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Preface

This book presents an overview of algorithms and methodologies to reconstruct, manipu-

late, and extract information from terrains.

It covers different representations of terrains (eg TINs, rasters, point clouds, contour lines)

and presents techniques to handle large datasets.

Open material. This book is the bundle of the lecture notes that we wrote for the

course Digitial terrain modelling (GEO1015) in the MSc Geomatics at the Delft University

of Technologies in the Netherlands. The course is tailored for MSc students who have

already followed an introductory course in GIS and in programming.

Each chapter is a lesson in the course, and each lesson is accompanied by a video

introducing the key ideas and/or explaining some parts of the lessons. All the videos are

freely available online on the website of the course: https://3d.bk.tudelft.nl/cours

es/geo1015/

Who is this book for? The book is written for students in Geomatics at the MSc level,

but we believe it can be also used at the BSc level.

Prerequisites are: GIS, background in linear algebra, programming course at the intro-

ductory level.

Acknowledgements. We thank Balázs Dukai for help in proof-reading, and all the

students of the first year of the course (2018–2019) who helped by pointing out errors and

typos. Also, the following students of the course all made pull requests to fix errors/typos:

Chen Zhaiyu, Ardavan Vameghi, Li Xiaoai.

https://3d.bk.tudelft.nl/courses/geo1015/
https://3d.bk.tudelft.nl/courses/geo1015/
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Defining what a terrain, also called a digital terrain model (DTM), is

not simple because there is no universal agreement, neither among

practitioners nor in the scientific literature. Different terms are used,

often interchangeably.

In most cases, we can state that:

A terrain is a representation of the Earth’s surface. It gives

us the elevation, which is the height above/below a certain

reference point (a vertical datum)

However, the “Earth’s surface” is also not a clear concept, since several

objects on it can be present, eg man-made structures like buildings, roads,

power lines, and bridges, and other objects like trees.

We use the following definitions in this course (see Figure 1.1):

DEM (Digital Elevation Model). In the literal meaning of the term, it is

simply a model of the elevation. A DEM is either a DSM or a DTM.

DTM (Digital Terrain Model). The surface of the Earth is the bare-earth,

that is no man-made objects or vegetation is present.

DSM (Digital Surface Model). The surface includes all objects and

structures on the terrain.

It should be noticed that in some countries a DEM is often synonymous

with a grid of elevation (see below).

1.1 Dimensionality of DTMs

The term “3D” is misleading in a DTM context, as it is in a GIS context,

because it might refer to three different concepts: 2.5D, 2.75D, and 3D

(see Figure 1.2).

1.1.1 2.5D

What is usually used for modelling terrains: a surface (which is a topo-

logically a 2D object; also called a 2-manifold) is embedded in 3D space,

and each location (x , y) is assigned to one and only one height z. In other

words, the surface can be projected to the x y-plane and maintain its

topology. When we refer to terrains in this course, this is what is usually

mean, unlike explicitly stated otherwise. This is often what is used in GIS

software, and both the well-known raster/grid is such a case. Observe

that this restricts the real-world cases that can be modelled because,

as shown in Figure 1.2b, vertical surfaces (eg walls of a building if we

model all man-made objects with the terrain to construct a digital surface

model), overfolds (eg the balcony of a house) and caves are impossible to

represent. As shown in the figure, these are modelled as nearly vertical
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2.75D

volumetric modelling

surfaces; in practice the wall of building could deviate by for instance 1

degree from the vertical.

1.1.2 2.75D

The term “2.75D” refers to a surface (a 2-manifold) but unlike for the 2.5D

case, the surface is not restricted to be projectable to the 2D plane (see

Figure 1.2c). Thus, more than one z value is allowed for a given location

(x , y). The term ’2.75D’ was coined because: it is more than 2.5D, but

less than 3D. The surface represents the exterior of all objects/features

together, and vertical walls are allowed. Surface modelling is popular in

CAD, but in the GIS it is rather rare. We are not aware of any popular

GIS software that allows us to model a terrain as a 2.75D and perform

operations on it.

1.1.3 Full 3D, or volumetric modelling

This refers to the modelling of not only the boundaries of objects, but

also of the interior of these. Notice for instance in Figure 1.2d that

each building is represented with a solid. The volume of buildings can

therefore be calculated (since the ground floor of buildings would be

modelled for instance), while with the other variations it is not possible.

Such a representation is usually done with a 2.5D terrain (although

a 2.75D could also be used) and a set of buildings/objects that are

connected to the terrain.

(a) A terrain

vertical lines

(b) 2.5D modelling

(c) 2.75D modelling (d) Volumetric modelling, or full 3D

Figure 1.2: Different meanings for ‘3D GIS’ in the context of terrains.
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field

discretisation

1.2 2.5D terrain == field

In the context of this course, we assume that a terrain is a 2.5D object,

and therefore a terrain can be considered as a field. A field is a model

of the spatial variation of an attribute a over a spatial domain, which in

our case is R2
, the two-dimensional Euclidean space. It is modelled by a

function mapping one point p in R2
to the value of a, thus

a � f (p)

The function can theoretically have any number of independent variables,

but in the context of a terrain the function is usually bivariate (x , y).

The representation of a field in a computer faces many problems. First,

fields are continuous functions, and, by contrast, computers are discrete

machines. Fields must therefore be discretised, ie broken into finite parts.

Second, in practice it is usually impossible to measure continuous

phenomena everywhere, and we have to resort to collecting samples

at some finite locations and reconstructing fields from these samples.

The discretisation task therefore begins at the acquisition phase, and

is affected by the acquisition tools and techniques (more about this in

Chapter 2). This fact is aggravated for fields as found in GIS-related

disciplines because, unlike disciplines like medicine or engineering, we

seldom have direct and easy access to the whole object of interest.

1.2.1 What is needed to represent a field/terrain?

To represent a terrain in a computer, and be able to manipulate it (ie

edit the terrain and extract information such as slope), two things are

needed:

1. a set of samples that were collected to study the terrain, for instance

a point cloud obtained from airbone laserscanning or photogram-

metry (see Chapter 2 for details).

2. a set of rules to obtain one and only one elevation value at any

location (x , y); in other words, to reconstruct the continuity of the

surface from the discrete samples. This operation is referred to as

spatial interpolation (Chapters 4 and 5).

1.2.2 Strategy #1: points + global interpolation function.

This means storing the original sample points with the parameters of the

global spatial interpolationmethod that is best suited to the distribution of

the samples and their accuracy. Global methods are for instance inverse-

distance to a power, natural neighbours, or Kriging. This strategy is used

because one can compactly represent a field (only the samples and a few

parameters need to be stored).

Notice that this strategy permits us to reconstruct the continuity of a

terrain from the samples by calculating the value of the elevation, but

that this value is not persistently stored in memory. It is therefore less

used in practice than the next strategy, which allows us to permanently

store the terrain in a file and avoids us recomputing every time al the

needed elevation values.
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piecewise function

regular

irregular

hierarchical
Figure 1.3: Type of tessellations.

pixel

1.2.3 Strategy #2: piecewise spatial models

Thismeans that the spatial interpolation functionused is piecewise (instead

of being global). That is, the two-dimensional domain of the terrain (the

x y-plane) is tessellated, or partitioned, into several pieces, and for each of

these we assign an interpolation function describing the spatial variation

in its interior. This function is usually a simple mathematical function:

I constant function: the value of the modelled attribute is constant

within one cell;

I linear function;

I higher-order function.

In general, we classify the tessellations of space into three categories (as

shown in Figure 1.3): regular, irregular, and hierarchical.

Piecewise models typically imply that a supporting data structure is

constructed, and stored, to represent the tessellation. Some of these

tessellations partition arbitrarily the space, while some are based on the

spatial distribution of the sample points.

1.3 Data models for representing terrains in a
computer

1.3.1 Spatial data models , data structures

In the GIS literature, there exists a confusion between the terms “spatial

model” and “data structure”. The confusion originates from the fact that

object and field views of space are usually implemented in a GIS with

respectively vector and raster models. However, this is not always the

case as TINs can be used for fields for instance. A “spatial data model”

offers an abstract view of a data structure, it is an abstraction of the reality.

A data structure is the specific implementation of a spatial data model,

and deals with storage, which topological relationships are explicitly

stored, performance, etc. The same spatial data model can therefore be

implemented with different data structures.

1.3.2 Regular Tessellations

As shown in Figure 1.3a, all the cells have the same shape and size. The

most common regular tessellation in GIS and in terrain modelling is by

far the grid (or raster representation), in which the cells are squares in

2D (usually called pixels, a portmanteau of ‘picture’ and ‘element’, as

an analogy to digital images). However, while they are not common

in practice, other regular shapes are possible, such as hexagons or

triangles.

Observe that a regular tessellation often arbitrarily tessellates the space

covered by the field without taking into consideration the objects embed-

ded in it (the samples). This is in contrast with irregular tessellations in

which, most of the time, the shape of the cells constructed depends on

the samples.
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TIN: triangulated irregular network

In practice this means that, if we have a terrain stored as a regular

tessellation we can assume that it was constructed from a set of samples

by using spatial interpolation. Converting sample points to cells is not

optimal because the original samples, which could be meaningful points

such as the summits, valleys or ridges of a terrain, are not necessarily

present in the resulting tessellation. There is a loss of information, since

the exact location of the meaningful points are lost.

Concrete example: a 2D grid. A 2D grid, stored for instance with the

GeoTIFF format, is thus a piecewise representation of a 2D field: a regular

tessellation where each cell has a constant function. The value assigned

to each cell is an estimation previously obtained by spatial interpolation.

However, for a given grid, it is usually unclear if the value of a cell is for

its centre, or for one of its vertices (and if it is the case, for which one?).

Different formats have different rules, and converting a field represented

with one format to another one (while retaining the same cell resolution

and spatial extent) can shift the value from the centre to the top-left

corner for instance.

The wide popularity of regular tessellations in terrain modelling is

probably due to simplicity and to the fact that they permit us to easily

integrate 2D remote sensing images and terrains. Indeed, a grid is

naturally stored in a computer as an array (each cell is addressed by

its position in the array, and only the value of the cell is stored), and

thus the spatial relationships between cells are implicit. This is true

for any dimensions, thus, contrary to other tessellations, grids are very

easy to generalise to higher dimensions. The algorithms to analyse and

manipulate (Boolean operations such as intersection or union) are also

straightforwardly implemented in a computer.

On the other hand, grids also suffer problems. First, the size of a grid

can become massive for data at a fine resolution; this problem gets worse

in higher dimensions. Second, grids scale badly and are not rotationally

invariant, ie if the coordinate reference system used is changed, then the

grid needs to be reconstructed to obtain regular cells whose boundaries

are parallel to the axes of the reference system. To assign a new value

to the transformed cells, spatial interpolation is needed, which is often

performed not by re-using the original samples, but by using the values

of the neighbouring cells. Unfortunately, each time a grid is transformed

its information is degraded because not the original samples are used,

but interpolated values.

1.3.3 Irregular Tessellations

The cells of an irregular tessellation can be of any shape and size, and they

usually ‘follow’—or are constrained by—the samples points that were

collected, albeit this is not a requirement. Subdividing the space based

on the samples has the main advantage of producing a tessellation that is

adaptive to the distribution of the samples. The subdivision is potentially

better than that obtained with regular tessellations (which subdivide

arbitrarily the space without any considerations for the samples).

The most known examples of the use of irregular tessellations in terrain

modelling is the triangulated irregular network, or TIN.
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Figure 1.5: Two TINs (left is a DT, right has

one non-Delaunay edge) and the result of

estimating with linear interpolation in the

TIN. estimated height = 38m estimated height = 99m

110m

29m
95m

41m

110m

95m

41m

29m

Figure 1.4:ATIN is obtained by lifting the

vertices to their elevation. All the triangles

are usually Delaunay, ie their circumcircle

(green) is empty of any other points in the

plane.

quadtree

As shown in Figure 1.4, a TIN refers to an irregular tessellation of the

x y-plane into non-overlapping triangles (whose vertices are formed by

three sample points), and to the use of a linear interpolation function

for each triangle. One way to explain the 2.5D properties of a TIN is as

follows: if we project vertically to the x y-plane the triangles in 3D space

forming the TIN, then no two triangles will intersect.

While not a requirement, the triangulation is usually a Delaunay triangu-

lation (more about this in Chapter 3). The main reason is that Delaunay

triangles are as “fat” as possible (long and skinny triangles are avoided),

and thus they behave better for interpolation. As can be seen in Figure

1.5, the estimated value can be significantly different, and in this case the

right one would make more sense since sample points that are closer to

the interpolation location are used (in the TIN on the left, the value of

95m is not used).

Each of the points (which becomes vertices in the triangulation) are

lifted to its elevation to create a surface, embedded in three dimensions,

approximating themorphology of the terrain. The value of elevation at an

unsampled location p is obtained by linearly interpolating on the plane

passing through the three vertices of the triangle containing p. TINs are

the most popular alternatives to 2D grids for modelling elevation; both

representations have advantages and disadvantages.

A TIN in which a linear interpolation function is used yields a C0

piecewise representation, ie it is a continuous function but at the edges

of the triangles the first derivative is not possible. It is possible to use

higher-order functions in each triangle of a TIN, to construct a C1
or

C2
field, ie where the first and second derivative of the surface can be

obtained. Chapter 4 gives more details.

1.3.4 Hierarchical tessellations

Hierarchical tessellations attempt to reduce the number of cells in a

tessellation by merging the neighbouring cells having the same value

(thus yielding cells of different sizes). While both regular and irregular

tessellations can be hierarchical, in the context of the representation of

terrains, the former is more relevant and is sometimes used in practice.

A commonly used hierarchical structure in two dimensions is the quadtree,

which is a generic term for a family of tessellations that recursively

subdivide the plane into four quadrants. As is the case for grids, quadtrees

are relatively easily implemented in a computer because they are trees in

which each node has exactly four children, if any.

The shortcomings of regular hierarchical tessellations are similar to those

of regular tessellations: the rotation and scaling operations are difficult to
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contour lines

raster

TIN

point cloud

Figure 1.6: Four most common data mod-

els for terrains.

handle. The main advantage of using them—saving memory space—is

present only when there is spatial coherence between cells having the

same attribute value, ie when they are clustered together. Indeed, the

size of a quadtree is not dependent on the number of cells, but on their

distribution. The quadtree of a 2D grid having no two adjacent cells

with the same value (eg a checkers board) contains the same number of

cells as the grid, and its size would most likely be worse because of the

overhead to manage the tree. Another disadvantage is that the notion

of neighbours, which is straightforward in regular tessellations, is less

trivial.

1.3.5 Other common terrain representations used in GIS

In the GIS literature, besides the ones above, different representations for

terrains are often listed, the two most relevant being:

1. irregularly spaced sample points, such a point cloud;

2. contour lines.

It should be noticed that these two are however incomplete: the set of rules

to reconstruct the surface at unsampled locations is not explicitly given,

they are not continuous surfaces. Conceptually speaking, these should

therefore not be considered valid representations of a terrain. While this

might seems odd, this is in line with the consensus among practitioners

today, where a point cloud or contour lines would typically be used as

an input to a process to generate a terrain.

Wewill nevertheless consider these in the course; the four representations

we will use are shown in Figure 1.6.

Contour lines. Given a bivariate field f (x , y) � z, an isoline (commonly

named contour line) is the set of points in space where f (x , y) � z0,

where z0 is a constant. Isolines have been traditionally used to represent

the elevation in topographic maps and the depth in bathymetric maps

for navigation at sea.

One particular property of an isoline is that its direction is always

perpendicular to the direction of the steepest slope of the terrain. Another

property that follows from the 2.5D property of the field is that contours

neither intersect themselves nor each other.

The purpose of isolines on a map is to reveal the shape of the underlying

terrain. By observing the shape and interrelation of neighbouring con-

tours, the presence and significance of surface features becomes apparent;

see Figure 1.7 for a few examples. It should be noticed that data between

contours is absent in the contour map. Yet, in case of good contours the

reader will still be able to deduct the general morphology of the field. It

is even so that the use of contours will speed up the map reading process,

as it conveys just that relevant bit of data to the map reader rather than

‘flooding’ the reader with information which essentially makes the user

do his own cartographic selection. Contouring is a form of discretizing

the field that makes it easier to use a map. Naturally, this comes at a price.

The level of approximation of the field can (dramatically) differ between

contours, the biggest error would be midway in between contour lines.

But, depending on the relation between the spacing between contours
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Figure 1.8: Cross-section of a terrain (left),

and the 200m isoline extracted from a TIN

(right).

200m

Figure 1.7: A few examples of terrain fea-

tures and their contour lines. (Figure from

Kjellstrom and Kjellstrom Elgin (2009))

(the contour interval) and the map scale, which in turn is dependent on

the map application, this effect may be neglected.

In practice, isolines are only approximated from the computer representa-

tion of a field. They are usually extracted directly from a TIN or a regular

grid. As shown in Figure 1.8, the idea is to compute the intersection be-

tween the level value (eg 200m) and the terrain, represented for instance

with a TIN. Each triangle is scanned and segment lines are extracted to

form an approximation of an isoline. Chapter 8 gives more details.

1.4 TIN versus raster for modelling terrains

There is an ongoing debate about whether TINs or rasters are the better

data model to model terrains. Practitioners and scientists are probably

split 50/50 on the issue.

A data model will be judged more efficient than another if it represents

a surface more accurately within the same amount of storage space,

measured in bytes. This of course depends on the data structure used to

store that data model.

It should be said that both TIN and raster have advantages and disad-

vantages (as we will see during this course), and in practice one should

choose the most appropriate model for the task at hand. This means

converting between the two data models when it is necessary (topic of

Chapter 8).

1.5 Notes and comments

Kumler (1994) carried out a 4-year comparison between TINs and rasters.

He states that the common belief that a TIN is more space-efficient than

raster is handicapped by the fact that a TIN must have at least 3 times

less points to be of equal space. His conclusions are also that rasters

can estimate elevation more accurately than comparably-sized TINs.

However, he still finishes with by stating: “Yeah, well. . . TINs still look

better.”

Fisher (1997) discusses the disadvantages of rasters, in a GIS and remote

sensing context.

Frank (1992) and Goodchild (1992) discuss at lenght the issue of data

model, data structure and representation of reality.

Tse and Gold (2004) coined the term ‘2.75D GIS’ and show an example

of a where a triangulation is used to represent the surface of the Earth,

with holes (for tunnels), cliffs and caves. The same idea is also referred to

as a ‘2.8D GIS’ by Gröger and Plümer (2005).
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While more an academic exercise then something used in practice,

multi-resolution triangulation have been described and used for some

application by De Floriani and Magillo (2002).

Akima (1978) shows the advantages of using higher-order functions in

each region of a TIN, to construct a C1
or C2

field.

Dakowicz and Gold (2003) demonstrate that using simple rules (nearest-

neighbour for instance) yields fields that are not realistic and have bad

slope, which is in practice problematic for several applications. Obtaining

good slope from contour lines is possible, but is in practice a complex

process.

1.6 Exercises
1. Explain in our own words why a point cloud (eg collected with

airborne lidar) is not considered a complete representation of a

terrain.

2. What is a bivariate function?

3. Assume you have a 2.75D terrain of an area. Is it possible to extract

the isolines from it? What properties will these have? Will they

intersect?
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The very first step in the process of terrain modelling is the acquisition

of elevation measurements. Nowadays, these measurements are usually

collected in large quantities using some form of remote sensing, ie

sensors that measure—in our case—the distance to the Earth’s surface

from an airborne or even a spaceborne platform. In raw form, elevation

measurements are typically stored as a point cloud, ie a collection of

georeferenced 3D points with each point representing one elevation

measurement on the Earth’s surface.

There are a number of remote sensing techniques that are used tomeasure

elevation on Earth or other planets. Typically, these techniques measure 1)

the distance to the target surface and 2) their own position and orientation

with respect to some global reference system. By combining these, we

can compute the 3D coordinates of the measured location on the target

surface.

In this chapter we will focus primarily on lidar, the most common ac-

quisition technique for large scale terrain models with centimetre level

accuracy. But we also give an overview of other acquisition techniques,

for example photogrammetry, InSAR, and sonar. And to conclude wewill

look at typical artefacts that you might encounter while working with

elevation data. This is because, as with any kind of real-world measure-

ments, there are various uncertainties and restrictions in the acquisition

process that lead to distortions—the artefacts—in the acquired data. These

artefacts need to be taken into account when further processing and

using the elevation data.

2.1 Principles of lidar

A lidar system
1
measures the distance to a target by illuminating it with

pulsed laser light and measuring the reflected or backscattered
2
signal

with a sensor (see Figure 2.1). By measuring the time-of-flight, ie the

difference in time between emitting a pulse and detecting its return or

echo, the distance to the target that reflected the pulse can be found using

a simple formula. To be exact, the time-of-flight T is equal to

T � 2

R
c

(2.1)

where c is the speed of light (approximately 300,000 km/s), and R is

the distance or range between the lidar scanner and the target object that

reflects the laser pulse. Therefore the range R can be found from the

measured time-of-flight T using

R �
1

2

Tc.

https://en.wikipedia.org/wiki/Lidar#History_and_etymology
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Figure 2.2: An airborne lidar system. Fig-

ure from Dowman (2004).

3: NASA has used space lidar on Earth,

on the Moon, and on Mars.

inertial navigation system (INS)

differential GPS

4: https://en.wikipedia.org/wiki/

Inertial_measurement_unit

inertial measurement unit (IMU)

A typical lidar systems performs hundreds of thousands of such range

measurements per second.

Lidar scanners exist in various forms. They can be mounted on a static

tripod (terrestrial lidar) for detailed local scans, or on a moving platform

such as a car (mobile lidar) or an aircraft (airborne lidar) for rapid

scanning of larger areas. Nowadays, also hand-held lidar systems exist,

and even some of the latest smartphones have a lidar sensor. Furthermore,

lidar can also be used from a satellite in space
3
.

However, in the remainder of this text we will focus on airborne lidar.

2.1.1 Georeferencing the range measurements

Apart from the laser scanner itself, a lidar system uses a GPS receiver

and an inertial navigation system (INS), see Figure 2.2. These devices,

which respectively provide the global position and orientation of the

laser scanner, are needed for georeferencing, ie to convert the range

measurements of the laser scanner to 3D point measurements in a global

coordinate system such as WGS84.

To obtain an accurate global position, differential GPS (DGPS) is employed.

DGPS is a technique to enhance the accuracy of GPS by using GPS

stations on the ground (one is visible in Figure 2.2). These DGPS stations

have a known position and they broadcast the difference between that

known position and the position at the station as indicated by GPS. This

difference is essentially a correction for errors in the GPS signal. The

aircraft receives these differences from nearby DGPS stations and uses

them to correct the GPS position of the aircraft. Using DGPS the accuracy

of the GPS position on the aircraft can be improved from around 15

meters to several centimetres.

To obtain the accurate orientation of the laser scanner, the INS of the

aircraft is used. The INS accurately measures the orientation, ie the yaw,

pitch and roll angles of the aircraft, by means of an inertial measurement

unit (IMU)
4
. Only when we accurately know the orientation of the laser

https://en.wikipedia.org/wiki/ICESat-2
https://lola.gsfc.nasa.gov
https://en.wikipedia.org/wiki/Mars_Orbiter_Laser_Altimeter
https://en.wikipedia.org/wiki/Inertial_measurement_unit
https://en.wikipedia.org/wiki/Inertial_measurement_unit
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Figure 2.3: The emitted laser pulse, (a)
the returned signal, and (b) the recorded
echoes. Figure adapted from Bailly et al.

(2012).

return

scanner, can we know the direction (in a global coordinate system) in

which a laser pulse is emitted from the aircraft.

By combining the global position and the global orientation of the

laser scanner with the range measurement from the laser scanner, the

georeferenced 3D position of the point on the target object that reflected

the lase pulse can be computed.

2.1.2 Echo detection

A lidar system performs ranging measurements using the time-of-flight

principle that allows us to compute range from a time measurement

using the known speed of light in the air. The time measurement starts

when the laser pulse is emitted and is completed when a backscattered

echo of that signal is detected. In practice one emitted pulse can even

lead to multiple echoes in the case when an object reflects part of the laser

pulse, but also allows part of the pulse to continue past the object. Notice

that lidar pulses are typically emitted in a slightly divergent manner. As

a result the footprint of the pules at ground level is several centimetres

in diameter, which increases the likelihood of multiple echoes.

Figure 2.3 illustrates what the backscattered signal looks like when it

hits a target object in the shape of a tree. A tree is particularly interesting

because it often causes multiple echoes (one or more on its branches and

one on the ground below). The lidar sensor observes a waveform that

represents the received signal power (P) as a function of time (t). With

the direct detection lidar systems that we focus on in this book, the echoes

are derived from the backscattered waveform by using a thresholding

technique. This essentially means that an echo is recorded whenever the

power of the waveform exceeds a fixed threshold (see Figure 2.3b).

An echo can also be referred to as a return. For each return the return

count is recorded, eg the first return is the first echo received from an

emitted laser pules and the last return is the last received echo (see

Figure 2.3). The return count can in some cases be used to determine if

an echo was reflected on vegetation or ground (ground should then be

the last return).
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Figure 2.4: Conventional architecture of a
direct detection lidar system. Figure from

Chazette et al. (2016).

atmospheric scattering

2.1.3 Anatomy of a lidar system

A lidar system consists of an optical and an electronic part. As shown in

Figure 2.4, each part consists of several components.

In the optical part, a pulse of a particular wavelength (typically near-

infrared) is generated by the laser source for each lidar measurement. It

then passes through a set of optics (lenses and mirrors) so that it leaves

the scanner in an appropriate direction. After the pulse interacts with

the scattering medium, it is reflected back into the scanning optics which

then directs the signal into a telescope. The telescope converges the signal

through a field diaphragm (essentially a tiny hole around the point of

convergence). The field diaphragm blocks stray light rays (eg sunlight

reflected into the optics from any angle) from proceeding in the optical

pipeline. Next, the light signal is recollimated so that it again consists

only of parallel light rays. The final step of the optical part is the inference

filter which blocks all wavelengths except for the wavelength of the laser

source. This is again needed to block stray light rays from distorting the

measurement.

The electronic part consists of a photodetector, which first transforms the

light signal into an electrical current, which is then converted to a digital

signal using the analogue-to-digital converter. Once the digital signal

is available, further electronics can be used to interpret and record the

signal.

2.1.4 Laser wavelength

Choosing the optimal laser wavelength is a compromise of several

different factors. One needs to consider atmospheric scattering, ie how

much of the signal is lost simply by travelling through the atmosphere,

and the absorption capacity of vegetation, ie how much of the signal is

lost because it is absorbed by vegetation. In addition, there is the stray

signal due to direct and scattered contributions of sunlight. While it is

possible to filter such stray signals in the lidar system to some degree,

it remains wise to choose a wavelength that is only minimally affected

by it. Finally there are regulations that limit the laser radiance values

permissible to the eye. This means that the power of emitted signal needs

to be carefully controlled, and/or a wavelength must be chosen that is

not absorbed by the eye so much.

As a result, most lidar systems use a wavelength in the near-infrared

spectrum, usually between 600 and 1000 nm. A notable exception is made
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Figure 2.5: Different configurations of ro-

tatingmirrors and the associated scanning

patterns from a moving platform. Arrows

indicate the direction of the emitted laser

signal. Figure from Chazette et al. (2016).

for bathymetric purposes, in which case a green (532 nm) laser is used

because that has a greater penetration ability in water.

2.1.5 Scanning patterns

In order to improve the capacity to quickly scan large areas, a number of

rotating optical elements are typically present in a lidar system. Using

these optical elements, ie mirrors or prisms, the emitted laser pulse is

guided in a cross-track direction (ie perpendicular to the along-track

direction in which the aircraft moves, see Figure 2.1), thereby greatly

increasing the scanned ground area per travelled meter of the aircraft.

Figure 2.5 depicts a number of possible configurations of rotating optics

and shows the resulting scanning patterns. It is clear that density of

points on the ground is affected by the scanning pattern. The top example

for example, yields much higher densities on edges of the scanned area.

In practice more uniform patterns, such as the bottom two examples are

often preferred.

W To read or to watch.

This YouTube video explains the principles of an aerial LiDAR system:

https://youtu.be/EYbhNSUnIdU

2.2 Other acquisition techniques

Apart from lidar there are also other sensor techniques that can be used

to acquire elevation data. Some of these are active sensors just like lidar

(a signal is generated and emitted from the sensor), whereas others are

passive (using the sun as light source). And like lidar, these sensors

themselves only do range measurements, and need additional hardware

such as a GPS receiver and an IMU to georeference the measurements.

What follows is a brief description of the three other important acquisition

techniques used in practice.

https://youtu.be/EYbhNSUnIdU
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Figure 2.6: Photogrammetry

dense image matching

nadir images

oblique images

5: https://en.wikipedia.org/wiki/

Shuttle_Radar_Topography_Mission

2.2.1 Photogrammetry

Photogrammetry allows us to measure the distance from overlapping

photographs taken from different positions. If a ground point, called

a feature, is identifiable in two or more images, its 3D coordinates can

be computed in two steps. First, a viewing ray for that feature must be

reconstructed for each image. A viewing ray can be defined as the line

from the feature, passing through the projective centre of the camera,

to the corresponding pixel in the image sensor (see Figure 2.6). Second,

considering that we know the orientation and position of the camera,

the distance to the feature (and its coordinates) can be computed by

calculating the spatial intersection of several viewing rays.

The number of 3D point measurements resulting from photogrammetry

thus depends on the number of features that are visible inmultiple images,

ie the so-called matches. With dense image matching it is attempted to find

a match for every pixel in an image. If the ground sampling distance, ie

the pixel size on ground level, is small (around 5cm for state-of-the-art

systems), point densities of hundreds of points per square meter can

be achieved, which is much higher than the typical lidar point cloud

(typically up to dozens of points per square meter).

In photogrammetry we distinguish between nadir images, that are taken

in a direction straight down from the camera, and oblique images that

are taken at an angle with respect to the nadir direction. Vertical features

such as building façades are only visible on oblique images. Therefore,

oblique images are needed if one wants to see building façades in a dense

image matching point cloud.

Because photography is used, photogrammetry gives us also the colour of

the target surface, in addition to the elevation. This could be considered

an advantage over lidar which captures several attributes for each point

(eg the intensity of measured laser pulse and the exact GPS time of

measurement), but colour is not among them.

Both airborne and spaceborne photogrammetry are possible.

2.2.2 InSAR

Interferometric synthetic aperture radar (InSAR) is a radar-based tech-

nique that is used from space in the context of terrain generation. It is

quite different from airborne lidar or photogrammetry-based acquisition

because of the extremely high altitude of the satellite carrying the sensor.

Signals have to travel very long distances through several layers of un-

predictable atmospheric conditions. As a result the speed of the radar

signal is not known and the time-of-flight principle can not be used to

get detailed measurements. However, by using a comprehensive chain

of processing operations based on the measured phase shifts and the

combination of multiple InSAR images, accurate elevation can still be

measured. With InSAR it is possible to cover very large regions in a short

amount of time, eg the global SRTM
5
dataset was generated with InSAR.

Compared to dense image matching and lidar, InSAR-derived DTMs

usually have a much lower resolution, eg SRTM has a pixel size of 30

meters.

https://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission
https://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission
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outliers

W To read or to watch.

Wikipedia page about Interferometric synthetic-aperture radar.

2.2.3 Echo sounding

Echo sounding is a form of sonar that can be used for bathymetry, ie

mapping underwater terrains from a boat. Similar to lidar, it uses the

time-of-flight principle to compute distance, but sound is used instead of

light.

Single-beam and multi-beam echo sounders exist. Multi-beam systems

are capable of receiving many narrow sound beams from one emitted

pulse. As a result it measures the target surface much more accurately.

For bathymetry usually a multi-beam echo sounder is used.

Chapter 13 describes techniques to process bathymetric datasets and

create terrain of the seabed.

W To read or to watch.

The principles of echo sounding.

https://en.wikipedia.org/wiki/Echo_sounding

2.3 Artefacts

In the acquisition process, there are many aspects—both under our

control and not under our control— that affect the quality and usability

of the resulting elevation data for a given application. Some examples

are

I the choice of the sensor technique,

I the sensor specifications, eg the resolution and focal length of

a camera, or the scanning speed, the width of the swath, and

scanning pattern of a lidar system,

I the flight parameters, eg the flying altitude and the distance and

overlap between adjacent flights,

I atmospheric conditions,

I the physical properties of the target surface.

An artefact is any error in the perception or representation of information

that is introduced by the involved equipment or techniques. Artefacts

can result in areas without any measurements (eg the no-data values in a

raster), or in so-called outliers, ie sample points with large errors in their

coordinates.

We distinguish three types of artefacts,

1. those that occur due to problems in the sensor,

2. those that occur due to the geometry and material properties of

the target surface,

3. those that occur due to post-processing steps.

https://en.wikipedia.org/wiki/Interferometric_synthetic-aperture_radar
https://en.wikipedia.org/wiki/Echo_sounding
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Figure 2.7: Strip adjustment for lidar point

clouds

(a) Plan view of the different strips

of a lidar survey (Kornus and Ruiz,

2003)

(b) Cross-section of gable roof be-

fore (top) and after (bottom) strip

adjustment (Vosselman, 2002)

Figure 2.9: Point distribution and occlu-

sion

2.3.1 Sensor orientation

The sensor position and orientation are continuously monitored during

acquisition, eg by means of GNSS and an IMU for airborne and seaborne

systems, andused todetermine the 3Dcoordinates of themeasuredpoints.

Consequently, any errors in the position and orientation of the sensor

platform affect the elevation measurements. For this reason adjacent

flight strips (see Figure 2.7a) often need to be adjusted to match with each

other using ground control points. If the strip adjustments process fails or

is omitted, a ‘ghosting’ effect can occur as illustrated in Figure 2.7b (top).

Photogrammetry knows a similar process called aerial triangulation, in

which camera positions and orientation parameters (one set for each

image) are adjusted to fitwith each other. Errors in the aerial triangulation

can lead to a noisy result for the dense matching as seen in Figure 2.8.

2.3.2 Target surface

Many commonly occurring artefacts happen due to properties of the

target surface. We distinguish three classes.

2.3.2.1 Geometry

The shape of the target surfaces in relation to the sensor position has a

great effect on 1) local point densities and 2) occlusion. As you can see

from Figure 2.9, which illustrates this for lidar, surfaces that are closest

to the scanner and orthogonal to the laser beams will yield the highest

point densities (see the rooftop of the middle house). Very steep surfaces

on the other hand, yield relatively low point densities (see the façades of

the buildings).

Occlusion happens when a surface is not visible from the scanner position.

As a result there will be gaps in the point coverage, also visible in

Figure 2.9. Notice how some steep surfaces and some of the adjacent

ground are not registered at all by the scanner because it simply could

not ‘see’ these parts.

The severity of both effects mostly depends on the geometry of the

target objects and flight parameters such as the flying altitude and the



2.3 Artefacts 19

Figure 2.11: Reflection and multi-path

6: This is a topic of Chapter 12

7: Chapters 4 and 5 explore the topic of

spatial interpolation in detail.

amount of overlap between flight strips. However, regardless of what

flight parameters are chosen for a survey both effects are almost always

visible somewhere in the resulting dataset, see for example Figure 2.10

for different lidar datasets for the same area.

2.3.2.2 Material properties

Depending on material properties of a target surface, signals may be

reflected in away thatmakes it impossible to compute the correct distance.

Surfaces that act like a mirror are especially problematic, Figure 2.11

illustrates this. First, it may happen that a pulse is reflected away from

the sensor, eg from a water surface, resulting in no distance measurement

for that pulse. Or, in the case of photogrammetry, we will observe a

different reflection in each image which heavily distorts the matching

process, sometimes resulting in extreme outliers for water surfaces. In

some cases, and only for active sensors, the reflected pulse does make

its way back to the sensor, see for example the right half of Figure 2.11.

However, it will have travelled a longer distance than it should have and

the scanner only knows in which direction it emitted the pulse. This

effect is called multi-path and the result is that points are measured at a

distance that is too long and therefore they show up below the ground

surface in the point cloud (see Figure 2.12).

Photogrammetry suffers from a few other problems as well, such as

surfaces that have a homogeneous texture that make it impossible to

find distinguishing features that can be used for matching. This may also

happen in poor lightning conditions, for example in the shadow parts of

an image.

2.3.2.3 Moving objects

An example of moving objects are flocks of birds flying in front of the

scanner. These can cause outliers high above the ground, as illustrated in

Figure 2.12.

2.3.3 Processing

It is common to perform some kind of process after acquisition in order

to fix errors caused by the reasons mentioned above. In most cases such

processes are largely successful. For instance, one can attempt to fill

the void regions, sometimes referred to as no-data regions, that are for

instance due to pools of rainwater or occlusion, using an interpolation

method (Figure 2.13a). Or, one can attempt to detect and remove outliers

caused eg by multi-path effects or flocks of birds
6
. However, while the

intention is always to reduce the number and severity of artefacts, these

processes sometimes introduce distortions of their own. For example, an

outlier detection algorithm may remove ‘good’ points if they look the

same as outliers to the outlier detection algorithm (see eg Figure 2.13b).

And void-filling is only effective if the void area is not too large, since

interpolation methods always assume there is sufficient neighbourhood

information to work with
7
.
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W To read or to watch.

This is a paper that compares lidar and photogrammetry derived

point clouds for the generation of a DEM. It shows that even when

artefacts seem to be under control, both techniques may measure

different elevations

C. Ressl et al. (2016). Dense Image Matching vs. Airborne Laser

Scanning – Comparison of two methods for deriving terrain models.

Photogrammetrie - Fernerkundung - Geoinformation 2016.2, pp. 57–73

PDF: https://3d.bk.tudelft.nl/courses/geo1015/data/others
/Ressl16.pdf

https://3d.bk.tudelft.nl/courses/geo1015/data/others/Ressl16.pdf
https://3d.bk.tudelft.nl/courses/geo1015/data/others/Ressl16.pdf
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(a) Nadir image

(b) DSM with good aerial triangulation

(c) DSM with poor aerial triangulation

Figure 2.8: Errors in aerial triangulation

can lead to distortions in theDSM (derived

from dense imagematching). Images cour-

tesy of Vermessung AVT.
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(a) AHN1 (1996-2003) (b) AHN2 (2008)

(c) AHN3 (2014) (d) City of Rotterdam (2016)

Figure 2.10: Several lidar point clouds for the same area in the city of Rotterdam. Point distribution and occlusion effects vary.

Figure 2.12:Outliers, below and above the

ground, in a lidar point cloud dataset.

Figure 2.13: Post-processing aimed at cor-

recting artefacts. Before processing (left)

and after processing (right).

(a) Void-filling through interpolation in SRTM data

(b) Good points, ie those on the power line, may be removed during outlier

detection
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2.4 Notes and comments

If you would like to learn more about how a lidar scanner works, the

chapter from Chazette et al. (2016) is recommended. More details on

InSAR can be found in the manual from Ferretti et al. (2007).

Reuter et al. (2009) give an elaborate overview of the processing that

needs to be done to derive a high quality (raster) DTM from raw elevation

measurements.

2.5 Exercises
1. Name three differences between point cloud acquisition with lidar

and with photogrammetry.

2. Explain what the time-of-flight principle entails.

3. How can you minimise occlusion effects in a point cloud during

acquisition?

4. Why does positioning, using for instance GPS, play such an impor-

tant role in acquisition?
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Figure 3.1: The Voronoi cell Vp is formed

by the intersection of all the half-planes

between p and the other points.

Figure 3.2: The VD for a set S of points in

the plane (the black points). The Voronoi

vertices (brown points) are located at the

centre of the circle passing through three

points in S, provided that this circle con-

tains no other points in S in its interior.
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Delaunay triangulations (DT) and Voronoi diagrams (VD) are fundamen-

tal data structures for terrains, both for their representation and for their

processing (eg interpolation and several operations on terrains and point

clouds are based on one of these structures).

This chapter formally defines the VD and DT in two dimensions, and

introduces several concepts in computational geometry and combinatorial

topology that are needed to understand, construct, and manipulate them

in practice. Delaunay triangulations with constraints are also discussed.

3.1 Voronoi diagram

Let S be a set of points inR2
(the two-dimensional Euclidean space). The

Voronoi cell of a point p ∈ S, defined Vp , is the set of points x ∈ R2
that

are closer to p than to any other point in S; that is:

Vp � {x ∈ R2 | ‖x − p‖ ≤ ‖x − q‖ , ∀ q ∈ S}. (3.1)

The union of the Voronoi cells of all generating points p ∈ S form the

Voronoi diagram of S, defined VD(S). If S contains only two points p
and q, then VD(S) is formed by a single line defined by all the points

x ∈ R2
that are equidistant from p and q. This line is the perpendicular

bisector of the line segment from p to q, and splits the plane into two

half-planes. Vp is formed by the half-plane containing p, and Vq by the

one containing q. As shown in Figure 3.1, when S contains more than

two points (let us say it contains n points), the Voronoi cell of a given

point p ∈ S is obtained by the intersection of n − 1 half-planes defined

by p and the other points q ∈ S. That means that Vp is always convex.

Notice also that every point x ∈ R2
has at least one nearest point in S,

which means that VD(S) covers the entire space.

As shown in Figure 3.2, the VD of a set S of points in R2
is a planar

graph. Its edges are the perpendicular bisectors of the line segments of

pairs of points in S, and its vertices are located at the centres of the circles

passing through three points in S. The VD in R2
can also be seen as a

two-dimensional cell complex where each 2-cell is a (convex) polygon

(see Figure 3.3). Two Voronoi cells, Vp and Vq , lie on the opposite sides

of the perpendicular bisector separating the points p and q.

The VD has many interesting properties, what follows is a list of the most

relevant properties in the context of this course.

Size: if S has n points, then VD(S) has exactly n Voronoi cells since there

is a one-to-one mapping between the points and the cells.

Voronoi vertices: a Voronoi vertex is equidistant from 3 data points.

Observe for instance in Figure 3.2 that the Voronoi vertices are at

the centre of circles.
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Figure 3.3: VD of a set of points in the

plane (clipped by a box). The point p
(whoseVoronoi cell is dark grey) has seven

neighbouring cells (light grey).

p

Voronoi edges: a Voronoi edge is equidistant from 2 points.

Convex hull: let S be a set of points in R2
, and p one of its points. Vp is

unbounded if p bounds conv(S). Otherwise, Vp is the convex hull

of its Voronoi vertices. Observe that in Figure 3.2, only the point in

the middle has a bounded Voronoi cell.

3.2 Delaunay triangulation

Let D be the VD of a set S of points in R2
. Since VD(S) is a planar graph,

it has a dual graph, and let Tbe this dual graph obtained by drawing

straight edges between two points p , q ∈ S if and only if Vp and Vq
are adjacent in D. Because the vertices in D are of degree 3 (3 edges

connected to it), the graph T is a triangulation. T is actually called the

Delaunay triangulation (DT) of S, and, as shown in Figure 3.4, partitions

the plane into triangles—where the vertices of the triangles are the points

in S generating each Voronoi cell—that satisfy the empty circumcircle test

(a circle is said to be empty when no points are in its interior). If S is in

general position, then DT(S) is unique.

3.2.1 Convex hull

The DT of a set S of points subdivides completely conv(S), ie the union
of all the triangles in DT(S) is conv(S).

Let S be a set of points in R2
, the convex hull of S, denoted conv(S), is the

minimal convex set containing S. It is best understood with the elastic

band analogy: imagine each point in R2
being a nail sticking out of the

plane, and a rubber band stretched to contain all the nails, as shown in

Figure 3.4: The DT of a set of points in the

plane (same point set as Figure 3.3). The

green circles show 2 examples of empty

circumcircles.
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Figure 3.5: The convex hull of a set of

points in R2
.

σ

τa

τb

p

q

τa τb qp

σ

Figure 3.6: A quadrilateral that can be

triangulated in two different ways. Only

the top configuation is Delaunay. (top) σ
is not locally Delaunay. (bottom) σ is not

locally Delaunay.

Figure 3.5. When released, the rubber band will assume the shape of

the convex hull of the nails. Notice that conv(S) is not only formed by the

edges connecting the points (the rubber band), but all the points of R2

that are contained within these edges (thus the whole polygon).

3.2.2 Local optimality

LetTbe a triangulation of S inR2
. An edge σ is said to be locallyDelaunay

if it either:

(i) belongs to only one triangle, and thus bounds conv(S), or
(ii) belongs to two triangles τa and τb , formed by the vertices of σ and

respectively the vertices p and q, and q is outside of the circumcircle

of τa (see Figure 3.6).

Figure 3.6 gives an example that violates the second criteria: both p and

q are contained by the circumcircles of their opposing triangles, ie of τb
and τa respectively.

In an arbitrary triangulation, not every edge that is locally Delaunay

is necessarily an edge of DT(S), but local optimality implies globally

optimality in the case of the DT:

Let Tbe a triangulation of a point set S inR2
. If every edge of

T is locally Delaunay, then T is the Delaunay triangulation

of S.

This has serious implications as the DT—and its dual—are locally modi-

fiable, ie we can theoretically insert, delete or move a point in S without

recomputing DT(S) from scratch.

3.2.3 Angle optimality

The DT in two dimensions has a very important property that is useful in

applications such as finite element meshing or interpolation: themax-min

angle optimality. Among all the possible triangulations of a set S of points

in R2
, DT(S) maximises the minimum angle (max-min property), and

also minimises the maximum circumradii. In other words, it creates

triangles that are as equilateral as possible. Notice here that maximising

the minimum angle is not the same as minimising the maximum, and

the DT only guarantees the former.

3.2.4 Lifting on the paraboloid

There exists a close relationship between DTs inR2
and convex polyhedra

in R3
.

Let S be a set of points in R2
. The parabolic lifting map projects each

vertex v(vx , vy) to a vertex v+(vx , vy , v2

x + v2

y) on the paraboloid of

revolution in R3
. The set of points thus obtained is denoted S+

. Observe

that the paraboloid in three dimensions defines a surface whose vertical

cross sections are parabolas, and whose horizontal cross sections are

circles.
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S

S+

parabolic
lifting

Figure 3.7: The parabolic lifting map for a

set S of points R2
.

Figure 3.8: The DT for four cocircular

points in two dimensions is not unique

(but the VD is).

Figure 3.9: A graph G (black lines), and

its dual graph G? (dashed lines).

The relationship is the following: every triangle of the lower envelope of

conv(S+
) projects to a triangle of the Delaunay triangulation of S; this is

illustrated in Figure 3.7 for a simple DT.

Construction of the two-dimensional DT can be transformed into the con-

struction of the convex hull of the lifted set of points in three dimensions

(followed by a simple project to the two-dimensional plane).

2 How does it work in practice?

Since it is easier to construct convex hulls (especially in higher di-

mensions, ie 4+), the DT is often constructed with this approach,

even in 2D. One popular and widely used implementation is Qhull

(http://www.qhull.org/).

3.2.5 Degeneracies

The previous definitions of the VD and the DT assumed that the set S
of points is in general position, ie the distribution of points does not

create any ambiguity in the two structures. For the VD/DT in R2
, the

degeneracies, or special cases, occur when 3 points lie on the same line

and/or when 4 points are cocircular. For example, in two dimensions,

when four or more points in S are cocircular there is an ambiguity in the

definition of DT(S). As shown in Figure 3.8, the quadrilateral can be

triangulated with two different diagonals, and an arbitrary choice must

be made since both respect the Delaunay criterion (points should not be

on the interior of a circumcircle, but more than three can lie directly on

the circumcircle).

This implies that in the presence of four or more cocircular points, DT(S)
is not unique. Notice that even in the presence of cocircular points, VD(S)
is still unique, but it has different properties. For example, in Figure 3.8,

the Voronoi vertex in the middle has degree 4 (remember that when S
is in general position, every vertex in VD(S) has degree 3). When three

or more points are collinear, DT(S) and VD(S) are unique, but problems

with the implementation of the structures can arise.

3.3 Duality between the DT and the VD

Duality can have many different meanings in mathematics, but it always

refers to the translation or mapping in a one-to-one fashion of concepts

or structures. We use it in this course in the sense of the dual graph of a

given graph. Let G be a planar graph, as illustrated in Figure 3.9 (black

edges). Observe that G can also be seen as a cell complex in R2
. The

duality mapping is as follows (also shown in details in Figure 3.10) The

dual graph G?
has a vertex for each face (polygon) in G, and the vertices

in G?
are linked by an edge if and only if the two corresponding dual

faces in G are adjacent (in Figure 3.9, G?
is represented with dashed

lines). Notice also that each polygon in G?
corresponds to a vertex in G,

and that each edge of G is actually dual to one edge (an arc in Figure 3.9)

of G?
(for the sake of simplicity the dual edges to the edges on the

boundary of G are not drawn).

http://www.qhull.org/
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DT VD

face ↔ vertex
vertex ↔ face
edge ↔ edge

Figure 3.10: Duality between the DT (dot-

ted) and the VD (dashed).

p

Figure 3.11: (top) The DT before and (bot-
tom) after a point p has been inserted.

Notice that the DT is updated only locally

(only the yellow triangles are affected).

The VD and the DT are the best example of the duality between plane

graphs.

3.4 Incremental construction of the DT

Since the VD and the DT are dual structures, the knowledge of one

implies the knowledge of the other one. In other words, if one has only

one structure, she can always extract the other one. Because it is easier,

from an algorithmic and data structure point of view, to manage triangles

over arbitrary polygons (they have a constant number of vertices and

neighbours), constructing and manipulating a VD by working only on its

dual structure is simpler and usually preferred. When the VD is needed,

it is extracted from the DT. This has the additional advantage of speeding

up algorithms becausewhen theVD is used directly intermediate Voronoi

vertices—that will not necessarily exist in the final diagram—need to be

computed and stored.

While there exists different strategies to construct at DT, we focus in

this book on the incrementalmethod since it is easier to understand and

implement. An incremental algorithm is one where the structure is built

incrementally; in our case this means that each point is inserted one at a

time in a valid DT and the triangulation is updated, with respect to the

Delaunay criterion (empty circumcircle), after each insertion. Observe

that the insertion of a single point p in a DT modifies only locally the DT,

ie only the triangles whose circumcircle contains p need to be deleted and

replaced by new ones respecting the Delaunay criterion (see Figure 3.11

for an example).

In sharp contrast to this, other strategies to construct a DT (eg divide-

and-conquer and plane sweep algorithms, see Section 3.7), build a DT in

one operation (this is a batch operation), and if another point needs to be

inserted after this, the whole construction operation must be done again

from scratch. That hinders their use for some applications where new

data coming from a sensor would have to be added.

The incremental insertion algorithm, and the other well-known algo-

rithms, can all construct the DT of n points randomly distributed in the

Euclidean plane in O(n log n).

Figure 3.12 illustrates the steps of the algorithm, and Algorithm 1 its

pseudo-code. In a nutshell, for the insertion of a new point p in a DT(S),
the triangle τ containing p is identified and then split into three new

triangles by joining p to every vertex of τ. Second, each new triangle
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Figure 3.12: Step-by-step insertion, with flips, of a single point in a DT in two dimensions.

Algorithm 1: Algorithm to insert one point in a DT

1 Input: A DT(S) T, and a new point p to insert

Output: Tp � T∪ {p} // the DT with point p
2 find triangle τ containing p
3 insert p in τ by splitting it in to 3 new triangles (flip13)

4 push 3 new triangles on a stack

5 while stack is non-empty do
6 τ � {p , a , b} ← pop from stack

7 τa � {a , b , c} ← get adjacent triangle of τ having the edge ab
8 if c is inside circumcircle of τ then
9 flip22 τ and τa
10 push 2 new triangles on stack

o1

o2 o3

DT(S)

Figure 3.13: The set S of points is con-

tained by a big triangle formed by the ver-

tices o1, o2 and o3. Many triangles outside

conv(S) are created.

is tested—according to the Delaunay criterion—against its opposite

neighbour (with respect to p); if it is not a Delaunay triangle then the

edge shared by the two triangles is flipped (see below) and the two new

triangles will also have to be tested later. This process stops when every

triangle having p as one of its vertices respects the Delaunay criterion.

Initialisation: the big triangle. Most of the incremental DT/VD algo-

rithms assume that the set S of points is entirely contained in a big triangle

(τbi g) several times larger than the spatial extent of S; conv(S) therefore
becomes τbi g . Figure 3.13 illustrates this. The construction of DT(S) is
for example always initialised by first constructing τbi g , and then the

points in S are inserted one by one.

Doing this has many advantages. First, when a single point p needs to

be inserted in DT(S), this guarantees that p is always inside an existing

triangle; we thus do not have to deal explicitlywith vertices added outside

the convex hull. Second, we do not have to deal with the (nasty) case

of deleting a vertex that bounds conv(S). Third, since an edge is always

guaranteed to be shared by two triangles, point location algorithms never

“fall off” the convex hull. Fourth, identifying the vertices that bounds

conv(S) is easy: they have one incident triangle that has one or more of

the big triangle vertices. Fifth, the Voronoi cells of the points that bounds

conv(S) will be bounded, since the only unbounded cells will be the ones

of the four points of τbi g . This can help for some of the spatial analysis
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starting triangle

p

Figure 3.14: The Walk algorithm for a DT

in two dimensions. The query point is p.

flip22 flip22

Figure 3.15: A flip22

operations, for instance interpolation based on the VD (see Chapter 4).

Themain disadvantage is thatmore triangles than needed are constructed.

For example in Figure 3.13 only the shaded triangles would be part of

DT(S). The extra triangles can nevertheless be easily marked as they are

the only ones containing at least one of the three points forming τbi g .

2 How does it work in practice?

Several implementations of the DT use a big triangle, CGAL (https:

//www.cgal.org/) being one example, and these often label vertices

and/or triangles as “infinite”. It is therefore essential to understand

the mecanism, even if one is not constructing the DT herself. There

is also a variation on the big triangle: when an extra point is “at the

infinity”.

Point location with walking. To find the triangle containing the newly

inserted point p, we can use the point-in-polygon test for every triangle

(the standardGIS operation), but that brute-force operationwould be very

slow (complexity would be O(n) since each triangle must be checked).

A better alternative is to use the adjacency relationships between the

triangles, and use a series of Orientation tests, as described below, to

navigate from one triangle to the other. The idea, called “walking”, is

shown in Figure 3.14 and details are given in the Algorithm 2. The idea is

as follows: in a DT(S), starting from a triangle τ (it can be any), we move

to one of the adjacent triangle of τ (τ has three neighbours, we choose

one neighbour τi such that the query point p and τ are on each side of

the edge shared by τ and τi) until there is no such neighbour, then the

simplex containing p is the current triangle τ. Notice that this algorithm

is not affected by degenerate cases, and that if an Orientation test returns

0 (collinearity), then it is simply considered a positive result. This will

ensure that if the query point p is located exactly at the same position as

one point in S, then one triangle incident to p will be returned.

Flips. The flip22 operation used to modify the triangulation is a simple

local topological operation that modifies the configuration of two adjacent

triangles. It is performed in constant time O(1). Consider the set S �

{a , b , c , d} of points in the plane forming a quadrilateral, as shown in

Figure 3.15. There exist exactly two ways to triangulate S: the first

one contains the triangles abc and bcd; and the second one contains

the triangles abd and acd. Only the first triangulation of S is Delaunay

https://www.cgal.org/
https://www.cgal.org/
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Algorithm 2: Walk(T, τ, p)

1 Input: A DT(S) T, a starting triangle τ, and a query point p
Output: τr : the triangle in Tcontaining p

2 τr = None

3 while τr == None do
4 visitededges = 0

5 for i ← 0 to 2 do
6 σi ← get edge opposite to vertex i in τ
7 if Orientation (σi , p) < 0 then
8 τ← get neighbouring triangle of τ incident to σi
9 break

10 visitededges += 1

11 if visitededges �� 3 then
// all the edges of τ have been tested

12 τr = τ

13 Return(τr)

because d is outside the circumcircle of abc. A flip22 is the operation that

transforms the first triangulation into the second, or vice-versa.

Two other flips are possible: flip13 and flip31; the numbers refer to the

number of triangles before and after the flip. A flip13 refers to the

operation of inserting a vertex inside a triangle, and splitting it into three

triangles; and a flip31 is the inverse operation that deletes a vertex.

Controlling the flips. To control which triangles have to be checked

and potentially flipped, we use a stack
∗
. When the stack is empty, then

there are no more triangles to be tested, and we are guaranteed that all

the triangles in the triangulation have an empty circumcircle.

Predicates. Constructing a DT and manipulating it essentially require

two basic geometric tests (called predicates): Orientation determines if a

point p is left, right or lies on the line segment defined by two points a
and b; and InCircle determines if a point p is inside, outside or lies on a

circle defined by three points a, b and c. Both tests can be reduced to the

computation of the determinant of a matrix:

Orientation(a , b , p) �

������ ax ay 1

bx by 1

px py 1

������ (3.2)

InCircle(a , b , c , p) �

��������
ax ay a2

x + a2

y 1

bx by b2

x + b2

y 1

cx cy c2

x + c2

y 1

px py p2

x + p2

y 1

�������� (3.3)

∗
A data structure: https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
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τ

τa

τb

τc

a

b

c
d

triangle v1 v2 v3 adj1 adj2 adj3
τ a b c τa τb τc
τa b d c τ... τ τ...
. . . . . . . . . . . . . . . . . . . . .

Figure 3.16: The triangle-based data struc-

ture to store efficiently a triangulation (and

the adjacency relationships between the

triangles).

Figure 3.17: (top) A set S of points

and straight-line segments. (middle) Con-
strained DT of S. (bottom) Conforming

DT of S; the Steiner points added are in

red.

3.5 Data structures for storing a DT

A triangulation is simply a subdivision of the plane into polygons, and

thus any data structure used in GIS can be used to store a triangulation.

Simple Features: while many use this (PostGIS and any triangulation

you see in Shapefiles), this is not smart: (1) the topological rela-

tionships between the triangles are not stored; (2) the vertices are

repeated for each triangle (and we know that for a Poisson distri-

bution of points in the plane a given point has exactly 6 incident

triangles).

Edge-based structures: all the edge-based topological data structure

used for storing planar graphs (eg DCEL, half-edge, winged-edge,

etc) can be used. These usually lead to large storage space.

Observe that in practice, if only the DT is wanted (and not the constrained

one, see below), practitioners will often simply store the sample points

and reconstruct on-the-fly the DT, since it is unique (if we omit points

not in general position that is).

However, because it is simpler tomanage triangles over arbitrarypolygons

(they always have exactly 3 vertices and 3 neighbours), data structures

specific for triangulations have been developed and are usually used.

The simplest data structure, as shown in Figure 3.16, considers the triangle

as being its atom and stores each triangle with 3 pointers to its vertices

and 3 pointers to its adjacent triangles. Observe that the order in which

the vertices and adjacent triangles stored correspond to each other. This

is an important property that allows an efficient retrieval of triangles in

the Walk algorithm (Algorithm 2) for instance.

3.6 Constrained and Conforming Delaunay
Triangulations

Given as input a set S of points and straight-line segments in the plane,

different triangulations of S (so that the segments are respected) can be

constructed. We are mostly interested in the constrained Delaunay triangu-

lation (ConsDT) and the conforming Delaunay triangulation (ConfDT), see

Figure 3.17 for one example.
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Figure 3.18: The ConsDT of a set of seg-

ments. On the right, the triangle whose

circumcircle is green is a Delaunay (no

other points in its interior) and so is the

triangle whose circumcircle is in purple

(there is one point in its interior, but it

cannot be seen because of the constrained

segment).

3 buildings DT of the vertices
of the buildings

Constrained DT

(a) (b) (c) (d) (e)

Figure 3.19: Steps to construct a ConsDT.

Constrained DT (ConsDT). Given a set S of points and straight-line

segments in R2
, the ConsDT permits us to decompose the convex hull of

S into non-overlapping triangles, and every segment of S appears as an

edge in ConsDT(S). ConsDT is similar to the Delaunay triangulation, but

the triangles in ConsDT are not necessarilyDelaunay (ie their circumcircle

might contain other points from S). The empty circumcircle for a ConsDT

is less strict: a triangle is Delaunay if its circumcircle contains no other

points in S that are visible from the triangle. The constrained segments in

S act as visibility blockers. Figure 3.18 shows one example.

Without going into details about one potential algorithm, one way to

construct a ConsDT(S) is (see Figure 3.19):

1. construct DT(Sp
), where Sp

is the set containing all the points in S
and the end points of the line segments (Figure 3.19b)

2. insert each line segment, each insertion will remove edges from

DT(Sp
). In Figure 3.19c 3 edges are removed.

3. this creates 2polygons that need to be retriangulated, in Figure 3.19d

there is a blue and a green one.

4. retriangulate each separately, the Delaunay criterion needs to be

verified only for the vertices incident to the triangles incident to

the hole/polygon.

Observe that the ConsDT can be used to triangulate polygons with holes

(see Figure 3.20), it suffices to remove the triangle outside the exterior

boundary, but inside the convex hull.

Conforming DT (ConfDT). A ConfDT adds new points to the input S
(called Steiner points) to ensure that the input segments are present in

the triangulation. As Figures 3.17 and 3.20 show, the input straight-line

segments will be potentially split into several collinear segments. The
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Figure 3.20: (top) One polygon with 4

holes (interior rings). (middle) its ConsDT.

(bottom) its ConfDT (the Steiner point

added is in red).

Steiner point

Steiner points have to be carefully chosen (where to put them is beyond

the scope of this course).

Observe that each triangle in a ConfDT respect the Delaunay criterion,

but that more triangles are present. If 2 segments are nearly parallel,

many points could be necessary (for m segments, up to m2
could be

necessary).

3.7 Notes and comments

The DT and the VD have been discovered, rediscovered and studied

many times and in many different fields, see Okabe et al. (2000) for a

complete history. The VD can be traced back to 1644, when Descartes

used Voronoi-like structures in Part III of his Principia Philosophiæ. The VD

was used by Dirichlet (1850) to study quadratic forms—this is why the

VD is sometimes referred to as Dirichlet tessellation—but was formalised

and defined by Voronoi (1908). The first use of the VD in a geographical

context is due to Thiessen (1911), who used it in climatology to better

estimate the precipitation average around observations sites; the DT was

formalised by Delaunay (1934).

For the construction of the DT, the incremental algorithm was first

described by Lawson (1972). Guibas and Stolfi (1985) describe a divide-

and-conquer algorithm, and Fortune (1987) a sweep-line one.

The local optimality of a DT, which implies globally optimality in the

case of the DT, was proven by Delaunay (1934) himself. The max-min

angle optimality of the DT was firstly observed by Sibson (1978). This

paraboloic liftingwasfirst observedbyBrown (1979) (whouseda spherical

transformation), further described by Seidel (1982) and Edelsbrunner

and Seidel (1986).

Instead of using a big triangle, several will use an “infinite point” or a

“far-away point”, which is conceptually the same but numerically more

stable (since the size of the big triangle does not need to be defined). Liu

and Snoeyink (2005) explains the details.

The walking algorithm described, with a few modifications, can perform

point location in O(n1/3
). The walking in the triangulation to locate the

triangle containing a newly inserted point is not the fastest solution,

Mücke et al. (1999) and Devillers et al. (2002) discuss alternatives that are

optimal (ie O(log n)). However, they both note that optimal algorithms

do not necessarily mean better results in practice because of the amount

of preprocessing involved, the extra storage needed, and also because

the optimal algorithms do not always consider the dynamic case, where

points in the DT could be deleted.

Several criteria for constructing data-dependent triangulations are dis-

cussed in Dyn et al. (1990). While these can be used, in practice it was

proven that the Delaunay triangulation is still the triangulation that

minimises the roughness of a surface (Wang et al., 2001; Rippa, 1990)

Shewchuk (1997) shows that while the triangle-based data structure

requires twice asmuch code aswith the quad-edge (to store and construct

a ConsDT), the result is that the code runs twice as fast and the memory
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requirement as about 2X less. CGAL (https://www.cgal.org/), among

many others, uses the triangle-based data structure.

Since a DT can be locally modified by adding one point (and not recon-

structing the whole structure from scratch, see Figure 3.11), it is also

possible to delete/remove one vertex fromaDTwith only local operations.

Mostafavi et al. (2003) and Devillers (2009) describe algorithms.

3.8 Exercises
1. A DT has 32 triangles and we insert a new point p that falls inside

one of the triangles. If we insert and update the triangulation (for

Delaunay criterion), what is the number of triangles?

2. If a given vertex v in a DT has 7 incident triangles, how many

vertices will its dual polygon contain?

3. A DT has 6 vertices, and 3 of these are forming the convex hull.

How many triangles does the DT have?

4. Assume you have 8 points located on a circle. Draw the DT and

the VD of these 8 points.

5. When inserting points in a DT (Algorithm 1), what happens if a

new points is inserted directly on an edge? Line 2 states that the

triangle is split into 3 new triangles, does it still hold?

6. Given the input formed of elevation points and breaklines below

(both projected to the x y-plane), draw both the constrained and

conforming Delaunay triangulation (an approximation is fine).

Constained DT Conforming DT

https://www.cgal.org/
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Given a set S of points pi in R2
(also called samples or data points in the

following) to which an attribute ai is attached, spatial interpolation is the

procedure used to estimate the value of the attribute at an unsampled

location x. Its goal is to find a function f (x , y) that fits (pass through, or
close to, all the points in S) as well as possible. There is an infinity of such

functions, some are global and some are piecewise, the aim is to find one

that is best suited for the kind of datasets used as input. Interpolation is

based on spatial autocorrelation, that is the attribute of two points close

together in space is more likely to be similar than that of two points far

from each other.

It should be noticed that the natural spatial extent of a set of sample is its

convex hull, and that an estimation outside this convex hull is extrapolation

(Figure 4.1). Extrapolating implies that more uncertainty is attached to

the estimated value.

Spatial interpolation methods are crucial in the visualisation process

(eg generation of contours lines), for the conversion of data from one

format to another (eg from scattered points to raster), to have a better

understanding of a dataset, or simply to identify ‘bad’ samples. The

result of interpolation—usually a surface that represents the terrain—

must be as accurate as possible because it often forms the basis for

spatial analysis, for example runoff modelling or visibility analysis.

Although interpolation helps in creating three-dimensional surfaces,

in the case of terrains it is intrinsically a two-dimensional operation

because only the (x , y) coordinates of each sample are used, and the

elevation is the dependent attribute. Notice that the attribute used need

not be only elevation, for other GIS applications one could use the spatial

interpolationmethods below for for instance rainfall amounts, percentage

of humidity in the soil, maximum temperature, etc. Spatial interpolation

in 3D is also possible (but out of scope for this course), in that case there

are 3 independent variables (x , y , z) and one dependent variable, for

instance the temperature of the sea at different depth, or the concentration

of a certain chemical in the ground.

4.1 What is a good interpolation method for
terrains?

The essential properties of an ‘ideal’ interpolation method for bivariate

geoscientific datasets are as follows:

1. exact: the interpolant must ‘honour’ the data points, or ‘pass

through’ them.

2. continuous: a single and unique value must be obtained at each

location. This is called a C0
interpolant in mathematics (see Figure

4.2).
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Figure 4.2: C0
interpolant is a function

that is continuous but the first derivative

is not possible at certain locations; C1
in-

terpolant has its first derivative possible

everywhere; C2
interpolant has its second

derivative possible everywhere (this one

is more difficult to draw). (a) C0 interpolant (b) C1 interpolant (c) C2 interpolant

3. smooth: it is desirable for some applications to have a function for

which the first or second derivative is possible everywhere; such

functions are respectively referred to as C1
and C2

interpolants.

4. local: the interpolation function uses only some neighbouring

samples to estimate the value at a given location. This ensures that

a sample with a gross error will not propagate its error to the whole

interpolant.

5. adaptability: the function shouldgive realistic results for anisotropic

data distributions and/or for datasets where the data density varies

greatly from one location to another.

6. computationally efficient: it should be possible to implement the

method and get an efficient result. Efficiency is of course subjective.

For a student doing this course, efficiency might mean that the

method generates a result in matter of minutes or an hour on a

laptop, for the homework dataset. For a mapping agency, running a

process for a day on a supercomputer for a whole country might be

efficient. Observe that the complexity of the algorithm is measured

not only on the number n of points in the dataset, but how many

neighbours k are used to perform one location estimation.

7. automatic: the method must require as little input as possible from

the user, ie it should not rely on user-defined parameters that

require a priori knowledge of the dataset.

4.2 Fitting polynomials

4.2.1 One global function

We know that if we have n points in S in in R3
(the samples are lifted to

their elevation), there is one polynomial of degree at most n − 1.

This interpolant will be exact, continuous and smooth (at least C2
).

However, it will not be local (which is problematic for terrains), and

finding the polynomial of a high degree for large datasets might be

impossible (or take a lot of time).

The biggest concern polynomials is probably that while the interpolant

is exact (the surface passes through the sample points), higher-degree

polynomials can oscillate between the samples and ‘overshoot’, ie be

(far) outside the minimum or maximum z values of the the set S. This is
known as the Runge’s phenomenon in numerical analysis, and is shown

in Figure 4.3.
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Figure 4.3: A few of the interpolation methods shown for a 1D dataset. (a) Input sample points. (b) Polynomial fitting, and the Runge’s

effect shown. (c) Natural neighbour. (d) Linear interpolation in TIN.

4.2.2 Splines: piecewise polynomials

Splines are piecewise polynomials, each piece is connected to its neigh-

bouring piece in a smooth manner: along the edges and at the data points

the function is usually still C1
or C2

(in other words, where 2 or more

polynomials connect, they have the same values for their tangents).

In practice, for terrain modelling, splines are preferred over one polyno-

mial function because of the reasons mentioned above (mostly Runge’s

effect) and because computing the polynomial for large datasets is very

inefficient. The polynomials used in each piece of the subdivision is

usually of low degree (≤ 5)

There are several types of splines (and variation of them, such as Bézier),

and most of them are not suited for terrains. The most used spline in

practice seems to be the regularised spline with tension (RST), where the

dataset is decomposed into square pieces of a certain size. The Runge’s

effect (also called overshoots) are eliminated (since the degree is low),

and the tension parameter can be tuned to obtain an interpolant that is

smooth. The method is available in the GRASS GIS.

4.3 Weighted-average methods

The five interpolation methods discussed in this section are weighted-

average methods. These are methods that use a subset of the sample points,

to which a weight (importance) are assigned, to estimate the value of the

dependent variable. The interpolation function f of such methods, with

which we obtain an estimation â of the dependent variable ai , have the

following form:

f (x) � âi �

∑n
i�1

wi(x) ai∑n
i�1

wi(x)
(4.1)

where wi(x) is the weight of each neighbouring data point pi (with

respect to the interpolation location x) used in the interpolation process.

A neighbour pi here is a sample point that is used to estimate the value

of location x. In the context of terrain modelling, the attribute a is the

elevation.
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Figure 4.5: (a) IDW interpolation with a

searching circle, and the weight assigned

to each neighbour used in the estimation.

(b) IDW by choosing the closest neighbour

in each quadrant. (c) It has (serious) prob-
lems with datasets whose distribution of

samples is anisotropic.
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Figure 4.4: (a) Nearest neighbour: the es-

timated value at x is that of the closest

data point. (b) the Voronoi diagram can

be used. (c) Ambiguity because p1, p2,

and p3 are equidistant from x; this causes
discontinuities in the resulting surface.

4.3.1 Nearest neighbour interpolation (nn)

Nearest neighbour, or closest neighbour, is a simple interpolationmethod:

the value of an attribute at location x is simply assumed to be equal to

the attribute of the nearest data point. This data point gets a weight of

1.0. Given a set S of data points, if interpolation is performed with this

method at many locations close to each other, the result is the Voronoi

diagram (VD) of S, where all the points inside a Voronoi cell have the

same value.

Although the method possesses many of the desirable properties (it is

exact, local and can handle anisotropic data distributions), the recon-

struction of continuous fields can not realistically be done using it since it

fails lamentably properties 2 and 3. The interpolation function is indeed

discontinuous at the border of cells; if the location x is directly on an

edge or vertex of the VD(S), then which value should be returned?

The implementation of the method sounds easy: simply find the closest

data point and assign its value to the interpolation location. The difficulty

lies in finding an efficient way to get the closest data point. The simplest

way consists of measuring the distance for each of the n points in the

dataset, but this yields a O(n) behaviour for each interpolation, which

is too slow for large datasets. To speed up this brute-force algorithm,

auxiliary data structures that will spatially index the points must be used,

see for instance the kd-tree in Section 10.2. This would speed up each

query to O(log n).

4.3.2 Inverse distance weighting (IDW)

Inverse distanceweighting (IDW)—also called inverse distance to a power,

or distance-based methods—is a family of interpolation methods using

distance to identify the neighbours used, and to assign them weights.

IDW is probably the most known interpolation method and it is widely

used in many disciplines. As shown in Figure 4.5a, in two dimensions

it often uses a ‘searching circle’, whose radius is user-defined, to select

the data points pi involved in the interpolation at location x. It is also
possible to select for instance the 10 or 15 closest data points, or do that

according to certain directions (ie you can select for example 3 data points

in each quadrant; Figure 4.5b shows the case where the closest in each

quadrant is used).

The weight wi(x) assigned to each pi for a location x is:

wi(x) � |xpi |−h
(4.2)
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where h defines the power to be used, and |ab | is the distance between a
and b. The power h is typically 2, but other weights, such as 3, can also

be used. A very high power, say 5, will assign very little importance to

points that are far away.

It should be emphasised that the size of the radius of the searching

circle influences greatly the result of the interpolation: a very big radius

means that the resulting surface will be smooth or ‘flattened’; on the

other hand, a radius that is too small might have dramatic consequences

if for example no data points are inside the circle (Figure 4.5c shows one

example). A good knowledge of the dataset is thus required to select this

parameter.

This method has many flaws when the data distribution varies greatly in

one dataset because a fixed-radius circle will not necessarily be appro-

priate everywhere in the dataset. Figure 4.5c shows one example where

one circle, when used with a dataset extracted from contour lines, clearly

gives erroneous results at some locations. The major problem with the

method comes from the fact that the criterion, for both selecting data

points and assigning them a weight, is one-dimensional and therefore

does not take into account the spatial distribution of the data points close

to the interpolation location.

IDW is exact, local, and can be implemented in an efficient manner.

However, finding all the points inside a given radius requires using an

auxiliary data structure (such as a kd-tree, see Section 10.2) otherwise

each interpolation requires O(n) operations. Also, as mentioned above,

there are cases where IDW might not yield a continuous surface (nor

smooth), it suffers from the distribution of sample points, and we cannot

claim that it is automatic since finding the correct parameters for the

search radius is usually a trial-and-error task. If the closest data points in

each quadrant are used, then the method can be made automatic and

continuous.

4.3.3 Linear interpolation in triangulation (TIN)

This method is popular for terrainmodelling applications and is based on

a triangulation of the data points. As is the case for the VD, a triangulation

is a piecewise subdivision (tessellation) of the plane, and in the context

of interpolation a linear function is assigned to each piece (each triangle).

Interpolating at location x means first finding inside which triangle x lies,

and then the height is estimated by linear interpolation on the 3D plane

defined by the three vertices forming the triangle (the samples are lifted

to their elevation value). The number of samples used in the interpolation

is therefore always 3, and their weight is based on the barycentric value

(see below). To obtain satisfactory results, this method is usually used

in 2D with a Delaunay triangulation because, among all the possible

triangulations of a set of points in the plane, it maximizes the minimum

angle of each triangle.

Themethod is exact, continuous, local, adaptative, efficient, andautomatic.

Only the property #3 is not fulfilled (at the edges of the triangles).
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Figure 4.6: Barycentric coordinates. Ai de-
fines the area of a triangle.

If the point location strategy is used to identify the triangle containing x
(Section 10), then O(n1/3

) on average is used. The interpolation itself is

performed in constant time.

Data-dependent triangulations. It was shown in Chapter 3 and in

Figure 1.5 that, for terrain modelling, the Delaunay triangulation is

preferred over other triangulations because it favours triangles that are as

equilateral as possible. However, it should be noticed that the elevation of

the vertices are not taken into account to obtain the DT, ie if we changed

the elevation of the samples we would always get the same triangulation.

One might therefore wonder whether the DT best approximates the

morphology of a terrain.

A triangulation that considers the elevation (or any z coordinate) is called

a data-dependent triangulation. The idea is to define a set of criteria (instead

of the empty circumcircle). One example is trying to minimise the change

in normals for the two incident triangles of an edge. While such methods

will yield longer and skinnier triangles, these might better approximate

the shape of the terrain for some specific cases. One drawback of these

methods is that different criteria will be required for different cases, and

that computing such triangulation can be computationally expensive. In

practice, one would need to first compute the DT, and then take each

edge (and the two incident triangles), and perform a local flip based on

the elevation values; the final triangulation is obtained by optimisation

the wished criterion.

Barycentric coordinates. The linear interpolation in a triangle can be

efficiently implemented by using barycentric coordinates, which are local

coordinates defined within a triangle. Referring to Figure 4.6, any point

x inside a triangle p1p2p3 can be represented as a linear combination of

the 3 vertices:

x � w0p0 + w1p1 + w2p2

and

w0 + w1 + w2 � 1

The coefficients wi are the barycentric coordinates of the point x with

respect to the triangle p1p2p3. Finding the coefficients w0, w1, and w2

can be done by solving a system of linear equations. If we subtract p2

from x, and we use w2 � 1 − w0 − w1, we obtain

x − p2 � w0(p0 − p2) + w1(p1 − p2)

We obtain 2 vectors (p0 − p2 and p1 − p2), which represent 2 edges of the

triangle. This equation can be solved and we find that the 3 coefficients

are equal of the area of the 3 triangle subdividing the original triangle

(as shown in Figure 4.6).

Higher-order function in each triangle (TIN-c1). It is possible to mod-

ify the linear function inside each triangle by a higher-order function.

As is the case for splines, there are severalways to achieve this, and the

details of these is out of scope for this course. These methods are usually

used more for finite element analysis where the flow of a certain fluid

(eg wind) around or through a mechanical piece is studied.
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Figure 4.7: The VD of a set of points with

an interpolation location x.
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Figure 4.8:Natural neighbour coordinates

in 2D for x. The shaded polygon is V+
x .

Most methods would define a cubic Bézier polynomial inside each

triangle (which is C1
), and then ensure that the function is C1

along the

edges and at the 3 vertices of the triangles. To achieve this the normals

of each vertex is calculated by averaging the normals of the incident

triangles, and the normal along an edge is computed similarly with the 2

incident triangles.

4.3.4 Natural Neighbour Interpolation (NNI)

This is a method based on the Voronoi diagram for both selecting the

data points involved in the process, and assigning them a weight. It uses

two VDs: one for the set S of data points (Figure 4.7), and another one

where a point x is inserted at the estimation location (Figure 4.8). The

insertion of x modifies locally a VD(S): the Voronoi cell Vx of x ‘steals’

some parts of some Voronoi cells of VD(S).

This idea forms the basis of natural neighbour coordinates, which define

quantitatively the amount Vx steals from each of its natural neighbours

(Figure ??). Let D be the VD(S), and D+ � D∪ {x}. The Voronoi cell

of a point p in D is defined by Vp , and V+
p is its cell in D+

. The natural

neighbour coordinate of x with respect to a point pi is

wi(x) �
Area(Vpi ∩ V+

x )
Area(V+

x )
(4.3)

where Area(Vpi ) represents the area of Vpi . For any x, the value of wi(x)
will always be between 0 and 1: 0 when pi is not a natural neighbour of x,
and 1 when x is exactly at the same location as pi . A further important

consideration is that the sum of the areas stolen from each of the k natural

neighbours is equal to Area(V+
x ), in other words:

k∑
i�1

wi(x) � 1. (4.4)

Therefore, the higher the value of wi(x) is, the stronger is the ‘influence’
of pi on x. The natural neighbour coordinates are influenced by both the

distance from x to pi and the spatial distribution of the pi around x.

Natural neighbour interpolation is based on the natural neighbour

coordinates. The points used to estimate the value of an attribute at

location x are the natural neighbours of x, and the weight of each

neighbour is equal to the natural neighbour coordinate of x with respect

to this neighbour.

The natural neighbour interpolant possesses all the wished properties

from above, except that the first derivative is undefined at the data points.

Its main disadvantage is that its implementation is rather complex, and

obtaining an efficient one is not simple and involves complex manipula-

tion of the VD. From Section 3.4 we know that one insertion of a single

point p in a DT can be done in O(log n), but the deletion of a point is a

more complex operation (outside the scope of this book).
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Figure 4.10: Notice how the NNI inter-

polant creates “inverted cups” around

each sample point, and how NNI-c1 re-

sults in a more rounded surface.

(a) NNI (b) NNI (C1
)

Figure 4.9: Top: The NNI interpolant in

1D is equivalent to a linear interpolation.

Bottom: If the gradient at each sample

points are calculated/estimated, then it is

possible to modify the weights so that a

C1
interpolant is obtained.
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Figure 4.11: The weight for the Laplace

interpolant for one neighbour.

Higher-order function (NNI-c1). The NNI method can be thought of

performing linear interpolation, in the 1D case (where we have one

independent variable) then it is equivalent to a linear interpolant (see

Figure 4.9).

It has been modified so that the first derivative is possible everywhere,

including at the data points. This was achieved by modifying the weights

so that they are not linear anymore. The gradient of the surface at each

sample point is taken into account, ie for each data point we can estimate

the slope (with a linear function, a plane) and modify the weights; how

this is done is out of scope for this course. The resulting interpolant is

C1
, and Figure 4.10

4.3.5 Laplace interpolant

The Laplace interpolant, or non-Sibsonian interpolation, is a computa-

tionally faster variant of the natural neighbour interpolation method. It is

faster because no (stolen) areas need to be computed, instead the lengths

of the Delaunay and the Voronoi edges are used.

For a given interpolation location x, the natural neighbours pi of x are

used for the Laplace interpolant. The weight wi of a pi is obtained, as

shown in the Figure 4.11, by:

wi(x) �
|edgei(V+

x )|
|xpi |

(4.5)

where |edgei(V+
x )| represents the length of the Voronoi edge between

x and pi (the orange edge in Figure 4.11 for one neighbour); and |xpi |
the Euclidean distance (in 2D) between x and pi (which is the Delaunay

edge).

If we consider that each data point in S has an attribute ai (its elevation),

the interpolation function value at x is:

f (x) �
∑k

i�1
wi(x) ai∑k

i�1
wi(x)

(4.6)

Note that the fraction becomes indeterminate when x equals one of the

sample points pi . In this case the Laplace interpolant therefore simply

defines that f (x) � ai .
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Figure 4.13: Bilinear interpolation.

Figure 4.12: Resampling of an input grid,

the output grid has different orientation.

Firstly the Laplace interpolant is exact: the interpolation method returns

the exact value, rather than some estimate, of a sample point when

it is queried at that precise location. Secondly, it is continuous and

continuously differentiable (C1
) everywhere except at sites where finitely

many Voronoi circles intersect. Thirdly, it is local, ie it uses only a

local subset of data for the interpolation of a point. This limits the

computational cost and supports efficient addition or removal of newdata

points. Finally, like the VD itself, it is adaptive to the spatial configuration

of sample points. Unlike other methods such as IDW interpolation, the

Laplace interpolant requires no user-defined parameters.

4.3.6 Bilinear Interpolation

When one wants to know the value of the elevation at a location p, she
can simply look at the value of the pixel (which is equivalent to using

nearest neighbour interpolation), but this method has many drawbacks,

for example when one needs to resample a grid. Resampling means

transforming an input grid so that the resolution and/or the orientation

are different, see Figure 4.12.

Bilinear interpolation has been shown to give better results. The method,

which can be seen as an “extension’ of linear interpolation for raster data,

performs linear interpolation in one dimension (say along the x axis),

and then in the other dimension (y). Here one has to be careful about

the meaning of a grid: does the value of a pixel represent the value of the

whole pixel? or was the grid constructed by sampling the values at the

middle of each pixel? In most cases, unless metadata are available, it is

not known. But in the context of terrain modelling, we can assume that

the value of a pixel represents the value at the centre of the pixel.

Suppose we have 4 adjacent pixels, each having an elevation, as in Figure

4.13. Bilinear interpolation uses the 4 centres to perform the interpolation

at location p � (px , py); it is thus a weighted-average method because the

4 samples are used, and theirweight is basedon the linear interpolation, as

explained below. We need to linearly interpolation the values at locations

q and r with linear interpolation, and then linearly interpolate along the

y axis with these values. Also, notice that the result is independent of

the order of interpolation: we could start with interpolating along the y
axis and then the x axis and we would get the same result. For the case
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in Figure 4.13, the calculation would go as follows:

qz �
px−n4x

n3x−n4x
× (n3z − n4z) + n4z

rz �
px−n1x

n2x−n1x
× (n2z − n1z) + n1z

pz �
py−ry
qy−ry

∗ (qz − rz) + rz

4.4 Assessing the results of an interpolation
method and/or fine-tuning the parameters

Finding the “best” interpolation method for a given dataset, and the

most suitable parameters (if any are needed), can be a rather tricky task

in practice because we most often do not have extra control points.

One simple technique, which is also very easy to implement, is called

jackknife, or cross-validation. It is a simple statistics resampling technique

to estimate the bias and the variance of an estimation.

Imagine you have a dataset S consisting of n sample points. The main

idea is to remove/omit from S one sample point p and calculate the

estimation âp obtained for the elevation at the location (x , y) of p, and to

compare this value with the real value of p (ap). And then to repeat this

for each of the n points in S; each estimation is thus obtained with n − 1

points.

One method (with given parameters) for a given dataset can be charac-

terised by computing the root-mean-square error:

RMSE �

√∑n
i�1
(ẑi − zi)2

n
(4.7)

And it is a good idea to plot the results to observe where the largest

differences between the estimation and the real values are obtained, this

can help in idenfiying which parameters should be fine-tuned. See for

instance one example in Figure 4.14. It can be seen in Figure 4.14c that

the largest differences between the observed and estimated values are

(mostly) concentrated around the two peaks of the terrain, which is not

surprising. The differences in the lower areas (which is water) are smaller

since these areas have a flatter morphology. Figure 4.14d shows the same

absolute differences but in a scattered plot of the observed values versus

the estimated one.
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Figure 4.14: (a) A terrain of a given area containing 2 hills. (b) A sample of 1000 points of this terrain. (c) A plot of the errors (absolute

values) obtained from the jackkknife (with IDW and a given search radius and power). (d) A plot of the absolute elevation versus the

estimated ones .

4.5 Overview of all methods

Figure 4.15 shows the result of 8 different interpolants for the same

(real-world) sample points. You can better visualise these datasets, and

download them, at https://3d.bk.tudelft.nl/courses/geo1015/e

xtra/interpol/.

exact continuous local adaptable efficient automatic

global function × C2+ × – – ×
splines × C2+

depends 0 - ×
nearest neigh. X × X + ++ X
IDW X × X - 0 ×
TIN X C0 X + ++ X
NNI X C0 X ++ 0 X
NNI-c1 X C1 X ++ - X
Laplace X C0 X ++ + X
bilinear X C0 X ++ ++ X

https://3d.bk.tudelft.nl/courses/geo1015/extra/interpol/
https://3d.bk.tudelft.nl/courses/geo1015/extra/interpol/
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(a) Nearest neighour (b) IDW (radius=1500m; pow=2)

(c) IDW (radius=1500m; pow=4) (d) TIN (linear)

(e) TIN (C1
) (f) Natural neighbours

(g) Natural neighbours (C1
) (h) Laplace

Figure 4.15: Results of a few interpolation methods for the same dataset; the samples are shown on the surface (red dots).
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4.6 Notes and comments

Watson (1992), in his authoritative book, lists the essential properties of

an ‘ideal’ interpolation method for bivariate geoscientific datasets; we

have added computationally efficient and automatic to the list.

Mitasova and Mitas (1993) gives a full description of the regularised

splines with tension (RST) interpolation method. This method has also

been implemented in the open-source GIS GRASS.

For a discussion about influence of the power in IDW on the resulting

surface, please see Watson (1992).

The description of the barycentric coordinates is mostly taken from Eberly

(2018).

The natural neighbour interpolation method is also called Sibson’s

interpolation, after the name of the inventor (Sibson, 1981).

An excellent summary of the methods to modify Equation ?? to obtain a

continuous function is found in Flötotto (2003).

The construction of a polynomial inside each triangle of a TIN can be

done with several methods. The simplest method is the Clough-Tocher

method (Clough and Tocher, 1965; Farin, 1985). It splits each triangle

into 3 sub-triangles (by inserting a temporary point at the centroid of the

triangle) and a cubic function is built over each.

Dyn et al. (1990) shows how to obtain a data-dependent triangulation.

Rippa (1990) proves that the DT is the triangulation that minimizes the

roughness of the resulting terrain, no matter what the actual elevation of

the data is. Here, roughness is defined as the integral of the square of

the L2
-norm of the gradient of the terrain. Gudmundsson et al. (2002)

shows that a variation of the DT (one where k vertices can be inside the

circumcircle of a given triangle) can yield fewer local minima; whether it

yields a “better’ terrain is an open question.
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4.7 Exercises
1. Given a triangle τ with coordinates (20.0, 72.0, 21.0), (116.0, 104.0,

32.0), and (84.0, 144.0, 26.0), estimate the elevation at x = (92.0,

112.0) with linear interpolation in the triangle (both by finding the

equation of the plane and with barycentric coordinates).

2. What happens when the search distance is very large for inverse

distance weighting interpolation (IDW)?

3. For grids, can IDW or others be used instead of bilinear? If yes,

how does that work?

4. The 15 elevation samples below have been collected. You want to

interpolate at two location:

a) at location (7, 6) with IDW (radius=3; power=2); the purple

circle.

b) at location (15, 6) with linear interpolation in TIN; the orange

cross.

What are the respective answers?

10 155

5

10

0

15

12

9

5

2

3

5

5

67

18

16

14

10

8 5



trend

random process

probability distribution

Spatial interpolation: kriging 5
5.1 Statistical background . . . . . 51
5.2 Geostatistical model . . . . . 53
5.3 Simple kriging . . . . . . . . . 53
5.4 The variogram . . . . . . . . . 56
5.5 Ordinary kriging . . . . . . . 59
5.6 Implementation . . . . . . . . . 61
5.7 Notes and comments . . . . . . 61
5.8 Exercises . . . . . . . . . . . . . 62

Kriging is a spatial interpolation method that was developed mostly

by Georges Matheron based on the earlier work of Danie Krige, who

created it to estimate the gold yield of mines in South Africa. In contrast

to most other spatial interpolation methods, it involves creating a custom

statistical model for every dataset. In this way, different types of kriging

can take into account the different characteristics that are specific to a

dataset, such as highly unequal distributions of sample points, anisotropy

(spatial correlation that varies according to a direction), or the varying

uncertainty and spatial correlation of a set of sample points.

Like other geostatistical models, kriging is based on the fact that when

one moves across space, values such as the gold content in rock or the

elevation in a terrain have both a general spatial trend (eg a mean value,

a fitted plane or a more complex polynomial) and a certain spatially

correlated randomness (ie closer points tend to have more similar values).

Both of these elements can be modelled in kriging.

In the simplest case, when the trend is completely known, it is possible

to use simple kriging. This is admittedly not very useful in practice, but

we will nevertheless first cover it because it teaches the basics of the

technique and is helpful to understand other types of kriging. Then,

we will look at ordinary kriging, which attempts to estimate the trend

as a constant and is the simplest case of kriging that is widely used in

practice.

5.1 Statistical background

The physical processes that shape the world can be considered to be

at least partly deterministic. In the case of a DTM, the elevation is

determined by processes that we can model (more or less accurately),

such as plate tectonics, volcanic activity and erosion. However, these

processes are much too complex and not well-enough understood to use

them to obtain accurate elevation values. Because of this, the value of

sufficiently complex properties, such as the elevation of a terrain, can

usually be defined as the result of random processes.

Based on this inherent randomness, geostatistical models consider that

the value of a property at a location is just one of the infinitelymany values

that are possible at that location. These possible values are not all equally

likely, but they are instead represented by a probability distribution, which

we can associate with a function (ie a probability distribution function) or

with a set of standard statistical measures, such as the mean and variance.

This situation is phrased in mathematical terms by saying that the value

of the elevation property z at a location x is a random variable Z(x). For
the sake of simplicity, we will usually omit the location and denote it just

as Z; or when working with multiple locations (eg xi and x j), we will
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random variable

mean

variance

covariance

correlation coefficient

shorten their respective random variables using subscripts (eg Zi and

Z j).

One way to express the general shape of the probability distribution of

a random variable is in terms of its mean and its variance. In statistics,

the mean, expectation or expected value of a random variable Z is a sort

of probability-weighted average of its possible values and is denoted as

E[Z] or µ. Meanwhile, the variance of a random variable Z is a measure

of how far the values of Z will usually spread from its mean, and it

is denoted as var(Z) or σ2
. A small variance thus means that a few

random samples of Z will likely form a tight cluster around its mean,

whereas a large variance will have sample values that are more spread

out. Mathematically, the variance is defined as the expected value of the

squared deviation from the expected value of Z, or:

var(Z) � E
[
(Z − E [Z])2

]
(5.1)

� E
[
Z2 − 2ZE [Z] + E[Z]2

]
� E

[
Z2

]
− 2E [Z]E [Z] + E [Z]2

� E
[
Z2

]
− 2E [Z]2 + E [Z]2

� E
[
Z2

]
− E[Z]2. (5.2)

Next, it is important to define the covariance, denoted as cov(Zi , Z j), or
σi j , which expresses the joint variability of the random variables Zi and

Z j . Thus, a positive covariance between Zi and Z j means that when one

increases or decreases, the other is expected to increase/decrease in the

samedirection. Conversely, a negative covariancemeans that the variables

tend to increase/decrease in opposite directions. The magnitude of the

covariance is related to the magnitude of this increase or decrease. It is

thus defined mathematically as the expected product of their deviations

from their (individual) expected values, or:

cov(Zi , Z j) � E
[
(Zi − E[Zi])

(
Z j − E[Z j]

) ]
. (5.3)

Here, it is good to note that the covariance of Zi with itself is equivalent

to its variance:

cov(Zi , Zi) � E
[
(Zi − E[Zi])2

]
� var(Zi).

While not used further in this lesson, it is also good to know that

the variance and the covariance can be used to calculate the Pearson

correlation coefficient ρi j , which is one of the most common statistical

measures that is applied to datasets:

ρi j �
cov(Zi , Z j)√

var(Zi)var(Z j)
.

Note that this is essentially just a normalised form of the covariance.
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stationarity of the mean

5.2 The standard geostatistical model

Geostatistics considers that a random variable Z, which represents a

spatially correlated property at a given location, can be decomposed

into two related variables: (i) a non-random spatial trend that can be

modelled by the expectation E[Z] (eg using a constant, a polynomial, a

spline, etc.); and (ii) a random but spatially correlated deviation from

this trend that is considered as a sort of error or residual term and is

here denoted as R. In the case of elevation, the former would represent

the general shape of the terrain, whereas the latter would represent local

differences from it. We therefore have:

Z � E [Z] + R. (5.4)

It is important to consider a couple important aspects here. First, note

that since R � Z − E[Z], the variance (Equation 5.1) and covariance

(Equation 5.3) can also be defined in terms of the residuals:

var (Z) � E
[
R2

]
, (5.5)

cov(Zi , Z j) � E
[
Ri · R j

]
. (5.6)

Also, it is important to know that in order not to introduce any bias, the

expected value of the residual must be zero. That is, E [R] � 0.

5.3 Simple kriging

Simple kriging starts from the assumption that in the geostatistical model

from Equation 5.4, the expectation E(Z) is the same everywhere, which

is known as the stationarity of the mean, and that it is known. In the case of

a DTM, that would mean that a terrain might be uneven with significant

peaks and valleys, but that there is not a general trend across it (eg a

clear slope with higher elevations on one side and lower elevations on

the opposite side). Mathematically, we can express that as:

E [Z(x + h)] � E [Z(x)] , (5.7)

where x is an arbitrary point in the domain (ie the area we want to

interpolate), h is any vector from x to another point in the domain and

Z(x) is the value of a random variable at x (eg its elevation).

Next, simple kriging also makes the assumption that the covariance

between a random variable at a pair of locations does not depend on the

locations, but instead can be defined based only on the vector separating

them. In the case of a DTM, this would mean that the likelihood of

finding similar elevations at two points separated by a given distance and

orientation does not change across the terrain. For instance, a terrain that

goes from smooth on one side to rough on the other would not satisfy

this assumption. Mathematically, we can express this as:
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second-order stationarity

unbiased

minimisation of the variance

cov (Z(x + h), Z(x)) � C(h), (5.8)

where C is the covariance function. Since both the expectation (Equa-

tion 5.7) and the covariance (Equation 5.8) are translation invariant, this

pair of assumptions are together known as second-order stationarity.

Simple kriging is similar to the other spatial interpolation methods

that use a weighted average. However, since we are assuming that the

expectation is the same everywhere, we will define it as a weighted

average of residuals R of the form Z − E[Z], after which the expectation

needs to be added back in order to obtain the final value. It thus defines

a function R̂0 that estimates the value of the residual R of the random

variable Z at a location x0 as a weighted average of its residuals at the n
sample points xi that we will use for the interpolation (where 1 ≤ i ≤ n).
We denote this as:

R̂0 � Ẑ0 − E[Z0] �
n∑

i�1

wi(Zi − E[Zi]︸      ︷︷      ︸
Ri

). (5.9)

Kriging has two distinguishing characteristics. First, that it is unbiased.

This means that it creates a model where the expected value of the

estimation at a location x0 is equal to the expected value at that location.

In mathematical terms, we can formulate this as:

E
[
Ẑ0 − Z0

]
� 0 or E [Z0] � E

[
Ẑ0

]
. (5.10)

In order to check this for simple kriging, we can put the weighted average

from Equation 5.9 in this equation, which results in the following:

E [Z0] � E

[
E[Z0] +

n∑
i�1

wiRi

]
� E[Z0] +

n∑
i�1

wi0E[Ri]

� E[Z0].

The second property of kriging is that it minimises the variance of the

estimation error, which in this case is given by var

(
R̂0 − R0

)
. If we use

the definition of the variance from Equation 5.1, this can be instead put

in terms of an expectation:

var

(
R̂0 − R0

)
� E

[ ( (
R̂0 − R0

)
− E

[
R̂0 − R0

] )
2

]
However, we know from the unbiased criterion from Equation 5.10 that

E
[
R̂0 − R0

]
� 0, and so we can simplify the previous equation as:

var

(
R̂0 − R0

)
� E

[ (
R̂0 − R0

)
2

]
.
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simple kriging system

If this is expanded, it results in:

var

(
R̂0 − R0

)
� E

[
R̂ 2

0
− 2R̂0R0 + R0

2

]
� E

[
R̂ 2

0

]
− 2E

[
R̂0R0

]
+ E

[
R0

2

]
� E

[
n∑

i�1

n∑
j�1

wi w jRiR j

]
− 2E

[
n∑

i�1

wiRiR0

]
+ E

[
R0

2

]
�

n∑
i�1

n∑
j�1

wi w jE
[
RiR j

]
− 2

n∑
i�1

wiE [RiR0] + E
[
R0

2

]
.

Here, we can use the definitions of the variance based on residuals

from Equations 5.5 and 5.6 together with our covariance formula from

Equation 5.8, which yields:

var

(
R̂0 − R0

)
�

n∑
i�1

n∑
j�1

wi w jcov(Ri , R j) − 2

n∑
i�1

wicov(Ri , R0) + cov(R0 , R0)

(5.11)

�

n∑
i�1

n∑
j�1

wi w jC(xi − x j) − 2

n∑
i�1

wiC(xi − x0) + C(x0 − x0).

(5.12)

In order to minimise this equation, we can find where its first derivative

is zero. This is:

∂var

(
R̂0 − R0

)
∂wi

� 2

n∑
j�1

w jC(xi−x j)−2C(xi−x0) � 0 for all 1 ≤ i ≤ n ,

which yields the set of n simple kriging equations:

2

n∑
j�1

w jC(xi − x j) � 2C(xi − x0). (5.13)

While these equations can be used to perform simple kriging, it is often

easier to deal with these in matrix form:

©«
C(x1 − x1) · · · C(x1 − xn)

...
. . .

...
C(xn − x1) · · · C(xn − xn)

ª®®¬︸                                      ︷︷                                      ︸
A

©«
w1

...
wn

ª®®¬︸  ︷︷  ︸
w

�
©«

C(x1 − x0)
...

C(xn − x0)

ª®®¬︸             ︷︷             ︸
d

(5.14)

which is known as the simple kriging system. Finally, if we invert the
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variogram cloud

matrix A, the interpolation weights are given by:

w � A−1d. (5.15)

Now, the obvious remaining questions are: (i) what expectation E[Z]
to use, and (ii) what covariance function C to use. Without an external

evaluation of the dataset, there are no optimal answers for either of

those questions, which is the main weakness of simple kriging and the

reason why it is not used widely in practice. That being said, a reasonable

solution could be to use the average value of zi for all points as E[Z], and
an arbitrary covariance function, such as the exponential, gaussian and

spherical functions that we discuss in the following section.

5.4 The variogram

As we saw in simple kriging, the theoretical definitions of the variance

and covariance functions imply that we know the expected value (ie

E[Z] in Equation 5.1, and E[Zi] and E[Z j] in Equation 5.3), which in

practice is not realistic. In order to avoid this problem, most other forms

of kriging rely instead on what is known as a variogram. The variogram

γ(h) is a function that expresses the average dissimilarity of the value of

a random variable Z between sample points at different distances. It is

defined as:

γ(h) � 1

2

(Z(x + h) − Z(x))2 , (5.16)

where x is a sample point, h is a vector from x to another sample point

and Z(x) is the value of a random variable at x (eg its elevation).

When this is done with every possible pair of sample points in a dataset,

or with a representative subset in order to speed up the process as it is

usually done in practice, |h | (ie the magnitude of the vector h) and γ(h)
can be put into a scatter plot to show how the average dissimilarity of a

value changes with the distance between the sample points. The result of

such a plot is what is known as a variogram cloud (Figure 5.1).

In this figure, it is possible to see some typical characteristics of a

variogram cloud. Since nearby sample points tend to have similar values,

the dissimilarity tends to increase as the distance between sample points

increases. However, it is worth noting that since the farthest away pairs of

sample points have similar values in this specific dataset, the dissimilarity

also decreases at the highest distances.

Sincemost of the time there is awide variation between the dissimilarities

shown at all distances in a variogram cloud, the next step is to average

the dissimilarity of the pairs of sample points based on distance intervals.

Mathematically, a series of averages of dissimilarities γ?(h) can be created

by computing the average dissimilarities for all vectors whose lengths

are within a series of specified intervals (generally known as bins). Given
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Figure 5.1: Starting from (a) a sample dataset, (b) the variogram cloud can be computed. In this case, only 1% randomly selected point pairs

were used.
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a set h containing the vectors for a length interval, the average for its

dissimilarity class is computed as:

γ?(h) � 1

2n

∑
(z (x + h) − z (x))2 for all h ∈ h (5.17)

where n is the number of sample point pairs in h.

This computation results in much smoother values for the dissimilarity,

andwhen the results of |h | and γ?(h) are put into a scatter plot (Figure 5.2),
the result is what is known as an experimental variogram. Experimental

variograms are based on a fewparameters (Figure 5.2b illustrates these):

I the sill, which is the upper bound of γ?(h);
I the range, which is the value of |h | when it converges;

I the nugget, which is the value of γ?(h)when |h | � 0.

Note that in order to avoid the unreliable dissimilarities that are common

at large distances between sample points, it is usual practice to only

compute the experimental variogram for distances up to half of the size

of the region covered by the dataset.

Finally, the last step is to replace the experimental variogram with a

theoretical variogram function that approximates it and which can be more

easily evaluated for further calculations. Depending on the shape of the

variogram, there are various functions that can be used. Some examples

are:

γexponential(h) � s
(
1 − e

−3|h |
r

)
+ n (5.18)

γgaussian(h) � s
(
1 − e

−(3|h |)2
r2

)
+ n (5.19)

γspherical(h) �
{

s
(

3|h |
2r −

|h |3
2r3

)
+ n if |h | ≤ r

s + n if |h | > r
(5.20)
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Figure 5.2: (a) The experimental variogram is usually described in terms of (b) its parameters.

where s is the sill, set to roughly the value of γ?(h)when γ?(h) is flat; r
is the range, roughly the minimum value of |h | where γ?(h) is flat, and
n is the nugget, which is the starting value of γ?(h). Figure 5.3 shows

the result of fitting the three example theoretical variogram functions,

exponential, gaussian and spherical. Note how the gaussian function

appears to be a better fit in this case.

These functions can be used as covariance functions for simple kriging,

taking into account that γ(h) � C(0)−C(h). Note that this means that the

covariance is high when |h | is small and it decreases as |h | increases.
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Figure 5.3: Three possible theoretical var-
iogram functions

5.5 Ordinary kriging

Ordinary kriging is similar to simple kriging and to other spatial interpo-

lation methods that use a weighted average (see Equation 5.9). It thus

defines a function Ẑ0 that estimates the value of the random variable Z
at a location x0 as a weighted average of its value at the n sample points

xi that we will use for the interpolation (where 1 ≤ i ≤ n). We denote

this as:

Ẑ0 �

n∑
i�1

wiZi . (5.21)

Like simple kriging, ordinary kriging is unbiased. Thismeans that it creates

a model where the expected value of the estimation at a location x0 is

equal to the expected value at that location. In practice, this means that if

we put the weighted average from the previous equation in Equation 5.10,

it results in the following:

E [Z0] � E

[
n∑

i�1

wiZi

]
�

n∑
i�1

wiE [Zi] . (5.22)

Here, ordinary kriging also makes the assumption that the expectation is

the same everywhere (stationarity of the mean). Therefore, E [Zi] has
the same value everywhere (ie it is a constant) and we can thus move it

outside of the summation:

E [Z0] � E [Zi]
n∑

i�1

wi , (5.23)

and since also E [Zi] � E [Z0] (because of the stationarity of the mean),

the two terms cancel each other out in the previous equation, which
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means that the unbiased property in ordinary kriging implies that the

interpolation weights must add up to one:

n∑
i�1

wi � 1. (5.24)

Fulfilling this criterion means that we can use the variogram in ordinary

kriging, which is not true for simple kriging.

Like simple kriging, ordinary krigingminimises the variance of the estimation

error, which is given by var

(
Ẑ0 − Z0

)
. For this, we can use the same

derivation as for simple kriging up to Equation 5.11 but using the

variogram for the final step. This is:

var

(
R̂0 − R0

)
�

n∑
i�1

n∑
j�1

wi w jcov(Ri , R j) − 2

n∑
i�1

wicov(Ri , R0) + cov(R0 , R0)

� −
n∑

i�1

n∑
j�1

wi w jγ(xi − x j) + 2

n∑
i�1

wiγ(xi − x0) − γ(x0 − x0).

(5.25)

Using the previous equation and the unbiased criterion from Equa-

tion 5.10, we can apply the minimisation method known as Lagrange

multipliers
∗
and arrive at the set of n + 1 ordinary kriging equations:

n∑
j�1

wiγ(xi − x j) + µ(x0) � γ(xi − x0) for all 1 ≤ i ≤ n

n∑
j�1

wi � 1 (5.26)

where µ(x0) is a Lagrange parameter that was used in the minimisation

process.

Likewith simple kriging, these equations can be used to perform ordinary

kriging, but it is often easier to deal with these in matrix form:

©«
γ(x1 − x1) · · · γ(x1 − xn) 1

...
. . .

... 1

γ(xn − x1) · · · γ(xn − xn) 1

1 · · · 1 0

ª®®®®¬︸                                          ︷︷                                          ︸
A

©«
w1

...
wn
µ(x0)

ª®®®®¬︸      ︷︷      ︸
w

�

©«
γ(x1 − x0)

...
γ(xn − x0)

1

ª®®®®¬︸            ︷︷            ︸
d

(5.27)

which is known as the ordinary kriging system.

∗ https://en.wikipedia.org/wiki/Lagrange_multiplier

https://en.wikipedia.org/wiki/Lagrange_multiplier
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Finally, ifwe invert thematrixA, theweights and the Lagrangemultipliers

are given by:

w � A−1d (5.28)

5.6 Implementation

Kriging can be directly applied to any point on the plane, yielding a result

such as the one in Figure 5.4. However, much like other interpolation

methods, kriging is only reliable in the domain (ie roughly the convex

hull of the points). It can extrapolate (often with negative weights), but

that does not mean that the results outside the domain are accurate.

0 50 100 150 200 250
x

0

50

100

150

200

250

y

Figure 5.4: The result of using ordinary

kriging to interpolate on a grid of points

using the sample dataset using only the

sample points within 15 units of each in-

terpolated point.

Finally, it is also important to consider some computational aspects into

account. If a large number of sample points are used to interpolate every

point, kriging can be very slow. The reason for this is because matrix A
will be very large, and inverting a matrix is a computationally expensive

process. However, inverting very large matrices is not really needed in

practice. When a sample point is far from the interpolated point, its

weight will be low, and it will thus have only a small influence on it.

Because of this, it is usually best to only take into account a few sample

points in the calculation, either by limiting the sample points to those

within a given search radius, or by selecting only a given number of

its closest sample points. However, you should note that this can cause

artefacts in the final result.

5.7 Notes and comments

Krige (1951) is the original publication by Danie Krige, which was later

formalised by Georges Matheron (Matheron, 1962; Matheron, 1965). How

this came to be is best explained in Cressie (1993).
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If you have trouble following the derivations of the kriging equations or

want to know more about them, Lichtenstern (2013) explains this well.

If you feel like your statistics background is a bit weak, you first might

want to have a look at Fewster (2014), particularly Chapter 3.

A relatively simple explanation of Kriging with agricultural examples

that is accessible from the campus or VPN is given by Oliver andWebster

(2015). A standard reference textbook that is good but not so easy to

follow is Wackernagel (2003).

Two other good Youtube videos that explain kriging:

I https://www.youtube.com/watch?v=CVkmuwF8cJ8

I https://www.youtube.com/watch?v=98zz25kTteQ

5.8 Exercises
1. Why can using a search radius create artifacts in the interpolated

terrain?

2. If kriging generally provides better results than other interpolation

methods, why would you use something else (eg IDW)?

3. What does a nugget of zero say about a dataset? What about a large

nugget?

4. What kind of dataset would yield a flat variogram (ie a horizontal

line)?

https://www.youtube.com/watch?v=CVkmuwF8cJ8
https://www.youtube.com/watch?v=98zz25kTteQ
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While a DTM is a (2.5D) surface, it can also be conceptualised as an

aggregation of many topographic features that are inter-related. Common

examples of features are peaks, ridges, valleys, lakes, cliffs, etc., but one

can think of application-specific ones such as the navigational channels in

bathymetry, buildings in city modelling, or dikes for flood modelling.

Identifying the different features forming a terrain enhances our under-

standing of the raw dataset. To help us extract and identify features,

some operations/characteristics need to be extracted from terrains, eg

the slope, the aspect, the curvature, the roughness, etc.

We describe in this chapter a few key features in terrains, and describe

how they can be extracted. Since these differ from the data model used

(TINs vs grids), we give examples for both.

6.1 Slope

The slope at a given location p on a terrain is defined by the plane H
that is tangent at p to the surface representing the terrain (see Figure 6.1).

What we casually refer to as ‘slope’ has actually two components: (1)

gradient; (2) aspect (see Figure 6.2).

Gradient. The gradient at a given point p is the maximum rate of

change in elevation. It is obtained by the angle α between H and the

horizontal plane (Figure 6.2). From a mathematical point-of-view, the

gradient is the maximum value of the derivative at a point on the surface

of the terrain (maximised over the direction). The gradient will often be

expressed in degrees, or in percentage.

Notice that if we calculate the gradient at every location for a terrain,

then we obtain a new field since the gradient is a continuous phenomena

(values from 0% to 100% for instance). This means in practice that for a

given terrain in raster, calculating its gradient will create a new raster file

that can be further processed.

Figure 6.1: The slope at a given location pi
is defined by the tangent plane Hi to the

surface. Here are 3 examples for a profile

view of a terrain.
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Figure 6.2: One DTM with contour lines,

and the gradient and aspects concepts for

a given location (blue cross).
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Figure 6.3: (top) Given a cell ci , j , the 3×3
kernel and its 8 neighbours. (bottom) A
hypothetical case with some elevations; or-

ange = aspect for method #2 below, purple

= aspect for method #3 below.

Aspect At a given point p on the terrain the gradient can be in any

direction, the aspect is this direction projected to the x y-plane. It is
basically a 2D vector telling us the direction of the steepest slope at a

given point. It is usually expressed in degrees from an arbitrary direction

(most often the north). Observe that for the parts of the terrain that are

horizontal (eg a lake) the value of the aspect is unknown. Also observe

that at a given location the aspect will always be perpendicular to the

contour line.

6.1.1 Slope in TINs

Calculating the slope in a TIN is fairly straightforward: for a point

p � (x , y) find the triangle τ containing this point, and compute the

normal vector ®n of τ (pointing outwards). The projection of ®n on the

x y-plane is the aspect (this is done by simply ignore the z-component of

the vector). And the gradient is obtained easily.

If p is directly on a edge of the TIN then the solution cannot be obtained

directly; it is common practice to calculate the normal vector of the 2

incident triangle and average them to obtain one ®n. The same is applied

if p is directly on a vertex v of the TIN: the average of all the normal

vectors of all the incident triangle to v is used.

6.1.2 Slope in grids

If the terrain is represented as a regular grid (say of resolution r), then
there exist several algorithm to obtain the slope at a given cell ci , j . We list

here a few common ones. It should be noticed that most algorithms use

a 3×3 kernel, ie the value for the gradient/aspect at cell ci , j is computed

by using (a subset of) the 8 neighbours.

1. Local triangulation+TINmethod. It is possible to locally triangulate

the 9 points, calculate the normal of the 8 triangles, and then use the

method above for TINs.

2. Maximum height difference. This method simply picks the maxi-

mum height difference between ci , j and each of its 8 neighbours, the

maximum absolute value is the direction of the aspect and the gradient

can be trivially calculated. Notice that this means that there are only 8

possibilities for the slope (at 45° intervals). For the case in Figure 6.3, the

aspect would be facing south (180°) and the gradient would be 45°.
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3. Finite difference. With this method, the height differences in the

x-direction (west-east) and in the y-direction (south-north) are calculated

separately, and then the 2 differences are combined to obtain the slope.

This means that only the direct 4-neighbours of ci , j are used.

∂z
∂x

�
zi+1, j − zi−1, j

2 r
,
∂z
∂y

�
zi , j+1 − zi , j−1

2 r

The gradient is defined as:

tan α �

√
( ∂z
∂x
)2 + ( ∂z

∂y
)2

and the aspect as:

tan θ �

∂z
∂y

∂z
∂x

For the case in Figure 6.3, the aspect would be 194.0° and the gradient

would be 39.5°.

4. Local polynomial fitting. Based on the 9 elevation points, it is possi-

ble to fit a polynomial (as explained in Chapter 4) that approximate the

surface locally; notice that the polynomial might not pass through the

point if a low-degree function is used.

A quadratic polynomial could for instance be defined:

f (x , y) � ax2

+ b y2

+ cx y + dx + e y + d

, and thus:

∂ f
∂x

� 2ax + c y + d

∂ f
∂y

� 2b y + cx + e

and if a local coordinate system centered at ci , j is used, then x � y � 0,

and thus

∂ f
∂x � d and

∂ f
∂y � e.

2 How does it work in practice?

The GDAL utility gdaldem (https://www.gdal.org/gdaldem.html)

does not have the best documentation and does not explicitly mention

which method is used.

After some searching, we can conclude that the method “4. Local poly-

nomial fitting” is used by default for slope/aspect, and specificially

the Horn’s method is used (Horn, 1981). This uses a 3×3 window, and

fits a polynomial; the centre pixel value is not used.

If the option -alg ZevenbergenThorne is used, then the algorithm

of Zevenbergen and Thorne (1987) is used. This uses only the 4

neighbours, and is a variation of the method “3. Finite difference”

above.

https://www.gdal.org/gdaldem.html
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Figure 6.5: The 4 parameters necessary to

calculate the hillshade at a location (black

point on the terrain).
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Figure 6.4: Top: a DTM visualised with

height as a shade of blue. Bottom: when

hillshading is applied.

The documentation of gdaldem states that: “literature suggests Zeven-

bergen & Thorne to be more suited to smooth landscapes, whereas

Horn’s formula to perform better on rougher terrain.”

6.1.3 Hillshading

Hillshading is a technique used to help visualise the relief of a DTM (see

Figure 6.4 for an example). It involves creating an image that depicts

the relative slopes and highlights features such as ridges and valleys; a

hillshade does not depict absolute elevation. This image assumes that

the source of light (the sun) is located at a given position.

While it would be possible to use advanced computer graphics methods

(see Chapter 11) to compute the shadows created by the terrain surface,

in practice most GIS implements a simplified version of it which can be

computed very quickly.

Given a regular gridded DTM, hillshading means that each cell gets a

value which depicts the variation in tone, from light to dark. The output

of a hillshade operation is thus a regular gridded DTM, usually with the

same extent and resolution as the original griddedDTM (for convenience).

The values computed for each cell need as input the gradient and the

aspect of the DTM. The formula to compute the hillshade of a given

cell ci , j differs from software to software, and we present here one (it

is used in ArcGIS for example, and surely others). It assumes that the

output hillshade value is an integer in the range [0, 255] (8-bit pixel),
and that the direction (azimuth) and the height (given as an angle) of

the illumination source is known. Notice that the position of the sun is

relative to the cell, its position thus changes for different cells of a DTM.

As above and in Figure 6.5, for a cell celli , j , its gradient is αi , j , its aspect

is θi , j , the azimuth of the sun is ψ (angle clockwise from the north, like

the aspect), and the height of the sun is γ (0 rand is the horizon, π rand

is the zenith).

hillshadei , j � 250× ((cos γ × cos θi , j)+ (sin γ × sin θi , j × cos(ψ − αi , j)))

(all angles need to be radians)

6.2 Features

6.2.1 Characteristic points on terrains

Peak. A point p whose surrounding is formed only of points that are

of lower elevation is a peak. The size and shape of the surrounding is
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Figure 6.6: (a) Peaks and pits. (b) A saddle point (Figure from https://www.armystudyguide.com)
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Figure 6.7: A saddle point at elevation

10m, and its surrounding points. The tri-

angulation of the area is created and used

to extract the contour line segments at 10m

(red lines).

dependent on the application and on the data model used to represent

the terrain. If a grid is used, this surrounding could be the 8 neighbours;

if a TIN is used they could be the vertices that of the triangles incident to

p. Observe that a peak can be local, that is one point that happens to be

a few centimetres higher than all its neighbours would be classified as

a peak (the small terrain in Figure 6.6 contains several peaks), while if

we consider a hill we would surely consider only the top as the peak. A

peak is therefore on the scale of the data.

The contour line through the p does not exist.

Pit. A point p whose surrounding is formed only of points that are of

higher elevation is a pit. The same remarks as for peak apply here. The

contour line through the p does not exist.

Saddle point. As shown in Figure 6.6b, a saddle point, also called a

pass, is a point whose neighbourhood is composed of higher elevations

on two opposite directions, and 2 lower elevations in the other two

directions. From a mathematics point-of-view, it is a point for which the

derivatives in orthogonal directions are 0, but the point is not maximum

(peak) or a minimum (pit).

If we consider the contour line of a saddle point p, then there are 4 or

more contour line segments meeting at p; for most point in a terrain

this will be 2, except for peaks/pits where this is 0. Figure 6.7 shows

an example for a point with an elevation of 10m, the contour lines at

10m is drawn by linearly interpolating along the edges of the TIN of the

surrounding.

6.2.2 Valleys, ridges

Valleys and ridges are 1-dimensional features. If a terrain is represented

as a TIN, we can extract the edges of the triangles that form a valley or a

ridge. An edge e, incident to 2 triangles, is considered a valley-edge if the

https://www.armystudyguide.com
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Figure 6.8:Edges in a TIN can be classified

as valley, ridge, or neither

projection of the 2 normals of the triangles, projected to the x y-plane,
point to e. If the 2 normals projected point in the opposite direction, then

e is a ridge. If they point is different directions, then e is neither.

6.3 Curvature

The curvature is the 2nd derivative of the surface representing the terrain,

it represents the rate of change of the gradient.We are often not interested

in the value of the curvature itself (
°
m ) but whether the curvature is:

convex, concave, or flat.

The curvature at a point p is often decomposed into types:

1. profile curvature: the curvature of thevertical cross-section through
p perpendicular to the contour line passing through p (or of the

vertical plane along the 2D vector of the aspect at p)
2. plan curvature: the curvature along the contour line passing

through p (or along the line segment perpendicular to the 2D

vector aspect and passing through p)

Because there are 2 types of curvatures and each have 3 potential values,

there are 9 possible options (as Figure 6.9 shows).

6.3.1 Computing for grids

Computing the curvature is a complex operation andwewill not describe

one specific method. The idea is to reconstruct locally the surface (eg with

the polynomial fitting from Section 6.1.2 above, or with a TIN), and then

verify whether the 2 curvature types are convex/concave/flat. Observe

that the curvature, as it is the case for the slope, is heavily influenced

by the scale of the terrain (its resolution) and thus having a 3×3 kernel

might be influenced by the noise in the data, or by small features.

6.3.2 Computing for TINs

For a TIN, it is possible to define for each vertex v the profile and the

plan curvatures by using the triangles that are incident to v and extract

the contour line for the elevation of v (as is shown in Figure 6.7). The idea

is to classify each vertex into one of the 9 possibilities in Figure 6.9.

If there is no contour segment, then v is either a peak or a pit. A peak

will be profile and plan convex; a pit will be profile and plan concave.
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Figure 6.9: Nine curvatures (Figure

adapted from Kreveld (1997)).
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Figure 6.10: (top) Points from a TIN classi-

fied according to their curvatures (convex,
concave, flat). (middle) The VD of the

points. (bottom) The Voronoi edges be-

tween the cells having the same label are

removed, to create polygons.

If there are 2 segments, then we can use these to estimate the direction

of the aspect, it will be perpendicular (thus the bisector between the 2

segments is a good estimate) in the direction or lower elevations. If we

simply look at the elevations higher and lower than v along this direction,

then we can easily verify whether v is profile convex or concave. For

the plan curvature, we can simply walk along one of the 2 edges so that

higher elevations are on our left, v is plan convex if the contour line

makes a left turn at v, if it makes a right turn it is concave, and if it is

straight then it is plan flat.

If there are > 2 segments, then v is a saddle point and thus no curvatures

can be defined.

When each point has been assigned a curvature—a pair (pro f ile , plan)—
we can use for instance the Voronoi diagram, as shown in Figure 6.10. It

suffices to remove the Voronoi edges incident to cells having the same

label, and polygonal zones are obtained.

6.4 Notes and comments

The polynomial fitting method for computing the slope is from Evan

(1980) and Wood (1996). Skidmore (1989) carried out a comparison of 6

methods to extract slope from regular gridded DTMs, and concluded

that methods using 8 neighbours perform better than those using only 4

or the biggest height difference. He did not however investigate how the

resolution of the grid influences the results.

The formula to calculate the hillshade for one cell in a gridded DTM is

from Burrough and McDonnell (1998), and the ArcGIS describes it in

details (https://desktop.arcgis.com/en/arcmap/10.3/tools/spat

ial-analyst-toolbox/how-hillshade-works.htm).

Some algorithms have been developed to identify the features forming a

DTM:Kweon andKanade (1994) and Schneider (2005) can identify simple

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-hillshade-works.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-hillshade-works.htm
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features in DEMs (if they are pre-processed into bilinear patches); and

Magillo et al. (2009) and Edelsbrunner et al. (2001) describe algorithms

to perform the same, but directly on TINs.

The algorithm to extract profile and plan curvatures from a TIN is taken

from Kreveld (1997).

6.5 Exercises
1. What is the missing word? The _________ is the 2nd derivative of

the surface representing the terrain, it represents the rate of change

of the gradient.

2. Given a raster, how to identify a valley and a ridge?

3. If we want to compute the slope (gradient + aspect) for the cell

at the centre of this 3×3 DTM with the ‘finite difference method’,

what results will we get?

105 106 105

108 109 108

110 110 110

10m

10m
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Many interesting DTM operations are based on runoff modelling, ie the

computation of the flowand accumulation ofwater on a terrain. Examples

include: knowing where streams will form in the case of heavy rainfall,

finding the areas that will be affected by a waterborne pollutant, tracing

the areas that could become submerged by floodwater, or calculating the

rate of erosion or sedimentation in a given area.

In hydrology, runoff modelling can be very complex (Figure 7.1). Hydro-

logical models usually consider different precipitation scenarios, model

various types of overland and subsurface flows, and take into account

many location- and time-dependent factors, such as the depth of the

water table and the permeability of the soil. Such models can be quite

accurate, but they require high-resolution data that is often not available,

they are difficult to create without specialised knowledge, and they

involve substantial manual work.

By contrast, the simpler GIS models of runoff can be performed automati-

cally in large areas with only a DTM. These models mostly use gridded

raster terrains, and so we will generally refer to these in this chapter,

but the methods described here mostly work just as well with other

representations (eg a TIN). In order for the GIS models of runoff to

achieve their results, two big assumptions are usually made:

1. that all water flow is overland, thus ignoring all subsurface flows

and dismissing factors such as evaporation and infiltration; and

2. that a good estimate for the total flow at any point is the drainage

area upstream from it, ie the area above the point which drains

through/to it, which is roughly equivalent to rain that is falling

evenly all over a terrain.

Basedon these assumptions, runoffmodelling is simplifiedby considering

only two values, which are computed for every cell in a DTM:

Flow direction Given a DTM cell, towards which nearby cells and in

which proportions does water flow from it?

Flow accumulation Given a DTM cell, what is the total water flow that

passes through it?

We look at a few different methods to compute these values in the next

two sections.
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Figure 7.1: Different types of water flows

as modelled in hydrology. Based on Beven

(2012).

single flow direction (SFD)

D8 flow direction

rho8 (ρ8)

7.1 Computing the flow direction

Theoretically, the flow direction of a point is the direction with the

steepest descent at that location, which does correspond to the direction

towards which water would naturally flow. However, the discretisation

of a terrain into DTM cells means that some kind of an approximation

needs to be made. There are two broad approaches that can be followed

to do this: computing a single flow direction, which assumes that all the

water in a DTM cell flows to one other cell, or multiple flow directions,

which assumes that the water in a DTM cell can flow towards multiple

other cells.

7.1.1 Single flow direction

The earliest and simplest method to compute the flow direction of a cell

is to compute the slope between the centre of the cell and the centre of

all its neighbouring cells (using the distance between the centres and

the difference in elevation), then assign the flow direction towards the

neighbour with the steepest descent. The method is known as the single

flow direction (SFD) approach, and when applied to a raster grid, it

usually considers that there are eight neighbours to each pixel (left, right,

up, down and the diagonals). For this reason, it is also known as the eight

flow directions (D8) approach.

On one hand, the method is very fast and easy to implement, and it

avoids dispersing the water flow between multiple cells. On the other

hand, it can have significant errors in the flow direction, and it does not

allow for divergent flows. For instance, in a square grid, the errors can be

of up to 22.5◦ (because the method is forced to choose a neighbouring cell

in increments of 45
◦
). This method can therefore easily create artefacts in

certain geometric configurations (Figure 7.2).

Many of these artefacts can be eliminated by using the rho8 (ρ8) method,

which modifies D8 to assign the flow direction to one of its lower neigh-

bours randomly with probability proportional to the slope. However, it
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Figure 4. Top half of an outward draining circular cone. Elevation was defined as 200 minus the radius from 
the center on a 16 x 16 grid with grid spacing 10 units. Specific catchment area is theoretically radius/20 
ranging from 0 at the center to 53 on the corners. Contours (10-unit interval) depict elevation. Gray scale 
depicts contributing area (1 white to 60 black). (a) Theoretical values, (b) single direction (D8) procedure, (c) 
Quinn et al.'s [1991] procedure (MS), (d) Lea's [1992] method, (e) DEMON [Costa-Cabral and Burges, 1994], 
and (f) new procedure (D•). 

and e i and d• are elevations and distances between pixels as 
labeled in Figure 3. The slope direction and magnitude are 

r = tan -• (s2/s0 

S = (S12 -'1 c S22) 1/2 
(3) 

If r is not in the range (0, tan -• (d2/d•)), then r needs to be 
set as the direction along the appropriate edge and s assigned 
as the slope along that edge. 

if r < 0, r = 0, s = s• (4) 

if r > tan -• (d2/di), r = tan -• (d2/di), 

s = (eo- e2)/(d• 2 + d22) 1/2 
(5) 

Next recognize that each of the eight facets depicted in Figure 
2 can be mapped by appropriate selection of corner elevations 
and rotation/transformation onto the facet in Figure 3. Table 1 
gives the node elevations corresponding to the corners of each 
of the triangular facets used to calculate slopes and angles in 
(1)-(5). These are arranged such that e o is the center point, e • 
is the point to the side, and e 2 is the diagonal point. The local 
angle associated with the largest downwards slope from the 
eight facets (r' = r from facet with maximum s) is then 
adjusted to reflect an angle counterclockwise from east (Figure 
2) to obtain the flow direction angle. 

ra = air' + a cVr/2 (6) 

The multiplier af and constant a c depend on the facet selected 
and are listed in Table 1. The procedure that searches for the 
facet with the largest slope proceeds in the order of facets 1 to 
8 shown in Figure 1 and in the case of ties (facets with equal 
slope) picks the first one. In nature ties are extremely rare so 
the bias introduced by this is deemed negligible. 

In the case where no slope vectors are positive (downslope) 
a flow direction angle of -1 is used to flag the pixel as "unre- 
solved," that is, a flat area or pit. Unresolved flow directions 
are resolved iteratively by making them flow toward a neighbor 
of equal elevation that has a flow direction resolved. This is the 
same approach for resolving pits and flats as used in the D8 
method [e.g., Mark, 1988; Jenson and Domingue, 1988]. I there- 
fore use the calculation of D8 flow directions as a preprocessor 
to raise the elevation of all pixels in a pit to the level of the 
overflow. Then where pixels are flagged as "unresolved," the 
flow angle returned by the D8 procedure is used. This ensures 
that flat pixels drain to a neighbor that ultimately drains to a 
lower elevation, eliminating the possibility of inconsistencies 
such as loops in the flow direction angles. This method of repre- 
senting flow directions based on triangular facets is designated 
Dc• (an infinite number of possible single flow directions). 

Figure 7.2: The D8 method creates arte-

facts when water is draining from a circu-

lar cone. From Tarborton (1997).

multiple flow directions (MFD)

 

Figure 7.3: The flow width L can be com-

puted using the geometry of theDTMcells.

In the case of a square grid with spacing d,

it is

√
2

4
d for the diagonals (L2) and

1

2
d for

the adjacencies (L1), where d is the grid

spacing. Based on Quinn et al. (1991).

produces non-deterministic results, which is often a sufficient reason not

to use it.

Despite its age and limitations, the SFD method is still widely used and

available in many GIS tools.

7.1.2 Multiple flow directions

In an attempt to overcome the limitations of the SFD method, a variety

of methods assign the flow direction of a DTM cell fractionally to some

or all of its lower neighbouring cells according to some criteria. These

methods are collectively known as multiple flow directions (MFD), and

they usually use a variation of this equation:

Fi �
(Li tan αi)x∑n

j�1

(
L j tan α j

)x (7.1)

where Fi is the flow towards the i-th neighbouring cell, Li is the flow

width (Figure 7.3), αi is the gradient towards the i-th neighbouring cell

(and so tan(αi) is the slope), x is an exponent that controls the dispersion,

and n is the number of neighbours of the cell.

W To read or to watch.

Look at Figures 4–9 in the following paper. These show the results

of using a few flow direction computation methods in different ter-

rains. Pay attention to how these differ from the theoretical values (if

given), how some methods tend to create artefacts (eg D8 in Figure 4),

and how dispersion affects some others (eg Quinn et al. (1991) in

Figure 7).

D. G. Tarborton (1997). A new method for the determination of

flow directions and upslope areas in grid digital elevation models.

Water Resources Research 33.2, pp. 309–319

PDF: https://doi.org/10.1029/96WR03137

7.2 Computing the flow accumulation

After the flow directions in all the cells of a DTM have been computed,

the usual next step is to use this information to compute the flow

accumulation in all of them. As stated in the assumptions we make for

GIS models of runoff, the flow accumulation at a given DTM cell can be

https://doi.org/10.1029/96WR03137
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sink

estimated by the area that drains to it. Note that in the case of a square

grid, it is simply the number of cells that drain to it.

In practical terms, the flow accumulation is defined based on a recursive

operation:

A0 � a0 +

n∑
i�1

piAi (7.2)

where A0 is the accumulated flow for a cell, a0 is the area of the cell, p
is the proportion of the i-th neighbour that drains to the cell, Ai is the

accumulated flow for the i-th neighbour, n is the total number of the

neighbouring cells. Note that this calculation can be sped up substantially

by: (i) storing the accumulated flows that have already been computed,

and (ii) not following the recursion when pi � 0.

7.3 Solving issues with sinks

Sinks, which are also known as depressions or pits, are areas in a DTM

that are completely surrounded by higher terrain. Some of these are

natural features that are present in the terrain (eg lakes and dry lakebeds)

and where water would flow towards (and stagnate) in reality, and are

thus not a problem for runoff modelling. However, they can also be

artefacts of the DTM (eg noise and areas without vegetation can create

depressions), or they can be very small areas that easily flooded, after

which water would flow out of them. In the latter case, we need to

implement a mechanism to route water flows out of these depressions.

We will look at two common options to solve this problem: modifying

a DTM by filling in (certain) sinks, and implementing a flow routing

algorithm that allows water to flow out of sinks.

7.3.1 Filling in sinks

The aim of the algorithms to fill in sinks is to increase the elevation of

certain DTM cells in a way that ensures that all the cells in the DTM can

drain to a cell on its boundary (or possibly to a set of cells that are known

to be valid outlets, eg lakes and oceans). At the same time, the elevation

increases should be minimised in order to preserve the original DTM as

much as possible.

W To read or to watch.

Section 3 in the following paper. It explains the priority-flood algo-

rithm, which is an efficient method to fill in sinks. In short, it keeps a

sorted list of DTM cells that are known to drain to the boundary (and

possibly other cells that are known to drain), which is initialised with

the cells on the boundary of the DTM (and possibly other cells). Then,

it iteratively: (i) removes the lowest cell from this list, (ii) increases the

elevation of its neighbours that are not yet known to drain to the level

of the cell, (iii) adds the neighbours that are not yet known to drain to

the list.
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least-cost paths (LCP)

flat

R. Barnes et al. (2014b). Priority-flood: An optimal depression-filling

and watershed-labeling algorithm for digital elevation models. Com-

puters & Geosciences 62, pp. 117–127

PDF: https://doi.org/10.1016/j.cageo.2013.04.024

7.3.2 Least-cost (drainage) paths

An alternative to modifying a DTM to eliminate sinks is to implement a

more complex water routing algorithm that allows water to flow out of

sinks. For this, the usual approach is to implement a variation of the A∗

search algorithm, which in this context is known as the least-cost paths

(LCP) algorithm.

W To read or to watch.

Section 2.1 in the following paper. It explains the LCP algorithm

and how it is implemented in GRASS. In short, it keeps a sorted list

of DTM cells that are known to drain to the boundary (and possibly

other cells that are known to drain), which is initialised with the

cells on the boundary of the DTM (and possibly other cells). Then,

it iteratively: (i) removes the lowest cell from this list, (ii) sets the

drainage direction of its neighbours that are not yet known to drain

towards itself, (iii) adds the neighbours that are not yet known to

drain to the list. Note the similarity with the algorithm in Barnes et al.

(2014b).

M. Metz et al. (2011). Efficient extraction of drainage networks from

massive, radar-based elevation models with least cost path search.

Hydrology and Earth System Sciences 15, pp. 667–678

PDF: https://doi.org/10.5194/hess-15-667-2011

7.4 Assigning flow direction in flats

Flats are areas in a DTM that have the same elevation. They therefore do

not have a well-defined flow direction, which causes problems for many

water routing algorithms. Flats can sometimes occur naturally, but they

are more often the result of precision limits, noise removal, or sink filling

algorithms.

It is thus often necessary to apply a method that assigns a flow direction

to flats, either by: (i) modifying the DTM to eliminate them, and then

assigning them a flow direction in the usual way, or (ii) assigning them a

flow direction directly.

W To read or to watch.

Section 2 in the following paper. It describes an algorithm to directly

assign a flow direction to flats using a combination of: (i) a gradient

away from higher terrain (ie terrain goes down as wemove away from

higher terrain), and (ii) a gradient towards lower terrain (ie terrain

https://doi.org/10.1016/j.cageo.2013.04.024
https://doi.org/10.5194/hess-15-667-2011
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drainage network

drainage basin

drainage divide

goes down as we move closer to lower terrain).

R. Barnes et al. (2014a). An efficient assignment of drainage direction

over flat surfaces in raster digital elevation models. Computers & Geo-

sciences 62, pp. 128–135

PDF: https://doi.org/10.1016/j.cageo.2013.01.009

7.5 Drainage networks and basins

Interpreting DTM cells as nodes and the flow direction as directed edges

connecting them yields the drainage network of a DTM. However, it is

usually best to filter out the least important parts of the network using a

flow accumulation threshold. A good rule of thumb for this threshold is

the mean flow accumulation in the DTM, but an exact value is usually

set by trial and error until the desired parts of the network are kept.

Based on a computed drainage network, it is then possible to extract

the drainage basins of a DTM by considering the areas that are drained

by one or more nodes of the network (Figure 7.4). This operation can

be performed in many different places, such as the end node of a river

(yielding its river basin), the nodes just before junctions in the network

(yielding the drainage basins of the tributaries of a river), or the end

nodes of a selected part of the network (yielding the drainage basin of a

sea or ocean). The lines that separate adjacent drainage basins are drainage

divides, which form topographical ridges.

Figure 7.4: The areas that drain to all the

oceans can be computed by selecting the

DTM cells on the coastline of these oceans

and finding the areas that drain through

them.Note the endorheic basins that drain

to none of these cells. These actually form

sinks in the DTM. From Wikimedia Com-

mons.

https://doi.org/10.1016/j.cageo.2013.01.009
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7.6 Notes and comments

Beven (2012) is a good reference book on hydrology. It covers how to

make much more complex runoff models than the ones described here.

O’Callaghan and Mark (1984) was the original paper to describe the D8

method. Fairfield and Leymarie (1991) modify D8 into the stochastic rho8

method. Quinn et al. (1991) describes the originalMFDmethod. Tarborton

(1997) describes the alternative (D
∞
) MFD method and contains nice

figures comparing multiple methods.

Barnes et al. (2014b) describes how to fill in sinks, while Metz et al. (2011)

describes how to use a variation of A∗ search algorithm to route water

out of them. Barnes et al. (2014a) describes how to assign the drainage

direction over flats.

7.7 Exercises
1. Given a raster map of precipitation values, how would you be able

to improve the flow accumulation estimates?

2. Why is the flow width important?

3. You have a cycle in your drainage network. How can that happen?

How would you solve it?

4. How can you detect endorheic basins without finding all other

basins first?
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We consider in this chapter the following four terrain representations

and discuss the conversions between them:

raster TIN isolinespoint cloud (PC)

from/to PC raster TIN isolines

PC — interpolate at mid-

dle points of cells

(§8.1)

create DT using 2D

projection of points

(ie using x and y
only)

convert to TIN + ex-

tract from triangles

(§8.2.2) + structure

output (§8.2.3)

raster keep middle points

only

— create TIN using

middle points of

cells + TIN simplifi-

cation (§8.3)

extract from grid

cells (§8.2.1) + struc-

ture output (§8.2.3)

TIN keep only vertices interpolate at mid-

dle points of cells

(§8.1)

— extract from trian-

gles (§8.2.2) + struc-

ture output (§8.2.3)

isolines keep only vertices

— warning: ‘wedding

cake’ effect (§8.4)

convert lines to

points + interpolate

(§8.1) — warning:

‘wedding cake’ effect

(§8.4)

create DT using

points — warning:

‘wedding cake’ effect

(§8.4)

—

8.1 Conversion of PC/TIN to raster

As shown in Figure 8.1, this step is trivial: one needs to interpolate at the

locations of the centre points of the raster cells. The interpolation method

can be any of the ones described in Chapters 4 and 5.

(a) (b) (c) (d) (e)

Figure 8.1: (a) input sample points. (b)
size/location of output raster. (c) 9 inter-

polations must be performed (at locations

marked with ◦): at the middle of each cell.

(d) the convex hull of the sample points

show that 2 estimations are outside, thus

no interpolation. (e) the resulting raster.
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isoline component

8.2 Conversion to isolines

Reading a contour map requires some skill, however it is considerably

easier to learn to interpret a contour map than to manually draw one

from a limited set of sample points. Yet this was exactly the task of many

cartographers in the past couple of centuries: it was intuitively done by

imagining a local triangulation of sample points.

Isolines are usually directly extracted from either a TIN or a grid rep-

resentation of a terrain. The basic idea, as shown in Figure 8.2, is to

compute the intersection between a level value (eg 200m) and each cell

of the terrain (triangle or grid cell in our case). Notice that the cells are

‘lifted’ to their elevation. Each cell of the terrain is thus visited, one after

the other, and for each cell if there is an intersection (which forms a line

segment) then it is extracted. The resulting set of segment lines forms an

approximation of the isoline. This process is then repeated for every level

value. Notice that an isoline can have several components, for instance

when the terrain has more than one peak.

Therefore the number and size of the line segments in the resulting

isoline are dependent on the resolution of the data representation.

The basic algorithm for extracting one isoline is shown in Algorithm 3.

Note that since the algorithm contours every grid cell or triangle

individually and requires only local information, it is very easy to

parallelise. It is thus a scalable algorithm. Its time complexity is O(c),
where c is the number of cells. Recall from Chapter 3 that for n points a

DT contains about 2n triangles.

The same idea can be used to extract all the isolines: for each triangle/cell

and each level value, extract all the necessary line segments.

8.2.1 Conversion of raster to isolines

Intersections are computed by linearly interpolating the elevations of

the vertex pairs along the edges of this grid. Figure 8.3 illustrates the

different possible configurations. The top-left case indicates the case for

which there are no intersections: all vertices are either higher or lower

than z0.

Observe that two vertices are exactly at z0, then the extraction of these is

in theory not necessary because the neighbouring cell could also extract

them. However, we do not want to obtain an output with duplicate line

segments, and thus a simple solution to this is to only extract such line

segments if they are for instance the lower and/or left segments of a

given cell.

Figure 8.2: Vertical cross-section of a ter-

rain (left), and a 2D projection of the ter-

rain TIN with the extracted 200m isoline

(right).

200m

the 200m isoline has 2 components
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Algorithm 3: Simple extraction of one isoline

Input: a planar partition E formed of cells (either rectangular or

triangular cells); the elevation value z0

Output: a list of unstructured line segments representing the

contour lines at z0

1 se gmentList ← [ ] ;
2 for e ∈ E do
3 if z0 intersects e then

/* See Figures 8.3 and 8.4 */
4 extract intersection χ of z0 with e;
5 add χ to se gmentList;

Figure 8.3:Different caseswhen extracting

an isoline at elevation 10m for a regular

grid. The grey values are the elevation of

the vertices forming one regular cell, and

the blue lines and vertices are the ones

extracted for that cell.

The most interesting case is the bottom-left one in Figure 8.3, it occurs

when the two pairs of opposing points are respectively higher and lower

than z0. This forms a saddle point. The ambiguity arises here since there

are two ways to extract a valid pair of contour line segments (only one of

the 2 options must be extracted). This can be resolved by simply picking

a random option or consistently choose one geometric orientation.

8.2.2 Conversion TIN to isolines

Since a triangle has one fewer vertex/edge than a square grid cell, there

are less possible intersection cases (Figure 8.4) and, more importantly,

there is no ambiguous case. The worst case to handle is when there are

horizontal triangles at exactly the height of the isoline. Otherwise, the

intersection cases are quite similar to the raster situation and they can be

easily implemented.

To avoid extracting twice the same line segment when 2 vertices are at z0

(case on the right in Figure 8.4), then we can simply look at the normal of

the edge segment: if its y-component is positive then it can be added, if

y � 0 then only add if the x-component is positive.

Observe that since the algorithm is simpler than that for a raster dataset,

one way to extract isolines from a raster dataset is by first triangulating
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Figure 8.4:Different caseswhen extracting

an isoline at elevation 10m for a TIN. The

grey values are the elevation of the vertices

forming one triangle, and the blue lines

and vertices are the ones extracted for that

triangle.

Figure 8.5: (a) The isoline segments ex-

tracted with Algorithm 3 do not have a

consistent orientation. (b)Algorithm 3 can

be sped up by starting at a seed triangle

and ‘tracing’ the isoline; the order is shown

by the blue arrows.

seed triangle

(a) (b)

it: each square cell is subdivided into 2 triangles (simply ensure that the

diagonal is consistent, eg from lower-left to top-right).

8.2.3 Structuring the output

The line segments obtained from the simple algorithms above are not

structured, ie they are in an arbitrary order (the order in which we visited

the triangles/cells) and are not connected. Furthermore, the set of line

segments can form more than one component, a set of segments forming

a closed polygon (unless they are at the border of the dataset). Perhaps

the only application where having unstructured line segments is fine

is for visualisation of the lines. For most other applications this can be

problematic, for instance:

1. if one wants to know how many peaks above 1000m there are in a

given area;

2. if smoothing of the isolines is necessary, with the Douglas-Peucker

algorithm for instance;

3. if a GIS format requires that the isolines be closed polylines oriented

such that the higher terrain is on the left for instance, such as for

colouring the area enclosed by an isoline.

To obtain structured segments, the simplest solution is to merge, as

post-processing, the line segments based on their start and end vertices.

Observe that the line segments will not be consistently oriented to form

one polygon (see Figure 8.5a), that is the orientation of the segments

might need to be swapped. This can be done by simply starting with a

segment ab, and searching for the other segment having b as either start

or end vertex, and continue until a component is formed (a polygon is

formed), or until no segment can be found (the border of the dataset is

reached, as shown in Figure 8.5a).

As shown in Figure 8.5b, another solution is to find one cell τ0 intersecting

the isoline at a given elevation, ‘tracing’ the isoline by navigating from

τ0to the adjacent cell, and continuing until τ0 is visited again (or the
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1: http://citeseerx.ist.psu.edu/vi

ewdoc/summary?doi=10.1.1.51.63

border of the dataset is reached). To navigate to the adjacent cell, it suffices

to identify the edge ε intersecting the isoline, and then navigating to the

triangle/cell that is incident to ε. It is possible that there is no adjacent

cell, if the boundary of the convex hull is reached in a TIN for instance.

This requires that the TIN be stored in a topological data structure in

which the adjacency between the triangles is available (for a grid this is

implied).

The main issue is finding the starting cells (let us call them seed triangles).

Obviously, it suffices to have one seed for each of the component of the

isolines (there would be 2 seeds in Figure 8.5b). An easy algorithm to

extract all the components of an isoline requires visiting all the cells in a

terrain, and keeping track of which triangles have been visited (simply

store an Boolean attribute for each triangle, which is called a mark bit).

Simply visit triangle sequentially and mark them as ‘visited’, when one

triangle has an intersection then start the tracing operation, marking

triangles as visited as you trace.

8.2.4 Smoothness of the contours

The mathematical concept of the Implicit Function Theorem states that

a contour line extracted from a field fwill be no less smooth than f
itself. In other words, obtaining smooth contour lines can be achieved by

smoothing the field itself. Robin Sibson
1
goes further in stating that:

‘The eye is very good at detecting gaps and corners, but very bad at

detecting discontinuities in derivatives higher than the first. For

contour lines to be accepted by the eye as a description of a function

however smooth, they need to have continuously turning tangents,

but higher order continuity of the supposed contours is not needed

for them to be visually convincing.’

In brief, in practice we should use interpolant functions whose first

derivative is continuous (ie C
1
) if we want to obtain smooth contours. C

0

interpolants are not enough, and C
2
ones are not necessary.

8.3 Simplification of a TIN

The TIN simplification problem is:

Given a TIN formed by the Delaunay triangulation of a set

S of points, the aim is to find a subset R of S which will

approximate the surface of the TIN as accurately as possible,

using as few points as possible. The subset R will contain

the ‘important’ points of S, ie a point p is important when

the elevation at location p can not be accurately estimated by

using the neighbours of p.

The overarching goal of TIN simplification is always to (smartly) reduce

the number of points in the TIN. This reduces memory and storage

requirements, and speeds up TIN analysis algorithms.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.63
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.63
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Figure 8.6: The importance measure of a

point can be expressed by its vertical error.

When this error is greater than a given

threshold εmax, the point is kept (p1), else

it is discarded (p2).

p1

p2

error(p1) > εmax

error(p2) < εmax

Observe that the simplification of a TIN can be used to simplify a raster

terrain: we can first obtain the triangulation of the middle points of each

cell, and then simplify this TIN to obtain a simplified terrain.

8.3.1 The importance of a point

The importance of a point is a measure that indicates the error in the TIN

when that point would not be part of it. Imagine for instance a large flat

area in a terrain. This area can be accurately approximated with only a

few large triangles, and inserting points in the middle of such an area

does not make the TIN more accurate. An area with a lot of relief on the

other hand can only be accurately modelled with many small triangles.

We can therefore say that the points in the middle of the flat area are less

important than the points in the area with relief.

The importance of a point—or importance measure—can be expressed in

several ways, eg based on an elevation difference or the curvature of the

point. Here we focus on the vertical error which has proven to be effective

in practice.

The vertical error of a point p is the elevation difference between p itself

and the interpolated elevation in the TIN Tat the (x , y) coordinates of p
(see Figure 8.6). Notice that Tdoes not contain p as a vertex.

8.3.2 TIN simplification algorithms

There are two main approaches to TIN simplification: decimation and

refinement. In a decimation algorithm, we start with a TIN that contains

all the input points, and gradually remove points that are not important.

In a refinement algorithm, we do the opposite: we start with a very simple

TIN, and we gradually refine it by adding the important points.

8.3.2.1 TIN simplification by refinement

Here we describe an iterative refinement algorithm based on greedy

insertion
∗
. It begins with a simple triangulation of the spatial extent and,

at each iteration, finds the input point with highest importance—the

∗
A greedy algorithm is one that divides a complex problem into a series of easier steps,

then solves it by making the locally optimal choice at each step, and never goes back on

this choice. In our case the heuristic is the importance measure, ie the vertical error. See

https://en.wikipedia.org/wiki/Greedy_algorithm.

https://en.wikipedia.org/wiki/Greedy_algorithm
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Algorithm 4: TIN simplification by refinement

Input: A set of input points S, and the simplification threshold εmax

Output: A triangulation T that consists of a subset of S and that

satisfies εmax

1 Construct an initial triangulation T that covers the 2D bounding box

of S ;

2 ε←∞ ;

3 while ε > εmax do
4 ε← 0 ;

5 q ← nil ;

6 for all p ∈ S do
7 τ← the triangle in T that contains p ;

8 ετ ← the vertical error of p with respect to τ ;

9 if ετ > ε then
10 ε← ετ ;
11 q ← p ;

/* insert the point q that has the largest error: */
12 insert into T the point q ;

13 remove q from S ;

highest vertical error—in the current TIN and inserts it as a new vertex

in the triangulation. The algorithm stops when the highest error of the

remaining input points with respect to the current TIN is below a user-

defined threshold εmax. Algorithm 4 shows the pseudo-code. It is also

possible to insert only a certain percentage of the number of input points,

eg we might want to keep only 10% of them.

8.3.2.2 TIN simplification by decimation

The implementation of the decimation algorithm is similar to the refine-

ment algorithm. The main differences are

1. we start with a full triangulation of all the input points, instead of

an empty triangulation;

2. instead of iteratively adding the point with the highest importance,

we iteratively remove the point with the lowest importance, and

3. in order to compute the importance of a point we actually need to

remove it temporarily from the triangulation before we can decide

if it should be permanently removed. In other words: we need to

verify what the vertical error would be if the point was not present.

Algorithm 5 shows the pseudo-code for the TIN decimation algorithm.

It should be noticed that the implementation of this algorithm requires a

method to delete/remove a vertex from a (Delaunay) triangulation, and

that many libraries do not have one
†
.

Observe that the Algorithms 4 and 5 both state that the importance of

the points must be completely recomputed after each iteration of the

algorithms (either one removal or one insertion), but that in practice

several of these will not have changed. As can be seen in Chapter 3, the

insertion/deletion of a single point/vertex will only locallymodify the

†
The implementation in SciPy does not allow to remove one vertex, but CGAL does

(www.cgal.org)

www.cgal.org
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Algorithm 5: TIN simplification by decimation

Input: A set of input points S, and the simplification threshold εmax

Output: A triangulation T that consists of a subset of S and satisfies

εmax

1 T← a triangulation of S ;

2 ε← 0 ;

3 while ε < εmax do
4 ε←∞ ;

5 q ← nil ;

6 for all p ∈ Tdo
7 remove p from T ;

8 τ← the triangle in T that contains p ;

9 ετ ← the vertical error of p with respect to τ ;

10 if ετ < ε then
11 ε← ετ ;
12 q ← p ;

13 put back p into T ;

/* remove the point q that has the smallest error: */
14 remove from T the point q ;

triangulation, and it is thus faster from a computational point of view

to flag the vertices incident to the modified triangles, and only update

these.

8.3.3 Comparison: decimation versus refinement

While both methods will allow us to obtain similar results, the properties

of the resulting terrain are different. Consider the threshold εmax that

is used to stop the simplification process. If the refinement method is

used, then it is guaranteed that the final surface of the terrain will be at

a maximum of εmax (vertical distance) to the ‘real surface’ because all

the points of the input are considered. However, with the decimation

method, after a vertex is deleted from the TIN, it is never considered

again when assessing whether a given vertex has an error larger than

εmax. It is thus possible that the final surface does not lie within εmax,

although for normal distribution of points, it should not deviate too

much from it.

In practice, refinement is often computationally more efficient than

decimation because we do not need to first build a TIN from all input

points before removing several of them again. However, decimation

could be more efficient when you already have a detailed TIN, stored in

a topological data structure, that just needs to be slightly simplified.

8.4 Conversion isolines to TIN/raster creates
the ‘wedding cake effect’

If the input is a set of isolines, then the simplest solution is, as shown in

Figure 8.7a, to convert these to points and then use any of the interpolation

methods previously discussed. This conversion can be done by either
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(a) (b) (c)

Figure 8.7: The ‘wedding cake’ effect. (a) The input isolines have been discretised into sample points. (b) The TIN of the samples creates

several horizontal triangles. (c) The surface obtained with nearest-neighbour interpolation.

keeping only the vertices of the polylines, or by sampling points at regular

intervals along the lines (say every 10m). However, one should be aware

that doing so will create terrains having the so-called wedding cake effect.

Indeed, the TIN obtained with a Delaunay triangulation, as shown in

Figure 8.7b, contains several horizontal triangles; these triangles are

formed by 3 vertices from the same isoline. If another interpolation

method is used, eg nearest neighbour (Figure 8.7c), then the results are

catastrophic.

Solving this problem requires solutions specifically designed for such

inputs. The main ideas for most of them is to add extra vertices between

the isolines, to avoid having horizontal triangles. One strategy that has

proven to work is to add the new vertices on the skeleton, or medial-axis

transform, of the isolines, which are located ‘halfway’ between two

isolines. The elevation assigned to these is based on the elevations of the

isolines.

8.5 Notes & comments

The Implicit Function Theorem is further explained in Sibson (1997).

Dakowicz and Gold (2003) describe in details the skeleton-based algo-

rithm to interpolate from isolines, and show the results of using different

interpolation methods.

The basic algorithm to extract isolines, which is a brute-force approach,

can be slow if for instance only a few isolines are extracted from a very

large datasets: all the n triangles/cells are visited, and most will not

have any intersections. To avoid this, Kreveld (1996) build an auxiliary

data structure, the interval tree, which allows us to find quickly which

triangles will intersect a given elevation. It is also possible to build

another auxiliary structure, the contour tree, where the triangle seeds

are stored (Kreveld et al., 1997). Such methods require more storage, but

can be useful for interactive environment where the user extracts isolines

interactively.

Garland andHeckbert (1995) elaborate further on different aspects of TIN

simplification, such as different importance measures, the differences be-

tween refinement and decimation, and the usefulness of data-dependent

triangulations. They also show how Algorithm 4 can be made a lot faster
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by only recomputing the importance of points in triangles that have been

modified.

8.6 Exercises
1. When converting isolines to a TIN, what main “problem” should

you be aware of? Describe in details one algorithm to convert isolines

(given for instance in a shapefile) to a TIN and avoid this problem.

2. How would the isocontours of a 2.75D terrain look like?

3. In Section 8.2.3, it is mentioned that merging the segments will

form on polygon. But how to ensure that the orientation of that

resulting curve is consistent, that it is for instance having higher

terrains on the right?

4. Given a raster terrain (GeoTiff format) that contains several cells

with no_data values, describe the methodology you would use to

extract contour lines from it. As a reminder, contours lines should

be closed curves, except at the boundary of the dataset.

5. Assume you have the small terrain formed of 3 triangles below,

draw the isoline in this TIN for an elevation of 10m.

8m

12m
9m

9m

15m

6m
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Given a point cloud, one operation that practitioners often need to

perform is to define the spatial extent of the dataset. That is, they need to

define the shape of the region that best abstracts or represents the set of

points. As seen in Figure 9.1, this region is often in two dimensions, for

example in the case of an aerial lidar datasets we want to know where

the ground is (after removing the points on the water), or in the case

of the scanning of the façade of a building, we would like to obtain a

polygon that represents where the wall is (omitting the windows).

Calculating the spatial extent is useful to calculate the area covered by a

dataset, to convert it to other formats (eg raster), or to get an overview of

several datasets it is faster to load a few polygons instead of billions of

points, etc.

The spatial extent is often called by different names, for instance: envelope,

hull, concave hull, or footprints. It is important to notice that the spatial

extent is not uniquely defined and that it is a vague concept. As Figure

9.2 shows, there are several potential regions for a rather simple set of

points, and most of these could be considered ‘correct’ by a human.

In this chapter we present methods that are used in practice to define the

spatial extent of a set of points in R2
, which implies that the points in a

point cloud are first projected to a two-dimensional plane.

(a) (b)

Figure 9.1: Two point cloud datasets for which we would like to find the spatial extent. (a) An aerial point cloud with several canals (dark

colour). (b) A scan of a façade containing several windows.
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Figure 9.2: Different methods to obtain

the spatial extent of a given set of points

in the plane.

(a) A set of points in R2 (b) Its convex hull

(c) A χ-shape (d) An α-shape

9.1 Properties of the region

Let S be a set of points in R2
, and R(S) the region that characterise the

spatial extent of S. The region is potentially formed by a set of polygons (if

S forms two distinct clusters for instance), and in practicemost algorithms

will compute a linear approximation of R(S), so the polygons will have

straight edges as boundaries.

To evaluate the different algorithms to create R(S), we list here different

properties that one must consider when defining the spatial extent of a

set of points.

P1. Regular polygons? Are polygons allowed to have dangling parts

(lines), such as the one in Figure 9.3b

P2. All points part of the region? Can outliers be ignored? Or do they

have to be part of the region? In Figure 9.3a and Figure 9.3b they

are all part of the region, in Figure 9.3c and Figure 9.3d one outlier

is not.

P3. Region is one connected component? Or are more components

allowed? In Figure 9.3a–Figure 9.3c there is one component, but

Figure 9.3d has two.

P4. Are holes allowed in a polygon? Polygons in Figure 9.3a–?? have
only an exterior boundary, while in Figure 9.3d one polygon has

(a) (b) (c) (d)

Figure 9.3: Different properties for the spatial extent
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a

b

c d
e

(a)

(b)

Figure 9.4: (a) First four steps of the gift

wrapping algorithm to compute the con-

vex hull. (b) The resulting convex hull.

a

b

c

de

l = 10m
Figure 9.5: First four steps of the moving

arm algorithm (with a lenght l) to compute

the spatial extent.

a

c

b

de

Figure 9.6: First four steps of the moving

arm algorithm (with a knnwhere k � 3) to

compute the spatial extent.

an interior boundary too (a hole).

P5. Computational efficiency What is the time complexity of the al-

gorithm, and does it require large and complex auxiliary data

structures?

9.2 Convex hull

As explained in Section 3.2.1, given S, a set of points in R2
, its convex

hull, which we denote conv(S), is the minimal convex set containing S.
Two examples of convex hulls are in Figures ??b and ??a.

For a given set of points, the convex hull is uniquely defined and does

not require any parameters (unlike the other methods listed below). It is

also relatively easy to compute: it can be extracted from the Delaunay

triangulation, or compute directly using a specialised algorithm. For

example, using the well-known gift wrapping algorithm, shown in Figure

9.4. It begins with a point that is guaranteed to be on conv(S) (we can

take an ‘extreme’, such as a in Figure 9.4 because it is the point with the

lowest y-coordinate), and then picks the point in S (omitting the ones

already on conv(S)) for which the polar angle between the horizontal

line and that point (at a) is the smallest (b in this case), and adds it to

conv(S). Then for b, the polar angle is calculated from the line ab; and
the algorithm continues this way until a is visited again.

If S has n points and conv(S) is formed of h points, then the gift wrapping

algorithm has a time complexity of O(n h); each of the h points are tested

against all n points in S. However, there exist more efficient algorithm

that have a time complexity of O(n log n).

Properties convex hull:

P1. The sole polygon is guaranteed to be regular (and convex).

P2. All points are on or inside the region.

P3. One component.

P4. No holes in the region.

P5. O(n log n)

9.3 Moving arm

Armof length l. Themovingarm is ageneralisationof thegiftwrapping

algorithm where the infinite line, used to calculate the polar angles, is

replaced by a line segment of a given length l (the “moving arm”). This

means that, unlike the original gift wrapping algorithm, only a subset

of the points in S are considered at each step. This also means that

potentially the result is a polygon that is non-convex. Figure 9.5 shows

the first few steps for a given l, and it can be observed that 1 point is

not part of the final region. Observe also that if l had been larger then

conv(S) could have been obtained.
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Figure 9.7: The resulting region for the

moving arm, it is concave. Observe that

1 point from S (highlighted in red) is not

part of the region.

a

c

b

de

f

(a)

a

c

b

de
?

(b)

Figure 9.8: Moving arm with kdd when

k � 4. (a) When the point e is being

processed, f is the next one chosen. (b)
From f , no other points can be chosen

since the resulting region would be self-

intersecting.

starting point

Figure 9.9: S has two distinct clusters. In

green the typical output if S processed

as a single cluster with a moving arm

algorithm.

Adaptative arm with knn. There exists a variation of this algorithm

where the length of the moving arm is adaptive at each step; the k
nearest neighbours (knn) of a given point p are used to determine it (see

Section 10.2). As can be seen in Figure 9.6, the largest polar angle, as used

for gift wrapping algorithm, is used to select the point at each step.

No guarantee that it will work. Both versions of the algorithm will

work in most cases, but there is no guarantee that they will for all

inputs. Figure 9.8 shows a concrete example. In this case, a solution to

this problem would be to either choose another k, or to rotate counter-

clockwise instead of clockwise, which will in practice yield different

results.

Different clusters? One drawback of the moving arm method is that

only one polygon is obtained as a region. If S forms different clusters

(see for instance Figure 9.9), then only the cluster that is the ‘lowest’ will

be output for the region (since the lowest point is picked as a starting

point). Notice that this can also be useful to discard unwanted outliers

(unless the lowest point is an outlier). In practice, the problem of several

clusters can be solved by preprocessing the input points with a clustering

algorithm (in the case of Figure 9.9 two clusters should be detected)

and then each cluster is processed separately. See Section 9.6 for an

overview.

The worst case time complexity is the same as for the gift wrapping

algorithm: O(n h). If a kd-tree is used, this stays the same but in practice

will be sped up as the subset of S tested will be smaller. Each query in

a kd-tree takes O(log n) on average, but we need to store an auxiliary

structure that takes O(n) storage.

Properties moving arm:

P1. The sole polygon could be degenerate (self-intersection).

P2. Outliers can be discarded (except if it is the lowest point)

P3. One component.

P4. No holes in the region.

P5. O(n h)
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(a)

(b)

(c)

Figure 9.10: χ-shape examples. (a) S, its
DT, and its envelope (cons(S)). (b) After

some edges have been removed. (c) The
final result for a given threshold. Observe

that neither of the red edges can be re-

moved because a self-intersection would

be created

9.4 χ-shape

The χ-shape is based on first constructing the Delaunay triangulation

(DT) of S, and then removing iteratively the longest edge forming the

envelop (at first this envelop is conv(S)) until no edge is longer than a

given threshold l. The idea is to construct one polygon that is potentially

non-convex, and that contains all the points in S. Before removing an

edge, we must verify that it will not introduce a topological issue in the

envelop, that is that the envelop will not contain a self-intersection (see

Figure 9.10c, the dangling edge is there twice, once in each direction).

A DT can be constructed in O(n log n). The number of edges in a DT of

n points is roughly 3n (thus O(n)), and since verifying the topological

constraint can be done locally (previous and next edge) the overall time

complexity is O(n log n)

Properties χ-shape:

P1. The sole polygon is guaranteed to be regular.

P2. All points are part of the region

P3. One component.

P4. No holes in the region.

P5. O(n log n)

9.5 α-shape

The α-shape is conceptually a generalisation of the convex hull of a set S
of points.

It is best understood with the following analogy. First imagine that R2
is

filled with Styrofoam and that the points in S are made of hard material.

Now imagine that you have a carving tool which is a circle of radius

α, and that this tool can be used anywhere from any direction (it is

‘omnipresent’), and that it is only stopped by the points. The result after

carving, called the α-hull, is one or more pieces of Styrofoam. If we

straighten the circular edges, then we obtain the α-shape. See Figure 9.11
for an example.

Now let α be a real number with 0 ≤ α ≤ ∞. If α � ∞, then the α-shape
is conv(S) because you will not be able to carve inside conv(S). As α
decreases, the α-shape shrinks and cavities can appear, and different

components can be created. If α � 0 then the α-shape is S (which is a

valid α-shape).

Figure 9.11: Five α-shape for the same set of points, with decreasing α values from left to right.
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(a)

(b)

(c)

Figure 9.12: Clustering points. (a) A set of

points S. (b) The result of a clustering algo-

rithm (DBSCAN): points are assigned to

a group (based on colours, here 2 groups)

or labelled as outliers (grey points). (c)DB-

SCAN has 3 types of points: core points

(dark red), border points (orange), and

outliers (grey); the orange circle is the ε
and the nmin � 2.

The α-shape is not a polygon or a region, but a complex formed of

k-simplices, where 0 ≤ k ≤ 2. Furthermore, it is a subcomplex of the

Delaunay triangulation (DT) of S. That is, the easiest method to construct

an α-shape is by first constructing DT(S), and then removing all edges

that are shorter then 2α.

In practice, all the α-shapes of S (for different values of α) can be

calculated and discretised since we know that α will range from the

shortest edge to the longest. For each k-simplex, we can thus assign a

range where it will be present. Implementations of the α-shape will often

offer to compute automatically an α such that the complex obtained is

for instance connected and contains only one polygon.

A DT can be constructed in O(n log n) time, and the algorithm only

requires to visit once each of the O(n) triangles, thus the time complexity

is O(n log n).

Properties α-shape:

P1. A complex of k-simplices.

P2. Some points can be omitted.

P3. Several components possible.

P4. Regions can contain holes.

P5. O(n log n)

9.6 Clustering algorithms

Clustering algorithms are used widely for statistical data analysis, they

allow us to group points (often in higher dimensions) that are close

to each others in one group. Different notions to create clusters can be

used, eg distance between the points, density, intervals or particular

statistical distributions. As Figure 9.12 shows, the result of a clustering

algorithm is that each input point is assigned to a cluster (here a colour),

and potentially some outliers are identified.

k-mean clustering. It is a centroid-based clustering, where a cluster is

represented by its centroid. The parameter k is the number of clusters,

usually given as input. A point belongs to a given cluster if its distance to

the centroid is less than for any other cluster centroids. The algorithm can

be seen as an optimisation problem, sincewewant the total distances from

each point to its assigned centroid to be minimised. In practice, we often

seek approximate solutions, for instance the location of the k centroids

are first randomised, and thus the algorithm will yield different outputs.

The algorithm is iterative: at each iteration the points are assigned to the

closest centroid, and new centroid locations are updated. The algorithm

stops when the centroids have converged and their locations do not

change.

DBSCAN: density-based clustering. A density-based cluster is de-

fined as an area of higher density then other points, the density being

the number of points per area. The aim is to group points having many

close neighbours.
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1: https://doc.cgal.org/latest/Alph

a_shapes_2/index.html

The most used algorithm is DBSCAN (density-based spatial clustering

of applications with noise), and works as follows. First the density is

defined with 2 parameters: (1) ε is a distance defining the radius of the

neighbourhood around a given point; (2) nmin is the minimum number

of points that a neighbourhood can contain to be considered a cluster.

Points are categorised either as: (1) core points if they have more than

nmin neighbours within ε; (2) border points if they have less than nmin

neighbours within ε, but are closer than ε to a core point; (3) outliers. In

Figure 9.12c, if nmin � 2 and the orange circle represents ε, notice that
a few points are border points since they have only one point in their

neighbourhood, and that 3 points are outliers (1 is clear, the other 2 are

very close to being border points). A cluster is formed by recursively

finding all the neighbouring points of a given core point, adding them to

the cluster.

9.7 Notes & comments

The properties listed in Section 9.1 are taken, and slightly adapted, from

Galton and Duckham (2006).

The quickhull algorithm is themost knownandused convexhull algorithm,

and it is valid in any dimensions. See Barber et al. (1996) for the details,

and http://www.qhull.org/ for implementations.

The gift wrapping algorithm to compute the convex hull of a set of points

in R2
is from Jarvis (1973).

The moving arm with a length is presented and described in Galton

and Duckham (2006), and the adaptative one in Moreira and Santos

(2007). In both papers, the authors describe different strategies to make

the algorithm work for all input, but these do not have any warranty to

output a simple polygon.

The χ-shape was introduced in Duckham et al. (2008).

The explanation of the α-shape is taken from Edelsbrunner and Mücke

(1994) and from the CGAL documentation
1
.

The DBSCAN algorithm was introduced in Ester et al. (1996).

9.8 Exercises
1. Given a DT(S), how to extract conv(S)?
2. What are the disadvantages of the χ-shape compared with the

α-shape?
3. If the parameter l for the χ-shape is equal to the α parameter for

an α-shape, will the resulting shapes be the same?

4. Given an α-shape of S, how to calculate how many components

are part of it?

5. Draw what would happen if one of the 2 edges was removed in

Figure 9.10c.

6. What is the influence of k for the moving arm algorithm (with a

kdd)? Will a higher k create a larger or smaller region in general?

https://doc.cgal.org/latest/Alpha_shapes_2/index.html
https://doc.cgal.org/latest/Alpha_shapes_2/index.html
http://www.qhull.org/
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In this chapter we discuss three methods to deal with massive terrains

(or input datasets).

“Massive” is a vague and undefined term in GIS, and it is continuously

changing: 10 years ago a point cloud dataset containing 5 million points

was considered massive, while in 2018 it is not. There are some massive

datasets even in small areas, eg a Lidar one of Dublin
1
, containing around

1.4 billion points with a density of 300pts/m
2
, which was collected with

airborne laser scanners. The lidar dataset of the Netherlands, AHN
2
, has

about 10pts/m
2
covering the whole country, thus comprising more than

700 billion points which can be freely downloaded.

For the purposes of this course, we define as “massive” a dataset that does

not fit into the main memory of a standard computer, which is usually

around 16GB. This definition makes practical sense because working

with data outside of the main memory of a computer is substantially

slower (about 2 orders of magnitude for solid state drives and 5 for hard

drives), causing many standard data processing algorithms to become

impractical with massive datasets. Keep in mind that not only the (x yz)
coordinates of the points of a point cloud need to be stored, but also

often attributes for each point (LAS has several standard ones). Also,

in the case of TINs, the geometry of the triangles—and potentially the

topological relationships between them—need to be explicitly stored.

What is ironic is that while datasets like AHN3 are being collected in

several countries, in practice they are seldom used since the tools that

practitioners have, and are used to, usually cannot handle such massive

datasets. Indeed, the traditional GISs and terrain modelling tools are

limited by the main memory of computers: if a dataset is bigger then

operations will be very slow, and will most likely not finish.

10.1 Raster Pyramids

Raster pyramids are a well-known, standardised, and widely used mech-

anism to deal with large grids. They are also used for images (and

called ‘tiled pyramidal images’ or ‘overview images’) and many software

support them since they optimise visualisation and thus the speed of a

software dealing with large images.

As shown in Figure 10.1, a pyramid means creating recursively copies at

lower-resolutions of an original raster (having x columns and y rows),

the first copy having a size (
x
2
,

y
2
), the second (

x
4
,

y
4
), and so on (the

number of images is arbitrary and defined by the user). Notice that the

extra storage will be maximum
1

3
of the original raster: the first pyramid

is
1

4
, the second

1

16
, the third

1

64
, etc.

https://bit.ly/32GXiFq
http://www.ahn.nl
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Figure 10.1: (a) The pyramid for a given

raster file. (b) One 4 × 4 raster downsam-

pled twice with average-method.
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Figure 10.2: Example of kd-tree in 3D,

with the dimensions used at each level.

Each lower-resolution copy of the raster is obtained with downsampling.

The most common method is based on averaging the 4 pixels that

are merged into one (as shown in Figure 10.1b), but other methods are

possible such as nearest neighbour (interpolation method as seen in

Chapter 4).

2 How does it work in practice?

gdaladdo. For certain formats, eg GeoTIFF, the lower-resolutions

rasters can be stored directly in the same file as the original raster, and

this is standardised. For other formats in GIS, eg the ASCII format

‘.asc’, the pyramids are stored in an auxiliary file with the extension

‘.ovr’, which is actually in TIFF format.

The GDAL utility gdaladdo (https://www.gdal.org/gdaladdo.ht

ml) allows us to create automatically the pyramids for a few formats.

The downsampling method can be chosen.

10.2 Indexing points in 3D space with the
kd-tree

A k-dimensional tree, kd-tree in short, is a data structure to organise

points in a k-dimensional space; it also partitions the space into regions.

In the context of terrains, k is in most cases either 2 or 3. Notice that in

practice we would never say a “2d-tree” or a “3d-tree”: we call them

“kd-tree of dimension 2 (or 3)”.

As shown in Figure 10.2, a kd-tree is a binary tree (thus each node has a

maximum of 2 children, if any), and the main idea is that each level of

the tree compares against one specific dimension. We ‘cycle through’ the

dimensions as we walk down the levels of the tree.

https://www.gdal.org/gdaladdo.html
https://www.gdal.org/gdaladdo.html
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Let S be a set of points in Rk
, and let κ be the kd-tree of dimension k

of S. Each point pi in S is a node of κ. A node implies a hyperplane

that divides the space into 2 halfspaces according to one dimension;

the hyperplane is perpendicular to the dimension of the node (which

is linked to the level in the tree). Points with a lower coordinate value

than the node along that dimension (corresponding to ‘left’ or ‘under’

the hyperplane) are put into the left subtree of the node, and the other

ones into the right subtree.

Consider the kd-tree in 2D in Figure 10.3. The first dimension splits the

data into 2 halfplanes along the line x � 5, then each of these halfplanes

is independently split according to the y dimension (with the lines y � 7

and y � 5), then the 4 regions are split according to the x dimension,

and so on recursively.

Construction of a kd-tree. In theory, any point could be used to divide

the space according to each dimension, and that would yield a valid

kd-tree. However, selecting the median point creates a balanced binary

tree, which is desirable because it will improve searching and visiting

the tree (see below). The tree in Figure 10.3 is balanced, but if for instance

(1, 3) had been selected as the root, then there would be no children on

the left, and all of them would be on the right.

The median point is the one whose value for the splitting dimension

is the median of all the points involved in the operation. This implies

that to construct the kd-tree of a set S of n points, as a first step n values

need to be sorted, which is a rather slow operation. In practice, most

software libraries will not sort n values, but rather sample randomly a

subset of them (say 1%), and then use the median of this subset as the

splitting node in the graph. While this does not guarantee a balanced

tree, in practice the tree should be close to balanced.

The tree is built incrementally, ie points are added in the tree one after

the other, and after each insertion the tree is updated. Each insertion is

simple: traverse the tree starting from the root, go left or right depending

on the splitting dimension value, and insert the new point as a new leaf

in the tree. Figure 10.4 illustrates this for one point.

Observe that this insertion renders the tree unbalanced. Methods to

balance a kd-tree exists but are out of scope for this course.
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Figure 10.4: Insertion of a new point (7, 3)
in a kd-tree.
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Nearest neighbour query in kd-trees. The nearest neighbour query

aims to find the point c in a set S that is the nearest (according to the

Euclidean distance) to a query point q. It can be performed brute-force

(comparing distance to all points in S), but this is slow. An alternative is

to construct the Voronoi diagram (actually the Delaunay triangulation),

and navigate in the cells; this works but is in practice not as efficient as

using a kd-tree.

First observe that the obvious method to find the cell in the kd-tree
containing q does not work because q can be far away in the tree. Figure

10.5a illustrates this: c is (6, 4) but is located in the right subtree of the

root, while q is in the left subtree.

The idea of the algorithm we are presenting here is to traverse the whole

tree (in depth-first order), but use the properties of the tree to quickly

eliminate large portions of the tree. The eliminated subtrees are based on

their bounding boxes. As we traverse the tree, we must keep track of the

closest point ctemp so far visited.

The algorithm starts at the root, stores the current closest point ctemp
as the root, and visits the nodes in the tree in the same order as for the

insertion of a new point. This order is the one that is most promising,

because we expect c to be close to the insertion location (albeit this is

not always the case). At each node ni it updates ctemp if it is closer. For

this, the Euclidean distance is used. For the example in Figure 10.5b,

point (5, 6) is the first ctemp , and then although (2, 7) and (1, 3) are visited,
neither is closer and thus after that step ctemp � (5, 6).

The algorithm then recursively visits the other subtrees, and checks

whether there could be any points, on the other side of the splitting

hyperplane, that are closer to q than ctemp . The idea behind this step is

that most of the subtrees can be eliminated by verifying whether the

region of the bounding box of the subtree is closer than the current

dist(q , ctemp), dist() being the Euclidean distance between 2 points. If

that distance is shorter, then it is possible that one point in the subtree is

closer than ctemp , and thus that subtree must be visited. If not, then the

whole subtree can be skipped, and the algorithm continues.

Figure 10.5c shows this idea after (1, 3) has been visited. ctemp is (5, 6),
and we must decide whether the subtree right of (2, 7) must be visited.

In this case it must not be visited because the bounding box (light blue

region) is 3.0unit from q, and dist(q , ctemp) is around 2.07; it is thus

impossible that one point inside the subtree be closer than (5, 6).
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Figure 10.5: Several states for the nearest neighbour query based on a kd-tree.
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spatial streaming

spatial coherence

The next step is verifying whether the subtree right of the root could

contain a point closer than ctemp . In the Figure 10.5d, this is possible since

the bounding box is only 0.5unit from q, and thus the subtree must be

visited.

The algorithm continues until all subtrees have either been visited or

eliminated. At the end, c is (6, 4).

Time complexity. To insert a new point, and to search for a nearest

neighbour, the time complexity on average is O(log n). The tree stores

one node per point, thus the space complexity is O(n).

m-closest neighbours. The algorithm can be extended in several ways

by simple modifications. It can provide the m nearest neighbours to

a point by maintaining m current closest points instead of just one. A

branch is only eliminated when m points have been found and the branch

cannot have points closer than any of the m current bests.

10.3 Streaming paradigm to construct massive
TINs and grids

The incremental construction algorithm for the Delaunay triangulation,

presented in Chapter 3, will not work if the size of the input dataset is

larger than the main memory. Or if it works, it will be very slow.

To deal with massive datasets, one can also design external memory

algorithms. These basically use disks to store temporarily files that do

not fit in memory, and instead of using the mechanism of the operating

system, they design explicit rules for the swapping of data between the

disk and the memory. The main drawbacks of this approach are that

the design of such algorithms is rather complex, and that for different

problems different solutions have to be designed.

An alternative approach to dealing with massive datasets is spatial

streaming, which mixes ideas from external memory algorithms with

different ways to keep the memory footprint very low. The basic idea

of this paradigm is that of a streaming mesh: a format for representing

triangulations (or meshes) as a set of interleaved vertices, triangles and

vertex finalization tags that indicatewhen a vertexwill not be used anymore.

Standard mesh formats do not use finalization and can therefore suffer if

the mesh is larger than memory. These tags allows us to keep in memory

only a small part of a large dataset.

A streaming mesh basically documents the spatial coherence of a dataset,

which Isenburg et al. (2006b) defines as: “a correlation between the

proximity in space of geometric entities and the proximity of their

representations in [the file]”. They also demonstrate that real-world point

cloud datasets often have natural spatial coherence and they exploit

this coherence to compute Delaunay triangulations of massive datasets

(instead of reordering the points, which is expensive); this coherence is

expected since LiDAR samples are often stored in the order they were

collected.
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The ideas behind streaming are very useful for certain local problems (eg

interpolation and creation of grids), but unfortunately they cannot be

used directly (or it would be extremely challenging) for global problems

such as visibility or flow modelling.

W To read or to watch.

This video explains how the streaming concepts can be applied to

constructing the Delaunay triangulation of massive datasets. You do

not need to read the full paper, which is Isenburg et al. (2006b).

https://youtu.be/DRCGTF2y_tM

W To read or to watch.

M. Isenburg et al. (2006a). Generating Raster DEM from Mass Points

Via TIN Streaming. Geographic Information Science—GIScience 2006.

Vol. 4197. Lecture Notes in Computer Science. Münster, Germany,

pp. 186–198

PDF: http://dx.doi.org/10.1007/11863939_13

The article summarises Isenburg et al. (2006b) (you do not need

to read it), and shows how large rasters can be constructed with

spatial interpolation.

10.4 Notes & comments

The description of the kd-tree and the nearest neighbour query is adapted

from Wikipedia (https://en.wikipedia.org/wiki/K-d_tree) and

the lecture notes entitled “kd-Trees—CMSC 420” from Carl Kingsford

(available at https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures

/kdtrees.pdf).

Vitter (2001) provides an overview of external algorithms..

10.5 Exercises
1. Isenburg et al. (2006a) argues that real-world point cloud datasets

often have natural spatial coherence. Explain why that is for lidar

datasets.

2. Given a simple point clouds stored in a CSV file (one x , y , z per

line), how many passes over the file the triangulator of Isenburg

et al. (2006a) make? What does each do?

3. How to construct a kd-tree that is as balanced as possible?

4. “The ideas behind streaming are very useful for certain local prob-

lems, but unfortunately they cannot be used directly for global

problems such as visibility or flow modelling”. Explain why that is

with a concrete example.

https://youtu.be/DRCGTF2y_tM
http://dx.doi.org/10.1007/11863939_13
https://en.wikipedia.org/wiki/K-d_tree
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdtrees.pdf
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdtrees.pdf




q

v

Figure 11.1: Line-of-sight between v and

q; q is not visible.

Figure 11.2: The viewshed at the location

marked with a red star (green = visible;

maximum view distance (dark grey) is set

to 15km).

Light Source

Scene Object

Shadow RayView Ray

Image
Camera

Figure 11.3: Ray tracing builds the image

pixel by pixel by extending rays into the

scene. (Figure from https://commons.wi
kimedia.org/wiki/File:Ray_trace_d
iagram.svg)

Visibility queries on terrains 11
11.1 Rendering + ray casting . . . 105
11.2 2.5D terrains are simple . . . 106
11.3 Notes & comments . . . . . . 108
11.4 Exercises . . . . . . . . . . . . . 108

Several applications using terrains involve visibility queries, ie given a

viewpoint, which part(s) of the surrounding terrain are visible. Examples

of such applications are many: optimal position of telecommunication

towers, path planning for hiking (to ensure the nicest views), estimation

of the view for scenic drives, estimation of visual damage when trees

in a forest are cut, etc. There are also several related problems. One

example is the estimation of shadows (position of the sun continually

varies, also with seasons). Shadows are important to accurately measure

the photovoltaic potential, for determining solar envelopes, for assessing

the value of real estate, and for estimating the thermal comfort, among

other applications.

When referring to visibility problems, we address the following two

fundamental problems:

line-of-sight (LoS): given a viewpoint v and another point q, does v
sees q (and vice-versa)? Or, in other words, does the segment vq
intersects the terrain? The result is either True or False.

viewshed: given a viewpoint v, which part(s) of the surrounding terrain

are visible? The result is a polygon (potentially disconnected)

showing the locations and extent of what is visible from v. Usually

the extent is limited to a certain “horizon”, or radius of visibility. If

the terrain is formed of different objects (eg buildings), an object is

either visible or not (simple case), or parts of objects can be visible

(more complex).

Observe that for both problems, the viewpoint can either be directly on

the terrain (at relative elevation 0m) or at a given height (2m for a human,

or 30m for a telecommunication tower).

We discuss in this chapter the general problem of visibility as defined in

computer graphics, and then discuss how terrains, being 2.5D surfaces,

simplify the problem. We discuss how to solve these problems for both

TINs and grids.

11.1 Rendering + ray casting

Rendering is the process of generating images from 2D or 3D scenes.

Without going into details, as shown in Figure 11.3, it involves projecting

the (3D) objects in a scene to an image (say 800x800 pixels) and assigning

one colour to each pixel. The colour of a pixel is that of the closest

object, but to obtain photorealistic images, lighting, shading, and other

physics-based functions are often applied (this goes beyond the scope of

this course!).

Ray casting is used for each pixel: a ray is defined between the viewpoint

p and the centre of the pixel, and the closest object in the scene must be

https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg
https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg
https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg
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found. The main issue involves finding that closest object, and especially

discard the other objects lying behind it.

W To read or to watch.

Parts of the following chapter. It summarises different methods to

determine which surfaces are visible, for the generic cases of objects

in 3D space. Read only the following sections: 18.0, 18.1, 18.2, and 18.4.

D. Salomon (2011). Visible Surface Determination. Texts in Computer

Science. Springer London, pp. 891–910

PDF: https://doi.org/10.1007/978-0-85729-886-7_18

11.2 For 2.5D terrains, the problem is simpler

The problem is simplified for terrains because a terrain is a 2.5D surface,

and we can convert the problem to a 2D one. Furthermore, we can

exploit the connectivity and adjacency between the 2D cells forming a

terrain to minimise the number of objects to test (for intersections and

for determining who is in front of who).

11.2.1 Visibility in TINs

W To read or to watch.

Parts of the following chapter. Read from Section 1 to Section 3.1; it

covers the simplest case for a LoS between 2 points on the surface.

M. de Berg (1997). Visualization of TINs. Algorithmic Foundations

of Geographic Information Systems. Ed. byM. van Kreveld et al. Vol. 1340.

Lecture Notes in Computer Science. Berlin: Springer-Verlag, pp. 79–97

PDF: https://doi.org/10.1007/3-540-63818-0_4

11.2.2 Visibility in grids

Solving visibility queries in grids is simpler than with triangles since the

topology of the grid is implied (we have direct access to the neighbours

of a given cell), and because grid cells are usually small we can assume

that a grid cell is visible (or not) if its centre is visible (or not). The same

assumption is tricky for triangles, since these can be large; in practice it

is often assumed that a triangle is visible if its 3 vertices are visible, but

this varies per implementation.

Wedescribe here howbothLoS andviewshedqueries can be implemented

for grids; the same principles could be applied to TINs with minor

modifications.

https://doi.org/10.1007/978-0-85729-886-7_18
https://doi.org/10.1007/3-540-63818-0_4
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Line-of-sight. A LoS query, between a viewpoint v and another point

q, implies reconstructing the profile of the terrain along the vertical

projection of vq (let us call it vqx y). It then suffices to follow vq and verify

whether the elevation at any (x , y) location along the profile is higher

than that of vq. As shown in Figure 11.4, since the terrain is discretised

into grid cells, there are 2 options to reconstruct the profile between v
and q:

1. identify all the cells intersected by vqx y , and assign the centre of

each cell by projecting it to the terrain profile. This is what is done

in Figure 11.4.

2. consider the edges of the cells, collect all the edges that are inter-

sected by vqx y , and linearly interpolate the elevations. This is far

more expensive to compute, and therefore less used in practice.

The algorithm is thus as follows. Start at v, and for each pixel c encoun-

tered along vqx y , verify whether the elevation value of vq at that location

is higher than the elevation of c. If it is, then continue to the next pixel;

if not, then there is an intersection and thus the visibility is False. If the

pixel containing q is reached without detecting an intersection, then the

visibility is True.

Viewshed. As shown in Figure 11.5, computing the viewshed from a

single viewpoint v implies that the LoS between v and the centre of each

pixel in a given radius is tested. The result of a viewshed is a binary grid;

in Figure 11.2, True/visible pixels are green, and False/invisible ones are

dark grey.

While this brute-force approach will work, several redundant compu-

tations will be made, since several of the rays from v will intersect the

same grid cells. Furthermore, depending on the resolution, the number

of cells in a 5km radius (a reasonable value where humans can see) can

become very large. As an example, with the AHN3 gridded version (50cm

resolution), this means roughly 400M queries (( 5000×2

0.5 )2).

One alternative solution is shown in Figure 11.5b: it involves sampling the

grid cells intersecting the border of the visible circle (obtaining several

centres qi), and computing the visibility of each of the cells along the line

segment vqi as we ‘walk’ from v. Observe that, along vqi , it is possible
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that a point far from v is visible, while several closer points are not;

Figure 11.5c gives an example.

One solution involves using so-called tangents. The current tangent tcur
is first initialised as a vector pointing downwards. Then, starting at v,
we walk along the ray vqi , and for each cell intersected its elevation z is

compared to the elevation of tcur at that location. If z is lower, then the

cell is invisible. If z is higher, then the cell is visible and tcur is updated

with a new tangent using the current elevation.

Viewsheds with several viewpoints vi are also very useful, think for

instance of obtaining the viewshed along a road. This can be computed

by sampling the road at every 50m and computing the viewsheds from

each of the points. Each viewshed yields a binary grid, and it suffices to

use a map algebra operator to combine the results into one grid (if one

cell is visible from any viewpoint, then it is visible).

11.3 Notes & comments

The ‘tangent algorithm’ to compute viewsheds was first described by

Blelloch (1990).

The description here is inspired by that of De Floriani and Magillo

(1999).

11.4 Exercises
1. Explain why the spacing in Figure 11.4c along the profile has points

that are not equally spaced.

2. Your are given a 2.75D terrain of an area, it is composed of tri-

angles, and your aim is to perform line-of-sight queries between

some locations. Describe the algorithm that you will implement to

perform the queries.
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In this chapter we discuss algorithms for reading, transforming, process-

ing, cleaning and extracting information from point clouds, and we also

briefly present the main storage formats used in practice.

12.1 Point cloud file formats

A point cloud is essentially an array of 3D points, and often that is also

how it is stored in a file. Regardless of the format, a point cloud file can

often be seen as an array of point records, each of which contains the

coordinates and attributes of one point.

A point record consists of several fields, each of which stores a single value,

eg an integer, float, or boolean. A field can for instance represent the x-,
y-, or z-coordinate of a point or one of its attributes, eg the lidar return

number or colour information. The order and meaning of the fields in

a record are fixed for all the point records in one file. How exactly the

point records are structured and stored in the file, and what additional

metadata are available, depends on the specific file format that is used.

Notice that, in additions to the widely used formats mentioned here,

there are also many proprietary formats. These are often specific to one

particular software and are therefore not very useful for data exchange.

12.1.1 ASCII formats

ASCII formats are plain text files. The point cloud information is thus

stored as a sequence of ASCII characters, usually one point record per

line. In most cases you can recognise such files by the .xyz, .csv, or .txt

extensions; these are in most cases comma-separated values (CSV) files
∗
.

A benefit of ASCII files is that you can simply open and edit them in a

text editor. The biggest downside is that they are not standardised, ie the

type, order, and number of attributes varies and also the used coordinate

reference system (CRS) are usually not documented in the file.

1 x y z
2 84499.948 446610.324 0.407
3 84499.890 446609.862 0.434
4 84499.832 446609.420 0.442
5 84499.777 446608.987 0.454
6 84499.715 446608.528 0.444
7 84499.839 446612.808 0.493
8

Figure 12.1:An example of a CSV file used

to store the x yz coordinates of a point

cloud.

∗ https://en.wikipedia.org/wiki/Comma-separated_values

https://en.wikipedia.org/wiki/Comma-separated_values
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Figure 12.2: A simple PLY file with 1 addi-

tional user-defined attribute of type inte-

ger (“int”). It contains 7 points.

ply
format ascii 1.0
comment This is an example file for GEO1015!
element vertex 7
property float x
property float y
property float z
property int custom_attribute
end_header
91443.89 438385.69 -0.80 11
91443.94 438386.10 -0.78 43
91444.00 438386.51 -0.79 44
91444.06 438386.94 -0.83 31
91444.11 438387.36 -0.86 31
91443.88 438383.50 -0.83 22
91443.93 438383.91 -0.80 65

← encoding and ply version number

← number of points, start of point record definition

point record definition

point records

12.1.2 The PLY format

The PLY format can be considered a standardised ASCII format. A PLY

file contains a header
†
that specifies the structure of the point records in

the file, ie the number of attributes (called properties), their order, their

names and their data types. This makes it a very flexible standard, since

the user can decide on the composition of the point record. Figure 12.2

shows an example PLY file.

PLY files are readable by many software packages and can also be stored

in a binary encoding
‡
. Compared to the ASCII encoding, the binary

encoding results in a smaller file size and quicker reading and writing

from and to the file. There is no standardised way to specify the CRS in a

PLY file, although one could add a comment in the header stating the

CRS.

12.1.3 The LAS format

The public LASER (LAS) file format is the most widely used standard for

the dissemination of point cloud data. The LAS standard, currently at

version 1.4, is maintained by the ASPRS organisation and, as the name

implies, it was designed for datasets that originate from (airborne) lidar

scanners. However, in practice it is also used for other types of point cloud,

eg those derived from dense image matching. It is a binary-encoded

standard and compared to the PLY format it is rather strict because it

prescribes exactly what a point record should look like, ie what attributes

are present and how many bits each attribute must use.

Table 12.1 shows the composition of the simplest record type that is

available for LAS files. Other record types are available that also include

fields to store for instance RGB colour information or the GPS time (the

time a point was measured by the scanner), but all records types include

at least the fields shown in Table 12.1. While the LAS standard clearly

specifies that all these fields are required, some of the fields are very

specific to lidar acquisition and they are sometimes ignored in practice,

eg if a point cloud originating from dense matching is stored in the LAS

†
A header is supplemental information placed at the beginning of a file, eg to store

metadata about the file.

‡ https://en.wikipedia.org/wiki/PLY_(file_format)#ASCII_or_binary_format

https://en.wikipedia.org/wiki/PLY_(file_format)#ASCII_or_binary_format
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Table 12.1: LAS Point Data Record Format 0

Field Format Length (bits) Description

X int 32 X coordinate.

Y int 32 Y coordinate.

Z int 32 Z coordinate.

Intensity unsigned int 16 The pulse return amplitude.

Return number unsigned int 3 The total pulse return number for a given output

pulse.

Number of returns unsigned int 3 Total number of returns for a given pulse

Scan Direction Flag boolean 1 Denotes the direction at which the scanner mirror

was traveling at the time of the output pulse. A bit

value of 1 is a positive scan direction, and a bit value

of 0 is a negative scan direction (where positive scan

direction is a scan moving from the left side of the

in-track direction to the right side and negative the

opposite).

Edge of Flight Line boolean 1 Has a value of 1 only when the point is at the end of

a scan. It is the last point on a given scan line before

it changes direction.

Classification unsigned int 5 Classification code

Scan Angle Rank int 4 The angle at which the laser pulse was output from

the scanner including the roll of the aircraft.

User Data unsigned int 4 May be used at the user’s discretion.

Point Source ID unsigned int 8 Indicates the file from which this point originated.

Non-zero if this point was copied from another file.

format. Notice that unused fields will still take up storage space in each

record.

The CRS of the point cloud can be stored in the header of a LAS file,

together with some other general information such as the total number of

points and the bounding box of the point cloud. The X, Y, and Z fields are

stored as 32-bit integers. To convert these values to the actual coordinates

on the ground, they need to be multiplied by a scaling factor and added

to an offset value, ie:

Xcoordinate � (Xrecord ∗ Xscale) + Xo f f set

Ycoordinate � (Yrecord ∗ Yscale) + Yo f f set

Zcoordinate � (Zrecord ∗ Zscale) + Zo f f set .

The scaling factors Xscale , Yscale , Zscale and the offsets Xo f f set , Yo f f set ,

Zo f f set are also given in the header. Notice that the scaling factor deter-

mines the number of decimals that can be stored, eg the factors 10, 100,

and 1000 would give us 1, 2, and 3 decimals respectively.

The LAS standard defines several classification codes, as listed in Ta-

ble 12.2. These codes are to be used as values for the classification field

of a point record, and are intended to indicate the type of object a point

belongs to. Which classes are used strongly depends on the dataset at

hand. The codes 0 and 1 may appear ambiguous, but there is a clear

distinction. To be exact, the code 0 is used for points that never subject to

a classification algorithm, whereas the code 1 is used for points that have

been processed by a classification algorithm, but could not successfully

be assigned to a class. It is possible to define your own classes using code

ranges that are reserved for that purpose.
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Table 12.2: The first 10 LAS classification

code numbers. More codes exist, but they

are not listed here.

Code Meaning

0 never classified

1 unclassified

2 ground

3 low vegetation

4 medium vegetation

5 high vegetation

6 building

7 low point (noise)

8 reserved

9 water

Figure 12.3: Classification codes used in the AHN3 dataset.

AHN3 classification The national Dutch AHN3 lidar dataset is dis-

seminated in the LAZ format and uses the LAS classification codes.

Figure 12.3 shows all the codes that are used in AHN3. Notice that

apart from the pre-defined codes from Table 12.2, it also uses the custom

code 26 for an ‘artefact’ (Dutch: kunstwerk) class that includes special

infrastructural works such as bridges and viaducts. The points in the

unclassified class (1) typically belong to vegetation, street furniture or

cars.

The LAZ format Finally, a compressed variant of the LAS format,

dubbed the LAZ format, exists. While it is not maintained by an ‘official’

organisation like the LAS standard, it is an open standard and it is

widely used, especially for very big dataset. Through the use of lossless

compression algorithms that are specialised for point cloud data, a LAZ

file can be packed into a fraction of the storage space required for the

equivalent LAS file without any loss of information. This makes it more

effective than simply using ZIP compression on a LAS file. In addition

support for LAZ is typically built into point cloud reading and writing

software, so to the user it is no different than opening a LAS file (although

the compression does take some time).
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The LAZ format closely resembles the LAS format, ie the header and the

structure of the point records are virtually identical. In a LAZ file the

point records are grouped in blocks of 50,000 records each. Each block is

individually compressed,whichmakes it possible to partially decompress

only the needed blocks from a file (instead of always needing to compress

the whole file). This can save a lot of decompression computations if only

a few points from a huge point cloud are needed. Also notice that the

effectiveness of the compression algorithms depends on the similarity in

information between subsequent point records. Typically information is

quite similar for points that are close to each other in space. Therefore, a

greater compression factor can often be achieved after spatially sorting

the points.

In practice, for the AHN3 dataset, the LAZ file of the same area will

about 10X more compacter then its LAS counterpart.

12.2 Thinning

A point cloud with fewer points is easier to manage and quicker to

visualise and process. Therefore a point cloud is sometimes thinned,

which simplymeans that a portion of the points is discarded and not used

for processing. Commonly encountered thinning methods in practice

are:

random randomly remove a given percentage of the points.

nth-point iterate through the points and keep only the first point for

every n points. For example a dataset with 1000 points is reduced

to 100 points if n � 10. This is the quickest thinning method.

grid Overlay a 2D or 3D regular grid over the point cloud and keep

one point per grid cell. That can be one of the original points, an

average of those, or the exact centre of the cell. The thinning factor

depends on the chosen cell-size. Notice that the result is often a

point cloud with a homogeneous point density on all surfaces (only

on the horizontal surfaces if a 2D grid is used).

See Figure 12.4 for a comparison between random thinning and grid

thinning.

From Section ?? you undoubtedly remember that TIN simplification has a

somewhat similar objective: data reduction. However, for a given number

of resulting points, TIN simplification yields a higher quality end result

because it only removes points that are deemed unimportant. Thinning

methods on the other hand do not consider the ‘importance’ of a point

in any way, and might discard a lot of potentially meaningful details.

So why bother with thinning? The answer is that thinning methods are

a lot faster since they do not require something like a computationally

expensive triangulation. Especially in scenarios where the point density

is very high and the available time is limited, thinning can be useful.
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Figure 12.4: Comparison of two thinning

methods. The thresholds were chosen

such that the number of remaining points

is approximately the same.

(a) random thinning

(b) 3D grid thinning

12.3 Outlier detection

Recall from Chapter 2 that outliers are points that have a large error in

their coordinates. Outliers are typically located far away from the terrain

surface and often occur in relatively low densities. Outlier detection aims

to detect and remove outliers and is a common processing step for point

clouds.

Most outlier detection methods revolve around analysing the local

neighbourhood of a point. The neighbourhood can be defined using a

k-nearest neighbour (knn) search (see Section 10.2), a fixed radius search,

or by superimposing a regular grid on the point cloud and finding the

points that are in the same grid-cell. The points that are determined to

be in the neighbourhood of a point of interest p are used to determine

whether p is an outlier or not.

The underlying assumption of most outlier detection methods is that

an outlier is often an isolated point, ie there are not many points in its

neighbourhood. We distinguish the following outlier detection methods

(see also Figure 12.5):

radius count count the number of points that are within a fixed radius

from p. If the count is lower than a given threshold, p is marked as

an outlier.

grid count Superimpose a grid on the point cloud and count for each

grid-cell the number of points. If the count is lower than a given

threshold, the points inside the corresponding grid cell are marked

as outliers. Sometimes theneighbourhood is extendedwith adjacent
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0

5

(a) radius count

1

7

(b) grid count

large
distances

small
distances

(c) knn distance (k � 3)

Figure 12.5: Three outlier detection meth-

ods based on local point density. The red

point is an outlier, whereas the blue point

is an inlier.

(a) before outlier detection (b) after outlier detection

Figure 12.6: Outlier detection in a multi-beam echo sounding dataset using a TIN (Arge et al., 2010).

grid cells. The grid method has the advantage that it can be used

with the spatial streaming paradigm (see Section 10.3).

knn distance Find the k nearest neighbours of p, eg using a kd-tree, and
compute the mean or median of the distances between p and its

neighbours. If this value is above a given threshold, p is marked as

an outlier.

These methods generally work well if the outliers are isolated. However,

in some cases this assumption does not hold. For example in case of a

point cloud derived from multi-beam echo sounding
§
a common issue

is the occurrence of (shoals of) fish. These fish cause large groups of

points that are clustered closely together above the seafloor. These are

not isolated points since each outlier will have plenty of other points

nearby. A possible solution is to construct a TIN of all points and to ‘cut’

the relatively long edges that connect the outlier clusters to the seafloor.

This splits the TIN into several smaller TINs, and the largest of those

should then be the seafloor surface without the outliers. Figure 12.6 gives

an example.

12.4 Ground filtering

Ground filtering involves classifying the points of a point cloud into

ground points and non-ground points. Ground points are those points

that are part of the bare-earth surface of the earth, thus excluding

§
See Section ??.
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Figure 12.7:Cross-section of a terrainwith

lamp posts and trees before (top) and af-

ter (bottom) ground filtering (Axelsson,

2000).

vegetation and man-made structures such as buildings and cars. The

ground points can then be used to generate a DTM, usually as a TIN

or a raster. Or, the non-ground points can be used as input for another

classifier, eg to classify buildings and vegetation possibly using a region

growing algorithm (see Section 12.5.2).

Ground filtering methods are typically based on the assumptions that

1. the ground is a continuous surfacewithout sudden elevation jumps,

2. for a given 2D neighbourhood, the ground points are the ones with

the lowest elevation.

This is reasonable because non-groundpoints are typicallymeasurements

fromobjects above the ground such as trees, street furniture and buildings

(see eg Figure 12.7).

Notice that the resulting bare-earth model may thus have holes where

these non-ground objects used to be. If needed, these holes can be filled

in a subsequent processing step involving spatial interpolation.

12.4.1 Ground filtering with TIN refinement

We will now discuss an effective ground filtering method that is based

on the greedy insertion of ground points into a TIN. Indeed, the same

algorithmic paradigm of iterative TIN refinement that we saw earlier in

Section ?? is used. The algorithm consists of three main steps:

1. construction of a rudimentary initial TIN (usually a Delaunay TIN);

2. computation of two geometric properties for each point that is not

already labelled as ground;

3. incremental insertion of points that pass a simple and local ‘ground

test’ based on the computed geometric properties.

The latter two steps are repeated until all remaining points fail the ground

test.

In the first step a rudimentary initial TIN is constructed from a number

of points that have locally the lowest elevation and are spread somewhat

evenly over the data extent. These points are found by superimposing a

2D grid over the data extent and by selecting the lowest point for each

grid cell (similar to grid thinning). The cell-size of the grid should be

chosen such that it is larger than the largest non-ground object (usually a

building). Thus, if the largest building has a footprint of 100x100m, the

cellsize should be a bit larger, eg 110m, so that it is guaranteed that each

grid-cell has at least a few ground points. Each point that is inserted into

the TIN is considered to be a ground point.
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(a) (b) example ground point

(c) example non-ground

point

Figure 12.8: Geometric properties for a

point p in the method for ground filtering

based on TIN refinement.

(a) Before (b) After

Figure 12.9: Ground filtering (Axelsson, 2000)

In the second step two geometric properties are computed for each

unclassified point. These properties are based on the relation between

the point p and the triangle in the current TIN that intersects its vertical

projection. The two properties are illustrated in Figure 12.8a. The first

property, denoted d, is the perpendicular distance between the p and the

plane spanned by the triangle. The second property, denoted α, is the
largest angle of the angles between the triangle and the three vectors that

connect each vertex with p.

In the ground test of the final step, it is simply checked for each point if its

d is below a given threshold dmax and if its α is below a given threshold

αmax . If this is indeed the case, the point is labelled as a ground point

and inserted into the TIN. Compare Figures 12.8b and 12.8c.

Of course, if the triangles in the TIN change, the properties of the

overlapping unclassified points need to be recomputed. However, the

algorithm is greedy, which means that it never “goes back” on operations

that were previously performed, and thus when a point p is inserted

as the ground, it is never removed. When all remaining points fail the

ground test, the algorithm terminates. Figure 12.9 gives an example result.

Time complexity. The worst case time complexity is O(n2), since the

most expensive term is related to the last two steps of the algorithm; for

each of the n points we need to do the ground test, and after each test we

need to recompute the geometric properties of at most n points.
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Figure 12.10: Planar regions in the AHN3 point cloud. Each region was assigned a random colour.

12.5 Shape detection

Using shape detection we are able to automatically detect simple shapes

such as planes in a point cloud. See for example Figure 12.10, where the

points are randomly coloured according to the corresponding planar

surfaces. Shape detection is an important step in the extraction and

reconstruction of more complex objects, eg man-made structures such as

buildings are often composed of planar surfaces.

In this section, three shape detection methods will be introduced:

RANSAC, region growing, and Hough transform.

But, first we will declare some common terminology. Let P denote a

point cloud. If we perform shape detection on P we aim to find a subset

of points S ⊂ P that fit with a particular shape. Most shape detection

methods focus on shapes that can be easily parametrised, such as a line,

a plane, or a sphere. If we specify values for the parameters of such

a parametrised shape, we define an instance of that shape. A line for

example can be parametrised using the equation y � mx + b, in this

case m and b are the parameters. We can create an instance of a line by

specifying values for its parameters m and b, respectively fixing the slope

and the position of the line.

In the following, the methods are described in a general way, ie without

specialisations for one particular shape. Only for illustrative purposes

specific shapes such as a line or a plane are used to (visually) explain the

basic concept of each shape detection method, but the same could be

done with spheres, cones, or others.

12.5.1 RANSAC

RANSAC is short for RANdom SAmpling Consensus and as its name

implies it works by randomly sampling the input points. In fact it starts

by picking a random set of points M ⊂ P. This set M is called the

minimal set and contains exactly the minimum number of points that

is needed to uniquely construct the shape that we are looking for, eg 2

for a line and 3 for a plane. From the minimal set M the (unique) shape

instance I is constructed (see Figures 12.11b and 12.11c). The algorithm

then checks for each point p ∈ {P \M} if it fits with I. This is usually
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(a) Input points

ε

score=0

(b) First minimal set

ε

score=11

(c) Second minimal

set

(d) Detected line in-

stance

Figure 12.11: RANSAC for line detection

(k � 2 iterations)

done by computing the distance d from p to Iand comparing d against

a user-defined threshold ε. If d < ε we say that p is an inlier, otherwise p
is an outlier. The complete set of inliers is called the consensus set, and its

size is referred to as the score. The whole process from picking a minimal

set to computing the consensus set and its score, as shown in Algorithm 6,

is repeated a fixed number of times, after which the shape instance with

the highest score is outputted (Figure 12.11d).

Algorithm 6: The RANSAC algorithm

Input: An input point cloud P, the error threshold ε, the minimal

number of points needed to uniquely construct the shape of

interest n, and the number of iterations k
Output: the detected shape instance Ibest

1 sbest ← 0;

2 Ibest ← nil;

3 for i ← 0...k do
4 M ← n randomly selected points from P;
5 I← shape instance constructed from M;

6 C← ∅ ;
7 for all p ∈ P \M do
8 d ← distance(p ,I);
9 if d < ε then
10 add p to C;

11 s ← score(C);
12 if s > sbest then
13 sbest ← s ;

14 Ibest ← I;

The most touted benefit of RANSAC is its robustness, ie its performance

in the presence of many outliers (up to 50%). Other algorithms to identify

planes, eg fitting a plane with least-square adjustment, are usually more

sensitive to the presence of noise and outliers (which are always present

in real-world datasets). The probability that a shape instance is detected

with RANSAC depends mainly on two criteria:

1. the number of inliers in P, and
2. the number of iterations k.

Naturally, it will be easier to detect a shape instance in a dataset with

a relatively low number of outliers. And it is more likely that a shape

instance is found if moreminimal sets are evaluated. Picking a sufficiently

high k is therefore important for the success of the algorithm (although a

higher k also increases the computation time).

Because of the random nature of RANSAC, the minimal sets that it will
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evaluate will be different every time you run the algorithm, even if the

input data is the same. The detected shape instance can therefore also be

different every time you run the algorithm; RANSAC is therefore said to

be a non-deterministic algorithm. This could be a disadvantage.

Time complexity. The time complexity of RANSAC is O(kn), where n
is the size of P.

12.5.2 Region growing

Region growing works by gradually growing sets of points called regions

that fit a particular shape instance. A region R starts from a seed point, ie

a point that is suspected to fit a shape instance. More points are added to

R by inspecting candidate points, ie points in the neighbourhood of the

members of R. To check if a candidate point c should be added to R, a

test is performed. In the case of region growing for plane detection (see

Figure 12.12) this test entails computing the angle between the normal

vector of c and the normal vector
¶
of its neighbour in R. If this angle

is small it is assumed that c lies in the plane instance that corresponds

to R, and that it can therefore be added to R. Otherwise c is ignored

(Figure 12.12d). This process of growing R continues until no more

Figure 12.12:Region growing for plane de-

tection based on the angle between neigh-

bouring point normals

(a) Input points with nor-

mals and three seed points

0◦
0◦

0◦

(b) Start growing. Add

neighbours if the normal

angle is small.

0◦
0◦
0◦

(c) Continue growing from

new region point

90◦
0◦0◦

(d) Stop growing where the

normal angle is too great

(e) Final regions from all

three seed points

candidates can be found that are compatible with R. When this happens,

the algorithm proceeds to the next seed point to grow a new region.

Algorithm 7 gives the pseudo-code for the region growing algorithm.

Notice that the set S is used to keep track of the points in the current region

whose neighbours still need to be checked. Also notice that candidate

points that are already assigned to a region are skipped.

The seed points can be generated by assessing the local neighbourhood

of each input point. For example in case of plane detection one could

fit a plane through each point neighbourhood and subsequently sort all

points on the fitting error. Naturally, points with a low plane fitting error

are probably part of a planar region so we can expect them to be good

seeds.

¶
The normal vector for a point p ∈ P can be found by fitting a plane to the points in the

local neighbourhood of p. The vector orthogonal to this plane is the normal vector.
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Algorithm 7: The Region growing algorithm

Input: An input point cloud P, a list of seed points LS, a function to

find the neighbours of a point nei ghbours()
Output: A list with detected regions LR

1 LR ← [];
2 for each s in LS do
3 S← {s};
4 R← ∅;
5 while S is not empty do
6 p ← pop(S);
7 for each candidate point c ∈ neighbours(p) do
8 if c was not previously assigned to any region then
9 if c fits with R then
10 add c to S;
11 add c to R;

12 append R to LR;

To compute the point neighbourhoods a k-nearest neighbour search

or a fixed radius search can be used, which can both be implemented

efficiently using a kd-tree (see Section 10.2). Notice that region growing

is based on the idea that we can always find a path of neighbouring

points between any pair of points within the same region. This does

mean that two groups of points that fit the same shape instance but are

not connected through point neighbourhoods will end up in different

regions. Other shape detection methods described in this chapter do not

need point neighbourhood information.

Time complexity. If we assume that

1. the number of seeds in LS is linear with n, ie the size of P,
2. the size of S is at most n, and that

3. a knn search takes O(k log n), where k is the number of neighbours,

we come to a worst-case time complexity of O(n2k log n). In practice it

should be better since S is not likely to be n large, and it will get smaller

the more regions have been found.

12.5.3 Hough transform

The Hough transform uses a voting mechanism to detect shapes. It lets

every point p ∈ P vote on each shape instance that could possible contain

p. Possible shape instances thus accumulate votes from the input points.

The detected shape instances are the ones that receive the highest number

of votes. To find the possible shape instances for p, the algorithm simply

checks all possible parameter combinations that give a shape instance

that fits with p.

It is thus important to choose a good parametrisation of the shape

that is to be detected. For instance when detecting lines one could

use the slope-intercept form, ie y � mx + b. However, this particular

parametrisation can not easily represent vertical lines, because m would

need become infinite which is computationally difficult to manage. A
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better line parametrisation is the Hesse normal form which is defined

as

r � x cosφ + y sinφ.

As illustrated in Figure 12.13a (r, φ) are the polar coordinates of the point
on the line that is closest to the origin, ie r is the distance from the origin

to the closest point on the line, and φ ∈ [0◦ , 180
◦] is the angle between

the positive x-axis and the line from the origin to that closest point on

the line. This parametrisation has no problems with vertical lines (ie

φ � 90
◦
). Similarly, for plane detection we can use the parametrisation

r � x cos θ sinφ + y sinφ sin θ + z cosφ.

Where (r, θ, φ) are the spherical coordinates of the point on the plane

that is closest to the origin.

Figure 12.13 shows an example for line detection with the Hough trans-

form and Algorithm 8 gives the full pseudo-code. The votes are saved

Figure 12.13:Hough transform for line de-

tectionwith a 9×2 accumulator. The (φ, r)
line parametrisation is chosen because this

form can represent vertical lines (unlike

the y � mx + b form for example).
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Algorithm 8: The Hough transform algorithm

Input: An input point cloud P, an accumulator matrix A, a detection

threshold α
Output: A list with detected shape instances LI

1 for each p in P do
2 for each instance i from A that fits with p do
3 increment A[i];

4 LI ← all shape instances from A with a more than α votes;

in an accumulatorwhich is essentially a matrix with an axis for each pa-

rameter of the shape, eg for detecting lines we would need two axes (See
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Figure 12.13d). Notice that each element in the accumulator represents

one possible shape instance. Because each axis only has a limited number

of elements, each parameter is quantised. This means that each parameter

is restricted in the possible values it can have. The chosen quantisation

determines the sensitivity of the accumulator. The accumulator of Fig-

ure 12.13d for example, can only detect horizontal and vertical lines,

because the φ parameter is quantised in only two possible values. Notice

that the accumulator can be made more sensitive by choosing a finer

quantisation, effectively increasing the size of the accumulator (although

that will also make the algorithm run slower).

Time complexity. The time complexity of the Hough transform algo-

rithm as discussed here is O(nm), where m is the number of elements in

the accumulator.

12.6 Notes & comments

More information on the PLY format can be found online: http://paul

bourke.net/dataformats/ply/. Notice that the PLY format can also be

used to store a 3D mesh.

The full LAS specification, currently at version 1.4, is described in ASPRS

(2013), and Isenburg (2013) describes the details of the compressed LAZ

format.

Arge et al. (2010) introduced the outlier detection method for echo-

sounding datasets by cutting long edges in a TIN.

Axelsson (2000) originally proposed the greedy TIN insertion algorithm

for ground filtering. He also describes how to handle discontinuities in

the terrain such as cliffs. It should be said that his paper is a bit scarce on

details, and if you are interested in those you are better off reading some

excerpts of the work of Lin and Zhang (2014).

A comparison with several other ground filtering methods can be found

in the work of Meng et al. (2010).

Fischler and Bolles (1981) originally introduced the RANSAC algorithm

and applied to cartography in that same paper. On wikipedia you can

read how you can compute the required number of RANSAC iterations

to achieve a certain probability of success given that you know howmany

outliers there are in your dataset
‖
.

Limberger and Oliveira (2015) describes how to efficiently do plane

detection in large point clouds using a variant of the Hough transform.

12.7 Exercises
1. The LAS standard gives a global point offset in the header. What is

the benefit of using such a global offset?

2. What is the difference between thinning an point cloud prior to

triangulation and TIN simplification?

‖ https://en.wikipedia.org/wiki/Random_sample_consensus#Parameters

http://paulbourke.net/dataformats/ply/
http://paulbourke.net/dataformats/ply/
https://en.wikipedia.org/wiki/Random_sample_consensus#Parameters


124 12 Point cloud processing

3. What is the probability that the line instance in Figure 12.11d is

detected with k � 2 iterations?

4. In Chapter 2 it is described how point density can vary based on

the acquisition conditions. How could a (strongly) varying point

density affect the effectiveness of the region growing algorithm?

5. How many axes would an accumulator need for plane detection

with the Hough transform?
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An hydrographic chart is a map of the underwater world specifically

intended for the safe navigation of ships, see below for an example. In its

digital form, it is often called an electronic navigational chart, or ENC.

The information appearing on an ENC are standardised, and there are

open formats.

We focus in this chapter on one element of these charts: depth-contours.

These are contour lines that, instead of elevation, show the depth with

respect to a given level ofwater. The creation of these depth-contours from

an input point cloud of depth measurements requires many tools that

were introduced in this book; Delaunay triangulation and the Voronoi

diagram (Chapter 3), interpolation (Chapter 4), and contour generation

from a TIN (Chapter 8).

13.1 How are depth-contours produced in
practice?

Traditionally, depth-contours were drawn by hand by skilled hydrogra-

phers. They used a sparse set of scattered surveyed depth measurements

to deduct and depict themorphology of the seafloorwith smooth-looking

curves.

Nowadays, with technologies such as multibeam echosounders (MBES)

offering an almost full coverage of the seafloor (see Section 2.2.3), one

would expect the contouring process to be fully automatic. It is however

in practice still a (semi-)manual process since the new technologies have

ironically brought new problems: computers have problems processing

the massive amount of data, especially in choosing which data is relevant

and which is not.

The raw contours constructed directly from MBES datasets are often

not satisfactory for navigational purposes since, as Figure 13.2a shows,

they are zigzagging (the representation of the seafloor thus contains

“waves”, ie the slope changes abruptly) and they contain many “island”

contours (seafloor has several local minima and maxima). These artefacts

are the result of measurement noise that is present in MBES datasets, ie

the variation in depth between two close samples can be larger than in

reality, even after the dataset has been (statistically) cleaned. Figure 13.2b

illustrates what is expected by hydrographers.

13.1.1 Generalisation is required to obtain good depth
contours

Creating good depth-contours requires generalisation, ie the process of

meaningfully reducing information.
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Figure 13.1: An example of an ENC (electronic navigational chart) in the Netherlands. [photo of a paper map from the Hydrografische Dienst]

(a) (b)

(c) (d)

Figure 13.2: Comparison of (a) depth-contours obtained automatically from the raw MBES data and (b) the hydrographic chart from the

Royal Australian Navy for the Torres Strait north of Australia. Raw depth contours are blue, generalized depth contours are black. (c) Pits
are removed, while peaks are preserved or integrated with another contour. (d) Groups of nearby contour lines are aggregated
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Unsafe generalization

Safe generalization

Original depth-contour

+

−

Figure 13.3: During generalisation, depth-

contours can only be moved towards

greater depth (indicated by a “–” in the

figure).

The process of generalisation is guided by constraints that essentially

define when a depth-contour is “good”. A good depth contour satisfies

all of the following four generalisation constraints.

1. The safety constraint. At every location, the indicated depth must

not be deeper than the depth that was originally measured at that

location; this is to guarantee that a ship never runs aground because

of a faulty map. This constraint is a so-called hard constraint, ie it

can never be broken.

2. The legibility constraint. An overdose of information slows down

the map reading process for the mariner, thus only the essential

information should be depicted on the map in a form that is clearly

and efficiently apprehensible.

3. The topology constraint. The topology of the depicted map elements

must be correct, ie isocontours may not touch or intersect (also a

hard constraint).

4. The morphology constraint. The map should be as realistic and

accurate as possible, ie the overall shape of the morphology of

the underwater surface should be clearly perceivable and defined

features should be preserved.

It should be noted that these four constraints are sometimes incompatible

with each other. For instance, the morphology constraint tells us to stay

close to the measured shape of the seafloor, while the legibility constraint

forces us to deviate from that exact shape by disregarding details.

Also, because of the safety constraint, depth-contours can only be modi-

fied such that the safety is respected at all times: contours can only be

pushed towards the deeper side during generalisation, as illustrated in

Fig 13.3. It is therefore obvious that the end result must be a reasonable

compromise between the four constraints, although the hard constraints

must not be broken.

13.2 Common methods used in practice are not
satisfactory

The generation of depth contours, and their generalisation, can be done

by several methods. We present here the most frequently used method-

ologies to generate depth-contours from an MBES point cloud.

13.2.1 Displacement and generalisation of the lines

It is tempting to start with the raw contours lines and use a generalisation

operator to simplify them, eg the Douglas-Peucker method. It should
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however be noticed that this method does not guarantee that the safety

constraint will be respected, that is the generalised line will be “pushed”

both to the deeper and the shallower part (there is no control for this

with the Douglas-Peucker method).

There exist a few algorithms to control the direction in which a line can

be moved (these methods are outside the scope of this book), but these

methods work only on lines individually and thus the resulting set of

lines can contain intersecting lines. Furthermore, this solution does not

solve the presence of many island contours, or can at best delete the small

ones (and not aggregate them as in Figure 13.2d).

13.2.2 Creation of a simplified raster

Practitioners usually first interpolate the original MBES samples to create

a (coarse) grid and then directly extract the contours from the grid. If

the number of samples is too high to be processed by a computer, they

often use a subset, which has the added benefits of creating smoother

and simpler depth-contours.

The following are methods that use a raster data structure either to select

a subset of the input samples or to construct a raster surface.

Selection with virtual gridding. This is a point filtering method that

aims at reducing the volume of data, in order to create generalised

contours and to speed up the computation time, or simply to make the

computation possible, in the case the input dataset is several orders

of magnitude bigger than the main memory of a computer. The idea

is to overlay a virtual grid on the input points and to keep one point

for every grid cell. The selected points can either be used to construct

a raster or TIN surface, see below. While different functions can be

used to select the point (eg deepest, shallowest, average, or median),

because of the safety constraint the shallowest point is often chosen

by practitioners, see Figure 13.4a for a one-dimensional equivalent. It

should however be stressed that choosing the shallowest point does

not guarantee safe contours. The problem is that contour extraction

algorithms perform a linear interpolation on the raster cells. As can be

observed from Figure 13.4d, this easily results in safety violations at

‘secondary’ local maxima in a grid cell. The number and severity of these

violation is related to the cellsize of the virtual grid: a bigger cellsize

will result in more and more severely violated points. Notice that it

is not possible to reduce the cellsize such that the safety issue can be

guaranteed.

Max rasterisation. As Figure 13.4b shows, it is similar to virtual grid-

ding, the main difference is that a raster (a surface) is created where

every cell in the virtual grid becomes a raster cell whose depth is the

shallowest of all the samples. This disregards the exact location of the

original sample points, and moves the shallowest point in the grid cell to

the centre of the pixel. That means that the morphology constraint is not

respected. Moreover, as Figure 13.4e shows, the safety constraint is not

guaranteed, for the same reasons as with virtual gridding. Again, the

severity of these problems depends on the chosen cellsize.
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(a) Virtual gridding (b)Max rasterisation

2r

(c) IDW rasterisation

(d) Virtual gridding and TIN-based con-

tour values

(e)Max rasterisation and contours (f) IDW rasterisation and contours

Figure 13.4: On the top: profile views of

different filtering and rasterisation meth-

ods. On the bottom: the corresponding

contours. The arrows indicate where the

safety constraint is violatedwith respect to

the original points. Also note that in case

a grid cell contains no data, no contours

can be derived.

Interpolation to a raster. For hydrographic charts, the raster surface is

often constructedwith spatial interpolation, particularlywith themethod

of inverse distance weighting (IDW). Figures 13.4c and 13.4f illustrate

the process of IDW interpolation, notice that as a result of the averaging

that takes place, extrema are disregarded and subsequently the safety

constraint is also violated.

13.2.3 TIN simplification

One could use TIN simplification as explained in Chapter 8 to simplify the

riverbed. This would also simplify the depth-contours that are generated

from the TIN. However, as Figure 13.5 shows, the safety constraint is not

guaranteed to be respected when vertices are removed from a TIN. This

is due to the fact that the triangulation must be updated (with flips, see

Chapter 3) and the shapes of the triangles are not controlled by the depth

of the vertices, but rather by the Delaunay criterion.
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Figure 13.5: Due to the re-triangulation after a removal, violations of the safety constraint may occur after a series of points are removed.

The first vertex is removed (locally the resulting surface will be shallower). However, the second removal changes the configuration of

triangles and at that location the surface is now deeper. A lower number means a shallower point.

13.3 A Voronoi-based surface approach

Part of the problemswith existing approaches to generate depth-contours

is the fact that the different processes, such as spatial interpolation,

generalisation and contouring, are treated as independent processes.

These are in fact interrelated, and we introduce in the following a method

where the different processes are integrated. This method uses several of

the algorithms and data structures studied in this book, and with small

extensions and modifications we can obtain depth-contours that are safe

and legible.

The key idea behind the method, called the Voronoi-based surface ap-

proach, is to have one single consistent representation of the seafloor

fromwhich contours can be generated on-the-fly (potentially for different

map scales, or with varying degrees of generalisation). Instead of per-

forming generalisation by moving lines or using a subset of the original

samples, we include all MBES points in a triangulation (the surface) and

manipulate this triangulation directly with generalisation operators that

fulfil the constraints listed in Section 13.1.1.

Figure 13.6 gives a schematic overview of the different components of

our Voronoi-based surface concept.

Firstly, all the input points of a given area are used to construct a Delaunay

TIN. Secondly, a number of generalisation operators are used that alter

Figure 13.6:Overview of the Voronoi- and

surface-based approach.

Operators

Depth-contours

Delaunay TIN Voronoi 
diagram

Laplace 
interpolation

Sample points

Smoothing

Densification

The surface concept
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the TIN using Laplace interpolation, which is based on the Voronoi

diagram. These operators aim at improving the slope of the surface, and

permit us to generalise the surface. Finally, contour lines are derived

from the altered TIN using linear interpolation.

Representing a field in a computer is problematic since computers are

discrete machines. We therefore need to discretise the field, ie partition it

into several pieces that cover the whole area (usually either grid cells or

triangles). Contours in Figure 13.2a are not smooth basically because the

seabed is represented simply with a TIN of the original samples, which

is a C
0
interpolant. However, as we demonstrate below, we can obtain a

smooth looking approximation of the field by densifying the TIN using

the Laplace interpolant (see Section 4.3.5), which is C
1
.

Two generalisation operators allow us to obtain a smoother surface from

which depth-contours can be extracted: (1) smoothing; (2) densification.

13.3.0.1 The smoothing operator

The smoothing operator basically estimates, with the Laplace interpolant

(see Section 4.3.5 on page 44), the depth of each vertex in a dataset

by considering its natural neighbour (see Figure 13.7). If this depth is

shallower, then the vertex is assigned this value; if it is deeper then

nothing is done. Thus, the smoothing operator does not change the

planimetric coordinates of vertices, but only lifts the vertices’ depths.

(a) Initial TIN (b) Estimation using only neighbours

Keep shallowest one

(c) Comparison of depths (d) Resulting TIN
Figure 13.7: Cross-section view of the

smoothing of a single vertex in a TIN.

To perform the Laplace interpolation for each vertex v in the Voronoi

diagram D, it suffices to obtain the natural neighbours pi of v, and for

each calculate the lengths of the Delaunay and the dual Voronoi edge

(as explained in Section 4.3.5). There is no need to insert/remove v in

the dataset, since we are only interested in estimating its depth (without

considering the depth it is already assigned).

The primary objective of smoothing is to generalise the surface by

removing high frequency detail while preserving the overall feature

shape. Applying it reduces the angle between adjacent triangles which

gives the surface a smoother look.

It performs two linear loops over the n vertices of the dataset (the depths

are only updated after all the depths have been estimated), and since

the smoothing of one vertex is performed in expected constant time, the

expected time complexity of the algorithm is O(n).
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Figure 13.8:Cross-section view of the den-

sification operator in a TIN.

(a) Initial TIN (b) Interpolated field (dashed)

(c) Addition of intermediate points (or-

ange) (d) Resulting TIN

Observe that the operator can be performed either on a portion of a

dataset, or on thewhole dataset. Furthermore this operator can be applied

any number of times, delivering more generalisation with each pass.

13.3.0.2 The densification operator

Its objective is primarily to minimise the discretisation error between the

Laplace interpolated field and the contours that are extracted from the

DT, this is illustrated in Figure 13.8.

By inserting extra vertices in large triangles (to break them into three

triangles), the resolution of the DT is improved. As a result also the

extracted contour lines have a smoother appearance because they now

have shorter line-segments; see Section 8.2.4 for an explanation. We insert

a new vertex at the centre of the circumscribed circle of any triangle that

has an area greater than a preset threshold; its depth is assigned with

the Laplace interpolant. The circumcentre is chosen here because that

location is equidistant to its three closest points, and subsequently results

in a very natural point distribution.

Figure 13.9 shows an example of these ideas. Figure 13.9a and Figure 13.9b

show the original dataset, which is a very simple pyramid having its

base at elevation 0, and its summit at 10. Figure 13.9d–f shows the results

when a densification operator based on the Laplace interpolant is used.

It should be noticed that the “top” of the pyramid was densified, and not

so much the bottom, therefore the contour lines near the bottom should

be ignored (the fact that they are close to the border of the dataset also

creates artefacts).

Densification aims to reduce the difference between the linear TIN and

the Laplace interpolated field of its vertices—effectively improving the

resolution of the extracted contours. Therefore, densification is to be

applied just before the extraction of the depth-contours. If applied before

the smoothing operator, it would limit the effectiveness of that operator,

since a denser triangulation smoothes more slowly.

The densification operator uses an area-threshold that determines which

triangles should be densified. This way triangles that are already suffi-

ciently small are not densified. It performs a single pass on the input
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0

(a) Original data (b) Perspective view of original data (c) Contour lines from original data

(d) Densified with Laplace interpolant (e) Perspective view after densification (f) Contour lines from densified surface

Figure 13.9: Original data are shown in (a) and (b), and the resulting contour lines in (c). The three figures below represent the same area

densified with the Laplace interpolant.

triangles, thus with every call the resolution of the DT is increased, until

all triangles have reached a certain area.

If the maximum area threshold is ignored, a single call costs O(n) time,

as it only requires a single pass over the n triangles of the TIN. However,

when a number of t densification passes is sequentially performed, it

only scales to O(3t n) time, since every point insertion creates two new

triangles. However, because of the maximum area threshold, that worst

case scenario will never be reached in practice with large t.

13.4 Some examples of results with real-world
datasets

Figure 13.10 shows the results obtained with the implementation of

the method described in this chapter. This was tested with an MBES

dataset from Zeeland, in the Netherlands. As can be observed from

Figure 13.10a, the raw and ungeneralised contours in the dataset have

a very irregular and cluttered appearance. However, the smoothed

contours (100 smoothing passes) from Figure 13.10b have a much cleaner

and less cluttered appearance. Clearly, the number of contour lines has

diminished. This is both because pits (local minima) have been lifted

upwards by the smoothing operator, and nearby peaks (local maxima)

have been aggregated (because the region in-between has been lifted

upwards). Notice also that a third effect of the smoothing operator is the
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(a) (b) (c)

Figure 13.10: The effect of the smoothing operator in the Zeeland dataset. (a) Raw contours extracted at a 50cm depth interval. (b) Smoothed

contours (100 smoothing passes). The ellipses mark areas where aggregation (left), omission (middle) and enlargement (right) take place. (c)
Difference map between the initial and 100X smoothed interpolated and rasterised fields (pixelsize 50 cm).

enlargement of certain features as a result of the uplifting of the points

surrounding a local maximum.

The effects of the densification operator are also visible. The sharp edges

of the undensified lines are caused by the large triangles in the initial

TIN, however after densification these large triangles are subdivided into

much smaller ones. The result is a much smoother contour line that still

respects the sample points.

Naturally, the smoothing operator also smoothes and simplifies the

resulting contour lines. This is demonstrated in Figure 13.11 illustrates the

effect of the smoothing operator on a single contour over 30 smoothing

passes. It is clear that the contour line moves towards the inner region,

which is the deeper side of the contour, which is to be expected since

the smoothing operator is safe per definition (and only lifts the surface

upwards). What can also be seen is that the line is simplified (the details

on the outer rim disappear, note however that the point count stays the

same) and smoothed.
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Figure 13.11: From 0X smoothing (outer) to 30X smoothing (inner) for a given dataset.

13.5 Notes & comments

The algorithm and the methodology of this chapter are (mostly) taken

from Peters et al. (2014).

Zhang and Guilbert (2011) explains in detail how the generalisation of

the content of a nautical chart is hindered by the four constraints.

13.6 Exercises
1. Explain why it is easier to respect the safety constraint using a TIN

that has all the original MBES points as opposed to using a set of

raw contours generated directly from that MBES dataset.

2. Explain why simplification with Douglas-Peucker is not applicable

in a bathymetric context. And give a concrete example.

3. For a terrain “on the land”, if Douglas-Peucker is used to simplify

isocontours, what problems can be expected?

4. The Laplace interpolation is used in the methodology presented,

but would the natural neighbour interpolation method also be

suitable?
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