
 
 

Delft University of Technology

Efficient Methodology for ISO26262 Functional Safety Verification

Silva, Felipe Augusto Da; Bagbaba, Ahmet Cagri; Hamdioui, Said; Sauer, Christian

DOI
10.1109/IOLTS.2019.8854449
Publication date
2019
Document Version
Accepted author manuscript
Published in
2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design, IOLTS 2019

Citation (APA)
Silva, F. A. D., Bagbaba, A. C., Hamdioui, S., & Sauer, C. (2019). Efficient Methodology for ISO26262
Functional Safety Verification. In D. Gizopoulos, D. Alexandrescu, P. Papavramidou, & M. Maniatakos
(Eds.), 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design, IOLTS
2019 (pp. 255-256). Article 8854449 (2019 IEEE 25th International Symposium on On-Line Testing and
Robust System Design, IOLTS 2019). IEEE. https://doi.org/10.1109/IOLTS.2019.8854449
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IOLTS.2019.8854449
https://doi.org/10.1109/IOLTS.2019.8854449


Efficient Methodology for ISO26262 Functional Safety Verification

Felipe Augusto da Silva1,2, Ahmet Cagri Bagbaba1, Said Hamdioui2 and Christian Sauer1
1Cadence Design Systems, Feldkirchen, Germany

2Delft University of Technology, Delft, The Netherlands

Abstract— Tolerance to random hardware failures, required
by ISO26262, entails accurate design behavior analysis, com-
plex Verification Environments and expensive Fault Injection
campaigns. This paper proposes a methodology combining
the strengths of Automatic Test Pattern Generators (ATPG),
Formal Methods and Fault Injection Simulation to decrease
the efforts of Functional Safety Verification. Our methodology
results in a fast-deployed Fault Injection environment achieving
Fault detection rates higher than 99% on the tested designs.
In addition, ISO26262 Tool Confidence level is improved by a
fault analysis report that allows verification of malfunctions in
the outputs of the tools.

Keywords - ISO26262; Fault Injection Simulation; Formal
Methods; ATPG; Functional Safety.

I. INTRODUCTION

Functional Safety Verification is one of the most chal-
lenging steps for Integrated Circuit (IC) compliance with
ISO26262. In safety-critical applications the system must
include Safety Mechanisms being able to detect up to 99%
of the random faults susceptive of the design. In addition,
ISO26262 requires that all possible malfunctions of tools
(used during fault analysis) have to be considered as per Tool
Qualification requirements [1]. Therefore, there is a high
demand for effective Functional Safety Verification method-
ologies allowing the reduction of costs while maintaining the
same levels of safety.

The commonly used method for Functional Safety Verifi-
cation is Fault Injection (FI) Simulation [2][3]. The purpose
is to show that fault effects can propagate to outputs and
that Safety Mechanisms can detect them. In order to cause
propagation of all faults, complex verification environments
with numerous test inputs are required, resulting in long
FI Campaigns. To address this challenge, we can deploy
different verification technologies in a single methodology.
Methodologies applying Formal Methods to identify faults
that cannot propagate to outputs of the design (Safe faults)
[4][5][6], and ATPG techniques to generate test patterns that
potentialize fault propagation [7][8] have been proposed.
Even though Simulation, Formal Methods and ATPG have
complementary strengths, to the best of our knowledge, they
were not previously combined in a single fault analysis flow
that aims at fault propagation for compliance to ISO26262
requirements.

Our work takes advantage of three different technologies
aiming to achieve high fault detection rates while decreasing

This project has received funding from the European Unions Horizon
2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement No 722325.

the efforts of traditional FI Campaigns. ATPG is used for
fast deployment of a verification environment that provides
high fault propagation rate. The outputs from ATPG are used
by the FI Simulator, for verifying the functional behavior of
the design under each fault. In parallel, Formal Methods are
applied to the design to identify Safe faults. In addition, the
outputs of each tool are verified against each other to identify
malfunctions, increasing the confidence in the tool’s outputs,
as required by ISO26262 [1]. The main contributions of our
methodology are:

• Reduction of the efforts with Test Environment develop-
ments and in the number of required Simulations by de-
ploying automatic generated ATPG Test Environments
to FI Simulation campaigns.

• Increasing compliance to ISO26262 fault metrics by
identification of Safe faults with formal methods.

• Generation of report containing detailed information of
tool outputs to detect malfunctions.

II. PROPOSED METHODOLOGY

Our methodology aims to automate the execution of
Simulation, ATPG and Formal analysis for a specific design.
At the end of the execution, the outputs of the tools are
compared to find discrepancies. An application was develop
in order to control the execution flow and generate final
reports. The Fault Checker application can be configured
to use any ATPG, Simulation, and Formal tools. At the
beginning of the execution, the user should configure the
scripts to control the execution of each tool and provide the
rules for parsing the tool reports.

The application starts with the execution of the ATPG and
Formal flows. As these two flows are independent, they can
be executed in parallel using different CPUs. Simulation flow
requires the ATPG Testbench and test vectors to start. So,
after the ATPG flow is finished, the Fault Checker will extract
the generated Test Environment and will use it for the FI
Simulation. At the end of each flow, the reports generated
by the tools are parsed to a common format, allowing
verification of the results to identify discrepancies between
the tools. Finally, at the end of all flows, the relevant parsed
data is retrieved and compared. The comparison is based on
rules that associate the annotations used by each tool. For
example, faults classified as Untestable by the Simulator are
equivalent to faults classified as Safe by Formal and Ignored
by ATPG. In case a rule is not obeyed, the Fault Checker
will include a Warning tag to the report, informing that this
fault requires attention from the designer.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 



Results can be analyzed in a CSV report that details the
annotation of each fault by each tool. An error caused by
a malfunction in one of the tools, will be indicated by
a Warning in the CSV report. For example, if simulation
annotates a fault as Detected and Formal annotates the same
fault as Safe, it indicate a malfunction in one of the tools.
The report provides supplementary information with further
possibilities for fault analysis. For example, if a specific fault
is considered Undetected by Simulator and Dangerous by
Formal, it means that formal analysis identified at least one
test stimulus that can propagate the fault. This information
can be used on a new FI Simulation to achieve detection
of this fault. Any other discrepancy between the faults is
indicated in the report with a Warning.

III. VALIDATION

This section describes the validation process of the pro-
posed methodology. First the Fault Checker was configured
with execution scripts to deploy Cadence R©XceliumTMFault
Simulator (XFS), Cadence R©JasperGold (JG) Formal Verifi-
cation Platform and Cadence R©Modus DFT Software Solu-
tion ATPG component as the representatives of each tech-
nology. Second, selected designs were verified by the Fault
Checker. Table I details, for each design, the total number of
faults, the fault detection rate, and the indication of Pass or
Warning resulting from the verification of the tools by the
Fault Checker.

TABLE I
FAULT CHECKER RESULTS.

Design Faults
(SA0/SA1)

Detection
Rate PASS WARNING

Up Down Counter 162 100% 162 0
Memories 2782 99.78% 2776 6
AC97 57226 99.77% 57108 118
Conmax 153454 99.80% 153191 263

During the Up Down Counter and Memories designs
verification, the Fault Checker confirmed that all faults have
equivalent annotations. As the examples are relatively simple,
the different tools can determine that all faults can propagate
to outputs. For the Memories design, the application detected
6 faults that were annotated as Safe by the Formal analysis,
and can be disregarded.

On the AC97 design, the Fault Checker was able to detect
118 faults with distinctive annotations. From these, 49 faults
were annotated as Safe by Formal and can be disregarded;
23 were annotated as Dangerous by Formal meaning that
Formal can extract test inputs to cause propagation of the
faults; and 46 faults were not classified, meaning that they
require manual analysis.

During the analysis of the Conmax design, the method-
ology detected 263 discrepancies between the tools. From
these, 7 faults were annotated as Dangerous by Formal.
Meaning that results from Formal can be applied for detect-
ing these faults during simulation. The other 256 faults have
non conclusive annotations and should be manually analyzed.

The results demonstrated above corroborate with the listed
contributions. First, the comparison of the fault classifica-
tions from each tool enables identification of tool malfunc-
tion. The report generated by the Fault Checker allows de-
tailed analysis of faults and can be used to support ISO26262
Tool Qualification. Second, Safe faults classification by
Formal Methods permits improvement of fault tolerance,
by decreasing the total number of faults and improving
ISO26262 metrics. Third, the proposed methodology shows
considerable fault detection rates for all tested designs.

IV. CONCLUSIONS

Due to the harsh requirements for random hardware fail-
ures tolerance, Functional Safety verification is a challenging
step for ISO26262 compliance. FI simulation, as part of
this process, becomes a long and expensive procedure, that
is usually repeated numerous times until the metrics for
fault detection are achieved. We propose a methodology
that deploys ATPG and Formal to support Simulation results
and to decrease the overall effort of FI Simulations. Our
methodology enables the use of test environments created
with ATPG for the simulation of faults, and the use of
Formal for identification of Safe faults. Formal results allow
the optimization of the Fault List, reducing the number
of faults to be simulated. In addition, the results of the
tools are compared to identify discrepancies and potential
defects. The inclusion of redundancy as a method to detect
malfunctions in tools is suggested for achieving ISO26262
Tool Confidence [1]. Our results have shown high fault
detection rates, achieving more than 99% of detected faults.
In addition, the proposed methodology can identify Safe
faults, contributing to reaching ISO26262 metrics.

REFERENCES

[1] ISO, ISO 26262 - Road Veichles - Functional Safety - Part 8: Supporting
processes, International Standardization Organization Std., Nov. 2011.

[2] A. Nardi and A. Armato, “Functional safety methodologies for auto-
motive applications,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, nov 2017.

[3] Y.-C. Chang, L.-R. Huang, H.-C. Liu, C.-J. Yang, and C.-T. Chiu, “As-
sessing automotive functional safety microprocessor with ISO 26262
hardware requirements,” in Technical Papers of 2014 International
Symposium on VLSI Design, Automation and Test. IEEE, 2014.

[4] K. Devarajegowda and J. Vliegen, “Deploying formal and simulation
in mutual-exclusive manner using jaspergolds proofcore technology,” in
Cadence User Conference CDNLive EMEA, 2017.

[5] S. Marchese and J. Grosse, “Formal fault propagation analysis that
scales to modern automotive SoCs,” in 2017 Design and Verification
Conference and Exhibition DVCON Europe, 2017.

[6] A. Traskov, T. Ehrenberg, and S. Loitz, “Fault proof: Using formal
techniques for safety verification and fault analysis,” in 2016 Design
and Verification Conference and Exhibition DVCON Europe. DVCON,
2016, pp. 27–32.

[7] S. Praveen, S. Yellampalli, and A. Kothari, “Optimization of test time
and fault grading of functional test vectors using fault simulation flow,”
in 2014 International Conference on Electronics, Communication and
Computational Engineering (ICECCE). IEEE, nov 2014.

[8] S. Arekapudi, F. Xin, J. Peng, and I. G. Harris, “ATPG for timing-
induced functional errors on trigger events in hardware-software sys-
tems,” in Proceedings The Seventh IEEE European Test Workshop.
IEEE Comput. Soc, 2002.


