of
claiming tries, which was between 1 and 3, is quite low, iatiigy the success of our
workaround method for processor reservation with a backgitdoad between 30% and
40%. However, this background load is fairly low. Therefdoefurther test this method
we performed experiments with worklodts, with only CF and with replication while

trying to maintain a background load of 50% or 60% (again @yipg dummy jobs as

described in Section 5.1.3).
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Figure 5.9 shows the results of these experiments. For katkgoound loads, the
KOALA load (co-allocation load) is much lower than 30%, and theeexpents take
(much) more time than expected (the last job arrives at abog 6500), and so the
system is saturated. The real total utilization ranges &etw75% and 80%, which is
roughly equal to the utilization achieved in the experirsenith W5, in Section 5.1.6,
when the system was also saturated.

A high background load is very bad for large jobs. In Figure05a, with 60% back-
ground load, the average placement time of jobs with 4 corapisnof size 16 is about
3.3 hours! It should be noted that despite long placememgjmll jobs finished success-
fully. Figure 5.10.b shows that the numbers of claimingstaee still quite low even with
these much higher background loads, indicating the suafessr workaround method
for reservation. It should be noted that the increase in theber of claiming tries has
the positive effect of reducing the PWT in favor of the PGE latter is now in the range
of 7 to 20%.
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Figure 5.9: The utilizations for the Close-to-Files plaegrpolicy with workloadiVs
with different background loads.

5.2 An Evaluation of KOALA in an Unreliable Testbed

In this section we describe the experiments we have condltwtessess our co-allocation
service in an unreliable environment. The experiments were on the DAS-2 system
immediately after a major upgrade of the operating systeshtaalocal resource manager
(openPBS). Even though the system is homogeneous andlenteanaged, it was then

very unstable, and hence unreliable during the experim@ihis gave us the opportunity
to evaluate co-allocation witkOALA in a grid-like environment where the job failure
rate is high. The fact that this rate is high even in such air@mment shows the strong
need for good fault tolerance mechanisms. Sections 5.2 5&n2 describe theoALA



5. Evaluation of the KOALA Scheduler 72

TFTT = | ' ' "509% Background Placement Tries ——x

12000 Placement Time 1 60% Background Placement Tries
100 + 50% Background Claiming Tries ===
60% Background Claiming Tries

9000

6000 -

Average Time (seconds)
Average Number of Tries

3000

1X8 2X8 4X8 1X16 2X16 4X16 1X8 2X8 4X8 1X16 2X16 4X16
Job Size (number of components X component size) Job Size (number of components X component size)

a. 50% background load (left bars) and
60% background load (right bars) b. The placement and atjitnies

Figure 5.10: The average Placement Time and File Trangfiee Tleft), and the number of
placement and claiming tries (right) of the Close-to-Fpgement policy with workload
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setup and the workload used in this section. Sections ©23&-discuss the results of the
experiments.

5.2.1 KOALA setup

In these experiments, again we did not impose limits on thabear of placement and
claiming tries. Like in the experiments of Section 5.1, tlaegmeterL is set at 0.75 but
the interval between successive scans of the placemengsgjieincreased to 4 minutes
in order to decrease the excessive number of scans due tartl@bility of the testbed.
The parametef” of our claiming algorithm is set to 0, so we claim processorsainy
number components we can. Also, the decision to assign Ortoredier]” was based
on the variability of the number of processors availablelyQobs of high priority and
low priority are used in these experiments, and in order édalse impact of job priorities
we do not allow jobs to change their priorities by settingapaeter” of KOALA to co.
The parametersv, and N, are set to 1, the parametets andn, are set to 1 and 2,
respectively, and the parametergsandn, are set to 1. This setup means we scan the
high placement queue twice before we scan the low placenusntegonce. All of these
KOALA parameters were explained in Section 4.2.1. The KRunneuse&tsto submit jobs
in these experiments as it was the only runner availableedtiiie of these experiments.
Also, we wanted to see how thedALA scheduler copes with the unreliability of the
DAS-2 testbed.
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5.2.2 The workload

In these experiments, we put a workload of 500 jobs to be lozatied on the DAS that
all run the Poisson application described in Section 2i8.2ddition to the regular work-
load of the ordinary users. In our experiments, we consiolersjzes of 36 and 72, and
four numbers of components, which are 3, 4, 6, and 8. The capis request the same
number of processors, which is obtained by dividing the jab by the number of com-
ponents. We restrict the component sizes to be greater themt8e jobs of size 72 can
have any of the four number of component, while those of s&bd&/e 3 or 4 compo-
nents. All possible combinations of humber of components @mponent sizes have
the same probability. Each job component requires the samg&edile of either 4 or 8
GByte. The input files, which are randomly distributed, aplicated in two sites. The
average execution time of this application with componentsize 9, 12, 18, and 24 is
99.0, 127.0, 51.0, and 37.0 seconds, respectively, agd@pandent of total job size. We
assume the arrival process of our jobs at the submissionosiie Poisson. At the start
of the experiments, in the DAS clusters the number of prarsssere as shown in Table
5.2; however, the cluster of Leiden University was not alzde& due to errors. Exactly
repeating these experiments will be very difficult as theesarperimental conditions in
terms of the dynamic behavior of the DAS cannot be easilyeaded.

Table 5.2: The numbers of processors in the DAS-2 clusteneatart of the experiments
reported in Section 5.2.

Cluster Location Number of Processors
Vrije University 138
Leiden University 44
University of Amsterdam 48
Delft University 62
Utrecht University 64

5.2.3 Utilization

At the start of the experiment, a total of 312 processors int4b5 clusters were avail-
able tokoALA for placing jobs. During the experiment, the cluster of Delhiversity
reported a very high consecutive number of soft errors argltaken out of selection by
KOALA. Soft errors are defined in Section 3.2.2 as execution-géeific errors caused
by hardware or software faults of the execution sites. Assaltethe number of proces-
sors available for selection was reduced to 250. The utitina of these processors by
jobs due to other DAS users andROALA are shown in Figure 5.11. In this figure we
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Figure 5.11: The system utilization during the experimenan unreliable testbed.

see that 80% to 90% of the system was used during the expdrimibith shows that
co-allocation can drive the utilization to quite high level

5.2.4 Failures

The failures that we report in this section were caused byesafrs of the clusters. The
errors in these experiments were due to bugs in the LRMS (BPB8hand to the incorrect
configuration of some of the nodes. Since we are using a oca#d workload, the
failure of any of the components of a job causes the wholegdaik, and as a result, to be
returned to the placement queue. Figure 5.12.a shows thage/&ilure rate (expressed
as a percentage) for each of the job sizes during the expetsmEhe failure rate of a job
is calculated as the ratio of its number of failures due to @wbrs and the number of its
successful placement tries. By a successful placementdrgnean a placement try that
resulted in the job having started its execution. Since énettid, all jobs ran successfully,
the number of failures of a job is equal to the number of sugfaéplacement tries minus
one. The percentage of failures is much higher comparedetgttible system, where it
was always below 15%. From the figure, we observe more failiarehigh-priority jobs.
This is expected because more attempts are performed @ pbaclaim, and therefore to
run these jobs. As a result, more jobs are started simultehgavhich results in some
components to be given mis-configured nodes because mdst tifrte, these nodes are
idle.

The percentage of jobs that were actually co-allocated gftgobs whose components
were placed on multiple clusters, increases as the numlbebaomponents increases,
as shown in Figure 5.12.b. It should be noted that the randbeopercentage of jobs
using co-allocation in this figure is the same as in Figure 6@&allocation has the effect
of increasing the failure rate because then the chance foponents to be placed on
multiple clusters, and hence the chance of failures, isaga
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5.2.5 Placement Times and Start Delays

Failed jobs are returned to their respective placementepIElKOALA , which then tries
to re-place these jobs until their execution succeeds. elteeplacements result in multi-
ple placement times, which we sum to get the total placenmaetdf a job. The placement
time and the total placement time were defined in Sectiond 42d 4.2.2, respectively.
In Figure 5.13.a we observe an increase in the total placetmees of jobs as the number
of components increases. The explanation for this is thtt @ach re-placement, with
the increase in the number of components, more time is liteelye spent waiting for
clusters to have enough processors available simultalyeddsspite the increase in the
total placement times, all our jobs eventually ran to corighesuccessfully.
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Figure 5.13: The Total Placement Times and Start Delayshsf. jo

Jobs of small sizes (e.g., of size 36 shown in Figure 5.13a)al suffer from long
waiting times for enough processors to be available. Yesdhebs still require co-
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allocation as shown in Figure 5.12.b, which helps to loweirttotal placement times.
This is because components of jobs of smaller sizes are ys#klscheduler to fill the
“holes” left by the components with big sizes of other jobs.

Figure 5.13.b shows the start delays of jobs of differergssizvhich are also affected
by the number of failures and re-placements. As in the abbgervations, the start delay
increases with the number of components, with high-pggabs performing better than
low-priority jobs.

Overall, we conclude that splitting jobs into more compdaeeatoes not necessarily
lead to smaller total placement times (e.g., compare jodssiX12 and 4X9 in Figure
5.13.a). On the other hand, small jobs still require coealtmn to guarantee smaller total
placement times and start delays. Nevertheless, we caonolucle that jobs of smaller
sizes perform much better, but rather we can conclude thatlgoation cannot avoid
delaying considerably jobs requesting many processors imeeliable testbed. Finally,
also in an unreliable system, jobs of high priority out-pemi jobs of low priority.

5.3 Relation with Simulation Studies of Co-allocation

Extensive simulation studies of processor co-allocattomulticluster systems such as
the DAS have been performed [34, 36—40], and in this thestsprmsent performance
results of co-allocation obtained witDALA in the DAS-2. This raises the question to
what extent the results of these simulations and of our éxaits can be compared, and
if they can be compared, to what extent their results matcliverge. Below, we will first
review the model used in those simulations, and then we w#heer this question.

In the simulations, the influence of many parameters andeptigs of a model for
processor co-allocation in multicluster systems has besstigated. These parameters
and properties can be divided into three groups:

1. Workload parametersvhich are:

(a) The possible structures of the job requests consideesardered (called fixed
in this thesis), unordered (jobs consisting of multiple poments that can go
to any set offifferentclusters), or flexible;

(b) The number and the sizes of the job components;
(c¢) The runtimes of the jobs;

(d) The communication overhead due to the wide-area conuation when jobs
are co-allocated;

(e) The arrival process of the jobs, which is always assunbe t®oisson.
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The actual values of the parameters in (b)-(d) are eithethsyie, based on traces
of the DAS-2 or of the CTC workload from the Parallel Workloadthive [13], or
derived from measurements of application runtimes on th&R2A

2. System parametera/hich are:

(&) The number and sizes of the clusters;

(b) The heterogeneity of the system: All processors in thelerbystem are sup-
posed to be identical.

3. The properties of the queuing structure and the scheduloligips which are de-
fined as follows:

(&) The queueing structure in the system, which can eithenbea single global
queue, only local queues in the clusters through which botallsingle-
component jobs and jobs that require co-allocation can bengted, or a
combination of both;

(b) The priority structure when both local and global queass present, with
either the local queues or the global queue having priokigr the other(s);

(c) The queuing discipline dictating which job from a quewseeligible for
scheduling, which is either First-Come-First-Served (BE&r backfilling (no
service time estimates are used but a job can only be overtalkaited num-
ber of times). However, if both global and local queues aes@nt, the queu-
ing discipline in both is FCFS;

(d) The way the (local and/or global) schedulers are a&djatvhich is event-
based in that this is done when a job arrives or departs;

(e) The scheduling policy for unordered co-allocated jeldgch can, among oth-
ers, be Worst Fit.

The performance metrics used in the simulation studiesh@average job response time
(for the local and global queues separately if both are ptgaad the maximal utilization
that can be achieved. However, the response time is onlytegpior all job sizes (in terms
of the number of components and component size) togethenatrfor the different sizes
separately.

We will now discuss the similarities and the differencesnssin the model of mul-
ticluster systems in the simulations and the properties@fLA and the DAS-2 while
running the experiments. Our discussion will follow theelnof the division of the pa-
rameters into three groups as above for the simulations:

1. Workloads
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() In the experiments witROALA, only non-fixed job requests are used, the
components of which are allowed to go to the same clusterppssed to
unordered jobs in the simulations;

(b) The sizes of the jobs in the simulations are differentrftbose in the experi-
ments;

(c) The runtimes of the applications in the simulations affei@nt from those in
the experiments;

(d) The communication overhead due to the wide-area conuation is of
course included in the experiments as real jobs are exetuthd DAS-2;

(e) In both the simulations and the experiments, the arpvatess of jobs is
Poisson.

2. System

(a) Except for a few simulations in which the influence of Imguilifferent cluster
sizes in the system is assessed, all simulation result®agedystem with 4
clusters of size 32 each;

(b) All processors in the DAS-2 are identical.
3. Queues and policies

(a) Inthe experiments, there is a background load due togabsnitted locally in
the clusters through the local cluster managers in additioine co-allocation
workload submitted througkoALA , which corresponds to the queuing struc-
ture in the simulations with both a global queue and with loceues;

(b) With KOALA, jobs that need co-allocation are only placed on the systeenw
the processors they require are immediately availablechvimeans that in
the terms of the simulation model, in the experiments thallgoeues have
priority;

(c) In KOALA, the placement queues are scanned for any jobs that may fit on

the system, which resembles the type of backfilling emplagetie simula-
tions. However, irkOALA there is no limit to the number of times a job in the
(global) placement queues can be overtaken;

(d) Scheduling irKoALA is time-based in that the placement queues are scanned

periodically;

(e) In the simulations, no input files or data co-allocatiom eonsidered, which
means that WF is the only policy that has been consideredtindsitings.
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From this comparison of the simulation model and the progedf KOALA and the
DAS-2, we draw two conclusions. First, even though the satioh studies targeted the
(idealized) operation of a system like the DAS with a co-@iion-enabled scheduler, the
process of designing and implementing an actual scheduber actual system has led to
design choices that make the actual scheduler deviate iy raapects from the simulated
scheduler. Secondly, we conclude that none of the instanigof the simulation model
corresponds well to the operationtabALA in the DAS. On the one hand, we would have
to take the simulation model with both global and local qeas there is background
load in the DAS, but on the other hand, in that case FCFS is@raglin the global queue
in the simulations versus the version of backfillingknALA. Even if we argue that
because we keep the background load in the DAS stable and sama&ssume that the
experimental results hold for a smaller system in which thespof the clusters used by
the local jobs are taken away, we still cannot make meaniegfuparisons as the notions
of unordered jobs in the simulations and of non-fixed jobsiadxperiments are not the
same.

5.4 Conclusions

In this chapter, we have evaluated the performance okdre A job policies that imple-
ment our co-allocation service. We have also presentecethéts of a performance and
reliability test ofkOALA while the DAS-2 testbed was unstable. The main conclusibns o
this chapter are as follows:

1. ThekKOALA scheduler operates correctly and reliably both in a statdleaa unsta-
ble testbed.

2. The combination of the Close-to-Files placement poliag eeplication is benefi-
cial.

3. In the absence of advance processor reservation in theSsRkhe Incremental
Claiming Policy can be used without wasting much processw.t

4. With co-allocation and with the job sizes similar to theesrused in this chapter,
the utilization in a multicluster system like the DAS can beh to about 80%.

5. Many jobs, including relatively small ones, use co-akimn when given the
chance.

6. Even with high failure rate®OALA succeeds in getting all jobs submitted to com-
plete successfully.
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Chapter 6

Evaluation of the KOALA Runners

In Section 3.3 we have presented the thkeaLA runners which are currently opera-
tional, namely the KRunner, which isOALA’s default runner capable of running appli-
cation types that do not have any special requirements, BunbDer, which is the spe-
cialized runner for grid-enabled Message Passing Interfiat®l) jobs, and the IRunner,
which is designed to run lbis applications. All of these rerssupport processor co-
allocation, i.e., the spreading of applications acrosdipialsites in a grid. We have done
experiments to evaluate the performance of these runneheiDAS-2 testbed and we
present the results of these experiments in this chaptebédim this chapter by describ-
ing the experimental setup in Section 6.1 followed by thalieof these experiments in
Section 6.2.

6.1 EXxperimental Setup

In this section we describe the setup of the experiments we dhane to assess the opera-
tion of the runners. Section 6.1.1 presents two workloaasie impose on the DAS, and
Section 6.1.2 describes the performance metrics that veedeluring the experiments.

6.1.1 The workloads

In our experiments, we use two workloads,,. and V.., which are a non co-allocated
and a co-allocated workload, respectively. The jobs inglvesrkloads have job sizes and
numbers of components as shown in Table 6.1. Applicationfiase any of the job sizes
in this table, and i/, any of the corresponding number of components. The compenen
are of equal size, which is obtained by dividing the job sigéhe number of components.
For a single job, its size (number of processors) and numii@roponents are picked at
random and uniformly. Based on this, we generate the two adsiV,,. with 400 non
co-allocated jobs and/. with 400 co-allocated jobs.
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Table 6.1: The job sizes and the corresponding numbers opopents in the two work-
loadsWV,,. andWV...

Job Size| Number of Components
Wnc Wc
8 1 2,4
32 1 4,8
48 1 6,12

In this experiments there is the workload of the ordinaryrsigbackground load),
which again we try to maintain between 30% and 40% as destib8ection 5.1.3. We
have run the two workloads twice on the DAS. In the first rurthgab in the workloads
runs one of the three MPI applications, the Poisson apmicathe Fiber Tracking (FT),
and the Lagrangian Particle Model (LPM) described in Sec#ic3.2, and in the second
run, each job runs one of the three Ibis applications, theudes, the Raytracer, and the
red/black Successive Over Relaxation (SOR) applicatiso, @escribed in Section 2.3.2.
An application for each job in each run is picked at randomuamtbrmly. The MPI jobs
with a single component i/, are non-grid enabled and therefore are submitted with the
KRunner. The MPI jobs inV,. are grid-enabled and therefore, they are submitted with the
DRunner. All the Ibis jobs are submitted with the IRunner.aAsonsequence, we test all
three runners in our experiments. We assume the arrivaépsoaf our jobs to be Poisson
with a mean arrival rate of 2.4 jobs per minute.

The experimental conditions for workload generation, iaaikl submission, and the
background load stated above together with the applicatiotimes as reported in Sec-
tion 6.2.1 are sufficient for repeating our experiments.

6.1.2 Performance metrics

In total we perform four experiments, one for each workloadeither MPI or Ibis jobs.
During the experiments we record the following performamegrics:

e Theruntime, which is the duration of the execution from when a job iststhto
its termination.

e Thethroughput, i.e., the number of successfully started jobs per unitroéti

e The cumulative number of jobs, which is the accumulated number of jobs that
have run and the ones which are still running up to a certane twithin the
makespan of the experiment.

e The DASutilization due to background jobs and due to the jobs in our experiment
separately.
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e The applicatiorStart Time Overhead (STO), which is the overhead incurred from
when the runner starts deploying a job for execution unéitime the job is actually
running. This overhead also includes the time that the j@mgdp being processed
by the LRMS (SGE in our case). It should be noted that our jobsaver queued
in the LRMSs becauskOALA places the job components on execution sites with
enough idle processors to execute the jobs immediately.

e Thenumber of failures, which is the number of failures due to soft errors resulting
in a job being returned to thedALA scheduler and its placement being retried.

6.2 Performance Results

In Sections 6.2.1-6.2.5 we present the results of the axpets we have conducted on the
DAS to assess the performance of #@ALA runners. During the experiments, the DAS
clusters had the numbers of processors as shown in TableDéu2ng our experiments
there were jobs of other DAS users using some of these prarsgsghich resulted in only
two clusters being able to run jobs of size 48.

Table 6.2: The numbers of the processors in the DAS-2 clustahe start of the experi-
ments reported in Section 6.2.

Cluster Location Number of Processors
Vrije University 134
Leiden University 36
University of Amsterdam 32
Delft University 60
Utrecht University 50

6.2.1 Runtimes

Figure 6.1 shows the average runtimes of the applicationaglthe experiments with
workloadsWV,,. andV,.. As expected in parallel processing, the average runtirhtéseo
applications decrease as the number of processors goesarghd=LPM application
submitted in workload//,, its runtime increases considerably with the increase én th
number of components. For instance, running this apptinatiith 4 components of size
12 instead of with a single component of size 48, makes thageauntime go from 35 to
218 seconds. This is because the LPM application is comratiaitintensive (with many
“many-to-many” communication patterns) and thereforg aiterage runtime is affected
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Figure 6.1: The average runtimes of the applications in \eads|V,,. andV,. submitted
with the runners.

by the slow wide-area communication. Also the average mmif the Satin jobs (N-
Queens and Raytracer) with many components (8 and 12) istedfdy the slow wide-
area communication. This is because in Satin, the work islolised across the processors
by work stealing: when a processor runs out of work, it piaksther processor, possibly
in a different cluster, at random and steals a job from it.H@ftivo Satin applications, the
Raytracer application is affected the most by the slow véiteas communication since it
sends more data [96].

6.2.2 Throughput and cumulative number of jobs

Figure 6.2 shows the throughputs and the cumulative nundbgsbs of the three runners
with workloadsWV,,. andV... In these experiments, the last job was submitted at 10800
seconds, which is somewhat higher than the expected tim@@dQLseconds. This is
due to the CPU load of the submission site which, when it rea@hcertain threshold,
deliberately delays the job submissions to decrease this IBrom the figure we observe
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Figure 6.2: The throughput (upper graphs) and the cumelatumber of jobs (lower
graphs) of the runners with workloatls,. andV...

that the average throughput of both the KRunner and the D&usraround 2 jobs per
minute, which means that the system is close to being stable.

For the IRunner with workloatV,,. after the submission of the last job, the throughput
falls below a job per minute. The reason for the low throudlpthe way the background
load is distributed among the clusters. During this expeninthe local jobs that we did
not have control over were distributed in such a way that omg job of size 48 could
run at a time. During the experiments with this workload,|e@pion-specific errors were
observed which caused further delay in executing jobs & 4& Figure 6.2.c clearly
shows that at the end of the job submissions, only jobs of48zare still in the queue.

The IRunner with workloadV, has a throughput of slightly less than 2 jobs per
minute. This is caused by the components of the Satin jolihthe failed to join their
respective computations and end up running as redundargscopjobs. As a result,
processors are held longer than expected and thereforthrtheghput decreases. Also,
during this run, application-specific errors were obsemnwbith caused applications to
hang while holding processors. The jobs of these applicaticere eventually aborted by
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Figure 6.3: The utilizations of the system for the differemminers with workload$V,,.
andW.,.

KOALA after a runtime of 15 minutes, which is the default for allgaubmitted to the
DAS, has expired.

The cumulative numbers of jobs for worklo&ld. show that the jobs of all sizes are
executed equally, which shows the advantage of co-allmeaflhe situation is different
for workloadWV,,. because of the same reason given above for the throughput.

6.2.3 Utilization

Figure 6.3 shows the utilizations of the DAS for the threenens with workloadsV/,,.
andW.. In this figure we see that the total load with workldad varies between 70%
and 80%, which is higher than the total load with workld&d., which varies between
60% and 70%. This is because components of the co-allocatddoad |V, have smaller
sizes and therefore, are more easily placed bxtra A scheduler. The components with
smaller sizes are used by the scheduler to fill the “holes’bgthe components with big
sizes. As a result, the utilizations with workloHd are high compared to those with,,..
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Figure 6.4: The average Start Time Overhead of the runnéhswarkloadsiV,,. andIV...

For the IRunner with both workload#’,,. andV., the experiments run longer because of
the lower throughputs. Also, the longer tail in Figure 6f8rcthe IRunner with workload
W, is evidence of the application-specific errors explaine8ention 3.2.2.

6.2.4 Start Time Overhead

The Start time Overhead (STO) is an important metric for theers since it reports the
delay of the execution of jobs caused by the middleware.doi€i 6.4 we observe that the
average STO increases with the number of components peizelw#h workloadlV...
The increase in the number of components causes an incredse number of GRAM
instances at the head node of the submission site as welliasraase in the number of
GRAM job managers at the head nodes of the execution sités.nTéans that the head
nodes are being used heavily and therefore, their respionsg are correspondingly slow.
As a result, there are delays in the synchronization of tae sf job components, which
results in an increase in the STO. The IRunner with workldadhas an average STO that
is slightly higher than for the DRunner since the namessr{@mne for each running job)
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are also running at the head node of the submission site. &diaad1V,,., the average
STO is much smaller.
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Figure 6.5: The average Start Time Overhead of the runnéhswarkloadsiv,,. andWW.,
with a mean arrival rate of 4 jobs per minute.

The above experiments were done in a stable system. In @rdeke observations of
the average STO in an unstable system, we have repeatedodeneents with an arrival
rate of 4 jobs per minute instead of 2.4. At this arrival rat ebserve no increase in
the throughput of the runners compared to the throughpiit anitarrival rate of 2.4 jobs
per minute, which indicates that the system is now unstdiéspite observing the same
throughput as in a stable system, the average STO has iadréasboth workloads as
can be seen in Figure 6.5. This is to be expected becauseatigengore runner instances
of jobs that are waiting to be placed, and of jobs that aredkeg at the head node of the
submission site, which increases the load of the head node.
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6.2.5 Number of failures

The average number of failures per job we observed duringexiperiments with the

runners reported on above is less than 0.05, which is very [bovobserve better the
number of failures, we repeated the experiments multipiesiover a period of one month
(in total 16,000 jobs were submitted). We show the averagbeeohumber of failures per
job for all job sizes in Figure 6.6. Again, we emphasize thigjiolds successfully ran to

completion in the end.

Overall, these numbers are very low. This is because thegofis that caused failures
were solved easily by theoALA fault tolerance mechanisms (see Section 3.2.2). These
mechanisms were not so successful with jobs of size 48 inloadkl,,. because failed
jobs of this size were usually restarted on the same clus&trthey previously ran on.
Clearly, this problem did not occur for co-allocated jobstatfal size 48, which again
shows the benefit of co-allocation.
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Figure 6.6: The average number of failures per job over thimgef one month (the
failure rates for all job sizes are shown, but some are (Vieigecto) 0).
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6.3 Conclusions

In this chapter, we have presented the experiments donsésathe&OALA runners on
the DAS-2 testbed. The main conclusions of this chaptersafellws:

1. The runners operate correctly in the DAS testbed.

2. Jobs of all sizes are executed equally when co-alloc&iosed, whereas without
co-allocation large jobs may be delayed considerably.

3. The overhead in the middleware when starting jobs is gtyoimfluenced by the
load of the head nodes of the clusters on which this middlewanrs.

4. TheKOALA fault tolerance mechanisms minimize the number of failecessed by
hardware and software faults of the execution sites.
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Chapter 7

Conclusion

In this thesis, we have studied the problem of co-allocaitiogrids, i.e., the allocation
of both processors and data to single applications in melsjes and the simultaneous
access to these resources by the applications. As stateldaipté? 1, the co-allocation
problem leads to the following challenges of grid resour@agement: allocating re-
sources in multiple sites, guaranteeing the simultanewvaahility of the co-allocated
resources when they are about to be accessed by the ampigand managing sets of
highly dynamic grid resources. Also, we have addressedhhllenige of automating the
deployment of different application types on the grid, whis difficult because of the
characteristics of the grid applications and of the gridasfructure.

In Section 7.1 we summarize the approach we have used toszdidire mentioned
challenges. We present our conclusions in Section 7.2 aatlyfinn Section 7.3 we
describe open research questions.

7.1 Approach

In order to deal with the challenges of grid resource managemnd of deploying grid
applications, we have developgdALA, a Grid Resource Management System, we have
deployed it on the DAS, and we have done extensive expergneitih it. KOALA has
proven to be working reliably on the DAS testbed with over 800 jobs already submit-
ted with it. The architecture ofOALA consists of two major layers, namely, tkeALA
scheduler and the runners, which are job submission andtonimgj tools. When design-
ing KOALA, arriving at the two layers of the scheduler and the runnexs mot straight-
forward; the development afOALA started with a monolithic single-layered scheduler
called PDCA on the DAS-2. However, the need to increase aeareh domain to in-
clude research in grid application types such as workfloasaiReter Sweep Applications
(PSAs) and Bags-of-Tasks (BoTs), and in grid benchmarkorged us into re-designing
and re-implementingtOALA using the layered approach, which has proved to be more
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flexible, stable, and reliable than the monolithic struetwe started with. With this ap-
proach, adding support for new application types has now basy and does not disturb
the operation OKOALA, contrary to our initial design.

ThekoALA scheduler addresses the challenge of allocating resoaroadtiple sites
with its Close-to-Files (CF) and Worst Fit (WF) policies. G&s been designed to mini-
mize the long delays when starting a job because of long ifilputansfers by selecting
the execution sites of its components close to sites wheieittput files are located. On
the other hand, the WF policy has been designed to balancegsor usage among the
clusters and if possible, to minimize file transfer times @ Wlo guarantee the simulta-
neous availability of the co-allocated resources kthaLA scheduler has the Incremental
Claiming Policy (ICP), which is used in the absence of supfmradvance processor
reservation by the Local Resource Management Systems. ri€&Ptd make processors
available for job components, if necessary by finding precesat other sites than previ-
ously allocated or, if permitted, by forcing processor klality through the preemption
of running jobs.

The runners framework addresses the challenge of deplgyitigpplications through
the use of theKOALA runners, which are job submission and monitoring tools. ue
the modularity of the design of the runners framework, défe runners can be written to
support the unique characteristics of different applaraiwith ease. The runners frame-
work has been designed with fault tolerance mechanismsdiedt with the reliability
issues of the grid infrastructure. The runners frameworkthe scheduler work together
to manage sets of highly dynamic grid resources.

KOALA , which has been operational on the DAS-2 testbed since Bepte2005 and
on the DAS-3 since May 2007, has been used successfully feretift projects on the
DAS. Because of its modular structure and its ease ofkiseLA has become a tool to
be used in new research. For example, at the time of writitigiothesis, there is ongoing
work in the University of Amsterdam in extendimgALA to support the scheduling of
light paths of the optical network in order provide more baittth when transferring large
files. Other ongoing work witlkOALA includes the development of a Grid Application
Toolkit (GAT) [1] adaptor forkOALA at the Vrije University, and the addition of cycle
scavenging support toOALA .

7.2 Conclusions

Based on the research reported in this thesis, we draw tleevfo major conclusions:

1. Co-allocation is a useful mechanism in Grid Resource gamgent Systems. With
the use of co-allocation, it is possible to run jobs that negmore processors than
are available at any single grid site, or jobs that requismueces distributed at
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different sites. On the down side, wide-area communicattitrhas a huge impact
on the runtimes of communication-intensive applicatiddswever, with the rapid
advance in optical network technology, this problem mayndo®manageable.

2. It is possible to implement reliable co-allocation metkms in a Grid Resource
Management System.

3. When developing a Grid Resource Management System, eethgechitecture is
recommended over a monolithic single-layered scheduléh &layered architec-
ture, support for new application types can be added wita aad without disturb-
ing the operation of the Grid Resource Management System.

4. Based on a layered architecture, running grid applinatie simplified by separat-
ing application scheduling from application deploymentisTallows application
programmers to focus on application development withoutyitog about grid re-
source management.

5. Grid resources are hardly reliable, which is evident emenhomogeneous testbed
like DAS-2, which is centrally managed. Therefore, desigmeliable mechanisms
and studying them through experimentation in real enviremts, is very important.

6. Our experiences obtained by running experiments hawerskite correct and re-
liable operation okKOALA with its co-allocation and job deployment mechanisms,
both in stable and unstable testbeds.

7.3 Open Research Questions

Although KOALA has been tested thoroughly and is currently a fully opemati&rid
Resource Management System, the following five issuessit! to be addressed:

1. Our scheduler design has been restricted to a single Igtahaduler which may
introduce a bottleneck like any centralized componentalgga in larger grids than
the DAS. Approaches that consider distributed global gcigeslulers need to be
investigated.

2. Our scheduling policies work well in a homogeneous emvitent. In a heteroge-
neous environment, these policies need to be extendedltmlenmore parameters
such as processor speed when making scheduling decisions.

3. An extensive performance study of the policies andkbeLA scheduler is re-
quired in a heterogeneous environment such as when integcting the DAS-3
and Grid’5000 [43].
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4. Different approaches for data scheduling are still negLinKOALA , e.g., segment-
ing large input files and scheduling the transfers of onlycienks required by the
job components as a means to minimize the transfer timedhastdrage space.

5. More runners for other application types that we are cuirenot supporting need
to be added.

6. The fault tolerance mechanisms in the runners frameweéd o be extended to
tolerate more types of faults, e.g., tolerating submissitacrashes and file-transfer
failures. In addition, a more extensive performance stddli@runners, preferably
in a heterogeneous grid environment, is required.
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Summary

Grid computing is an emerging form of distributed computidigtinguished from tradi-
tional forms by its focus on large-scale, multi-organiaatil resource sharing and inno-
vative applications. Like any computing infrastructuies grid infrastructure is made up
of hardware and software, which have been advancing rapitiig advance is facilitated
greatly by innovations in building fast and powerful comntpdomputers and networks,
which has been accompanied by a drop in their prices. Alsostitware technology
for building key components of the grid software infrastire has become easier to use
and more robust. These key components include softwareauflatithg single-cluster and
multicluster systems, and grid middleware. Multiclustgstems are formed by joining
multiple, geographically distributed clusters interceated by high-speed wide-area net-
works. Grid middleware offers transparent access to a waiety of distributed grid
resources to users. Through the use of the grid middlewaradgns of the simple in-
terfaces it provides, a normal user does not have to knowettifentcal details on how to
access these resources. The advance of the grid infrastwotd what it is promising to
offer has resulted in new grid applications and grid appicetypes that are attempting
to take advantage of the grid.

Grids need high-level schedulers that can be used to maeagarces across multi-
ple organizations; we call such schedulers Grid Resourcelglement Systems (GRMS).
GRMSs do not actually own the resources of grids, and neitbehey have full control
over the jobs that are running in grids. This makes resouraeagement by GRMSs
very difficult. An important possible requirement to a GRMSa supporto-allocation
I.e., the simultaneous or coordinated access of singlecgbioins to resources of possibly
multiple types in multiple locations. Co-allocation pretenew challenges to resource
management in grids. These challenges include allocaéagurces in multiple sites,
guaranteeing the simultaneous availability of the coeated resources when they are
about to be accessed by the applications, and managingfdatthty dynamic grid re-
sources. To deploy jobs on the resources they have beemtaitbby a grid scheduler,
good job deployment mechanisms are required. The emergénesv applications types
which have unique characteristics and of the grid infrastne itself poses the challenge
of deploying jobs in grids.
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In this thesis we address the challenges of co-allocatiohc@myrid application de-
ployment. For this purpose we have designed and implemahtgdoaLA GRMS,
which has been deployed on the second and third generatidhe @istributed ASCI
Supercomputer (DAS). The DAS is a multicluster system iimgj of five geographi-
cally distributed clusters interconnected by a high spestd/iork in four universities in
the NetherlandsKOALA has proven to be working reliably on the DAS testbed with over
500,000 jobs already submitted successfully with it.

In Chapter 1 of this thesis we introduce the problem of grgbtece management,
and in particular, we state the challenges of co-allocadimh application deployment in
grids that we address in this thesis. In Chapter 2 we deskrithetail the background on
grids that is required to read this thesis. In addition, wespnt our model for resource
management and co-allocation in grids.

In Chapter 3 we describe the design of KenLA GRMS. The architecture afoALA
consists of three major layers, namely, the scheduler, uhaers framework, and the
runners, which are job submission and monitoring tools fc#ic application types.
The scheduler is equipped with placement policies that see to place jobs on suitable
execution sites, and with a claiming policy that is used #nalprocessors for jobs at
their scheduled start times. The runners framework hided#dterogeneity of the grid
by providing a set of functions to the runners for commonlgdugrid job submission
operations. The runners framework simplifies the develomaerunners and therefore,
it encourages the addition of runners for different appiocatypes.

In Chapter 4 th&cOALA job policies are discussed. These job policies are the €lose
to-Files (CF) and the Worst-Fit (WF) policies, which areqgament policies, and the
Incremental Claiming Policy (ICP), which is a claiming pyli The placement policies
address the co-allocation challenge of the simultanedosation of resources in multi-
ple sites to single jobs. The CF policy has been designed namize the delays when
starting a job caused by long input file transfers, and the My has been designed
to balance processor usage among the clusters and if possiblinimize file transfer
times as well. The claiming policy addresses the co-alionathallenge of guaranteeing
the simultaneous availability of the processors in the atsef advance processor reser-
vations. The ICP policy tries to make processors availadngabs, if needed by finding
processors at other sites than where they were allocatédpermitted, by forcing pro-
cessor availability through preemption of running jobs.

Chapters 5 and 6 present the results of the experiments we dmnducted in the
DAS to assess the operation of thkeALA job policies and th&OALA runners. The re-
sults show that indeed a reliable co-allocating grid scledean actually be designed,
implemented, and deployed in a multicluster system, thatlloeation is a useful mech-
anism to have in a GRMS, and that enabling grid applicatisssmplified by separating
scheduling from application deployment. We have also keéhat grid resources are
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hardly reliable, which was evident even in a homogeneoubdddike DAS-2, which is
centrally managed. Therefore, designing reliable meamasiand studying them through
experimentation in real environments, is very important.
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Samenvatting

Grid computing is een opkomende vorm van distributed comgudie zich van tradi-
tionele vormen onderscheidt door een focus op het grodtgehanulti-organisationele,
gemeenschappelijke gebruik veesourcesen op innovatieve applicaties. Zoals iedere
computerinfrastructuur, bestaat de grid-infrastructutirhardware en software, en in
beide worden grote vorderingen gemaakt. Deze vorderinggdem mogelijk gemaakt
door innovaties in het bouwen van snelle en krachtige stdeomputers en standaard-
netwerken, hetgeen gepaard gaat met grote prijsdalingeak vidrdt de software-
technologie voor het bouwen van de sleutelcomponenten eaofiware-infrastructuur
van grids steeds gemakkelijker in het gebruik en steedsugibu Deze sleutelcompo-
nenten omvatten software voor het bouwen van multiclugtéesnen en grid middle-
ware. Multiclustersystemen worden gevormd door het sapegen van meerdere ge-
ografisch gespreide clusters die verbonden worden dodesvide-areanetwerken. Grid
middleware biedt transparante toegang tot een verschettbaan gedistribueerde grid-
resourcesaan de gebruikers. Door het gebruik van grid middleware ei@ehvoudige
interfaces die het biedt, hoeft een gewone gebruiker geenikée hebben van de tech-
nische details van de toegang totrdeources De vooruitgang van de grid-infrastructuur
heeft geresulteerd in nieuwe (typen van) grid-applicalieproberen de mogelijkheden
van grids uit te buiten.

Grids hebben hoog-niveau schedulers nodig die gebruikidmmorden omesources
te beheren die in het bezit zijn van meerdere organisatigke zchedulers worden wel
Grid Resource Management Systemen (GRMS) genoemd. Een (bRkiiSIeresources
niet werkelijk zelf, en ook heeft zo'n systeem niet de valisdcontrole over de jobs
die in een grid worden uitgevoerd. Dit maakt het beheerreanurcesdioor een GRMS
erg moeilijk. Een belangrijke mogelijke eis aan een GRMSnison-allocatiete onder-
steunen, d.w.z. de gelijktijdige of gecoordineerde toggean een enkele applicatie tot
resourcesvan mogelijkerwijs meerdere types op meerdere locatiesall©oatie brengt
nieuwe uitdagingen voor het beheer vasourcesn grids met zich mee. Deze uitda-
gingen zijn onder meer het toewijzen vasourcep meerdere locaties, het garanderen
van de gelijktijdige beschikbaarheid van mesourcesdie met co-allocatie toegewezen
zijn op het moment dat een applicatie ze wil gaan gebruikermes beheren van de zeer
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dynamische gridesources Voor het activeren van jobs op desourcesdie door een
grid scheduler zijn toegewezen zijn goede mechanismeisteret ontstaan van nieuwe
typen applicaties met ieder hun eigen karakteristiekenaende grid-infrastructuur zelf
leidt tot de uitdaging van het activeren van jobs in grids.

In dit proefschrift gaan we de uitdagingen aan van co-atle@n van het activeren van
jobs in grids. Hiertoe hebben we habAaLA GRMS ontworpen en geimplementeerd, dat
geinstalleerd is op de tweede en derde generatie van déDistd ASCl Supercomputer
(DAS). De DAS is een multiclustersysteem dat bestaat digeipgrafisch gespreide clus-
ters verbonden door een snel netwerk bij vier universitaiteNederland KOALA heeft
bewezen dat het betrouwbaar functioneert op de DAS; tot@aijio al meer dan 500.000
jobs viakOALA aan de DAS aangeboden.

In Hoofdstuk 1 van dit proefschrift introduceren we het pealon van het beheer van
grid resourcesen in het bijzonder formuleren we de uitdagingen van coealie en van
het activeren van applicaties in grids die we in dit proeféthangaan. In Hoofdstuk 2
beschrijven we in detail het benodigde achtergrondmatieoia dit proefschrift te lezen.

In Hoofdstuk 3 presenteren we het ontwerp vank@iLA GRMS. De architectuur
VankKoALA bestaat uit drie lagen, nl. de scheduler,eners frameworken derunners
deze laatste zijn software-componenten voor het aanbrxléet volgen van de executie
van specifieke typen applicaties. De scheduler is uitgenetplacement policiesoor
het toewijzen van geschikexecution sitesen van eertlaiming policyvoor het opeisen
van processoren ten behoeve van jobs als deze daadwerkidigk starten. Hetunners
frameworkschermt de heterogeniteit van het grid af door een verzamélincties aan
derunnerster beschikking te stellen voor veel voorkomende operabes het activeren
van grid jobs. Hetunners frameworkvereenvoudigt de ontwikkeling vaminners en
stimuleert zodoende de toevoeging vannersvoor verschillende typen applicaties.

In Hoofdstuk 4 worden dgob policiesvan KOALA besproken; deze zijn daace-
ment policies Close-to-Filg€F) enWorst-Fit(WF), en delncremental Claiming Policy
(ICP) voor het opeisen van toegewezen processoreml&mment policiesormen een
antwoord op de uitdaging van de voor co-allocatie vereistgkgjdige toewijzing van
resourcesn meerdere locaties aan een enkele jobpbkcy CF is ontworpen om de ver-
traging in het starten van een job veroorzaakt door het ogrgen van invoerbestanden
te minimaliseren, en deolicy WF is ontworpen om het processorgebruik tussen de clus-
ters in balans te houden en indien mogelijk ook de tijd nodigrihet overbrengen van
bestanden te minimaliseren. Dlaiming policyvormt een antwoord op de uitdaging van
de voor co-allocatie vereiste garantie van de gelijktigdigeschikbaarheid van proces-
soren als er geen mechanismen aanwezig zijn om processoreserveren. Dpolicy
ICP probeert processoren beschikbaar te maken voor jabeninodig door processoren
te vinden op andere locaties dan waar deze oorspronkelijgnmegewezen of, indien
toegestaan, door de beschikbaarheid van processorenvaiiigesh via de pre-emptie van
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draaiende jobs.

Hoofdstukken 5 en 6 presenteren de resultaten van de ex@@emdie we in de
DAS hebben uitgevoerd om de werking te beoordelen vaohi@oliciesen derunners
vankKoOALA. De resultaten tonen aan dat het inderdaad mogelijk is onbbegauwbare
grid scheduler die co-allocatie ondersteunt te ontwerggeimplementeren, te installeren,
en te gebruiken in een multiclustersysteem, dat co-al®e#n nuttig mechanisme is
in een GRMS, en dat het executeren van grid-applicatieemeoeidigd wordt door de
scheduling van deze applicaties te scheiden van het amtivevan. We hebben ook
ondervonden dat grid resources niet erg betrouwbaar zétyelen zelfs het geval is in
de DAS, die centraal beheerd wordt. Derhalve is het erg bejarom betrouwbare
mechanismen te ontwerpen en met behulp van experimentem werkelijke omgeving
te bestuderen.
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