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Chapter 1

Introduction

Grid computing has emerged as an important new field in computer systems, distinguished
from conventional distributed computing by its focus on large-scale, multi-organizational
resource sharing and innovative applications. At the heartof grid computing is a com-
puting infrastructure that provides ubiquitous and inexpensive access to large amounts
of computational capabilities [65]. Over the past 15 years,we have seen a substantial
growth of the grid hardware and software infrastructure. The hardware growth is mainly
due to the increase in the performance of commodity computers and networks, which has
been accompanied by a drop in their prices. On the other hand,grid software for building
single-cluster and multicluster systems and grid middleware technologies have become
more sophisticated and robust. Multicluster systems are formed by joining multiple, ge-
ographically distributed clusters interconnected by high-speed wide-area networks. An
example of a multicluster system is the Distributed ASCI Supercomputer (DAS), which
will be discussed in detail in Section 2.1.1. Grid middleware sits between grid applica-
tions and the grid hardware infrastructure and therefore, hides the underlying physical
infrastructure from the users and from the vast majority of programmers. In doing so,
grid middleware offers transparent access to a wide varietyof distributed resources to
users and simplifies the collaboration between organizations. As a result of the growth
of the grid infrastructure and what it promises to offer, newapplications and application
technologies have emerged that are attempting to take advantage of the grid. These ap-
plications have widely different characteristics that pose unique resource requirements to
the grid.

Resource management is an important subject in multiclusters and grids, and the soft-
ware implementing the mechanisms and policies for resourcemanagement constitutes a
large fraction of the grid middleware. Although grids usually consist of many subsystems
such as clusters and multiprocessors, and jobs submitted togrids might benefit from us-
ing resources in multiple such subsystems, most jobs in grids use the resources of only
one such subsystem. However, some types of jobs, e.g., jobs that run parallel applica-
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tions that can efficiently use many processors, may take advantage from using resources
in multiple subsystems of a grid. Therefore, in multicluster systems, and more gener-
ally, in grids, jobs may requireco-allocation, i.e., the simultaneous or coordinated access
of single applications to resources of possibly multiple types in multiple locations man-
aged by different autonomous resource management systems [31, 51, 78]. Co-allocation
presents new challenges to resource management in grids, such as coordinating the times
of access of a job to resources in different clusters. These challenges, which we address
in this thesis, are presented in Section 1.1. The fact that grid applications have unique
resource needs and have unique ways of being deployed in the grid, forms another chal-
lenge that we also address in this thesis. This challenge is described in Section 1.2. In
Section 1.3 we give an overview of our approach of meeting allof these challenges by
means of the design and the implementation of theKOALA Grid Resource Management
System. In Sections 1.4 and 1.5, we state the contributions of this thesis to the research in
grid resource management, and we present an overview of the whole thesis.

1.1 Challenges in Resource Management in Grids

Grids need high-level schedulers that can be used to manage resources across multiple
organizations. Such schedulers have variably been called (albeit with somewhat different
meanings) resource brokers, meta-schedulers, higher-level schedulers, superschedulers,
grid schedulers, grid resource management systems (GRMS),etc. In this thesis we will
stick to the latter term. GRMSs have important characteristics that make them much
more complicated to design and implement than Local Resource Management Systems
(LRMS) for single clusters. These characteristics, which lead to challenges in resource
management in grids, are:

1. GRMSs do not own resources themselves, and therefore do not have control over
them; they have to interface to information services about resource availability, and
to LRMSs to schedule jobs. Grids are usually collections of clusters (or of other
types of computer systems such as multiprocessors and supercomputers) that have
different owners, that have their own user community, and that have their own,
autonomous local scheduler. These owners are often not willing to give up the
autonomy of their clusters, but will only allow access to their resources through a
GRMS that interfaces to their local schedulers according tospecific usage rules.

2. GRMSs do not have a full control over the entire set of jobs in a grid; local jobs
and jobs submitted by multiple GRMSs have to co-exist in a grid. The jobs that are
executed in a single cluster in a grid may be submitted through the local scheduler
or through any of a number of GRMSs. This means that a GRMS has to take into
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account jobs from multiple sources when deciding on where a particular job should
run.

3. GRMSs have to interface to different LRMSs with differentproperties and capabil-
ities. At the time of writing of this thesis, the ongoing standardization effort of the
interface between GRMSs and LRMSs by the OGF [19] was far fromcomplete.

An important possible requirement to a GRMS is to support co-allocation. The prob-
lem of co-allocation and of adding support for it to a GRMS is at the core of this thesis.
In Section 1.1.1 we elaborate on the co-allocation problem that we address. Co-allocation
relies on the simultaneous availability of resources, which is simplified by the presence
of mechanisms for advance resource reservations, in particular for processors, in LRMSs.
In Section 1.1.2 we discuss issues regarding advance processor reservations in LRMSs.

1.1.1 The co-allocation problem

In grids, it is common for the resource needs of grid applications to go beyond what
is available in any of the sites making up a grid. For example,a parallel application
may require more processors than are present at any site, anda simulation may require
processors for computation in one site and visualization equipment in another site. To
run such applications, co-allocation, defined as the simultaneous or coordinated access to
resources of possibly multiple types in multiple locationsmanaged by different resource
management systems, is required. When co-allocation is employed for a job, we call
the parts of the job that run at different sitesjob components. Co-allocation presents the
following challenges in resource management in grids:

1. Allocating resources in multiple sites, which may be heterogeneous in terms of hard-
ware, software, and access and usage policies, to single applications. When co-
allocating resources, the primary goal of a co-allocation mechanism is to minimize
the waiting time as well as the response time of jobs. In orderto do so, the hard-
ware type and speed (e.g., processor speed, network bandwidth), the presence of
the required software (e.g., the operating system, libraries), and the usage policies
need to be taken into account when co-allocating resources to jobs.

2. Guaranteeing the simultaneous availability of the co-allocated resources at the
start of the execution of an application.A co-allocation mechanism is only ef-
fective if after co-allocating resources, those resourcescan actually be used. The
facts that GRMSs do not own resources, that grid resources are very dynamic, and
that there is contention for resources between local and global grid jobs make guar-
anteeing resource availability to jobs a real problem. Thisproblem is elaborated on
more in Section 1.1.2.
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3. Managing sets of highly dynamic grid resources belonging tomultiple sites of a
grid, which may come and go at any time, either by being disconnected or by failing.
Grids harness the power of many networked clusters, desktopcomputers, and even
scientific instruments from different organizations. The levels of resource availabil-
ity between organizations differ; some claim 5-nines availability while others have
high failure rates. When co-allocating resources, it is important to consider their re-
liability, and in case of failures, good error recovery mechanisms should be present
in GRMSs.

1.1.2 Processor reservations

The challenge with simultaneous access of an application toresources at multiple sites
of a grid lies in guaranteeing their availability at the application’s start time. The most
straightforward strategy to do so is to reserve processors at each of the selected sites.
If the LMRSs do support reservations, this strategy can be implemented by having a
GRMS obtain a list of available time slots from each LRMS, reserve a common time
slot for all job components, and notify the LRMSs of this reservation. Unfortunately,
a reservation-based strategy in grids is currently limiteddue to the fact that only few
LRMSs support reservations (for instance, PBS-pro [23] andMaui [15] do). Even for
those resource managers, only privileged users or specially designated user groups are
allowed to perform processor reservations, in order to prevent users from abusing the
reservation mechanism. In the absence of, or in the presenceof only limited processor-
reservation mechanisms, good alternatives are required inorder to achieve co-allocation.

1.2 The Challenge of Deploying Grid Applications

While grid infrastructures have become almost common-place, the automation of grid re-
source management is far from complete because of the complexity of the applications
that occur in practice [55]. These applications bear different characteristics and pose
unique requirements to GRMSs. In addition to the application characteristics, the charac-
teristics of the grid infrastructure itself complicate thedeployment of jobs by grid resource
management tools. In Sections 1.2.1 and 1.2.2 we discuss characteristics of grid applica-
tions and of grid infrastructures that make the deployment of jobs in grids a challenge.

1.2.1 Application characteristics

Over the last decade the number of grid applications has increased considerably, causing
a new challenge in automating their deployment on grids. This challenge stems from the
special characteristics of the applications that pose unique requirements to job deployment



5

mechanisms. The following application characteristics complicate the automation of the
deployment of jobs on grids:

1. The application structure in terms of the number of job components and their re-
source requirements.The application structure determines the number of compo-
nents and the resource requirements of each of the components. For example,rigid
jobsrequire fixed numbers of components and of processors, whichdo not change
during the execution of the application. On the other hand, amalleable jobrequires
a flexible numbers of components and of processors, which maychange during the
execution of the application. Moreover, a parallel application, whether it is rigid or
malleable, may require more processors than are available at any site, and a simu-
lation may require processors for computation in one site and visualization equip-
ment in another site. To run such applications, a deploymentmechanism has to be
co-allocation-enabled, and in case of malleable jobs, it also has to be malleable-
enabled.

2. The communication structure within and between job components. The commu-
nication structure within and between the components of a job is vital to the suc-
cessful execution of grid applications. It requires a job deployment mechanism
to assist in the setup of the communication between the job components, and to
link the application to the correct communication library.For example, the com-
munication structure of an application may require a centralized server to set up
communication between its components and coordinate its execution. For instance,
Ibis applications need a nameserver as described in Section2.1.8. The deployment
mechanism for Ibis jobs is required to start this centralized server before launching
jobs for execution, and to make jobs belonging to the same computation aware of
the same centralized server.

3. The need for a particular runtime system.Each grid application type has its own
runtime system that has to be present during the execution ofthe application, pos-
sibly in multiple sites. A deployment mechanism is requiredto ensure that the
correct runtime system is present at the sites in question before launching jobs for
execution.

1.2.2 Grid infrastructure characteristics

The grid infrastructure forms the foundation for the successful deployment of applica-
tions on grids. This infrastructure, which spans multiple organizations, consists of differ-
ent hardware and software providing capabilities and resources for the specific problems
being addressed by each organization. The following grid infrastructure characteristics,
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some of which in fact were also at the basis of the challenges in co-allocation as stated in
Section 1.1.1, complicate the automation of the deploymentof jobs on grids:

1. The grid infrastructure is highly heterogeneous in terms ofthe grid software in use
in different sites.The grid software includes grid middleware software such asthe
Globus Toolkit [22, 63], UNICORE [92], DIET [4] and gLite [12], and LRMSs
such as openPBS [24] and PBSPro [23], SGE [26], and Condor [95]. Different
grid software have different properties and capabilities that complicate the deploy-
ment of jobs. For example, not all LRMSs support automatic advance processor
reservations [78]. Therefore, jobs that are spawned acrossmultiple domains often
require users to coordinate resource availability by hand.A job deployment mech-
anism is required to cope with the heterogeneity of the grid and to simplify the job
submission procedure for users.

2. Grid resources are highly dynamic.A deployment mechanism is required to have
good fault tolerance mechanisms to ensure that jobs are executed successfully de-
spite the dynamicity of the grid.

3. Grid resources have to be configured for each application, inparticular with respect
to the network and security. Firewalls, hidden/private IP addresses and Network
Address Translation (NAT) hamper connectivity, while authentication and encryp-
tion mechanisms in different grid domains are usually difficult to integrate. Again,
a deployment mechanism is required to hide the configurationissues of the grid
from the users without tampering with the authentication mechanisms and network
configurations.

1.3 An Approach to Resource Management and Job De-
ployment on Grids

In order to address the challenges of co-allocation and of grid application deployment,
we have designed, implemented, and deployed in the DAS system (see Section 2.1.1)
a GRMS calledKOALA , which features co-allocation of processors and files; the name
KOALA was solely chosen for its similarity in sound with the word co-allocation. In
addition, in order to assess the operation and some performance aspects ofKOALA , we
have performed experiments withKOALA in the DAS.

To meet the challenge of allocating resources in multiple sites,KOALA has built-in
so-called placement policies for allocating processors inmultiple clusters to single jobs.
Currently, there are two such policies: the Close-to-Files(CF) policy and the Worst Fit
(WF) policy. New placement policies can be added without affecting the overall operation
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of KOALA . CF addresses the problem of long delays when starting a job because of long
input file transfers by selecting the execution sites of its components close to sites where
their input files are located. On the other hand, the WF policysimply places job compo-
nents on the sites with the largest numbers of idle processors. In doing so, WF balances
the numbers of idle processors across the grid. The placement policies extensively use
theKOALA Information Service to locate and monitor resource availability. Users have a
choice of which placement policy to use for every job they submit separately.

Due to potentially long input file transfer times, the actualstart of a job’s execution
(its job start time) may be much later than the time when the job was allocated processors
(its job placement time). This means that when the allocatedprocessors are claimed
immediately at the job placement time, much processor time is wasted. In order to prevent
this and meet the challenge of guaranteeing the simultaneous availability of processors at
the job start time in the absence of support for advance processor reservation by LRMSs,
KOALA implements the Incremental Claiming Policy (ICP). If needed because some of the
allocated processors have been taken by other jobs, in an effort not to delay the job start
time, ICP tries to make processors available for job components by finding processors
at other sites or, if permitted, by forcing processor availability through preemption of
running jobs.

To address the challenge of grid application deployment,KOALA introduces the con-
cept of runners, which are job submission and monitoring tools. Different runners can
be written to support the unique characteristics of different application types by using
the KOALA runners framework. The runners framework withinKOALA is modular and
allows new runners for new application types to be added without affecting the current
operation of the existing runners. For example, new runnershave been written specifi-
cally for Higher-Order Component applications [55] and formalleable applications [42]
by novices toKOALA with minimal effort. The runners framework has fault tolerance
mechanisms that deal with the reliability issues of the gridinfrastructure. The part of
KOALA that performs scheduling of jobs and the runners framework work together to
meet the challenge of managing sets of highly dynamic grid resources.

An important aspect of any component of grid middleware, andeven more so of a
scheduler, is its performance. Therefore, in order to assess the reliable operation and some
of the performance properties ofKOALA , we have performed experiments in which we
submit workloads consisting of parallel jobs that require processor and data co-allocation
to the DAS throughKOALA . For instance, we submit workloads imposing different uti-
lizations on the DAS to assess to what utilization we can drive the DAS when employ-
ing co-allocation, to assess the response times of co-allocated jobs distinguished by their
numbers of job components and job-component sizes, and to assess the overhead incurred
when starting jobs throughKOALA . KOALA has a number of parameters that can be tuned
in a particular installation. This thesis does not include afull parameter study of the
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operation ofKOALA , nor does it present a full performance analysis of co-allocation in
multicluster systems.

1.4 Contributions of this Thesis

The major contributions of this thesis are the following:

1. The design, the implementation, and the deployment of a reliable co-allocating grid
scheduler calledKOALA , and the demonstration of its correct operation in the DAS
testbed.

2. The design and the analysis of two co-allocation policies, the Close-to-Files policy,
which takes into account the locations of input files in addition to the availability of
processors in the clusters, and the Worst-Fit policy, whichbalances jobs across the
clusters.

3. The design and the analysis of a processor claiming policycalled the Incremental
Claiming Policy as an alternative to advance processor reservation when such a
mechanism is absent in the LRMSs for achieving the simultaneous availability of
allocated processors.

4. The design, the implementation, and the deployment of therunners framework and
of three runners for deploying different grid application types, and the demonstra-
tion of their correct operation in the DAS testbed.

1.5 Thesis Outline

The material in this thesis is structured as follows:

• In Chapter 2 we give an overview of resource management in grids that is necessary
for reading this thesis. We present our model for resource management in grids, and
we discuss grid applications. In addition, we review related work.

• In Chapter 3 we present the design of ourKOALA grid resource management sys-
tem. The architecture ofKOALA can be divided into two major layers, namely, the
KOALA scheduler and the runners, which are job submission and monitoring tools.

• In Chapter 4 theKOALA job policies that are used to schedule jobs and to claim
processors are presented.
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• In Chapter 5 we present the evaluation of theKOALA scheduler, which includes an
evaluation of the job policies and of the scheduler in general, both on a stable and
an unstable testbed.

• In Chapter 6 we evaluate theKOALA runners. The experiments presented in this
chapter evaluate both the functionality as well as the performance of the runners.

• Chapter 7 presents our conclusions and some open research questions.
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Chapter 2

Resource Management in Grids

Grids have a goal of offering transparent access to large collections of resources for ap-
plications demanding many processors and access to huge data sets. To realize this goal,
resource management in grids is crucial. We begin this chapter in Section 2.1 by giving
the background on grids required to read our work. In Section2.2, we present the model
for resource management in grids that is used in this thesis.Grid applications, includ-
ing the sample grid applications that are used in our experiments in later chapters, are
introduced in Section 2.3. Finally, in Section 2.4 we reviewrelated work.

2.1 Background

This section presents the background that is required to read this thesis. This background
includes the detailed description of a multicluster systemin Section 2.1.1 called the Dis-
tributed ASCI Supercomputer (DAS), which was an important motivation for our work.
We then describe the software infrastructure of the grid, namely, local resource manage-
ment systems, grid middleware, grid resource management systems, and grid program-
ming models in Sections 2.1.2–2.1.8.

2.1.1 The DAS system

The Distributed ASCI Supercomputer (DAS) [21] is an experimental computer testbed
in the Netherlands that is exclusively used for research on parallel, distributed, and grid
computing. This research includes work on the efficient execution of parallel applica-
tions in wide-area systems [103, 104], on communication libraries optimized for wide-
area use [17, 98], on programming environments [98, 99], andon resource management



2. Resource Management in Grids 12

Figure 2.1: The five clusters of the Distributed ASCI Supercomputer 3.

and scheduling [34, 39, 40]. The system was built for the Advanced School for Comput-
ing and Imaging (ASCI), a Dutch research school in which several universities participate.
The DAS is now entering its third generation, after the first and second generations have
proven to be successes.

The first generation DAS system (DAS-1) [35,61] consisted offour clusters of identi-
cal Pentium Pro processors, one cluster with 128 processorsand three with 24 processors.
The clusters were interconnected by ATM links for wide-areacommunications, while for
local-area communications within the clusters, Myrinet LANs were used. On single DAS
clusters a local scheduler calledprun was used that allowed users to request a number of
processors bounded by the clusters’ sizes.

The first generation was replaced by the second generation ofthe DAS system (DAS-
2) at the end of 2001. The DAS-2 consisted of 200 nodes, organized into five dual-
CPU clusters as shown in Table 2.1 of identical 1GHZ Intel Pentium III processors. For
local communication within the single clusters, low-latency Myrinet-2000 LAN was used.
The clusters were interconnected by SURFnet5, the Dutch education and research gigabit
backbone. Until mid 2005, all the DAS-2 clusters used openPBS [24] as the local resource
manager. However, due to reliability problems after the latest upgrade of openPBS, the
decision was made to change the local resource manager of theclusters to the Sun N1
Grid Engine (SGE) [26].

The DAS system is now in its third generation (DAS-3), which was installed late
2006 (see Figure 2.1). In some of the universities where the DAS clusters are hosted,
the decision was made to still maintain the DAS-2 clusters, thus making the DAS system
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Table 2.1: The distribution of the nodes over the DAS-2 clusters.

Cluster Location Number of Nodes
Vrije University 72

Leiden University 32
University of Amsterdam 32

Delft University 32
Utrecht University 32

more heterogeneous. The DAS-3 consists of 272 nodes organized into five dual-CPU
clusters as shown in Table 2.2 with a mixture of single-core and dual-core AMD Opteron
processors. All the DAS-3 clusters have 1 Gb/s and 10 Gb/s Ethernet, as well as high
speed Myri-10G [18] interconnect, except the cluster in Delft, which has only Ethernet
interconnects. For wide-area communications, initially 1Gb/s connectivity provided by
SURFnet6 was used, but at the time of writing this thesis, there is an ongoing collaborative
effort between the StarPlane project [25] and SURFnet to enable DAS-3 to use dedicated
10Gb/s lightpaths between clusters.

Table 2.2: The distribution of the nodes over the DAS-3 clusters.

Cluster Location Number of Nodes
Vrije University 85

Leiden University 32
University of Amsterdam 41

Delft University 68
The MultimediaN Consortium 46

In the DAS systems, each of the DAS cluster is an autonomous system with its own file
system. Therefore, in principle files (including executables) have to be moved explicitly
between users’ working spaces in different clusters. Simple usage rules are enforced in
the DAS. The most important of these are that any applicationcannot run for more than
15 minutes from 08:00 to 20:00, and that application execution must be performed on the
compute nodes. The DAS systems can be seen as a fast prototyping computational grid
environment, with its structure and usage policies designed to make grid research easier.

Other systems such as Grid’5000 [7] and the Open Science Grid(OSG) [62] are sim-
ilar to the DAS. The Grid’5000 project aims at building a highly reconfigurable, control-
lable and monitorable experimental grid platform distributed across nine geographically
distributed sites in France and is intended to feature a total of 5000 CPUs [7, 44]. There
is an ongoing effort of joining the DAS-3 and Grid’5000 [43].

OSG, previously known as Grid3 [62], is a multi-virtual organization environment that
sustains production level services required by various physics experiments. The infras-
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tructure comprises more than 50 sites and 4500 CPUs, and serves over 1300 simultaneous
jobs and more than 2 TB/day aggregate data traffic [56].

2.1.2 Local resource management systems

Single clusters, whether they are part of a grid or not, are managed by Local Resource
Management Systems (LRMSs), which provide an interface foruser-submitted jobs to
be allocated resources and to be executed on the cluster. LRMSs support the following
four main functionalities: resource management, job queueing, job scheduling, and job
execution [107]. Jobs submitted to a cluster are initially placed into queues until there
are available resources to execute the jobs. After that, theLRMS dispatches the jobs
to the assigned nodes and manages the job execution before returning the results to the
users [107]. Most LRMSs such as Condor [3, 95], the Portable Batch System (PBS)
[24], and the Sun Grid Engine (SGE) [26] focus on maximizing processor throughput and
utilization, and minimizing the average wait time and response time of the jobs.

The LRMSs are typically designed for single administrativedomains, and therefore,
employ a limited set of policies that tend to favor local jobs. This means that LRMSs do
not provide a complete solution to grid resource managementproblems, although their re-
source management solutions are an important part of a global grid resource management
architecture.

2.1.3 Grid middleware

The grid middleware sits between grid applications and the physical resources and there-
fore, it hides the underlying infrastructure from the usersand from the vast majority of
programmers. In doing so, the middleware offers transparent access to a wide variety of
distributed resources to users and allows the development of collaborative efforts between
organizations.

Grid middleware such as the Globus Toolkit [22, 63], Legion [67], UNICORE [92],
DIET [4, 46] and gLite [12] have contributed a lot to the growth of grids. Of these grid
middlewares, the Globus Toolkit, which is also used in the DAS, is the best known. Sec-
tion 2.1.4 presents key features of the Globus Toolkit and inSection 2.1.5 we discuss Grid
Resource Management Systems (GRMSs), which are built on topof the grid middlewares.

2.1.4 The Globus Toolkit

The Globus Toolkit comprises a set of modules, each of which defines an interface that
higher-level services use to invoke that module’s mechanisms. The Globus Toolkit uses
appropriate low-level operations to implement these mechanisms in different environ-
ments [63]. The modules provided with the Globus Toolkit arefor resource location and
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allocation, communications, unified resource informationservice, authentication, process
creation, and data access. We will discuss two of these modules, those for resource loca-
tion and allocation and for authentication, which are important to our work.

The resource location and allocation module provides a mechanism for expressing
application resource requirements in the Globus Resource Specification Language (RSL)
[22], and for scheduling resources once they have been located through the Globus Re-
source Allocation Manager (GRAM) [22]. We should point out that the most common
usage of GRAM is not scheduling resources by itself, but rather mapping the resource
specification onto a request of some LRMS such as PBS, SGE, Condor, Fork, or LSF,
which in turn does the scheduling on a remote site. This allows GRAM to inter-operate
with autonomous heterogenous sites that use different LRMSs. As a result of interfac-
ing with different LRMSs, GRAM provides an ideal interface between GRMSs and au-
tonomous remote sites (see Figure 2.2). It should be noted here that the process of locating
resources is left to GRMSs to accomplish, which is the subject of the next section.

The authentication provided by the Globus Security Infrastructure (GSI) [22] is the
core module of the Globus Toolkit, which provides basic authentication mechanisms that
can be used to validate the identity of both users and resources. A central concept in GSI
authentication is the certificate by which every user or service on grids is identified. The
grid certificate contains vital information necessary for identifying and authenticating the
user or service. The GSI supports delegation of credentialsfor computations that involve
multiple resources and/or sites. This allows a user to sign-on only once (single sign-on)
to use grid resources in multiple sites.

Figure 2.2: The GRAM providing an interface to different local resource management
systems.
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2.1.5 Grid resource management systems

Grids need high-level resource management systems built ontop of grid middlewares that
can schedule (and co-allocate) jobs across multiple sites.The grid resource management
system provides an interface to users for submitting grid jobs, for scheduling jobs across
the grid, for launching jobs for execution, for error handling, and for recovery during the
execution of the job. In addition to scheduling jobs, a well-designed GRMS can provide
an environment to perform application level scheduling.

To schedule jobs across the grid, good scheduling algorithms are required to identify
sufficient sites for the jobs based on the information obtained from the grid resource man-
ager’s information provider. The information provider needs to be reliable and must have
dynamic and static information about the availability of grid resources. With some grid re-
source managers, the estimated execution time of a computation as specified by a user, and
cost constraints in addition to the information provided bytheir information providers, are
used when scheduling jobs [27]. For grid resource managers managing resources span-
ning multiple organizations, managing usage service levelagreements [50,56,57] may be
required as well.

A GRMS built on top of different grid middlewares can be thought of as defining a
metacomputing virtual machine. The virtual machine simplifies application development
and enhances portability by allowing programmers to think of geographically distributed,
heterogeneous collections of resources as unified entities.

2.1.6 Grid programming models

Grid programming models hide the heterogeneity of the grid and of the resources to grid
application programmers. Additionally, an application written with a grid programming
model is essentially shielded from future, potentially disruptive changes in the grid mid-
dleware. In this thesis, the term “programming model” is used to include both program-
ming languages and libraries with APIs that encode abstractions of commonly used grid
operations [71]. Such grid operations include wide-area communication, error handling,
adaptivity to resource availability, checkpointing, job migration, distributed event models
for interactive applications, and collaborative interfaces. Grid programming models are
relevant to grid resource management, as GRMSs have to be able to schedule, launch and
monitor applications written using these models. We call grid applications that are written
from scratch with execution on a grid in mind using a certain grid programming model
native grid applications. Examples of grid programming models includeIbis [97, 98],
MPICH-G2 [17], the Grid Application Toolkit (GAT) [1], and gridRPC [89].

Grid programming models can also be used to grid-enable legacy applications. Grid-
enabling these applications is achieved by interfacing theapplication codes with a suitable
grid programming model, which can be thought of as being partof the grid middleware.
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We call grid-enabled legacy applicationslegacy grid applications.

The presence of grid programming models has resulted in the creation of different
grid applications, posing the new challenge of automating their deployment on different
sites by grid resource management tools. This is because theprogramming model dictates
how these applications should be deployed, first to be able torun them successfully, and
secondly, to optimally utilize grid resources and therefore, to improve their performance.

2.1.7 The grid-enabled Message Passing Interface

The Message Passing Interface (MPI) is a widely known standard that defines a two-sided
message passing (matched sends and receives) library that is used for parallel applications
and is well suited for grids. Many implementations of MPI exist, amongst which MPICH-
G2 [17] is the most prominent for grid computing. It allows the coupling of multiple sites
to run a single MPI application by automatically handling both inter-site and intra-site
messaging. MPICH-G2 requires Globus services to be available on all participating sites,
and therefore, the co-allocation of MPICH-G2 jobs is limited to clusters with the Globus
middleware installed.

2.1.8 The Ibis grid programming system

Ibis has been developed at the Vrije University in Amsterdamand has as its goal the design
and implemention of an efficient and flexible Java-based programming environment and
runtime systems for grid computing [97,98]. Currently, Ibis offers four grid programming
models: Remote Method Invocation (RMI) [74], which is Java’s object-oriented equiva-
lent of RPC, Group Method Invocation (GMI) [74, 75], which extends RMI with group
communication, Replicated Method Invocation (RepMI) [74], which extends Java with
efficient replicated objects, and Satin [96], which provides the divide-and-conquer and
replicated-worker programming models. Key to the design ofIbis is to achieve a system
that obtains high communication performance while still adhering to Java’s ”write once,
run anywhere” model. Ibis is designed to use any standard JVMincluding standard com-
munication protocols, e.g., TCP/IP or UDP, as provided by the JVM. However, if a native
optimizing compiler (e.g., Manta [97]) for a target machineand/or optimized low-level
protocols for a high-speed interconnect, like GM or MPI, is/are available, then Ibis can
use them instead. To run an Ibis job, a central component called the Ibis nameserver is
required to coordinate the setup of communication ports between the components of a job
running in multiple sites. The presence of the nameserver allows Ibis to support malleable
jobs in which nodes participating in a parallel computationcan join and leave the run at
any time. Also, the nameserver can be used to route messages between clusters if a direct
connection is not possible. A single instance of the Ibis nameserver can be instantiated
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for each job or can be shared among several Ibis jobs. While starting the nameserver for
each job is expensive in terms of resource usage, sharing thesame Ibis nameserver can be
a bottleneck.

2.2 A Model for Resource Management in Grids

This section presents the model for resource management in grids that is used in this
thesis. Section 2.2.1 discusses the system model, which is inspired by the DAS system.
The job model, including the structure of the job requests and job priorities are described
in Sections 2.2.2 and 2.2.3. This section also presents the file distribution model that we
use in Section 2.2.2.

2.2.1 The system model

In the system model, we assume a multicluster environment like the DAS with sites that
each contain computational resources (processors), a headnode, and a local resource
manager. In our model, head nodes are normally used as file servers and have huge disk
space. The storage system providing the disk space can be directly attached to the local
head nodes or to a remote storage system, and accessed via thehead nodes through a
global/network file system. The sites may combine their resources to be scheduled by a
grid schedulerfor executing jobs in a grid. The sites where the components (see Section
2.2.2) of a job run are called itsexecution sites, and the site(s) where its input file(s) reside
are itsfile sites. We assume a grid scheduler through which all grid job submissions are
made. The sites where the submissions are made from are called thesubmission sites. A
submission site can be any site in a grid, or a desktop computer. The grid scheduler allows
us to perform resource brokering and scheduling across its authorizeddomainin the grid
about which it has global knowledge of the state of the nodes and network.

2.2.2 The job model

In this thesis, a job consists of one or more job components which collectively perform
a useful task for a user. The job components contain information such as their numbers
and speeds of processors, the sizes and locations of their input files, their memory re-
quirements, and the required runtime libraries necessary for scheduling and executing an
application across different sites in a grid. Due to the nature of our research, only num-
bers of processors, locations and sizes of input files, and network bandwidth are used
when scheduling job components.
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Figure 2.3: TheKOALA job request types.

Users need to construct job requests containing a detailed description of the job com-
ponents as described above. A job request may or may not specify its execution sites and
the numbers and sizes (in terms of the number of processors) of its job components. Based
on this, we consider four cases for the structure of the job requests, which are depicted in
Figure 2.3 and discussed below:

1. Fixed request: The job request specifies the numbers of processors it needsin all
clusters from which processors must be allocated for its components. With fixed
requests, the user decides where the components of the job will run. Fixed requests
are useful for jobs that require resources only present at specific sites, such as vi-
sualization equipment and software licenses. In general, fixed requests give users
the ability to run jobs in more familiar clusters where they know beforehand their
performance.

2. Non-fixed request: The job request only specifies the numbers of processors re-
quired by its components, allowing the scheduler to choose the execution sites. The
scheduler can either place the job components on the same or on different sites
depending on the availability of processors. Any application type that can run in
any cluster should be amenable for submission with a non-fixed job request. For
example, the presence of the nameserver in Ibis allows Ibis jobs to run anywhere.
MPICH-G2 jobs can also run in any Globus-middleware clusters. Other applica-
tion types that are computation-intensive like Bags of Tasks (BoTs) and Parameter
Sweep Applications (PSAs) are also very well suited to be submitted with non-fixed
requests. BoTs and PSAs are discussed in Section 2.3.1.
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3. Semi-fixed request: The job request is a combination of a fixed and a non-fixed
request in that the execution sites for some job components are specified and for
others they are not. An example of the use of semi-fixed requests is constituted
by applications types that perform simulations in grids andvisualization in desktop
computers. These application types may require the clusters that interface with the
desktop machines to be fixed and the rest that do the computation to be non-fixed.

4. Flexible request: The job request only specifies the total number of processors it
requires. It is left to the scheduler to split up the job and todecide on the number of
components, the number of processors of each component, andthe execution sites
for the components. With flexible job requests a restrictionmay be imposed on
the number and sizes of the components. For instance, a lowerbound or an upper
bound may be imposed on the number of components and their sizes. Flexible job
requests are not supported by all applications, because some applications such as the
Poisson application (see Section 2.3.2) dictate specific patterns of being split up into
components. In general, flexible requests are useful for applications that require a
large number of processors but do not require a specific pattern of splitting, e.g.,
BoTs and PSAs.

In the above mentioned job request types, the number of processors required by the
job is set by the user and cannot change during the job’s execution, i.e., we assume rigid
jobs. In all cases, the scheduler has the task of moving the executables as well as the
input files to the execution sites before the job starts, and to start the job components
simultaneously if required. This is because no matter what the application, it generally
requires input data and will produce output data. One of the things we need to consider
here is the management of the input data and the gathering of the output data.

In our model, we deal with two models of data distribution to the job components. In
the first model, the job components work on different chunks of the same data file, which
has been partitioned as requested by the components. This isuseful when the data file is
large and the job components have been placed on geographically distributed sites. Note
this model includes the model in which all job components have different input files that
are all stored on the same file sites. In the second model, which is useful for small input
files, the input to each of the job components is the whole datafile. In both models, data
need to be transferred to the execution sites before the job execution starts such that the
job can access the data locally. We assume that the data files are read-only, and therefore,
that they can be shared by other jobs. This is a reasonable assumption as discussed in
several Data Grid scenarios [80].

The input data files have unique logical names and are stored and possibly replicated
at different file sites. A logical name of a file is a unique identifier for the file. We assume
that there is a replica manager that maps the logical file names specified by jobs onto their
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physical file names on a storage system. Figure 2.4 shows an example of a user requesting
a physical name of a file. The replica manager replies with themapping of the file to the
physical location(s) on the storage systems.

Figure 2.4: Example of the mappings of a logical file name to its physical locations.

2.2.3 Job priorities

In real systems, the need may arise to give some jobs preferential treatment over others.
For instance, some jobs may have (soft) deadlines associated, or may need interaction
from the user. Therefore, we have introduced the priority ofa job, which is used to de-
termine its importance relative to other jobs in the system.Currently, we distinguish four
priority levels, which aresuper-high, high, low andsuper-low, and which are assigned to
the jobs by our scheduler. Of course, we can have any number ofpriority levels of jobs,
but we have limited the number to only four based on the types of jobs discussed below,
which are common in grids:

1. Interactive jobs. These are jobs that run interactively and require quick responses.
To avoid delaying these jobs, the super-high priority levelis assigned to them.

2. Occasional jobs. These are batch jobs that are submitted specifically for special
occasions, such as demos, tight deadlines, etc. We give these jobs a high prior-
ity level, and leave the decision of which jobs belong to thisgroup to the system
administrator.

3. Batch jobs. These are normal batch jobs that run without any special requirements.
We assign these jobs the low priority level.
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4. Cycle-scavenging jobs. These jobs scavenge machines foravailable CPU cycle.
Cycle-scavenging jobs can be submitted to both desktop machines and cluster
nodes. These jobs are started when CPUs are idle and immediately stopped if the
CPUs are needed again by jobs of higher priority levels. In our model, we assign to
cycle-scavenging jobs the super-low priority level.

The four priority levels might also be assigned based on a system policy. Examples
of these policies include assigning priority levels to jobsbased on their estimated job
runtimes, with longer jobs having lower priorities. These jobs of different groups of
users from different domains or projects can also be assigned priorities based on their
importance.

The priority level plays a part during the placement of a job,i.e., when finding suitable
pairs of execution sites and file sites for the job components(see Section 4.2.1), and when
claiming processors for a job’s components (see Section 4.4). During placement, jobs
are placed according to their priority levels. Moreover, during claiming processors for
jobs, in the absence of processor reservation, it is possible that not enough processors
are available anymore. In this scenario, a job of a higher priority is allowed to preempt
lower-priority jobs until enough idle processors for it to execute are freed.

2.3 Grid Applications

The presence of grid programming models has resulted in an abundance of different grid
application types with different and unique characteristics. In Section 2.3.1 we give an
overview of different application types that exist, and in Section 2.3.2 we present the
sample grid applications that we use in our experiments in this thesis.

2.3.1 Grid application types

In computational grids, different application types with different characteristics may ex-
ist. Important grid application types include parallel applications, sequential applications,
Bags-of-Tasks (BoTs) [72, 102, 105], Parameter Sweep Applications (PSAs) [47, 48, 85],
workflows [54, 70, 108], data-intensive applications, and application types written with
special grid programming models like Ibis. BoTs, PSAs and workflows are formed by
coupling together multiple grid applications based on somerules. A BoT application
is composed of independent tasks which can be scheduled and executed in any order
without needing inter-task communication. There are many important BoT applications
such as datamining, massive searches, Monte Carlo simulations, fractal calculations (such
as Mandelbrot), and image processing applications (such astomographic reconstruc-
tion) [105]. PSAs are specialized BoTs with tasks that each execute the same program but
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with different parameters. Workflows are concerned with theautomation of procedures
whereby files and data are passed between participating tasks according to a set of rules
to achieve an overall goal [108].

2.3.2 Sample grid applications

In this thesis, we have selected the following grid-enabledapplications to be used when
assessing the mechanisms and policies of ourKOALA grid scheduler. Below, we present
three MPI applications followed by Ibis applications. Moreinformation about these ap-
plications including their runtimes will be presented in Section 6.2.1.

The Poisson application

This application implements a parallel iterative algorithm to find a discrete approxima-
tion to the solution of the two-dimensional Poisson equation (a second-order differen-
tial equation governing steady-state heat flow in a two-dimensional domain) on the unit
square. For discretization, a uniform grid of points in the unit square with a constant step
in both directions is considered. The application uses a red-black Gauss-Seidel scheme,
for which the grid is split up into “black” and “red” points, with every red point having
only black neighbours and vice versa. In every iteration, each grid point has its value
updated as a function of its previous value and the values of its neighbours and all points
of one colour are visited first followed by the ones of the other colour. The application is
implemented in MPI where the domain of the problem is split upinto a two-dimensional
pattern of rectangles of equal size among the participatingprocessors. When executing
this application on multiple clusters, this pattern is split up into adjacent vertical strips of
equal width, with each cluster using an equal number of processors.

The Fiber Tracking application

The Fiber Tracking (FT) application uses the anisotropic diffusion of water molecules in
the human brain to visualize the white-matter tracts and theconnecting pathways between
brain structures. Combined with functional MRI, the information about white-matter
tracts reveals important information about neuro-cognitive networks and may improve
the understanding of the brain function. The FT works by starting at various points, and
tracks the white-matter fibers in the entire data domain. Thenumber of detected fibers
(and therefore the accuracy of the algorithm) grows with thenumber of starting points
considered. The execution time of this application dependson the number of starting
points, the algorithm, and the size of the data set, and can amount to many hours. There-
fore, in order to increase the throughput without decreasing the accuracy of the result, the
parallel version of this application is used [41], which hasbeen written with MPI. In our
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experiments, we use the version of this application compiled with MPICH-g2. The FT ap-
plication is a proprietary application, which is availableto us only in a binary format. As
a result, an analysis of its characteristics such as its communication pattern is impossible
to us.

The Lagrangian Particle Model application

The Lagrangian Particle Model (LPM) application has been developed and extensively
used by the Department of Applied Mathematical Analysis at Delft University of Tech-
nology. This application performs simulation of sediment transport in shallow waters
using a particle decomposition approach [14]. The model canalso be used to predict
through simulations the dispersion of pollutants in shallow waters. In the simulations, the
computation cost becomes high because a large number of particles is required. Fortu-
nately, particles behave independently from one another, thus allowing the application to
use parallel processing to reduce the runtime.

The simulation of sediment transport is done by numeric integration of a set of
stochastic differential equations (SDEs). The displacement of the position of the parti-
cles is done by a deterministic part and the random term of theSDEs. This technique
of following the track of the sediment particles along theirpaths in time is known as the
Lagrangian particle approach. In our experiments with thisapplication, realistic data of
the Dutch coastal waters, notably in the Wadden Sea, were used for the prediction of both
sediment transport and pollutant dispersion.

The LPM application is an MPI application, which has been compiled with MPICH-
G2 and which can therefore use co-allocation. Compared withthe other applications
presented in this section, the LPM application is communication intensive with many
“many-to-many” communication patterns.

The Ibis applications

We select three Ibis applications that use either the Satin or the RMI programming model;
these programming models have already been described in Section 2.1.8. The Satin ap-
plications that we use are N-Queens, which solves the combinatorially hard problem of
placing N queens on a chess board such that no queen attacks another, and Raytracer,
which computes a picture using an abstract description of a scene. N-Queens uses recur-
sive search to find a solution. On the other hand, Raytracer uses parallel processing to
recursively divide the picture up to the pixel level. Next, the correct color of that pixel is
calculated and the image is reassembled. The RMI application that we use is red/black
Successive Over Relaxation (SOR), which is an iterative method for solving discretized
Laplace equations. This application distributes a matrix row-wise among the processors.
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Each processor exchanges one row of the matrix with each of its neighbours at the begin-
ning of each iteration.

2.4 Related Work

In this section we review the research on resource management and job deployment
frameworks in grids that is related to our work. In Section 2.4.1 we consider papers that
have studied co-allocation with simulations and co-allocation with advance reservations.
Since we deal also with data in our scheduling policies, we also summarize some of the
work on data scheduling in Section 2.4.2. Finally, some existing grid resource manage-
ment systems and grid job deployment frameworks are discussed in Section 2.4.3 and in
Section 2.4.4, respectively.

2.4.1 Study of co-allocation with simulations

Recent research in computational grids has studied the co-allocation problem in grids
with a focus on processor co-allocation only (without considering data). The focus of
research has also been on studied different approaches of guaranteeing the simultaneous
availability of resources in multiple sites at job start times. In this section we review these
works that address the co-allocation problem by means of simulation. These simulation
studies are compared to our experiments in Section 5.3, after we have presented the results
of our experiments.

Bucur et al. [34,38,40] study processor co-allocation in multiclusters with space shar-
ing of rigid jobs for a wide range of such parameters as the number and sizes of the
job components, the number of clusters, the service-time distribution, and the number
of queues in the system. The main results are that co-allocation is beneficial as long as
the number and sizes of job components, and the slowdown of applications due to the
wide-area communication, are limited.

The impact of wide-area communication on the efficiency of co-allocation is also
studied with simulations by Ernemann et al. [59, 60]. There,jobs only specify a total
number of processors, and are split up across the clusters. Co-allocation is compared to
keeping jobs local and to only sharing load among the clusters, assuming that all jobs
fit in a single cluster. One of the most important findings is that when the application
slowdown does not exceed 1.25, it pays to use co-allocation.

An Availability Check Technique (ACT), which is designed tobe a complementary
technique to most resource co-allocation protocols, is introduced by Azougagh et al. [32].
In this technique, each job gets informed of the state changes of the requested resources
until they become available. Once the resources are available, a job applies the selected
resource co-allocation protocol to acquire the resources.In this paper, two such protocols,



2. Resource Management in Grids 26

All-or-Nothing (AONP) and Order-based Deadlock Prevention (ODP2), are used with the
ACT. In AONP, a resource co-allocator releases all the resources already allocated if the
allocation of at least one of the required resources fails. ODP2, which is proposed to
prevent deadlock and to reduce the degree of starvation of resources, requires each job
to secure its resources one by one according to a given globalorder. This means that the
distinct resources need to be globally ordered. The resultsof the simulations show the
benefit when ACT is used with the two protocols.

Röblitz et al. [86,87] present an algorithm for reserving compute resources that allows
users to define an optimization policy if multiple candidates match the specified require-
ments. An optimization policy based on a list of selection criteria, such as end time and
cost, ordered by decreasing importance. For the reservation, users can specify the earli-
est start time, the latest end time, the duration, and the number of processors. To allow
elasticity in the processor type, a duration is defined for a specific number of reference
processors. The algorithm adjusts the requested duration to the actual processor types and
numbers by scaling it according to the speedup, which is defined using speedup models or
using a database containing reference values. This algorithm supports so-called fuzziness
in the duration, the start time, the number of processors, and the site to be chosen, which
leads to a larger solution space. This work is presented as a building block for future work
that is to provide co-reservations, i.e., the reservationsof multiple independent resources.

Smith et al. [90] study a reservation mechanism for restartable and non-restartable ap-
plications through simulations. In their work, reservation for an application is made by a
scheduler which first simulates the scheduling of applications in the system and produces
a timeline of when the processors will be used in the future. This timeline is then used to
decide when a reservation can be made. The runtime information required for this mecha-
nism when scheduling applications can be obtained directlyfrom the users, from historical
information of the runs of the application, or by running a benchmark application. This
mechanism is simple and straightforward, but it depends on the correct predictions of the
runtimes of the applications; obtaining these may result ina high scheduling overhead,
and they may still be inaccurate.

Azzedin et al. [33] propose the scheme Synchronous Queuing (SQ) for co-allocation
that does not require advance reservations. This scheme ensures that the subtasks of a job
remain synchronized by minimizing the co-allocation skew,which is the time difference
between the fastest running and the slowest running substasks (job components) of an
application. Despite a similar aim withKOALA of achieving co-allocation without ad-
vance reservations, some differences can be observed. Firstly, this work is only aimed at
multimedia applications with long execution times and without sub-task communication.
Secondly, synchronization is maintained throughout the execution of the application. In
KOALA , only the component (subtask) start times are synchronized, and further synchro-
nization during the execution, if required, is left to the application.
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2.4.2 Data-aware scheduling

Data intensive applications are common in many disciplinesof science and engineering.
Such applications can benefit from a grid environment provided that good data-aware
scheduling policies that schedule both processors and dataare available. Thain et al. [94]
propose a system that links jobs and data by binding execution and storage sites into I/O
communities that reflect the physical reality. A job requesting particular data may be
moved to a community where the data are already staged, or data may be staged to the
community in which a job has already been placed. Other research on data access has
focused on the mechanisms for automating the transfer of andthe access to data in grids,
e.g., in Globus [22] and in Kangaroo [93], although there less emphasis is placed on the
importance of the timely arrival of data.

Ranganathan et al. [84] discuss the scheduling of sequential jobs that need a single
input file in grid environments with simulations of synthetic workloads. Every site has
a Local Scheduler, an External Scheduler (ES) that determines where to send locally
submitted jobs, and a Data Scheduler (DS) that asynchronously, i.e., independently of the
jobs being scheduled, replicates the most popular files stored locally. All combinations of
four ES and three DS algorithms are studied, and it turns out that sending jobs to the sites
where their input files are already present, and actively replicating popular files, performs
best.

Venugopal et al. [100] present a scheduling strategy which has been implemented
within the Gridbus broker [6]. For each job, their algorithmfirst selects the file site that
contains the file required for the job, and then selects a compute resource that has the
highest available bandwidth to that file site.

The works discussed in this section focus on ensuring that staging of the large input
files does not delay the start of the data-intensive applications that require them.KOALA

shares this focus but differs by its requirement of simultaneous staging files in multiple
locations when scheduling data-intensive applications.

2.4.3 Grid scheduling systems

Despite the existence of a number of grid schedulers, to the best of our knowledge, none
of them combine processor and data co-allocation in grids without relying on the support
of advance processor reservation in LRMSs. Czajkowski et al. [51] propose a layered co-
allocation architecture which addresses the challenges ofgrid environments by providing
basic co-allocation mechanisms for the dynamic managementof separately administered
and controlled resources. These mechanisms are implemented in a co-allocator called
the Dynamically Updated Resource Online Co-allocator (DUROC), which is part of the
Globus project [22]. DUROC implements co-allocation specifically for the grid-enabled
implementation of MPI applications. However, DUROC, whichis implemented as a set
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of libraries to be linked with application codes and job submission tools, does not provide
resource brokering or fault tolerance, and requires jobs tospecify exactly where their
components should run. As a consequence, DUROC only supports fixed job requests. In
our work, we use DUROC as a building block of the component ofKOALA that enables
the co-allocation of MPI applications.

The Globus Architecture for Reservation and Allocation (GARA) [64] enables the
construction of application-level co-reservation and co-allocation libraries that are used
to dynamically assemble a collection of resources for an application. In GARA, the prob-
lem of co-allocation is simplified by the use of advance reservations. Support for co-
allocation through the use of advance reservations is also included in the grid resource
broker presented by Elmroth et al. [58]. The limited supportof advance reservations
by LRMSs hinders the wide deployment of co-allocation mechanisms that do depend on
such reservations. WithKOALA , we address this limitation and we have implemented a
work-around mechanism for advance processor reservations.

Nimrod-G [27] is an economy-driven grid resource broker that supports soft-deadline
and budget-based scheduling of applications on the grid. Like KOALA , Nimrod-G per-
forms resource discovery, scheduling, dispatching jobs toremote grid nodes, starting and
managing job execution, and gathering results back to the submission site. However,
Nimrod-G uses user-defined deadline and budget constraintsto make and optimize its
scheduling decisions, and focuses only on parameter sweep applications.

The GridWay framework [68], which allows the execution of jobs in dynamic grid
environments, incorporates similar job scheduling steps as KOALA does, such as resource
discovery and selection, job submission, job monitoring and termination, but then at the
application level (Application Level Scheduling). An important drawback of GridWay
is that the number of applications that can be run with GridWay is limited because ap-
plication source code first needs to be instrumented to employ the framework. Another
drawback of this system is that its scheduling process is notaware of other jobs currently
being scheduled, rescheduled, or submitted, which has as a consequence, a degradation
of the throughput of the grid. WithKOALA , scheduling is performed at the system level
by a scheduler, that has knowledge of the entire system, which helps to maximize the
throughput of the system. TheKOALA job submitters (runners) can perform application
level scheduling of the resources allocated to them by theKOALA scheduler.

The Grid Application Development Software (GrADS) [52] enables co-allocation of
grid resources for parallel applications that may have significant inter-process commu-
nication. For a given application, during resource selection, GrADS first tries to reduce
the number of workstations to be considered according to their availabilities, computa-
tional and memory capacities, network bandwidth, and latency information. Then, the
scheduling solution that gives the minimum estimated execution time is chosen for the
application. Like GridWay, GrADS performs only application level scheduling and there-
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fore, shares the same limitations with respect toKOALA .

Condor with its DAG-manager is a system that is able to perform allocation of re-
sources in different administrative domains to a single job[66, 95]. Condor’s DAGMan
takes as input job descriptions in the form of Directed Acyclic Graphs (DAGs), and sched-
ules a task in such a graph when it is enabled (i.e., when all its precedence constraints have
been resolved). However, no simultaneous resource possession as part of a co-allocation
mechanism is implemented. Raman et al. [83] have extended the Condor class-ad match-
making mechanism for matching single jobs with single machines to “gangmatching” for
matching single jobs with sets of resources, which amounts to co-allocation. The running
example in their work is the inclusion of a software license in a match of a job and a
machine, and it was promised that the gangmatching mechanism will be extended to the
co-allocation of processors and data.

The Community Scheduler Framework (CSF) is an open-source implementation of
a number of grid services, which together perform the functions of a grid metasched-
uler [49, 106]. CSF is built on top of the Globus Toolkit 4.0 and therefore, it is limited to
grids that use the Globus middleware. CSF consists of a number of web services such as,
a Job Service, a Reservation Service, a Queuing Service, andResource Manager Services.
The Job Service provides the interface for end users to fullycontrol their jobs, while the
Reservation Service allows the end users to reserve resources for their jobs in advance.
Since CSF relies on Globus for middleware services and at thetime of writing of this
thesis GRAM did not support resource reservation, the reservation requests are simply
forwarded to the LRMS. Again, this reservation mechanism islimited to only clusters
with LRMSs that support advance processor reservations. The Queuing Service of CSF
represents a set of scheduling policies and associated job requests. Queues start to sched-
ule jobs periodically only in a FCFS manner. It should be noted thatKOALA is not tied to
one grid middleware, and that our modular design allowsKOALA to operate on top of any
grid middleware as will be discussed in Chapter 3.

2.4.4 Grid job deployment frameworks

In computational grids, different application types with different characteristics forming
complex workloads exist. The automation of submission mechanisms for these work-
loads to the grid infrastructure is far from complete, and job deployment still requires
specialized operation skills. Attempts have been made to solve this problem for different
application types. Euryale [101] is a system designed to runjobs over large grids. Euryale
uses Condor-G [66] to submit and monitor jobs, and it takes a late binding approach in
assigning jobs to sites. It also implements a simple fault tolerance mechanism by means
of job re-planning when a failure is discovered. Euryale canbe integrated in different
grid schedulers like ourKOALA , and be used as a job submission tool for running jobs
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with Condor-G. Condor-G’s DAGMan executes Euryale’s prescripts and postscripts. The
prescript of a job calls the external site collector such as theKOALA scheduler to identify
the site on which the job should run. The postscript transfers output files to the collection
area and inform the monitoring tools.

The grid programming environment called ASSIST [53] aims tooffer grid program-
mers a component-oriented programming model, in order to enforce the reuse of already
developed code. In the same work a grid execution agent that performs resource discovery,
resource selection and mapping, file staging, and launchingthe application for execution
is presented. Clearly, this execution agent combines the functionality of the scheduler
and the submission tool into one monolithic structure whichmakes its extension to more
application types difficult.

In the AppLeS project [48], each grid application is scheduled according to its own
performance model, which is provided by the user. The general strategy of AppLeS is
to take into account resource performance estimates to generate a plan for assigning file
transfers to network links and tasks (sequential jobs) to hosts. This functionality can be
achieved in theKOALA framework proposed in this thesis by means of a runner. An
example of this is a new runner called the MDrunner, which waswritten specifically for
Higher-Order Component (HOC) applications [55]. This runner first requests a number
of execution sites from theKOALA scheduler and then organizes the execution of a job’s
components on these sites based on resource performance.
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Chapter 3

The KOALA Grid Resource
Management System

In this chapter we describe the design of theKOALA grid resource management system
and our experiences with it. WithKOALA , we try to meet the challenges of resource
management and jobs deployment in grids presented in Chapter 1. KOALA is designed for
multicluster systems like the DAS that have in each cluster ahead node and a number of
compute nodes.KOALA started as a prototype named the Processor and Data Co-Allocator
(PDCA) [77–79], and has been in operation in the DAS-2 systemsince September 2005.
In May 2007,KOALA was also ported to the DAS-3 [11].

KOALA has a layered architecture that allows us to develop distinct layers indepen-
dently, which can then work together. TheKOALA layered architecture consists of four
layers: thescheduler, the runners framework, the runners, and thesubmission engines,
as shown in Figure 3.1. TheKOALA scheduler, which is the subject of Section 3.1, is re-
sponsible for scheduling jobs received from the runners. The scheduler is equipped with
placement policies that are used to place jobs on suitable execution sites, and a claiming
policy that is used to claim for jobs their assigned processors at their scheduled times.
The choice of which placement policy to use is initiated by the runners and therefore, it
can be selected by the users for every submitted job separately. The runners framework
presented in Section 3.2 hides the heterogeneity of the gridby providing to the runners a
runtime system and its corresponding set of APIs for commonly used job submission op-
erations. The runners are specializedKOALA components for submitting and monitoring
different applications types; they will be discussed in Section 3.3. The implementation
details of the runners framework and the runners are presented in Section 3.4. The last
layer consists of the submission engines, which are third-party tools that use the runners
to submit jobs toKOALA . These tools include workflow engines and workload generation
and submission tools. This layer is explained in Section 3.5. A layered approach bene-
fits from the advantages of modularity and flexibility. Also,it is common practice to use
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a layered architecture to separate the scheduler and the jobsubmitters; however, our job
submitters (runners) need to satisfy the challenge of deploying grid applications presented
in Section 1.2, hence the introduction of the runners framework.

Jobs are guided through the layers ofKOALA according to theKOALA job flow pro-
tocol, which is the subject of Section 3.6. In our experiences with deployingKOALA on
the DAS, users care much more about their jobs correctly finishing than about the perfor-
mance of the their jobs. In Section 3.7, we discuss the reliability of KOALA . The DAS
testbed uses the Globus Toolkit as its grid middleware; our experiences of using Globus
on the DAS are the subject of Section 3.8. Finally, in Section3.9 we discuss the wide
range of usage ofKOALA in the past two years by different users of the DAS.

 

KOALA Runners

KOALA Scheduler

Runners Framework

Submission Engines 

Users

Figure 3.1: The KOALA layered architecture.

3.1 The KOALA Scheduler

The KOALA scheduler is responsible for scheduling jobs received fromthe KOALA run-
ners or any third-party job submission tools. By schedulingwe mean deciding where and
when the components of a job should be sent for execution. Thescheduler uses one of
its placement policies to select file sites and execution sites for the job components. By
placement we mean finding execution sites for job componentswith sufficient number
of processors. A new job arriving to the scheduler is appended to the tail of one of the
placement queues depending on its priority, and its placement is retried for a fixed number
of times. The scheduler also decides when the job componentsshould start executing. If
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processor reservation is supported by the local resource managers, theKOALA scheduler
reserves processors for the components, otherwise theKOALA claiming policy is used for
claiming processors for the job components at their designated times possibly in multi-
ple sites. If the claiming procedure of processors for the job components fails, the job
is added to the claiming queue and the claiming is retried. InSection 3.1.1 we describe
the scheduler components, and in Section 3.1.2 we discuss some details of the implemen-
tation of the scheduler. The placement queues and the claiming queue are presented in
Sections 4.2.1 and 4.2.2, respectively, and the placement policies and the claiming policy
in Sections 4.3 and 4.4, respectively.

3.1.1 The scheduler components

TheKOALA scheduler consists of the following three components: theCo-allocator(CO),
theInformation Service(IS), and theProcessor Claimer(PC). The structure of theKOALA

scheduler is depicted in Figure 3.2. We will now discuss these components in turn.
The CO is responsible for placing jobs, i.e., for finding the execution sites with enough

idle processors for their components. The CO chooses jobs toplace based on their pri-
orities from one of theKOALA placement queues. If the components require input files,
the CO also selects the file sites for the components such thatthe estimated file transfer
times to the execution sites are minimal. To decide on the execution sites and file sites for
the job components, the CO uses one of the placement policiesdiscussed in Section 4.3.
Finding execution sites for the job components is only done for non-fixed, semi-fixed, and
flexible job requests.

The IS is comprised of the Replica Information Provider (RIP), the Network Informa-
tion Provider (NIP), and the Processor Information Provider (PIP). The RIP provides to
KOALA a common interface for mapping the logical file names to theirphysical locations.
The RIP can use the Globus Toolkit’s Replica Location Service (RLS) [22] to provide this
mapping if present. In the absence of the RLS, RIP maintains asimple database that can
be used to provide the mapping. The NIP provides toKOALA a common interface to ob-
tain network bandwidth and latency measurements from third-party tools. At the moment,
in the DAS Iperf [10] is used for this purpose. A repository containing the bandwidths
measured with NIP is maintained and updated periodically.

The PIP, like the NIP, provides toKOALA a common interface to access grid informa-
tion providers like the Globus Toolkit’s Metacomputing Directory Service (MDS) [22] to
obtain status information of nodes per cluster like the numbers of busy nodes and erro-
neous nodes, and the total number of available nodes. The PIPalso has native mechanisms
to query the status information of nodes straight from localresource managers (currently,
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Figure 3.2: The components of the KOALA scheduler.

only PBS and SGE are supported). The native mechanisms are useful where the MDS
is missing, or when MDS shortcomings are observed. The shortcomings are felt in busy
systems where Globus MDS-2 suffers from a number of problems, including the fact that
updated information does not propagate very quickly and that centralized servers may be-
come bottlenecks or points of failure [82]. It should be noted that requests for node status
and requests to the bandwidth repository impose delays on placing jobs, especially on
busy systems. Therefore, to minimize the delay, the IS caches information obtained from
the PIP and the NIP with a fixed cache expiry time (a parameter of KOALA ). Furthermore,
to deal with the fact that updated information may not alwayspropagate quickly when
requested, the IS can be configured to do periodic cache updates from frequently used
clusters before their cache expiry time.

After a job has been placed, it is the task of the PC to ensure that processors will
still be available when the job starts to run. If processor reservation is supported by local
resource managers, the PC can reserve processors immediately after the job placement.
Otherwise, the PC usesKOALA ’s claiming policy to postpone claiming of processors to a
time close to the estimated job start time; this policy is discussed in detail in Section 4.4.

3.1.2 The implementation of the scheduler

The KOALA scheduler is implemented using Java 5.0. The Java language was chosen
because it solves many software portability issues presentin the heterogeneous grid envi-
ronment. Also, the choice to use Java was a result of the lessons learnt with the PDCA, the
precursor ofKOALA , which was written entirely in C. The development and maintenance
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cost of the PDCA was very high compared to the value gained by using the language C,
which was the speed with which the scheduler was running. However, most current Java
VM implementations come with good state-of-the-art Just InTime (JIT) technology that
makes its interpreted code run at compiled code speeds, and therefore, fast enough.

We have ensured that the scheduler is not tied to any particular operating system or
grid middleware by using the plugin technology for the IS component. In this component,
plugins for the RIP, the PIP, and the NIP specific for a grid middleware or an operating
system can be added and then registered to be used by theKOALA scheduler. The same
technology is used for the placement and claiming policies,where new policies can be
added and then registered to the CO without affecting its operation. Examples of policies
that have been added in this manner are the Cluster Minimization (CM) and the Flexible
Cluster Minimization (FCM) policies [91], which are more application oriented. The
choice of which policy to use is initiated by the runners and therefore, it can be selected
by the users for every submitted job separately.

3.2 The KOALA Runners Framework

Different types of grid applications have different characteristics that pose varying diffi-
culties when attempting to deploy them on grids. The challenges posed by grid applica-
tions and the rate at which grid technology is changing makesit impossible to have one
universal submission tool, arunner, for all current and future grid applications. Therefore,
we introduce our runners framework, which not only hides theheterogeneity of the grid,
but also allows easy addition of new runners for new application technologies or modify-
ing existing ones with minimal effort [76]. Frameworks are an effective tool to deal with
the complexity of grid applications and heterogeneity of current computing environments,
and are an important insurance policy against disruptive changes in future technologies.
Our runners framework provides a set of APIs to the runners for commonly used grid job
submission operations such as interfacing with theKOALA scheduler for job scheduling,
the transfer of input files, deploying jobs on grids, monitoring and responding to failures,
and the transfer of output files back to the submission site. Also, the runners framework
enforces theKOALA job flow protocol that needs to be followed by all jobs submitted
throughKOALA , and that is described in Section 3.6. In Section 3.2.1 we present the
components of the runners framework and in Section 3.2.2 we describe the fault tolerance
mechanisms of this framework.
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Figure 3.3: The runners framework of KOALA.

3.2.1 The framework components

The runners framework provides a set of APIs to the runners for commonly used grid
job submission operations such as interfacing with theKOALA scheduler for job schedul-
ing and interfacing with a grid middleware for deploying jobs on grids, monitoring job
submission failures, and transferring input and output files. Based on these operations,
the runners framework consists of the following three components: theRunners Listener
(RL), theRun Monitor(RM), and theData Manager(DM). The framework is depicted in
Figure 3.3.

The RL acts as the interface between the runners and the runners framework. It pro-
vides to the runners a set of APIs for job scheduling with theKOALA scheduler, and
for application level operations such as input and output file transfers, deploying jobs on
grids, and monitoring and responding to failures. The runners have complete freedom to
implement their own mechanisms for the application level operations, or alternatively, to
use the default implementations that are provided by the runners framework. The imple-
mentation of the application level operations depends on the grid middleware in use, and
currently, only the Globus middleware is supported.

TheKOALA job flow protocol guides a job from the moment it is received from a user
until its completion time. When a new job request is receivedfrom a user by a runner, of
which a separate instantiation is created for every job, theRL on behalf of the runner asks
the scheduler to schedule the job. If the job requires input files and after instructed to do
so by the scheduler, the RL invokes the file transfer mechanisms supplied by the runner or
the DM by default to transfer the input files to the execution sites. At the time of claiming
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the processors for the job components, the scheduler sends the components back to the
RL for submission to their respective execution sites. During the execution of the job, the
RL may receive instructions from a runner to abort and/or re-schedule job components.
TheKOALA job flow protocol will be described in more detail in Section 3.6.

The RM implements the mechanisms to launch the job components for execution, and
to monitor and respond to errors that may interrupt the execution of any of the job com-
ponents. The implementation of the RM depends on the grid middleware in use. The cur-
rent implementation of the RM uses the Globus Resource Allocation Manager (GRAM)
to launch the job components to their respective execution sites. The mechanisms for
responding to errors are discussed in Section 3.2.2.

The DM is used to manage file transfers for which the current implementation uses
both Globus GridFTP [28] and Globus Global Access to Secondary Storage (GASS) [22].
The DM is responsible for ensuring that input files arrive at their destinations before the
job starts to run.

The runners provide to the user an interface for submitting their job requests and for
monitoring the progress of the job execution. TheKOALA runners are discussed in Section
3.3.

3.2.2 Fault tolerance

The RM monitors the execution of the components of a job for errors that may interrupt
their execution. These errors, which are hardware, operating-system, grid-middleware, or
application related, are divided into three groups depending on whether they are system
errors occurring at (the head node of) the submission site ofthe job, whether they are
system errors at one of the execution sites of a job, or whether they are related to the
application itself.

The first group of errors we distinguish in the context of the execution of a job are
irrecoverablehard errors, which are caused by operating-system and network failuresof
the submission site of the job, i.e., at the head node of the site where the runner of the
job has been launched, of which are grid middleware errors, e.g., middleware software
bugs. The RM responds to errors of this group by informing theresponsible runner that it
is going to abort the job, and also as a consequence, the runner itself, before performing
this action.

The second group of errors consists ofsoft errors, which are execution-site specific
errors caused by hardware or software faults of the execution sites of a job. These are
errors of nodes executing a job component at an execution site, which are reported by
the grid middleware. The RM responds to soft errors in the context of the execution of a
job by allowing the runner of the job to deal with the job component(s) that have reported
such errors, and at the same time, by informing the schedulerabout the erroneous clusters.
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Figure 3.4: An instance of a KOALA runner.

TheKOALA scheduler counts the number of consecutive errors of each cluster and if this
number reaches a certain threshold, the cluster is marked unusable. A message containing
the details of the error is then sent to the administrator of the system for further action.
If a runner does not have mechanisms to deal with soft errors,the default operation in
the RM is to abort the job, to inform the scheduler to use otheravailable execution sites
for the aborted job components, and then to restart the job. It should be noted that the
RM focuses only on ensuring that the job is restarted. It is left for the runner to employ
application-specific fault tolerance mechanisms like checkpointing to ensure that a job
continues its execution from where it left off and does not restart from the beginning.

The third group of errors we distinguish in the context of theexecution of a job are
application-specific errors, which can be anything caused by faults in the application,
and which are simply passed back through the RL to the runner of the job. The default
operation for these errors is to simply abort both the job andthe runner, if no mechanisms
to deal with these errors are present in the runner.

3.3 The KOALA Runners

TheKOALA runners implement specific mechanisms for launching jobs oftheir respective
application types on grids and for monitoring job executions and responding to failures
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through the use of APIs in the RL and the RM. Each job submittedto KOALA has its
own instance of the runner corresponding to its applicationtype. A runner consists of
runner-specific mechanisms, and of instances of the RM, the RL, and the DM. A runner
can be used to submit jobs from any site in a multicluster system or a desktop machine
and is able to interface to the centralizedKOALA scheduler over the wide-area network.
Figure 3.4 shows a configuration with an instance of a runner.

In Section 3.3.1 we first present the requirements the runners need to satisfy. Sections
3.3.2–3.3.4 present the runners that are fully operationalon the DAS system. All these
runners support co-allocation.

3.3.1 Requirements to the runners

Job requests of different application types when submittedto KOALA may pose different
requirements that need to be satisfied by the runners. Below,we list the major require-
ments that should be addressed by the runners. It should be noted that these requirements
are not exhaustive and can be extended when the need to do so arises.

1. The placement procedure. The success of the placement of a job in theKOALA

scheduler is specific to the application type. For example, with parallel applications,
job placement succeeds only if all of the job components can be placed, i.e., these
applications require atomic placement. For application types like PSAs and BoTs
with components executing independently of each other, atomic placement is not
necessary. With these application types, placement is successful if at least a pre-
determined number of components (e.g., at least one) have been placed.

2. Deploying order of the components. Different application types require differ-
ent orders of deploying the job components to their respective execution sites. For
instance, parallel applications require deploying of the job components to be syn-
chronized. The need for a specific order of deploying the job components is evident
in jobs with inter-component dependencies like workflows. With PSAs the order is
not relevant.

3. Application level scheduling. The runners provide the environment for users to
develop per-application schedulers that are specially tailored to match the needs of
applications such as PSAs, BoTs and workflows. The runners ofthese application
types ask theKOALA scheduler for execution sites and then map the job components
to these execution sites. The mapping of the components to a set of execution sites
is guided by application level scheduling policies, which are normally aimed at
minimizing the response times of the applications.
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4. Wide-area communication between components. Wide-area communication is
vital to the successful execution of some application typeslike parallel applica-
tions, Ibis applications, and workflows. For parallel and Ibis applications, wide-
area communication allows processors on different sites allocated to the same job
to exchange messages. Runners of these application types need to know how to
link up with the communication libraries for wide-area communication provided
by the applications’ programming models; for some application types like BoTs,
inter-component communication is not required.

5. Fault tolerance. Runners need to deal with soft errors and application-specific
errors since these are unique to different application types. For some application
types like PSAs, failures of components can be tolerated to some degree. Failed
components can even be restarted on different sites withoutaffecting the execution
of the job. On the other hand, for some application types likeparallel applications
and workflows, the failure of a single component can cause other components or
even the whole application to fail.

3.3.2 The KRunner

The KRunner (KOALA default runner) isKOALA ’s bare-bone runner capable of running
application types that do not have any special requirements. Jobs submitted with the
KRunner to the scheduler are placed atomically, i.e., the placement procedure only suc-
ceeds if all the job components can be placed. When running a multi-component job with
the KRunner, each component is executed independently. It is left for the application it-
self to handle any inter-component communication needed, as well as the synchronization
of the execution of its components. The KRunner does supportinput file and executable
staging to the execution site(s) before the job executes, and retrieval of output files when
the job completes. The KRunner is also used as the basis for other runners. It gives the
basic implementation a runner needs to be able to interface with theKOALA scheduler.

3.3.3 The DRunner

The DRunner (DUROC Runner), which is based on the KRunner, isthe specialized run-
ner for Message Passing Interface (MPI) jobs. While the DUROC (Dynamically-Update
Request Online Co-Allocator) library [22] from the Globus Toolkit implements the al-
location operation across multiple sites (co-allocation), it does not provide any form of
resource-brokering or fault tolerance. The DRunner together with the KOALA sched-
uler adds these functionalities to DUROC. The DRunner uses the DUROC library to de-
ploy and synchronize the execution of a co-allocated job’s components across the sites
specified by the scheduler. At the same time, the DRunner addsto the Globus DUROC
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framework theKOALA functionalities of non-fixed, semi-fixed, and flexible job requests
(DUROC only supports fixed requests), the ability to schedule job requests using the
KOALA placement and claiming policies, and fault tolerance. The MPI jobs to be submit-
ted with the DRunner need to be compiled with the grid-enabled implementation of MPI
called MPICH-G2 [17]. MPICH-G2 allows us to couple multiplesites to run a single MPI
application by automatically handling both inter-site andintra-site messaging. Like the
KRunner, jobs submitted with the DRunner are placed atomically.

3.3.4 The IRunner

The IRunner is designed to run Ibis applications, which are applications that use the spe-
cialized Ibis Java communication library [98]. To run an Ibis job, a central component
called the Ibis nameserver is required to coordinate the setup of communication ports be-
tween job components. A single instance of the Ibis nameserver can be shared among
several Ibis jobs. The IRunner can start up several nameservers, one per cluster, and bal-
ance their usage among jobs of different users. Alternatively, the IRunner can also start a
nameserver for every job.

3.4 The Implementation of the Runners Framework and
the Runners

Like theKOALA scheduler, the runners and the runners framework are written in Java 5.0.
The RL is a Java class that is extended by a runner, and so the runner has the freedom
to have its own implementation of the APIs of the RL. These APIs include methods for
submitting a job component, for stopping a running job component, for transferring files,
etc. The default implementations of these APIs are found in the RM and the DM; the
runner is free to choose an implementation that is suitable for the grid middleware it
wants to run with.

Figure 3.3.4 shows the implementation of a runner that is used as a basis for other
runners. The runner starts by parsing the arguments describing a job passed to it by a
user and registers the instances of the RM and the DM, which are specific to the grid mid-
dleware; in our current implementation, the RM and the DM arespecific for the Globus
middleware. The runner then starts the main thread in the RL,which is responsible for
guiding the operation of the runner and for enforcing theKOALA job flow protocol. This
thread first calls the prePhase method in the runner before passing the job request on to
the scheduler for scheduling. This method prepares the runner for launching the job by
performing such operatins as creating a sandbox for the run,executing a script to bypass
a firewall, and, for a runner like the IRunner, for starting a nameserver if required. The
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public class Runner extends RL {

public boolean prePhase()

// this is the optional method that is called with the RL
// before the job is submitted for scheduling.

the job is submitted to KOALA

}

public void preComponentSubmission() {

// this is the optional method that is called with the RL before
// the component is submitted for execution by the RL.

}

public void postPhase(boolean jobRunWasSuccessful) {

// this is the optional method that is called with the
// RL after the job has finished its execution successfully.

}

public static void main(String[] args) {

parseParameters(args);

registerRM(rm);

registerDM(dm);

startRL();

}

Figure 3.5: The structure of the source code of the runners

main thread then listens for commands from the scheduler, such as commands to transfer
files and to submit job components for execution. The registered instances of the RM
and DM are called when such commands are received. Before actually submitting a job
component for execution, the preComponentSubmission method is called. This method,
which is runner specific, gives the runner the ability to prepare the component just before
its submission. For example, with the IRunner, the preComponentSubmission is used for
adding Ibis runtime class libraries. This method can also beused to synchronize the start
of a job’s components. For runners that implement application-level scheduling, the pre-
ComponentSubmission method is used to collect the processors from all execution sites as
allocated by the scheduler and to reschedule them. Finally,the postPhase method is called
when a job has just finished; one of the tasks that can be implemented in this method is
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cleaning up.

3.5 The Submission Engines

Submission engines are third-party tools that can be used tosubmit jobs toKOALA . Sub-
mission engines such as workflow engines, workload generation and submission engines,
and user scripts, use the runners to do the actual job submission to the grid resources. We
have testedKOALA with Karajan [70], which is an abstract workflow engine describing a
workflow in an abstract form without referring to specific grid resources for component
execution (non-fixed requests). In this way, an abstract model provides a flexible way
for users to define workflows without being concerned about low-level implementation
details. In an abstract model, components can be mapped ontoany grid sites with our
KOALA scheduler. We have not testedKOALA with other types of workflow engines such
as concrete and dynamic workflow engines.

Grenchmark [5,69] is a framework for synthetic workload generation that usesKOALA

for job submission. The workload generator of Grenchmark isbased on the concepts of
so-called unit generators and of Job Description File (JDF)printers. The unit generators
produce detailed descriptions for running a set of applications (workload unit), according
to the workload description provided by the user [69]. In principle, there is one unit
generator for each supported application type. This makes Grenchmark extensible as new
unit generators for new application types can be added with ease. The JDF printers take
the generated workload units and createKOALA job description files for every job in the
units, which are to be submitted toKOALA with the runners.

3.6 The KOALA Job Flow Protocol

TheKOALA job flow protocol guides jobs through the four phases that anyjob submitted
to KOALA goes through. These phases, which are shown in Figure 3.6, are formed by the
four operations that are performed to a job during its life cycle inKOALA . In Section 3.6.1
we give an overview of the four phases and in Section 3.6.2 we describe them in detail in
terms of the interaction of the components ofKOALA in these phases.

3.6.1 The KOALA operational phases

Four operations are performed to any job submitted toKOALA , which are placing its com-
ponents, transferring its input files, claiming processorsfor its components, and launching
it and monitoring its execution. These operations, which form four phases that the job un-
dergoes, are shown in Figure 3.6. In phase 1, a new job submitted toKOALA is appended
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Figure 3.6: The four phases of the job flow protocol inKOALA .

to the tail of one of the placement queues depending on its priority. When it is its turn,
the job is retrieved from its placement queue and the placement of its components on the
system is attempted. If the placement procedure fails, the job is simply returned to its
respective placement queue. The placement of the job is tried again at later times for a
fixed number of times. Phase 2 is composed of starting and managing the file transfers for
the job if it has been placed successfully in phase 1. It is in this phase that the estimation
of the start time of the job is made to ensure that the input filetransfers are completed
before the job execution starts. As soon as the file transfersare initiated, the job is added
to the claiming queue. Jobs are moved immediately to phase 3 in case no file transfers are
required. In phase 3, while the job is in the claiming queue, attempts to claim processors
for the job components are made at designated times. The job is in phase 4 if all of its
components have been launched on their respective execution sites after the success of
claiming in phase 3.

3.6.2 KOALA components interaction

A number of interactions between theKOALA components occur in each of the phases
presented in Section 3.6.1. Figure 3.7 shows these interactions as a job moves from one
phase to another. The arrows in this figure correspond to the description given below of
the interactions happening in each phase.

In phase 1, a new job request arrives at one of the runners (arrow 1 in Figure 3.7)
in the form of a Job Description File (JDF). We use the Globus Resource Specification
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Figure 3.7: The interaction between theKOALA components. The arrows correspond to
the description in Section 3.6.2.

Language (RSL) [22] for JDFs, with the RSL “+” construct to aggregate the components’
requests into a single multi-request. After authenticating the user, the runner submits the
JDF to the CO (arrow 2), which in turn will append the job to thetail of one of theKOALA

placement queues. The CO then retrieves the job from this queue and tries to place the job
components based on information (number of idle processorsand bandwidth) obtained
from the IS (arrow 3). If the job placement fails, the job is returned to its respective
placement queue. The placement procedure will be tried for the jobs in the placement
queues at fixed intervals for a fixed number of times. The placement queues are discussed
further in Section 4.2.1.

Phase 2 starts by the CO forwarding the successfully placed job to the PC (arrow 4).
On receipt of the job, the PC estimates the Job Start Time and then instructs the DM
(arrow 5.1) to initiate the third-party file transfers (arrows 5.2) from the file sites to the
execution sites of the job components (arrows 5.3). A detailed description of the timeline
of a job defining its Job Start Time and its Job Claiming Time can be found in Section 4.1

In phase 3 the PC estimates the appropriate time that the processors allocated to a job
can be claimed, which is called its Job Claiming Time (see Section 4.1). At this time and
if processor reservation is not supported by the local resource managers, the PC uses a
claiming policy to determine the components that can be started based on the information
from the IS (arrow 6.1). It is possible at the Job Claiming Time for processors not to be
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Figure 3.8: The reliability of KOALA.

available anymore, e.g., they can then be in use by local jobs. If this occurs, the claiming
procedure fails, the job is put into the claiming queue, and the claiming is tried again at a
later time.

In phase 4, the runner used to submit the job for scheduling inphase 1 receives the
list of components that can be started (arrow 6.2) and forwards those components to their
respective execution sites (arrows 6.3). At the execution sites, the job components are re-
ceived by a grid middleware component such as the Globus Resource Allocation Manager
(GRAM), which is responsible for locally authenticating the owner of the job and sending
the job component to the local resource manager for execution.

3.7 The Reliability of KOALA

In grid research, performance usually takes a prominent place, but in our experiences
with deployingKOALA on the DAS, it is reliability that is the first consideration—users
care much more about their jobs correctly completing than about squeezing the next 10%
reduction in response times from the system. Prior to the deployment ofKOALA on the
DAS, we have spent a large effort in makingKOALA reliable. Much of this effort went
into testing and debugging, but there are also some design considerations that went into
makingKOALA reliable enough to be released for general use on the DAS. Thereliability
of KOALA can be discussed from two angles: the reliability of the scheduler, and the
reliability of the runners. Figure 3.8 illustrates the reliability issues ofKOALA when
running on a multicluster system.

When designingKOALA , we opted for a centralized scheduler despite the potentialre-
liability issue of a centralized solution being a single point of failure. The reason for this
choice was that the size of the DAS with only five clusters was too small to really warrant
a decentralized solution. This is about to change with the ongoing effort to connect the
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DAS-3 with Grid’5000, which has already resulted in discussions about having multiple
KOALA schedulers running in a decentralized fashion [43]. It should be noted however,
that even in the DAS, nothing prohibits the installation anddeployment of multiple in-
stances ofKOALA . The only thing is that they may reduce each other’s performance when
they try to allocate and claim the same processors. On the other hand, the centralized
approach on the DAS has proven to be very reliable, and in the last two years, that is,
since the initial deployment ofKOALA , the only restarts of the scheduler were due to the
reboots of the DAS cluster where it runs. Even if the scheduler would fail, this would
only have consequences for the jobs in the placement and claiming queues which would
be lost, but not for the jobs submitted throughKOALA that are already running. Of course,
we can make theKOALA scheduler more reliable by periodically writing the contents of
its queues to disk and by reading these contents after recovery. This is a feature worth
considering whenKOALA runs in a more unreliable heterogeneous environment and not
(only) on the DAS system.

The reliability of the runners depends on their implementations. For example, the
DRunner is less reliable than the KRunner and the IRunner because of bugs in the
MPICH-G2 and the DUROC libraries. The DUROC library has not been updated since
Globus Toolkit version 2.4, and the last update of MPICH-G2 was made at the end of
2005. The DRunner copes with these unreliability issues by simply restarting failed jobs.
It is possible from time to time for a runner instance to crash. We should point out that due
to our modular design, a crash of any instance of a runner doesnot affect the operation
of the scheduler, nor does it affect any other job than the jobto which the runner belongs.
When a runner crashes, we want all the processors it was usingto be immediately made
available for other jobs. To do so, the runners framework traps all the interrupts signaled
by the operating system and performs cleanup accordingly, before exiting. The sched-
uler also monitors all the runners by periodically sending them are-you-alive messages.
A runner that does not respond to such a message is assumed to have crashed, and the
processors allocated to the corresponding job are immediately made available again.

3.8 Experiences with Globus

The DAS testbed uses the Globus Toolkit as its grid middleware, which means thatKOALA

on the DAS relies on Globus for grid middleware services.KOALA has used Globus
Toolkit version 2.4 and version 3.02 on DAS-2, and at the timeof writing this thesis on
DAS-3, KOALA uses version 4.04 of Globus. Globus has existed in two flavorssince its
version 3, pre-Web Services (pre-WS) and Web Services (WS),with the pre-WS flavor
used byKOALA . Studying web services and portingKOALA to web services is beyond the
scope of this thesis.

Initially, the KOALA scheduler used the Metacomputing Directory Service (MDS) and
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the Replica Location Service (RLS) of the Globus Toolkit in its Information Service com-
ponent. However, the MDS delayed greatly the operation of the scheduler by delaying the
dynamic information about node status, and sometimes, no updated information about
node status was received at all. Puppin et al. [82] and Aloisio et al. [29] discuss in great
detail the shortcomings of the Globus MDS. As mentioned in Section 3.1.1,KOALA on
the DAS uses native mechanisms to obtain status informationof nodes, and no plans to
test the MDS that comes with Globus Toolkit 4 have been made. The shortcomings we
encountered with the Globus RLS were due to its use of the Lightweight Directory Access
Protocol (LDAP); on the DAS, the permissions to add or modifyrecords on the centrally
managed LDAP server were granted only to privileged users. This contradicted with our
design goal of allowing any user the ability to add or modify their records, hence the rea-
son to maintain our own database to provide the mappings of the logical names of files to
their physical locations.

TheKOALA runners framework and the runners are the active users of Globus on the
DAS. The authentication provided by the Globus Security Infrastructure (GSI) and the
Globus Specification Language (RSL) are used extensively bythe runners, and so far,
no problem have been reported with these two Globus components. The current runners
also use the Globus Resource Allocation Manager (GRAM) and both Globus gridFTP and
Global Access to Secondary Storage (GASS), to launch jobs for execution on remote sites
and to transfer files, respectively. The limitations of the pre-WS GRAM are discussed
clearly by Dumitrescu et al. [56]. During our tests and experiments, the performance
degradation of GRAM discussed in [56] were felt when the number of concurrent jobs
submitted to the same cluster reaches a certain threshold. We discuss more about the
overhead of the GRAM in the experiments in Chapter 6. The limitations of gridFTP that
were observed during our tests were all due to the well-knownissues and limitations of
the gridFTP server. The most prominent issue was the random hanging of transfers after
they have finished, which occurred when the number of concurrent transfers was high and
when running a striped transfer with a parallelism of more than 1.

In general, our experience with using pre-WS Globus with therunners framework and
the runners has been positive; however, a comparative assessment of Globus can only be
made when more experience with runningKOALA on other middleware has been gained,
which is beyond the scope of this thesis.

3.9 Experiences with KOALA

KOALA has been operational in the DAS testbed since September 2005. So far, more than
500,000 jobs have been submitted successfully withKOALA , both for testingKOALA and
for doing useful work with it. In this section we describe four examples from the wide
range of usage ofKOALA in the past two years.
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Philips Research in Eindhoven in the Netherlands [20] has designed a Grid Ar-
chitecture for Medical Applications (GAMA) that enables several relevant compute-
intensive medical applications to use grid technologies, for improved performance and
cost-effective access to large numbers of various resources [41]. In the GAMA architec-
ture, there is a dedicated Grid Access Point (GAP), which sends requests from client(s)
through a Windows-based interface in hospitals to the grid and returns results. During the
research for and development of their medical applications, DAS-2 was used to provide
compute resources as provisioned byKOALA . In the setup, the DRunner was installed in
the GAP and was used to execute non-fixed jobs on the DAS-2 clusters selected by the
KOALA scheduler. This setup proved to be successful and it allowedresearchers in Philips
to only concentrate on grid application development.

The SURFnet Gigaport project investigated the feasibilityof the grid for running net-
work tests with GridFTP. One of the objectives of this project was to see if the results of
the network tests can be used to inform users and maintainersof the grid about possible
network problems and to influence their choice of grid resources. To realize this objec-
tive, a periodic performance monitor was run, first between two nodes at a single cluster
with a special 1 Gbit/s test network, then between any two nodes at any DAS-2 clusters.
The selection of these nodes and the submission of the performance monitor was done
by KOALA . KOALA was used because of its ability to select non-faulty idle nodes due
to its mechanisms for fault tolerance, remote submission, and job monitoring, and due to
its ease of use. The performance monitor was run periodically between November 2005
and May 2007, when the DAS-2 cluster of the University of Amsterdam was decommis-
sioned. During this period, this performance monitor helped us to unearth some of the
“hidden” bugs and makingKOALA reliable. By the way, not onlyKOALA bugs were un-
earthed by this run but also some DAS-2 specific node specific errors (soft errors), which
by solving them we managed to make the DAS multicluster system more reliable. The
results of these network performance tests have been published on the website of [8].

In peer-to-peer (p2p) file sharing networks such as BitTorrent [2], peers that are in
the process of downloading the same file have to be discovered, something that is called
swarm discovery [88], before content can be shared with these peers. Roozenburg [88]
proposes a decentralized swarm discovery protocol calledLITTLE BIRD supported by
Tribler [81], a social community application that facilitates file sharing through a p2p net-
work. For the evaluation ofLITTLE BIRD , an experimental environment calledCROWDED,
which enabled large-scale trace-based emulations of swarms on the DAS-2, was created.
To emulate a large swarms in the DAS-2, theCROWDED environment used the KRunner
to request nodes on different DAS-2 clusters from theKOALA scheduler, and to submit
for execution the actual Tribler application to the allocated nodes. The performance of
KOALA and the DAS during experiments withCROWDED were very good, as a result,
KOALA will be used more extensively for the research in the Triblerproject.
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The possibilities of connecting a grid application to a visualization component have
been investigated by van Ameijden [30]. In this study, a molecular dynamics simulation
package called Gromacs [9] is used as the grid application and the MolDRIVE visual-
ization package [16] as the visualization component. Both Gromacs and MolDRIVE are
adapted to enable running molecular dynamics simulations in a distributed fashion on
the DAS-2, with the simulations being manipulated from and their results being visual-
ized on a Virtual Workbench. In this study, theKOALA DRunner was used to submit job
components to see how the performance of the application is influenced by running the
simulations on multiple sites, and whether the communication delays between the simu-
lation and the visualization components of the applicationdiffer much across clusters.
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Chapter 4

The KOALA Job Policies

In KOALA , there are two types of job policies,placement policiesfor placing the compo-
nents of a job andclaiming policiesfor claiming the processors previously allocated to
the components. The placement policies are used to decide where the jobs should be sent
for execution and the claiming policies have the task of ensuring that jobs are launched
for execution at their planned time. It should be noted that new policies can be added, and
that existing policies can be modified at any time without affecting the operation of the
scheduler. In particular, two new placement policies called Cluster Minimization (CM)
and Flexible Cluster Minimization (FCM) [91], which are communication-aware place-
ment policies for non-fixed and flexible jobs, respectively,have been added during the
writing of this thesis. TheKOALA job policies can both be used with jobs that require
co-allocation and those which do not require co-allocation.

We begin this chapter by presenting the job submission timeline in Section 4.1. This
section also defines some parameters that are used in the subsequent sections. Jobs
waiting to be placed or claimed by any of theKOALA policies are held in one of the
KOALA placement queuesor in theclaiming queue, respectively. Section 4.2 presents
theseKOALA queues. In Section 4.3 we discuss two placement policies, the Close-to-
Files (CF) placement policy and the Worst-Fit (WF) placement policy. The CF policy
has the goal of reducing the waiting times of jobs by minimizing their file transfer times.
On the other hand, the WF policy simply tries to optimize the placement procedure by
balancing the use of the grid resources (processors). A claiming policy called the Incre-
mental Claiming Policy (ICP) that is used in the absence of processor reservation by local
resource managers, is discussed in Section 4.4.

4.1 Job Submission Timeline

In Section 3.6, we have seen that a job moves from one phase to another inKOALA at
stipulated times or after the success of some operations at certain times. For example,
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Figure 4.1: The timeline of a job submission.

after a successful placement of a job at a certain time, the job is moved to the claiming
phase where the claiming for processors for its components will begin at a designated
claiming time. These times together form the job submissiontimeline shown in Figure
4.1 that we present in this section.

A new job request is received by a runner at a time called the Job Submission Time,
which is point A in Figure 4.1. This is the time that a user has launched a specific runner
for his/her job. The time when the placement of the job succeeds, i.e., the successful
placement of its last component, is called the Job PlacementTime (JPT), which is point
B in Figure 4.1. After the job has been forwarded for claiming, the time when claiming
processors for the job components starts is called the Job Claiming Time (JCT), point C
in Figure 4.1. Point D is the time when the job should be launched, which is the so-called
Job Start Time (JST). The JST is estimated as the sum of job’s JPT and its File Transfer
Time (FTT), which is calculated as the maximum of the estimates of the file transfer times
of all of its components. The time from the submission of the job until its actual launch
time is called the Total Waiting Time (TWT) of the job. The difference between JCT and
JPT, and JST and JCT, which are referred to as the Processor Gained Time (PGT) and the
Processor Wasted Time (PWT), are discussed in Section 4.2.2. The job finishes execution
at point E, which is called the Job Finish Time.

It is possible for a job to fail after its initial successful placement and be restarted. If a
job is restarted a number of times, the values for JPT, JCT, and JST will be the last values
recorded, which corresponds to the placement that leads to the successful execution of the
job. The value for Job Submission Time does not change, however.

4.2 The KOALA Queues

KOALA maintains placement queues and a claiming queue to hold jobs that currently
cannot be placed or for which processors for their components currently cannot be
claimed, respectively. The placement and/or the claiming procedure for a job may fail
due to the unavailability of enough idle processors as requested by a job at its execu-
tion sites. The placement and claiming procedures for jobs in the queues are retried for
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a fixed number of times and if then still unsuccessful, the jobfails and is deleted from
the queues. Sections 4.2.1 and 4.2.2 discuss theKOALA placement queues and claiming
queue, respectively.

4.2.1 The placement queues

A new job arriving toKOALA is appended to the tail of theKOALA placement queue
corresponding to its priority.KOALA maintains four placement queues, one for each of
the priorities. These queues are: the super-low placement queue for super-low priority
jobs, the low placement queue for low priority jobs, the highplacement queue for high
priority jobs, and the super-high placement queue for super-high priority jobs. These
queues hold all jobs that have not yet been placed.KOALA regularly scans the placement
queues according to their priorities from head to tail to seewhether any job in them can
be placed. This means that jobs in same placement queue are considered for placement in
their arriving order (FCFS) during each scan. If the first jobcannot be placed, in effect a
backfilling approach [73] is attempted whereby jobs furtherdown the queue are possibly
placed without taking into account any placement delay to the first job.

KOALA selects a queue to scan based on its priority in a round robin manner. To give
jobs of higher priorities more chance to be placed we assign aweight to each queue, which
determines the number of times that queue will be scanned before the next queue. Below
we present our technique for queue selection.

When performing queue selection,KOALA first groups the super-high and high place-
ment queues to form thehigher placement queues, and the low and super-low placement
queues to form thelower placement queuesas shown in Figure 4.2. The higher place-
ment queues are scanned firstNh times before scanning the lower placement queuesNl

times, withNh ≥ Nl ≥ 1. In each scan of the higher placement queues, the super-high
placement queue is scannedn1 times before scanning the high placement queuen2 times,
wheren1 ≥ n2 ≥ 1. This means that afterNh(n1 + n2) scans we begin scanning the
lower placement queues. Likewise, in each scan of the lower placement queues, the low
placement queue is scannedn3 times before scanning the super-low placement queuen4

times, wheren3 ≥ n4 ≥ 1. This also means we scan again the higher placement queues
afterNl(n3 +n4) scans of the lower placement queues. As an example, ifNh, Nl, and the
ni, i = 1, . . . , 4 are all set to 1, then the queues are selected in a traditionalround robin
manner where all queues are of equal priority. On the other hand, if N1 is set 2 and the
rest of the weights are set to 1, this means we scan the higher placement queues twice
before we scan the lower placement queues once.

This queue selection technique shares the same idea as the technique called Group
Ratio Round-Robin presented by Caprita et al. [45] where groups of clients are selected
in a round robin manner based on the ratio of their group weights.
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Higher Placement Queues Lower Placement Queues

Super-high High Low Super-low

Nh times Nl times

n3 times n4 timesn1 times n2 times

Figure 4.2: Grouping of priority levels and the number of times KOALA scans the corre-
sponding placement queues.

The time between successive scans of the placement queues isa fixed interval (this
time,Nh, Nl, and theni, i = 1, . . . , 4, are parameters ofKOALA ); the placement queues
which are empty, are simply skipped. The time when the placement of a job succeeds is
called its JPT, depicted in Figure 4.1, which shows the timeline of a job submission. The
figure also shows theplacement time, which is the difference between JPT and the time
the job enters the placement queue.

For each job in a placement queue we maintain its number ofplacement tries, i.e.,
the number of scans of the queue while it contains the job. When this number exceeds a
threshold, the job submission fails. This threshold can be set to∞, i.e., no job placement
fails.

With our current setup, starvation is possible for any job inthe KOALA placement
queues due to a high load of higher-priority jobs or local jobs. To minimize starvation as
much as possible inKOALA , jobs in the low placement queue or in the high placement
queue move one priority level up after everyP placement tries until they reach the super-
high placement queue;P is anotherKOALA parameter, which can be set to∞ to prevent
jobs from changing their priorities. Jobs in the super-low placement queue are not allowed
to change their priority level.

TheKOALA parameters presented in section need to be determined before running the
KOALA scheduler. Currently, we have assigned default values to these parameters based
on the observations made after a number of test runs. Of course, these values can be fine
tuned depending on the multicluster system where the scheduler runs and the types of
jobs submitted toKOALA . Of all the parameters,KOALA is most sensitive to the interval
between successive scans of the placement queues. The valueof this parameter is a trade-
off between too much CPU load due to excessive scans and too long waiting times of jobs
in the placement queues.
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4.2.2 The claiming queue

After the successful placement of a job, its File Transfer Time (FTT) and its Job Start
Time (JST) are estimated before the job is added to the claiming queue. This queue holds
jobs that have been placed and currently are waiting to be submitted for execution. The
job’s FTT is calculated as the maximum of all of its components’ estimated file transfer
times (see Section 4.3.1 for how we compute these), and the JST is estimated as the
sum of its JPT and its FTT as shown in Figure 4.1. Our challengehere is to guarantee
processor availability at the JST. In the absence of processor reservation in the LRMSs,
theKOALA scheduler can immediately claim processors for a job at its JPT and allow the
job to hold the processors until its JST. However, this is wasteful of processor time. It
is also possible forKOALA to claim processors only at JST but then there is the risk of
processors not being available anymore. Therefore, to minimize the Processor Wasted
Time (PWT), which is the time the processors are held but not used for useful work, and
at the same time increase the chance of claiming success, an attempt to claim processors
for a job is done at the job’s so-called Job Claiming Time (JCT) (point C in Figure 4.1).
A job’s JCT is initially set to the sum of its JPT and the product of L and FTT:

JCT0 = JPT + L · FTT ,

whereL, which is a real number between 0 and 1, is a parameter assigned to each job by
KOALA . The initial value ofL assigned to jobs byKOALA is decided by an administrator,
e.g., 0.75, and this value is updated dynamically during theclaiming attempts. It should be
noted that if 0 is assigned toL then the claiming procedure will be attempted at JPT, and
if 1 is assigned toL then the claiming procedure will be attempted at JST. More onhow
L is updated is described below. In the claiming queue, jobs are arranged in increasing
order of their JCT.

KOALA tries to claim for a job (claiming try) at the current JCT by using our Incre-
mental Claiming Policy, which is described in Section 4.4. Claiming for a component at
the current job claiming try succeeds if all processors it has requested can be claimed,
otherwise claiming fails. The success of claiming for all components of the job results
in the success of the claiming try. The job is removed from theclaiming queue if the
claiming try is successful. Otherwise, we perform successive claiming tries. For each
such try we recalculate a new JCT by adding to the current JCT the product ofL and the
time remaining until the JST (time between points C and D in Figure 4.1):

JCTn+1 = JCTn + L · (JST − JCTn).

If the job’sJCTn+1 reaches its JST and still claiming for some components fails, the job
is returned to the placement queue. Before doing so, its parameterL is decreased by a
fixed fraction, e.g., 0.25, and its components that were successfully started in the previous
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claiming tries are aborted. The parameterL is decreased each time the JST is reached
until it hits its lower bound, e.g., 0, so as to increase the chance of success of claiming. If
the number of claiming tries for a job exceeds some threshold(which can be set to∞),
the job submission fails.

For a job, a new JST is estimated each time the job is returned to the placement
queue and re-placed with a placement policy. We define thestart delayof a job to be the
difference between the final JST where the job execution succeeds and the original JST. It
should be noted that the re-placements result in multiple placement times (the placement
time has been defined in Section 4.2.1). Therefore, we define the total placement timeof
a job as the sum of all its placement times.

As we saw in Section 4.1, we call the time between the JPT of a job and the time of
successfully claiming processors for it, the Processor Gained Time (PGT) of the job. The
PGT is depicted in Figure 4.1. During the PGT, jobs submittedthrough other schedulers
than our grid scheduler can use the processors.

4.3 The Job Placement Policies

The KOALA scheduler uses job placement policies to select the execution sites with
enough idle processors for the components of non-fixed, semi-fixed, and flexible jobs.
If the job components require input files, the scheduler alsouses the placement policies
to select the file sites such that the time to transfer the input files to the selected execution
sites is minimal. The placement policies presented in this section support co-allocation
by employingatomic placement, i.e., the placement of a co-allocated job is only success-
ful if all of its components can be placed at one time. The placement policies have no
restrictions on how to distribute the components of a co-allocated job across the sites of a
grid, and there is a chance that more than one or even all components of a job are placed
on a single execution site. In the absence of the use of co-allocation, the Close-to-Files
policy defined below can be used to place single-component jobs close to a file site of its
input file, and the Worst-Fit placement policy defined below can be used to balance the
load across the grid.

In this section we present two of the placement policies operational in theKOALA

scheduler. These policies are the Close-to-Files placement policy discussed in Section
4.3.1, and the Worst-Fit placement policy discussed in Section 4.3.2.

4.3.1 The Close-to-Files placement policy

Placing a non-fixed job in a multicluster means finding a suitable set of execution sites for
all of its components and suitable file sites for the input file. (Different components may
get the input file from different locations.) The most important consideration here is of
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course finding execution sites with enough processors. However, when there is a choice
among execution sites for a job component, we choose the sitesuch that the (estimated)
delay of transferring the input file to that site is minimal. We call the placement algorithm
doing just this the Close-to-Files (CF) policy [78]. It usesthe following parameters in its
decisions:

• The numbers of idle processors in the sites of a grid:A job component can only
be placed on an execution site which will have enough idle processors at the job
start time.

• The file size: The size of the input file, which enters in the estimates of thefile
transfer times.

• The network bandwidths: The bandwidth between a file site and an execution site
gives the opportunity to estimate the transfer time of a file given its size.

Algorithm 1 Pseudo-code of the Close-to-Files job-placement algorithm.
1: order job components according to decreasing size
2: for all job componentj do
3: Sj ⇐ set of potential execution sites
4: if Sj 6= ∅ then
5: select anE ∈ Sj

6: else
7: Pj ⇐ set of potential pairs of execution site, file site
8: if Pj 6= ∅ then
9: for all (E, F ) ∈ Pj do

10: estimate the file transfer timeT(E,F )

11: select the pair(E, F ) ∈ Pj with minimalT(E,F )

12: for all file siteF ′ of the jobdo
13: insert(E, F ′) into the history tableH
14: else
15: job placement fails

When given a job to place, CF operates as follows (the line numbers mentioned below
refer to Algorithm 1). CF first orders the components of a job according to decreasing
size (line 1), and then tries to place the job components in that order (loop starting on line
2). The decreasing order is used to increase the chance of success for large components.

For a single job componentj, CF first determines the setSj of potential execution sites
(line 3); these are the file sites of the job that have enough idle processors to accommodate
the job component. IfSj is not empty, CF picks an element from it as the execution site



4. The KOALA Job Policies 58

of the component (line 5). (We currently have a function thatreturns the names of the file
sites in alphabetical order, and CF picks the first.)

If the setSj of potential execution sites is empty (line 6), we might consider all pairs
of execution sites with sufficient idle processors and files sites of the job, and try to find
the pair with the minimal file transfer time. This is not efficient in large grids with many
sites; therefore, CF maintains ahistory tableH with a subset of pairs of execution sites
and file sites to consider. FromH, CF selects allpotential pairs(E, F ) of execution site,
file site, withE having a sufficient number of idle processors for the job component and
F being a file site of the job (line 7). If no such pair exists inH, the job component, and
in case of co-allocation the whole job, currently cannot be placed (line 15). Otherwise,
CF estimates for each selected pair the file transfer time from the file site to the execution
site (line 10), and picks the pair with the lowest estimate (line 11). If (E, F ) is the pair
selected, CF inserts intoH all pairs (E, F ′) with F ′ a file site of the job (lines 12, 13).
Note that if the history table is initially empty, it will remain empty. Therefore, it has to
be initialized with some set of suitable pairs of execution and file sites.

4.3.2 The Worst-Fit placement policy

Built into KOALA is also the Worst Fit (WF) placement policy. WF places the jobcompo-
nents in decreasing order of their sizes on the execution sites with the largest (remaining)
numbers of idle processors. The decreasing order is used to increase the chance of suc-
cess for large components. In case the files are replicated, WF selects for each component
the replica with the minimum estimated file transfer time to that component’s execution
site. Like with CF, placement of a job fails if the placement of any of its components fails
when co-allocation is used with WF. As mentioned in the introduction of this section, both
CF and WF make perfect sense in the absence of co-allocation,where WF in particular
balances the load well across the multicluster system.

4.4 The Incremental Processor Claiming Policy

Jobs submitted withKOALA share processors with jobs of local cluster users. When
claiming processors byKOALA , it is possible for processors previously allocated by a
placement policy to be used by local jobs due to the absence ofreservation mechanisms
in LRMSs. It is also possible that at the time of claiming processors, they are marked
unusable by an LRMS due to errors. InKOALA , claiming processors for a job starts at a
job’s initial JCT, and if not successful, is repeated at subsequent claiming tries. For com-
ponents for which claiming has failed, it is possible to increase their chance of claiming
success in subsequent claiming tries by finding other sites with enough idle processors to
execute them, or by preempting jobs of lower priorities to make processors available.
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We call the policy doing exactly this the Incremental Claiming Policy (ICP), which
operates as follows (the line numbers mentioned below referto Algorithm 2). For a job,
ICP first determines the setsCprev, Cnow, andCnot of components that have been previ-
ously started, of components that can be started now based onthe current numbers of idle
processors, and of components that cannot be started based on these numbers, respec-
tively. It further calculatesF , which is the sum of the fractions of the job components
that have previously been started and of the components thatcan be started in the current
claiming try (line 1). We defineT as the required lower bound ofF ; the job is returned to
the claiming queue if itsF is lower thanT (line 2).

Algorithm 2 Pseudo-code of the Incremental Claiming Policy
Require: setCprev of previously started components ofJ (initially Cprev = ∅)
Require: setCnow of components ofJ that can be started now
Require: setCnot of components ofJ that cannot be started now

1: F ⇐ (|Cprev| + |Cnow|)/|J |
2: if F ≥ T then
3: if Cnot 6= ∅ then
4: for all j ∈ Cnot do
5: (Ej , Fj, fttj) ⇐ P lace(j)
6: if JCT + fttj < JST then
7: Cnow ⇐ Cnow ∪ {j}
8: else ifpriority(j) 6= super-low then
9: Pj ⇐ count(processors) /∗ used by jobs of lower priorities than j and

idle at Ej ∗/

10: if Pj ≥ size ofj then
11: repeat
12: Preempt lower priority jobs atEj

13: until count(idle processors) ≥ size ofj /∗ at Ej ∗/

14: Cnow ⇐ Cnow ∪ {j}
15: start components inCnow

For each componentj that cannot be started on the cluster selected when placing the
job, ICP first tries to find a new pair of execution site-file site with the placement policy
originally used to place the job (line 5). On success, the newexecution siteEj , file site
Fj, and the new estimated transfer time between them,fttj, are returned. If it is possible
to transfer the file between these sites before JST (line 6), the componentj is moved from
the setCnot to the setCnow (line 7).

For a job of priority other than super-low, if the re-placement of the component fails
or the file cannot be transferred before JST (line 8), ICP performs the following. At
the execution siteEj of componentj, it checks whether the sum of the number of idle
processors and the numbers of processors currently being used by jobs of lower priorities
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is at least equal to the number of processors the component requests (lines 9 and 10). If so,
the policy preempts lower priority jobs in descending orderof their JST (newest-job-first)
until a sufficient number of processors have been freed (lines 11-13). The preempted jobs
are then returned to the placement queues.

Finally, those components for which processors can be claimed at this claiming try
are started (line 15). Synchronization of the start of the components at the JST depends
on the application type and therefore, it is specific to each runner. For example, with the
DRunner, synchronization is achieved by making each component wait on the job barrier
until it hears from all the other components.

WhenT is set to 1, the claiming process becomesatomic, i.e., claiming only succeeds
if for all the job components processors can be claimed.
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Chapter 5

Evaluation of the KOALA Scheduler

The KOALA scheduler comprises the placement and claiming queues, andthe job poli-
cies, which are used to manage the jobs in the queues. The job policies, which have been
presented in Chapter 4, have been designed to address specific issues of the grid infras-
tructure. The Close-to-Files (CF) placement policy addresses the problem of long delays
when starting a job because of long input file transfers, and the Worst-Fit (WF) placement
policy balances the number of idle processors among the clusters while trying to minimize
file transfer times, too. The Incremental Claiming Policy (ICP) on the other hand, tries to
make processors available for job components, if necessaryby finding processors at other
sites than selected by a placement policy or, if permitted, by forcing processor availability
through the preemption of running jobs. All these policies have been designed to enable
co-allocation whenever possible. The performance evaluation of theKOALA job policies
is the subject of Section 5.1.

TheKOALA scheduler needs to deal with the dynamicity of the grid resources and with
reliability problems of grid components to ensure that gridjobs are completed success-
fully. In November 2004, a major upgrade of the operating system (from RedHat version
7.2 to RedHat Enterprise Linux version 3) was done in all DAS-2 clusters. In addition to
the operating system upgrade, the clusters’ local resourcemanager, openPBS, was also
upgraded. Upgrading the operating system prompted some of the important system li-
braries like the Myrinet binaries, which are crucial for communication within a single
cluster, to be rebuilt. Right after this major upgrade, the DAS testbed was very unreliable
and running meaningful experiments was difficult. However,the unreliability of the DAS
during this period provided us with a chance of testingKOALA in a grid-like environment
where the job failure rate is high. In Section 5.2 we present the results of the experiments
with KOALA performed while the DAS testbed was unreliable. All experiments reported
in this chapter were done in the DAS-2 testbed.

Extensive simulation studies of processor co-allocation in multicluster systems have
been presented in a number of publications. In Section 5.3 wediscuss as to what extent
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the results of these simulations and of our experiments can be compared.

5.1 Evaluation of the KOALA Job Policies

In this section we present the experiments we have conductedto assess the performance
of our placement and claiming policies. In the experiments we assess the performance
of these policies on a stable DAS system and when the system was saturated with many
jobs. One of the important things we assess is the level of co-allocation actually used
by the policies when placing jobs. During the experiments, we did not have control over
jobs from local users, which form the so-calledbackground load. In these experiments
we also try to assess the impact of a high background load onKOALA . Sections 5.1.1–
5.1.3 present the setup of the experiments, while Sections 5.1.4–5.1.8 discuss the results
of these experiments.

5.1.1 KOALA setup

In the experiments in this section,KOALA is setup as follows. No limits are imposed
on the number of job placement and claiming tries to avoid forced job failures when the
limits are reached. All jobs have the same priority level andtherefore, only one placement
queue is used. The interval between successive scans of the placement queue is fixed at
1 minute, which as observed inKOALA logs, is a trade-off between too much CPU load
due to excessive scans and too long waiting times of jobs in the placement queue. From
theKOALA logs, it is also observed that for most jobs, claiming is successful at a value of
parameterL determining when to start claiming between 0.5 and 0.75. Hence, the initial
value of theL is set at 0.75. As there are only five clusters in our testbed, we initialize the
history tableH to contain all possible pairs of execution sites and file sites. The parameter
T of our claiming algorithm, described in Section 4.4, is set to 1, so claiming is atomic.
The KRunner was used to submit jobs in these experiments because it was the only runner
available. Using the KRunner makes perfect sense since we want to assess the job policies
only at the scheduler level.

5.1.2 The workload

We put two workloads of jobs to be co-allocated on the DAS-2 that all run the Poisson
application, which has been described in Section 2.3.2, in addition to the regular workload
of the ordinary users. In the workloads, a high priority is assigned to all jobs to give them
equal placement opportunities. Both workloads have 200 jobs, with the first workload
W30 utilizing on average 30% of the whole system and the second,W50, utilizing on
average 50% of the DAS-2. In the workloads, jobs have 1, 2, or 4components requesting
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the same number of processors, which can be 8 or 16. So the total size of the jobs ranges
from 8 to 64. All possibilities for combining the number of components and the number
of processors have equal probability. Each job component requires the same single file of
either 2, 4, or 6 GByte. Again, all possibilities for combining the size of a job and the
file size have equal probability. For the input files we consider two cases, one without file
replication and another with each file randomly replicated in three different sites. Since
the jobs in our workloads were submitted with the KRunner, the version of the Poisson
application which is not grid-enabled is used, which means that the components of a
single job are executed independently of each other. The average execution time of this
application with components of size 8 and 16 is 192.0 and 90.0seconds, respectively.
At the start of the experiments, the numbers of processors inthe DAS clusters were as
shown in Table 5.1. We assume the arrival process of our jobs at the submission site to
be Poisson, where the arrival rate has been calculated usingthe above parameters so that
30% or 50% of the system is utilized. Based on the arrival rateof the jobs, with workload
W30 the last job arrived at around 6500 seconds after the arrivalof the first job, and with
theW50, the last job arrived after 3900 seconds.

Table 5.1: The numbers of processors in the DAS-2 clusters atthe start of the experiments
reported in Section 5.1.

Cluster Location Number of Processors
Vrije University 144

Leiden University 56
University of Amsterdam 56

Delft University 64
Utrecht University 64

5.1.3 Background load

One of the problems we have to deal with is that we do not have control over the back-
ground load imposed on the DAS by other users. These users submit their (non-grid)
jobs straight to the local resource managers, bypassingKOALA . During the experiments,
we monitor this background load and we try to maintain it at 30% in each cluster. Since
maintaining the background load exactly at 30% is impractical due to the dynamicity of
jobs of local users, we allow this value to increase up to 40%.When this utilization falls
below 30% in some cluster, we inject dummy jobs just to keep the processors busy. When
this utilization rises above 40% with some of this utilization contributed by our dummy
jobs, we kill the dummy jobs to lower the utilization to the required range. Our experi-
mental conditions are no longer satisfied if during the experiments, the background load
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in a cluster rises above 40% and stays there for more than a minute. In such a case, the
experiment were aborted and repeated.

5.1.4 Presentation of the results

We will present the results of each experiment in this section with several graphs. The first
of these shows the different utilizations in the system. Here, the background load is the
utilization due to the jobs of the regular DAS-2 users. TheKOALA load is the utilization
due to the co-allocation workload described in Section 5.1.2 without the load incurred
between the Job Claiming Time (JCT) and the Job Start Time (JST). We also show the
Processor Wasted Time (PWT) utilization, which is the fraction of the system capacity
wasted becauseKOALA starts jobs earlier than the JST, and the Processor Gained Time
(PGT) utilization, which is the fraction of the system capacity gained becauseKOALA

does not claim processors immediately when job placement issuccessful. AsKOALA

keeps track of the processors on which it has placed jobs and does not also allocate these
processors to other jobs, the PGT utilization can only be used by local jobs (or jobs
submitted by other grid schedulers), but not by other jobs submitted throughKOALA .

The second graph shows the average Job Placement Time (JPT) and the File Transfer
Time (FTT) (the sum of these two is the Total Waiting Time (TWT)). Only for workload
W30 do we also present more detailed statistics than simply the average of the placement
times. The final graph presents the average numbers of placement and claiming tries.
In these two and in later graphs, we use the notationC × S to indicate jobs withC
components of sizeS. It should be noted here that the results for the different workloads
are presented with different scales to make them better visible.

5.1.5 Results for the workload of 30%

Figure 5.1 shows the different utilizations in the system for the CF and WF policies for
workloadW30. During these experiments, the total utilization is about 70%. Because
the experiments finished shortly after the submission of thelast job and the actual co-
allocation load (KOALA load) is about 30% for both CF and WF with and without repli-
cation, we conclude that the system is stable with workloadW30. It is also shown in this
figure that the utilization wasted while jobs wait for file transfers to complete (PWT) is
about 2%. This percentage is very low compared to the utilization gained by postpon-
ing claiming (PGT), which ranges between 6% and 9%. This shows that our claiming
mechanism, which is described in Section 4.2.2, works well in a stable system.

Figure 5.2 shows that the average job FTT with the CF policy issmaller than with the
WF policy, both with and without replication. Furthermore,with replication, CF is more
successful in finding execution sites “closer” to the file sites, which results in a smaller



65

average job FTT. As a result, the average TWT of the jobs is also reduced. The decrease in
the average job FTT when the files are replicated for CF is expected because the number
of potential execution sites as defined in Section 4.3.1 increases.

We also find in Figure 5.2 that for both placement policies, the average placement
time increases as the number or the size of the job componentsincreases, both with and
without replication. The explanation for this is that more time is likely to be spent waiting
for clusters to have enough processors available simultaneously. Also, as the number of
components increases, the job FTT goes up because more files are likely to be moved.

In order to give more detail, In Figure 5.3 we show more statistics than only the
average of the distribution of the placement times for each job size. In this figure we
observe that the 25th percentile and the median of the placement times of the jobs are
(very close to) zero. On the other hand, the 90th percentile is high for most job sizes.
This means that the average placement times reported in Figure 5.2 are heavily influenced
by few jobs with very high placement times.

Figure 5.4 shows the average number of placement and of claiming tries for different
job sizes. In the figure, the number of placement tries increases as the number or the size
of the job components increases. The increase in the number of placement tries is caused
by the waiting for clusters to have enough processors available simultaneously. This also
contributes to the rise in the average placement time sinceKOALA waits for an interval
of 1 minute between successive scans of the placement queue.The average numbers of
claiming tries for different job sizes with this workload are quite low (around 1). Note
that an average number of claiming tries equal or close to 1 means that we succeed in
claiming an amount of time equal to 0.75× FTT after successful placement according
to the description of Section 4.2.2, and that the PGT utilization is three times the PWT
utilization.

Overall, based on Figures 5.1, 5.2, and 5.4, we conclude thatthe combination of CF
and replication performs best.

5.1.6 Results for the workload of 50%

Figure 5.5 shows the utilizations of our experiments with workloadW50 for CF and WF
with and without replication. Our main purpose with this workload is to see to what
utilization we can drive the system. From the figure we find that the total utilization
during our experiments is between 70% and 80%. However, the actual co-allocation load
is well below 40%, the experiments are only finished long after the last job arrival, and the
length of the placement queue goes up to 30, which shows that the system is saturated. So
we conclude that we can drive the total utilization not higher than what we achieve here.

With this workload and with the CF policy, clusters “close” to files will often be oc-
cupied, forcing more long file transfers. As a result, the average FTT for CF and WF are
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Figure 5.1: The utilizations for the Close-to-Files and Worst-Fit placement policies with
workloadW30.
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Figure 5.2: The average File Transfer Time and Placement Time for the Close-to-Files
(left bars) and Worst-Fit (right bars) placement policies with workloadW30.
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Figure 5.3: Statistics of the placement times for the Close-to-Files and the Worst-Fit
placement policies with workloadW30 (all values are shown but the 25th percentile and
median are (very close to) 0 in many cases).
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Figure 5.4: The average number of placement and claiming tries with workloadW30.
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Figure 5.5: The utilizations for the Close-to-Files and Worst-Fit placement policies with
workloadW50.
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Figure 5.6: The average File Transfer Time and Placement Time for the Close-to-Files
(left bars) and Worst-Fit (right bars) placement policies with workloadW50.
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relatively close to each other both with and without replication as shown in Figure 5.6
(note the different scale from Figure 5.2). Since the systemis saturated with this work-
load, very much time is spent waiting for clusters to have enough processors available
simultaneously. This explains the increase in the average placement times in Figure 5.6
and in the number of placement tries in Figure 5.7 as the number or size of the job compo-
nents increases. However, similarly as with workloadW30, the numbers of claiming tries,
which are between 1 and 3 as shown in Figure 5.7, are still quite low. For this workload
we do no show the distribution of the placement times as with workloadW30 because the
system was saturated and therefore unstable, during these experiments.
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Figure 5.7: The average number of placement and claiming tries with workloadW50.

5.1.7 Assessing the level of co-allocation used

Our placement policies use co-allocation to achieve their primary goals: to minimize the
file transfer times (CF), and to balance the numbers of idle processors (WF). Recall that
both CF and WF are allowed to place different components of the same job on the same
cluster. In order to assess the level of co-allocation actually used by a policy, we introduce
a metric called thejob spread, which for a job is defined as the ratio of the number of its
execution sites and the number of its components (we will express it as a percentage). So
if for a job of four components, all of its components are placed on different clusters, its
job spread is 100%. On the other hand, if all of its componentsare placed on the same
cluster, then its job spread is 25%.

We have done a separate set of experiments to study the average job spread and also
the percentage of jobs that actually use co-allocation. Forthese experiments, we have
created a new workload that utilizes 30% of the system and that consists of jobs with 2
or 4 components of equal sizes (number of processors), whichcan be 4, 8, 16 or 24. In
this workload, each job component requires the same single file of size 2 GByte. Again,
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we do two experiments, one without file replication and the other with files replicated in
three different sites. The results of these experiments areshown in Figure 5.8.
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Figure 5.8: The average job spread (upper graphs) and the percentages of jobs that use
co-allocation (lower graphs).

We first observe that with replication, CF places at least half of the components of
the jobs on separate clusters, which is expected with CF because the number of potential
execution sites increases with replication. Without replication, the average job spread of
CF is slightly less compared to CF with replication because of the decrease in the number
of potential execution sites. Second, the average job spread of WF is not affected by
file replication, which can be explained by the fact that finding execution sites with WF
depends on the numbers of available processors, and the sizeand the distribution of the
background load across the sites. As a result of these two observations and with our
background load, CF with replication uses co-allocation more compared to WF, while
without replication, it is the opposite. Lastly, for the same total job size, the percentage
of jobs using co-allocation increases as the number of job components increases.

5.1.8 The Close-to-Files policy with high background loads

It may be expected that the success of our workaround method for processor reserva-
tion by postponing the claiming of processors depends on thesize and variation of the
background load. In our previous experiments we observed that the average number of
claiming tries, which was between 1 and 3, is quite low, indicating the success of our
workaround method for processor reservation with a background load between 30% and
40%. However, this background load is fairly low. Therefore, to further test this method
we performed experiments with workloadW30 with only CF and with replication while
trying to maintain a background load of 50% or 60% (again employing dummy jobs as
described in Section 5.1.3).
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Figure 5.9 shows the results of these experiments. For both background loads, the
KOALA load (co-allocation load) is much lower than 30%, and the experiments take
(much) more time than expected (the last job arrives at abouttime 6500), and so the
system is saturated. The real total utilization ranges between 75% and 80%, which is
roughly equal to the utilization achieved in the experiments with W50 in Section 5.1.6,
when the system was also saturated.

A high background load is very bad for large jobs. In Figure 5.10.a, with 60% back-
ground load, the average placement time of jobs with 4 components of size 16 is about
3.3 hours! It should be noted that despite long placement times, all jobs finished success-
fully. Figure 5.10.b shows that the numbers of claiming tries are still quite low even with
these much higher background loads, indicating the successof our workaround method
for reservation. It should be noted that the increase in the number of claiming tries has
the positive effect of reducing the PWT in favor of the PGT; the latter is now in the range
of 7 to 20%.
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Figure 5.9: The utilizations for the Close-to-Files placement policy with workloadW30

with different background loads.

5.2 An Evaluation of KOALA in an Unreliable Testbed

In this section we describe the experiments we have conducted to assess our co-allocation
service in an unreliable environment. The experiments weredone on the DAS-2 system
immediately after a major upgrade of the operating system and the local resource manager
(openPBS). Even though the system is homogeneous and centrally managed, it was then
very unstable, and hence unreliable during the experiments. This gave us the opportunity
to evaluate co-allocation withKOALA in a grid-like environment where the job failure
rate is high. The fact that this rate is high even in such an environment shows the strong
need for good fault tolerance mechanisms. Sections 5.2.1 and 5.2.2 describe theKOALA
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Figure 5.10: The average Placement Time and File Transfer Time (left), and the number of
placement and claiming tries (right) of the Close-to-Filesplacement policy with workload
W30 with different background loads.

setup and the workload used in this section. Sections 5.2.3–5.2.5 discuss the results of the
experiments.

5.2.1 KOALA setup

In these experiments, again we did not impose limits on the number of placement and
claiming tries. Like in the experiments of Section 5.1, the parameterL is set at 0.75 but
the interval between successive scans of the placement queues is increased to 4 minutes
in order to decrease the excessive number of scans due to the unreliability of the testbed.
The parameterT of our claiming algorithm is set to 0, so we claim processors for any
number components we can. Also, the decision to assign 0 to parameterT was based
on the variability of the number of processors available. Only jobs of high priority and
low priority are used in these experiments, and in order to see the impact of job priorities
we do not allow jobs to change their priorities by setting parameterP of KOALA to ∞.
The parametersNh andNl are set to 1, the parametersn1 and n2 are set to 1 and 2,
respectively, and the parametersn3 andn4 are set to 1. This setup means we scan the
high placement queue twice before we scan the low placement queue once. All of these
KOALA parameters were explained in Section 4.2.1. The KRunner wasused to submit jobs
in these experiments as it was the only runner available at the time of these experiments.
Also, we wanted to see how theKOALA scheduler copes with the unreliability of the
DAS-2 testbed.
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5.2.2 The workload

In these experiments, we put a workload of 500 jobs to be co-allocated on the DAS that
all run the Poisson application described in Section 2.3.2,in addition to the regular work-
load of the ordinary users. In our experiments, we consider job sizes of 36 and 72, and
four numbers of components, which are 3, 4, 6, and 8. The components request the same
number of processors, which is obtained by dividing the job size by the number of com-
ponents. We restrict the component sizes to be greater than 8, so the jobs of size 72 can
have any of the four number of component, while those of size 36 have 3 or 4 compo-
nents. All possible combinations of number of components and component sizes have
the same probability. Each job component requires the same single file of either 4 or 8
GByte. The input files, which are randomly distributed, are replicated in two sites. The
average execution time of this application with componentsof size 9, 12, 18, and 24 is
99.0, 127.0, 51.0, and 37.0 seconds, respectively, again independent of total job size. We
assume the arrival process of our jobs at the submission siteto be Poisson. At the start
of the experiments, in the DAS clusters the number of processors were as shown in Table
5.2; however, the cluster of Leiden University was not available due to errors. Exactly
repeating these experiments will be very difficult as the same experimental conditions in
terms of the dynamic behavior of the DAS cannot be easily recreated.

Table 5.2: The numbers of processors in the DAS-2 clusters atthe start of the experiments
reported in Section 5.2.

Cluster Location Number of Processors
Vrije University 138

Leiden University 44
University of Amsterdam 48

Delft University 62
Utrecht University 64

5.2.3 Utilization

At the start of the experiment, a total of 312 processors in 4 out of 5 clusters were avail-
able toKOALA for placing jobs. During the experiment, the cluster of Delft University
reported a very high consecutive number of soft errors and was taken out of selection by
KOALA . Soft errors are defined in Section 3.2.2 as execution-site specific errors caused
by hardware or software faults of the execution sites. As a result, the number of proces-
sors available for selection was reduced to 250. The utilizations of these processors by
jobs due to other DAS users and toKOALA are shown in Figure 5.11. In this figure we
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Figure 5.11: The system utilization during the experiment on an unreliable testbed.

see that 80% to 90% of the system was used during the experiment, which shows that
co-allocation can drive the utilization to quite high levels.

5.2.4 Failures

The failures that we report in this section were caused by soft errors of the clusters. The
errors in these experiments were due to bugs in the LRMS (OpenPBS) and to the incorrect
configuration of some of the nodes. Since we are using a co-allocated workload, the
failure of any of the components of a job causes the whole job to fail, and as a result, to be
returned to the placement queue. Figure 5.12.a shows the average failure rate (expressed
as a percentage) for each of the job sizes during the experiments. The failure rate of a job
is calculated as the ratio of its number of failures due to soft errors and the number of its
successful placement tries. By a successful placement try we mean a placement try that
resulted in the job having started its execution. Since in the end, all jobs ran successfully,
the number of failures of a job is equal to the number of successful placement tries minus
one. The percentage of failures is much higher compared to the stable system, where it
was always below 15%. From the figure, we observe more failures for high-priority jobs.
This is expected because more attempts are performed to place, to claim, and therefore to
run these jobs. As a result, more jobs are started simultaneously, which results in some
components to be given mis-configured nodes because most of the time, these nodes are
idle.

The percentage of jobs that were actually co-allocated, i.e., of jobs whose components
were placed on multiple clusters, increases as the number ofjob components increases,
as shown in Figure 5.12.b. It should be noted that the range ofthe percentage of jobs
using co-allocation in this figure is the same as in Figure 5.8. Co-allocation has the effect
of increasing the failure rate because then the chance for components to be placed on
multiple clusters, and hence the chance of failures, increases.
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Figure 5.12: The percentages of failures of jobs of different sizes, and the percentages of
jobs that use co-allocation.

5.2.5 Placement Times and Start Delays

Failed jobs are returned to their respective placement queues inKOALA , which then tries
to re-place these jobs until their execution succeeds. These re-placements result in multi-
ple placement times, which we sum to get the total placement time of a job. The placement
time and the total placement time were defined in Sections 4.2.1 and 4.2.2, respectively.
In Figure 5.13.a we observe an increase in the total placement times of jobs as the number
of components increases. The explanation for this is that with each re-placement, with
the increase in the number of components, more time is likelyto be spent waiting for
clusters to have enough processors available simultaneously. Despite the increase in the
total placement times, all our jobs eventually ran to completion successfully.
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Figure 5.13: The Total Placement Times and Start Delays of jobs.

Jobs of small sizes (e.g., of size 36 shown in Figure 5.13.a) do not suffer from long
waiting times for enough processors to be available. Yet these jobs still require co-
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allocation as shown in Figure 5.12.b, which helps to lower their total placement times.
This is because components of jobs of smaller sizes are used by the scheduler to fill the
“holes” left by the components with big sizes of other jobs.

Figure 5.13.b shows the start delays of jobs of different sizes, which are also affected
by the number of failures and re-placements. As in the above observations, the start delay
increases with the number of components, with high-priority jobs performing better than
low-priority jobs.

Overall, we conclude that splitting jobs into more components does not necessarily
lead to smaller total placement times (e.g., compare job sizes 3X12 and 4X9 in Figure
5.13.a). On the other hand, small jobs still require co-allocation to guarantee smaller total
placement times and start delays. Nevertheless, we cannot conclude that jobs of smaller
sizes perform much better, but rather we can conclude that co-allocation cannot avoid
delaying considerably jobs requesting many processors in an unreliable testbed. Finally,
also in an unreliable system, jobs of high priority out-perform jobs of low priority.

5.3 Relation with Simulation Studies of Co-allocation

Extensive simulation studies of processor co-allocation in multicluster systems such as
the DAS have been performed [34, 36–40], and in this thesis, we present performance
results of co-allocation obtained withKOALA in the DAS-2. This raises the question to
what extent the results of these simulations and of our experiments can be compared, and
if they can be compared, to what extent their results match ordiverge. Below, we will first
review the model used in those simulations, and then we will answer this question.

In the simulations, the influence of many parameters and properties of a model for
processor co-allocation in multicluster systems has been investigated. These parameters
and properties can be divided into three groups:

1. Workload parameters, which are:

(a) The possible structures of the job requests considered are ordered (called fixed
in this thesis), unordered (jobs consisting of multiple components that can go
to any set ofdifferentclusters), or flexible;

(b) The number and the sizes of the job components;

(c) The runtimes of the jobs;

(d) The communication overhead due to the wide-area communication when jobs
are co-allocated;

(e) The arrival process of the jobs, which is always assume tobe Poisson.
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The actual values of the parameters in (b)-(d) are either synthetic, based on traces
of the DAS-2 or of the CTC workload from the Parallel WorkloadArchive [13], or
derived from measurements of application runtimes on the DAS-2.

2. System parameters, which are:

(a) The number and sizes of the clusters;

(b) The heterogeneity of the system: All processors in the whole system are sup-
posed to be identical.

3. The properties of the queuing structure and the scheduling policies, which are de-
fined as follows:

(a) The queueing structure in the system, which can either beonly a single global
queue, only local queues in the clusters through which both local single-
component jobs and jobs that require co-allocation can be submitted, or a
combination of both;

(b) The priority structure when both local and global queuesare present, with
either the local queues or the global queue having priority over the other(s);

(c) The queuing discipline dictating which job from a queue is eligible for
scheduling, which is either First-Come-First-Served (FCFS) or backfilling (no
service time estimates are used but a job can only be overtaken a limited num-
ber of times). However, if both global and local queues are present, the queu-
ing discipline in both is FCFS;

(d) The way the (local and/or global) schedulers are activated, which is event-
based in that this is done when a job arrives or departs;

(e) The scheduling policy for unordered co-allocated jobs,which can, among oth-
ers, be Worst Fit.

The performance metrics used in the simulation studies are the average job response time
(for the local and global queues separately if both are present) and the maximal utilization
that can be achieved. However, the response time is only reported for all job sizes (in terms
of the number of components and component size) together, and not for the different sizes
separately.

We will now discuss the similarities and the differences between the model of mul-
ticluster systems in the simulations and the properties ofKOALA and the DAS-2 while
running the experiments. Our discussion will follow the lines of the division of the pa-
rameters into three groups as above for the simulations:

1. Workloads
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(a) In the experiments withKOALA , only non-fixed job requests are used, the
components of which are allowed to go to the same cluster, as opposed to
unordered jobs in the simulations;

(b) The sizes of the jobs in the simulations are different from those in the experi-
ments;

(c) The runtimes of the applications in the simulations are different from those in
the experiments;

(d) The communication overhead due to the wide-area communication is of
course included in the experiments as real jobs are executedin the DAS-2;

(e) In both the simulations and the experiments, the arrivalprocess of jobs is
Poisson.

2. System

(a) Except for a few simulations in which the influence of having different cluster
sizes in the system is assessed, all simulation results are for a system with 4
clusters of size 32 each;

(b) All processors in the DAS-2 are identical.

3. Queues and policies

(a) In the experiments, there is a background load due to jobssubmitted locally in
the clusters through the local cluster managers in additionto the co-allocation
workload submitted throughKOALA , which corresponds to the queuing struc-
ture in the simulations with both a global queue and with local queues;

(b) With KOALA , jobs that need co-allocation are only placed on the system when
the processors they require are immediately available, which means that in
the terms of the simulation model, in the experiments the local queues have
priority;

(c) In KOALA , the placement queues are scanned for any jobs that may fit on
the system, which resembles the type of backfilling employedin the simula-
tions. However, inKOALA there is no limit to the number of times a job in the
(global) placement queues can be overtaken;

(d) Scheduling inKOALA is time-based in that the placement queues are scanned
periodically;

(e) In the simulations, no input files or data co-allocation are considered, which
means that WF is the only policy that has been considered in both settings.
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From this comparison of the simulation model and the properties of KOALA and the
DAS-2, we draw two conclusions. First, even though the simulation studies targeted the
(idealized) operation of a system like the DAS with a co-allocation-enabled scheduler, the
process of designing and implementing an actual scheduler in an actual system has led to
design choices that make the actual scheduler deviate in many respects from the simulated
scheduler. Secondly, we conclude that none of the instantiations of the simulation model
corresponds well to the operation ofKOALA in the DAS. On the one hand, we would have
to take the simulation model with both global and local queues as there is background
load in the DAS, but on the other hand, in that case FCFS is employed in the global queue
in the simulations versus the version of backfilling inKOALA . Even if we argue that
because we keep the background load in the DAS stable and so wecan assume that the
experimental results hold for a smaller system in which the parts of the clusters used by
the local jobs are taken away, we still cannot make meaningful comparisons as the notions
of unordered jobs in the simulations and of non-fixed jobs in the experiments are not the
same.

5.4 Conclusions

In this chapter, we have evaluated the performance of theKOALA job policies that imple-
ment our co-allocation service. We have also presented the results of a performance and
reliability test ofKOALA while the DAS-2 testbed was unstable. The main conclusions of
this chapter are as follows:

1. TheKOALA scheduler operates correctly and reliably both in a stable and an unsta-
ble testbed.

2. The combination of the Close-to-Files placement policy and replication is benefi-
cial.

3. In the absence of advance processor reservation in the LRMSs, the Incremental
Claiming Policy can be used without wasting much processor time.

4. With co-allocation and with the job sizes similar to the ones used in this chapter,
the utilization in a multicluster system like the DAS can be driven to about 80%.

5. Many jobs, including relatively small ones, use co-allocation when given the
chance.

6. Even with high failure rates,KOALA succeeds in getting all jobs submitted to com-
plete successfully.
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Chapter 6

Evaluation of the KOALA Runners

In Section 3.3 we have presented the threeKOALA runners which are currently opera-
tional, namely the KRunner, which isKOALA ’s default runner capable of running appli-
cation types that do not have any special requirements, the DRunner, which is the spe-
cialized runner for grid-enabled Message Passing Interface (MPI) jobs, and the IRunner,
which is designed to run Ibis applications. All of these runners support processor co-
allocation, i.e., the spreading of applications across multiple sites in a grid. We have done
experiments to evaluate the performance of these runners inthe DAS-2 testbed and we
present the results of these experiments in this chapter. Webegin this chapter by describ-
ing the experimental setup in Section 6.1 followed by the results of these experiments in
Section 6.2.

6.1 Experimental Setup

In this section we describe the setup of the experiments we have done to assess the opera-
tion of the runners. Section 6.1.1 presents two workloads that we impose on the DAS, and
Section 6.1.2 describes the performance metrics that we record during the experiments.

6.1.1 The workloads

In our experiments, we use two workloads,Wnc andWc, which are a non co-allocated
and a co-allocated workload, respectively. The jobs in these workloads have job sizes and
numbers of components as shown in Table 6.1. Applications can have any of the job sizes
in this table, and inWc any of the corresponding number of components. The components
are of equal size, which is obtained by dividing the job size by the number of components.
For a single job, its size (number of processors) and number of components are picked at
random and uniformly. Based on this, we generate the two workloadsWnc with 400 non
co-allocated jobs andWc with 400 co-allocated jobs.
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Table 6.1: The job sizes and the corresponding numbers of components in the two work-
loadsWnc andWc.

Job Size Number of Components
Wnc Wc

8 1 2, 4
32 1 4, 8
48 1 6, 12

In this experiments there is the workload of the ordinary users (background load),
which again we try to maintain between 30% and 40% as described in Section 5.1.3. We
have run the two workloads twice on the DAS. In the first run, each job in the workloads
runs one of the three MPI applications, the Poisson application, the Fiber Tracking (FT),
and the Lagrangian Particle Model (LPM) described in Section 2.3.2, and in the second
run, each job runs one of the three Ibis applications, the N-Queens, the Raytracer, and the
red/black Successive Over Relaxation (SOR) application, also described in Section 2.3.2.
An application for each job in each run is picked at random anduniformly. The MPI jobs
with a single component inWnc are non-grid enabled and therefore are submitted with the
KRunner. The MPI jobs inWc are grid-enabled and therefore, they are submitted with the
DRunner. All the Ibis jobs are submitted with the IRunner. Asa consequence, we test all
three runners in our experiments. We assume the arrival process of our jobs to be Poisson
with a mean arrival rate of 2.4 jobs per minute.

The experimental conditions for workload generation, workload submission, and the
background load stated above together with the applicationruntimes as reported in Sec-
tion 6.2.1 are sufficient for repeating our experiments.

6.1.2 Performance metrics

In total we perform four experiments, one for each workload for either MPI or Ibis jobs.
During the experiments we record the following performancemetrics:

• The runtime , which is the duration of the execution from when a job is started to
its termination.

• Thethroughput , i.e., the number of successfully started jobs per unit of time.

• The cumulative number of jobs, which is the accumulated number of jobs that
have run and the ones which are still running up to a certain time within the
makespan of the experiment.

• The DASutilization due to background jobs and due to the jobs in our experiment
separately.



83

• The applicationStart Time Overhead (STO), which is the overhead incurred from
when the runner starts deploying a job for execution until the time the job is actually
running. This overhead also includes the time that the job spends being processed
by the LRMS (SGE in our case). It should be noted that our jobs are never queued
in the LRMSs becauseKOALA places the job components on execution sites with
enough idle processors to execute the jobs immediately.

• Thenumber of failures, which is the number of failures due to soft errors resulting
in a job being returned to theKOALA scheduler and its placement being retried.

6.2 Performance Results

In Sections 6.2.1–6.2.5 we present the results of the experiments we have conducted on the
DAS to assess the performance of theKOALA runners. During the experiments, the DAS
clusters had the numbers of processors as shown in Table 6.2.During our experiments
there were jobs of other DAS users using some of these processors, which resulted in only
two clusters being able to run jobs of size 48.

Table 6.2: The numbers of the processors in the DAS-2 clusters at the start of the experi-
ments reported in Section 6.2.

Cluster Location Number of Processors
Vrije University 134

Leiden University 36
University of Amsterdam 32

Delft University 60
Utrecht University 50

6.2.1 Runtimes

Figure 6.1 shows the average runtimes of the applications during the experiments with
workloadsWnc andWc. As expected in parallel processing, the average runtimes of the
applications decrease as the number of processors goes up. For the LPM application
submitted in workloadWc, its runtime increases considerably with the increase in the
number of components. For instance, running this application with 4 components of size
12 instead of with a single component of size 48, makes the average runtime go from 35 to
218 seconds. This is because the LPM application is communication intensive (with many
“many-to-many” communication patterns) and therefore, its average runtime is affected
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Figure 6.1: The average runtimes of the applications in workloadsWnc andWc submitted
with the runners.

by the slow wide-area communication. Also the average runtime of the Satin jobs (N-
Queens and Raytracer) with many components (8 and 12) is affected by the slow wide-
area communication. This is because in Satin, the work is distributed across the processors
by work stealing: when a processor runs out of work, it picks another processor, possibly
in a different cluster, at random and steals a job from it. Of the two Satin applications, the
Raytracer application is affected the most by the slow wide-area communication since it
sends more data [96].

6.2.2 Throughput and cumulative number of jobs

Figure 6.2 shows the throughputs and the cumulative numbersof jobs of the three runners
with workloadsWnc andWc. In these experiments, the last job was submitted at 10800
seconds, which is somewhat higher than the expected time of 10000 seconds. This is
due to the CPU load of the submission site which, when it reaches a certain threshold,
deliberately delays the job submissions to decrease this load. From the figure we observe
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Figure 6.2: The throughput (upper graphs) and the cumulative number of jobs (lower
graphs) of the runners with workloadsWnc andWc.

that the average throughput of both the KRunner and the DRunner is around 2 jobs per
minute, which means that the system is close to being stable.

For the IRunner with workloadWnc after the submission of the last job, the throughput
falls below a job per minute. The reason for the low throughput is the way the background
load is distributed among the clusters. During this experiment, the local jobs that we did
not have control over were distributed in such a way that onlyone job of size 48 could
run at a time. During the experiments with this workload, application-specific errors were
observed which caused further delay in executing jobs of size 48. Figure 6.2.c clearly
shows that at the end of the job submissions, only jobs of size48 are still in the queue.

The IRunner with workloadWc has a throughput of slightly less than 2 jobs per
minute. This is caused by the components of the Satin jobs that have failed to join their
respective computations and end up running as redundant copies of jobs. As a result,
processors are held longer than expected and therefore, thethroughput decreases. Also,
during this run, application-specific errors were observedwhich caused applications to
hang while holding processors. The jobs of these applications were eventually aborted by
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Figure 6.3: The utilizations of the system for the differentrunners with workloadsWnc

andWc.

KOALA after a runtime of 15 minutes, which is the default for all jobs submitted to the
DAS, has expired.

The cumulative numbers of jobs for workloadWc show that the jobs of all sizes are
executed equally, which shows the advantage of co-allocation. The situation is different
for workloadWnc because of the same reason given above for the throughput.

6.2.3 Utilization

Figure 6.3 shows the utilizations of the DAS for the three runners with workloadsWnc

andWc. In this figure we see that the total load with workloadWc varies between 70%
and 80%, which is higher than the total load with workloadWnc, which varies between
60% and 70%. This is because components of the co-allocated workloadWc have smaller
sizes and therefore, are more easily placed by theKOALA scheduler. The components with
smaller sizes are used by the scheduler to fill the “holes” left by the components with big
sizes. As a result, the utilizations with workloadWc are high compared to those withWnc.
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Figure 6.4: The average Start Time Overhead of the runners with workloadsWnc andWc.

For the IRunner with both workloadsWnc andWc, the experiments run longer because of
the lower throughputs. Also, the longer tail in Figure 6.3.cfor the IRunner with workload
Wnc is evidence of the application-specific errors explained inSection 3.2.2.

6.2.4 Start Time Overhead

The Start time Overhead (STO) is an important metric for the runners since it reports the
delay of the execution of jobs caused by the middleware. In Figure 6.4 we observe that the
average STO increases with the number of components per job size with workloadWc.
The increase in the number of components causes an increase in the number of GRAM
instances at the head node of the submission site as well as anincrease in the number of
GRAM job managers at the head nodes of the execution sites. This means that the head
nodes are being used heavily and therefore, their response times are correspondingly slow.
As a result, there are delays in the synchronization of the start of job components, which
results in an increase in the STO. The IRunner with workloadWc has an average STO that
is slightly higher than for the DRunner since the nameservers (one for each running job)
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are also running at the head node of the submission site. For workloadWnc, the average
STO is much smaller.
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Figure 6.5: The average Start Time Overhead of the runners with workloadsWnc andWc

with a mean arrival rate of 4 jobs per minute.

The above experiments were done in a stable system. In order to make observations of
the average STO in an unstable system, we have repeated the experiments with an arrival
rate of 4 jobs per minute instead of 2.4. At this arrival rate we observe no increase in
the throughput of the runners compared to the throughput with an arrival rate of 2.4 jobs
per minute, which indicates that the system is now unstable.Despite observing the same
throughput as in a stable system, the average STO has increased for both workloads as
can be seen in Figure 6.5. This is to be expected because thereare more runner instances
of jobs that are waiting to be placed, and of jobs that are executing at the head node of the
submission site, which increases the load of the head node.
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6.2.5 Number of failures

The average number of failures per job we observed during theexperiments with the
runners reported on above is less than 0.05, which is very low. To observe better the
number of failures, we repeated the experiments multiple times over a period of one month
(in total 16,000 jobs were submitted). We show the average ofthe number of failures per
job for all job sizes in Figure 6.6. Again, we emphasize that all jobs successfully ran to
completion in the end.

Overall, these numbers are very low. This is because the softerrors that caused failures
were solved easily by theKOALA fault tolerance mechanisms (see Section 3.2.2). These
mechanisms were not so successful with jobs of size 48 in workloadWnc because failed
jobs of this size were usually restarted on the same cluster that they previously ran on.
Clearly, this problem did not occur for co-allocated jobs oftotal size 48, which again
shows the benefit of co-allocation.
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Figure 6.6: The average number of failures per job over the period of one month (the
failure rates for all job sizes are shown, but some are (very close to) 0).
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6.3 Conclusions

In this chapter, we have presented the experiments done to assess theKOALA runners on
the DAS-2 testbed. The main conclusions of this chapter are as follows:

1. The runners operate correctly in the DAS testbed.

2. Jobs of all sizes are executed equally when co-allocationis used, whereas without
co-allocation large jobs may be delayed considerably.

3. The overhead in the middleware when starting jobs is strongly influenced by the
load of the head nodes of the clusters on which this middleware runs.

4. TheKOALA fault tolerance mechanisms minimize the number of failurescaused by
hardware and software faults of the execution sites.
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Chapter 7

Conclusion

In this thesis, we have studied the problem of co-allocationin grids, i.e., the allocation
of both processors and data to single applications in multiple sites and the simultaneous
access to these resources by the applications. As stated in Chapter 1, the co-allocation
problem leads to the following challenges of grid resource management: allocating re-
sources in multiple sites, guaranteeing the simultaneous availability of the co-allocated
resources when they are about to be accessed by the applications, and managing sets of
highly dynamic grid resources. Also, we have addressed the challenge of automating the
deployment of different application types on the grid, which is difficult because of the
characteristics of the grid applications and of the grid infrastructure.

In Section 7.1 we summarize the approach we have used to address the mentioned
challenges. We present our conclusions in Section 7.2 and finally, in Section 7.3 we
describe open research questions.

7.1 Approach

In order to deal with the challenges of grid resource management and of deploying grid
applications, we have developedKOALA , a Grid Resource Management System, we have
deployed it on the DAS, and we have done extensive experiments with it. KOALA has
proven to be working reliably on the DAS testbed with over 500,000 jobs already submit-
ted with it. The architecture ofKOALA consists of two major layers, namely, theKOALA

scheduler and the runners, which are job submission and monitoring tools. When design-
ing KOALA , arriving at the two layers of the scheduler and the runners was not straight-
forward; the development ofKOALA started with a monolithic single-layered scheduler
called PDCA on the DAS-2. However, the need to increase our research domain to in-
clude research in grid application types such as workflows, Parameter Sweep Applications
(PSAs) and Bags-of-Tasks (BoTs), and in grid benchmarking,forced us into re-designing
and re-implementingKOALA using the layered approach, which has proved to be more
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flexible, stable, and reliable than the monolithic structure we started with. With this ap-
proach, adding support for new application types has now been easy and does not disturb
the operation ofKOALA , contrary to our initial design.

TheKOALA scheduler addresses the challenge of allocating resourcesin multiple sites
with its Close-to-Files (CF) and Worst Fit (WF) policies. CFhas been designed to mini-
mize the long delays when starting a job because of long inputfile transfers by selecting
the execution sites of its components close to sites where their input files are located. On
the other hand, the WF policy has been designed to balance processor usage among the
clusters and if possible, to minimize file transfer times as well. To guarantee the simulta-
neous availability of the co-allocated resources, theKOALA scheduler has the Incremental
Claiming Policy (ICP), which is used in the absence of support for advance processor
reservation by the Local Resource Management Systems. ICP tries to make processors
available for job components, if necessary by finding processors at other sites than previ-
ously allocated or, if permitted, by forcing processor availability through the preemption
of running jobs.

The runners framework addresses the challenge of deployinggrid applications through
the use of theKOALA runners, which are job submission and monitoring tools. Dueto
the modularity of the design of the runners framework, different runners can be written to
support the unique characteristics of different applications with ease. The runners frame-
work has been designed with fault tolerance mechanisms thatdeal with the reliability
issues of the grid infrastructure. The runners framework and the scheduler work together
to manage sets of highly dynamic grid resources.

KOALA , which has been operational on the DAS-2 testbed since September 2005 and
on the DAS-3 since May 2007, has been used successfully in different projects on the
DAS. Because of its modular structure and its ease of use,KOALA has become a tool to
be used in new research. For example, at the time of writing ofthis thesis, there is ongoing
work in the University of Amsterdam in extendingKOALA to support the scheduling of
light paths of the optical network in order provide more bandwidth when transferring large
files. Other ongoing work withKOALA includes the development of a Grid Application
Toolkit (GAT) [1] adaptor forKOALA at the Vrije University, and the addition of cycle
scavenging support toKOALA .

7.2 Conclusions

Based on the research reported in this thesis, we draw the following major conclusions:

1. Co-allocation is a useful mechanism in Grid Resource Management Systems. With
the use of co-allocation, it is possible to run jobs that require more processors than
are available at any single grid site, or jobs that require resources distributed at
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different sites. On the down side, wide-area communicationstill has a huge impact
on the runtimes of communication-intensive applications.However, with the rapid
advance in optical network technology, this problem may soon be manageable.

2. It is possible to implement reliable co-allocation mechanisms in a Grid Resource
Management System.

3. When developing a Grid Resource Management System, a layered architecture is
recommended over a monolithic single-layered scheduler. With a layered architec-
ture, support for new application types can be added with ease and without disturb-
ing the operation of the Grid Resource Management System.

4. Based on a layered architecture, running grid applications is simplified by separat-
ing application scheduling from application deployment. This allows application
programmers to focus on application development without worrying about grid re-
source management.

5. Grid resources are hardly reliable, which is evident evenin a homogeneous testbed
like DAS-2, which is centrally managed. Therefore, designing reliable mechanisms
and studying them through experimentation in real environments, is very important.

6. Our experiences obtained by running experiments have shown the correct and re-
liable operation ofKOALA with its co-allocation and job deployment mechanisms,
both in stable and unstable testbeds.

7.3 Open Research Questions

Although KOALA has been tested thoroughly and is currently a fully operational Grid
Resource Management System, the following five issues stillneed to be addressed:

1. Our scheduler design has been restricted to a single global scheduler which may
introduce a bottleneck like any centralized component deployed in larger grids than
the DAS. Approaches that consider distributed global grid schedulers need to be
investigated.

2. Our scheduling policies work well in a homogeneous environment. In a heteroge-
neous environment, these policies need to be extended to include more parameters
such as processor speed when making scheduling decisions.

3. An extensive performance study of the policies and theKOALA scheduler is re-
quired in a heterogeneous environment such as when interconnecting the DAS-3
and Grid’5000 [43].
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4. Different approaches for data scheduling are still required inKOALA , e.g., segment-
ing large input files and scheduling the transfers of only thechunks required by the
job components as a means to minimize the transfer times and the storage space.

5. More runners for other application types that we are currently not supporting need
to be added.

6. The fault tolerance mechanisms in the runners framework need to be extended to
tolerate more types of faults, e.g., tolerating submissionsite crashes and file-transfer
failures. In addition, a more extensive performance study of the runners, preferably
in a heterogeneous grid environment, is required.
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Summary

Grid computing is an emerging form of distributed computing, distinguished from tradi-
tional forms by its focus on large-scale, multi-organizational resource sharing and inno-
vative applications. Like any computing infrastructure, the grid infrastructure is made up
of hardware and software, which have been advancing rapidly. This advance is facilitated
greatly by innovations in building fast and powerful commodity computers and networks,
which has been accompanied by a drop in their prices. Also, the software technology
for building key components of the grid software infrastructure has become easier to use
and more robust. These key components include software for building single-cluster and
multicluster systems, and grid middleware. Multicluster systems are formed by joining
multiple, geographically distributed clusters interconnected by high-speed wide-area net-
works. Grid middleware offers transparent access to a wide variety of distributed grid
resources to users. Through the use of the grid middleware bymeans of the simple in-
terfaces it provides, a normal user does not have to know the technical details on how to
access these resources. The advance of the grid infrastructure and what it is promising to
offer has resulted in new grid applications and grid application types that are attempting
to take advantage of the grid.

Grids need high-level schedulers that can be used to manage resources across multi-
ple organizations; we call such schedulers Grid Resource Management Systems (GRMS).
GRMSs do not actually own the resources of grids, and neitherdo they have full control
over the jobs that are running in grids. This makes resource management by GRMSs
very difficult. An important possible requirement to a GRMS is to supportco-allocation,
i.e., the simultaneous or coordinated access of single applications to resources of possibly
multiple types in multiple locations. Co-allocation presents new challenges to resource
management in grids. These challenges include allocating resources in multiple sites,
guaranteeing the simultaneous availability of the co-allocated resources when they are
about to be accessed by the applications, and managing sets of highly dynamic grid re-
sources. To deploy jobs on the resources they have been allocated by a grid scheduler,
good job deployment mechanisms are required. The emergenceof new applications types
which have unique characteristics and of the grid infrastructure itself poses the challenge
of deploying jobs in grids.
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In this thesis we address the challenges of co-allocation and of grid application de-
ployment. For this purpose we have designed and implementedthe KOALA GRMS,
which has been deployed on the second and third generations of the Distributed ASCI
Supercomputer (DAS). The DAS is a multicluster system consisting of five geographi-
cally distributed clusters interconnected by a high speed network in four universities in
the Netherlands.KOALA has proven to be working reliably on the DAS testbed with over
500,000 jobs already submitted successfully with it.

In Chapter 1 of this thesis we introduce the problem of grid resource management,
and in particular, we state the challenges of co-allocationand application deployment in
grids that we address in this thesis. In Chapter 2 we describein detail the background on
grids that is required to read this thesis. In addition, we present our model for resource
management and co-allocation in grids.

In Chapter 3 we describe the design of theKOALA GRMS. The architecture ofKOALA

consists of three major layers, namely, the scheduler, the runners framework, and the
runners, which are job submission and monitoring tools for specific application types.
The scheduler is equipped with placement policies that are used to place jobs on suitable
execution sites, and with a claiming policy that is used to claim processors for jobs at
their scheduled start times. The runners framework hides the heterogeneity of the grid
by providing a set of functions to the runners for commonly used grid job submission
operations. The runners framework simplifies the development of runners and therefore,
it encourages the addition of runners for different application types.

In Chapter 4 theKOALA job policies are discussed. These job policies are the Close-
to-Files (CF) and the Worst-Fit (WF) policies, which are placement policies, and the
Incremental Claiming Policy (ICP), which is a claiming policy. The placement policies
address the co-allocation challenge of the simultaneous allocation of resources in multi-
ple sites to single jobs. The CF policy has been designed to minimize the delays when
starting a job caused by long input file transfers, and the WF policy has been designed
to balance processor usage among the clusters and if possible to minimize file transfer
times as well. The claiming policy addresses the co-allocation challenge of guaranteeing
the simultaneous availability of the processors in the absence of advance processor reser-
vations. The ICP policy tries to make processors available for jobs, if needed by finding
processors at other sites than where they were allocated or,if permitted, by forcing pro-
cessor availability through preemption of running jobs.

Chapters 5 and 6 present the results of the experiments we have conducted in the
DAS to assess the operation of theKOALA job policies and theKOALA runners. The re-
sults show that indeed a reliable co-allocating grid scheduler can actually be designed,
implemented, and deployed in a multicluster system, that co-allocation is a useful mech-
anism to have in a GRMS, and that enabling grid applications is simplified by separating
scheduling from application deployment. We have also learned that grid resources are
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hardly reliable, which was evident even in a homogeneous testbed like DAS-2, which is
centrally managed. Therefore, designing reliable mechanisms and studying them through
experimentation in real environments, is very important.
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Samenvatting

Grid computing is een opkomende vorm van distributed computing die zich van tradi-
tionele vormen onderscheidt door een focus op het grootschalige, multi-organisationele,
gemeenschappelijke gebruik vanresourcesen op innovatieve applicaties. Zoals iedere
computerinfrastructuur, bestaat de grid-infrastructuuruit hardware en software, en in
beide worden grote vorderingen gemaakt. Deze vorderingen worden mogelijk gemaakt
door innovaties in het bouwen van snelle en krachtige standaard-computers en standaard-
netwerken, hetgeen gepaard gaat met grote prijsdalingen. Ook wordt de software-
technologie voor het bouwen van de sleutelcomponenten van de software-infrastructuur
van grids steeds gemakkelijker in het gebruik en steeds robuuster. Deze sleutelcompo-
nenten omvatten software voor het bouwen van multiclustersystemen en grid middle-
ware. Multiclustersystemen worden gevormd door het samenvoegen van meerdere ge-
ografisch gespreide clusters die verbonden worden door snelle wide-areanetwerken. Grid
middleware biedt transparante toegang tot een verscheidenheid aan gedistribueerde grid-
resourcesaan de gebruikers. Door het gebruik van grid middleware via de eenvoudige
interfaces die het biedt, hoeft een gewone gebruiker geen kennis te hebben van de tech-
nische details van de toegang tot deresources. De vooruitgang van de grid-infrastructuur
heeft geresulteerd in nieuwe (typen van) grid-applicatiesdie proberen de mogelijkheden
van grids uit te buiten.

Grids hebben hoog-niveau schedulers nodig die gebruikt kunnen worden omresources
te beheren die in het bezit zijn van meerdere organisaties; zulke schedulers worden wel
Grid Resource Management Systemen (GRMS) genoemd. Een GRMSbezit deresources
niet werkelijk zelf, en ook heeft zo’n systeem niet de volledige controle over de jobs
die in een grid worden uitgevoerd. Dit maakt het beheer vanresourcesdoor een GRMS
erg moeilijk. Een belangrijke mogelijke eis aan een GRMS is om co-allocatiete onder-
steunen, d.w.z. de gelijktijdige of gecoördineerde toegang van een enkele applicatie tot
resourcesvan mogelijkerwijs meerdere types op meerdere locaties. Co-allocatie brengt
nieuwe uitdagingen voor het beheer vanresourcesin grids met zich mee. Deze uitda-
gingen zijn onder meer het toewijzen vanresourcesop meerdere locaties, het garanderen
van de gelijktijdige beschikbaarheid van deresourcesdie met co-allocatie toegewezen
zijn op het moment dat een applicatie ze wil gaan gebruiken, en het beheren van de zeer
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dynamische gridresources. Voor het activeren van jobs op deresourcesdie door een
grid scheduler zijn toegewezen zijn goede mechanismen vereist. Het ontstaan van nieuwe
typen applicaties met ieder hun eigen karakteristieken en van de grid-infrastructuur zelf
leidt tot de uitdaging van het activeren van jobs in grids.

In dit proefschrift gaan we de uitdagingen aan van co-allocatie en van het activeren van
jobs in grids. Hiertoe hebben we hetKOALA GRMS ontworpen en geı̈mplementeerd, dat
geı̈nstalleerd is op de tweede en derde generatie van de Distributed ASCI Supercomputer
(DAS). De DAS is een multiclustersysteem dat bestaat uit vijf geografisch gespreide clus-
ters verbonden door een snel netwerk bij vier universiteiten in Nederland.KOALA heeft
bewezen dat het betrouwbaar functioneert op de DAS; tot nu toe zijn al meer dan 500.000
jobs viaKOALA aan de DAS aangeboden.

In Hoofdstuk 1 van dit proefschrift introduceren we het probleem van het beheer van
grid resources, en in het bijzonder formuleren we de uitdagingen van co-allocatie en van
het activeren van applicaties in grids die we in dit proefschrift aangaan. In Hoofdstuk 2
beschrijven we in detail het benodigde achtergrondmateriaal om dit proefschrift te lezen.

In Hoofdstuk 3 presenteren we het ontwerp van hetKOALA GRMS. De architectuur
vanKOALA bestaat uit drie lagen, nl. de scheduler, hetrunners framework, en derunners;
deze laatste zijn software-componenten voor het aanbiedenen het volgen van de executie
van specifieke typen applicaties. De scheduler is uitgerustmet placement policiesvoor
het toewijzen van geschikteexecution sites, en van eenclaiming policyvoor het opeisen
van processoren ten behoeve van jobs als deze daadwerkelijkwillen starten. Hetrunners
frameworkschermt de heterogeniteit van het grid af door een verzameling functies aan
derunnerster beschikking te stellen voor veel voorkomende operatiesvoor het activeren
van grid jobs. Hetrunners frameworkvereenvoudigt de ontwikkeling vanrunners, en
stimuleert zodoende de toevoeging vanrunnersvoor verschillende typen applicaties.

In Hoofdstuk 4 worden dejob policiesvan KOALA besproken; deze zijn deplace-
ment policies Close-to-Files(CF) enWorst-Fit(WF), en deIncremental Claiming Policy
(ICP) voor het opeisen van toegewezen processoren. Deplacement policiesvormen een
antwoord op de uitdaging van de voor co-allocatie vereiste gelijktijdige toewijzing van
resourcesin meerdere locaties aan een enkele job. DepolicyCF is ontworpen om de ver-
traging in het starten van een job veroorzaakt door het overbrengen van invoerbestanden
te minimaliseren, en depolicy WF is ontworpen om het processorgebruik tussen de clus-
ters in balans te houden en indien mogelijk ook de tijd nodig voor het overbrengen van
bestanden te minimaliseren. Declaiming policyvormt een antwoord op de uitdaging van
de voor co-allocatie vereiste garantie van de gelijktijdige beschikbaarheid van proces-
soren als er geen mechanismen aanwezig zijn om processoren te reserveren. Depolicy
ICP probeert processoren beschikbaar te maken voor jobs, indien nodig door processoren
te vinden op andere locaties dan waar deze oorspronkelijk waren toegewezen of, indien
toegestaan, door de beschikbaarheid van processoren af te dwingen via de pre-emptie van
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draaiende jobs.
Hoofdstukken 5 en 6 presenteren de resultaten van de experimenten die we in de

DAS hebben uitgevoerd om de werking te beoordelen van dejob policiesen derunners
van KOALA . De resultaten tonen aan dat het inderdaad mogelijk is om eenbetrouwbare
grid scheduler die co-allocatie ondersteunt te ontwerpen,te implementeren, te installeren,
en te gebruiken in een multiclustersysteem, dat co-allocatie een nuttig mechanisme is
in een GRMS, en dat het executeren van grid-applicaties vereenvoudigd wordt door de
scheduling van deze applicaties te scheiden van het activeren ervan. We hebben ook
ondervonden dat grid resources niet erg betrouwbaar zijn, hetgeen zelfs het geval is in
de DAS, die centraal beheerd wordt. Derhalve is het erg belangrijk om betrouwbare
mechanismen te ontwerpen en met behulp van experimenten in een werkelijke omgeving
te bestuderen.
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